WO2013129077A1 - 半導体評価装置、及びコンピュータープログラム - Google Patents

半導体評価装置、及びコンピュータープログラム Download PDF

Info

Publication number
WO2013129077A1
WO2013129077A1 PCT/JP2013/052973 JP2013052973W WO2013129077A1 WO 2013129077 A1 WO2013129077 A1 WO 2013129077A1 JP 2013052973 W JP2013052973 W JP 2013052973W WO 2013129077 A1 WO2013129077 A1 WO 2013129077A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
range
exposure
dimensional
exposure condition
Prior art date
Application number
PCT/JP2013/052973
Other languages
English (en)
French (fr)
Inventor
明日香 本多
新藤 博之
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to US14/379,315 priority Critical patent/US10718611B2/en
Priority to KR1020147021799A priority patent/KR101794120B1/ko
Priority to CN201380007975.0A priority patent/CN104094390B/zh
Publication of WO2013129077A1 publication Critical patent/WO2013129077A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70641Focus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Definitions

  • the present invention relates to a semiconductor evaluation apparatus and a computer program, and more particularly to a semiconductor evaluation apparatus and a computer program suitable for extracting appropriate exposure conditions of an exposure apparatus.
  • Patent Document 1 discloses a pattern evaluation method in which two or more contour lines of the same shape are combined and this combined contour line is used as a reference pattern.
  • Japanese Patent Application Laid-Open No. H10-228561 describes that non-defective inspection is performed by using this reference pattern as a comparison target.
  • an FEM (Focus-Exposure-Matrix) wafer is used in which the dose and focus of the exposure apparatus are changed to form a pattern for each different combination of conditions. .
  • a two-dimensional shape comparison can be performed by creating a reference pattern as disclosed in Patent Document 1 and performing an inspection using the reference pattern. Since the change in dose or focus appears as a two-dimensional shape change of the pattern, the reference pattern created by the method disclosed in Patent Document 1 is effective in finding an appropriate exposure condition. I can say that.
  • the following is a method for measuring the dimension of a pattern formed on a sample based on a signal obtained by a charged particle beam apparatus, and the dimension measurement result satisfies a predetermined condition.
  • propose a computer program for synthesizing contour line data obtained from images of the same shape pattern, forming synthetic contour line data, and using the synthetic contour line data as a reference pattern to evaluate pattern information obtained based on the image.
  • FIG. 6 is a diagram for explaining an example of selecting an exposure condition based on one-dimensional measurement and creating a reference pattern based on the selection (part 1).
  • FIG. 6 is a diagram for explaining an example of selecting an exposure condition based on one-dimensional measurement and creating a reference pattern based on the selection (part 2).
  • Process window creation example based on measurement values of one-dimensional shape and two-dimensional shape.
  • the flowchart which shows the process of selection of the reference pattern based on one-dimensional measurement, and the pattern evaluation using a reference pattern.
  • the figure which shows the relationship between a one-dimensional measurement position and the measurement position of a reference pattern.
  • the figure which shows the outline
  • the flowchart which shows an outline creation process. The figure which shows the outline creation principle.
  • Process window analysis analyzes the exposure process window by changing the conditions and conditions of the exposure process and inputting the image of the exposed chip and the measured value.
  • FIG. 1 shows an example of creating a graph showing the relationship between the exposure focus value or dose and the length measurement value. Usually, it is used in association with an FEM (Focus Exposure Matrix) wafer created by changing the focus value and the dose amount.
  • FEM Fluorescence Exposure Matrix
  • the black circles on the graph show the measured values for each shot.
  • the line 105 for each dose amount on the FEM wafer corresponds to the graph 101, and the lines 106, 107, and 108 for each dose amount on the FEM wafer are 102, 103, 104 respectively.
  • Fig. 2 shows an example of creating a graph to clarify the effective range of exposure focus value and dose.
  • the process window is calculated from the focus value, dose amount, and length measurement value of a graph showing the relationship between the exposure focus value or dose amount and the length measurement value.
  • a quadratic function approximation is performed for each dose amount with respect to the measurement value change with respect to the focus value change shown in the graph indicating the relationship between the exposure focus value or dose amount and the measurement value. Then, an approximate expression is calculated by correlating the dose amount and length measurement value of the same focus value, the range is calculated for each focus value of the dose amount from the maximum value and minimum value of the length measurement value, and the dose amount for each focus value is calculated.
  • a process window 206 is calculated from the drawn range and condition values (dose amount upper limit value 203, dose amount lower limit value 205, etc.).
  • exposure conditions based on the best (or predetermined condition) dose amount and focus value obtained as a process window analysis result for a one-dimensional shape are used. Apply the pattern created by. More specifically, the one-dimensional measurement result of a predetermined portion of the pattern is closest to the design data or the simulation result, or has a predetermined relationship (for example, a difference from the design data or the like is included in the predetermined range). A certain pattern is extracted, a pattern created under the same exposure conditions as that pattern and having a plurality of the same shape is selected, and a reference pattern is created using the selected pattern.
  • the reference pattern created as described above is an appropriate comparison object from the viewpoint of the one-dimensional measurement result. By performing a two-dimensional evaluation this time using this reference pattern, high-precision exposure conditions can be obtained. It becomes possible to narrow down.
  • the process window analysis result based on the two-dimensional evaluation result is superimposed on the process window analysis result obtained from the one-dimensional measurement result, so that the appropriate range is selected based on the one-dimensional evaluation result.
  • the overlapping region of the region in the process window and the region in the process window selected as an appropriate range based on the two-dimensional evaluation result can be determined as a more appropriate region.
  • the technique for determining the exposure condition for creating a reference pattern or the target pattern based on the one-dimensional evaluation result the best dose obtained from the process window analysis for the one-dimensional shape
  • the reference pattern By determining the reference pattern from the estimated coordinates of the quantity and the focus value, it is possible to use a probable shape that does not cause a shape collapse as a reference.
  • the analysis target of the process window is a pattern created on the FEM wafer.
  • the FEM wafer is a wafer created by changing the horizontal axis of the wafer map for each shot with the focus value and the vertical axis with the dose amount. Differences in pattern formation due to changes in exposure focus value and dose can be evaluated by comparing length measurement values for each shot.
  • the vertical axis and the horizontal axis of the shot correspond to changes in the focus value and the dose amount.
  • the process window analysis of the pattern created on the FEM wafer performed only a one-dimensional shape, but with the complication and miniaturization of the semiconductor manufacturing process, it is also necessary to measure the two-dimensional shape.
  • FIG. 3 is a diagram showing a flow up to the narrowing down of the common process window of the one-dimensional shape and the two-dimensional shape in cooperation with the evaluation of the two-dimensional shape.
  • a process window analysis for a one-dimensional shape is performed. Find the best dose and focus value from the process window.
  • process window analysis for a one-dimensional shape data measured with a chip having different process conditions is input. Using design data, line patterns are automatically identified and one-dimensional shapes are measured.
  • the contour line with the best dose and the estimated coordinates of the focus value After analyzing the process window for the one-dimensional shape, extract the contour line with the best dose and the estimated coordinates of the focus value, and determine the reference pattern to be used for the evaluation of the two-dimensional shape.
  • the evaluation of the two-dimensional shape uses a method as described later, and quantifies the difference in shape between the reference pattern and the comparison pattern.
  • the reference pattern usually uses design data or a simulation shape as a standard pattern. However, since a simulation shape may not exist, it is necessary to determine a reference pattern.
  • FIG. 4 shows a method of using a pattern having the same condition as the contour line obtained by the best dose amount and estimated focus value coordinates.
  • the patterns 402, 403, 404, and 405 having the same conditions as the estimated coordinates 401 of the best dose amount and focus value are averaged to determine a reference pattern.
  • the peripheral conditions 406 and 407 are not averaged.
  • the contour captured under the same conditions as the contour line obtained with the best dose amount and the estimated coordinates of the focus value are averaged, a reference pattern having no shape collapse can be determined. Further, by averaging, there is an advantage that even if the shape of the pattern is broken due to roughness or the like, the contour is smoothed by taking the average of several patterns.
  • FIG. 5 shows a method of using a peripheral pattern of estimated coordinates of the best dose amount and focus value.
  • the peripheral patterns 502, 503, 504, and 505 of the estimated coordinates 501 of the best dose amount and focus value are averaged to determine the reference pattern.
  • a result having a small shape difference over a wide range can be obtained when evaluating a two-dimensional shape.
  • Another method is to use a contour line extracted with the best dose and focus value. Even when the contour line is extracted with the best coordinates of the dose amount and focus value, roughness may be applied. Considering such a case, the contour line is smoothed by applying smoothing to the extracted contour line, so that a reference pattern having no shape collapse can be obtained.
  • ⁇ Determination of reference pattern and evaluation of 2D shape are executed for hot spots. Since the reference pattern is determined from the range guaranteed by the process window analysis for the one-dimensional shape, the process window for the one-dimensional shape is compared by comparing the probable reference pattern with the contour extraction result. It is possible to evaluate a two-dimensional shape with a small difference in shape included in the range guaranteed by the analysis.
  • FIG. 6 is an example of creating a process window based on measurement values of a one-dimensional shape and a two-dimensional shape.
  • the measured values 601 and 603 of the one-dimensional shape and the measured values 602 and 604 of the two-dimensional shape are represented by a graph showing the relationship between the exposure focus value and the dose amount, the measured values of the one-dimensional shape and the two-dimensional shape are common. Clarify the allowable fluctuation range.
  • a region covered with the measurement values of the one-dimensional shape and the two-dimensional shape is a one-dimensional and two-dimensional common process window 605.
  • FIG. 12 is a schematic diagram of a semiconductor evaluation system that performs reference pattern creation and process window analysis according to the flowchart of FIG.
  • This semiconductor evaluation system is obtained by a scanning electron microscope while transmitting a control signal to a scanning electron microscope main body 1201, a control device 1204 for controlling the scanning electron microscope main body, a predetermined operation program (recipe) to the control device 1204.
  • An arithmetic processing unit 1205 that performs pattern dimension measurement and shape evaluation from the received signals (secondary electrons, backscattered electrons, etc.), a design data storage medium 1215 that stores semiconductor device design data, and a pattern data based on the design data.
  • a simulator 1216 for simulating performance and an input / output device 1217 for inputting predetermined semiconductor evaluation conditions and outputting measurement results and process window analysis results are included.
  • the arithmetic processing device 1205 functions as an image processing device that forms a contour line from the obtained image.
  • the control device 1204 controls the sample stage and the deflector in the scanning electron microscope main body 1201 based on an instruction from the recipe execution unit 1206, and executes positioning of the scanning region (field of view) to a desired one. From the control device 1204, a scanning signal corresponding to the set magnification and the size of the visual field is supplied to the scanning deflector 1202.
