WO2013129047A1 - 淡水化システムおよび淡水化処理方法 - Google Patents

淡水化システムおよび淡水化処理方法 Download PDF

Info

Publication number
WO2013129047A1
WO2013129047A1 PCT/JP2013/052722 JP2013052722W WO2013129047A1 WO 2013129047 A1 WO2013129047 A1 WO 2013129047A1 JP 2013052722 W JP2013052722 W JP 2013052722W WO 2013129047 A1 WO2013129047 A1 WO 2013129047A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
treatment
raw water
desalination system
reverse osmosis
Prior art date
Application number
PCT/JP2013/052722
Other languages
English (en)
French (fr)
Inventor
利昭 荒戸
みさき 隅倉
晃治 陰山
隆広 舘
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2013129047A1 publication Critical patent/WO2013129047A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/24Quality control
    • B01D2311/246Concentration control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/40Automatic control of cleaning processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • C02F1/505Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/20Total organic carbon [TOC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/20Prevention of biofouling
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/24Separation of coarse particles, e.g. by using sieves or screens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/04Aerobic processes using trickle filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/06Aerobic processes using submerged filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • C02F3/107Inorganic materials, e.g. sand, silicates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a desalination system and a desalination treatment method for obtaining fresh water from seawater using a reverse osmosis membrane.
  • RO membranes reverse osmosis membranes
  • the RO membrane is made of materials such as cellulose and polyamide.
  • biofouling is known as a phenomenon that deteriorates the permeation performance of the RO membrane.
  • phytoplankton-derived biopolymers for example, Non-Patent Document 1, TEP (Transparent Exopolymer ⁇ Particles: Transparent cells containing polysaccharides that are particularly sticky among organic substances containing carbon) It is described that the outer particles (transparent particulate organic matter) contribute greatly.
  • Non-Patent Document 2 60 to 80% of organic substances in seawater are low molecular dissolved organic substances of 1 kDa or less, and these low molecular dissolved organic substances are substances involved in the production or decomposition of microorganisms. It is believed that.
  • microorganisms grow on the membrane surface of the RO membrane to inhibit the permeability of the RO membrane and lower the membrane permeability of the RO membrane.
  • Microorganisms live (inhabit) in any seawater, and microorganisms attached to the membrane surface of the RO membrane grow by feeding on low molecular dissolved organic matter in the seawater to generate or promote biofouling. The transmission performance is reduced. From this, it is presumed that low molecular dissolved organic matter is also involved in the generation of biofouling of the RO membrane.
  • biofouling measures are essential for the efficient operation of a desalination system.
  • the upstream side of the RO membrane is pretreated by filtration using an ultrafiltration membrane (ultrafiltration Membrane; hereinafter referred to as “UF membrane”) having a pore diameter of about 0.01 to 0.001 ⁇ m.
  • UF membrane ultrafiltration Membrane
  • chlorine is added as a sterilizing agent for microorganisms in seawater to supply water (seawater) supplied to the RO membrane, and a flocculant (for example, aluminum sulfate) is added as necessary, followed by filtration.
  • a flocculant for example, aluminum sulfate
  • a method of removing a pollutant by an apparatus and adding a reducing agent (for example, sodium hydrogen sulfate) to prevent the RO membrane from being oxidized and deteriorated by chlorine is used (for example, FIG. 3).
  • trihalomethane when chlorine is added to the supply water to the RO membrane, trihalomethane is generated by a chemical reaction with organic substances in the supply water. Since trihalomethane cannot be completely eliminated by the RO membrane, some of the trihalomethane may permeate the RO membrane and contaminate the fresh water produced by the desalination system.
  • RO membranes have very limited resistance to oxidants such as chlorine, so a deoxidation treatment is performed by adding a reducing agent to the feed water to prevent degradation of the RO membrane due to oxidation. .
  • a deoxidation treatment is performed by adding a reducing agent to the feed water to prevent degradation of the RO membrane due to oxidation.
  • the microorganisms re-grow as the oxidizing power in the supply water decreases, and the cells themselves or their metabolites adhere to the RO membrane to generate or promote biofouling. There is a risk of reducing the transmission performance.
  • an object of the present invention is to provide a desalination system and a desalination treatment method that suppress biofouling of a reverse osmosis membrane and suppress deterioration of the reverse osmosis membrane.
  • the present invention provides a desalination system for obtaining fresh water from raw water containing salt using a reverse osmosis membrane, and an organic material assimilation treatment for refining organic matter contained in the raw water Means, biological activity treatment means for reducing the organic matter contained in the raw water using the activity of microorganisms, antibacterial treatment means for adjusting the concentration of the microorganisms contained in the raw water, and the raw water with the reverse osmosis membrane
  • a desalination system comprising a reverse osmosis membrane treatment means for desalination.
  • the present invention provides a desalination treatment method for obtaining fresh water from salt-containing raw water using a reverse osmosis membrane, wherein the organic matter contained in the raw water is refined.
  • the present invention it is possible to provide a desalination system and a desalination treatment method that suppress biofouling of a reverse osmosis membrane and suppress deterioration of the reverse osmosis membrane.
  • FIG. 1 is a configuration diagram of a seawater desalination system S according to the present embodiment.
  • the seawater desalination system S according to the present embodiment uses a RO membrane (reverse osmosis membrane treatment device 5 described later) from the raw water 10 that is seawater (or brine) to remove salt and the like, and a reverse osmosis membrane that is fresh water.
  • This is a system for obtaining treated water 15.
  • the seawater desalination system S includes a contaminant removal apparatus 1, an organic substance assimilation treatment apparatus 2, a biological activity treatment apparatus 3, an antibacterial treatment apparatus 4, a reverse osmosis membrane treatment apparatus 5, and a treated water component analysis.
  • a device 6 and a backwash device 7 are provided.
  • the mixture removal raw water 11 supplied to the organic material assembling apparatus 2 is subjected to a pre-treatment by the organic substance assembling apparatus 2 to refine the organic substances in the mixture removing raw water 11 so that microorganisms are easily assimilated.
  • the water 12 is supplied to the biological activity treatment apparatus 3. A part of the pretreated water 12 is supplied to the treated water component analyzer 6.
  • the pretreated water 12 supplied to the biologically active treatment device 3 is an organic matter in the pretreated water 12 by decomposing organic matter using the activity of microorganisms while activating the microorganisms in the biologically active treatment device 3.
  • a treatment for reducing the amount is performed and supplied to the antibacterial treatment apparatus 4 as the biologically active treated water 13.
  • a part of the biologically active treated water 13 is supplied to the treated water component analyzer 6.
  • the biologically active treated water 13 supplied to the antibacterial treatment device 4 is processed to reduce microorganisms in the biologically active treated water 13 by the antibacterial treatment device 4 and supplied to the reverse osmosis membrane treatment device 5 as the antibacterial treated water 14. Is done.
  • the antibacterial treated water 14 is supplied to the treated water component analyzer 6 and the backwash device 7.
  • the antibacterial treated water 14 supplied to the reverse osmosis membrane treatment device 5 is subjected to reverse osmosis membrane treatment by the reverse osmosis membrane treatment device 5, and the reverse osmosis membrane treatment water 15 that is fresh water and the concentrated waste water in which the salt content and the like are concentrated. 16 and.
  • the seawater desalination system S is provided with a treated water component analyzer 6 and a backwash device 7 as devices for causing its functions to function normally.
  • the treated water component analyzer 6 includes an organic matter concentration measuring device 61 and a microorganism amount measuring device 62.
  • the backwash device 7 includes a cleaning condition calculation device 71 that calculates the cleaning conditions of each treatment device (biological activity treatment device 3, antibacterial treatment device 4), and each treatment device (biological activity treatment device 3, antibacterial treatment device 4). And a cleaning water supply device 72 that supplies cleaning water 17a and 17b to perform cleaning.
  • the contaminant removal apparatus 1 is an apparatus corresponding to a sand filtration process for removing relatively large contaminants, and includes, for example, contaminants and / or turbidity components having a size of 1 ⁇ m to 100 ⁇ m from raw water 10 which is seawater. Remove.
  • the contaminant removal apparatus 1 for example, natural precipitation or a film having a large number of holes having a diameter of 1 ⁇ m to 100 ⁇ m can be used.
  • the organic substance assimilation apparatus 2 is an apparatus that refines organic substances in the mixture-removed raw water 11 so that the biologically active treatment apparatus 3 installed at a later stage can easily serve as a bait for microorganisms. For example, organic substances are refined into low molecular organic substances of 10 kDa or less. According to the present invention, it has been found that the organic substance assembling apparatus 2 has an effect of refining organic substances if the UF film has a pore diameter of about 0.01 to 0.001 ⁇ m or the equivalent.
  • Bioactive treatment device 3 adsorbs microorganisms in the pretreatment water 12 on the surface of the bioactive treatment agent, propagates the microorganisms, and activates the microorganisms using the organic matter in the pretreatment water 12 as a feed. This is a device for reducing the amount of organic matter in the pretreated water 12.
  • the constituent material of the biologically active treatment agent is mainly composed of natural zeolite, for example.
  • Natural zeolite is a mineral having fine pores whose constituent elements are Na, Mg, Al, Si, oxygen, Fe, Ca, K and the like.
  • natural zeolite used as a biologically active treatment agent preferably has a mordenite crystal structure.
  • Organic substances dissolved in the pretreated water 12 for example, microorganisms are removed from the body by attaching microorganisms in the pretreated water 12 to the fine pores existing on and / or inside the natural zeolite particles.
  • Microorganisms assimilate and decompose TEP transparent extracellular particles that are considered to be released organic substances, sugar components that are considered to be constituents of microbial cells, and the like.
  • the biologically active treated water 13 on the downstream side of the biologically active treatment device 3 is effective in reducing the organic substance concentration, the TEPs concentration, the sugar component concentration, and the like.
  • a biologically active treatment tower filled with a natural zeolite layer is erected in the vertical direction, and pretreated water 12 pretreated by the organic substance assimilation treatment device 2 is supplied from above the biologically active treatment tower. It passes through the natural zeolite layer downward. Thereby, organic substances in the pretreated water 12 are adsorbed on the natural zeolite layer, and the amount of organic substances in the biologically active treated water 13 is reduced. In addition, microorganisms inevitably present in the pretreated water 12 stay and propagate in the fine pores of the natural zeolite layer.
  • the microorganisms in the natural zeolite layer assimilate and decompose the minute organic matter (low molecular dissolved organic matter) in the pretreated water 12, thereby reducing the amount of minute organic matter (low molecular dissolved organic matter amount) in the biologically active treated water 13.
  • the bioactivity processing tower in the bioactivity processing apparatus 3 is arranged in single or plural.
