WO2013129017A1 - 活性炭に吸着された金の回収方法及びそれを用いた金の製造方法 - Google Patents

活性炭に吸着された金の回収方法及びそれを用いた金の製造方法 Download PDF

Info

Publication number
WO2013129017A1
WO2013129017A1 PCT/JP2013/052101 JP2013052101W WO2013129017A1 WO 2013129017 A1 WO2013129017 A1 WO 2013129017A1 JP 2013052101 W JP2013052101 W JP 2013052101W WO 2013129017 A1 WO2013129017 A1 WO 2013129017A1
Authority
WO
WIPO (PCT)
Prior art keywords
gold
activated carbon
thiosulfate
elution
eluent
Prior art date
Application number
PCT/JP2013/052101
Other languages
English (en)
French (fr)
Inventor
和浩 波多野
浩至 勝川
瑛基 小野
佐野 正樹
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to CA2865721A priority Critical patent/CA2865721C/en
Priority to JP2014502081A priority patent/JP5840761B2/ja
Priority to EP13754888.9A priority patent/EP2821513A4/en
Priority to AU2013200947A priority patent/AU2013200947B2/en
Publication of WO2013129017A1 publication Critical patent/WO2013129017A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3416Regenerating or reactivating of sorbents or filter aids comprising free carbon, e.g. activated carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3475Regenerating or reactivating using a particular desorbing compound or mixture in the liquid phase
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • C22B11/042Recovery of noble metals from waste materials
    • C22B11/046Recovery of noble metals from waste materials from manufactured products, e.g. from printed circuit boards, from photographic films, paper or baths
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for recovering gold adsorbed on activated carbon and a method for producing gold using the same.
  • Gold is one of the most valuable metals and exists as simple particles in natural veins. Gold is often contained in small amounts as an accompaniment of pyrite, chalcopyrite, and other sulfide metal ores, not gold veins, and gold is separated when smelting its main component and separately smelted into metal gold There are many cases.
  • gold When processing gold produced accompanying metal sulfide ore, such as chalcopyrite, gold is generally transferred to the anode in the dry copper smelting process, and then concentrated in the electrolytic slime in the electrolytic purification process. Gold in the electrolytic slime is recovered as metallic gold by a wet smelting method (Patent Documents 1 and 2) or a dry smelting method.
  • Patent Document 3 A method of leaching gold with a strong acid having been proposed (Patent Document 3).
  • the solution containing gold dissolved in acid in this manner is often adsorbed on an adsorbent and concentrated.
  • Activated carbon, functional resin, etc. are known as gold adsorbents, but the most general and versatile are known.
  • a high adsorbent is activated carbon.
  • Patent Document 3 As a method of recovering gold after adsorbing gold on activated carbon, there is a method of burning activated carbon after adsorption or eluting with a cyanide solution, and electrolytically collecting or chemically reducing the eluent (Patent Document 3).
  • the inventors of the present invention have made extensive studies to solve the above-mentioned problems.
  • an eluent obtained by adding sodium thiosulfate to an acidic aqueous solution can be used to efficiently and efficiently produce gold. It was found that it can be recovered.
  • the present invention completed on the background of the above knowledge is, in one aspect, eluting gold adsorbed on activated carbon with an eluent prepared by adding thiosulfate to an acidic aqueous solution to form an acidic concentrated gold solution.
  • a method for recovering gold comprising a step of obtaining.
  • the acidic aqueous solution has a pH of 4-7.
  • the thiosulfate is a reducing agent containing at least one selected from sodium thiosulfate, thiosulfuric acid, and potassium thiosulfate.
  • the concentration of thiosulfate in the eluent is 0.01 mol / L or more.
  • the concentration of thiosulfate in the eluent is 0.01 to 1.0 mol / L or more.
  • the elution is performed using a batch reactor at an elution temperature of 20 to 100 ° C.
  • the elution temperature is set to 60 to 85 ° C.
  • a gold manufacturing method in which single gold is produced by reduction from a concentrated gold solution obtained by the gold recovery method of the present invention.
  • gold adsorbed on activated carbon can be efficiently recovered at low cost.
  • Gold is often contained in trace amounts as a simple substance in sulfide metal ores such as chalcocite, chalcopyrite, copper indigo, chalcopyrite, pyrite, arsenite, arsenite. For this reason, in order to collect this, it is preferable to first concentrate the metal sulfide ore by crushing and then concentrating it by a flotation method. In addition, it is possible to further concentrate gold to the leaching residue by solid-liquid separation after leaching 80% or more of copper or iron as a main component metal from this concentrate using an acidic leaching solution. It becomes good.
