WO2013128841A1 - Prepreg and prepreg manufacturing method - Google Patents

Prepreg and prepreg manufacturing method Download PDF

Info

Publication number
WO2013128841A1
WO2013128841A1 PCT/JP2013/000891 JP2013000891W WO2013128841A1 WO 2013128841 A1 WO2013128841 A1 WO 2013128841A1 JP 2013000891 W JP2013000891 W JP 2013000891W WO 2013128841 A1 WO2013128841 A1 WO 2013128841A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
prepreg
resin layer
fiber base
base material
Prior art date
Application number
PCT/JP2013/000891
Other languages
French (fr)
Japanese (ja)
Inventor
猛 八月朔日
恭史 瀧本
晴行 秦野
亘平 穴田
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to KR1020147018952A priority Critical patent/KR20140127803A/en
Publication of WO2013128841A1 publication Critical patent/WO2013128841A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/122Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/02Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
    • B32B17/04Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments bonded with or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0195Dielectric or adhesive layers comprising a plurality of layers, e.g. in a multilayer structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/029Woven fibrous reinforcement or textile

Definitions

  • the present invention relates to a prepreg and a method for producing the prepreg.
  • Patent Document 1 discloses a prepreg to be applied to a circuit board having such a structure.
  • Patent Document 1 discloses a prepreg in which two resin layers having different thicknesses are formed on both sides of a fiber base material.
  • the present inventors have conceived that these resin layers are composed of different resin compositions so that the resin layer on one side of the prepreg and the resin layer on the other side meet different characteristics.
  • the fiber base material is impregnated with both different resin compositions, it is necessary to make the fiber base material have good impregnation properties, and the design of each resin composition is limited, It has been found that it is difficult to sufficiently achieve the desired characteristics in the layer.
  • the present invention has been invented based on such knowledge.
  • a fiber substrate A first resin layer that covers one surface side of the fiber substrate and is composed of a first resin composition; Covering the other surface side of the fiber substrate, and comprising a second resin layer composed of a second resin composition different from the first resin composition,
  • the second resin layer is provided with a prepreg in which the fiber base material is impregnated over at least 90% of the thickness of the fiber base material from the other surface of the fiber base material.
  • the second resin layer impregnated in the fiber base material is formed at least over 90% of the thickness of the fiber base material from the other surface of the fiber base material. Therefore, it is not necessary to impregnate the fiber base material with a large amount of the first resin layer. Therefore, the 1st resin composition which comprises the 1st resin layer is not restricted to the thing of the good impregnation property with respect to a fiber base material, The breadth of selection of a 1st resin composition spreads. And it can be set as the prepreg provided with the 1st resin layer which has a desired characteristic.
  • the manufacturing method of the prepreg mentioned above can also be provided. That is, according to the present invention, the step of pressure-bonding the first resin sheet to one surface of the fiber substrate to provide the first resin layer made of the first resin composition; Forming a second resin layer made of a second resin composition different from the first resin composition on the other surface side of the fiber substrate, In the step of forming the second resin layer, There is provided a method for producing a prepreg that forms a second resin layer impregnated in the fiber base material over at least 90% of the thickness of the fiber base material from the other surface of the fiber base material.
  • the second resin layer impregnated in the fiber base is formed at least over 90% of the thickness of the fiber base from the other surface of the fiber base. Therefore, it is not necessary to impregnate the fiber base material with a large amount of the first resin sheet. Accordingly, the first resin composition constituting the first resin layer is not limited to the one having good impregnation property to the fiber base material, and the selection range of the first resin composition is widened, and the first resin layer having desired characteristics is provided. Can be formed.
  • a substrate having a cured body of the prepreg described above With a circuit layer, The second resin layer of the cured body of the prepreg embeds the circuit layer, A substrate in which a metal layer is provided on the first resin layer of the cured prepreg can also be provided. Also, with this substrate A semiconductor device including a semiconductor element mounted on the substrate can also be provided.
  • a prepreg and a method for manufacturing a prepreg that have different resin layers and can exhibit the desired characteristics of each resin layer more reliably.
  • FIG. 1 is a view showing a cross section of a prepreg of Example 1.
  • FIG. 6 is a view showing a cross section of a prepreg of Example 5.
  • FIG. 6 is a view showing a cross section of a prepreg of Example 6.
  • FIG. 5 is a view showing a cross section of a prepreg of Comparative Example 1.
  • FIG. 5 is a view showing a cross section of a prepreg of Comparative Example 2.
  • FIG. 1 is a cross-sectional view showing a prepreg.
  • the prepreg 1 of this embodiment is The fiber substrate 2, one surface side of the fiber substrate 2 is coated, the first resin layer 3 composed of the first resin composition, and the other surface side of the fiber substrate 2 are coated,
  • the second resin layer 4 made of a second resin composition different from the one resin composition is provided, the first resin layer 3 and the second resin layer 4 are in contact with each other, and an interface F is formed.
  • the second resin layer 4 is impregnated in the fiber base material 2 over at least 90% of the thickness of the fiber base material 2 from the other surface of the fiber base material 2.
  • the difference between the first resin composition and the second resin composition may be that the types of components constituting each resin composition may be different, or the composition ratio may be different. Good.
  • the manufacturing method of the prepreg of this embodiment includes the step of pressing the first resin sheet 3 ′ on one surface of the fiber substrate 2 to provide the first resin layer 3 made of the first resin composition, and the fiber base. Forming a second resin layer 4 made of a second resin composition different from the first resin composition on the other surface side of the material 2. In the step of forming the second resin layer 4, the second resin layer 4 impregnated in the fiber base material 2 is formed over at least 90% of the thickness of the fiber base material 2 from the other surface of the fiber base material 2. To do.
  • a prepreg 1 shown in FIG. 1 includes a flat fiber substrate 2, a first resin layer 3 positioned on one surface (lower surface) side of the fiber substrate 2, and the other surface (upper surface) of the fiber substrate 2. And a second resin layer 4 located on the side.
  • the prepreg 1 is for a printed wiring board (circuit board).
  • the fiber base material 2 has a function of improving the mechanical strength of the prepreg 1.
  • glass fiber base materials such as glass woven fabric and glass nonwoven fabric, Polyamide resin fibers, polyamide resin fibers such as aramid fibers such as aromatic polyamide resin fibers and wholly aromatic polyamide resin fibers, polyester resin fibers such as polyester resin fibers, aromatic polyester resin fibers, wholly aromatic polyester resin fibers,
  • a synthetic fiber substrate composed of a woven or non-woven fabric mainly composed of at least one of polyparaphenylenebenzobisoxazole, polyimide resin fiber, fluororesin fiber, etc. examples thereof include fiber base materials such as craft paper, cotton linter paper, and organic fiber base materials such as paper fiber base materials mainly composed of linter and kraft pulp mixed paper. Among these, any one or more fiber base materials can be used.
  • the fiber base material 2 is preferably a glass fiber base material.
  • the mechanical strength of the prepreg 1 can be further improved.
  • Examples of the glass constituting such a glass fiber substrate include E glass, C glass, A glass, S glass, D glass, NE glass, T glass, Q glass, H glass, UT glass, and L glass. Any one or more of these can be used. Among these, it is preferable that glass is S glass, T glass, UT glass, or Q glass. Thereby, the thermal expansion coefficient of a glass fiber base material can be made comparatively small, and for this reason, the prepreg 1 can be made as small as possible in the thermal expansion coefficient.
  • the average thickness T of the fiber substrate 2 is not particularly limited, but is preferably 150 ⁇ m or less, more preferably 100 ⁇ m or less, and even more preferably about 10 ⁇ m to 50 ⁇ m.
  • the average thickness T of the fiber base material 2 measured 10 thicknesses from one surface of the fiber base material 2 to the other surface in the intersection part of the warp yarn and the weft of the fiber base material 2, and the average value It is obtained by calculating.
  • the first resin layer 3 is provided on one surface side of the fiber substrate 2, and the second resin layer 4 is provided on the other surface side. Moreover, the 1st resin layer 3 is comprised with the 1st resin composition, and the 2nd resin layer 4 is comprised with the 2nd resin composition different from the said 1st resin composition.
  • the first resin layer 3 covers one surface of the fiber base material 2, and the second resin layer 4 covers the other surface of the fiber base material 2.
  • the first resin layer 3 is a layer on which a wiring part (metal layer) is directly formed.
  • the second resin layer 4 is a layer in which the circuit layer is embedded.
  • the prepreg does not include a film that peels off during the production of the substrate.
  • the first resin layer 3 and the second resin layer 4 are semi-cured (B stage).
  • the 1st resin composition is set to the composition which is excellent in adhesiveness with a metal. More specifically, the 90 ° peel strength A after the first resin layer 3 of the prepreg 1 is superposed on the copper foil and heat-treated in the air under the conditions of load 2 MPa, temperature 220 ° C., 1 hour is The second resin layer 4 of the prepreg 1 is superposed on the copper foil, and is higher than the 90 ° peel strength B after heat treatment in the air under the conditions of a load of 2 MPa, a temperature of 220 ° C. and 1 hour.
  • the peel strength can be measured by peeling the resin layer from the copper foil in the 90-degree direction according to JIS C 6481 90-degree peeling method. Specifically, at 25 ° C., the 90-degree peel strength when the resin layer is peeled off at a speed of 50 mm per minute is measured with a 90-degree peel tester. More specifically, the peel strength A is preferably 0.5 kN / m or more. Furthermore, it is more preferably 0.6 kN / m or more, particularly 0.8 kN / m or more. Adhesiveness with a wiring part can be improved by setting it as 0.5 kN / m or more.
  • the upper limit value of the peel strength A is not particularly limited, but is preferably 2 kN / m or less.
  • the peel strength B is preferably 0.4 N / m or more. Especially, it is preferable that it is 0.5 N / m or more. By setting it to 0.4 N / m or more, adhesion to the inner layer circuit wiring portion can be enhanced.
  • the upper limit value of the peel strength B is not particularly limited, but is preferably 1 kN / m or less.
  • the peel strength A-peel strength B is preferably 0.1 kN / m or more, and more preferably 1.6 kN / m or less.
  • the second resin composition is set so that the second resin layer 4 has a minimum melt viscosity lower than that of the first resin layer 3. It is preferable that The minimum melt viscosity will be described later.
  • the 2nd resin composition which comprises the 2nd resin layer 4 is a composition with the favorable impregnation property to the fiber base material 2. It is preferable that Each resin composition will be described in detail later.
  • the fiber base material 2 is impregnated with a part of the second resin layer 4 over the entire thickness direction.
  • the second resin layer 4 includes an impregnation portion 43 impregnated in the fiber base 2 and a covering portion 42 that covers the surface (the other surface) of the fiber base 2.
  • the impregnation part 43 of the second resin layer 4 impregnates the fiber base material 2 from at least the surface covered with the covering part 42 of the fiber base material 2 to a position of 90% of the thickness of the fiber base material 2.
  • the impregnation part 43 impregnates the fiber base material 2 over the whole thickness of the fiber base material 2.
  • the interface F between the impregnated portion 43 and the first resin layer 3 is located outside the fiber substrate 2. More specifically, the first resin layer 3 is in contact with one surface of the fiber base 2, but is not impregnated inside the fiber base 2. And the impregnation part 43 and the 1st resin layer 3 contact
  • the first resin layer 3 is in direct contact with one surface of the fiber base material 2, but not limited to this, the impregnation portion 43 protrudes from one surface of the fiber base material 2. Thus, the first resin layer 3 may not directly contact one surface of the fiber base 2.