  • the antibacterial treatment device 4 is a device that reduces microorganisms in the biologically active treated water 13 with a microorganism reducing treatment agent.
  • a microorganism reducing treatment agent for example, it is desirable to use silver-carrying zeolite in which silver having a bactericidal and antibacterial action on microorganisms is carried on zeolite.
  • an antibacterial treatment tower filled with a silver-carrying zeolite layer is erected in the vertical direction, and the bioactive treatment water 13 treated by the bioactivity treatment device 3 is directed downward from above the antibacterial treatment tower. Pass through the silver supported zeolite layer. Thereby, microorganisms in the biologically active treated water 13 are sterilized with silver, and the amount of microorganisms in the antibacterial treated water 14 is reduced.
  • the antibacterial treatment towers in the antibacterial treatment apparatus 4 are desirably provided in parallel in order to wash and regenerate the microorganism reducing treatment agent.
  • the reverse osmosis membrane treatment device 5 uses an RO membrane (not shown) to concentrate the antibacterial treatment water 14 treated by the antibacterial treatment device 4, the reverse osmosis membrane treatment water 15 that is fresh water, and salt and the like. It is a device that separates into the concentrated drainage 16.
  • Organic matter concentration measuring device 61 (treated water component analyzing device 6)>
  • the organic matter concentration measuring device 61 is configured to measure the organic matter concentration, the TEP concentration, the saccharide concentration, the pretreated water 12 before flowing into the biologically active treatment device 3 and the biologically active treated water 13 that has been processed through the biologically active treatment device 3.
  • This is a device for quantitatively analyzing at least one of TOC (Total Organic Carbon) concentration and the like.
  • the organic substance concentration measuring device 61 quantitatively analyzes at least one of the organic substance concentration, the TEP concentration, the saccharide concentration, the TOC concentration, etc. with respect to the antibacterial treated water 14 that has been processed through the antibacterial treatment device 4. Also good.
  • the measurement result 21 of the organic substance concentration measurement device 61 is transmitted to the cleaning condition calculation device 71 of the backwash device 7.
  • a phenol-sulfuric acid method or a high performance liquid chromatography method can be used for quantitative analysis of organic substance concentration.
  • the quantitative analysis of the TEP concentration can use, for example, an Alcian blue staining absorbance measurement method.
  • the phenol-sulfuric acid method can be used for quantitative analysis of the saccharide concentration.
  • a combustion oxidation method or a wet oxidation method can be used for the quantitative analysis of the organic substance concentration. Note that other measurement methods may be used for the quantitative analysis of the organic substance concentration.
  • the microorganism amount measuring device 62 is a device that quantitatively analyzes the amount of microorganisms in the biologically active treated water 13 before flowing into the antibacterial treatment device 4 and the antibacterial treated water 14 processed through the antibacterial treatment device 4. Further, the microbial amount measuring device 62 may quantitatively analyze the microbial amount of the pretreated water 12 before flowing into the biological activity treatment device 3. The measurement result 22 of the microorganism amount measuring device 62 is transmitted to the cleaning condition calculation device 71 of the backwashing device 7.
  • the ATP (Adenosine Triphosphate) value and the free ATP value containing ATP are quantified by the luciferin-luciferase reaction method.
  • the cleaning condition calculation device 71 is composed of a computer, a controller having a peripheral circuit and the like, a personal computer (personal computer), and the like.
  • the cleaning condition calculation device 71 may be configured with at least a part of its function as a circuit, and the configuration of the cleaning condition calculation device 71 is not limited as long as a predetermined function can be achieved.
  • the cleaning condition calculation device 71 has a function of determining whether or not the biological activity treatment device 3 can be repeatedly used from the measurement result 21 indicating the organic matter reduction ability of the biological activity treatment device 3 transmitted from the organic matter concentration measurement device 61. is doing. If it is determined that it cannot be used repeatedly, a cleaning command 23 for cleaning the biological activity treatment device 3 is transmitted to the cleaning water supply device 72. The cleaning water supply device 72 that has received the cleaning command 23 sends cleaning water 17 a for cleaning the biological activity treatment device 3 to the biological activity treatment device 3. The cleaning condition calculation device 71 periodically transmits a cleaning command 23 for cleaning the biological activity treatment device 3 to the cleaning water supply device 72 by a timer, and the cleaning water supply device 72 cleans the biological activity treatment device 3. Water 17a may be fed.
  • the cleaning condition calculation device 71 has a function of determining whether or not the antibacterial treatment device 4 can be used repeatedly from the measurement result 22 indicating the ability of the antibacterial treatment device 4 to reduce the amount of microorganisms transmitted from the microorganism amount measurement device 62. Have. If it is determined that it cannot be used repeatedly, a cleaning command 23 for cleaning the antibacterial treatment device 4 is transmitted to the cleaning water supply device 72. The cleaning water supply device 72 that has received the cleaning command 23 sends the cleaning water 17b for cleaning the antimicrobial treatment device 4 to the antimicrobial treatment device 4. The cleaning condition calculation device 71 periodically transmits a cleaning command 23 for cleaning the antibacterial treatment device 4 to the cleaning water supply device 72 by a timer, and the cleaning water 17b is supplied from the cleaning water supply device 72 to the antibacterial treatment device 4. May be fed.
  • the cleaning water supply device 72 is provided with heating means (not shown) such as a heater or a heat pump for heating the cleaning water 17a, 17b, warm water can be used as the cleaning water 17a, 17b, and the biologically active treatment device 3 and the antibacterial treatment device 4 are desirable because the cleaning effect such as dissolution of deposits is further enhanced.
  • heating means such as a heater or a heat pump for heating the cleaning water 17a, 17b
  • warm water can be used as the cleaning water 17a, 17b
  • the biologically active treatment device 3 and the antibacterial treatment device 4 are desirable because the cleaning effect such as dissolution of deposits is further enhanced.
  • the organic substance concentration measuring device 61 measures the organic substance concentration of the biologically active treated water 13 treated by the biologically active treatment device 3 with time (continuously with time).
  • the measurement result 21 of the organic substance concentration of the biologically active treated water 13 is sent from the organic substance concentration measurement device 61 to the cleaning condition calculation device 71.
  • the measurement result 21 (organic material concentration of the bioactive treated water 13) is equal to or a predetermined threshold value C 13 or higher.
  • the predetermined threshold value C 13 is a reference value for determining whether or not it is necessary to clean the biological activity treatment device 3 and restore the biological activity ability of the microorganism.
  • the washing condition calculation device 71 causes the washing water supply device 72 to wash the biological activity treatment device 3.
  • a cleaning command 23 to be commanded is transmitted.
  • the cleaning water supply device 72 that has received the cleaning command 23 for instructing cleaning of the biological activity processing device 3 sends the cleaning water 17 a to the biological activity processing device 3.
  • the bioactive treatment apparatus 3 is washed and the natural zeolite layer is regenerated.
  • the microbial amount measuring device 62 measures the microbial amount of the antibacterial treated water 14 treated by the antibacterial treatment device 4 with time (continuously with time).
  • the measurement result 22 of the amount of microorganisms in the antibacterial treated water 14 is sent from the microorganism amount measurement device 62 to the cleaning condition calculation device 71.
  • Washing condition computing device 71 determines whether or not a predetermined threshold B 14 or more.
  • the predetermined threshold value B 14 is a reference value for determining whether or not it is necessary to clean the antibacterial treatment apparatus 4 and restore the microorganism reduction performance, and the above-described biological activity treatment apparatus 3 is washed. It is set separately from a predetermined threshold value C 13 for determining whether or not to perform.
  • the cleaning condition calculation device 71 instructs the cleaning water supply device 72 to clean the antibacterial treatment device 4.
  • a cleaning command 23 is transmitted.
  • the cleaning water supply device 72 that has received the cleaning command 23 for instructing cleaning of the antibacterial treatment device 4 sends the cleaning water 17 b to the antibacterial treatment device 4. Thereby, the antibacterial treatment apparatus 4 is cleaned, and the silver-supported zeolite layer is regenerated.
  • each part (each apparatus) of the seawater desalination system S (refer FIG. 1) which concerns on this embodiment was comprised as follows.
  • the contaminant removal device 1 was used to remove impurities and / or turbidity components from the raw water 10.
  • the organic material assembling treatment apparatus 2 used a UF membrane for 50 kDa molecule permeation, and allowed the mixture removal raw water 11 to permeate at a permeation speed of 1 m / d.
  • the bioactive treatment agent of the bioactive treatment apparatus 3 is made from natural zeolite (product name: Nitto Zeolite ZO lump, 15-30) manufactured by Nitto Flour Chemical Co., Ltd., pulverized and classified, and has a diameter of 0.85 mm. What was sized to ⁇ 2.4 mm was used.
  • the crystal structure of the zeolite used in the bioactive treatment apparatus 3 has mordenite as the main crystal structure.
  • the effect of the present invention is not limited to the above product as long as it has mordenite as the main crystal structure.
  • the biologically active treatment device 3 is packed in a column having a cross-sectional area D of 30 cm 2 with the natural zeolite (bioactive treatment agent) so that the bed height H, which is the axial length of the column, is 5 cm.
  • Q was 1.5 L / h (liters / hour), and pretreatment water 12 was flowed upward from the bottom of the column.
  • linear velocity LV linear velocity
  • space velocity SV space velocity
  • the antimicrobial treatment agent for the antibacterial treatment device 4 is made of natural zeolite (product name: Nitto Zeolite ZO lump, 15-30) manufactured by Nitto Flour Chemical Co., Ltd. A zeolite particle having a particle size of 2.4 mm was dropped and impregnated with an aqueous silver nitrate solution, and heated and fired in the air.
  • the microorganism reducing treatment agent used in the antibacterial treatment apparatus 4 was zeolite carrying silver oxide, and the amount of silver carried was 5 wt% per gram of zeolite unit.
  • the antibacterial treatment device 4 is packed in a column having a cross-sectional area D of 30 cm 2 with the above-mentioned silver-supported zeolite (microbe reducing treatment agent) so that the layer height H, which is the axial length of the column, is 5 cm.
  • Q was 1.5 L / h (liters / hour), and the biologically active treated water 13 was flowed upward from the bottom of the column.
  • the flow rate of the supply water (antibacterial treated water 14) supplied to the reverse osmosis membrane treatment apparatus 5 was 1.2 L / h.
  • the supply pressure was 7 MPa.
  • FIG. 5 is a configuration diagram of a seawater desalination system Sc according to a comparative example.
  • the seawater desalination system Sc according to the comparative example uses the RO membrane (reverse osmosis membrane treatment device 5) from the raw water 10 that is seawater, the reverse osmosis membrane treated water 15c that is fresh water, and the concentration in which the salinity is concentrated.