  • cyan leaching is a technique that can be avoided because its use is not limited by the high toxicity of cyan.
  • a strong oxidizing acid is known as a mixed acid such as aqua regia, hydrogen peroxide + hydrochloric acid, etc., but it can also be dissolved in a mixed acid of a halide ion that stabilizes a Lewis acid and a gold ion.
  • a ligand that stabilizes gold ions is important, and halide ions and cyan are generally known.
  • the gold adsorbed on the activated carbon is efficiently recovered at low cost. That is, in the present invention, first, gold is dissolved with a strong oxidizing leach solution, and gold is adsorbed on activated carbon.
  • activated carbon such as coconut shell activated carbon and coke activated carbon, those derived from any raw material may be used.
  • the method for adsorbing gold may be a batch method in which activated carbon is added or a solution in which activated carbon is filled in an adsorption tower and gold is leached may be continuously passed.
  • the activated carbon that has sufficiently adsorbed gold is recovered, and gold is eluted using an eluent containing thiosulfate ions prepared by adding thiosulfate to an acidic aqueous solution.
  • the concentration of thiosulfate is preferably 0.01 mol / L or more.
  • the thiosulfate concentration is 0.01 to 1.0 mol / L from the viewpoint of cost. Is more preferable.
  • the amount of thiosulfuric acid required varies depending on the amount of gold adsorbed on the activated carbon, but gold is not lost even if the elution is insufficient as described above.
  • the thiosulfate includes at least one selected from sodium thiosulfate, thiosulfate, and potassium thiosulfate.
  • the acidic aqueous solution used for the eluent is preferably pH 4-7.
  • weak acid thiosulfate is gradually decomposed into sulfurous acid (which is converted into sulfuric acid by air oxidation) and polysulfide. Therefore, by using such a weakly acidic eluent, the thiosulfate is satisfactorily decomposed to generate a polysulfide that promotes gold elution as described below. Further, since the eluent is weakly acidic as described above, handling safety and cost are improved.
  • the elution step is preferably performed using a batch reactor at an elution temperature of 20 to 100 ° C.
  • the elution temperature is more preferably 60 to 85 ° C.
  • the elution rate increases.
  • the elution temperature reaches 25 ° C.
  • the elution rate decreases significantly.
  • activated carbon is repeatedly used after the elution operation, even if the elution of gold is incomplete, it is not lost. Considering the energy cost and the efficiency of temperature increase, 60 to 85 ° C. is appropriate.
  • the thiosulfate ion is unstable under acidic conditions and decomposes as shown in (Formula 1) to produce sulfur and sulfurous acid, and finally only sulfuric acid becomes sulfuric acid.
  • (Formula 1) When a continuous liquid flow method using an adsorption tower is employed for elution, there is a risk of clogging due to the generated sulfur, so it is preferable to perform elution in a batch reactor.
  • S 2 O 3 2- ⁇ S + SO 3 2- ⁇ oxidation, hydrolysis ⁇ H 2 SO 4 (Formula 1)
  • polysulfide which is a reaction intermediate produced when decomposing into sulfur and sulfurous acid in (Formula 1), elutes gold. It is thought to promote.
  • Polysulfide ions have a great influence on the dissolution and leaching of gold. Specifically, first, when gold contained in the sulfide metal ore is leached by the method of the present invention, the gold in the solution exists as a polysulfide type complex. Even if this complex is adsorbed on activated carbon, it is not reduced to an inactive simple substance.
  • the form in which the gold polysulfide complex is adsorbed on the activated carbon is considered to be gold sulfide or the following form.
  • Non-patent Document 1 Seiji Takagi, Qualitative Analytical Chemistry Volume 1, Ion Reaction, Nanedo
  • concentrated gold solution can be obtained by elution from activated carbon.
  • concentrated gold solution refers to a solution containing 50 to 5000 mg / L of gold.
  • reduction with sodium oxalate, chemical reduction with sulfur dioxide, or solvent extraction-electrolytic collection method is known. Obtainable.
  • the activated carbon which is an adsorbent, can be used repeatedly to adsorb gold, which is advantageous in terms of cost.
  • Example 1 Metal sulfide concentrate containing gold (Cu: 17% by mass, Fe: 27% by mass, S: 25% by mass, Au: 90 ppm) was weighed so as to be 35 g / L with respect to the leachate.