  • the scanning deflector 1202 changes the size (magnification) of the field of view to a desired size in accordance with the supplied signal.
  • the image processing unit 1207 included in the arithmetic processing unit 1205 includes an image processing unit 218 that performs image processing of an image obtained by arranging detection signals from the detector 1203 in synchronization with scanning of the scanning deflector 1202. Yes.
  • the arithmetic processing unit 1205 also has a process window evaluation unit 1208 that evaluates a process window based on the measurement and evaluation results in the image processing unit 1207, and a memory 1209 that stores necessary operation programs, image data, measurement results, and the like. Is built-in.
  • the arithmetic processing unit 1205 forms a luminance waveform profile based on the detection signal and performs a template matching using a template image stored in advance, and measures a dimension between peaks of the profile.
  • a dimensional shape evaluation unit 1214 is included for evaluating a two-dimensional shape using the reference pattern data formed by the line forming unit 1213.
  • Electrons emitted from the sample are captured by the detector 1203 and converted into a digital signal by an A / D converter built in the control device 1204.
  • Image processing according to the purpose is performed by image processing hardware such as a CPU, ASIC, and FPGA incorporated in the image processing unit 207.
  • the arithmetic processing unit 1205 is connected to the input / output device 1217, and has a function such as GUI (Graphcal User Interface) that displays an image, an inspection result, and the like to the operator on a display device provided in the input / output device 1217.
  • GUI Graphic User Interface
  • control and processing in the arithmetic processing unit 1205 can be assigned to a CPU or an electronic computer equipped with a memory capable of storing images and processed and controlled.
  • the input / output device 1217 can manually input an imaging recipe including coordinates of an electronic device required for measurement, inspection, etc., a template for pattern matching used for positioning, imaging conditions, or a design data storage medium for the electronic device. It also functions as an imaging recipe creation device that creates using the design data stored in 1215.
  • the input / output device 1217 includes a template creation unit that cuts out a part of a diagram image formed based on the design data and uses it as a template, and is registered in the memory 1209 as a template matching template in the matching processing unit 1210. Is done.
  • Template matching is a method for identifying a location where a captured image to be aligned and a template match based on matching determination using a normalized correlation method or the like, and the matching processing unit 1210 performs matching determination. Based on the above, a desired position of the captured image is specified.
  • the degree of matching between the template and the image is expressed in terms of the degree of matching and the degree of similarity, but the same is true in terms of an index indicating the degree of matching between the two. Further, the degree of dissimilarity and the degree of dissimilarity are one aspect of the degree of coincidence and similarity.
  • the contour line extraction unit 1212 extracts a contour line from image data according to a flowchart illustrated in FIG. 13, for example.
  • FIG. 14 is a diagram showing an outline of the outline extraction.
  • an SEM image is acquired (step 1201).
  • a first contour line is formed based on the luminance distribution of the white band (step 1302).
  • edge detection is performed using a white band method or the like.
  • a luminance distribution is obtained in a predetermined direction with respect to the formed first contour line, and a portion having a predetermined luminance value is extracted (step 1303).
  • the predetermined direction here is preferably a direction perpendicular to the first contour line.
  • a first contour line 1403 is formed based on the white band 1402 of the line pattern 1401, and a luminance distribution acquisition region (1404 to 1406) is set for the first contour line 1403.
  • the luminance distribution (1407 to 1409) in the direction perpendicular to the first contour line is acquired.
  • the first contour line 1403 is a rough contour line, but shows an approximate shape of the pattern. Therefore, in order to form a more accurate contour line with this contour line as a reference, the brightness with the contour line as a reference is used. Detect distribution. By detecting the luminance distribution in the direction perpendicular to the contour line, the peak width of the profile can be narrowed, and as a result, an accurate peak position and the like can be detected. For example, if the positions of the peak tops are connected, a highly accurate contour line (second contour line) can be formed (step 1405). Further, instead of detecting the peak top, a contour line may be formed by connecting predetermined brightness portions.
  • a profile is formed by scanning an electron beam in a direction perpendicular to the first contour line 1403 (step 1304), and based on the profile, the first contour line is formed. It is also possible to form two contour lines.
  • the composite contour line forming unit 1213 creates diagram data indicating the contour line of the design data from the design data read out from the design data storage medium 1215, for example, and uses the diagram data as a template to position between a plurality of contour lines.
  • the combined contours are formed by averaging the deviations at the corresponding points of the contours.
  • the combined contour data or contour data obtained by performing predetermined image processing on the combined contour is registered in the memory 1209 and used for pattern evaluation in the two-dimensional shape evaluation unit 1214.
  • the two-dimensional shape evaluation unit 1214 performs pattern evaluation using a reference pattern (two-dimensional shape pattern) based on an evaluation method illustrated in FIGS. 8 to 10, for example.
  • a reference pattern two-dimensional shape pattern
  • FIGS. 8 to 10 an example in which the one-dimensional evaluation target pattern and the reference pattern are the same will be described, but another pattern may be used.
  • a pattern 801 illustrated in FIG. 8 is a pattern for performing one-dimensional measurement (measurement by the one-dimensional measurement unit 803) using the length measurement box 802, and by combining a plurality of patterns having the same exposure conditions and the same shape. It is also a pattern for forming a reference pattern.
  • the measurement unit 804 is evaluated using this pattern.
  • the measurement unit 804 is set in a direction perpendicular to the one-dimensional measurement unit 803.
  • the one-dimensional measuring unit 803 there may be a case where the contrast in the edge in the horizontal direction is less likely to occur relative to the edge perpendicular to the scanning line direction (X direction) of the electron beam. Therefore, first, measurement is performed by the one-dimensional measuring unit 803, and after finding exposure conditions sufficient to form a reference pattern, a composite contour is formed, and high accuracy of the horizontal contour is realized by the composition.
  • by evaluating the measurement unit 804 it is possible to increase the dimensional accuracy in two directions and narrow down the exposure conditions based on the two evaluation results.
  • an ideal dimension for example, a dimension on the design data
  • the exposure condition of the pattern indicating the ideal dimension or a predetermined range of dimension values including the ideal dimension is extracted, and this exposure is performed. This is executed by selecting a superimposition range of the condition range and the exposure condition range obtained from the one-dimensional measurement as an appropriate exposure condition range (process window region).
  • FIG. 9 is a diagram showing a measurement example of the dimension measurement point 903 between a plurality of corresponding points of the diagram data 901 and the composite contour 902 formed based on the design data.
  • EPE Electronic Placement Error
  • the dimensions in a plurality of directions of the pattern are evaluated, so that an evaluation result unique to a two-dimensional shape that cannot be obtained by one-dimensional measurement can be obtained.
  • the measurement result shows a different value depending on noise.
  • FIG. 9 for example, by measuring all the surroundings and averaging them, It is possible to determine whether the design data is expanded or contracted as a whole.
  • FIG. 10 is a diagram showing an example in which a part of the composite outline 902 is a two-dimensional evaluation target.
  • the evaluation target area 1001 includes a corner portion of the composite outline 902.
  • a predetermined threshold range may be set for the curvature of the corner and the EPE measurement result, and the exposure condition included in the range may be a process window region based on the two-dimensional evaluation result.
  • the process window region can be specified based on the two-dimensional evaluation result by setting the threshold range.
  • the curvature may be calculated by fitting an approximate function to the contour line.
  • an example using an SEM will be described as an image acquisition device.
  • a one-dimensional image is obtained using an image obtained from another charged particle beam device such as a focused ion beam (FIB) device. Measurement or evaluation using a two-dimensional pattern may be performed.
  • FIB focused ion beam
  • the one-dimensional measurement result and the two-dimensional evaluation result obtained as described above are stored in, for example, the database illustrated in FIG. 11, so that the process window illustrated in FIG. 6 can be created.
  • a combination of a focus amount (Focus) and a dose amount (Dose) is stored as an exposure condition (Process (condition).
  • a one-dimensional measurement result or Two-dimensional evaluation results can be stored in association with each other.
  • the measurement result of the one-dimensional measurement unit 803 illustrated in FIG. 8 may be stored in CD value 1
  • the measurement result of the measurement unit 804 may be stored in CD value 2.
  • the EPE measurement result illustrated in FIG. 9 is preferably stored in AveragePEEPE.
  • the curvature of the pattern of the evaluation target area exemplified in FIG. 10 may be stored in Curvature.
  • the area ratio between the combined contour line and the evaluation target pattern may be obtained from the number of pixels in the contour line, and the ratio may be stored in Area ratio.
  • the process window area can be narrowed down by performing process window analysis based on one-dimensional measurement results and process window analysis using at least one reference pattern. If further narrowing down can be performed using a plurality of two-dimensional evaluation results, it is possible to further narrow down the process window or determine the suitability of the one-dimensional measurement result.
  • an FEM wafer is introduced into the sample chamber of the scanning electron microscope main body 1201 (step 701).
  • the exposure conditions of the pattern formed on the FEM wafer are stored in the memory 1209 and the like together with the formed position information.
  • a different exposure condition area for example, shot unit
  • a predetermined one-dimensional measurement site having the same shape pattern is measured on the design data (step 702).
  • a predetermined number of measurements are performed, and after that, the pattern and operation whose one-dimensional measurement result is closest to the design value
  • a pattern closest to the one-dimensional measurement result arbitrarily set by the operator or a pattern included in the one-dimensional measurement result range arbitrarily set by the operator is specified (step 703).
  • a plurality of images of the same shape pattern are acquired on the design data (step 704).
  • the contour extraction unit 1212 Based on the image data acquired in this manner, the contour extraction unit 1212 performs contouring (step 705).
  • the contours of a plurality of patterns which are patterns of the same shape and are created under the same exposure conditions and are arranged at different positions are combined contour forming unit 1213.
  • a reference pattern is formed by synthesizing by (step 706).
  • the reference pattern created as described above is considered to be somewhat close to the pattern created under ideal exposure conditions.
  • the approximate exposure condition range Can be selected.
  • step 707 pattern evaluation in a direction different from the one-dimensional measurement direction is performed, and evaluation of a two-dimensional shape is executed (step 707).
  • the range that can be determined to be an appropriate exposure condition based on one-dimensional measurement and the area that can be determined to be an appropriate exposure condition by evaluation using a reference pattern are specified.
  • the process window is narrowed down from both AND conditions (superimposed region on the process window), and the narrowed process window information is stored in the memory 1209 or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electromagnetism (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