  • the wastewater 16c is a system for separation, and includes a contaminant removal device 1, an organic material assimilation treatment device 2, and a reverse osmosis membrane treatment device 5.
  • the seawater desalination system Sc according to the comparative example supplies the pretreated water 12 treated by the contaminant removal apparatus 1 and the organic material assimilation treatment apparatus 2. It is different in the point to do.
  • the configurations and water flow conditions of the contaminant removal device 1, the organic material assimilation treatment device 2, and the reverse osmosis membrane treatment device 5 of the seawater desalination system Sc according to the comparative example are the contaminants of the seawater desalination system S according to this embodiment. It is the same as the structure of the removal apparatus 1, the organic substance assimilation processing apparatus 2, and the reverse osmosis membrane processing apparatus 5, and water flow conditions, and description is abbreviate
  • FIG. 2 is a graph showing the saccharide concentration change with respect to the water passing time for the pretreated water 12 and the biologically active treated water 13.
  • concentration of a saccharide having a molecular size of 1 kDa or more was used as an analysis item, and alginic acid as a high-purity reagent was used as a standard substance by a phenol-sulfuric acid method.
  • This saccharide concentration analysis corresponds to the quantitative analysis of the organic substance concentration measuring device 61 (see FIG. 1).
  • the biologically active treated water 13 is considered to have a reduced concentration of saccharides of 1 kDa or more and a reduced concentration of the total amount of organic matter compared to the pretreated water 12. That is, the seawater desalination system S according to the present embodiment can reduce the organic matter in the pretreated water 12 by the biological activity treatment device 3. Moreover, it is clear that the antibacterial treated water 14 obtained by treating the biologically active treated water 13 with the antibacterial treatment apparatus 4 is reduced in organic matter compared to the pretreated water 12.
  • the supply water (antibacterial treated water 14) of the reverse osmosis membrane treatment device 5 in the seawater desalination system S according to the present embodiment is the supply of the reverse osmosis membrane treatment device 5 in the seawater desalination system Sc according to the comparative example.
  • water (pretreatment water 12) the amount of organic substances can be reduced.
  • FIG. 3 is a graph showing the changes in the concentration of ATP and free ATP with respect to the water passing time for the pretreated water 12, the biologically active treated water 13, and the antibacterial treated water 14.
  • concentration of ATP and free ATP hereinafter collectively referred to as ATP concentration
  • ATP concentration concentration of ATP and free ATP
  • This ATP concentration analysis corresponds to the quantitative analysis of the microorganism amount measuring device 62 (see FIG. 1).
  • ATP is a basic component that is always used in the reaction process of organisms that require energy, and the ATP value is an indicator of the amount of microorganisms existing in seawater. Moreover, free ATP is a value which shows other than the existing microorganisms containing ATP (the trace in which microorganisms existed).
  • the ATP concentration of the pretreated water 12 was about 0.01 nmol / L on average.
  • the ATP concentration in the biologically active treated water 13 is 0.06 to 0.08 nmol / L until the water passing time is about 200 hours, and the biologically active treatment device 3 is biologically active.
  • the antibacterial treated water 14 has a reduced ATP concentration and a reduced concentration of microbial content compared to the biologically active treated water 13. That is, it can be seen that the seawater desalination system S according to the present embodiment can reduce the microorganisms in the biologically active treated water 13 by the antibacterial treatment device 4.
  • FIG. 4 is a graph showing the flow rate change of the reverse osmosis membrane treated water with respect to the water flow time for the seawater desalination system S according to the present embodiment and the seawater desalination system Sc according to the comparative example.
  • the permeation flow rate of the reverse osmosis membrane treated water 15 and 15c which is the permeated water that has permeated through the RO membrane of the reverse osmosis membrane treatment apparatus 5, is an index representing the degree of biofouling of the RO membrane. The greater the slope of the decrease, the more biofouling has progressed.
  • permeation flow rates of the reverse osmosis membrane treated waters 15 and 15c which are permeated water, were also determined by the following equation (3) based on the amount of permeated water per unit time and the effective membrane area of the RO membrane.
  • Permeation flow rate Amount of permeated water per unit time / effective membrane area (3)
  • the change in the permeation flow rate with time (the decrease rate of the permeation flow rate) of this embodiment that is, the slope of the permeation flow rate with respect to the water passage time of this embodiment shown by the solid line in FIG. 4 is ⁇ 4.5 ⁇ 10 ⁇ 5 [(m / D) / h].
  • the change with time in the permeation flow rate of the comparative example that is, the slope of the permeation flow rate with respect to the water passing time of the comparative example indicated by the broken line in FIG. 4 is ⁇ 2.5 ⁇ 10 ⁇ 4 [(m / D) / h].
  • the seawater desalination system S suppresses biofouling of the RO membrane and has a RO membrane permeation performance compared to the seawater desalination system Sc according to the comparative example. Since it can suppress that it falls, the chemical cleaning frequency and replacement
  • the amount of microorganisms (ATP concentration) in the antibacterial treated water 14 is higher than that of the pretreated water 12 (supply water of the comparative example).
  • Non-Patent Document 2 60 to 80% of organic substances in seawater are considered to be low molecular dissolved organic substances of 1 kDa or less, and these low molecular dissolved organic substances are substances involved in the production or decomposition of microorganisms. It is considered.
  • the seawater desalination system S from the supply water (antibacterial treated water 14) supplied to the RO membrane, low-molecular dissolved organic matter of 1 kDa or less that could not be removed conventionally, It can be removed by assimilation / decomposition by microorganisms in the biological activity treatment apparatus 3, and biofouling of the RO membrane can be suppressed.
  • seawater desalination system S is not limited to the configuration of the above embodiment, and various modifications can be made without departing from the spirit of the invention.
  • seawater desalination system S which concerns on this embodiment was demonstrated as a system which obtains fresh water (reverse osmosis membrane treated water 15) from seawater (raw water 10), it is not restricted to this.
  • a brine water desalination system that obtains fresh water (reverse osmosis membrane treated water 15) from brine (raw water 10) may be used.
  • washing condition computing unit 71 by the measurement result 21 (organic material concentration of the bioactive treated water 13) to determine whether a predetermined threshold C 13 or more, whether to clean the bioactive processor 3
  • the cleaning condition calculation device 71 measures the organic matter concentration using the organic matter concentration of the pretreated water 12 supplied to the biological activity treatment device 3 and the biologically active treatment water 13 treated by the biological activity treatment device 3 as the measurement result 21.
  • 61 acquired from the pretreated water 12 based on a threshold map and threshold value table set for each concentration of organic material to determine the predetermined threshold value C 13_12, bioactive treated water 13 threshold C 13_12 organic matter concentrations were determined for It may be configured to determine whether or not this is the case. By comprising in this way, it can respond also when the change of the organic substance density
  • the cleaning condition calculation device 71 has been treated with the pretreatment water 12 supplied to the biological activity treatment device 3, the biological activity treatment water 13 treated with the biological activity treatment device 3, and the antibacterial treatment device 4.
  • the organic substance concentration with the antibacterial treated water 14 is acquired from the organic substance concentration measuring device 61 as the measurement result 21, and predetermined threshold values C 13_12 and C 14_12 are obtained based on the threshold map and threshold table set for each organic substance concentration of the pretreated water 12. To decide. Then, the cleaning condition calculation device 71 is equal to or higher than the threshold value C 13_12 where the organic substance concentration of the biologically active treated water 13 is determined, and whether the organic substance concentration of the antibacterial treated water 14 is equal to or higher than the determined threshold value C 14_12 .
  • filled may be sufficient. By comprising in this way, while being able to cope with the case where the change of the organic substance density
  • Washing condition computing unit 71 by the measurement result 22 (microbial amount of the antimicrobial treated water 14) to determine whether a predetermined threshold B 14 or more, it is determined whether or not to clean the antimicrobial treatment apparatus 4 Although described as a thing, it is not restricted to this.
  • the cleaning condition calculation device 71 uses the amount of microorganisms of the biologically active treated water 13 supplied to the antibacterial treatment device 4 and the antibacterial treatment water 14 treated by the antibacterial treatment device 4 as a measurement result 22 to measure the amount of microorganisms 62.
  • a predetermined threshold B 14_13 is determined based on a threshold map or threshold table set for each microorganism amount of the biologically active treated water 13, and the microorganism amount of the antibacterial treated water 14 is greater than or equal to the determined threshold B 14_13
  • the structure which determines whether there exists may be sufficient. By comprising in this way, even when the change of the amount of microorganisms of the raw
  • the cleaning condition calculation device 71 includes pretreatment water 12 supplied to the biological activity treatment device 3, biological treatment water 13 treated by the biological activity treatment device 3 and supplied to the antibacterial treatment device 4, and antibacterial activity.
  • the amount of microorganisms with the antibacterial treated water 14 treated by the treatment device 4 is acquired as the measurement result 22 from the microorganism amount measuring device 62 and predetermined based on a threshold map or threshold table set for each microorganism amount of the pretreated water 12. determining the predetermined threshold value B 14_13 based on a threshold map and threshold value table set for each of the threshold B 14_12 and bioactive treated water 13 microbial load.
  • the cleaning condition calculation device 71 determines whether the amount of microorganisms in the antibacterial treated water 14 is equal to or greater than the determined threshold B 14_12 and whether the amount of microorganisms in the antibacterial treated water 14 is equal to or greater than the determined threshold B 14_13 .
  • filled may be sufficient.
  • the cleaning condition calculation device 71 has been described as determining whether or not the biological activity treatment device 3 is to be washed based on the measurement result 21 of the organic matter concentration measurement device 61 (such as the organic matter concentration of the biologically active treated water 13).
  • the microorganism activity measuring device 62 may determine whether the biological activity treatment device 3 is cleaned by quantifying the amount of microorganisms, the bacterial cell concentration, the ATP concentration, and the like of the biological activity treated water 13. For example, as shown in FIG. 3, it is determined that the ATP concentration in the biologically active treated water 13 decreases near the passage time of about 230 hours and the biological activity in the biologically active treatment device 3 is reduced. it can.
  • the assimilation resolution is also reduced, and the organic matter concentration in the biologically active treated water 13 is increased as shown in FIG. In this way, the state of biological activity in the biological activity treatment device 3 may be detected to determine whether or not to wash the biological activity treatment device 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