  • the average thickness T of the fiber base 2 is equal to the thickness -ta of the second resin layer 4.
  • the interface of the 1st resin layer 3 and the 2nd resin layer 4 can be confirmed by observing the cross section orthogonal to the thickness direction of the prepreg 1 by SEM.
  • the interface between the first resin layer 3 and the second resin layer 4 is formed over the entire width direction of the prepreg 1.
  • the impregnation part 43 impregnated the fiber base material 2 over the whole thickness of the fiber base material 2 not only this but the 1st resin layer 3 is also in the fiber base material 2. It may be impregnated. As shown in FIG. 2, the impregnation portion 43 of the second resin layer 4 extends from the surface (the other surface) covered with the covering portion 42 of the fiber base material 2 to a position of 90% or more of the thickness of the fiber base material 2.
  • the fiber substrate 2 is impregnated. That is, the thickness ta1 of the impregnated portion 43 is 90% or more of the thickness T of the fiber base 2. Further, the fiber base material 2 is impregnated with the impregnation portion 31 of the first resin layer 3.
  • the impregnation part 31 impregnates the fiber base material 2 from the surface (one surface) of the fiber base material 2 covered with the covering part 32 to a position of 10% or less of the thickness of the fiber base material 2.
  • the thickness tb1 of the impregnation part 31 is 10% or less of the thickness T of the fiber base 2.
  • the impregnation part 31 impregnates a region not impregnated by the impregnation part 43.
  • the 1st impregnation part 31 which is a part of 1st resin layer 3, and the 2nd impregnation part 43 which is a part of 2nd resin layer 4 are located in the fiber base material 2.
  • the 1st impregnation part 31 (lower surface of the 1st resin layer 3) and the 2nd impregnation part 43 (upper surface of the 2nd resin layer 4) are contacting. Further, an interface F is formed at the boundary between the first impregnation portion 31 and the impregnation portion 43.
  • the other points are the same as in FIG.
  • the impregnation part 43 impregnates the fiber base material 2 from the surface covered with the covering part 42 of the fiber base material 2 to a position of 90% or more of the thickness of the fiber base material 2, whereby the second resin The intersection between the interface between the layer 4 and the first resin layer 3 and the fiber substrate 2 can be reduced. Thereby, it can prevent that the metal ion which entered from between the fiber base material 2 and the 2nd resin layer 4 migrates the said interface. Thereby, the insulation reliability between holes can be improved.
  • the impregnation part 31 impregnates the fiber base material 2 from the surface of the fiber base material 2 covered with the covering part 32 to a position of 10% or less of the thickness of the fiber base material 2.
  • the first resin layer 3 may be selected from those having good adhesion to metal, the design range of the first resin layer 3 can be widened.
  • the first resin composition constituting the first resin layer 3 in the fiber base material 2 is obtained by impregnating the woven fiber base material 2 with the first resin layer 3 and the second resin layer 4. It can prevent that the 2nd resin composition which comprises the resin layer 4 gets caught, and peeling arises between the 1st resin layer 3 and the 2nd resin layer 4.
  • the 2nd resin layer 4 has impregnated the fiber base material 2 over the position of 90% of the thickness of the fiber base material 2 as follows.
  • the average value T of the thickness of the fiber base material 2 is calculated, and 90% of this thickness is calculated (numerical value C).
  • the average value D (10 places measurement) of the distance from the other surface of the fiber base material 2 to the interface F of the 1st resin layer 3 and the 2nd resin layer 4 should just exceed the numerical value C.
  • the minimum melt viscosity (eta) 1 of the 1st resin layer 3, the 2nd resin layer 4 is mentioned, for example.
  • the ratio ( ⁇ 1 / ⁇ 2) of the minimum melt viscosity ⁇ 2 is 1.1 times or more, and at the time of production, one of the layers is supplied to the fiber substrate 2 in the form of a sheet, and the other layer is varnished to form fibers. What is necessary is just to supply to the base material 2.
  • the average thickness of the covering portion 42 of the second resin layer 4 and t a [ ⁇ m], among the first resin layer 3, the average thickness of the portion covering the one surface of the fiber substrate 2 t b [[mu] m] and the time, t a is preferably larger than t b.
  • a wiring part can be formed on the surface of the prepreg 1 (on the resin layer 3) with high workability.
  • the second resin layer 4 can have high flexibility and sufficient thickness, when embedding the wiring portion of another prepreg 1 or another fiber base material in the second resin layer 4, The embedding can be performed reliably, that is, the embedding property to the wiring part of other prepreg 1 and other fiber base material is improved.
  • the average thickness t b is preferably 0.1 to 15 ⁇ m, and more preferably 1 to 10 ⁇ m.
  • the average thickness t a is preferably from 4 ⁇ 50 [mu] m, and more preferably 8 ⁇ 40 [mu] m.
  • the average thickness t a and the average thickness t b is measured 10 points at arbitrary intervals, obtained by calculating the average value.
  • the minimum melt viscosity ( ⁇ 1) of the first resin layer 3 and the minimum melt viscosity ( ⁇ 2) of the second resin layer 4 in the range of 50 to 150 ° C. when the temperature is increased from 25 ° C. at a rate of 3 ° C./min. ) 1 / ⁇ 2 is preferably 1.1 or more and 100 or less.
  • the minimum melt viscosity ( ⁇ 1) of the first resin layer 3 is higher than the minimum melt viscosity ( ⁇ 2) of the second resin layer 4.
  • the first resin layer 3 and the second resin layer 4 are not mixed, and the interface between the first resin layer 3 and the second resin layer 4 is achieved. Can be formed. Moreover, there exists an effect of improving the adhesiveness of an interface by making minimum melt viscosity ratio (eta) 1 / (eta) 2 into 100 or less, especially 80 or less.
  • the measurement conditions for the minimum melt viscosity are as follows. Using a dynamic viscoelasticity measuring device, measurement is performed under the conditions of a measurement frequency of 62.83 rad / sec, a temperature rising rate of 3 ° C./min, and 50 to 150 ° C.
  • the minimum melt viscosity ⁇ 1 of the first resin layer 3 is preferably 1000 Pa ⁇ s or more and 25000 Pa ⁇ s or less.
  • the minimum melt viscosity ( ⁇ 2) of the second resin layer 4 is preferably 50 Pa ⁇ s or more and 10000 Pa ⁇ s or less, more preferably 5000 Pa ⁇ s or less, and further 3000 Pa ⁇ s or less. desirable.
  • the minimum melt viscosity ( ⁇ 1) of the first resin layer 3 is 1.1 times or more the minimum melt viscosity ( ⁇ 2) of the second resin layer 4, and the minimum melt viscosity of each resin layer is in the above-described range.
  • the prepreg 1 of this embodiment also satisfies the following characteristics.
  • the resin flow measured by heating and pressurizing for 5 minutes under the conditions of 171 ⁇ 3 ° C. and 1380 ⁇ 70 kPa is 15 wt% or more and 50 wt% or less,
  • the prepreg 1 is sandwiched between a pair of opposing rubber plates and heated and pressurized under the conditions of 120 ° C.
  • the weight of the resin layer protruding from the outer edge of the fiber substrate 2 in plan view (first 1 resin layer 3 and the total weight of the second resin layer 4) is 5% or less with respect to the total weight of the entire first resin layer 3 and the entire second resin layer 4, and the rubber plate is the following (i) Satisfy (iii). (I) Rubber hardness measured in accordance with JIS K 6253 A is 60 ° (Ii) Thickness 3mm (Iii) Material is silicon
  • the resin flow measured by heating and pressurizing for 5 minutes under the conditions of 171 ⁇ 3 ° C. and 1380 ⁇ 70 kPa is 15% by weight or more.
  • a prepreg excellent in embedding property can be obtained.
  • the upper limit of the resin flow is 50% by weight or less, the outflow of the resin layer from the prepreg can be suppressed when the prepreg is laminated and pressed. Therefore, when it is laminated on a core layer (see FIG. 5) such as the inner layer circuit board 13, the build-up is excellent in embedding of the circuit of the inner layer circuit board 13 and can suppress the outflow of the resin layer from the prepreg during the lamination press.
  • a core layer see FIG. 5
  • the build-up is excellent in embedding of the circuit of the inner layer circuit board 13 and can suppress the outflow of the resin layer from the prepreg during the lamination press.
  • the weight of the resin layer protruding from the outer edge of the fiber substrate 2 in plan view is 5
  • the thickness uniformity of the obtained laminated board can be improved by setting it as the weight% or less. Therefore, when laminated on the inner layer circuit board 13, the prepreg has excellent circuit embedding properties, can suppress the outflow of the resin layer from the prepreg during the lamination press, and can improve the thickness uniformity. Becomes feasible.
  • the lower limit of the weight of the resin layer protruding from the outer edge of the fiber substrate 2 in plan view when heated and pressurized under the conditions of 120 ° C. and 2.5 MPa with the prepreg 1 sandwiched between a pair of opposing rubber plates Although a value is not specifically limited, For example, it is 0.1 weight%.
  • the first resin composition and the second resin composition preferably have the following compositions.
  • the first resin composition includes, for example, a thermosetting resin, and includes at least one of a curing aid (for example, a curing agent and a curing accelerator) and an inorganic filler as necessary. .
  • a curing aid for example, a curing agent and a curing accelerator
  • an inorganic filler as necessary.
  • thermosetting resin having excellent adhesion with the metal for example, curing agent, curing acceleration
  • curing aid for example, curing agent, curing acceleration
  • a method using an acid-soluble material as an inorganic filler for example, curing agent, curing acceleration
  • a method using an inorganic filler and an organic filler in combination for example, a method using a specific thermoplastic resin, and the like.
  • thermosetting resins examples include urea (urea) resins, melamine resins, bismaleimide resins, polyurethane resins, resins having a benzoxazine ring, cyanate ester resins, bisphenol S type epoxy resins, bisphenol F type epoxy resins, and bisphenols.
  • An epoxy resin such as a copolymerized epoxy resin of S and bisphenol F is preferably used. Any one or more of these can be used. Of these, it is particularly preferable to use a cyanate resin (including a prepolymer of cyanate resin) as the thermosetting resin.
  • Such a cyanate resin can be obtained, for example, by reacting a cyanogen halide with a phenol and prepolymerizing it by a method such as heating, if necessary.
  • cyanate resins include novolak-type cyanate resins, bisphenol A-type cyanate resins, bisphenol E-type cyanate resins, and tetramethylbisphenol F-type cyanate resins. Any one or more of these can be used. Among these, it is preferable that cyanate resin is a novolak-type cyanate resin.
  • the cross-link density increases in the first resin layer 3 after curing after the substrate 10 (see FIG. 5) described later is manufactured, so that the first resin layer 3 (obtained after curing) is obtained.
  • the heat resistance and flame retardancy of the substrate) can be improved.
  • the improvement in heat resistance is thought to be due to the fact that the novolac-type cyanate resin forms a triazine ring after the curing reaction.
  • the flame retardancy is improved because the novolak-type cyanate resin has a high proportion of benzene rings due to its structure, so that the benzene rings are easily carbonized (graphitized), and the first resin layer 3 after curing has carbonized portions. It is thought that it originates in what happens.
  • a novolac-type cyanate resin is used, even if the prepreg 1 is thinned (for example, 35 ⁇ m or less in thickness), excellent rigidity can be imparted to the prepreg 1. Moreover, since the cured product is excellent in rigidity at the time of heating, the obtained substrate 10 is also excellent in reliability when the semiconductor element 500 (see FIG. 6) is mounted. Specifically, a novolac type cyanate resin represented by the formula (I) can be used.