 本発明は、比較検査等に用いる参照パターンを適正に作成する半導体評価装置の提供を目的とする。置、及びコンピュータープログラムを説明する。また、パターンの二次元評価に基づいて、より正確な範囲のプロセスウィンドウを抽出することを他の目的とする半導体評価装置、及びコンピュータープログラムを説明する。 上記目的を達成するために本発明では、荷電粒子線装置によって得られた信号に基づいて、試料上に形成されたパターンの寸法測定を行い、当該寸法測定結果が所定の条件を満たすパターン、或いは当該パターンを形成したときの露光条件を選択し、当該選択された露光条件で作成されたパターン、或いは当該選択されたパターンと既知の位置関係にあるパターンであって、設計データ上、同一形状のパターンの画像から得られる輪郭線データを合成して、合成輪郭線データを形成する半導体評価装置を提案する。

Description

半導体評価装置、及びコンピュータープログラム
本発明は、半導体評価装置、及びコンピュータープログラムに係り、特に露光装置の適正な露光条件を抽出するのに好適な半導体評価装置、及びコンピュータープログラムに関する。
 昨今、半導体デバイスの高密度化に伴い、リソグラフィのプロセス条件の高精度設定の要求がより高まりつつある。また、高密度化に伴って、高精度にパターンを製造するための露光装置のドーズ範囲とフォーカス範囲を示すプロセスウィンドウを正確に求める要求は、ますます厳しいものとなりつつある。特許文献1には、2以上の同一形状のパターンの輪郭線を合成し、この合成輪郭線を参照パターンとするパターンの評価法が開示されている。特許文献1では、この参照パターンを比較対象とすることによって、良品検査を行うことが説明されている。
特開2009-194051号公報
 一方、露光装置の露光条件を求めるために1枚のウェーハに、露光装置のドーズとフォーカスを変化させ、各条件の異なる組み合わせ毎のパターンを形成したFEM(Focus Exposure Matrix)ウェーハが用いられている。FEMウェーハ上に形成されたパターンを評価し、適正なパターンを選択することによって、そのパターンを形成したときのドーズとフォーカスの条件を見出すことができる。
 このパターンの評価に当たり、特許文献1に開示されているように参照パターンを作成し、それを用いた検査を行うことによって、二次元的な形状比較を行うことができる。ドーズやフォーカスの変化は、パターンの二次元的な形状変化となって現れるため、特許文献1に開示の手法によって作成された参照パターンは、適切な露光条件を見出す上で有効なものであると言える。
 ところで、参照パターンを作成する場合、参照パターンは理想的なパターン形状に近いものを選択する必要があるが、理想的なパターン形状の基準がない状態でそのようなパターンを探索することは非常に困難である。
 以下に、適正な参照パターンを作成することを目的とする半導体評価装置、及びコンピュータープログラムを説明する。また、パターンの二次元評価に基づいて、より正確な範囲のプロセスウィンドウを抽出することを他の目的とする半導体評価装置、及びコンピュータープログラムを説明する。
 上記目的を達成するための一態様として、以下に、荷電粒子線装置によって得られた信号に基づいて、試料上に形成されたパターンの寸法測定を行い、当該寸法測定結果が所定の条件を満たすパターン、或いは当該パターンを形成したときの露光条件を選択し、当該選択された露光条件で作成されたパターン、或いは当該選択されたパターンと既知の位置関係にあるパターンであって、設計データ上、同一形状のパターンの画像から得られる輪郭線データを合成して、合成輪郭線データを形成し、当該合成輪郭線データを参照パターンとして、前記画像に基づいて得られるパターン情報を評価する半導体評価装置、或いはコンピュータープログラムを提案する。
上記構成によれば、パターンの比較測定、或いは検査等に用いる参照パターンを適正に形成することが可能となる。
露光のフォーカス値またはドーズ量と測長値との関係を示すグラフ。 露光のフォーカス値とドーズ量の有効範囲を明確化するためのグラフの作成例。 1次元測定結果と2次元評価結果に基づいて、プロセスウィンドウを絞り込む工程を示すフローチャート。 1次元測定に基づく露光条件の選択と、当該選択に基づいて参照パターンを作成する例を説明する図(その1)。 1次元測定に基づく露光条件の選択と、当該選択に基づいて参照パターンを作成する例を説明する図(その2)。 1次元形状及び2次元形状の計測値を基にしたプロセスウィンドウ作成例。 1次元測定に基づく参照パターンの選択と、参照パターンを用いたパターン評価の工程を示すフローチャート。 一次元測定位置と、参照パターンの測定位置との関係を示す図。 EPE測長の概要を示す図。 パターンの特定部位の評価を行う例を説明するための図。 露光条件とパターン評価結果とを関連付けて記憶するデータベースの一例を示す図。 半導体評価システムの一例を示す図。 輪郭線作成工程を示すフローチャート。 輪郭線作成原理を示す図。
 以下、参照パターンを用いたパターンの二次元評価に基づいて、プロセスウィンドウ解析やホットスポット観測を実施する例について説明する。プロセスウィンドウ解析により、最も良いドーズ量及び最も良いフォーカス値を求めることができる。
 プロセスウィンドウ解析は、露光プロセスの条件や条件を変更し露光されたチップを撮像した画像及び測長値を入力とし、露光のプロセスウィンドウについて解析を行う。
 プロセスウィンドウ解析では、露光のフォーカス値またはドーズ量と測長値との関係を示すグラフ及び露光のフォーカス値とドーズ量の有効範囲を明確化するためのグラフを作成する。
 図1に露光のフォーカス値またはドーズ量と測長値との関係を示すグラフ作成例を示す。通常、フォーカス値とドーズ量を変化させて作成したFEM(Focus Exposure Matrix)ウェーハと関連付けて使用する。
 グラフ上の黒丸等はショット毎の測長値を示している。FEMウェーハ上のドーズ量毎のライン105はグラフの101と対応しており、FEMウェーハ上のドーズ量毎のライン106、107、108もドーズ量毎のライン105同様に、グラフの102、103、104と夫々対応している。
 図2に露光のフォーカス値とドーズ量の有効範囲を明確化するためのグラフ作成例を示す。プロセスウィンドウは露光のフォーカス値またはドーズ量と測長値との関係を示すグラフのフォーカス値、ドーズ量、測長値から算出する。
 露光のフォーカス値またはドーズ量と測長値との関係を示すグラフに示されるフォーカス値変化に対する測長値変化に対して、ドーズ量毎に2次関数近似を行う。それから、同一フォーカス値のドーズ量と測長値の相関演算により近似式を算出、測長値の最大値と最小値からドーズ量のフォーカス値ごとに範囲を算出し、フォーカス値毎のドーズ量の範囲を描画する。描画した範囲と条件値(ドーズ量上限値203やドーズ量下限値205等)から、プロセスウィンドウ206を算出する。
 一方、半導体製造工程の複雑化及び微細化に伴い、1次元形状を対象としたプロセスウィンドウ解析やホットスポット観測では不十分になり、2次元形状の計測も必要となってきている。