 逆浸透膜のバイオファウリングを抑制するとともに、逆浸透膜の劣化を抑制する。 逆浸透膜を用いて、原水から淡水を得る淡水化システム(S)であって、原水に含まれる有機物を微細化する有機物資化処理装置(2)と、微生物の活性を利用して原水に含まれる有機物を低減させる生物活性処理装置(3)と、原水に含まれる微生物の濃度を調整する抗菌処理装置(4)と、逆浸透膜で原水を淡水化する逆浸透膜処理装置(5)と、を備える。

Description

淡水化システムおよび淡水化処理方法
 本発明は、海水などから逆浸透膜を用いて淡水を得る淡水化システムおよび淡水化処理方法に関する。
 近年、地球規模の人口増加や新興国の台頭に伴う造水需要の顕在化により、逆浸透膜(Reverse Osmosis Membrane;以下、「RO膜」と称する。)を用いて、海水などから淡水を得る淡水化システムが増加する傾向が顕著となっている。RO膜は、セルロースやポリアミド等の素材で造られており、このRO膜に海水の浸透圧の2倍以上の圧力を加えることで、水をRO膜の微細孔に通過させ、塩分(主に、NaCl)の透過を抑制し、淡水を得ることができる。
 ところで、RO膜を用いた淡水化システムにおいて、RO膜の透過性能を低下させる現象として、バイオファウリングが知られている。バイオファウリングの生成には、植物プランクトン由来の生体高分子物質、例えば、非特許文献1には、炭素を含有する有機物のうち特に粘着性を持つ多糖類を含むTEP(Transparent Exopolymer Particles:透明細胞外粒子(透明粒子状有機物))が、大きく寄与していると記載されている。
 また、非特許文献2によれば、海水中の有機物のうち60~80%は、1kDa以下の低分子溶存有機物であるとされ、これら低分子溶存有機物が微生物の生産あるいは分解にかかわる物質であると考えられている。
 また、RO膜の膜面上で微生物が増殖してRO膜の透過性を阻害し、RO膜の膜透過効率を低下させることが挙げられる。微生物は如何なる海水にも生存(生息)しており、RO膜の膜面上に付着した微生物が海水中の低分子溶存有機物を餌として増殖し、バイオファウリングを発生あるいは助長し、RO膜の透過性能の低下を招来する。このことから、RO膜のバイオファウリングの生成においても、低分子溶存有機物が関与するものと推測される。
 このように、淡水化システムの効率的な運転のためには、バイオファウリング対策が必須である。バイオファウリング対策としては、孔径0.01~0.001μm程度の限外ろ過膜(Ultrafiltration Membrane;以下、「UF膜」と称する。)によるろ過を用いた前処理工程によって、RO膜の上流側で海水から有機物を低減させ、RO膜の透過性能が低下することを抑制する方法がある(例えば、特許文献1の図2参照)。
 また従来の前処理法では、RO膜に供給する供給水(海水)に海水中の微生物に対する滅菌剤として塩素を添加し、必要に応じて凝集剤(例えば、硫酸アルミニウム)を添加した後、ろ過装置により汚濁物質を除去し、RO膜が塩素により酸化して劣化することを防止のために還元剤(例えば、硫酸水素ナトリウム)を添加する方法がとられている(例えば、特許文献1の図3参照)。
特表2010-516450号公報
竹内和久、「海水の前処理と膜ファウリング-イオン交換膜と逆浸透膜-RO海水淡水化の前処理とファウリング」、日本海水学会誌、2009年、第63巻、第6号、p.367-371 小川浩史、「水環境の溶存有機物 海洋における溶存有機物の動態」、水環境学会誌、2011年、第34巻、第5号、p.130-133
 しかし、UF膜を用いた前処理工程によっても、海水中の有機物を完全に除去することができず、バイオファウリングによりRO膜の透過性能が低下することを防止できないという課題がある。特に、UF膜では低分子溶存有機物を十分に除去することができなかった。
 また、微生物によるバイオファウリング抑制対策として、RO膜への供給水を滅菌した後に、RO膜を通水させることが対策のひとつとして考えられるが、飲用水などに適用が限られる。即ち、飲用を目的としない工業用水(例えば、発電所の冷却用淡水)の場合、微生物によるバイオファウリング抑制のみを目的として、滅菌剤、還元剤等を添加することは、淡水生成コスト(ランニングコスト)の増加となり望ましくない。
 また、RO膜への供給水に塩素を添加する場合、供給水中の有機物と化学反応することにより、トリハロメタンが生成される。トリハロメタンはRO膜では完全に排除することができないため、トリハロメタンの一部がRO膜を透過して、淡水化システムにより生産された淡水を汚染するおそれがある。
 また、ほとんどのRO膜は塩素等の酸化剤に対して非常に限られた耐性を有するため、RO膜の酸化による劣化の防止のために供給水に還元剤を添加して脱塩素処理を行う。しかし、還元剤添加後、供給水中の酸化力が低下することにより微生物が再び繁殖して、菌体自体あるいはその代謝物がRO膜に付着してバイオファウリングを発生あるいは助長し、RO膜の透過性能を低下させるおそれがある。
 そこで、本発明は、逆浸透膜のバイオファウリングを抑制するとともに、逆浸透膜の劣化を抑制する淡水化システムおよび淡水化処理方法を提供することを課題とする。
 このような課題を解決するために、本発明は、逆浸透膜を用いて、塩分を含む原水から淡水を得る淡水化システムであって、前記原水に含まれる有機物を微細化する有機物資化処理手段と、微生物の活性を利用して前記原水に含まれる有機物を低減させる生物活性処理手段と、前記原水に含まれる前記微生物の濃度を調整する抗菌処理手段と、前記逆浸透膜で前記原水を淡水化する逆浸透膜処理手段と、を備えることを特徴とする淡水化システムである。
 また、このような課題を解決するために、本発明は、逆浸透膜を用いて、塩分を含む原水から淡水を得る淡水化処理方法であって、前記原水に含まれる有機物を微細化する微細化処理ステップと、前記微細化処理ステップにより処理された前記原水を、微生物の活性を利用して、該原水に含まれる有機物を低減させる生物活性処理ステップと、前記生物活性処理ステップにより処理された前記原水に含まれる前記微生物の濃度を調整する抗菌処理ステップと、前記抗菌処理ステップにより処理された前記原水を前記逆浸透膜で淡水化する逆浸透膜処理ステップと、を備えることを特徴とする淡水化処理方法である。
 本発明によれば、逆浸透膜のバイオファウリングを抑制するとともに、逆浸透膜の劣化を抑制する淡水化システムおよび淡水化処理方法を提供することができる。
本実施形態に係る海水淡水化システムの構成図である。 前処理水および生物活性処理水について、通水時間に対する糖類濃度変化を対比して示したグラフである。 前処理水、生物活性処理水および抗菌処理水について、通水時間に対するATPおよび遊離ATPの濃度変化を対比して示したグラフである。 本実施形態に係る海水淡水化システムおよび比較例に係る海水淡水化システムについて、通水時間に対する逆浸透膜処理水の流速変化を対比して示したグラフである。 比較例に係る海水淡水化システムの構成図である。
 以下、本発明を実施するための形態(以下「実施形態」という)について、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の符号を付し重複した説明を省略する。
≪本実施形態に係る海水淡水化システムS≫
 図1は、本実施形態に係る海水淡水化システムSの構成図である。
 本実施形態に係る海水淡水化システムSは、海水(または、かん水)である原水10から、RO膜(後述する逆浸透膜処理装置5)を用いて塩分等を除き、淡水である逆浸透膜処理水15を得るシステムである。
 このため、海水淡水化システムSは、混入物除去装置1と、有機物資化処理装置2と、生物活性処理装置3と、抗菌処理装置4と、逆浸透膜処理装置5と、処理水成分分析装置6と、逆洗装置7と、を備えている。
 混入物除去装置1に供給された海水である原水10は、混入物除去装置1で比較的大きな混入物を除去する処理がなされて、混合物除去原水11として有機物資化処理装置2に供給される。
 有機物資化処理装置2に供給された混合物除去原水11は、有機物資化処理装置2で混合物除去原水11中の有機物類を微生物類が資化しやすいように微細化する処理がなされて、前処理水12として生物活性処理装置3に供給される。また、前処理水12の一部が、処理水成分分析装置6に供給される。
 生物活性処理装置3に供給された前処理水12は、生物活性処理装置3で微生物類を活性化させながら微生物類の活性を利用して有機物類を分解することにより前処理水12中の有機物類を低減させる処理がなされて、生物活性処理水13として抗菌処理装置4に供給される。また、生物活性処理水13の一部が、処理水成分分析装置6に供給される。
 抗菌処理装置4に供給された生物活性処理水13は、抗菌処理装置4で生物活性処理水13中の微生物類を低減させる処理がなされて、抗菌処理水14として逆浸透膜処理装置5に供給される。また、抗菌処理水14の一部が、処理水成分分析装置6および逆洗装置7に供給される。
 逆浸透膜処理装置5に供給された抗菌処理水14は、逆浸透膜処理装置5で逆浸透膜処理がなされて、淡水である逆浸透膜処理水15と、塩分等が濃縮された濃縮排水16と、に分けられる。
