WO2013129007A1 - 光結合素子および製造方法 - Google Patents

光結合素子および製造方法 Download PDF

Info

Publication number
WO2013129007A1
WO2013129007A1 PCT/JP2013/051870 JP2013051870W WO2013129007A1 WO 2013129007 A1 WO2013129007 A1 WO 2013129007A1 JP 2013051870 W JP2013051870 W JP 2013051870W WO 2013129007 A1 WO2013129007 A1 WO 2013129007A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
coupling element
cores
optical coupling
optical
Prior art date
Application number
PCT/JP2013/051870
Other languages
English (en)
French (fr)
Inventor
笹岡 英資
佐々木 隆
井上 享
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2013129007A1 publication Critical patent/WO2013129007A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type

Definitions

  • the present invention relates to an optical coupling element and a manufacturing method.
  • the core array converter according to the invention described in Patent Document 1 is provided between a multi-core optical fiber having a plurality of cores in a common cladding and an optical element having a plurality of light incident / exit points.
  • the optical core is optically coupled to the light incident / exit point of the optical element.
  • Non-Patent Document 1 a grating coupler is used as a means for optically coupling a planar optical waveguide and an optical fiber manufactured by a CMOS process, and in a direction substantially perpendicular to the plane direction of the planar optical waveguide.
  • a method for coupling light into an optical fiber having an optical axis is described.
  • the take-out direction of the multi-core optical fiber is in the plane direction of the planar optical waveguide.
  • the present invention has been made to solve the above-described problems, and an optical coupling element capable of suppressing deterioration of characteristics of the multi-core optical fiber when the multi-core optical fiber and the optical element are optically coupled to each other. And a manufacturing method.
  • the optical coupling element according to the present invention is, as a first aspect, a plurality of cores each of which propagates light, a first end on which one end face of the plurality of cores is disposed, and the first end, A second end on which the other end face of the plurality of cores is disposed, and a shape in which at least a part of the optical coupling element sandwiched between the first end and the second end is bent.
  • the first end and the second end are different from each other with respect to at least one of the core arrangement and the core interval.
  • the bent shape of the optical coupling element can be obtained by bending a holding material (for example, a clad material, a tube, or the like) that integrally holds the plurality of cores together with the plurality of cores.
  • a holding material for example, a clad material, a tube, or the like
  • the core interval is defined by the shortest distance between the centers of adjacent cores.
  • the optical coupling element has a core arrangement at the first end similar to the core arrangement at the second end, while the core interval at the first end is second. Structures different from the core spacing at the ends are applicable.
  • the interval between the plurality of cores included in the optical coupling element may change stepwise from the first end toward the second end.
  • the interval between the plurality of cores included in the optical coupling element is continuously changed from the first end toward the second end. Also good.
  • the core array at least one of the first end and the second end may be a one-dimensional pattern.
  • the core arrangement at least one of the first end and the second end may be a two-dimensional pattern.
  • each of the plurality of cores included in the optical coupling element may be a single core of a small-diameter optical fiber. That is, the optical coupling element according to the seventh aspect includes a plurality of small-diameter optical fibers (each having a single core), and the plurality of small-diameter optical fibers are integrated by a holding material such as a clad material or a tube. It may be configured to be handled.
  • the small-diameter optical fiber means an optical fiber smaller than 125 ⁇ m which is a standard fiber diameter (cladding outer diameter).
  • a plurality of cores included in the optical coupling element are provided between the first end and the second end. At least one of the diameter and the refractive index may be different.
  • at least one of the diameter and the refractive index of the plurality of cores included in the optical coupling element is at least one of the first end and the second end. , It can be changed by thermally diffusing the dopant in the core.
  • an optical fiber having a standard fiber diameter may be applied to the optical coupling element instead of the small-diameter optical fiber.
  • the optical coupling element according to the tenth aspect includes a plurality of optical fibers each having a single core.
  • the refractive index of the single core is changed by relaxing the residual stress of the single core at one end of each of the plurality of optical fibers.
  • An eleventh aspect of the present invention relates to an optical coupling element manufacturing method for manufacturing an optical coupling element according to at least one of the first to tenth aspects.
  • the starting material having a plurality of cores in a common clad is softened, and the softened starting material is stretched, whereby the first to tenth aspects.
  • An optical coupling element according to at least one of the aspects is obtained.
  • the optical coupling element includes a plurality of cores each of which propagates light, a first end on which one end face of the plurality of cores is disposed, a first end, and a plurality of cores. A second end on which the other end face of the core is disposed, and a core interval at the first end is different from a core interval at the second end.
  • the intervals between the plurality of cores included in the optical coupling element change stepwise from the first end toward the second end.
  • the optical coupling element according to the thirteenth aspect similarly to the twelfth aspect, a plurality of cores each propagating light, a first end on which one end face of the plurality of cores is disposed, A second end opposite to the first end and disposed with the other end face of the plurality of cores, wherein the first end and the second end are different from each other with respect to at least one of the core arrangement and the core interval.
  • the optical coupling element according to the thirteenth aspect includes a plurality of optical fibers each having a single core corresponding to any of the plurality of cores included in the optical coupling element. In this configuration, the refractive index of the single core is changed by relaxing the residual stress of the single core at one end of each of the plurality of optical fibers.
  • the optical coupling element when the multi-core optical fiber and the optical element are optically coupled to each other, deterioration of characteristics of the multi-core optical fiber can be effectively suppressed.
  • FIG. 1 is a diagram illustrating a configuration of an optical coupling element 10 according to the first embodiment.
  • FIG. 1A shows an optical coupling state between the multi-core optical fiber 80 and the planar optical waveguide (optical element) 90 via the optical coupling element 10 according to the first embodiment.
  • FIG. 1B to FIG. 1E are diagrams showing the core sequence and the like of the part indicated by arrows A to D in FIG.
  • the optical coupling element 10 is an optical component that optically couples the multi-core optical fiber 80 and the planar optical waveguide 90 to each other, and the multi-core optical fiber side optical coupling element 11. And a planar optical waveguide side optical coupling element 12, and has a first end 10 a facing the planar optical waveguide 90 and a second end 10 b facing the multicore optical fiber 80.
  • the planar optical waveguide 90, the planar optical waveguide side optical coupling element 12, the multicore optical fiber side optical coupling element 11, and the multicore optical fiber 80 are optically connected in this order. Yes.
  • the light incident / exit position of the planar optical waveguide 90 (that is, the position where the grating coupler 91 is provided) is indicated by a circle.
  • the four grating couplers 91 of the planar optical waveguide 90 are provided at the apexes of a square having a side length of 50 ⁇ m.
  • the position of the core 121 in the cross section of the planar optical waveguide side optical coupling element 12, that is, the position of the core 121 integrally held by the clad material 122 is indicated by a circle.