 しかしながら、2次元形状を評価する手法を確立しないと、高精度な2次元評価は望めない。特に2次元形状の比較評価を行うための基準パターン(参照パターン)が比較対象となる要件を満たしていないと、高精度なパターン評価、及びパターン評価に基づく製造条件特定は望めない。参照パターンは理想形状(適正な露光条件にて形成されたパターンの形状)に近いものを選択することが望ましいが、製造条件が定まっていない段階で、そのようなパターン形状を抽出することは困難である。また、目視でパターン形状を確認した上で、参照パターンを作成することも考えられるが、判断者の主観によって、形状が異なる可能性がある。また、判断者による判断を行った上で、参照パターンを作成する必要があるため、自動化も望めない。
 以下に、適正な2次元評価用の参照パターンを作成する半導体評価装置、及び当該参照パターンをコンピューターに作成させるコンピュータープログラムについて説明する。
 更に、1次元形状及び2次元形状の計測値を用いて、1次元形状及び2次元形状の共通プロセスウィンドウを絞り込むまでの処理を自動化する例についても説明する。
 以下に説明する実施例では、特に、参照パターンを作成するに当たり、1次元形状を対象としたプロセスウィンドウ解析結果として得た、最も良い(或いは所定の条件を満たす)ドーズ量及びフォーカス値による露光条件によって作成されたパターンを適用する。より具体的には、パターンの所定部分の一次元測定結果が、設計データ、或いはシミュレーション結果に最も近い、或いは所定の関係(例えば設計データ等との差分が所定範囲内に含まれている)にあるパターンを抽出し、当該パターンと同じ露光条件で作成されたパターンであって同じ形状のものが複数存在するパターンを選択し、それを用いて参照パターンを作成する。
 以上のようにして作成された参照パターンは1次元測定結果の観点から見れば、適切な比較対象であり、この参照パターンを用いて今度は2次元評価を行うことによって、高精度な露光条件の絞り込みを行うことが可能となる。
 また、露光条件の絞り込みには、1次元測定結果によって得られるプロセスウィンドウ解析結果に、2次元評価結果に基づくプロセスウィンドウ解析結果を重畳することによって、1次元評価結果によって適正な範囲として選択されたプロセスウィンドウ中の領域と、2次元評価結果によって適正な範囲として選択されたプロセスウィンドウ中の領域の重畳領域を、より適切な領域と判定することができる。
 上述のように、1次元評価結果に基づいて、参照パターンを作成するための露光条件、或いは対象パターンを決定する手法によれば、1次元形状を対象としたプロセスウィンドウ解析から求めた最も良いドーズ量及びフォーカス値の推定座標から参照パターンを決定することで、形状の崩れが生じていない確からしい形状を基準とすることが可能となる。
 また、2次元形状の計測値を自動で求め、1次元形状及び2次元形状の計測値を入力とすることで、1次元形状及び2次元形状の共通プロセスウィンドウを自動で絞り込むことが可能となる。
 プロセスウィンドウの解析対象は、FEMウェーハ上に作られたパターンである。FEMウェーハとは、ウェーハマップの横軸をフォーカス値、縦軸をドーズ量でショット毎に変化させて作成したウェーハである。露光のフォーカス値とドーズ量の変化によるパターン形成の違いは、ショット毎の測長値を比較することで評価が可能である。FEMウェーハではショットの縦軸と横軸をフォーカス値とドーズ量の変化に対応している。
 FEMウェーハ上に作られたパターンのプロセスウィンドウ解析は1次元形状だけを実施していたが、半導体製造工程の複雑化及び微細化に伴い、2次元形状の計測も必要となってきている。
 しかし現状は、2次元形状を評価する手段が確立されておらず、2次元形状においては目視で実施しなければならないという問題がある。
 2次元形状の評価を自動で行うことで、2次元形状の目視は排除され、更に、1次元形状及び2次元形状の計測値を用いた共通プロセスウィンドウ絞込みまでの処理を自動で行うことが可能となる。
 図3は、2次元形状の評価と連携した1次元形状及び2次元形状の共通プロセスウィンドウ絞込みまでの流れを示した図である。
 以下に、1次元形状及び2次元形状の計測値を用いた共通プロセスウィンドウの絞込みを自動で行う手段を説明する。初めに、1次元形状を対象としたプロセスウィンドウ解析を実施する。プロセスウィンドウから最も良いドーズ量及びフォーカス値を求める。1次元形状を対象とするプロセスウィンドウ解析では、プロセス条件が異なるチップで測長したデータを入力する。設計データを使用し、ラインパターンを自動判別し、1次元形状の計測を実施する。
 1次元形状を対象としたプロセスウィンドウ解析後、求めた最も良いドーズ量及びフォーカス値の推定座標で輪郭線を抽出し、2次元形状の評価に使用する参照パターンを決定する。2次元形状の評価は、後述するような手法を使用し、参照パターンと比較パターンの形状差を定量化する。
 参照パターンは、通常、設計データやシミュレーション形状を基準パターンとしている。しかし、シミュレーション形状が存在しない場合があるため、参照パターンを決定する必要がある。1つの方法として、図4に最も良いドーズ量及びフォーカス値の推定座標で求めた輪郭線と同一条件のパターンを使用する方法を示す。最も良いドーズ量及びフォーカス値の推定座標401と同一条件のパターン402、403、404、405を平均化し、参照パターンを決定する。周辺条件406、407は平均化対象としない。
 最も良いドーズ量及びフォーカス値の推定座標で求めた輪郭線と同一条件で撮像されているパターンを平均化するため、形状の崩れが無い参照パターンを決定できる。また、平均化を行うことにより、ラフネス等でパターンの形状が崩れていても、いくつかのパターンの平均をとることで、輪郭線が滑らかになるという利点がある。
 違う方法として、図5に最も良いドーズ量及びフォーカス値の推定座標の周辺パターンを使用する方法を示す。最も良いドーズ量及びフォーカス値の推定座標501の周辺パターン502、503、504、505を平均化し、参照パターンを決定する。同一条件で平均化した場合の参照パターンとは、形状に若干の違いが出るが、周辺のパターンを平均化することによって、2次元形状の評価時に広い範囲で形状差が少ない結果が得られる。 更に違う方法として、最も良いドーズ量及びフォーカス値で抽出した輪郭線を使用する方法がある。最も良いドーズ量及びフォーカス値の推定座標で輪郭線を抽出した場合でも、ラフネスが乗る場合がある。その場合を考慮し、抽出した輪郭線にスムージングをかけることで輪郭線は滑らかになるため、形状の崩れが無い参照パターンが得られる。
 参照パターンの決定及び2次元形状の評価はホットスポット分実行する。1次元形状を対象としたプロセスウィンドウ解析で保証されている範囲から参照パターンを決定しているため、確からしい参照パターンと輪郭線抽出結果を比較することによって、1次元形状を対象としたプロセスウィンドウ解析で保証されている範囲に含まれている形状差が少ない2次元形状の評価ができる。
 図6は1次元形状及び2次元形状の計測値を基にしたプロセスウィンドウ作成例である。1次元形状の計測値601、603と、2次元形状の計測値602、604を露光のフォーカス値とドーズ量との関係を示すグラフで表すと、1次元形状及び2次元形状の計測値の共通許容変動領域が明確化する。1次元形状及び2次元形状の計測値で被っている領域が、1次元と2次元の共通プロセスウィンドウ605となる。
 2次元形状の評価を自動で行うことにより、2次元形状の目視評価が排除でき、1次元形状及び2次元形状の計測値を基に共通許容変動領域の絞込みまでを自動化することができる。