 また、海水淡水化システムSは、その機能を正常に働かせるための機器として、処理水成分分析装置6および逆洗装置7が併設されている。
 処理水成分分析装置6は、有機物濃度計測装置61と、微生物量計測装置62と、を有している。
 逆洗装置7は、各処理装置(生物活性処理装置3,抗菌処理装置4)の洗浄条件を演算する洗浄条件演算装置71と、各処理装置(生物活性処理装置3,抗菌処理装置4)に洗浄水17a,17bを供給して洗浄する洗浄水供給装置72と、を有している。
 次に、海水淡水化システムSの備える各部(各装置)について説明する。
<混入物除去装置1>
 混入物除去装置1は、比較的大きな混入物を除去する砂ろ過処理に相当する装置であって、海水である原水10から、例えば、1μm~100μmの大きさの夾雑物および/または濁度成分を除去する。
 混入物除去装置1としては、例えば、自然沈殿や直径が1μm~100μmの孔を多数有する膜などを用いることができる。
<有機物資化処理装置2>
 有機物資化処理装置2は、後段に設置される生物活性処理装置3で微生物類の餌となりやすいように混合物除去原水11中の有機物類を微細化する装置である。例えば、有機物類を10kDa以下の低分子有機物に微細化する。
 本発明によると、有機物資化処理装置2としては、孔径0.01~0.001μm程度のUF膜、もしくはそれに相当するものであれば有機物類を微細化する効果があることがわかった。
<生物活性処理装置3>
 生物活性処理装置3は、生物活性処理剤の表面に前処理水12中の微生物類を吸着させるとともに、微生物類を繁殖させ、前処理水12中の有機物類を餌として微生物類を活性化することにより、前処理水12中の有機物量を低減させる装置である。
 生物活性処理剤の構成材料は、例えば、天然ゼオライトを主成分とする。天然ゼオライトは、Na、Mg、Al、Si、酸素、Fe、Ca、K等を構成元素とする微小な細孔を有する鉱物である。特に、生物活性処理剤として用いる天然ゼオライトは、結晶構造がモルデナイト系に属するものが望ましい。
 天然ゼオライト粒子の表面および/または内部に存在する微小な細孔に前処理水12中の微生物類が付着することで、前処理水12中に溶解している有機物類(例えば、微生物が体外に放出した有機物と考えられるTEP(透明細胞外粒子)、微生物細胞の構成成分であると考えられる糖成分等)を、微生物類が資化分解する。
 これにより、生物活性処理装置3の下流側の生物活性処理水13は、有機物濃度、TEP類濃度、および糖成分濃度等を低減することに有効である。
 生物活性処理装置3として、例えば、天然ゼオライト層を充填した生物活性処理塔を鉛直方向に立設し、有機物資化処理装置2で前処理された前処理水12が生物活性処理塔の上方から下方に向けて天然ゼオライト層を通過する。
 これにより、前処理水12中の有機物類を天然ゼオライト層に吸着させて、生物活性処理水13の有機物量を低減させる。
 また、天然ゼオライト層の微小な細孔には前処理水12中に必然的に存在する微生物類が滞留、繁殖する。そして、天然ゼオライト層の微生物類が前処理水12中の微小有機物(低分子溶存有機物)を資化分解することにより、生物活性処理水13の微小有機物量(低分子溶存有機物量)を低減させる。
 なお、生物活性処理装置3における生物活性処理塔は、単数または複数並設される。
<抗菌処理装置4>
 抗菌処理装置4は、微生物低減処理剤により生物活性処理水13中の微生物類を低減させる装置である。
 微生物低減処理剤としては、例えば、微生物に対して殺菌、抗菌作用がある銀をゼオライトに担持した銀担持ゼオライトを用いることが望ましい。
 抗菌処理装置4として、例えば、銀担持ゼオライト層を充填した抗菌処理塔を鉛直方向に立設し、生物活性処理装置3で処理された生物活性処理水13が抗菌処理塔の上方から下方に向けて銀担持ゼオライト層を通過する。
 これにより、生物活性処理水13中の微生物類を銀により殺菌して、抗菌処理水14の微生物量を低減させる。
 なお、抗菌処理装置4における抗菌処理塔は、微生物低減処理剤の洗浄、再生を行うため、複数並列に設けられることが望ましい。
<逆浸透膜処理装置5>
 逆浸透膜処理装置5は、RO膜(図示せず)を用いて、抗菌処理装置4で処理された抗菌処理水14を、淡水である逆浸透膜処理水15と、塩分等が濃縮された濃縮排水16と、に分離させる装置である。
<有機物濃度計測装置61(処理水成分分析装置6)>
 有機物濃度計測装置61は、生物活性処理装置3に流入する前の前処理水12および生物活性処理装置3を通過して処理された生物活性処理水13について、有機物濃度、TEP濃度、糖類濃度、TOC(Total Organic Carbon;全有機炭素)濃度等のうち少なくともいずれか一つを定量分析する装置である。また、有機物濃度計測装置61は、抗菌処理装置4を通過して処理された抗菌処理水14について、有機物濃度、TEP濃度、糖類濃度、TOC濃度等のうち少なくともいずれか一つを定量分析してもよい。
 有機物濃度計測装置61の計測結果21は、逆洗装置7の洗浄条件演算装置71に送信される。
 なお、有機物濃度の定量分析は、例えば、フェノール-硫酸法または高速液体クロマトグラフィー法を用いることができる。また、TEP濃度の定量分析は、例えば、アルシアンブルー染色吸光度測定法を用いることができる。糖類濃度の定量分析は、例えば、フェノール-硫酸法を用いることができる。TOC濃度の定量分析は、燃焼酸化方式、湿式酸化方式を用いることができる。なお、有機物濃度の定量分析はその他の測定法を用いてもよい。
<微生物量計測装置62(処理水成分分析装置6)>
 微生物量計測装置62は、抗菌処理装置4に流入する前の生物活性処理水13および抗菌処理装置4を通過して処理された抗菌処理水14について、微生物量を定量分析する装置である。また、微生物量計測装置62は、生物活性処理装置3に流入する前の前処理水12について、微生物量を定量分析してもよい。
 微生物量計測装置62の計測結果22は、逆洗装置7の洗浄条件演算装置71に送信される。
 なお、微生物量の定量分析に際しては、ATP(Adenosine Triphosphate;アデノシン三リン酸)値およびATPを含む遊離ATP値を、ルシフェリン-ルシフェラーゼ反応法で定量する。なお、微生物量の定量分析はその他の測定法を用いてもよい。
<洗浄条件演算装置71、洗浄水供給装置72(逆洗装置7)>
 洗浄条件演算装置71は、コンピュータ、周辺回路等を有するコントローラやパソコン(personal computer)等で構成される。洗浄条件演算装置71は、その機能の少なくとも一部を回路で構成してもよく、洗浄条件演算装置71は、所定の機能が果たせればその構成は限定されない。
 洗浄条件演算装置71は、有機物濃度計測装置61から送信される生物活性処理装置3の有機物低減能を示す計測結果21から、生物活性処理装置3が繰り返し使用可能か否かを判定する機能を有している。そして、繰り返し使用不可と判定した場合、洗浄水供給装置72に、生物活性処理装置3を洗浄するための洗浄指令23を送信する。
 洗浄指令23を受けた洗浄水供給装置72は、生物活性処理装置3に、生物活性処理装置3を洗浄するための洗浄水17aを送液する。
 なお、洗浄条件演算装置71は、タイマによって定期的に洗浄水供給装置72に生物活性処理装置3を洗浄するための洗浄指令23を送信し、洗浄水供給装置72から生物活性処理装置3に洗浄水17aを送液してもよい。
 また、洗浄条件演算装置71は、微生物量計測装置62から送信される抗菌処理装置4の微生物量低減能を示す計測結果22から、抗菌処理装置4が繰り返し使用可能か否かを判定する機能を有している。そして、繰り返し使用不可と判定した場合、洗浄水供給装置72に、抗菌処理装置4を洗浄するための洗浄指令23を送信する。
 洗浄指令23を受けた洗浄水供給装置72は、抗菌処理装置4に、抗菌処理装置4を洗浄するための洗浄水17bを送液する。
 なお、洗浄条件演算装置71は、タイマによって定期的に洗浄水供給装置72に抗菌処理装置4を洗浄するための洗浄指令23を送信し、洗浄水供給装置72から抗菌処理装置4に洗浄水17bを送液してもよい。
 なお、洗浄水供給装置72に、洗浄水17a,17bを加熱するヒータやヒートポンプ等の加熱手段(図示せず)を設けると、洗浄水17a,17bとして温水を用いることができ、生物活性処理装置3や抗菌処理装置4の付着物の溶解等の洗浄効果がより高まるので望ましい。
 また、洗浄水17a,17bは、抗菌処理装置4を通過して処理された抗菌処理水14を用いるのが望ましい。
 次に、処理水成分分析装置6(有機物濃度計測装置61、微生物量計測装置62)と、逆洗装置7(洗浄条件演算装置71、洗浄水供給装置72)との動作関係について説明する。
<洗浄条件演算装置71による生物活性処理装置3の洗浄判定>
 通水時間の経過とともに、生物活性処理装置3の天然ゼオライト層内には、有機物の分解堆積物や微生物の代謝物等が増大し、天然ゼオライトの有機物低減性能を低下させる。
 このため、本実施形態に係る海水淡水化システムSは、生物活性処理装置3の生物活性を維持して、有機物低減能を維持するために、生物活性処理装置3の天然ゼオライト層を洗浄することができるようになっている。