  • Each of the four cores 121 of the planar optical waveguide side optical coupling element 12 is provided at each vertex of a square having a side length of 48 ⁇ m.
  • the core array at least one of the first end 10a and the second end 10b may be a one-dimensional pattern.
  • the position of the core 111 in the cross section of the multi-core optical fiber side optical coupling element 11, that is, the position of the core 111 integrally held by the clad material 112 is indicated by a circle.
  • Each of the four cores 111 of the multi-core optical fiber side optical coupling element 11 is provided at each vertex of a square having a side length of 46 ⁇ m.
  • the position of the core 81 in the cross section of the multi-core optical fiber 80, that is, the position of the core 81 integrally held by the clad 82 is indicated by a circle.
  • Each of the four cores 81 of the multi-core optical fiber 80 is provided at each vertex of a square having a side length of 44 ⁇ m.
  • Each grating coupler 91 of the planar optical waveguide 90 and each core 121 of the planar optical waveguide side optical coupling element 12 have a one-to-one correspondence.
  • the cores 121 of the planar optical waveguide side optical coupling element 12 and the cores 111 of the multi-core optical fiber side optical coupling element 11 have a one-to-one correspondence.
  • each core 111 of the multi-core optical fiber side optical coupling element 11 and each core 81 of the multi-core optical fiber 80 correspond one-to-one.
  • the light when light is output from any of the grating couplers 91 in the planar optical waveguide 90, the light is output from the corresponding core 121 of the planar optical waveguide side optical coupling element 12 and the multi-core optical fiber side optical coupling element 11.
  • the signal propagates through the corresponding core 111 and is input to the corresponding core 81 of the multi-core optical fiber 80.
  • the light when light is output from any one of the cores 81 of the multi-core optical fiber 80, the light corresponds to the corresponding core 111 of the multi-core optical fiber side optical coupling element 11 and the planar optical waveguide side optical coupling element 12. And is input to the corresponding grating coupler 91 of the planar optical waveguide 90.
  • Each of the multi-core optical fiber side optical coupling element 11 and the planar optical waveguide side optical coupling element 12 is fixed in a bent state.
  • the planar optical waveguide 90 emits and emits light in a direction substantially perpendicular to the planar direction of the planar optical waveguide 90, whereas the multi-core optical fiber 80 is coupled to the planar direction of the planar optical waveguide 90.
  • the light can enter and exit in a direction parallel to. That is, the optical coupling element 10 has a shape in which the light incident / exit direction at the first end 10a and the light incident / exit direction at the second end 10b are different from each other.
  • the planar optical waveguide 90 and the multi-core optical fiber 80 are directly connected. As a result, the connection loss at the coupling portion increases.
  • the planar optical waveguide 90 and the multi-core optical fiber 80 are optically connected via the optical coupling element 10, and the core interval is stepped from the first end 10a toward the second end 10b. Therefore, the loss at each coupling portion can be reduced.
  • the diameter of each core in the optical coupling element may be set to a preferable diameter from the viewpoint of coupling loss.
  • both the core 121 and the core 111 have a diameter of 10 ⁇ m. Further, since the shape of the optical coupling element 10 is fixed in a state where bending is applied, the multi-core optical fiber 80 is parallel to the plane of the planar optical waveguide 90 without bending the multi-core optical fiber 80 with a small diameter. It becomes possible to install in the direction.
  • each of the cladding material 112 of the multi-core optical fiber side optical coupling element 11 and the cladding material 122 of the planar optical waveguide side optical coupling element 12 a trench part and a hole part are provided around the core 111 and around the core 121.
  • the outer diameters of the cladding material 112 of the multi-core optical fiber side optical coupling element 11 and the cladding material 122 of the planar optical waveguide side optical coupling element 12 do not necessarily need to match the cladding diameter of the multi-core optical fiber 80.
  • the multi-core optical fiber side optical coupling element 11 and the cladding material 122 of the planar optical waveguide side optical coupling element 12 are made smaller than the cladding diameter of the multi-core optical fiber 80, the multi-core optical fiber side optical coupling In each of the element 11 and the planar optical waveguide side optical coupling element 12, it is also possible to reduce the strain on the cladding surface due to bending, and to reduce the possibility of the optical fiber breaking due to the strain when bending is applied.
  • FIG. 2 is a diagram illustrating a configuration and a manufacturing method (an optical coupling device manufacturing method according to an embodiment of the present invention) of the optical coupling device 20 according to the second embodiment.
  • 2A to 2C are diagrams for explaining each process for manufacturing the optical coupling element 20 shown in FIG. 2D, and FIG. 2D shows the first end 20a of the optical coupling element 20 shown in FIG. 2D, and FIG. 2F shows the second end 20b of the optical coupling element 20 shown in FIG.
  • the optical coupling element 20 also includes a plurality of cores 201 that are integrally held by a clad material 202, and a part thereof. Has a bent shape. Further, as can be seen from FIGS. 2E and 2F, the core interval is different between the first end 20a and the second end 20b.
  • the two-dimensional core array at the first end 20a and the two-dimensional core array at the second end 20b are similar to each other.
  • the optical coupling element 20 having the above-described structure is manufactured as follows. That is, as shown in FIG. 2A, the glass layer 22 is exposed by removing the coating layer in a partial range in the longitudinal direction of the multi-core optical fiber 21 having the four cores 201. As shown in FIG. 2B, the exposed glass 22 is heated and softened using a heat source such as a micro burner or an electric heater, and then stretched in a tapered shape. As shown in FIG. 2C, a bend of about 90 degrees is applied to the small diameter portion of the tapered portion of the glass 22 while the tapered portion of the glass 22 is softened by heating.
  • a heat source such as a micro burner or an electric heater
  • the optical coupling element 20 can be manufactured as described above.
  • the manufactured optical coupling element 20 has a bend of about 90 degrees, the core interval at the second end 20b matches the core interval of the multicore optical fiber 80, and the core interval at the first end 20a is a planar optical waveguide. This is consistent with the 90 grating coupler spacing.
  • the optical coupling element 20 is produced by being stretched in a taper shape, so that the core interval continuously changes from the first end 20a toward the second end 20b. Therefore, the multi-core optical fiber 80 and the planar optical waveguide 90 having different core intervals can be coupled with low loss. Further, since the optical coupling element 20 is bent in the softened state and then hardened in a state where the bending is applied, it is possible to substantially eliminate the surface distortion caused by the bending. Become.
  • the multi-core optical fiber 21 it is possible to reduce bending loss and deterioration of inter-core crosstalk due to bending by means such as providing a trench or a hole around each core. Further, in the portion where the bending is applied in the multi-core optical fiber 21, the outer diameter is narrowed by being stretched in a taper shape. Therefore, even if a bending strain occurs, the strain generated on the surface is stretched. It becomes relatively small with respect to no part. As a result, this embodiment is also effective in reducing the probability of optical fiber breakage due to bending.
  • FIG. 3 is a diagram illustrating a configuration of the optical coupling element 30 according to the third embodiment.
  • the optical coupling element 30 is an optical component that optically couples the multi-core optical fiber 80 and the planar optical waveguide 90 to each other, and has a first end 30 a facing the planar optical waveguide 90 and a multi-core optical fiber 80.