 次に、より詳細に1次元評価によって得られる評価結果に基づいて、参照パターンを選択する装置、及びコンピュータープログラムについて、図7のフローチャートに沿って説明する。なお、図12は、図7のフローチャートに沿って、参照パターンの作成、及びプロセスウィンドウ解析を行う半導体評価システムの概要図である。この半導体評価システムは、走査電子顕微鏡本体1201、走査電子顕微鏡本体を制御する制御装置1204、制御装置1204へ所定の動作プログラム(レシピ)に基づいて制御信号を伝達すると共に、走査電子顕微鏡によって得られた信号(二次電子や後方散乱電子等)からパターンの寸法測定や形状評価を実行する演算処理装置1205、半導体デバイスの設計データが格納された設計データ記憶媒体1215、設計データに基づいてパターンのでき栄えをシミュレーションするシミュレーター1216、及び所定の半導体評価条件を入力したり、測定結果やプロセスウィンドウ解析結果を出力したりする入出力装置1217が含まれている。
 演算処理装置1205は、得られた画像から輪郭線を形成する画像処理装置として機能する。制御装置1204は、レシピ実行部1206からの指示に基づいて、走査電子顕微鏡本体1201内の試料ステージや偏向器を制御し、所望の一への走査領域(視野)の位置づけを実行する。制御装置1204からは設定倍率や視野の大きさに応じた走査信号が走査偏向器1202に供給される。走査偏向器1202は、供給される信号に応じて、所望の大きさに視野の大きさ(倍率)を変化させる。
 演算処理装置1205に含まれる画像処理部1207では、走査偏向器1202の走査と同期して、検出器1203による検出信号を配列することによって得られる画像の画像処理を行う画像処理部218を備えている。また、演算処理装置1205には、画像処理部1207における測定、評価結果に基づいてプロセスウィンドウを評価するプロセスウィンドウ評価部1208や、必要な動作プログラムや画像データ、測定結果等が記憶されるメモリ1209が内蔵されている。
 また、演算処理装置1205には、予め記憶されたテンプレート画像を用いてテンプレートマッチングを行うマッチング処理部1210、検出信号に基づいて輝度波形プロファイルを形成し、当該プロファイルのピーク間の寸法を測定することによってパターン寸法を測定する一次元寸法測定部1211、後述するように画像データから輪郭線を抽出する輪郭線抽出部1212、得られた複数の輪郭線を合成する合成輪郭線形成部1213、合成輪郭線形成部1213によって形成された参照パターンデータを用いて、二次元形状を評価するに次元形状評価部1214が含まれている。
 試料から放出された電子は、検出器1203にて捕捉され、制御装置1204に内蔵されたA/D変換器でデジタル信号に変換される。画像処理部207に内蔵されるCPU、ASIC、FPGA等の画像処理ハードウェアによって、目的に応じた画像処理が行われる。
 演算処理装置1205は、入出力装置1217と接続され、当該入出力装置1217に設けられた表示装置に、操作者に対して画像や検査結果等を表示するGUI(Graphcal User Interface)等の機能を有する。
 なお、演算処理装置1205における制御や処理の一部又は全てを、CPUや画像の蓄積が可能なメモリを搭載した電子計算機等に割り振って処理・制御することも可能である。また、入出力装置1217は、測定、検査等に必要とされる電子デバイスの座標、位置決めに利用するパターンマッチング用のテンプレート、撮影条件等を含む撮像レシピを手動もしくは、電子デバイスの設計データ記憶媒体1215に記憶された設計データを活用して作成する撮像レシピ作成装置としても機能する。
 入出力装置1217は、設計データに基づいて形成される線図画像の一部を切り出して、テンプレートとするテンプレート作成部を備えており、マッチング処理部1210におけるテンプレートマッチングのテンプレートとして、メモリ1209に登録される。テンプレートマッチングは、位置合わせの対象となる撮像画像と、テンプレートが一致する個所を、正規化相関法等を用いた一致度判定に基づいて特定する手法であり、マッチング処理部1210は、一致度判定に基づいて、撮像画像の所望の位置を特定する。なお、本実施例では、テンプレートと画像との一致の度合いを一致度や類似度という言葉で表現するが、両者の一致の程度を示す指標という意味では同じものである。また、不一致度や非類似度も一致度や類似度の一態様である。
 輪郭線抽出部1212は、例えば図13に例示するようなフローチャートに沿って画像データから輪郭線を抽出する。図14はその輪郭線抽出の概要を示す図である。
 まず、SEM画像を取得する(ステップ1201)。次に、ホワイトバンドの輝度分布に基づいて、第1の輪郭線を形成する(ステップ1302)。ここではホワイトバンド法等を用いてエッジ検出を行う。次に、形成された第1の輪郭線に対して所定の方向に輝度分布を求め、所定の輝度値を持つ部分を抽出する(ステップ1303)。ここで言うところの所定の方向とは、第1の輪郭線に対して垂直な方向であることが望ましい。図14に例示するように、ラインパターン1401のホワイトバンド1402に基づいて、第1の輪郭線1403を形成し、当該第1の輪郭線1403に対し、輝度分布取得領域(1404~1406)を設定することによって、第1の輪郭線に対し垂直な方向の輝度分布(1407~1409)を取得する。
 第1の輪郭線1403は粗い輪郭線であるが、パターンのおおよその形状を示しているため、この輪郭線を基準としてより高精度な輪郭線を形成するために、当該輪郭線を基準として輝度分布を検出する。輪郭線に対し垂直方向に輝度分布を検出することによって、プロファイルのピーク幅を狭めることができ、結果として正確なピーク位置等を検出することが可能となる。例えばピークトップの位置を繋ぎ合わせるようにすれば、高精度な輪郭線(第2の輪郭線)を形成する(ステップ1405)ことが可能となる。また、ピークトップを検出するのではなく、所定の明るさ部分を繋ぎ合わせるようにして、輪郭線を形成するようにしても良い。
 更に、第2の輪郭線を作成するために、第1の輪郭線1403に対して、垂直な方向に電子ビームを走査することによってプロファイルを形成(ステップ1304)し、当該プロファイルに基づいて、第2の輪郭線形成することも可能である。
 合成輪郭線形成部1213は、例えば設計データ記憶媒体1215から読み出した設計データから、設計データの輪郭線を示す線図データを作成し、当該線図データをテンプレートとして、複数の輪郭線間の位置合わせを行い、各輪郭線の対応点にて、そのずれ分を平均化して合成輪郭線を形成する。この合成輪郭線データ、或いは合成輪郭線に所定の画像処理を施した輪郭線データは、メモリ1209に登録され、二次元形状評価部1214におけるパターン評価に用いられる。
 二次元形状評価部1214は、例えば図8~図10に例示するような評価法に基づいて、参照パターン(2次元形状パターン)を用いたパターン評価を実行する。なお、図8の例では、1次元評価対象パターンと参照パターンが同じ例を説明するが、別のパターンであっても良い。
 図8に例示するパターン801は、測長ボックス802を用いた1次元測定(1次元測定部803の測定)を行うパターンであり、複数の同一露光条件、同一形状のパターンの合成を行うことによって参照パターンを形成するためのパターンでもある。