 有機物濃度計測装置61は、生物活性処理装置3で処理された生物活性処理水13の有機物濃度を経時的に(時間経過にしたがって連続的に)計測する。生物活性処理水13の有機物濃度の計測結果21は、有機物濃度計測装置61から洗浄条件演算装置71に送られる。
 洗浄条件演算装置71は、計測結果21(生物活性処理水13の有機物濃度)が所定の閾値C13 以上であるか否かを判定する。ここで、所定の閾値C13 は、生物活性処理装置3を洗浄して、微生物の生物活性能を回復させる必要があるか否かを判定するための基準値である。
 計測結果21が所定の閾値C13 未満である場合、生物活性処理装置3の洗浄は必要ないと判定される。
 一方、計測結果21が所定の閾値C13 以上である場合、生物活性処理装置3の洗浄が必要と判定され、洗浄条件演算装置71は、洗浄水供給装置72に生物活性処理装置3の洗浄を指令する洗浄指令23を送信する。
 生物活性処理装置3の洗浄を指令する洗浄指令23を受信した洗浄水供給装置72は、生物活性処理装置3に洗浄水17aを送液する。これにより、生物活性処理装置3は洗浄され、天然ゼオライト層の再生が行われる。
<洗浄条件演算装置72による抗菌処理装置4の洗浄判定>
 通水時間の経過とともに、抗菌処理装置4の銀担持ゼオライト層内には、有機物の分解堆積物や微生物の代謝物等が増大し、銀担持ゼオライト層の微生物低減性能を低下させる。
 このため、本実施形態に係る海水淡水化システムSは、抗菌処理装置4の微生物低減能を維持するために、抗菌処理装置4の銀担持ゼオライト層を洗浄することができるようになっている。
 微生物量計測装置62は、抗菌処理装置4で処理された抗菌処理水14の微生物量を経時的に(時間経過にしたがって連続的に)計測する。抗菌処理水14の微生物量の計測結果22は、微生物量計測装置62から洗浄条件演算装置71に送られる。
 洗浄条件演算装置71は、計測結果22(抗菌処理水14の微生物量)が所定の閾値B14 以上であるか否かを判定する。ここで、所定の閾値B14 は、抗菌処理装置4を洗浄して、微生物低減性能を回復させる必要があるか否かを判定するための基準値であり、前記した生物活性処理装置3を洗浄するか否かの所定の閾値C13 とは別に設定されている。
 計測結果22が所定の閾値B14 未満である場合、抗菌処理装置43の洗浄は必要ないと判定される。
 一方、計測結果22が所定の閾値B14 以上である場合、抗菌処理装置4の洗浄が必要と判定され、洗浄条件演算装置71は、洗浄水供給装置72に抗菌処理装置4の洗浄を指令する洗浄指令23を送信する。
 抗菌処理装置4の洗浄を指令する洗浄指令23を受信した洗浄水供給装置72は、抗菌処理装置4に洗浄水17bを送液する。これにより、抗菌処理装置4は洗浄され、銀担持ゼオライト層の再生が行われる。
≪本実施形態に係る海水淡水化システムSの作用・効果≫
 本実施形態に係る海水淡水化システムS(図1参照)の作用・効果について、比較例に係る海水淡水化システムSc(後述する図5参照)と対比しつつ説明する。
<本実施形態に係る海水淡水化システムSの構成例>
 まず、本実施形態に係る海水淡水化システムS(図1参照)の各部(各装置)は、以下のように構成した。
 混入物除去装置1を使用して、原水10から夾雑物および/または濁度成分を除去した。
 有機物資化処理装置2は、50kDa分子透過用のUF膜を使用し、透過速度1m/dで混合物除去原水11を透過させた。
 生物活性処理装置3の生物活性処理剤は、日東粉化工業株式会社製天然ゼオライト(製品名:日東ゼオライト ZO塊・15-30)を原料とし、これを粉砕し分級して、直径0.85mm~2.4mmに整粒したものを使用した。生物活性処理装置3に使用したゼオライトの結晶構造は、モルデナイトを主たる結晶構造として有するものである。なお、本発明による効果は、モルデナイトを主たる結晶構造として有するものであれば、前記製品に限られるものではない。
 生物活性処理装置3は、断面積Dが30cmのカラムに、前記天然ゼオライト(生物活性処理剤)をカラムの軸方向の長さである層高Hが5cmとなるように充填して、流量Qが1.5L/h(リットル/時)で前処理水12をカラムの下から上に向けて流して行った。
 ここで、通水試験中のカラム内の線速度LV(linear velocity)、空間速度SV(space velocity)は、それぞれ式(1)、(2)で求められる。
   LV=Q/D                  ・・・(1)
   SV=LV/H                 ・・・(2)
 本試験において、線速度LV=50[cm/h]であり、空間速度SV=10[h-1 ]である。
 抗菌処理装置4の微生物低減処理剤は、日東粉化工業株式会社製天然ゼオライト(製品名:日東ゼオライト ZO塊・15-30)を原料とし、これを粉砕し分級して、直径0.85mm~2.4mmに整粒したゼオライト粒子に、硝酸銀水溶液を滴下して含浸させて、大気中で加熱して焼成したものを使用した。このように、抗菌処理装置4に使用した微生物低減処理剤は、酸化銀を担持したゼオライトであり、銀の担持量は、ゼオライト単位グラムあたり5wt%とした。
 抗菌処理装置4は、断面積Dが30cmのカラムに、前記銀担持ゼオライト(微生物低減処理剤)をカラムの軸方向の長さである層高Hが5cmとなるように充填して、流量Qが1.5L/h(リットル/時)で生物活性処理水13をカラムの下から上に向けて流して行った。
 逆浸透膜処理装置5へ供給する供給水(抗菌処理水14)の通水量は、1.2L/hとした。また、供給圧力は、7MPaとした。
<比較例に係る海水淡水化システムScの構成例>
 次に、比較例に係る海水淡水化システムScについて説明する。図5は、比較例に係る海水淡水化システムScの構成図である。
 比較例に係る海水淡水化システムScは、海水である原水10から、RO膜(逆浸透膜処理装置5)を用いて、淡水である逆浸透膜処理水15cと、塩分等が濃縮された濃縮排水16cと、に分離させるシステムであり、混入物除去装置1と、有機物資化処理装置2と、逆浸透膜処理装置5と、を備えている。
 即ち、逆浸透膜処理装置5に供給する供給水として、本実施形態に係る海水淡水化システムSでは、混入物除去装置1、有機物資化処理装置2、生物活性処理装置3、および、抗菌処理装置4で処理された抗菌処理水14を供給するのに対し、比較例に係る海水淡水化システムScでは、混入物除去装置1および有機物資化処理装置2で処理された前処理水12を供給する点で相違する。
 比較例に係る海水淡水化システムScの混入物除去装置1、有機物資化処理装置2および逆浸透膜処理装置5の構成および通水条件は、本実施形態に係る海水淡水化システムSの混入物除去装置1、有機物資化処理装置2および逆浸透膜処理装置5の構成および通水条件と同じであり、説明を省略する。
<海水淡水化システムS(本実施形態)と海水淡水化システムSc(比較例)との対比>
 本実施形態に係る海水淡水化システムS(図1参照)および比較例に係る海水淡水化システムSc(図5参照)について、通水試験を行った結果の一例を図2から図4に示す。
 図2は、前処理水12および生物活性処理水13について、通水時間に対する糖類濃度変化を対比して示したグラフである。
 ここでは、分子の大きさが1kDa以上の糖類(ウロン酸相当)の濃度を分析項目とし、高純度試薬のアルギン酸を標準物質としてフェノール-硫酸法を用いて行った。なお、この糖類濃度分析は、有機物濃度計測装置61(図1参照)の定量分析に相当する。
 1kDa以上の糖類の濃度と、海水中に含まれる有機物全量の濃度とは、正の相関を示すと考えられる。このため、有機物濃度を示す指標として、1kDa以上の糖類についての糖類濃度分析を行った。
 図2に示すように、生物活性処理水13は、前処理水12と比較して、1kDa以上の糖類の濃度が減少しており、含まれる有機物全量の濃度も減少していると考えられる。即ち、本実施形態に係る海水淡水化システムSは、生物活性処理装置3により前処理水12中の有機物類を低減させることができる。
 また、生物活性処理水13を抗菌処理装置4で処理した抗菌処理水14も、前処理水12と比較して、有機物類が低減していることは明らかである。
 このように、本実施形態に係る海水淡水化システムSにおける逆浸透膜処理装置5の供給水(抗菌処理水14)は、比較例に係る海水淡水化システムScにおける逆浸透膜処理装置5の供給水(前処理水12)と比較して、有機物量を低減させることができる。
 図3は、前処理水12、生物活性処理水13および抗菌処理水14について、通水時間に対するATPおよび遊離ATPの濃度変化を対比して示したグラフである。
 ここでは、ATPおよび遊離ATPの濃度(以下、まとめて、ATP濃度と称する。)を分析項目とし、ルシフェリン-ルシフェラーゼ反応法を用いて行った。なお、このATP濃度分析は、微生物量計測装置62(図1参照)の定量分析に相当する。
 ATPはエネルギを要する生物体の反応素過程に必ず使われる基本成分であり、ATP値は海水中に現存する微生物量の指標となる。また、遊離ATPは、ATPを含む現存微生物以外(微生物が存在した痕跡)を示す値である。
 図3に示すように、前処理水12のATP濃度は、平均して約0.01nmol/Lであった。これに対して、生物活性処理水13中のATP濃度は、通水時間約200時間まで、0.06~0.08nmol/Lであり、生物活性処理装置3において、生物活性となっていることがわかる。