  • the leachate contained Cl: 180 g / L, Br: 20 g / L, Cu: 18 g / L, Fe: 2 g / L, and the pH was 1.5.
  • the leachate was heated to 85 ° C. and stirred while blowing air of 0.1 L per minute.
  • the leachate having a gold concentration of 2 mg / L or more thus obtained was passed through a column packed with coconut shell-derived activated carbon (coconut MC manufactured by Taihei Chemical Sangyo Co., Ltd.) to adsorb gold onto the activated carbon.
  • coconut shell-derived activated carbon coconut MC manufactured by Taihei Chemical Sangyo Co., Ltd.
  • the activated carbon was taken out and the gold concentration was quantified to be about 9000 g / ton.
  • the gold concentration was concentrated by ash blowing, dissolved in aqua regia, and quantified by ICP-AES.
  • An eluent was prepared by adding sodium thiosulfate to an aqueous solution adjusted to pH 4, 8, 12 with hydrochloric acid and sodium hydroxide so that the concentration of sodium thiosulfate was 0.5 mol / L (56 g / L as thiosulfate ion).
  • the activated carbon adsorbed with gold was immersed in an eluent at a rate of 20 g / L, and stirred at 80 ° C. for elution.
  • the gold concentration was adjusted to 100 mL by adding 2 mL of hydrogen peroxide and further diluted with hydrochloric acid, and the supernatant was quantified by ICP-AES.
  • Example 1 Using activated carbon prepared in the same manner as in Example 1, dilute sulfuric acid having a pH of 4 was used as an eluent, and activated carbon was immersed in the eluent at a rate of 20 g / L and stirred at 80 ° C. for elution.
  • FIG. 1 shows the change over time in the gold concentration in the eluent when elution was performed in Example 1 and Comparative Example 1. It can be seen that when thiosulfuric acid is added, elution of gold is clearly and efficiently achieved, and a weakly acidic pH 4 is most effective. The elution in the strong alkaline region of pH 12 is more efficient than the neutral pH of 8, but the activated carbon prepared by this method is leached even in the strong alkali, which reflects the influence of alkali more strongly than the effect of adding thiosulfuric acid. .
  • Example 2 Using an activated carbon prepared in the same manner as in Example 1, an eluent was prepared by adding sodium thiosulfate to 0.1 mol / L (11.2 g / L as thiosulfate ion). The pH of the eluent was 4. The activated carbon adsorbed with gold was immersed in an eluent at a rate of 20 g / L, and stirred at 80 ° C. for elution. FIG. 2 shows the change over time in the elution rate converted from the gold concentration in the eluent.
  • Example 3 Using an activated carbon prepared in the same manner as in Example 1, an eluent was prepared by adding sodium thiosulfate to 0.1 mol / L (11.2 g / L as thiosulfate ion). The pH of the eluent was 4. The activated carbon adsorbed with gold was immersed in an eluent at a rate of 20 g / L, and stirred at 25 ° C. for elution. FIG. 2 shows the change over time of the gold concentration in the eluent.
  • a polysulfide ion is generally a divalent anion having about 2 to 6 sulfur atoms, and even when two molecules are coordinated to gold, thiosulfuric acid is at most 12 mole times, so even if it is about 10 mole times, the effect can be obtained. Presumed to appear.
  • the elution effect is almost the same when the concentration of thiosulfate is 0.1 to 0.5 mol / L. That is, the elution effect is saturated at a thiosulfate concentration of 0.1 mol / L (100 mol times gold).
  • the amount of thiosulfuric acid required varies depending on the amount of gold adsorbed on the activated carbon, but gold is not lost even if the elution is insufficient as described above.
  • Example 4 19 mL of activated carbon (produced by Taihei Chemical Industrial Co., Ltd .: CC-202) adsorbing 9800 g / t of gold was packed in a glass column with a cock having an inner diameter of 11 mm and a height of 200 mm. The activated carbon was previously washed with HCl. Next, sodium thiosulfate is added to pure water so that the concentration is 0.01 mol / L, 0.1 mol / L, 0.5 mol / L, or 1.0 mol / L, and the pH is adjusted to 5 with sulfuric acid. This was used as an eluent.
  • the eluent was supplied to the column packed with activated carbon at 4.1 mL / min, and after passing through the solution, the solution was fractionated and collected every 5 to 7 mL.
  • the column internal temperature was 70 ° C.
  • SV of column liquid flow The space velocity was 13 (1 / h), LV: linear velocity was 2.6 (m / h), and BV: liquid flow rate was 156 (mL).
  • the gold concentration in the fraction was measured by ICP-AES, and the quality of gold contained in the activated carbon was calculated.
  • Table 1 the relationship between the obtained liquid flow rate and the gold quality in the activated carbon is shown in Table 2, and the graph is shown in FIG.