  • the average number of repeating units “n” is not particularly limited, but is preferably 1 to 10, and more preferably 2 to 7.
  • the average number of repeating units “n” is less than the lower limit, the novolac cyanate resin is easily crystallized, and thus the solubility in a general-purpose solvent decreases. For this reason, the first resin composition may be difficult to handle depending on the content of the novolac-type cyanate resin.
  • thermosetting resin for example, novolak type such as phenol novolak resin, cresol novolak resin, bisphenol A novolak resin, etc.
  • thermosetting such as epoxy resin, novolak epoxy resin, cresol novolak epoxy resin such as cresol novolak epoxy resin, epoxy resin such as biphenyl type epoxy resin, unsaturated polyester resin, diallyl phthalate resin, silicone resin It is also possible to use fat. Any one or more of these can be used.
  • the content of the thermosetting resin is not particularly limited, but is preferably 5 to 50% by weight, more preferably 10 to 40% by weight, based on the entire first resin composition.
  • the content of the thermosetting resin is less than the lower limit, depending on the type of the thermosetting resin, the viscosity of the varnish of the first resin composition becomes too low, and it becomes difficult to form the prepreg 1. There is a case.
  • the content of the thermosetting resin exceeds the upper limit, the amount of other components is too small, and the mechanical strength of the prepreg 1 may decrease depending on the type of the thermosetting resin.
  • it says a resin composition it means what remove
  • Examples of the above-described curing aid include tertiary amines such as triethylamine, tributylamine, diazabicyclo [2,2,2] octane, 2-ethyl-4-ethylimidazole, 2-phenyl-4-methylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2,4-diamino-6- [2'-methyl Imidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- (2′-undecylimidazolyl) -ethyl-s-triazine, 2,4-diamino-6- [2′-ethyl Imidazole compounds such as -4-methylimidazolyl- (1 ′)]-ethyl-s
  • the curing aid is selected from imidazole compounds having two or more functional groups selected from an aliphatic hydrocarbon group, an aromatic hydrocarbon group, a hydroxyalkyl group, and a cyanoalkyl group.
  • 2-phenyl-4,5-dihydroxymethylimidazole is more preferable.
  • Examples of the first resin composition include organic metal salts such as zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), and trisacetylacetonate cobalt (III). Further, phenol compounds such as phenol, bisphenol A and nonylphenol, organic acids such as acetic acid, benzoic acid, salicylic acid and paratoluenesulfonic acid can be used in combination. Any one or more of these can be used.
  • the content thereof is preferably 0.01 to 3% by weight, more preferably 0.1 to 1% by weight, based on the entire first resin composition.
  • the first resin composition preferably contains an inorganic filler.
  • the inorganic filler examples include talc, alumina, glass, silica such as fused silica, mica, aluminum hydroxide, magnesium hydroxide, and the like. Any one or more of these can be used. Further, depending on the purpose of use of the inorganic filler, a crushed or spherical one is appropriately selected. Among these, from the viewpoint of excellent low thermal expansibility, the inorganic filler is preferably silica, and more preferably fused silica (particularly spherical fused silica).
  • the average particle size of the inorganic filler is preferably 0.01 to 5.0 ⁇ m, and more preferably 0.2 to 2.0 ⁇ m.
  • the average particle size is d 50, can be measured as follows.
  • the inorganic filler is dispersed in water by ultrasonic waves, and the particle size distribution of the inorganic filler is measured on a volume basis by a dynamic light scattering particle size distribution measuring device (LB-550, manufactured by HORIBA). The median diameter is averaged. The particle diameter was taken.
  • spherical fused silica having an average particle size of 5.0 ⁇ m or less is preferable.
  • an acid-soluble inorganic filler may be used as the inorganic filler.
  • the adhesion (plating adhesion) of the wiring part to the first resin layer 3 can be improved.
  • the acid-soluble inorganic filler include metal oxides such as calcium carbonate, zinc oxide, and iron oxide.
  • an inorganic filler and an organic filler may be used in combination.
  • the organic filler include resin fillers such as liquid crystal polymer and polyimide.
  • the content thereof is not particularly limited, but is preferably 20 to 70% by weight, more preferably 30 to 60% by weight of the entire first resin composition.
  • a cyanate resin particularly a novolac-type cyanate resin
  • an epoxy resin substantially free of halogen atoms
  • the epoxy resin include phenol novolac type epoxy resin, bisphenol type epoxy resin, naphthalene type epoxy resin, arylalkylene type epoxy resin, and the like. Any one or more of these can be used.
  • the epoxy resin is preferably at least one of a naphthalene type epoxy resin and an arylalkylene type epoxy resin.
  • the naphthalene type epoxy resin means one having a naphthalene skeleton in a repeating unit.
  • a naphthol type epoxy resin, a naphthalene diol type epoxy resin, a bifunctional to tetrafunctional epoxy type naphthalene resin, a naphthylene ether type epoxy resin and the like are preferable. Any one or more of these can be used. Thereby, heat resistance and low thermal expansibility can further be improved.
  • the naphthalene ring has a higher ⁇ - ⁇ stacking effect than the benzene ring, it is particularly excellent in low thermal expansion and low thermal shrinkage.
  • the polycyclic structure has a high rigidity effect and the glass transition temperature is particularly high, the change in heat shrinkage before and after reflow is small.
  • the naphthol type epoxy resin for example, the following general formula (VII-1); as the naphthalene diol type epoxy resin, the following formula (VII-2); as the bifunctional or tetrafunctional epoxy type naphthalene resin, the following formula (VII-3):
  • Examples of (VII-4) (VII-5) and naphthylene ether type epoxy resins can be represented by the following general formula (VII-6), and one or more of these can be used.
  • naphthylene ether type epoxy resins are preferred from the viewpoint of low water absorption and low thermal expansion.
  • the naphthylene ether type epoxy resin is an epoxy resin having a structure in which a naphthalene skeleton is bonded to another arylene structure via an oxygen atom.
  • N represents an average of 1 to 6 and R represents a glycidyl group or a hydrocarbon group having 1 to 10 carbon atoms, provided that one of R is a glycidyl group.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aralkyl group, a naphthalene group, or a glycidyl ether group-containing naphthalene.
  • o and m are each an integer of 0 to 2, and either o or m is 1 or more.
  • naphthylene ether type epoxy resin for example, those represented by the following formulas (6) and (7) may be used.
  • the arylalkylene type epoxy resin refers to an epoxy resin having one or more arylalkylene groups in a repeating unit, and examples thereof include a xylylene type epoxy resin and a biphenyldimethylene type epoxy resin. Any one or more of these can be used. Among these, the aryl alkylene type epoxy resin is preferably a biphenyl dimethylene type epoxy resin.
  • biphenyl dimethylene type epoxy resin represented by the formula (II) can be used.
  • the average number of repeating units “n” of the biphenyldimethylene type epoxy resin represented by the formula (II) is not particularly limited, but is preferably 1 to 10, and more preferably 2 to 5.
  • the average number of repeating units “n” is less than the lower limit, the biphenyldimethylene type epoxy resin is easily crystallized, so that the solubility in a general-purpose solvent decreases. For this reason, the varnish of the first resin composition may be difficult to handle.
  • the average number of repeating units “n” exceeds the upper limit, depending on the solvent used, the viscosity of the varnish of the first resin composition may increase. In this case, the fiber base material 2 cannot be sufficiently impregnated with the first resin composition, and as a result, molding failure of the prepreg 1 and mechanical strength may be reduced.
  • the lower limit of the content of the epoxy resin is not particularly limited, but is preferably 1% by weight or more, and particularly preferably 2% by weight or more in the entire resin composition. If the content is too small, the reactivity of the cyanate resin may decrease, or the moisture resistance of the resulting product may decrease. Although the upper limit of content of an epoxy resin is not specifically limited, 40 weight% or less is preferable. If the content is too large, the heat resistance may decrease.
  • the lower limit of the weight average molecular weight (Mw) of the epoxy resin is not particularly limited, but is preferably 500 or more, more preferably 800 or more. If Mw is too small, tackiness may occur in the resin layer.
  • the upper limit of Mw is not particularly limited, but is preferably Mw 20,000 or less, and particularly preferably Mw 15,000 or less. If Mw is too large, the impregnation property to the fiber base material may be deteriorated during the production of the insulating resin layer, and a uniform product may not be obtained.
  • the Mw of the epoxy resin can be measured by GPC, for example.
  • a resin etc. which improves adhesiveness with a metal.
  • examples of such components include thermoplastic resins such as phenoxy resins, polyvinyl acetal resins, and polyamide resins, and it is preferable to include any one or more of these.
  • these resins it is preferable to include a phenoxy resin from the viewpoint of adhesion to a metal.
  • the first resin composition preferably contains a coupling agent.
  • phenoxy resin examples include a phenoxy resin having a bisphenol skeleton, a phenoxy resin having a naphthalene skeleton, and a phenoxy resin having a biphenyl skeleton.
  • a phenoxy resin having a structure having a plurality of these skeletons can also be used. Any one or more of these may be used as the phenoxy resin.
  • a phenoxy resin having a biphenyl skeleton and a bisphenol S skeleton as the phenoxy resin. Accordingly, the glass transition temperature of the phenoxy resin can be increased due to the rigidity of the biphenyl skeleton, and the adhesion of the phenoxy resin to the metal can be improved due to the presence of the bisphenol S skeleton. As a result, the heat resistance of the first resin layer 3 can be improved, and the adhesion of the wiring part (metal) to the first resin layer 3 can be improved when a multilayer substrate is manufactured.
  • a phenoxy resin having a bisphenol A skeleton and a bisphenol F skeleton as the phenoxy resin.
  • the adhesiveness to the 1st resin layer 3 of a wiring part can further be improved at the time of manufacture of a multilayer substrate.
  • the molecular weight of the phenoxy resin is not particularly limited, but the weight average molecular weight is preferably 5,000 to 70,000, more preferably 10,000 to 60,000.
  • the phenoxy resin When the phenoxy resin is used, its content is not particularly limited, but it is preferably 1 to 40% by weight, more preferably 5 to 30% by weight of the entire first resin composition.
  • the polyvinyl acetal resin is a resin obtained by acetalizing polyvinyl alcohol with a carbonyl compound such as formaldehyde or acetaldehyde.
  • examples of the polyvinyl acetal resin include polyvinyl formal and polyvinyl butyral. Any one or more of these can be used.
  • the degree of acetalization of the polyvinyl acetal resin is preferably 40% or more from the viewpoint of water absorption and 80% or less from the viewpoint of compatibility.
  • the polyamide-based resin include aromatic polyamides from the viewpoint of heat resistance.
  • a weight average molecular weight of a polyamide-type resin is 15,000 or more from an adhesive viewpoint with a conductor layer.
  • polyamide-based resin examples include phenolic hydroxyl group-containing aromatic polyamide-poly (butadiene-acrylonitrile) block copolymers (for example, trade name KAYAFLEX BPAM-155 (Nippon Kayaku, terminal is an amide group)).
  • thermoplastic resin as described above is preferably 1 to 40% by weight, more preferably 10 to 30% by weight, based on the entire first resin composition.
  • the coupling agent it is preferable to use at least one selected from, for example, an epoxy silane coupling agent, a titanate coupling agent, an aminosilane coupling agent, and a silicone oil type coupling agent.