  • eight narrow optical fibers 31 (each including a single core) having a second end 30b extending between the first end 30a and the second end 30b.
  • 3A is a diagram showing an optical coupling state between the multi-core optical fiber 80 and the planar optical waveguide 90 via the optical coupling element 30, and
  • FIG. 3B is a diagram at the first end 30a.
  • Each small-diameter optical fiber 31 includes a core 311 and a clad 312 that covers the outer peripheral surface of the core 311 as shown in FIG.
  • the optical coupling element 30 At the first end 30a of the optical coupling element 30 that is optically coupled to the grating coupler (see FIG. 1B) of the planar optical waveguide 90, eight cores included in the optical coupling element 30 (that is, eight cores).
  • the small-diameter optical fibers 31) are fixed in a state of being two-dimensionally arranged in 2 rows and 4 columns in accordance with the arrangement of the eight grating couplers of the planar optical waveguide 90.
  • the core array at least one of the first end 30a and the second end 30b may be a one-dimensional pattern.
  • the second end 30b of the optical coupling element 30 optically coupled to the core of the multi-core optical fiber 80 (see FIG.
  • the optical coupling element 30 (that is, eight cores)
  • the small-diameter optical fiber 31) is fixed in a state of being arranged at equal intervals on the same circumference in accordance with the arrangement of the eight cores of the multi-core optical fiber 80.
  • eight thin optical fibers 31 are accommodated in a tube 32.
  • the eight small-diameter optical fibers 31 are fixed to the tube 32 in a state in which the two-dimensional core arrangement as described above is maintained.
  • the two-dimensional core array at the first end 30a matches the grating coupler array of the planar optical waveguide 90
  • the two-dimensional core array at the second end 30b is the multi-core optical fiber 80. Is consistent with the core sequence. Therefore, the planar optical waveguide 90 and the multi-core optical fiber 80 can be coupled with low loss. Further, as shown in FIG. 3A, even when the optical coupling element 30 is bent, since the thin optical fiber 31 is bent, it is generated on the surface of the thin optical fiber 31. The strain to be reduced is relatively small as compared with the case of an optical fiber having a normal diameter.
  • the use of the small-diameter optical fiber 31 is also effective in reducing the probability of breakage of the small-diameter optical fiber 31 caused by bending.
  • FIG. 4 is a diagram illustrating a configuration of the optical coupling element 40 according to the fourth embodiment.
  • the optical coupling element 40 is an optical component that optically couples the multi-core optical fiber 80 and the planar optical waveguide 90 to each other, and has a first end 40 a facing the planar optical waveguide 90, and facing the multi-core optical fiber 80.
  • eight narrow optical fibers 41 (each including a single core) having a second end 40b extending between the first end 40a and the second end 40b.
  • 4A is a diagram showing an optical coupling state between the multi-core optical fiber 80 and the planar optical waveguide 90 via the optical coupling element 40
  • FIG. 4B is a diagram at the first end 40a.
  • FIG. 4C shows the core arrangement (the arrangement of the cores of the small-diameter optical fibers 41) at the second end 40b.
  • Each of the small-diameter optical fibers 41 includes a core 411 and a clad 412 that covers the outer peripheral surface of the core 411 as shown in FIG.
  • the optical coupling element 40 At the first end 40a of the optical coupling element 40 optically coupled to the grating coupler (see FIG. 1B) of the planar optical waveguide 90, eight cores included in the optical coupling element 40 (ie, eight cores).
  • the small-diameter optical fiber 41) is fixed in a two-dimensional array of two rows and four columns in accordance with the arrangement of the eight grating couplers of the planar optical waveguide 90.
  • the core array at least one of the first end 40a and the second end 40b may be a one-dimensional pattern.
  • the second end 40b of the optical coupling element 40 optically coupled to the core of the multi-core optical fiber 80 (see FIG.
  • the optical coupling element 40 that is, eight cores
  • the small-diameter optical fiber 41 is fixed in a state of being arranged at equal intervals on the same circumference in accordance with the arrangement of the eight cores of the multi-core optical fiber 80.
  • eight thin optical fibers 41 are accommodated in a tube 42.
  • the eight small-diameter optical fibers 41 are fixed to the tube 42 in a state where the two-dimensional core arrangement as described above is maintained.
  • each core at the first end 40a and / or the second end 40b is different from the above-described third embodiment. That is, at the first end 40a of the optical coupling element 40 that is optically coupled to the grating coupler of the planar optical waveguide 90, each of the eight small-diameter optical fibers 41 is fixed for a certain time by a heat source such as a micro burner or an electric heater. Heated. In this case, the core diameter is expanded by thermally diffusing the dopant in the core 411, and as a result, the peak refractive index of each core 411 is reduced.
  • a heat source such as a micro burner or an electric heater.
  • each of the eight small-diameter optical fibers 41 may be an optical fiber that is drawn under a condition that a tensile stress remains in the core 411.
  • the second end 40b of the optical coupling element 40 that is optically coupled to the multi-core optical fiber 80 is also heated for a predetermined time by a heat source such as a micro burner or an electric heater so that each core (the small-diameter optical fiber 41) is heated.
  • the residual stress in the core 411) is reduced (relaxation of residual stress at the fiber end). Thereby, the peak refractive index of each core increases.
  • the two-dimensional core array at the first end 40a matches the grating coupler array of the planar optical waveguide 90
  • the two-dimensional core array at the second end 40b is the multi-core optical fiber 80. Is consistent with the core sequence. Therefore, the planar optical waveguide 90 and the multi-core optical fiber 80 can be coupled with low loss. Further, even when the spot diameter and the light spread angle are different between the grating coupler of the planar optical waveguide 90 and the core of the multi-core optical fiber 80, the spot diameter and spread at the end of the corresponding optical coupling element are different. It is also possible to align the corners. Further, as shown in FIG.
  • the optical coupling element 40 even when the optical coupling element 40 is bent, it is the thin optical fiber 41 that is bent, so that it is generated on the surface of the thin optical fiber 41.
  • the strain is relatively small compared to the case of an optical fiber having a normal diameter. Therefore, the use of the small-diameter optical fiber 41 is also effective in reducing the probability of breakage of the small-diameter optical fiber 41 caused by bending.
  • the optical coupling element is bent about 90 degrees.
  • the optical coupling element can be used in the plane of the planar optical waveguide by means such as a grating coupler.
  • a case where light is coupled in a direction other than a substantially vertical direction is also conceivable.
  • a case where light is coupled at the end of the planar optical waveguide is also conceivable.
  • a configuration in which the core diameter or the refractive index is changed by thermally diffusing a plurality of core dopants at one end or the other end of the optical coupling element is conceivable. Thereby, the mode field diameter can be adjusted at the input end and the output end of the optical coupling element.
  • FIG. 5 is a diagram illustrating a configuration of an optical coupling element 50 according to a modification.
  • the optical coupling element 50 extends between a first end 50a, a second end 50b facing the first end 50a, and the first end 50a and the second end 50b.
  • a plurality of cores 51 that propagate light and a clad material 52 that integrally holds the plurality of cores 51 are provided.
  • the diameter of each core 51 is enlarged by thermal diffusion of the dopant added to each core 51.
  • the first to fourth embodiments described above are described on the assumption that the core operates in a single mode, but the present invention can also be applied to a core performing a multimode operation as in the above-described modification. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