Abstract

 活性炭に吸着された金を安価に効率良く回収する。活性炭に吸着された金を、酸性水溶液にチオ硫酸塩を添加して調製された溶離液で溶離して、酸性の濃厚金溶液を得る工程を備えた金の回収方法。

Description

活性炭に吸着された金の回収方法及びそれを用いた金の製造方法
 本発明は、活性炭に吸着された金の回収方法及びそれを用いた金の製造方法に関する。
 金は非常に価値の高い金属の一つであり、天然鉱脈中には単体微粒子として存在する。金は、金鉱脈ではなくとも黄鉄鉱や黄銅鉱、その他硫化金属鉱の随伴物として微量含まれることも多く、金はその主成分を製錬する際に分離され、別途金属金に製錬される場合が多い。
 硫化金属鉱に随伴して産出される金、例えば黄銅鉱を処理する場合、一般的には、金は乾式銅製錬工程でアノードへ移行し、次いで電解精製工程では電解スライム中に濃縮する。電解スライム中の金は、湿式製錬法(特許文献1、2)や乾式製錬法によって金属金として回収される。
 近年、環境負荷や精鉱中の不純物を考慮して、乾式法を用いずに各種金属精鉱を湿式法で処理する製錬技術が研究されており、貴金属を溶かすために十分な酸化電位を有する強力な酸で金を浸出する方法が提案されている(特許文献3)。
 こうして酸で溶解した金を含有する溶液は、吸着材に吸着させて濃縮する場合が多く、金の吸着剤としては活性炭、機能性樹脂等が知られているが、最も一般的で汎用性が高い吸着材は活性炭である。
 活性炭に金を吸着した後、これを回収する方法としては、吸着後に活性炭を燃焼するか、シアン化物溶液で溶離し、その溶離液を電解採取もしくは化学還元する方法がある(特許文献3)。
特開平9-316561号公報 特開2001-316735号公報 特表2006-512484号公報
 上述のように吸着材が活性炭である場合、これを燃焼して金を回収するとコスト高になるという問題がある。もしくはシアンを用いて吸着された金を溶離するならばシアンの毒性という問題がある。
 機能性樹脂等、その他の吸着材を使用した場合でも、金の吸着容量や吸着速度は申し分ないものの、樹脂の官能基と金が強力に相互作用するために溶離に適当な方法が無く、広くは普及していない。
 溶媒抽出に供する場合では抽出、セットリング、逆抽出の設備が必要となり、また金のみを選択的に回収できるとは限らない。金の溶媒抽出でもストリップが問題になり、シュウ酸で還元して固体の粗金として還元する方法が一般的である。しかしながら、還元する際に金に選択性が無いことが問題である。そのため、より簡便に操作できる金の濃縮方法が好ましい。
 本発明者らは上記課題を解決するために研究を重ねたところ、活性炭に吸着された金を溶離する時、酸性水溶液にチオ硫酸ナトリウムを添加した溶離液を用いれば、安価に効率良く金を回収することができることを見出した。
 以上の知見を背景にして完成した本発明は一側面において、活性炭に吸着された金を、酸性水溶液にチオ硫酸塩を添加して調製された溶離液で溶離して、酸性の濃厚金溶液を得る工程を備えた金の回収方法である。
 本発明に係る金の回収方法は別の一実施形態において、前記酸性水溶液がpH4~7である。
 本発明に係る金の回収方法は更に別の一実施形態において、前記チオ硫酸塩が、チオ硫酸ナトリウム、チオ硫酸、及び、チオ硫酸カリウムから選択された少なくとも一種を含む還元剤である。
 本発明に係る金の回収方法は更に別の一実施形態において、前記溶離液中のチオ硫酸塩の濃度が0.01mol/L以上である。
 本発明に係る金の回収方法は更に別の一実施形態において、前記溶離液中のチオ硫酸塩の濃度が0.01~1.0mol/L以上である。
 本発明に係る金の回収方法は更に別の一実施形態において、前記溶離を、溶離温度を20~100℃として回分式反応器を用いて行う。
 本発明に係る金の回収方法は更に別の一実施形態において、前記溶離温度を60~85℃とする。
 本発明は別の一側面において、本発明の金の回収方法で得られた濃厚金溶液から還元によって単体の金を作製する金の製造方法である。
 本発明によれば、活性炭に吸着された金を安価に効率良く回収することができる。
実施例に係る、各pHにおいて溶離液にチオ硫酸を添加したときと、添加しなかった時の溶離液中の金濃度の経時変化を示すグラフである。 実施例に係る、pH4の時の各温度及びチオ硫酸濃度で溶離したときの、溶離液中の金濃度から換算した溶離率の経時変化を示すグラフである。 実施例4に係る通液量と活性炭中の金品位を示すグラフである。
 金は、輝銅鉱、斑銅鉱、銅藍、黄銅鉱、黄鉄鉱、硫砒銅鉱、硫砒鉄鉱等の硫化金属鉱に単体として極微量含まれることが多い。このため、これを回収するには、まず硫化金属鉱を破砕した後に浮遊選鉱法により精鉱とすることで濃縮することが好ましい。また、この精鉱から酸性浸出液を用いて主成分金属である銅又は鉄を80%以上浸出した後に、固液分離すれば、浸出残渣に金をさらに濃縮することも可能であり、処理効率が良好となる。