  • the coupling agent When the coupling agent is used, its content is not particularly limited, but it is preferably 0.05 to 3 parts by weight, more preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the inorganic filler. More preferred.
  • the first resin composition can contain additives such as an antifoaming agent, a leveling agent, a pigment, and an antioxidant as necessary.
  • the second resin composition has a composition different from that of the first resin composition. Specifically, the second resin layer 4 has a better embedding property than the first resin layer 3 and further has a composition satisfying the above-described physical properties. Has been.
  • the constituents of the second resin composition can be the same as those mentioned in the first resin composition, but the type and content of the resin and filler, the molecular weight of the resin (average number of repeating units) ) Etc. are different. As a result, the second resin layer 4 has different characteristics from the first resin layer 3.
  • the 2nd resin composition contains the thermoplastic resin mentioned above, a thermosetting resin, an inorganic filler, a hardening accelerator etc., for example.
  • the second resin composition includes, for example, the above-described epoxy resin, cyanate resin, and inorganic filler.
  • the epoxy resin an epoxy resin having the above-described naphthalene skeleton and a structure in which the naphthalene skeleton is bonded to another arylene structure via an oxygen atom is preferable.
  • the inorganic filler contained in the second resin layer 4 is preferably spherical fused silica having an average particle diameter of 5.0 ⁇ m or less, and preferably has an average particle diameter of 0.01 to 2.0 ⁇ m, particularly an average particle diameter of 10 to 50 nm. Spherical fused silica is more preferred.
  • the heat resistance of the prepreg 1 can be improved by using such silica (nanosilica) having an average particle size of 50 nm or less.
  • the second resin composition preferably contains silica having an average particle diameter of 0.5 to 5 ⁇ m in addition to the silica having a particle diameter of 50 nm or less.
  • the first resin composition preferably uses silica having an average particle size of 0.5 ⁇ m to 50 nm in order to form fine irregularities and improve the adhesion to the conductor circuit layer.
  • the content of the thermoplastic resin in the second resin layer 4 is lower than the content of the thermoplastic resin in the first resin layer 3. By doing in this way, the embedding property of the circuit of the 2nd resin layer 4 can be improved.
  • the adhesiveness of the conductor circuit in the 1st resin layer 3 can be made favorable.
  • the content of the thermoplastic resin in the second resin layer 4 is preferably 10% by weight or less, more preferably 5% by weight or less of the second resin composition constituting the second resin layer 4. .
  • the second resin layer 4 may not include a thermoplastic resin.
  • the prepreg 1 as described above can be manufactured as follows using the manufacturing apparatus shown in FIG. As shown in FIG. 3, the manufacturing apparatus 6 includes rollers 621 to 628, a nozzle (a die coater that is a discharge means) 611, and a drying device 64.
  • the manufacturing apparatus 6 includes rollers 621 to 628, a nozzle (a die coater that is a discharge means) 611, and a drying device 64.
  • the roller 621 is a means for sending out a first resin sheet 3 ′ to be the first resin layer 3.
  • the roller 621 includes a first resin sheet 3 ′ with a support 51 (in FIG. 3, the support 51 and the first resin sheet 3 ').
  • a sheet composed of one resin sheet 3 ′ is referred to as a sheet 5).
  • the roller 621 is configured to rotate by a motor (drive source) (not shown). When the roller 621 rotates, the sheet 5 including the first resin sheet 3 ′ is sent out from the roller 621.
  • a motor drive source
  • metal foil metal foil
  • a metal foil is a part processed into a wiring part (circuit) etc., for example.
  • the metal material constituting the metal foil examples include copper or a copper-based alloy, aluminum or an aluminum-based alloy, iron or an iron-based alloy, and stainless steel. And among these, as a metal material which comprises metal foil, it is excellent in electroconductivity, the circuit formation by an etching is easy, and since it is cheap, copper or a copper-type alloy is preferable.
  • the minimum melt viscosity at 50 to 150 ° C. of the first resin sheet 3 ′ is 1000 Pa ⁇ s or more and 25000 Pa ⁇ s or less. As described above, when the minimum melt viscosity at 50 to 150 ° C. is set to 1000 Pa ⁇ s or more, the first resin sheet 3 ′ is less likely to be impregnated into the fiber substrate 2. Moreover, it becomes difficult to mix with the second resin layer 4. By setting the minimum melt viscosity at 50 to 150 ° C. to 25000 Pa ⁇ s or less, adhesion to the fiber base material 2 can be secured. The measuring method is as described above.
  • the roller 623 is a means for feeding out the fiber base material 2, and the fiber base material 2 is wound around the roller 623.
  • the roller 623 is configured to rotate by a motor (not shown), and when the roller 623 rotates, the fiber base material 2 is continuously sent out from the roller 623.
  • roller 622 is a means for regulating the moving direction of the sheet 5, and is installed at the subsequent stage of the roller 621.
  • roller 624 is a means for regulating the moving direction of the fiber base material 2 and is installed at the rear stage of the roller 622.
  • the roller 625 is a means for bonding the first resin sheet 3 ′ and the fiber base material 2, and is installed at the subsequent stage of the rollers 622 and 624.
  • the first resin sheet 3 ′ is conveyed along the outer peripheral surface of the roller 625 so as to contact the outer peripheral surface.
  • the first resin sheet 3 ′ is in surface contact with the quarter of the circumference of the roller 625 through the support 51.
  • the fiber base material 2 is also conveyed along the outer peripheral surface of the roller 625 so as to contact the outer peripheral surface.
  • the fiber base 2 comes into contact with the roller 625 through the first resin sheet 3 ′ where the roller 625 is in indirect contact with the first resin sheet 3 ′.
  • the fiber base material 2 is conveyed along the outer peripheral surface of the roller 625 so as to contact the outer peripheral surface.
  • the contact area between the fiber base 2 and the roller 625 is smaller than the contact area between the first resin sheet 3 ′ and the roller 625.
  • the fiber base 2 and the first resin sheet 3 ′ are pulled in the transport direction, and tension is applied to them.
  • the 1st resin sheet 3 'and the fiber base material 2 can be crimped
  • the rollers 626 and 627 are means for regulating the moving direction of the sheet 5 including the first resin sheet 3 ′, the fiber base 2, and the second resin layer 4 on the fiber base 2. They are installed in the order after 625.
  • the roller 628 is a means for winding the prepreg 1.
  • the roller 628 is configured to rotate by a motor (not shown). When the roller 628 rotates, the prepreg 1 is wound around the roller 628.
  • the nozzle 611 discharges (supplies) a liquid (varnish-like) second resin composition at normal temperature (25 ° C.) on the surface of the fiber base 2 opposite to the first resin layer 3 (for example, Die coater).
  • a liquid varnish-like second resin composition at normal temperature (25 ° C.) on the surface of the fiber base 2 opposite to the first resin layer 3 (for example, Die coater).
  • liquid is not limited to liquid but is a concept that includes fluidity.
  • the drying device 64 is installed between the nozzle 611 and the roller 626.
  • a device that performs drying while horizontally conveying an object is used. Thereby, the tension
  • the first resin sheet 3 ′ is in the B stage state. Next, in the roller 625, the first resin sheet 3 ′ and the fiber base material 2 are pressure-bonded.
  • the angle (bonding angle) ⁇ between the first resin sheet 3 ′ and the fiber base material 2 at this time is preferably an acute angle. Thereby, it can prevent or suppress that distortion arises in the fiber base material 2.
  • tensile_strength by the side of the fiber base material 2 is smaller than the tension
  • the tension on the fiber base 2 side is preferably 30 N or less, and more preferably about 15 to 25 N. Thereby, the dimensional change and internal distortion of the fiber base material 2 can be prevented or suppressed.
  • tensile_strength of 1st resin sheet 3 ' is adjusted and a 1st resin layer is made into the fiber base material 2. As shown in FIG. Can be impregnated.
  • the varnish containing 1st resin sheet 3 'and 2nd resin composition is heat-dried with the drying apparatus 64.
  • FIG. Thereby, the prepreg 1 is obtained.
  • the prepreg 1 is wound around a roller 628.
  • the 1st resin layer can be impregnated in the fiber base material 2 also in this drying process.
  • the drying conditions are not particularly limited, and are appropriately set according to the composition of the first resin composition and the second resin composition (particularly the composition of the second resin composition) and various conditions, but the second resin composition It is preferable to set the volatile component in the product to be 1.5 wt% or less with respect to the resin, and it is more preferable to set it to be about 0.8 to 1.0 wt%.
  • the drying temperature is preferably 100 to 150 ° C., more preferably about 100 to 130 ° C.
  • the drying time is preferably about 2 to 10 minutes, more preferably about 2 to 5 minutes.
  • the first resin sheet 3 ′ is pressure-bonded to the fiber base 2, while the varnish containing the second resin composition is supplied to the fiber base 2 when forming the second resin layer 4. ing.
  • the interface between the 1st resin layer 3 and the 2nd resin layer 4 can be formed reliably.
  • the varnish containing a 2nd resin composition is supplied to the fiber base material 2, it is easy to make the fiber base material 2 impregnate a 2nd resin composition.
  • the first resin layer 3 is formed into a sheet shape in advance and is supplied to the fiber base material 2 in a sheet shape. It has become. Thereby, the prepreg 1 which the 2nd resin layer 4 impregnated the fiber base material 2 over the position of 90% of the thickness of the fiber base material 2 can be manufactured easily.
  • the prepreg 1 is manufactured by using the manufacturing apparatus 6 shown in FIG. 3, but the prepreg 1 can also be manufactured by using the manufacturing apparatus 6a shown in FIG.
  • the manufacturing apparatus 6 a does not include the nozzle 611 of the manufacturing apparatus 6 but includes a bonding apparatus 65 and a roller 629. The other points are the same as the manufacturing apparatus 6.
  • the laminating device 65 is installed between the roller 627 and the roller 628.
  • the laminating device 65 has a pair of rollers 651 and 652 arranged opposite to each other and a heating unit (not shown) that heats the rollers 651 and 652, and sandwiches an object between the rollers 651 and 652,
  • the object is configured to be pressurized and heated.
  • the roller 629 is installed in the front stage of the bonding apparatus 65.
  • the roller 629 is a means for feeding an object, and a sheet 7 described later is wound around the roller 629.
  • the roller 629 is configured to be rotated by a motor (not shown). When the roller 629 rotates, the sheet 7 is continuously fed out from the roller 629.
  • the drying device 64 In the drying device 64, the fiber base 2 and the first resin sheet 3 ′ are heated, and the first resin sheet 3 ′ is melted. In addition, when not impregnating the fiber base material 2 with the 1st resin layer 3 like FIG. 1, the drying apparatus 64 does not need to be.
  • the roller 629 of the manufacturing apparatus 6a is rotated, and the sheet 7 is sent out from the roller 629. As shown in FIG. 4, the sheet 7 includes a resin film 8 and a second resin sheet 4 ′ provided on one surface of the resin film 8 and made of a solid or semi-solid second resin composition. Have.
  • the second resin sheet 4 ′ is in a B stage state.
  • the second resin sheet 4 ′ is lower than the minimum melt viscosity ( ⁇ 1) at 50 to 150 ° C. of the first resin sheet 3 ′.
  • the second resin sheet 4 ′ can be easily impregnated into the fiber base material 2, and the second resin layer 4 can be impregnated up to 90% or more of the thickness of the fiber material 2.
  • the minimum melt viscosity ratio ⁇ 1 / ⁇ 2 to 1.1 or more, the first resin layer 3 and the second resin layer 4 are not mixed, and the interface between the first resin layer 3 and the second resin layer 4 is achieved. Can be formed.