 本発明は、異なる種類の光学素子間を光学的に結合する光結合素子に関し、複数のコアを備える。当該光結合素子における第1端と該第1端に対向する第2端とでは、コア配列およびコア間隔のうち少なくとも何れかが異なる。また、当該光結合素子は、第1端における光入出射方向と第2端における光入出射方向とが互いに異なるよう、複数のコアを含む当該光結合素子自体の少なくとも一部が屈曲した形状を有する。

Description

光結合素子および製造方法
 本発明は、光結合素子および製造方法に関するものである。
 特許文献1に記載された発明のコア配列変換器は、共通のクラッド内に複数のコアを有するマルチコア光ファイバと、複数の光入出射点を有する光学素子との間に設けられ、マルチコア光ファイバのコアと光学素子の光入出射点とを光学的に結合するものである。
 また、非特許文献1には、CMOSプロセスにより作製された平面型光導波路と光ファイバとを互いに光結合させる手段としてグレーティングカプラを用い、平面型光導波路の面方向に対して概ね垂直な方向に光軸を有する光ファイバに光を結合させる方法が記載されている。
特開2011-18013号公報
Attila Mekis, et al, "A Grating-Coupler-EnabledCMOS Photonics Platform," IEEE JOURNAL OF SELECTEDTOPICS IN QUANTUM ELECTRONICS, Vol.17, No.3,pp.597-608 (2011).
 発明者らは、従来の光結合技術について検討した結果、以下のような課題を発見した。すなわち、上記非特許文献1に記載された方法により平面型光導波路とマルチコア光ファイバとを互いに光結合させようとする場合であって、マルチコア光ファイバの取り出し方向が平面型光導波路の面方向に平行であるときには、マルチコア光ファイバの端部近傍部分に対して取り出し部分を約90度だけ屈曲させる必要がある。平面型光導波路の面方向に対して垂直な方向に充分な大きさの空間がない場合には、マルチコア光ファイバの90度の屈曲を小径とする必要がある。このような場合、マルチコア光ファイバの曲げ損失の増加、小径曲げによるコア間クロストークの増大、および、曲げ歪によるファイバ破断確率の増加等を招く可能性がある。
 本発明は、上記問題点を解消する為になされたものであり、マルチコア光ファイバと光学素子とを互いに光学的に結合する際に該マルチコア光ファイバの特性劣化を抑制することができる光結合素子および製造方法を提供することを目的としている。
 本発明に係る光結合素子は、第1の態様として、それぞれが光を伝搬させる複数のコアと、複数のコアの一方の端面が配置された第1端と、第1端と対向するとともに、複数のコアの他方の端面が配置された第2端と、第1端と第2端で挟まれた当該光結合素子の少なくとも一部が屈曲した形状と、を備える。なお、この第1の態様において、第1端と第2端は、コア配列およびコア間隔のうち少なくとも何れかに関して、互いに異なっている。したがって、第1端の平面構造と第2端の平面構造とが異なる場合には、コア配列のみが異なる場合、コア間隔のみが異なる場合、コア配列およびコア間隔の双方が異なる場合が含まれる。また、当該光結合素子の屈曲形状は、複数のコアとともにこれら複数のコアを一体的に保持する保持材料(例えばクラッド材、チューブ等)を屈曲させることにより得られる。このように保持材料自体を屈曲させることにより、当該光結合素子に含まれる複数のコアは、互いの間隔および/または屈曲状態が維持される。その結果、第1端における光入出射方向と第2端における光入出射方向とが互いに異なる固定形状が実現される。なお、コア間隔は、隣接するコアにおける中心間の最短距離により規定される。
 上記第1の態様に適用可能な第2の態様として、当該光結合素子には、第1端におけるコア配列が第2端におけるコア配列と相似である一方、第1端におけるコア間隔が第2端におけるコア間隔と異なっている構造が適用可能である。
 上記第1または第2の態様に適用可能な第3の態様として、当該光結合素子に含まれる複数のコアの間隔は、第1端から第2端に向かって段階的に変化してもよい。また、上記第1または第2の態様に適用可能な第4の態様として、当該光結合素子に含まれる複数のコアの間隔は、第1端から第2端に向かって連続的に変化してもよい。さらに、上記第1~第4の態様のうち少なくとも何れかの態様に適用可能な第5の態様として、第1端および第2端の少なくとも一方におけるコア配列は、一次元パターンであってもよい。上記第1~第4の態様のうち少なくとも何れかの態様に適用可能な第6の態様として、第1端および第2端の少なくとも一方におけるコア配列は、二次元パターンであってもよい。
 上記第1~第6の態様のうち少なくとも何れかに適用可能な第7の態様として、当該光結合素子に含まれる複数のコアそれぞれは、細径光ファイバの単一コアであっても良い。すなわち、第7の態様に係る光結合素子は、複数の細径光ファイバ(それぞれが単一コアを有する)を含み、これら複数の細径光ファイバがクラッド材、チューブ等の保持材料により一体的に取り扱われる構成であっても良い。なお、細径光ファイバは、標準的なファイバ径(クラッド外径)である125μmよりも小さい光ファイバを意味する。
 さらに、上記第1~第7の態様のうち少なくとも何れかの態様に適用可能な第8の態様として、第1端と第2端との間で、当該光結合素子に含まれる複数のコアの径および屈折率の少なくとも何れかが異なっていても良い。なお、この第8の態様を実現するための第9の態様として、当該光結合素子に含まれる複数のコアの径および屈折率の少なくとも何れかは、第1端および第2端の少なくとも何れかにおいて、コア内のドーパントを熱拡散させることにより、変化し得る。また、第9の態様に適用可能な第10の態様として、当該光結合素子には、上記細径光ファイバに代え、標準的なファイバ径を有する光ファイバが適用されても良い。この場合、第10の態様に係る光結合素子は、それぞれが単一コアを有する複数の光ファイバを備える。この第10の態様において、複数の光ファイバそれぞれの一端において、単一コアの屈折率は、該単一コアの残留応力が緩和されることにより変化しているのが好ましい。
 本発明の第11の態様は、上記第1~第10の態様のうち少なくとも何れかの態様に係る光結合素子を製造するための光結合素子製造方法に関する。この第11の態様に係る光結合素子製造方法は、共通のクラッド内に複数のコアを有する出発材を軟化させ、該軟化した出発材を延伸することにより、上記第1~第10の態様のうち少なくとも何れかの態様に係る光結合素子を得る。
 なお、第12の態様に係る光結合素子は、それぞれが光を伝搬させる複数のコアと、複数のコアの一方の端面が配置された第1端と、第1端と対向するとともに、複数のコアの他方の端面が配置された第2端と、を備え、第1端におけるコア間隔が第2端におけるコア間隔と異なっている。特に、この第12の態様において、当該光結合素子に含まれる複数のコアの間隔は、第1端から第2端に向かって段階的に変化している。
 また、第13の態様に係る光結合素子に、上記第12の態様と同様に、それぞれが光を伝搬させる複数のコアと、複数のコアの一方の端面が配置された第1端と、記第1端と対向するとともに、複数のコアの他方の端面が配置された第2端と、を備え、コア配列およびコア間隔のうち少なくとも何れかに関して第1端と第2端とが互いに異なっている。特に、第13の態様に係る光結合素子は、当該光結合素子に含まれる複数のコアの何れかに相当する単一コアをそれぞれが有する複数の光ファイバで構成される。また、この構成において、複数の光ファイバそれぞれの一端において、単一コアの屈折率は該単一コアの残留応力が緩和されることにより変化している。
 本実施形態に係る光結合素子によれば、マルチコア光ファイバと光学素子とを互いに光学的に結合する際に、該マルチコア光ファイバの特性劣化が効果的に抑制され得る。
は、第1実施形態に係る光結合素子の構成を示す図である。 は、第2実施形態に係る光結合素子の構成および製造方法(本発明の一実施形態に係る光結合素子製造方法)を示す図である。 は、第3実施形態に係る光結合素子の構成を示す図である。 は、第4実施形態に係る光結合素子の構成を示す図である。 は、変形例に係る光結合素子の構成を示す図である。
 以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 (第1実施形態)
  図1は、第1実施形態に係る光結合素子10の構成を示す図である。なお、図1(a)は、第1実施形態に係る光結合素子10を介した、マルチコア光ファイバ80と平面光導波路(光学素子)90との光結合状態を示す。図1(b)~図1(e)は、図1(a)中の矢印A~Dで示された部位のコア配列等を示す図である。