 この硫化金属鉱に含まれた金、又は、より好ましい形態として上述の精鉱あるいは主要金属成分を浸出した後の浸出残渣に濃縮された金を浸出する方法としては、王水等の強酸化性の酸で浸出する方法、シアンで浸出する方法等が公知であるが、いずれも環境負荷や安全性の面で問題がある。特にシアン浸出は、シアンの毒性の高さから使用が制限されることも珍しく無いため、回避される手法である。
 強酸化性の酸で浸出した場合は、前述のように金の含有量が微量であることから濃縮する必要がある。しかしながら、溶解した金をさらに濃縮する際に適当な方法がなく、よく知られた吸着材である活性炭や機能性樹脂等の吸着材に金を吸着すると溶離に問題があり、吸着材ごと焼却して回収することになればコストが著しく上昇する。
 強酸化性の酸とは王水、過酸化水素+塩酸等の混酸が知られるが、ルイス酸と金イオンを安定化するハロゲン化物イオンの混合酸でも溶解することは可能である。金の溶解に関しては金イオンを安定化させる配位子が重要であり、一般的にはハロゲン化物イオンやシアンが知られる。
 これに対し、本発明では、活性炭に吸着された金を安価に効率良く回収する。すなわち、本発明においては、まず、強酸化性浸出液で金を溶解し、活性炭に金を吸着させる。活性炭はヤシガラ活性炭、コークス活性炭等各種あるものの、いずれの原料に由来するものでも良い。金を吸着する方法は活性炭を添加した回分式でも、吸着塔に活性炭を充填して金を浸出した液を連続的に通液しても良い。十分に金を吸着した活性炭を回収し、酸性水溶液にチオ硫酸塩を添加して調製されたチオ硫酸イオンを含む溶離液を用いて金の溶離を行う。
 チオ硫酸塩の濃度は0.01mol/L以上とすることが好ましい。また、チオ硫酸塩の濃度0.1mol/L(金の100モル倍)で溶離効果は飽和するため、コストの点からは、チオ硫酸塩の濃度は0.01~1.0mol/Lとするのがより好ましい。当然、活性炭に吸着されている金量により必要なチオ硫酸量は変化するが、上述のように溶離が不十分であっても金を逸損する訳ではない。大過剰なチオ硫酸の添加は活性炭の表面を硫黄が被覆して溶離を阻害するため現実的なチオ硫酸の濃度は0.01~0.5mol/Lである。チオ硫酸塩は、チオ硫酸ナトリウム、チオ硫酸、及び、チオ硫酸カリウムから選択された少なくとも一種を含む。
 溶離液に用いる酸性水溶液はpH4~7であるのが好ましい。弱酸により、チオ硫酸塩は徐々に分解して亜硫酸(空気酸化で硫酸となる)とポリスルフィドに分解する。従って、このような弱酸性の溶離液を用いることで、チオ硫酸塩が良好に分解され、後述のような金の溶離を促進させるポリスルフィドを発生させる。また、このように溶離液が弱酸性であるため、取り扱いの安全性やコストが良好となる。
 溶離工程は、溶離温度を20~100℃として回分式反応器を用いて行うのが好ましい。また、溶離温度を60~85℃とするのがより好ましい。溶離温度は100℃に近づけば近づくほど溶離速度が上昇する。溶離温度が25℃になると溶離速度は著しく低下する。しかしながら、活性炭は溶離操作の後、繰り返して使用されるため、金の溶離が不完全であってもこれを逸損するわけではない。エネルギーコストと昇温の効率を考慮すると60~85℃が適当である。
 チオ硫酸イオンは酸性条件下では不安定であり(式1)のように分解して硫黄と亜硫酸を生じ、亜硫酸に限っては最終的に硫酸となる。溶離の際に吸着塔を利用した連続通液法を採用した場合、生成した硫黄により目詰まりを起こす虞があるため、回分式反応器で溶離を行うことが好ましい。
 S23 2- ⇔ S+SO3 2- → 酸化、加水分解 → H2SO4 (式1)
 チオ硫酸イオンは配位子としても機能することが知られているが、本件の場合は(式1)における硫黄と亜硫酸に分解する際に生成する、反応中間体であるポリスルフィドが金の溶離を促進していると考えられる。
 ポリスルフィドイオンが金の溶解浸出に大きな影響を与える。具体的に述べると、まず、硫化金属鉱に含まれる金を本発明の方法で浸出した場合、溶液中の金はポリスルフィド型錯体として存在する。この錯体は活性炭に吸着されても還元をうけて不活性な単体の金とはならない。金のポリスルフィド型錯体が活性炭に吸着される形態は、硫化金、もしくは下記の形態であると考えられる。
 Au(HSnH)m
 (Xはハロゲン、mは1~4の整数、nは1~9の整数)
 前者の形態(硫化金)の場合はS2-と反応して溶解することで溶離される(非特許文献1)。後者の形態の場合、NaOHと配位しているポリ硫化水素のHが反応して錯体が負電荷を帯びることで溶離される。
 (非特許文献1)高木誠司、定性分析化学中巻、イオン反応編、南江堂
 このように、ポリスルフィドイオンが金の溶解浸出に大きな影響を与えるため、チオ硫酸イオンを分解させながら金を溶離するが、析出する硫黄が活性炭表面を被覆する場合は適当な方法でこれを除くことが好ましい。例えば強アルカリや有機溶剤で硫黄を溶解する方法、超音波で物理的に活性炭表面から剥離する方法が一般的である。
 活性炭からの溶離により濃厚金溶液を得ることができる。ここで、「濃厚金溶液」とは、金を50~5000mg/L含む溶液を示す。この濃厚溶液から還元によって金を作製する方法としてはシュウ酸ナトリウムによる還元や二酸化硫黄による化学還元法、もしくは溶媒抽出-電解採取法が知られており、いずれの手段を用いても単体の金を得ることができる。