 また、抗菌処理水14は、生物活性処理水13と比較して、ATP濃度が減少しており、含まれる微生物量の濃度も減少していると考えられる。即ち、本実施形態に係る海水淡水化システムSは、抗菌処理装置4により生物活性処理水13中の微生物類を低減させることができることがわかる。
 図4は、本実施形態に係る海水淡水化システムSおよび比較例に係る海水淡水化システムScについて、通水時間に対する逆浸透膜処理水の流速変化を対比して示したグラフである。
 逆浸透膜処理装置5のRO膜を透過した透過水である逆浸透膜処理水15,15cの透過流速は、RO膜のバイオファウリングの程度を表わす指標であり、通水時間に対する透過流速の減少変化の勾配が大きいほど、バイオファウリングが進行したことを意味する。
 透過水である逆浸透膜処理水15,15cの透過流速は、単位時間当たりの透過水量と、RO膜の有効膜面積に基づいて、以下の式(3)でもとめた。
   透過流速=単位時間当たりの透過水量/有効膜面積 ・・・(3)
 本実施形態の透過流速の経時変化(透過流速の低下速度)、即ち、図4において実線で示す本実施形態の通水時間に対する透過流速の傾きは、-4.5×10-5 [(m/d)/h]であった。
 一方、比較例の透過流速の経時変化(透過流速の低下速度)、即ち、図4において破線で示す比較例の通水時間に対する透過流速の傾きは、-2.5×10-4 [(m/d)/h]であった。
 図4に示すように、本実施形態に係る海水淡水化システムSは、比較例に係る海水淡水化システムScと比較して、RO膜のバイオファウリングを抑制して、RO膜の透過性能が低下することを抑制することができるので、RO膜の化学洗浄頻度や交換頻度を減少させることができ、海水淡水化システムSの長寿命化が可能となる。
 また、本実施形態に係る海水淡水化システムSは、酸化剤として塩素を添加する構成ではないため、酸化剤によるRO膜の劣化を防ぐことができるとともに、塩素と有機物とが化学反応することによりトリハロメタンが生成されることを防ぐことができる。
 また、図3に示すように、前処理水12(比較例の供給水)と比較して、抗菌処理水14(本実施形態の供給水)における微生物量(ATP濃度)が高いにもかかわらず、図4に示すように、前処理水12を供給水とする海水淡水化システムSc(比較例)と比較して、抗菌処理水14を供給水とする海水淡水化システムS(本実施形態)のほうが、バイオファウリングを抑制することができることが示されている。
 これは、生物活性処理装置3において、図2に示す1kDa以上の糖類だけでなく、1kDa未満の糖類についても、低減させることができることを示している。
 非特許文献2に示すように、海水中の有機物のうち60~80%は、1kDa以下の低分子溶存有機物であるとされ、これら低分子溶存有機物が微生物の生産あるいは分解にかかわる物質であると考えられている。本実施形態に係る海水淡水化システムSによれば、RO膜に供給される供給水(抗菌処理水14)から、従来では、除去することができなかった1kDa以下の低分子溶存有機物についても、生物活性処理装置3における微生物類による資化分解により除去することができ、RO膜のバイオファウリングを抑制することができる。
≪変形例≫
 なお、本実施形態に係る海水淡水化システムSは、上記実施形態の構成に限定されるものではなく、発明の趣旨を逸脱しない範囲内で種々の変更が可能である。
 本実施形態に係る海水淡水化システムSは、海水(原水10)から淡水(逆浸透膜処理水15)を得るシステムとして説明したが、これに限られるものではない。例えば、かん水(原水10)から淡水(逆浸透膜処理水15)を得るかん水淡水化システムであってもよい。
 洗浄条件演算装置71は、計測結果21(生物活性処理水13の有機物濃度)が所定の閾値C13 以上であるか否かを判定することにより、生物活性処理装置3を洗浄するか否かを判定するものとして説明したが、これに限られるものではない。
 例えば、洗浄条件演算装置71は、生物活性処理装置3に供給される前処理水12と、生物活性処理装置3で処理された生物活性処理水13との有機物濃度を計測結果21として有機物濃度計測装置61から取得し、前処理水12の有機物濃度ごとに設定された閾値マップや閾値テーブルに基づいて所定の閾値C13_12 を決定し、生物活性処理水13の有機物濃度が決定された閾値C13_12 以上であるか否かを判定する構成であってもよい。
 このように構成することにより、海水である原水10の有機物濃度の変化が大きい場合にも対応させることができる。
 また、例えば、洗浄条件演算装置71は、生物活性処理装置3に供給される前処理水12と、生物活性処理装置3で処理された生物活性処理水13と、抗菌処理装置4で処理された抗菌処理水14との有機物濃度を計測結果21として有機物濃度計測装置61から取得し、前処理水12の有機物濃度ごとに設定された閾値マップや閾値テーブルに基づいて所定の閾値C13_12 およびC14_12 を決定する。そして、洗浄条件演算装置71は、生物活性処理水13の有機物濃度が決定された閾値C13_12 以上であるか、および、抗菌処理水14の有機物濃度が決定された閾値C14_12 以上であるか、のうち少なくとも一方を満たすか否かを判定する構成であってもよい。
 このように構成することにより、海水である原水10の有機物濃度の変化が大きい場合にも対応させることができるとともに、逆浸透膜処理装置5の供給水として供給される抗菌処理水14の有機物濃度を監視して生物活性処理装置3を洗浄するか否かを判定でき、より好適にRO膜のバイオファウリングを抑制することができる。
 洗浄条件演算装置71は、計測結果22(抗菌処理水14の微生物量)が所定の閾値B14 以上であるか否かを判定することにより、抗菌処理装置4を洗浄するか否かを判定するものとして説明したが、これに限られるものではない。
 例えば、洗浄条件演算装置71は、抗菌処理装置4に供給される生物活性処理水13と、抗菌処理装置4で処理された抗菌処理水14との微生物量を計測結果22として微生物量計測装置62から取得し、生物活性処理水13の微生物量ごとに設定された閾値マップや閾値テーブルに基づいて所定の閾値B14_13 を決定し、抗菌処理水14の微生物量が決定された閾値B14_13 以上であるか否かを判定する構成であってもよい。
 このように構成することにより、海水である原水10の微生物量の変化が大きい場合にも対応させることができる。
 また、例えば、洗浄条件演算装置71は、生物活性処理装置3に供給される前処理水12と、生物活性処理装置3で処理され抗菌処理装置4に供給される生物活性処理水13と、抗菌処理装置4で処理された抗菌処理水14との微生物量を計測結果22として微生物量計測装置62から取得し、前処理水12の微生物量ごとに設定された閾値マップや閾値テーブルに基づいて所定の閾値B14_12 および生物活性処理水13微生物量ごとに設定された閾値マップや閾値テーブルに基づいて所定の閾値B14_13 を決定する。そして、洗浄条件演算装置71は、抗菌処理水14の微生物量が決定された閾値B14_12 以上であるか、および、抗菌処理水14の微生物量が決定された閾値B14_13 以上であるか、のうち少なくとも一方を満たすか否かを判定する構成であってもよい。
 洗浄条件演算装置71は、有機物濃度計測装置61の計測結果21(生物活性処理水13の有機物濃度等)に基づいて、生物活性処理装置3を洗浄するか否かを判定するものとして説明したが、これに限られるものではない。
 例えば、微生物量計測装置62で生物活性処理水13の微生物量、菌体濃度、ATP濃度等を定量することにより生物活性処理装置3の洗浄の判断を行うものであってもよい。例えば、図3に示すように、通水時間約230時間を越えた付近で生物活性処理水13のATP濃度が減少し、生物活性処理装置3において生物活性が低下していると判断することができる。生物活性処理装置3における生物活性が低下すると、資化分解能も低下して、図2に示すように、生物活性処理水13の有機物濃度が上昇する。このように、生物活性処理装置3における生物活性の状態を検出して、生物活性処理装置3の洗浄を行うか否かの判断を行ってもよい。
S       海水淡水化システム(淡水化システム)
1       混入物除去装置
2       有機物資化処理装置(有機物資化処理手段)
3       生物活性処理装置(生物活性処理手段)
4       抗菌処理装置(抗菌処理手段)
5       逆浸透膜処理装置(逆浸透膜処理手段)
6       処理水成分分析装置
61      有機物濃度計測装置(有機物濃度計測手段)
62      微生物量計測装置(微生物量計測手段)
7       逆洗装置
71      洗浄条件演算装置(第1洗浄条件判断手段、第2洗浄条件判断手段)
72      洗浄水供給装置(第1洗浄水供給手段、第2洗浄水供給手段)
10      原水
11      混合物除去原水(原水)
12      前処理水(原水)
13      生物活性処理水(原水)
14      抗菌処理水(原水)
15      逆浸透膜処理水(淡水)
16      濃縮排水
17a,17b 洗浄水
21      計測結果
22      計測結果
23      洗浄指令