 図1(a)に示されたように、光結合素子10は、マルチコア光ファイバ80と平面型光導波路90とを互いに光学的に結合する光学部品であって、マルチコア光ファイバ側光結合素子11および平面型光導波路側光結合素子12を備え、平面型光導波路90に対面する第1端10aと、マルチコア光ファイバ80に対面する第2端10bを有する。図1(a)に示された例では、平面型光導波路90、平面型光導波路側光結合素子12、マルチコア光ファイバ側光結合素子11、およびマルチコア光ファイバ80の順に光学的に接続されている。
 図1(b)では、平面型光導波路90の光入出射位置(すなわち、グレーティングカプラ91が設けられている位置)が丸印で示されている。平面型光導波路90の4つのグレーティングカプラ91は、一辺の長さが50μmである正方形の各頂点に設けられている。図1(c)では、平面型光導波路側光結合素子12の断面におけるコア121の位置、すなわち、クラッド材122により一体的に保持されたコア121の位置が丸印で示されている。平面型光導波路側光結合素子12の4つのコア121それぞれは、一辺の長さが48μmである正方形の各頂点に設けられている。なお、第1端10aおよび第2端10bの少なくとも一方におけるコア配列は、一次元パターンあってもよい。
 図1(d)では、マルチコア光ファイバ側光結合素子11の断面におけるコア111の位置、すなわち、クラッド材112により一体的に保持されたコア111の位置が丸印で示されている。マルチコア光ファイバ側光結合素子11の4つのコア111それぞれは、一辺の長さが46μmである正方形の各頂点にそれぞれ設けられている。図1(e)では、マルチコア光ファイバ80の断面におけるコア81の位置、すなわち、クラッド82によって一体的に保持されたコア81の位置が丸印で示されている。マルチコア光ファイバ80の4つのコア81それぞれは、一辺の長さが44μmである正方形の各頂点に設けられている。
 平面型光導波路90の各グレーティングカプラ91と平面型光導波路側光結合素子12の各コア121とは1対1に対応している。平面型光導波路側光結合素子12の各コア121とマルチコア光ファイバ側光結合素子11の各コア111とは1対1に対応している。また、マルチコア光ファイバ側光結合素子11の各コア111とマルチコア光ファイバ80の各コア81とは1対1に対応している。
 したがって、平面型光導波路90の何れかのグレーティングカプラ91から光が出力されると、その光は、平面型光導波路側光結合素子12の対応するコア121およびマルチコア光ファイバ側光結合素子11の対応するコア111を伝搬して、マルチコア光ファイバ80の対応するコア81に入力される。逆に、マルチコア光ファイバ80の何れかのコア81から光が出力されると、その光は、マルチコア光ファイバ側光結合素子11の対応するコア111および平面型光導波路側光結合素子12の対応するコア121を伝搬して、平面型光導波路90の対応するグレーティングカプラ91に入力される。
 マルチコア光ファイバ側光結合素子11および平面型光導波路側光結合素子12それぞれは、曲げが加えられた状態で固定されている。これにより、平面型光導波路90は、平面型光導波路90の面方向に対して概ね垂直な方向に光を入出射するのに対して、マルチコア光ファイバ80は、平面型光導波路90の面方向に対して平行な方向に光を入出射することができる。すなわち、光結合素子10は、第1端10aにおける光入出射方向と第2端10bにおける光入出射方向とが互いに異なる形状を有する。
 平面型光導波路90におけるグレーティングカプラ91の間隔(50μm)とマルチコア光ファイバ80におけるコア81の間隔(44μm)とが大きく異なるため、平面型光導波路90とマルチコア光ファイバ80とが直接接続されると、当該結合部での接続損失が大きくなってしまう。しかしながら、本実施形態では、平面型光導波路90とマルチコア光ファイバ80とが光結合素子10を介して光学的に接続され、かつ、コア間隔が第1端10aから第2端10bに向かって段階的に変化していることから、各結合部での損失が低減され得る。光結合素子における各コアの径は、結合損失の観点から適宜好ましい径に設定されれば良く、本実施形態では、コア121、コア111とも10μmの径を有する。また、光結合素子10は曲げが加えられた状態でその形状が固定されているので、マルチコア光ファイバ80に小径曲げを加えることなく、マルチコア光ファイバ80を平面型光導波路90の面に平行な方向に設置することが可能になる。
 なお、マルチコア光ファイバ側光結合素子11のクラッド材112および平面型光導波路側光結合素子12のクラッド材122それぞれにおいて、コア111の周囲およびコア121の周囲にトレンチ部や空孔部を付与する等の手段により、曲げ損失や曲げによるコア間クロストーク劣化を低減することも可能となる。また、マルチコア光ファイバ側光結合素子11のクラッド材112および平面型光導波路側光結合素子12のクラッド材122それぞれの外径は、必ずしもマルチコア光ファイバ80のクラッド径と一致させる必要はない。マルチコア光ファイバ側光結合素子11のクラッド材112および平面型光導波路側光結合素子12のクラッド材122それぞれの外径をマルチコア光ファイバ80のクラッド径より小さくすることにより、マルチコア光ファイバ側光結合素子11および平面型光導波路側光結合素子12それぞれにおいて、曲げによるクラッド表面での歪を低減させて、曲げ印加時の歪による光ファイバ破断の可能性を低減させることも可能である。
 (第2実施形態)
  図2は、第2実施形態に係る光結合素子20の構成および製造方法(本発明の一実施形態に係る光結合素子製造方法)を示す図である。なお、図2(a)~2(c)は、図2(d)に示された光結合素子20を製造するための各工程を説明するための図であり、図2(e)は、図2(d)に示された光結合素子20の第1端20aを示し、図2(f)は、図2(d)に示された光結合素子20における第2端20bを示す。
 この第2実施形態に係る光結合素子20も、図2(d)~2(f)に示されたように、複数のコア201がクラッド材202によって一体的に保持されるとともに、その一部が屈曲した形状を有する。また、図2(e)および2(f)からも分かるように、第1端20aと第2端20bとの間で、コア間隔が異なっている。なお、本実施形態では、第1端20aにおける二次元コア配列と第2端20bにおける二次元コア配列(コア配列は一次元パターンであってもよい)は、互いに相似している。
 上述のような構造を備えた光結合素子20は、以下のようにして作製される。すなわち、図2(a)に示されたように、4つのコア201を有するマルチコア光ファイバ21の長手方向の一部範囲において被覆層を除去してガラス22を露出する。図2(b)に示されたように、マイクロバーナや電気ヒータ等の熱源を用いて、露出したガラス22を加熱し軟化させて上でテーパ状に延伸する。図2(c)に示されるように、加熱によりガラス22のテーパ部分を軟化させたままの状態で、ガラス22のテーパ部分の細径部に約90度の曲げを加える。
 そして、図2(d)に示されたように、曲げを加えたテーパ部分を切り出し、これを樹脂等によりモールドした上で端面に研磨加工を行う。以上のようにして光結合素子20を作製することができる。この作製された光結合素子20は、約90度の曲げを有するとともに、第2端20bにおけるコア間隔がマルチコア光ファイバ80のコア間隔と整合し、第1端20aにおけるコア間隔が平面型光導波路90のグレーティングカプラ間隔と整合している。
 この光結合素子20は、テーパ状に延伸されて作製されることで、コア間隔が第1端20aから第2端20bに向かって連続的に変化している。そのため、コア間隔が異なるマルチコア光ファイバ80と平面型光導波路90とを低損失で結合させることが可能になる。さらに、この光結合素子20は、軟化した状態でテーパ部に曲げが加えられた後、曲げが加わった状態で硬化しているので、曲げに起因する表面歪を実質的に無くすことも可能になる。
 なお、マルチコア光ファイバ21において、各コアの周囲にトレンチ部や空孔部を付与する等の手段により、曲げ損失や曲げによるコア間クロストーク劣化を低減することも可能になる。また、マルチコア光ファイバ21において曲げが加えられた部分では、テーパ状に延伸されることで外径が細くなっているので、万一曲げ歪が発生した場合でも、表面に生じる歪は延伸されていない部分に対して相対的に小さくなる。その結果、曲げに起因する光ファイバの破断確率を低減させる上でも本実施形態は有効である。
 (第3実施形態)