 吸着材である活性炭は繰り返し金の吸着に使用することが可能であり、コスト面で有利である。
 以下に本発明の実施例を示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。
(実施例1)
 金を含む硫化金属精鉱(Cu:17質量%、Fe:27質量%、S:25質量%、Au:90ppm)を、浸出液に対し35g/Lとなるよう秤量した。浸出液は、Cl:180g/L、Br:20g/L、Cu:18g/L、Fe:2g/Lを含有し、pHは1.5とした。浸出液を85℃に加温し、空気を1分当たり0.1L吹き込みながら攪拌した。こうして得た金濃度が2mg/L以上の浸出液をヤシ殻由来活性炭(太平化学産業社製ヤシコールMC)を充填したカラムに通し、金を活性炭に吸着させた。適当に金を吸着させたところで活性炭を取り出し、金濃度を定量したところ9000g/ton程度であった。金の濃度は灰吹き法で濃縮した後に王水に溶解し、ICP-AESにより定量した。
 塩酸と水酸化ナトリウムでpHを4、8、12に調整した水溶液にチオ硫酸ナトリウムを0.5mol/L(チオ硫酸イオンとして56g/L)となるように添加した溶離液を調製した。この金を吸着した活性炭を20g/Lの割合で溶離液に浸漬して80℃で攪拌して溶離を行った。金の濃度は過酸化水素を2mL添加し、さらに塩酸で希釈して100mLに規正した後に上澄みをICP-AESにより定量した。
(比較例1)
 実施例1と同様にして調整した活性炭を用いてpH4の希硫酸を溶離液とし、活性炭を20g/Lの割合で溶離液に浸漬して80℃で攪拌して溶離を行った。
 実施例1と比較例1で溶離した時の溶離液中の金濃度の経時変化を図1に示す。チオ硫酸を添加した場合は明白に効率よく金の溶離が達成され、弱酸性のpH4の場合が最も効果が高いことが解る。pH12の強アルカリ域で溶離したほうが中性域のpH8より効率が高いが、本方法で調整した活性炭は強アルカリでも浸出され、チオ硫酸の添加効果よりはアルカリの影響が強く反映したものである。
(実施例2)
 実施例1と同様にして調整した活性炭を用いてチオ硫酸ナトリウムを0.1mol/L(チオ硫酸イオンとして11.2g/L)となるように添加した溶離液を調製した。溶離液のpHは4とした。この金を吸着した活性炭を20g/Lの割合で溶離液に浸漬して80℃で攪拌して溶離を行った。溶離液中の金濃度から換算した溶離率の経時変化を図2に示す。
(実施例3)
 実施例1と同様にして調整した活性炭を用いてチオ硫酸ナトリウムを0.1mol/L(チオ硫酸イオンとして11.2g/L)となるように添加した溶離液を調製した。溶離液のpHは4とした。この金を吸着した活性炭を20g/Lの割合で溶離液に浸漬して25℃で攪拌して溶離を行った。溶離液中の金濃度の経時変化を図2に示す。
 実施例の結果より、チオ硫酸の濃度0.1~0.5mol/Lでは効果はほとんど変わらなかった。しかしながら、温度が25℃になると溶離速度は著しく低下するものの、活性炭は溶離操作の後、繰り返して使用されるため金の溶離が不完全であってもこれを逸損するわけではない。
 金の濃度は最大で0.91mmol/L(活性炭に吸着した金が全て溶出すると考えた時の濃度)であるため、チオ硫酸はおよそ100モル倍添加されているが、反応機構から10モル倍でも効果は極端に減じることは無いと考えられる。ポリスルフィドイオンは一般に硫黄原子が2~6個程度連なる二価のアニオンであり、金に対して2分子配位してもチオ硫酸は最大でも12モル倍であるため、10モル倍程度でも効果は表れると推察される。
 チオ硫酸塩の濃度は0.1~0.5mol/Lでは溶離効果はほとんど変わらない。すなわち、チオ硫酸塩の濃度0.1mol/L(金の100モル倍)で溶離効果は飽和している。当然、活性炭に吸着されている金量により必要なチオ硫酸量は変化するが、上述のように溶離が不十分であっても金を逸損する訳ではない。
(実施例4)
 金を9800g/t吸着した活性炭(太平化学産業社製:CC-202)19mLを内径11mm、高さ200mmのコックつきガラスカラムに充填した。活性炭はあらかじめHClにより洗浄しておいた。次に、純水に濃度:0.01mol/L、0.1mol/L、0.5mol/L、又は、1.0mol/Lとなるようチオ硫酸ナトリウムを添加し、pHを硫酸で5に調整し、これを溶離液とした。続いて、活性炭を充填したカラムに溶離液を4.1mL/分で供給して通液後液を5~7mLごとに分画して採取した。カラム内部温度は70℃とした。カラム通液のSV:空間速度は13(1/h)とし、LV:線速度は2.6(m/h)とし、BV:通液量は156(mL)とした。次に、分画液中の金濃度をICP-AESで測定し、活性炭に含まれる金の品位を算出した。上記試験条件を表1に示し、得られた通液量と活性炭中の金品位との関係を表2に示し、そのグラフを図3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (8)