 参照パターン801を作成した後、このパターンを用いて、測定部804の評価を行う。測定部804は1次元測定部803と垂直な方向に設定されている。走査電子顕微鏡の場合、電子ビームの走査線方向(X方向)に垂直なエッジに対して、相対的に水平方向のエッジは、コントラストが出にくい場合がある。よって、まず、1次元測定部803の測定を行い、参照パターンの形成するに足る露光条件を見出した後で、合成輪郭線を形成し、当該合成によって水平方向の輪郭線の高精度化を実現した上で、測定部804の評価を行うことによって、2方向の寸法精度の高精度化と、2つの評価結果による露光条件の絞り込みを行うことが可能となる。
 露光条件の絞込みは、例えば予め理想寸法(例えば設計データ上の寸法)を設定しておき、当該理想寸法、或いは理想寸法を含む所定範囲の寸法値を示すパターンの露光条件を抽出し、この露光条件範囲と、1次元測定から求められた露光条件範囲の重畳範囲を適正な露光条件範囲(プロセスウィンドウ領域)として選択することによって実行する。
 図9は設計データに基づいて形成される線図データ901と合成輪郭線902の複数の対応点間の寸法測定個所903の測定例を示す図である。EPE(Edge Placement Error)測定と呼ばれる当該測定では、パターンの複数方向の寸法を評価しているため、1次元測定では得られない2次元形状ならではの評価結果を得ることができる。例えば、1次元測定ではその測定結果がノイズによって異なる値を示していてもわからない場合があるが、図9に例示するように、例えば全周囲測定を行い、それを加算平均することによって、パターンが設計データに対して全体的に膨張しているのか収縮しているのか等の判断を行うことが可能となる。
 例えば1次元測定結果にノイズが重畳し、パターンが設計データに対して膨張していると判断されたとき、逆に全周囲方向の平均値が縮小しているような場合は、もともとの1次元測定結果が誤りであることが分かる。よって、1次元測定結果と2次元測定結果との比較に基づいて、参照パターンの選択が適切であったか否かの判定を行うこともできる。
 図10は、合成輪郭線902の一部分を二次元評価対象とした例を示す図である。評価対象領域1001には、合成輪郭線902のコーナー部が含まれている。このコーナー部の曲率やEPE測定結果に、所定の閾値範囲を設定しておき、当該範囲に含まれる露光条件を、二次元評価結果に基づくプロセスウィンドウ領域とするようにしても良い。例えば理想的なコーナーの曲率が経験上分かっているような場合、この閾値範囲を設定することによって、二次元評価結果に基づくプロセスウィンドウ領域の特定が可能となる。曲率の演算は例えば、輪郭線に近似関数をフィッティングして求めることが考えられる。
 以上のような形状評価パラメータを、参照パターンとの比較対象とすることによって、パターンの二次元的な評価に基づく、プロセスウィンドウ領域の選択を行うことができる。
 なお、本実施例では画像取得装置として、SEMを用いた例について説明するが、集束イオンビーム(Focused Ion beam:FIB)装置等、他の荷電粒子線装置から得られる画像等を用いて1次元測定や2次元パターンを用いた評価を行うようにしても良い。
 以上のようにして得られた1次元測定結果や2次元評価結果は、例えば図11に例示するデータベースに記憶しておくことによって、図6に例示したようなプロセスウィンドウの作成が可能となる。図11に例示するデータベースでは、露光条件(Process condition)としてフォーカス量(Focus)とドーズ量(Dose)の組み合わせが記憶されており、これらフォーカス量とドーズ量の組み合わせごとに、1次元測定結果や2次元評価結果を関連付けて記憶できるようになっている。例えば、図8に例示した1次元測定部803の測定結果をCD value 1に記憶し、測定部804の測定結果をCD value 2に記憶するようにすると良い。また図9に例示したEPE測定結果はその加算平均値をAverage EPEに記憶するようにすると良い。更に図10に例示した評価対象領域のパターンの曲率をCurvatureに記憶するようにしても良い。更に、合成輪郭線と評価対象パターンの面積比を、輪郭線内の画素数等から求め、その比をArea ratioに記憶するようにしても良い。
 本実施例では、1次元測定結果に基づくプロセスウィンドウ解析と、少なくとも1つの参照パターンを用いたプロセスウィンドウ解析を行えば、プロセスウィンドウ領域の絞り込みを行うことができる。そして、複数の2次元評価結果を用いて、更なる絞り込みを行うことができれば、更なるプロセスウィンドウの絞り込み、或いは1次元測定結果の適否の判断等を行うことが可能となる。
 以下、図7のフローチャートを詳細に説明する。まず、走査電子顕微鏡本体1201の試料室内にFEMウェーハを導入する(ステップ701)。FEMウェーハに形成されたパターンの露光条件は、その形成された位置情報と共に、メモリ1209等に記憶されている。次に、異なる露光条件領域(例えばショット単位)毎に、設計データ上、同一形状のパターンの所定の1次元測定部位の測定を行う(ステップ702)。
 本例では、1次元測定に基づいて判断可能な適正なプロセスウィンドウ領域を特定すべく、所定数の測定を実行し、それが終了した後に、1次元測定結果が最も設計値に近いパターン、操作者が任意に設定した1次元測定結果に最も近いパターン、或いは操作者が任意に設定した1次元測定結果範囲に含まれるパターンを特定する(ステップ703)。
 次に、特定されたパターンと同一露光条件で作成されたパターンの内、設計データ上、複数の同一の形状パターンの画像を取得する(ステップ704)。ここで、例えば予め参照パターンの基礎となるパターンのテンプレートを予め記憶しておき、マッチング処理部1210によるパターンマッチングで位置を特定できるようにしておけば、参照パターン作成の自動化を実現することができる。このように取得された画像データに基づいて、輪郭線抽出部1212による輪郭線化を実行する(ステップ705)。このように形成された設計データ上、同一形状のパターンであって、同一の露光条件にて作成されると共に、異なる位置に配置されている複数のパターンの輪郭線を、合成輪郭線形成部1213によって合成することによって、参照パターンを形成する(ステップ706)。
 以上のようにして作成された参照パターンは、理想的な露光条件にて作成されたパターンにある程度、近いものと考えられるため、この参照パターンを比較対象とすることによって、おおよその露光条件の範囲を選択することができる。
 このようにして作成された参照パターンを用いて、1次元測定方向とは異なる方向のパターン評価を行い、2次元形状の評価を実行する(ステップ707)。
 これまでの測定や評価から、1次元測定に基づいて適正な露光条件であると判断できる範囲と、参照パターンを用いた評価によって適正な露光条件であると判断できる領域が特定されているので、両者のアンド条件(プロセスウィンドウ上の重畳領域)からプロセスウィンドウの絞り込みを行い、絞り込まれたプロセスウィンドウ情報をメモリ1209等に記憶する。
 以上のような構成によれば、ある程度の精度をもって参照パターンを作成することができると共に、複数のプロセスウィンドウの同定情報に基づく、プロセスウィンドウの絞り込みを行うことが可能となる。
1201 走査電子顕微鏡本体
1202 走査偏向器
1203 検出器
1204 制御装置
1205 演算処理装置
1206 レシピ実行部
1207 画像処理部
1208 プロセスウィンドウ評価部
1209 メモリ
1210 マッチング処理部
1211 一次元寸法測定部
1212 輪郭線抽出部
1213 合成輪郭線形成部
1214 二次元形状評価部
1215 設計データ記憶媒体
1216 シミュレーター
1217 入出力装置