  図3は、第3実施形態に係る光結合素子30の構成を示す図である。光結合素子30は、マルチコア光ファイバ80と平面型光導波路90とを互いに光学的に結合する光学部品であって、平面型光導波路90に対面する第1端30aと、マルチコア光ファイバ80に対面する第2端30bを有するとともに、第1端30aと第2端30bとの間に延在する8本の細径光ファイバ31(それぞれが単一コアを含む)と、これら細径光ファイバ31が収納されるチューブ32と、を備える。なお、図3(a)は、光結合素子30を介した、マルチコア光ファイバ80と平面型光導波路90との光結合状態を示す図であり、図3(b)は、第1端30aにおけるコア配列(細径光ファイバ31のコアの配列)を示し、図3(c)は、第2端30bにおけるコア配列(細径光ファイバ31のコアの配列)を示している。なお、各細径光ファイバ31は、図3(d)に示されたように、コア311と、コア311の外周面を覆うクラッド312により構成されている。
 平面型光導波路90のグレーティングカプラ(図1(b)参照)と光学的に結合される光結合素子30の第1端30aにおいて、光結合素子30に含まれる8つのコア(すなわち、8本の細径光ファイバ31)は、平面型光導波路90の8つのグレーティングカプラの配置に合わせて、2行4列に二次元配列された状態で固定されている。なお、第1端30aおよび第2端30bの少なくとも一方におけるコア配列は、一次元パターンあってもよい。一方、マルチコア光ファイバ80のコア(図1(e)参照)と光学的に結合される光結合素子30の第2端30bにおいて、光結合素子30に含まれる8つのコア(すなわち、8本の細径光ファイバ31)は、マルチコア光ファイバ80の8つのコアの配置に合わせて、同一円周上に等間隔で配置された状態で固定されている。光結合素子30において、8本の細径光ファイバ31はチューブ32内に収納されている。光結合素子30の第1端30aおよび第2端30bの双方において、8本の細径光ファイバ31は、上述のような二次元コア配列が維持された状態でチューブ32に固定されている。
 この第3実施形態に係る光結合素子30では、第1端30aにおける二次元コア配列が平面型光導波路90のグレーティングカップラ配列と一致し、第2端30bにおける二次元コア配列がマルチコア光ファイバ80のコア配列と一致している。そのため、平面型光導波路90とマルチコア光ファイバ80とを低損失で結合させることが可能になる。さらに、図3(a)に示されたように、光結合素子30に曲げが加えられた状態においても、曲げられるのは細径光ファイバ31であるので、該細径光ファイバ31表面に発生する歪は通常径の光ファイバの場合と比較して相対的に小さくなる。したがって、曲げに起因する細径光ファイバ31の破断確率を低減させる上でも、細径光ファイバ31の採用は有効である。なお、細径光ファイバ31それぞれにおいて、コア311の周囲にトレンチ部や空孔部を付与する等の手段により、この細径光ファイバ31の曲げ損失を低減することも可能である。
 (第4実施形態)
  図4は、第4実施形態に係る光結合素子40の構成を示す図である。光結合素子40は、マルチコア光ファイバ80と平面型光導波路90とを互いに光学的に結合する光学部品であって、平面型光導波路90に対面する第1端40aと、マルチコア光ファイバ80に対面する第2端40bを有するとともに、第1端40aと第2端40bとの間に延在する8本の細径光ファイバ41(それぞれが単一コアを含む)と、これら細径光ファイバ41が収納されるチューブ42と、を備える。なお、図4(a)は、光結合素子40を介した、マルチコア光ファイバ80と平面型光導波路90との光結合状態を示す図であり、図4(b)は、第1端40aにおけるコア配列(細径光ファイバ41のコアの配列)を示し、図4(c)は、第2端40bにおけるコア配列(細径光ファイバ41のコアの配列)を示している。なお、各細径光ファイバ41は、図4(d)に示されたように、コア411と、コア411の外周面を覆うクラッド412により構成されている。
 平面型光導波路90のグレーティングカプラ(図1(b)参照)と光学的に結合される光結合素子40の第1端40aにおいて、光結合素子40に含まれる8つのコア(すなわち、8本の細径光ファイバ41)は、平面型光導波路90の8つのグレーティングカプラの配置に合わせて、2行4列に二次元配列された状態で固定されている。なお、第1端40aおよび第2端40bの少なくとも一方におけるコア配列は、一次元パターンあってもよい。一方、マルチコア光ファイバ80のコア(図1(e)参照)と光学的に結合される光結合素子40の第2端40bにおいて、光結合素子40に含まれる8つのコア(すなわち、8本の細径光ファイバ41)は、マルチコア光ファイバ80の8つのコアの配置に合わせて、同一円周上に等間隔で配置された状態で固定されている。光結合素子40において、8本の細径光ファイバ41はチューブ42内に収納されている。光結合素子40における第1端40aおよび第2端40bの双方において、8本の細径光ファイバ41は、上述のような二次元コア配列が維持された状態でチューブ42に固定されている。
 この第4実施形態では、第1端40aおよび/または第2端40bにおける各コアの構造が上述の第3実施形態と異なる。すなわち、平面型光導波路90のグレーティングカプラと光学的に結合される光結合素子40の第1端40aにおいて、8本の細径光ファイバ41それぞれは、マイクロバーナや電気ヒータ等の熱源により一定時間加熱される。この場合、コア411内のドーパントが熱拡散されることでコア径が拡大され、結果、各コア411のピーク屈折率が低減されている。或いは、8本の細径光ファイバ41それぞれは、コア411に引っ張り応力を残留させる条件で線引された光ファイバであっても良い。この場合、マルチコア光ファイバ80と光学的に結合される光結合素子40の第2端40bにおいても、マイクロバーナや電気ヒータ等の熱源により一定時間加熱されることで各コア(細径光ファイバ41のコア411)内の残留応力が低減されている(ファイバ端部における残留応力の緩和)。これにより、各コアのピーク屈折率が増大する。
 この第4実施形態に係る光結合素子40では、第1端40aにおける二次元コア配列が平面型光導波路90のグレーティングカップラ配列と一致し、第2端40bにおける二次元コア配列がマルチコア光ファイバ80のコア配列と一致している。そのため、平面型光導波路90とマルチコア光ファイバ80とを低損失で結合させることが可能になる。また、平面型光導波路90のグレーティングカップラとマルチコア光ファイバ80のコアとの間でスポット径や光の広がり角が互いに異なる場合でも、それぞれに対応する光結合素子の端部でのスポット径や広がり角を整合させることも可能になる。さらに、図4(a)に示されたように、光結合素子40に曲げを加えた状態においても、曲げられるのは細径光ファイバ41であるので、該細径光ファイバ41表面に発生する歪は通常径の光ファイバの場合と比較して相対的に小さくなる。したがって、曲げに起因する細径光ファイバ41の破断確率を低減させる上でも、細径光ファイバ41の採用は有効である。なお、各細径光ファイバ41において、コア411の周囲にトレンチ部や空孔部を付与する等の手段により、この細径光ファイバ41の曲げ損失を低減することも可能になる。
 (変形例)
  上記の第1~第4の各実施形態においては光結合素子に約90度の曲げが付与されていたが、光結合素子の使い方としては、グレーティングカップラ等の手段により平面型光導波路の平面に略垂直方向以外の方向に光を結合する場合も考えられる。一例として、平面型光導波路の端部において光を結合する場合も考えられ、この場合には、曲げを付与しない光結合素子を使用することも考えられる。この場合、光結合素子の1端または他端において、複数のコアのドーパントが熱拡散されてコア径または屈折率が変化する構成が考えられる。これにより、光結合素子の入力端及び出力端で、モードフィールド径の調整を行うことができる。
 図5は、変形例に係る光結合素子50の構成を示す図である。この図5において、光結合素子50は、第1端50aと、第1端50aに対向する第2端50bと、これら第1端50aと第2端50bとの間に延存し、それぞれが光を伝搬させる複数のコア51と、複数のコア51を一体的に保持するクラッド材52と、を備える。また、当該光結合素子50の第1端50aおよび第2端50bそれぞれでは、各コア51に添加されたドーパントの熱拡散により各コア51の径が拡大されている。
 上述の第1~第4実施形態は、コアがシングルモード動作することを前提として記載しているが、上記変形例のように本発明はマルチモード動作をするコアに適用することも可能である。
 10、20、30、40、50…光結合素子、11…マルチコア光ファイバ側光結合素子、12…平面型光導波路側光結合素子、31、41…細径光ファイバ、32、42…チューブ、80…マルチコア光ファイバ、90…平面型光導波路。