  1.  活性炭に吸着された金を、酸性水溶液にチオ硫酸塩を添加して調製された溶離液で溶離して、酸性の濃厚金溶液を得る工程を備えた金の回収方法。
  2.  前記酸性水溶液はpH4~7である請求項1に記載の金の回収方法。
  3.  前記チオ硫酸塩はチオ硫酸ナトリウム、チオ硫酸、及び、チオ硫酸カリウムから選択された少なくとも一種を含む還元剤である請求項1又は2に記載の金の回収方法。
  4.  前記溶離液中のチオ硫酸塩の濃度が0.01mol/L以上である請求項1~3のいずれかに記載の金の回収方法。
  5.  前記溶離液中のチオ硫酸塩の濃度が0.01~1.0mol/L以上である請求項4に記載の金の回収方法。
  6.  前記溶離を、溶離温度を20~100℃として回分式反応器を用いて行う請求項1~5のいずれかに記載の金の回収方法。
  7.  前記溶離温度を60~85℃とする請求項1~6のいずれかに記載の金の回収方法。
  8.  請求項1~7のいずれかに記載の金の回収方法で得られた濃厚金溶液から還元によって単体の金を作製する金の製造方法。
PCT/JP2013/052101 2012-03-01 2013-01-30 活性炭に吸着された金の回収方法及びそれを用いた金の製造方法 WO2013129017A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2865721A CA2865721C (en) 2012-03-01 2013-01-30 Method of recovering gold adsorbed on activated carbon and method of manufacturing gold using the same
JP2014502081A JP5840761B2 (ja) 2012-03-01 2013-01-30 活性炭に吸着された金の回収方法及びそれを用いた金の製造方法
EP13754888.9A EP2821513A4 (en) 2012-03-01 2013-01-30 METHOD FOR OBTAINING ACTIVE CARBON ABSORBED GOLD AND GOLD MANUFACTURING METHOD THEREWITH
AU2013200947A AU2013200947B2 (en) 2012-03-01 2013-01-30 Method of recovering gold absorbed on activated carbon and method of manufacturing gold using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-045577 2012-03-01
JP2012045577 2012-03-01
JPPCT/JP2012/079855 2012-11-16
JP2012079855 2012-11-16