Claims (10)

  1.  荷電粒子線装置によって得られた画像に基づいて、試料上に形成されたパターンの評価を行う演算処理装置を備えた半導体評価装置において、
     前記演算処理装置は、前記荷電粒子線装置によって得られた信号に基づいて、前記試料上に形成されたパターンの寸法測定を行い、当該寸法測定結果が所定の条件を満たすパターン、或いは当該パターンを形成したときの露光条件を選択し、当該選択された露光条件で作成されたパターン、或いは当該選択されたパターンと既知の位置関係にあるパターンであって、設計データ上、同一形状のパターンの画像から得られる輪郭線データを合成して、合成輪郭線データを形成し、当該合成輪郭線データを参照パターンとして、前記画像に基づいて得られるパターン情報を評価することを特徴とする半導体評価装置。
  2.  請求項1において、
     前記演算処理装置は、予め寸法測定結果の許容範囲を記憶する記憶媒体を備え、当該許容範囲に含まれるパターンの第1の露光条件の範囲を抽出することを特徴とする半導体評価装置。
  3.  請求項2において、
     前記演算処理装置は、前記参照パターンの形状評価パラメータの許容範囲を記憶する記憶媒体を備え、当該許容範囲に含まれるパターンの第2の露光条件の範囲を抽出することを特徴とする半導体評価装置。
  4.  請求項3において、
     前記演算処理装置は、前記第1の露光条件の範囲と、前記第2の露光条件の範囲の重畳範囲を選択することを特徴とする半導体評価装置。
  5.  請求項1において、
     前記演算処理装置は、露光条件の異なる複数のパターンの寸法測定の実施に基づいて、前記寸法測定結果が所定の条件を満たすパターン、或いは当該パターンを形成したときの露光条件を選択することを特徴とする半導体評価装置。
  6.  荷電粒子線装置によって得られた画像に基づいて、試料上に形成されたパターンの評価を、コンピューターに実行させるコンピュータープログラムにおいて、
     当該プログラムは、前記コンピューターに、前記荷電粒子線装置によって得られた信号に基づいて、前記試料上に形成されたパターンの寸法測定を実行させ、当該寸法測定結果が所定の条件を満たすパターン、或いは当該パターンを形成したときの露光条件を選択させ、当該選択された露光条件で作成されたパターン、或いは当該選択されたパターンと既知の位置関係にあるパターンであって、設計データ上、同一形状のパターンの画像から得られる輪郭線データを合成して、合成輪郭線データを形成させ、当該合成輪郭線データを参照パターンとして、前記画像に基づいて得られるパターン情報を評価させることを特徴とするコンピュータープログラム。
  7.  請求項5において、
     前記プログラムは、前記コンピューターに、予め記憶された寸法測定結果の許容範囲に含まれるパターンの第1の露光条件の範囲を抽出させることを特徴とするコンピュータープログラム。
  8.  請求項7において、
     前記プログラムは、前記コンピューターに、予め記憶された形状評価パラメータの許容範囲に含まれるパターンの第2の露光条件の範囲を抽出することを特徴とするコンピュータープログラム。
  9.  請求項8において、
     前記プログラムは、前記コンピューターに、前記第1の露光条件の範囲と、前記第2の露光条件の範囲の重畳範囲を選択させることを特徴とするコンピュータープログラム。
  10.  請求項6において、
     前記プログラムは、前記コンピューターに、露光条件の異なる複数のパターンの寸法測定の実施に基づいて、前記寸法測定結果が所定の条件を満たすパターン、或いは当該パターンを形成したときの露光条件を選択させることを特徴とするコンピュータープログラム。
PCT/JP2013/052973 2012-02-28 2013-02-08 半導体評価装置、及びコンピュータープログラム WO2013129077A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/379,315 US10718611B2 (en) 2012-02-28 2013-02-08 Semiconductor evaluation device and computer program
KR1020147021799A KR101794120B1 (ko) 2012-02-28 2013-02-08 반도체 평가 장치 및 기록 매체
CN201380007975.0A CN104094390B (zh) 2012-02-28 2013-02-08 半导体评价装置以及半导体评价方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-040859 2012-02-28
JP2012040859A JP5988615B2 (ja) 2012-02-28 2012-02-28 半導体評価装置、及びコンピュータープログラム