Claims (13)

  1.  それぞれが光を伝搬させる複数のコアを含む光結合素子であって、
     前記複数のコアの一方の端面が配置された第1端と、
     前記第1端と対向するとともに、前記複数のコアの他方の端面が配置された第2端であって、コア配列およびコア間隔のうち少なくとも何れかに関して前記第1端と異なっている第2端と、
     前記第1端における光入出射方向と前記第2端における光入出射方向とが互いに異なるよう、前記複数のコアを含む当該光結合素子自体の少なくとも一部が屈曲した形状と、を備えた光結合素子。
  2.  前記第1端におけるコア配列は、前記第2端におけるコア配列と相似であり、
     前記第1端におけるコア間隔は、前記第2端におけるコア間隔と異なっていることを特徴とする請求項1に記載の光結合素子。
  3.  前記複数のコアの間隔が、前記第1端から前記第2端に向かって段階的に変化していることを特徴とする請求項1または2に記載の光結合素子。
  4.  前記複数のコアの間隔が、前記第1端から前記第2端に向かって連続的に変化していることを特徴とする請求項1または2に記載の光結合素子。
  5.  前記第1端および前記第2端の少なくとも一方におけるコア配列は、一次元パターンで構成されていることを特徴とする請求項1~4の何れか一項に記載の光結合素子。
  6.  前記第1端および前記第2端の少なくとも一方におけるコア配列は、二次元パターンで構成されていることを特徴とする請求項1~4の何れか一項に記載の光結合素子。
  7.  それぞれが前記複数のコアの何れかに相当する単一コアを有する複数の細径光ファイバで構成されていることを特徴とする請求項1~6の何れか一項に記載の光結合素子。
  8.  前記第1端と前記第2端との間で、前記複数のコアの径および屈折率の少なくとも何れかが異なっていることを特徴とする請求項1~7の何れか一項に記載の光結合素子。
  9.  前記第1端および前記第2端の少なくとも何れかにおいて、前記複数のコア内のドーパントが熱拡散により、前記複数のコアの径および屈折率の少なくとも何れかが変化していることを特徴とする請求項8に記載の光結合素子。
  10.  それぞれが前記複数のコアの何れかに相当する単一コアを有する複数の光ファイバで構成されており、
     前記複数の光ファイバそれぞれの一端において、前記単一コアの残留応力が緩和されることにより前記単一コアの屈折率が変化している、ことを特徴とする請求項9に記載の光結合素子。
  11.  共通のクラッド内に複数のコアを有する出発材を軟化させ、前記軟化した出発材を延伸することにより請求項1~10の何れか一項に記載の光結合素子を製造する光結合素子製造方法。
  12.  それぞれが光を伝搬させる複数のコアを含む光結合素子であって、
     前記複数のコアの一方の端面が配置された第1端と、
     前記第1端と対向するとともに、前記複数のコアの他方の端面が配置された第2端であって、前記第1端におけるコア間隔とは異なるコア間隔を有する第2端と、を備え、
     前記複数のコアの間隔が、前記第1端から前記第2端に向かって段階的に変化していることを特徴とする光結合素子。
  13.  それぞれが光を伝搬させる複数のコアを含む光結合素子であって、
     前記複数のコアの一方の端面が配置された第1端と、
     前記第1端と対向するとともに、前記複数のコアの他方の端面が配置された第2端であって、コア配列およびコア間隔のうち少なくとも何れかに関して前記第1端と異なっている第2端と、を備え、
     それぞれが前記複数のコアの何れかに相当する単一コアを有する複数の光ファイバで構成されており、
     前記複数の光ファイバそれぞれの一端において、前記単一コアの残留応力が緩和されることにより前記単一コアの屈折率が変化していることを特徴とする光結合素子。
PCT/JP2013/051870 2012-02-27 2013-01-29 光結合素子および製造方法 WO2013129007A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012040411A JP2013174809A (ja) 2012-02-27 2012-02-27 変換素子
JP2012-040411 2012-02-27