Publications (1)

Publication Number Publication Date
WO2013129017A1 true WO2013129017A1 (ja) 2013-09-06

Family

ID=49082221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052101 WO2013129017A1 (ja) 2012-03-01 2013-01-30 活性炭に吸着された金の回収方法及びそれを用いた金の製造方法

Country Status (7)

Country Link
EP (1) EP2821513A4 (ja)
JP (1) JP5840761B2 (ja)
AU (1) AU2013200947B2 (ja)
CA (1) CA2865721C (ja)
CL (1) CL2014002292A1 (ja)
PE (2) PE20142107A1 (ja)
WO (1) WO2013129017A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928487A (zh) * 2015-06-06 2015-09-23 长春黄金研究院 一种炭浆提金工艺中粉炭的处理方法
US10597752B2 (en) 2013-05-29 2020-03-24 Barrick Gold Corporation Method for pre-treatment of gold-bearing oxide ores
CN115385413A (zh) * 2021-11-03 2022-11-25 董河贵 一种含金废水的处理组合物及其使用方法
US11639540B2 (en) 2019-01-21 2023-05-02 Barrick Gold Corporation Method for carbon-catalysed thiosulfate leaching of gold-bearing materials

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104113A1 (ja) 2014-12-26 2016-06-30 Jx金属株式会社 活性炭からの金の回収方法
CN107400778B (zh) * 2017-08-08 2019-01-18 中南大学 一种从强碱性阴离子交换树脂上解吸金硫代硫酸根配离子的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156432A (ja) * 1987-11-07 1989-06-20 British Petroleum Co Plc:The 分離方法
JPH03177521A (ja) * 1989-09-29 1991-08-01 E I Du Pont De Nemours & Co 炭素から吸着された金を溶離するための改良された方法
JPH09316561A (ja) 1996-05-27 1997-12-09 Nikko Kinzoku Kk 金の回収方法
JP2001316735A (ja) 2000-03-03 2001-11-16 Nippon Mining & Metals Co Ltd 銅電解殿物の処理方法
JP2006512484A (ja) 2002-12-31 2006-04-13 インテック・リミテッド 硫化物系材料からの金属の回収
JP2008106347A (ja) * 2006-09-28 2008-05-08 Nikko Kinzoku Kk 金の浸出方法
JP2010270368A (ja) * 2009-05-21 2010-12-02 Suminoe Textile Co Ltd 貴金属回収用フィルター及び貴金属回収フィルターから貴金属を分離する方法。

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA785464B (en) * 1978-09-26 1980-01-30 Anglo Amer Corp South Africa Noble metal recovery
US4778519A (en) * 1987-02-24 1988-10-18 Batric Pesic Recovery of precious metals from a thiourea leach

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156432A (ja) * 1987-11-07 1989-06-20 British Petroleum Co Plc:The 分離方法
JPH03177521A (ja) * 1989-09-29 1991-08-01 E I Du Pont De Nemours & Co 炭素から吸着された金を溶離するための改良された方法
JPH09316561A (ja) 1996-05-27 1997-12-09 Nikko Kinzoku Kk 金の回収方法
JP2001316735A (ja) 2000-03-03 2001-11-16 Nippon Mining & Metals Co Ltd 銅電解殿物の処理方法
JP2006512484A (ja) 2002-12-31 2006-04-13 インテック・リミテッド 硫化物系材料からの金属の回収
JP2008106347A (ja) * 2006-09-28 2008-05-08 Nikko Kinzoku Kk 金の浸出方法
JP2010270368A (ja) * 2009-05-21 2010-12-02 Suminoe Textile Co Ltd 貴金属回収用フィルター及び貴金属回収フィルターから貴金属を分離する方法。

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2821513A4
SEISHI TAKAGI: "Ion Reaction", vol. II, NANKODO CO., LTD, article "Qualitative Analytical Chemistry"

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10597752B2 (en) 2013-05-29 2020-03-24 Barrick Gold Corporation Method for pre-treatment of gold-bearing oxide ores
US11401580B2 (en) 2013-05-29 2022-08-02 Barrick Gold Corporation Method for pre-treatment of gold-bearing oxide ores
CN104928487A (zh) * 2015-06-06 2015-09-23 长春黄金研究院 一种炭浆提金工艺中粉炭的处理方法
US11639540B2 (en) 2019-01-21 2023-05-02 Barrick Gold Corporation Method for carbon-catalysed thiosulfate leaching of gold-bearing materials
CN115385413A (zh) * 2021-11-03 2022-11-25 董河贵 一种含金废水的处理组合物及其使用方法

Also Published As

Publication number Publication date
CA2865721C (en) 2017-08-01
JPWO2013129017A1 (ja) 2015-07-30
EP2821513A4 (en) 2015-12-09
PE20142107A1 (es) 2014-12-13
AU2013200947B2 (en) 2013-12-12
JP5840761B2 (ja) 2016-01-06
CL2014002292A1 (es) 2014-11-21
PE20190559A1 (es) 2019-04-17
CA2865721A1 (en) 2013-09-06
EP2821513A1 (en) 2015-01-07
AU2013200947A1 (en) 2013-09-19

Similar Documents

Publication Publication Date Title
Ashiq et al. Hydrometallurgical recovery of metals from e-waste
Aylmore Alternative lixiviants to cyanide for leaching gold ores
Grosse et al. Leaching and recovery of gold using ammoniacal thiosulfate leach liquors (a review)
WO2013108478A1 (ja) 金の回収方法及びそれを用いた金の製造方法
JP5840761B2 (ja) 活性炭に吸着された金の回収方法及びそれを用いた金の製造方法
AU2012271499B2 (en) Method for recovering precious metals and copper from leach solutions
JP5467133B2 (ja) 金の回収方法
CN103343224A (zh) 一种含金物料中金的快速提取方法
RU2385959C1 (ru) Способ получения золота из сульфидных золотосодержащих руд
JP6038279B2 (ja) 金及び銀の溶離方法及びそれを用いた金及び銀の回収方法
JP2015048524A (ja) 活性炭に吸着された金の回収方法
AU2020373621B2 (en) Method for treating ore or refining intermediate
Parga et al. Copper recovery from barren cyanide solution by using electrocoagulation iron process
Daenzer The modes of gold loss in the calcium thiosulfate leaching system
Deng Recovery of Gold and Copper from Alkaline Cyanide-Starved Glycine Solutions Using Sulfide Precipitation and Ion-Exchange
JP2019116670A (ja) 銅の回収方法、及び電気銅の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2013200947

Country of ref document: AU

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754888

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014502081

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2865721

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2013754888

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 001343-2014

Country of ref document: PE