Claims (10)

  1.  逆浸透膜を用いて、塩分を含む原水から淡水を得る淡水化システムであって、
     前記原水に含まれる有機物を微細化する有機物資化処理手段と、
     微生物の活性を利用して前記原水に含まれる有機物を低減させる生物活性処理手段と、
     前記原水に含まれる前記微生物の濃度を調整する抗菌処理手段と、
     前記逆浸透膜で前記原水を淡水化する逆浸透膜処理手段と、を備える
    ことを特徴とする淡水化システム。
  2.  前記生物活性処理手段は、
     前記有機物資化処理手段よりも後段に配置されるとともに、
     前記逆浸透膜処理手段よりも前段に配置される
    ことを特徴とする請求項1に記載の淡水化システム。
  3.  前記抗菌処理手段は、
     前記生物活性処理手段よりも後段に配置されるとともに、
     前記逆浸透膜処理手段よりも前段に配置される
    ことを特徴とする請求項1に記載の淡水化システム。
  4.  前記生物活性処理手段は、
     前記原水に含まれる前記微生物を付着させ、該微生物の活性を利用して前記原水に含まれる有機物を低減させる生物活性処理剤を有する
    ことを特徴とする請求項1に記載の淡水化システム。
  5.  前記生物活性処理剤は、天然ゼオライトからなる
    ことを特徴とする請求項4に記載の淡水化システム。
  6.  前記抗菌処理手段は、
     前記原水に含まれる前記微生物の濃度を低減させる微生物低減処理剤を有する
    ことを特徴とする請求項1に記載の淡水化システム。
  7.  前記微生物低減処理剤は、銀化合物をゼオライトに担持した銀担持ゼオライトからなる
    ことを特徴とする請求項5に記載の淡水化システム。
  8.  少なくとも前記生物活性処理手段で処理された前記原水中の有機物濃度を計測する有機物濃度計測手段と、
     前記有機物濃度計測手段により得られた前記原水中の有機物濃度に基づいて、前記生物活性処理剤の繰返し使用の可否を判断する第1洗浄条件判断手段と、
     前記第1洗浄条件判断手段の判断結果に基づいて、前記生物活性処理手段に洗浄水を供給する第1洗浄水供給手段と、を更に備える
    ことを特徴とする請求項4または請求項5に記載の淡水化システム。
  9.  少なくとも前記抗菌処理手段で処理された前記原水中の微生物量を計測する微生物量計測手段と、
     前記微生物量計測手段により得られた前記原水中の微生物量に基づいて、前記微生物低減処理剤の繰返し使用の可否を判断する第2洗浄条件判断手段と、
     前記第2洗浄条件判断手段の判断結果に基づいて、前記抗菌処理手段に洗浄水を供給する第2洗浄水供給手段と、を更に備える
    ことを特徴とする請求項4または請求項5に記載の淡水化システム。
  10.  逆浸透膜を用いて、塩分を含む原水から淡水を得る淡水化処理方法であって、
     前記原水に含まれる有機物を微細化する微細化処理ステップと、
     前記微細化処理ステップにより処理された前記原水を、微生物の活性を利用して、該原水に含まれる有機物を低減させる生物活性処理ステップと、
     前記生物活性処理ステップにより処理された前記原水に含まれる前記微生物の濃度を調整する抗菌処理ステップと、
     前記抗菌処理ステップにより処理された前記原水を前記逆浸透膜で淡水化する逆浸透膜処理ステップと、を備える
    ことを特徴とする淡水化処理方法。
PCT/JP2013/052722 2012-03-01 2013-02-06 淡水化システムおよび淡水化処理方法 WO2013129047A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012045020A JP2013180234A (ja) 2012-03-01 2012-03-01 淡水化システムおよび淡水化処理方法
JP2012-045020 2012-03-01

Publications (1)

Publication Number Publication Date
WO2013129047A1 true WO2013129047A1 (ja) 2013-09-06

Family

ID=49082251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052722 WO2013129047A1 (ja) 2012-03-01 2013-02-06 淡水化システムおよび淡水化処理方法

Country Status (3)

Country Link
JP (1) JP2013180234A (ja)
CN (1) CN103288290A (ja)
WO (1) WO2013129047A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2962598A1 (en) * 2014-09-24 2016-03-31 Dow Global Technologies Llc Spiral wound filtration assembly including integral bioreactor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002172392A (ja) * 2000-09-12 2002-06-18 Toray Ind Inc 海水からミネラル含有液を製造する方法および装置
JP2004025018A (ja) * 2002-06-25 2004-01-29 Hitachi Zosen Corp 逆浸透による海水淡水化装置
JP2005313151A (ja) * 2004-03-30 2005-11-10 Toray Ind Inc 水の処理方法
WO2006057249A1 (ja) * 2004-11-24 2006-06-01 Hitachi Zosen Corporation 逆浸透膜法海水淡水化装置
JP2011177604A (ja) * 2010-02-26 2011-09-15 Hitachi Ltd 海水淡水化装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249511A (ja) * 1996-03-13 1997-09-22 Miyoshi Oil & Fat Co Ltd 抗菌剤及びその製造方法
JP2007069204A (ja) * 2005-08-12 2007-03-22 Toray Ind Inc 水処理方法、水処理装置、及び再生水の製造方法
JP5172859B2 (ja) * 2007-01-19 2013-03-27 ザ・ピュロライト・カンパニー 逆浸透膜の汚染減少
JP4481345B1 (ja) * 2008-11-28 2010-06-16 株式会社神鋼環境ソリューション 海水淡水化方法および海水淡水化装置
JP2010240635A (ja) * 2009-03-15 2010-10-28 Chikyu Kankyo Hidemitsu:Kk 複合発酵法による排水と海水の混合水の淡水化方法
JP5699271B2 (ja) * 2009-12-10 2015-04-08 パナソニックIpマネジメント株式会社 脱塩方法と装置
CN102329018B (zh) * 2011-09-08 2013-08-28 吴章锋 低压膜法海水淡化装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002172392A (ja) * 2000-09-12 2002-06-18 Toray Ind Inc 海水からミネラル含有液を製造する方法および装置
JP2004025018A (ja) * 2002-06-25 2004-01-29 Hitachi Zosen Corp 逆浸透による海水淡水化装置
JP2005313151A (ja) * 2004-03-30 2005-11-10 Toray Ind Inc 水の処理方法
WO2006057249A1 (ja) * 2004-11-24 2006-06-01 Hitachi Zosen Corporation 逆浸透膜法海水淡水化装置
JP2011177604A (ja) * 2010-02-26 2011-09-15 Hitachi Ltd 海水淡水化装置

Also Published As

Publication number Publication date
JP2013180234A (ja) 2013-09-12
CN103288290A (zh) 2013-09-11

Similar Documents

Publication Publication Date Title
Peters et al. Retention of natural organic matter by ultrafiltration and the mitigation of membrane fouling through pre-treatment, membrane enhancement, and cleaning-A review
Wang et al. Combined effects of PAC adsorption and in situ chlorination on membrane fouling in a pilot-scale coagulation and ultrafiltration process
Kimura et al. Efficient control of membrane fouling in MF by removal of biopolymers: Comparison of various pretreatments
Azzeh et al. Engineered biofiltration for ultrafiltration fouling mitigation and disinfection by-product precursor control
Liu et al. Coupling ferrate pretreatment and in-situ ozonation/ceramic membrane filtration for wastewater reclamation: water quality and membrane fouling
Khan et al. Combined effects of EPS and HRT enhanced biofouling on a submerged and hybrid PAC-MF membrane bioreactor
Szymanska et al. Hybrid ozonation–microfiltration system for the treatment of surface water using ceramic membrane
WO2011105550A1 (ja) 海水淡水化装置
Jiang et al. Membrane fouling in a powdered activated carbon–membrane bioreactor (PAC-MBR) for micro-polluted water purification: fouling characteristics and the roles of PAC
Benito-Alcázar et al. Study of different pretreatments for reverse osmosis reclamation of a petrochemical secondary effluent
JP6194887B2 (ja) 淡水製造方法
Zouboulis et al. Hybrid membrane processes for the treatment of surface water and mitigation of membrane fouling
Hashemi et al. Reclamation of real oil refinery effluent as makeup water in cooling towers using ultrafiltration, ion exchange and multioxidant disinfectant
Lopes et al. Production of drinking water using a multi-barrier approach integrating nanofiltration: A pilot scale study
JP5609174B2 (ja) 水処理システム
Li et al. Application of coagulation‐ultrafiltration‐nanofiltration in a pilot study for Tai Lake water treatment
JP6263054B2 (ja) 水処理装置および水処理方法
JP2013193003A (ja) プラント排水の処理方法及び処理システム
Khan et al. Continuous and efficient removal of THMs from river water using MF membrane combined with high dose of PAC
WO2013129047A1 (ja) 淡水化システムおよび淡水化処理方法
WO2013035397A1 (ja) 海水淡水化方法および海水淡水化装置
Nikoonahad et al. Evaluation of a novel integrated membrane biological aerated filter for water reclamation: A practical experience
JP6872442B2 (ja) 水処理方法および水処理装置
JP4678831B2 (ja) 製糖廃蜜、製糖廃液、又は製糖廃蜜の発酵工程からの廃液の処理方法
Widiasa et al. Membrane-based recirculating aquaculture system: Opportunities and challenges shrimp farming

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13755669

Country of ref document: EP

Kind code of ref document: A1