Publications (1)

Publication Number Publication Date
WO2013129007A1 true WO2013129007A1 (ja) 2013-09-06

Family

ID=49082211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051870 WO2013129007A1 (ja) 2012-02-27 2013-01-29 光結合素子および製造方法

Country Status (2)

Country Link
JP (1) JP2013174809A (ja)
WO (1) WO2013129007A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133592A (ja) * 2015-01-19 2016-07-25 住友電気工業株式会社 マルチコア光ファイバおよび光接続部品
JP2018087988A (ja) * 2017-12-28 2018-06-07 住友電気工業株式会社 屈曲光ファイバの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5697304A (en) * 1979-12-29 1981-08-06 Toshiba Corp Graded refractive index distribution type optical fiber
JPS6317433A (ja) * 1986-07-09 1988-01-25 Nec Corp 光伝送路
JPH0258006A (ja) * 1988-08-23 1990-02-27 Fujikura Ltd マルチコア型光結合部品
JP2004295010A (ja) * 2003-03-28 2004-10-21 Sumitomo Electric Ind Ltd 光ファイバ
JP2010122292A (ja) * 2008-11-17 2010-06-03 Fujikura Ltd 光フェルール及びその製造方法
JP2010286661A (ja) * 2009-06-11 2010-12-24 Sumitomo Electric Ind Ltd ファイバアレイ及びそれを含む光コネクタ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5697304A (en) * 1979-12-29 1981-08-06 Toshiba Corp Graded refractive index distribution type optical fiber
JPS6317433A (ja) * 1986-07-09 1988-01-25 Nec Corp 光伝送路
JPH0258006A (ja) * 1988-08-23 1990-02-27 Fujikura Ltd マルチコア型光結合部品
JP2004295010A (ja) * 2003-03-28 2004-10-21 Sumitomo Electric Ind Ltd 光ファイバ
JP2010122292A (ja) * 2008-11-17 2010-06-03 Fujikura Ltd 光フェルール及びその製造方法
JP2010286661A (ja) * 2009-06-11 2010-12-24 Sumitomo Electric Ind Ltd ファイバアレイ及びそれを含む光コネクタ

Also Published As

Publication number Publication date
JP2013174809A (ja) 2013-09-05

Similar Documents

Publication Publication Date Title
US9348090B2 (en) Optical coupling element and manufacturing method
EP2033277B1 (en) Device for coupling radiation into or out of an optical fibre
US6823117B2 (en) Mode multiplexing optical coupling device
US9612399B2 (en) Method for manufacturing optical fiber combiner, optical fiber combiner, and laser device
JP5876612B2 (ja) 非円形状の光ビームに信号ビームを結合するための光ファイバーカプラー
JP6520719B2 (ja) 光接続部品
JP5485355B2 (ja) 光導波路部品および光導波路部品の製造方法
JP2011522288A (ja) フォトニックバンドギャップ光ファイバを用いるファイバ集合体
WO2014132990A1 (ja) 光ファイババンドル構造、希土類添加マルチコアファイバ、これらの接続構造、希土類添加マルチコアファイバの励起方法およびマルチコア光ファイバアンプ
JP2010286661A (ja) ファイバアレイ及びそれを含む光コネクタ
JP2013068891A (ja) マルチコアインターフェイスの製造方法及びマルチコアインターフェイス
JP2009271108A (ja) 光コンバイナ及びその製造方法
WO2007015577A1 (en) Combined light source
JP2008226886A (ja) 光ポンピングデバイス、光増幅器、ファイバレーザ及び光ポンピングデバイス用マルチコアファイバとその製造方法
WO2013129007A1 (ja) 光結合素子および製造方法
US20100189391A1 (en) Multimode optical combiner and process for producing the same
JP5725176B2 (ja) 導光装置及び導光方法
JP5000178B2 (ja) 光ポンピングデバイス、光増幅器、ファイバレーザ
JP2007034007A (ja) スポットサイズ変換導波路付きファイバアレイ、並びにそのスポットサイズ変換導波路付きファイバアレイの製造方法及びそれに用いる導波路集積部材
JP5679198B2 (ja) 光ファイバカップラ
JP2017021360A (ja) 変換素子
Jung et al. Compact higher-order mode converter based on all-fiber phase plate segment
JP5154047B2 (ja) 光ファイバの結合構造及び結合方法
JP2023082832A (ja) 光ファイババンドル構造、光接続構造体、及び、光ファイババンドル構造の製造方法
JP2024009665A (ja) 光ファイババンドル構造、光接続構造体、及び、光ファイババンドル構造の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13755636

Country of ref document: EP

Kind code of ref document: A1