  • the lowest melt viscosity ( ⁇ 1) of the first resin sheet 3 ′ is preferably 1000 Pa ⁇ s or more and 25000 Pa ⁇ s or less.
  • the minimum melt viscosity ( ⁇ 2) of the second resin sheet 4 ′ is preferably 50 Pa ⁇ s or more and 10000 Pa ⁇ s or less, more preferably 5000 Pa ⁇ s or less, and further 3000 Pa ⁇ s or less. Is desirable.
  • the measuring method is as described above.
  • the same film as that described as the resin film of the support 51 can be used.
  • the sheet 7 and the sheet 5 that is a laminate of the fiber base material 2 and the support 51 pass between the roller 651 and the roller 652 of the laminating device 65,
  • the laminated body of the fiber base material 2 and the support 51 is pressurized and heated by the laminating device 65.
  • seat 7 is crimped
  • the prepreg 1 is wound around a roller 628.
  • the conditions at the time of the pressure bonding are not particularly limited, and are appropriately set according to the composition and various conditions of the second resin composition of the second resin layer 4, but the pressure is 0.1 to 1.0 MPa / cm. preferably 2 mm, more preferably 0.3 ⁇ 0.5 MPa / cm 2 or so.
  • the heating temperature is preferably 100 to 130 ° C.
  • the first resin sheet 3 ′ and the second resin sheet 4 ′ are melted by heating at the time of the pressure bonding, but by keeping the minimum melt viscosity of the second resin layer 4 lower than that of the first resin layer 3,
  • the second resin layer 4 can be impregnated into the fiber substrate 2. Further, as described above, the minimum melt viscosity ratio ⁇ 1 / ⁇ 2 between the first resin layer 3 and the second resin layer 4 is set to 1.1 or more, so that the first resin layer 3 and the second resin layer 4 An interface can be formed between them.
  • a substrate 10 shown in FIG. 5 includes a laminate 11 and metal layers 12 provided on both surfaces of the laminate 11.
  • the laminated body 11 includes two prepregs 1 arranged with the second resin layers 4 facing each other, and an inner layer circuit board 13 sandwiched between the second resin layers 4.
  • the resin layers 3 and 4 of the prepreg 1 are completely cured on the substrate.
  • the circuit layer (not shown) formed on the surface of the inner layer circuit board 13 is securely embedded in the second resin layer 4.
  • the metal layer 12 is a part that is processed into a wiring part, for example, by bonding a metal foil such as a copper foil or an aluminum foil to the laminate 11, or plating copper or aluminum on the surface of the laminate 11. It is formed. Moreover, the support body 51 mentioned above can also be used as the metal layer 12.
  • the peel strength between the metal layer 12 and the first resin layer 3 is preferably 0.5 kN / m or more, and more preferably 0.6 kN / m or more. Thereby, the connection reliability in the semiconductor device 100 (refer FIG. 6) obtained by processing the metal layer 12 into a wiring part can be improved more.
  • Such a substrate 10 is prepared by preparing two prepregs 1 in which a metal layer 12 is formed on the first resin layer 3 and sandwiching the inner layer circuit board 13 between these prepregs 1, for example, in a vacuum press, normal pressure, etc.
  • a laminator and a method of laminating using a laminator that is heated and pressurized under vacuum are exemplified.
  • the vacuum press can be performed with a normal hot press machine or the like sandwiched between flat plates.
  • a vacuum press manufactured by Meiki Seisakusho Co., Ltd. a vacuum press manufactured by Kitagawa Seiki Co., Ltd., a vacuum press manufactured by Mikado Technos, etc.
  • a commercially available vacuum laminating machine such as a vacuum applicator manufactured by Nichigo Morton, a vacuum pressure laminator manufactured by Meiki Seisakusho, a vacuum roll type dry coater manufactured by Hitachi Techno Engineering, or the like It can be manufactured using a belt press or the like.
  • the substrate 10 of the present invention may include a laminate in which the inner circuit board 13 is omitted and the two prepregs 1 are directly bonded to each other, and the metal layer 12 is omitted. It may be what was done.
  • a semiconductor device 100 shown in FIG. 6 connects a bump 501 to the multilayer substrate 200, a pad portion 300 provided on the upper surface of the multilayer substrate 200, a wiring portion 400 provided on the lower surface of the multilayer substrate 200, and the pad portion 300.
  • the semiconductor element 500 mounted on the multilayer substrate 200 is provided.
  • a wiring part, a pad part, a solder ball, and the like may be provided on the lower surface of the multilayer substrate 200.
  • the multilayer substrate 200 includes a substrate 10 provided as a core substrate, three prepregs 1a, 1b and 1c provided on the upper side of the substrate 10, and three prepregs 1d and 1e provided on the lower side of the substrate 10. 1f.
  • the prepregs 1a to 1f are the same as the prepreg 1.
  • the prepregs 1a to 1c are arranged so that the second resin layer 4 is located on the substrate 10 side, that is, in order of the second resin layer 4, the fiber base material 2, and the first resin layer 3 from the substrate 10 side.
  • the prepreg 1 is disposed.
  • the prepregs 1d to 1f are arranged such that the second resin layer 4 is positioned on the substrate 10 side, that is, the second resin layer 4, the fiber base material 2, and the first resin layer 3 are in this order. Is arranged. In the multilayer substrate 200, the resin layers 3 and 4 of the prepreg 1 are completely cured.
  • the multilayer substrate 200 includes a circuit unit 201a provided between the prepreg 1a and the prepreg 1b, a circuit unit 201b provided between the prepreg 1b and the prepreg 1c, and a prepreg 1d and the prepreg 1e.
  • the circuit portion 201d is provided, and the circuit portion 201e is provided between the prepreg 1e and the prepreg 1f.
  • Each of the circuit portions 201 a to 201 e is embedded with the second resin layer 4.
  • the multilayer substrate 200 has holes provided through the respective prepregs 1a to 1f, and in the holes, conductors that electrically connect adjacent circuit parts or circuit parts and pad parts.
  • a portion 202 is formed.
  • Each metal layer 12 of the substrate 10 is processed into a predetermined pattern, and the processed metal layers 12 are electrically connected to each other by a conductor portion 203 provided through the substrate 10.
  • the semiconductor device 100 may include four or more prepregs 1 may be provided on one side of the substrate 10. Furthermore, the semiconductor device 100 may include a prepreg other than the prepreg 1 of the present invention.
  • the present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
  • the prepreg, the substrate, and the semiconductor device of the present invention have been described with respect to the illustrated embodiment.
  • the present invention is not limited to this, and the respective parts constituting the prepreg, the substrate, and the semiconductor device have the same functions. It can be replaced with any configuration that can be exhibited. Moreover, arbitrary components may be added.
  • Appendix 1 A fiber substrate; A first resin layer that covers one surface side of the fiber substrate and is composed of a first resin composition; Covering the other surface side of the fiber substrate, and comprising a second resin layer composed of a second resin composition different from the first resin composition, A prepreg in which the first resin layer and the second resin layer are in contact with each other to form an interface.
  • Appendix 2 In the prepreg described in Appendix 1, The first resin layer is a layer for providing a metal layer on the upper surface thereof, The second resin layer is a prepreg that is a layer for embedding a circuit.
  • the first resin layer protruding from the outer edge of the fiber substrate in plan view and the
  • the total weight of the second resin layer is 5% or less with respect to the total weight of the entire first resin layer and the entire second resin layer, and the rubber plate satisfies the following (i) to (iii): .
  • the first resin layer includes a thermoplastic resin
  • the thermoplastic resin is a prepreg containing at least one of a phenoxy resin, a polyvinyl alcohol resin, and a polyamide resin.
  • the first resin layer and the second resin layer have a naphthalene skeleton, and the prepreg includes an epoxy resin having a structure in which the naphthalene skeleton is bonded to another arylene structure through an oxygen atom.
  • a prepreg produced by impregnating a second resin sheet serving as a second resin layer or a liquid composition containing the second resin composition from the other surface side of the fiber substrate.
  • the second resin layer is a prepreg containing silica having a particle size of 50 nm or less.
  • the fiber base material is a glass cloth, A prepreg in which the silica is present in the strand of the glass cloth.
  • a semiconductor device comprising: a semiconductor element mounted on the substrate.
  • (Appendix 18) Providing a first resin layer made of the first resin composition by pressure-bonding the first resin sheet to one surface of the fiber base; Forming a second resin layer made of a second resin composition different from the first resin composition on the other surface side of the fiber substrate, In the step of forming the second resin layer, The manufacturing method of the prepreg which forms the 2nd resin layer which impregnated the said fiber base material over 90% of the thickness of the said fiber base material from the other surface of the said fiber base material at least. (Appendix 19) In the method for producing a prepreg according to appendix 18, The method for producing a prepreg, wherein the first resin sheet has a minimum melt viscosity at 50 to 150 ° C.
  • Appendix 20 In the method for producing a prepreg according to appendix 18 or 19, In the step of forming the second resin layer, The manufacturing method of the prepreg which supplies a liquid 2nd resin composition to the other surface side of the said fiber base material.
  • Appendix 24 In the method for producing a prepreg according to any one of appendices 18 to 23, The first resin sheet is formed on a support, In the step of pressure-bonding the first resin sheet to one surface of the fiber base material, a prepreg manufacturing method in which the first resin sheet on the support is pressure-bonded to one surface of the fiber base material.
  • Example 1 A first resin composition of A-1 in Table 1 was prepared. First, naphthalene type epoxy resin (Nippon Kayaku Co., Ltd., trade name NC-7300) 12.2 parts by weight, naphthalene type epoxy resin (DIC, trade name HP 4700) 5 parts by weight, phenol novolac type cyanate resin (Lonza) Product name: PT-30) 17.2 parts by weight Biphenyl type phenoxy resin (Mitsubishi Chemical Co., Ltd., trade name YX-6654BH30) 15 parts by weight (in terms of solid content), 1-benzyl-2-methylimidazole as a curing agent ( 0.4 parts by weight of Shikoku Kasei Co., Ltd., Curazole 1B2PZ) was dissolved in methyl ethyl ketone.
  • naphthalene type epoxy resin Nippon Kayaku Co., Ltd., trade name NC-7300
  • DIC naphthalene type epoxy resin
  • an inorganic filler 50 parts by weight of spherical silica (trade name SFP-20M, average particle size 0.3 ⁇ m, manufactured by Denki Kagaku Kogyo Co., Ltd.), epoxy silane coupling agent (trade name KBM-403E, manufactured by Shin-Etsu Chemical Co., Ltd.) ) was added in an amount of 0.2 part by weight and stirred for 60 minutes using a high-speed stirrer. As a result, a varnish of 70% by weight of the resin composition was prepared.
  • spherical silica trade name SFP-20M, average particle size 0.3 ⁇ m, manufactured by Denki Kagaku Kogyo Co., Ltd.
  • epoxy silane coupling agent trade name KBM-403E, manufactured by Shin-Etsu Chemical Co., Ltd.
  • a polyethylene terephthalate film manufactured by Unitika, thickness 38 ⁇ m, width 560 mm
  • the varnish is applied with a comma coater and dried at 170 ° C. for 3 minutes with a drying device, thickness 5 ⁇ m, width 540 mm.
  • the 1st resin sheet (layer used as the 1st resin layer) was formed.