Publications (1)

Publication Number Publication Date
WO2013129077A1 true WO2013129077A1 (ja) 2013-09-06

Family

ID=49082279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052973 WO2013129077A1 (ja) 2012-02-28 2013-02-08 半導体評価装置、及びコンピュータープログラム

Country Status (6)

Country Link
US (1) US10718611B2 (ja)
JP (1) JP5988615B2 (ja)
KR (1) KR101794120B1 (ja)
CN (1) CN104094390B (ja)
TW (1) TWI538077B (ja)
WO (1) WO2013129077A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107077077B (zh) * 2014-09-22 2019-03-12 Asml荷兰有限公司 过程窗口识别符
US10747830B2 (en) * 2014-11-21 2020-08-18 Mesh Labs Inc. Method and system for displaying electronic information
JP6581835B2 (ja) 2015-07-31 2019-09-25 株式会社日立ハイテクノロジーズ 半導体デバイスの評価条件設定方法、及び評価条件設定装置
KR102640848B1 (ko) * 2016-03-03 2024-02-28 삼성전자주식회사 시료 검사 방법, 시료 검사 시스템, 및 이들을 이용한 반도체 소자의 검사 방법
KR102582665B1 (ko) * 2016-10-07 2023-09-25 삼성전자주식회사 집적 회로의 패턴들을 평가하는 시스템 및 방법
JP2018072225A (ja) * 2016-10-31 2018-05-10 オムロン株式会社 制御システム、その制御方法およびそのプログラム
US11600536B2 (en) * 2019-07-04 2023-03-07 Hitachi High-Tech Corporation Dimension measurement apparatus, dimension measurement program, and semiconductor manufacturing system
CN110491797B (zh) * 2019-09-29 2021-10-22 云谷(固安)科技有限公司 线宽测量方法及设备
CN110865518B (zh) * 2019-11-28 2021-12-14 上海华力微电子有限公司 检测晶片上下层叠对的方法和设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164593A (ja) * 2006-12-05 2008-07-17 Nano Geometry Kenkyusho:Kk パターン検査装置および方法
JP2010534408A (ja) * 2007-07-20 2010-11-04 ケーエルエー−テンカー・コーポレーション 標準参照ダイ比較検査に用いるための標準参照ダイを生成する方法及びウエハーを検査するための方法
JP2011141133A (ja) * 2010-01-05 2011-07-21 Hitachi High-Technologies Corp Semを用いた欠陥検査方法及び装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060171593A1 (en) * 2005-02-01 2006-08-03 Hitachi High-Technologies Corporation Inspection apparatus for inspecting patterns of a substrate
JP5276854B2 (ja) 2008-02-13 2013-08-28 株式会社日立ハイテクノロジーズ パターン生成装置およびパターン形状評価装置
US9390490B2 (en) 2010-01-05 2016-07-12 Hitachi High-Technologies Corporation Method and device for testing defect using SEM
JP6063630B2 (ja) 2012-03-19 2017-01-18 株式会社日立ハイテクノロジーズ パターン計測装置、及び半導体計測システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164593A (ja) * 2006-12-05 2008-07-17 Nano Geometry Kenkyusho:Kk パターン検査装置および方法
JP2010534408A (ja) * 2007-07-20 2010-11-04 ケーエルエー−テンカー・コーポレーション 標準参照ダイ比較検査に用いるための標準参照ダイを生成する方法及びウエハーを検査するための方法
JP2011141133A (ja) * 2010-01-05 2011-07-21 Hitachi High-Technologies Corp Semを用いた欠陥検査方法及び装置

Also Published As

Publication number Publication date
KR20140116186A (ko) 2014-10-01
TW201351523A (zh) 2013-12-16
US10718611B2 (en) 2020-07-21
US20150012243A1 (en) 2015-01-08
JP2013179105A (ja) 2013-09-09
CN104094390B (zh) 2017-03-01
TWI538077B (zh) 2016-06-11
CN104094390A (zh) 2014-10-08
KR101794120B1 (ko) 2017-11-06
JP5988615B2 (ja) 2016-09-07

Similar Documents

Publication Publication Date Title
JP5988615B2 (ja) 半導体評価装置、及びコンピュータープログラム
US9141879B2 (en) Pattern matching method, image processing device, and computer program
JP5948138B2 (ja) 欠陥解析支援装置、欠陥解析支援装置で実行されるプログラム、および欠陥解析システム
JP6759034B2 (ja) パターン評価装置及びコンピュータープログラム
JP4262690B2 (ja) 形状測定装置および形状測定方法
US8311314B2 (en) Pattern measuring method and pattern measuring device
US9846931B2 (en) Pattern sensing device and semiconductor sensing system
WO2012057198A1 (ja) 画像処理装置およびコンピュータプログラム
KR101615843B1 (ko) 반도체 계측 장치 및 기록 매체
JP5286337B2 (ja) 半導体製造装置の管理装置、及びコンピュータプログラム
KR101889833B1 (ko) 패턴 측정 장치 및 컴퓨터 프로그램
WO2013089096A1 (ja) 画像処理装置、輪郭線形成方法、及びコンピュータープログラム
WO2013122020A1 (ja) 荷電粒子線装置、及び荷電粒子線装置の動作条件設定装置
JP6294099B2 (ja) パターン測定装置、及びパターン測定装置の管理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754032

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147021799

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14379315

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13754032

Country of ref document: EP

Kind code of ref document: A1