  • the average particle size of silica is determined by measuring the particle size distribution of silica on a volume basis with a dynamic light scattering particle size distribution analyzer (LB-550, manufactured by HORIBA) by dispersing silica in water with ultrasonic waves. The median diameter was defined as the average particle diameter. Specifically, the average particle size is defined by the volume cumulative particle diameter d 50. The same applies to the following examples and comparative examples.
  • a second resin composition having the composition shown in B-1 of Table 2 was prepared. 9 parts by weight of a naphthalene ether type epoxy resin (manufactured by DIC, trade name HP-6000), 6 parts by weight of a biphenyl aralkyl type phenol resin (trade name NC-3000, manufactured by Nippon Kayaku Co., Ltd.), a phenol novolac type cyanate resin (manufactured by Lonza) 15.5 parts by weight of trade name PT-30) was dissolved in methyl ethyl ketone.
  • a naphthalene ether type epoxy resin manufactured by DIC, trade name HP-6000
  • a biphenyl aralkyl type phenol resin trade name NC-3000, manufactured by Nippon Kayaku Co., Ltd.
  • a phenol novolac type cyanate resin manufactured by Lonza
  • inorganic fillers 66 parts by weight of spherical silica (manufactured by Admatechs, SO-31R average particle size 1.0 ⁇ m) and 3 parts by weight of spherical silica (manufactured by Admatechs, trade name Admanano average particle size 50 nm) Then, 0.5 part by weight of an epoxy silane coupling agent (trade name KBM-403E, manufactured by Shin-Etsu Chemical Co., Ltd.) was added, and the mixture was stirred for 60 minutes using a high-speed stirrer. As a result, a varnish of 70% by weight of the resin composition was prepared.
  • an epoxy silane coupling agent trade name KBM-403E, manufactured by Shin-Etsu Chemical Co., Ltd.
  • the varnish containing the second resin composition was discharged from the nozzle 611, and the varnish was supplied to the surface of the fiber base 2 opposite to the first resin layer 3. Then, the varnish containing the first resin sheet 3 ′ and the second resin composition was dried by heating at 120 ° C. for 2 minutes by the drying device 64. Thereby, prepreg 1 (thickness: 35 ⁇ m) was obtained.
  • Example 2 (First resin composition) A first resin composition of A-2 in Table 1 was prepared. First, 12.2 parts by weight of a naphthalene-modified cresol novolak epoxy resin (manufactured by DIC, trade name HP-5000), 5 parts by weight of a naphthalene-type epoxy resin (manufactured by DIC, trade name HP 4700), a phenol novolac-type cyanate resin (Lonza) Product name: PT-30) 17.2 parts by weight Biphenyl type phenoxy resin (Mitsubishi Chemical Co., Ltd., trade name YX-6654BH30) 15 parts by weight (in terms of solid content), 1-benzyl-2-methylimidazole as a curing agent ( 0.4 parts by weight of Shikoku Kasei Co., Ltd., Curazole 1B2PZ) was dissolved in methyl ethyl ketone.
  • a naphthalene-modified cresol novolak epoxy resin manufactured by DIC, trade
  • an inorganic filler 50 parts by weight of spherical fused silica (trade name SFP-20M, average particle size 0.3 ⁇ m, manufactured by Denki Kagaku Kogyo Co., Ltd.), epoxy silane coupling agent (trade name KBM-, manufactured by Shin-Etsu Chemical Co., Ltd.) 403E) was added by 0.2 parts by weight, and the mixture was stirred for 60 minutes using a high-speed stirrer. As a result, a varnish of 70% by weight of the resin composition was prepared.
  • SFP-20M spherical fused silica
  • epoxy silane coupling agent trade name KBM-, manufactured by Shin-Etsu Chemical Co., Ltd.
  • a polyethylene terephthalate film manufactured by Unitika, thickness 38 ⁇ m, width 560 mm
  • the varnish is applied with a comma coater and dried at 170 ° C. for 3 minutes with a drying device, thickness 5 ⁇ m, width 540 mm.
  • the 1st resin sheet (layer used as the 1st resin layer) was formed.
  • Example 2nd resin composition As the 2nd resin composition, the same thing as Example 1 was prepared.
  • Manufacture of prepreg A prepreg was produced in the same manner as in Example 1, using the resin layer with a polyethylene terephthalate film and a varnish containing the second resin composition.
  • DIC naphthalene-modified cresol novolac epoxy resin
  • DIC naphthalene type epoxy resin
  • an inorganic filler 35 parts by weight of spherical fused silica (trade name SFP-20M, average particle size 0.3 ⁇ m, manufactured by Denki Kagaku Kogyo Co., Ltd.), epoxy silane coupling agent (trade name KBM-, manufactured by Shin-Etsu Chemical Co., Ltd.) Then, 0.2 part by weight of 403E) was added and stirred for 60 minutes using a high-speed stirrer. As a result, a varnish of 70% by weight of the resin composition was prepared.
  • SFP-20M spherical fused silica
  • KBM- manufactured by Shin-Etsu Chemical Co., Ltd.
  • a polyethylene terephthalate film (manufactured by Unitika, thickness 38 ⁇ m, width 560 mm) is used as a carrier film, and the varnish is applied with a comma coater and dried at 170 ° C. for 3 minutes with a drying device, thickness 5 ⁇ m, width 540 mm.
  • the 1st resin sheet (layer used as the 1st resin layer) was formed.
  • the 2nd resin composition As the 2nd resin composition, the same thing as Example 1 was prepared.
  • Manufacture of prepreg A prepreg was produced in the same manner as in Example 1, using the resin layer with a polyethylene terephthalate film and a varnish containing the second resin composition.
  • Example 4 (First resin composition) The same 1st resin composition as Example 3 was created, and the same resin layer with a polyethylene terephthalate film as Example 1 was used. (Second resin composition) A second resin composition having the composition shown in B-2 of Table 2 was prepared. 9 parts by weight of dicyclopentadiene type epoxy resin (made by DIC, trade name HP-7200L), 6 parts by weight of biphenyl aralkyl type phenol resin (trade name GPH-65 made by Nippon Kayaku Co., Ltd.), phenol novolac type cyanate resin (Lonza) 15.5 parts by weight of product name PT-30) was dissolved in methyl ethyl ketone.
  • dicyclopentadiene type epoxy resin made by DIC, trade name HP-7200L
  • biphenyl aralkyl type phenol resin trade name GPH-65 made by Nippon Kayaku Co., Ltd.
  • phenol novolac type cyanate resin (Lonza) 15.5 parts by weight of
  • inorganic fillers 66 parts by weight of spherical silica (manufactured by Admatechs, SO-31R average particle diameter 1.0 ⁇ m), 3 parts by weight of spherical fused silica (manufactured by Admatechs, trade name Admanano average particle diameter 50 nm) 0.5 parts by weight of an epoxy silane coupling agent (trade name KBM-403E, manufactured by Shin-Etsu Chemical Co., Ltd.) was added and stirred for 60 minutes using a high-speed stirrer. As a result, a varnish of 70% by weight of the resin composition was prepared.
  • Manufacture of prepreg A prepreg was produced in the same manner as in Example 1 using the resin layer with a polyethylene terephthalate film and the varnish of the second resin composition.
  • Example 5 (First resin composition) The same 1st resin composition as Example 3 was created, and the same resin layer with a polyethylene terephthalate film as Example 1 was used. (Second resin composition) A second resin composition having the composition shown in B-3 of Table 2 was prepared.
  • a naphthalene ether type epoxy resin manufactured by DIC, trade name HP-6000
  • 8 parts by weight of a biphenyl aralkyl type phenol resin trade name GPH-65, manufactured by Nippon Kayaku Co., Ltd.
  • a phenol novolac type cyanate resin manufactured by Lonza 14.5 parts by weight of a trade name PT-30
  • 2 parts by weight (converted to a solid content) of a biphenyl type phenoxy resin (trade name YX-6654BH30, manufactured by Mitsubishi Chemical Corporation) were dissolved in methyl ethyl ketone.
  • Example 6 (First resin composition) The same 1st resin composition as Example 3 was created, and the same resin layer with a polyethylene terephthalate film as Example 1 was used. (Second resin composition) A second resin composition having the composition shown in B-2 of Table 2 was prepared.
  • a prepreg was produced using the varnish of the first resin composition having the composition of A-1 produced in Example 1 and the varnish of the second resin composition having the composition represented by B-1.
  • a die coater was used from both sides of the fiber base, and the varnish of the first resin composition was applied to one side, and the varnish of the second resin composition was applied to the other side, and dried by heating at 180 ° C. for 2 minutes. Thereby, a prepreg (thickness: 35 ⁇ m) was obtained.
  • Example 2 the prepreg was manufactured by the method similar to Example 1 of the pamphlet of international publication WO2007 / 063960. Details are as follows. 1. Preparation of first resin layer varnish Cyanate resin (Lonza Japan, Primaset PT-30, weight average molecular weight about 2,600) 24% by weight, biphenyldimethylene type epoxy resin (manufactured by Nippon Kayaku Co., Ltd.) NC-3000, epoxy equivalent 275) 24% by weight, phenoxy resin is a copolymer of bisphenol A type epoxy resin and bisphenol F type epoxy resin, and the terminal part is a phenoxy resin having an epoxy group (Japan epoxy resin) 11.8% by weight, EP-4275, weight average molecular weight 60,000), 0.2 weight by weight of imidazole compound as a curing catalyst (“2-phenyl-4,5-dihydroxymethylimidazole” manufactured by Shikoku Chemicals) % Was dissolved in methyl ethyl ketone.
  • Cyanate resin Lionza Japan
  • composition A-4 in Table 3 39.8% by weight of spherical fused silica (manufactured by Admatechs, SO-25H, average particle size 0.5 ⁇ m) as an inorganic filler and epoxy silane type coupling agent (manufactured by Nihon Unicar, A-187) 0. 2% by weight was added and stirred for 60 minutes using a high-speed stirrer to prepare a resin varnish of 70% by weight of the resin composition (composition A-4 in Table 3).
  • spherical fused silica manufactured by Admatechs, SO-25H, average particle size 0.5 ⁇ m
  • epoxy silane type coupling agent manufactured by Nihon Unicar, A-187
  • varnish of second resin layer 15% by weight of novolak-type cyanate resin (manufactured by Lonza Japan, Primaset PT-30, weight average molecular weight of about 2,600) as thermosetting resin, biphenyldimethylene type epoxy resin as epoxy resin (Nippon Kayaku Co., Ltd., NC-3000, epoxy equivalent 275) 8.7% by weight, phenol resin biphenyldimethylene type phenol resin (Nippon Kayaku Co., Ltd., GPH-65, hydroxyl equivalent 200) 6.3% by weight Was dissolved in methyl ethyl ketone.
  • novolak-type cyanate resin manufactured by Lonza Japan, Primaset PT-30, weight average molecular weight of about 2,600
  • biphenyldimethylene type epoxy resin as epoxy resin
  • phenol resin biphenyldimethylene type phenol resin Nippon Kayaku Co., Ltd., GPH-65, hydroxyl equivalent 200
  • spherical fused silica manufactured by Admatechs, SO-25H, average particle size 0.5 ⁇ m
  • inorganic filler 69.7% by weight
  • epoxysilane type coupling agent Nihon Unicar Co., Ltd., A-187 0. 3% by weight was added, and the mixture was stirred for 60 minutes using a high-speed stirrer to prepare a varnish for the second resin layer of 70% by weight of the resin composition (composition B-5 in Table 3).
  • carrier material A polyethylene terephthalate film (manufactured by Mitsubishi Chemical Polyester Co., Ltd., SFB-38, thickness 38 ⁇ mm, width 480 mm) was used as a carrier film.
  • the carrier material I finally the first resin layer is finally formed
  • the carrier material I is formed by drying for 3 minutes using a drying apparatus and forming a resin layer having a thickness of 9 ⁇ m and a width of 410 mm at the center in the width direction of the carrier film. Obtained.
  • the amount of the varnish of the second resin layer to be coated by the same method is adjusted so that the resin layer having a thickness of 14 ⁇ m and a width of 360 mm is positioned at the center in the width direction of the carrier film.
  • II final formation of the second resin layer
  • Prepreg Glass woven fabric cross type # 1015, width 360 mm, thickness 15 ⁇ m, basis weight 17 g / m 2
  • a prepreg was produced by a vacuum laminating apparatus and a hot air drying apparatus.
  • the carrier material I and the carrier material II are overlapped on both surfaces of the glass woven fabric so as to be positioned at the center in the width direction of the glass woven fabric, respectively, and are laminated at 80 ° C. under a reduced pressure of 1330 Pa. Was used for bonding.
  • the resin layers of the carrier material I and the carrier material II are respectively bonded to both sides of the fiber cloth, and in the outer region of the width direction dimension of the glass woven fabric.
  • the resin layers of carrier material I and carrier material II were joined together.
  • the bonded material was heat-treated without applying pressure by passing it through a horizontal conveyance type hot-air drying apparatus set at 120 ° C. for 2 minutes to obtain a thickness of 30 ⁇ m (first resin layer: 5 ⁇ m, A prepreg having a fiber base material of 15 ⁇ m and a second resin layer of 10 ⁇ m was obtained.
  • the peel strength of the first resin layer and the second resin layer of each of the examples and comparative examples was measured.
  • the measuring method is as follows.
  • the first resin layer 3 of the prepreg 1 was placed on a copper foil, and the 90 ° peel strength A after heat treatment in the atmosphere under the conditions of a load of 2 MPa, a temperature of 220 ° C. and 1 hour was measured.
  • the second resin layer 4 of the prepreg was placed on a copper foil, and the 90 ° peel strength B after heat treatment in the atmosphere under the conditions of a load of 2 MPa, a temperature of 220 ° C. and 1 hour was measured.
  • the peel strength was measured in accordance with JIS C 6481 90 degree peeling method by peeling the resin layer from the copper foil in the 90 degree direction. Specifically, at 25 ° C., the 90 ° peel strength when the resin layer was peeled off at a speed of 50 mm per minute was measured with a 90 ° peel tester.
  • a prepreg was stacked so that the second resin layer was in contact with the circuit pattern of the inner layer circuit board, and pressure heating molding (1 MPa, 200 ° C., 90 minutes) was performed to obtain 10 substrates. The cross section of each substrate was observed with a microscope. Then, the embedding property of the second resin layer was evaluated. (Double-circle): It was excellent in the embedding property in all the board
  • the measurement conditions for the minimum melt viscosity are as follows. The results are shown in Table 4. In Examples and Comparative Examples, the lowest melt viscosities of the first resin layer and the second resin layer at 50 to 150 ° C. were measured. Here, the varnish of the first resin composition and the varnish of the second resin composition obtained in the respective Examples and Comparative Examples were applied with a comma coater device, dried at 170 ° C. for 3 minutes with a drying device, and a thickness of 5 ⁇ m. The film is a measurement object. However, the measurement result here corresponds to the minimum melt viscosity of the first resin layer and the second resin layer in the prepreg state. The measurement conditions are as follows.
  • Dynamic viscoelasticity measuring device manufactured by Anton Paar, device name Physica MCR-301
  • Frequency 62.83 rad / sec
  • Measurement temperature 25-200 ° C, 3 ° C / min
  • Geometry Parallel plate Plate diameter: 10mm Plate spacing: 0.1mm
  • Measurement atmosphere Air
  • the prepregs of Examples and Comparative Examples cut to 200 mm ⁇ 200 mm were pressed using a hot press device of CVP300 manufactured by Nichigo-Morton Co., Ltd., and the amount of resin protrusion was measured. Specifically, the prepreg of the above example or comparative example is placed between two rubber plates sandwiched between two hot plates (SUS 1.5 mm) of this hot press apparatus, and the conditions are 120 ° C. and 2.5 MPa. And pressed for 60 seconds.
  • the rubber plate was a silicon rubber having a rubber hardness measured according to JIS K 6253 A of 60 ° and a thickness of 3 mm. The results are shown in Table 4.
  • the laminated body is pre-dried at 125 ° C./24 hours, then subjected to moisture absorption treatment at 85 ° C. and 60% 196 hours, and reflow for lead-free solder having a peak temperature of 260 ° C.
  • the profile infrared reflow oven was passed 20 times. At each reflow, the appearance of the laminate was observed to confirm the presence or absence of swelling.
  • the swelling inside the laminate was also investigated using SAT (ultrasonic imaging device). The results are shown in Table 4. (Double-circle): There is no swelling of an external appearance after passing 20 times of reflow ovens. No swelling inside the laminate. ⁇ : No swelling of the appearance after passing through the reflow furnace 20 times. There is swelling inside the laminate. ⁇ : Appearance swelled after passing through the reflow furnace 1 to 5 times.
  • the peel strength A of the first resin layer is higher than the peel strength B of the second resin layer, and the peel strength of the first resin layer and the second resin layer becomes the desired strength.
  • the embedding property of the circuit pattern is also good, and it can be seen that the first resin layer and the second resin layer can exhibit desired characteristics. Further, it can be seen that the resin flow is 15% by weight or more, and the circuit embedding property is excellent. Further, the resin flow was 50% by weight or less, and the outflow of the resin during pressing could be suppressed. Moreover, since the protrusion amount of resin is 5 weight% or less, the thickness uniformity of a laminated board is favorable and generation
  • the heat resistance is very good because silica having an average particle diameter of 50 nm is used for the second resin layer.
  • the reliability between vias is very high because silica having an average particle diameter of 50 nm is used for the second resin layer. It is considered that the reliability between vias is improved when nanosilica enters the fiber bundle and nanosilica adheres to the fiber.
  • the prepreg using the naphthylene ether type epoxy resin had low water absorption and low thermal expansion.
  • Comparative Example 1 since the fiber base material is impregnated with the varnish having the same degree of viscosity, the impregnation rates of the first resin layer and the second resin layer are the same, and the impregnation rate is considered to be about 50%. . Furthermore, in Comparative Example 2, since the resin sheets having very close minimum melt viscosities are bonded to the fiber base material, the impregnation rates of the first resin layer and the second resin layer are approximately the same, and the impregnation rate is approximately 50%. It is thought that. In such Comparative Examples 1 and 2, since it is necessary to impregnate the fiber base material to the same extent with the first resin layer and the second resin layer, the selection of the resin composition is limited.
  • Comparative Example 1 the interface between the first resin layer and the second resin layer cannot be confirmed, and the first resin layer and the second resin layer are mixed. Therefore, the peel strength of the first resin layer is weaker than that of Example 1. Furthermore, the embedding property of the circuit pattern is inferior to that of Example 1, and the first resin layer and the second resin layer cannot exhibit desired characteristics. Furthermore, the reliability between vias is poor, the thickness uniformity of the laminate is poor, and warping occurs. In Comparative Example 1, the point that the reliability between vias is poor is considered to be due to the non-uniform mixing of the varnish constituting the first resin layer and the varnish constituting the second resin layer.
  • Comparative Example 2 the interface between the first resin layer and the second resin layer cannot be confirmed, and the first resin layer and the second resin layer are mixed. Therefore, the peel strength of the first resin layer is lower than the desired value. Further, in Comparative Example 2, warpage occurs in the laminated plate. This is because the first resin layer on the copper foil side has a low viscosity, and thus the thickness of the laminated plate varies.

Abstract

A prepreg (1) is provided with: a fiber base material (2); a first resin layer (3), which covers one surface of the fiber base material (2), and which is composed of a first resin composition; and a second resin layer (4), which covers the other surface of the fiber base material (2), and which is composed of a second resin composition different from the first resin composition. The second resin layer (4) is impregnated with the fiber base material (2) to at least 90% of the thickness of the fiber base material (2) from the other surface of the fiber base material (2).

Description

プリプレグおよびプリプレグの製造方法Prepreg and prepreg manufacturing method
 本発明は、プリプレグおよびプリプレグの製造方法に関する。 The present invention relates to a prepreg and a method for producing the prepreg.
 近年、電子部品・電子機器等を小型化・薄膜化すべく、これに用いられる回路基板等を小型化・薄膜化することが要求されている。この要求に答えるために、多層構造の回路基板を用い、その各層を薄くすることが行なわれている。 In recent years, in order to reduce the size and thickness of electronic components and electronic devices, it has been required to reduce the size and thickness of circuit boards and the like used therefor. In order to meet this requirement, a circuit board having a multilayer structure is used and each layer is thinned.
 一般に、回路基板を薄くするためには、プリプレグの一方の面に回路パターンを形成し、このプリプレグに隣接する他のプリプレグで、この回路パターンを埋め込む方法が採用されている。
 このような構造の回路基板に適用するためのプリプレグが特許文献1に開示されている。
 特許文献1には、繊維基材の両側に、厚さの異なる2つの樹脂層を形成したプリプレグが開示されている。
In general, in order to make the circuit board thinner, a method of forming a circuit pattern on one surface of the prepreg and embedding the circuit pattern with another prepreg adjacent to the prepreg is employed.
Patent Document 1 discloses a prepreg to be applied to a circuit board having such a structure.
Patent Document 1 discloses a prepreg in which two resin layers having different thicknesses are formed on both sides of a fiber base material.
特開2004-216784号公報JP 2004-216784 A
 前述したように、プリプレグの一方の面に回路パターンを形成し、このプリプレグに隣接する他のプリプレグで、この回路パターンを埋め込む方法がある。この場合、プリプレグの一方の面の樹脂層上に、回路パターンを形成するとともに、他方の面の樹脂層で隣接するプリプレグの回路パターンを埋め込むこととなる。
 そのため、プリプレグの一方側の樹脂層には、回路パターンに対する密着性が要求され、他方の側の樹脂層には、回路パターンの埋め込み性が要求される。すなわち、プリプレグの2つの樹脂層にはそれぞれ異なる特性が要求されることとなる。
 特許文献1に記載のプリプレグは、一方の樹脂層の厚みを他方の樹脂層よりも厚くしているため、厚みの厚い方の樹脂層で、回路パターンを埋め込むことができる。
 しかしながら、特許文献1に記載のプリプレグでは、両方の樹脂層が同じ樹脂組成物で構成されているため、上述した2つの異なる特性を満たすことが難しい。
As described above, there is a method of forming a circuit pattern on one surface of a prepreg and embedding the circuit pattern with another prepreg adjacent to the prepreg. In this case, a circuit pattern is formed on the resin layer on one side of the prepreg, and the circuit pattern of the adjacent prepreg is embedded in the resin layer on the other side.
Therefore, the resin layer on one side of the prepreg is required to have adhesion to the circuit pattern, and the resin layer on the other side is required to have a circuit pattern embedding property. That is, different properties are required for the two resin layers of the prepreg.
In the prepreg described in Patent Document 1, since one resin layer is thicker than the other resin layer, the circuit pattern can be embedded in the thicker resin layer.
However, in the prepreg described in Patent Document 1, since both resin layers are composed of the same resin composition, it is difficult to satisfy the two different characteristics described above.
 本発明者らは、プリプレグの一方の面側の樹脂層と、他方の面側の樹脂層とが異なる特性を満たすように、これらの樹脂層を異なる樹脂組成物で構成することを発案した。しかしながら、異なる前記樹脂組成物の双方を繊維基材に含浸させる場合には、繊維基材への含浸性を良好なものとする必要があり、各樹脂組成物の設計に制限がかかり、各樹脂層において所望の特性を十分に発揮させることが難しいことがわかった。
 本発明はこのような知見に基づいて発案されたものである。
The present inventors have conceived that these resin layers are composed of different resin compositions so that the resin layer on one side of the prepreg and the resin layer on the other side meet different characteristics. However, when the fiber base material is impregnated with both different resin compositions, it is necessary to make the fiber base material have good impregnation properties, and the design of each resin composition is limited, It has been found that it is difficult to sufficiently achieve the desired characteristics in the layer.
The present invention has been invented based on such knowledge.
 すなわち、本発明によれば、
 繊維基材と、
 前記繊維基材の一方の面側を被覆し、第1樹脂組成物で構成された第1樹脂層と、
 前記繊維基材の他方の面側を被覆し、前記第1樹脂組成物とは異なる第2樹脂組成物で構成された第2樹脂層とを備え、
 前記第2樹脂層は、少なくとも、前記繊維基材の他方の面から前記繊維基材の厚みの90%にわたって、前記繊維基材に含浸されているプリプレグが提供される。
That is, according to the present invention,
A fiber substrate;
A first resin layer that covers one surface side of the fiber substrate and is composed of a first resin composition;
Covering the other surface side of the fiber substrate, and comprising a second resin layer composed of a second resin composition different from the first resin composition,
The second resin layer is provided with a prepreg in which the fiber base material is impregnated over at least 90% of the thickness of the fiber base material from the other surface of the fiber base material.
 このようなプリプレグにおいては、少なくとも、繊維基材の他方の面から繊維基材の厚みの90%にわたって、繊維基材に含浸した第2樹脂層を形成している。そのため、第1樹脂層を繊維基材に多く含浸させる必要がない。従って、第1樹脂層を構成する第1樹脂組成物は、繊維基材に対する含浸性のよいものに限られず第1樹脂組成物の選択の幅が広がる。そして、所望の特性を有する第1樹脂層を備えたプリプレグとすることができる。 In such a prepreg, the second resin layer impregnated in the fiber base material is formed at least over 90% of the thickness of the fiber base material from the other surface of the fiber base material. Therefore, it is not necessary to impregnate the fiber base material with a large amount of the first resin layer. Therefore, the 1st resin composition which comprises the 1st resin layer is not restricted to the thing of the good impregnation property with respect to a fiber base material, The breadth of selection of a 1st resin composition spreads. And it can be set as the prepreg provided with the 1st resin layer which has a desired characteristic.
 さらには、上述したプリプレグの製造方法も提供することができる。
 すなわち、本発明によれば、第1樹脂シートを繊維基材の一方の面に圧着して第1樹脂組成物からなる第1樹脂層を設ける工程と、
 前記繊維基材の他方の面側に、前記第1樹脂組成物とは異なる第2樹脂組成物からなる第2樹脂層を形成する工程とを含み、
 第2樹脂層を形成する前記工程では、
 少なくとも、前記繊維基材の他方の面から前記繊維基材の厚みの90%にわたって、前記繊維基材に含浸した第2樹脂層を形成するプリプレグの製造方法が提供される。
Furthermore, the manufacturing method of the prepreg mentioned above can also be provided.
That is, according to the present invention, the step of pressure-bonding the first resin sheet to one surface of the fiber substrate to provide the first resin layer made of the first resin composition;
Forming a second resin layer made of a second resin composition different from the first resin composition on the other surface side of the fiber substrate,
In the step of forming the second resin layer,
There is provided a method for producing a prepreg that forms a second resin layer impregnated in the fiber base material over at least 90% of the thickness of the fiber base material from the other surface of the fiber base material.
 この製造方法によれば、少なくとも、繊維基材の他方の面から繊維基材の厚みの90%にわたって、繊維基材に含浸した第2樹脂層を形成している。そのため、第1樹脂シートを繊維基材に多く含浸させる必要がない。従って、第1樹脂層を構成する第1樹脂組成物は、繊維基材に対する含浸性のよいものに限られず第1樹脂組成物の選択の幅が広がり、所望の特性を有する第1樹脂層を形成することができる。
 さらには、上述したプリプレグの硬化体を有する基板であり、
 回路層を備え、
 前記プリプレグの硬化体の前記第2樹脂層が、前記回路層を埋め込むとともに、
 前記プリプレグの硬化体の前記第1樹脂層上に金属層が設けられた基板も提供できる。
 また、この基板と、
 前記基板に搭載された半導体素子とを備える半導体装置も提供できる。
According to this manufacturing method, the second resin layer impregnated in the fiber base is formed at least over 90% of the thickness of the fiber base from the other surface of the fiber base. Therefore, it is not necessary to impregnate the fiber base material with a large amount of the first resin sheet. Accordingly, the first resin composition constituting the first resin layer is not limited to the one having good impregnation property to the fiber base material, and the selection range of the first resin composition is widened, and the first resin layer having desired characteristics is provided. Can be formed.
Furthermore, it is a substrate having a cured body of the prepreg described above,
With a circuit layer,
The second resin layer of the cured body of the prepreg embeds the circuit layer,
A substrate in which a metal layer is provided on the first resin layer of the cured prepreg can also be provided.
Also, with this substrate
A semiconductor device including a semiconductor element mounted on the substrate can also be provided.
 本発明によれば、異なる樹脂層を有し、各樹脂層の所望の特性をより確実に発揮させることができるプリプレグおよびプリプレグの製造方法が提供される。 According to the present invention, there are provided a prepreg and a method for manufacturing a prepreg that have different resin layers and can exhibit the desired characteristics of each resin layer more reliably.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
本発明の一実施形態にかかるプリプレグの断面図である。It is sectional drawing of the prepreg concerning one Embodiment of this invention. プリプレグの断面図である。It is sectional drawing of a prepreg. プリプレグの製造装置を示す模式図である。It is a schematic diagram which shows the manufacturing apparatus of a prepreg. プリプレグの製造装置を示す模式図である。It is a schematic diagram which shows the manufacturing apparatus of a prepreg. 基板を示す断面図である。It is sectional drawing which shows a board | substrate. 半導体装置を示す断面図である。It is sectional drawing which shows a semiconductor device. 樹脂流れの測定方法を示す模式図である。It is a schematic diagram which shows the measuring method of a resin flow. 実施例1のプリプレグの断面を示す図である。1 is a view showing a cross section of a prepreg of Example 1. FIG. 実施例5のプリプレグの断面を示す図である。6 is a view showing a cross section of a prepreg of Example 5. FIG. 実施例6のプリプレグの断面を示す図である。6 is a view showing a cross section of a prepreg of Example 6. FIG. 比較例1のプリプレグの断面を示す図である。5 is a view showing a cross section of a prepreg of Comparative Example 1. FIG. 比較例2のプリプレグの断面を示す図である。5 is a view showing a cross section of a prepreg of Comparative Example 2. FIG.
 以下、本発明の実施形態を図面に基づいて説明する。なお、すべての図面において、同様な構成要素には同一符号を付し、その詳細な説明は重複しないように適宜省略される。
 はじめに、図1および図3を参照して、本実施形態のプリプレグおよびその製造方法の概要について説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same components are denoted by the same reference numerals, and detailed description thereof is appropriately omitted so as not to overlap.
First, with reference to FIG. 1 and FIG. 3, the outline | summary of the prepreg of this embodiment and its manufacturing method is demonstrated.
 図1は、プリプレグを示す断面図である。
 本実施形態のプリプレグ1は、
 繊維基材2と、繊維基材2の一方の面側を被覆し、第1樹脂組成物で構成された第1樹脂層3と、繊維基材2の他方の面側を被覆し、前記第1樹脂組成物とは異なる第2樹脂組成物で構成された第2樹脂層4とを備え、第1樹脂層3と第2樹脂層4とが接触し、界面Fが形成されている。
 そして、第2樹脂層4は、少なくとも、繊維基材2の他方の面から繊維基材2の厚みの90%にわたって、繊維基材2に含浸されている。
 ここで、第1樹脂組成物と、第2樹脂組成物とが異なるとは、各樹脂組成物を構成する構成成分の種類が異なっていてもよく、あるいは、組成比が異なるものであってもよい。
FIG. 1 is a cross-sectional view showing a prepreg.
The prepreg 1 of this embodiment is
The fiber substrate 2, one surface side of the fiber substrate 2 is coated, the first resin layer 3 composed of the first resin composition, and the other surface side of the fiber substrate 2 are coated, The second resin layer 4 made of a second resin composition different from the one resin composition is provided, the first resin layer 3 and the second resin layer 4 are in contact with each other, and an interface F is formed.
The second resin layer 4 is impregnated in the fiber base material 2 over at least 90% of the thickness of the fiber base material 2 from the other surface of the fiber base material 2.
Here, the difference between the first resin composition and the second resin composition may be that the types of components constituting each resin composition may be different, or the composition ratio may be different. Good.
 また、本実施形態のプリプレグの製造方法は、第1樹脂シート3'を繊維基材2の一方の面に圧着して第1樹脂組成物からなる第1樹脂層3を設ける工程と、繊維基材2の他方の面側に、前記第1樹脂組成物とは異なる第2樹脂組成物からなる第2樹脂層4を形成する工程とを含む。第2樹脂層4を形成する前記工程では、少なくとも、前記繊維基材2の他方の面から前記繊維基材2の厚みの90%にわたって、繊維基材2に含浸した第2樹脂層4を形成する。 Moreover, the manufacturing method of the prepreg of this embodiment includes the step of pressing the first resin sheet 3 ′ on one surface of the fiber substrate 2 to provide the first resin layer 3 made of the first resin composition, and the fiber base. Forming a second resin layer 4 made of a second resin composition different from the first resin composition on the other surface side of the material 2. In the step of forming the second resin layer 4, the second resin layer 4 impregnated in the fiber base material 2 is formed over at least 90% of the thickness of the fiber base material 2 from the other surface of the fiber base material 2. To do.
 次に、図1~図4を参照して、プリプレグおよび、プリプレグの製造方法について詳細に説明する。
 <プリプレグ>
 以下、本実施形態のプリプレグ1について詳細に説明する。
 なお、以下の説明では、図1(以下の各図において同様)中の上側を「上」、下側を「下」として説明する。
Next, the prepreg and the method for manufacturing the prepreg will be described in detail with reference to FIGS.
<Prepreg>
Hereinafter, the prepreg 1 of this embodiment will be described in detail.
In the following description, the upper side in FIG. 1 (the same applies to the following drawings) will be described as “upper”, and the lower side will be described as “lower”.
 図1に示すプリプレグ1は、平板状の繊維基材2と、繊維基材2の一方の面(下面)側に位置する第1樹脂層3と、繊維基材2の他方の面(上面)側に位置する第2樹脂層4とを有する。このプリプレグ1は、プリント配線基板(回路基板)用である。 A prepreg 1 shown in FIG. 1 includes a flat fiber substrate 2, a first resin layer 3 positioned on one surface (lower surface) side of the fiber substrate 2, and the other surface (upper surface) of the fiber substrate 2. And a second resin layer 4 located on the side. The prepreg 1 is for a printed wiring board (circuit board).
 繊維基材2は、プリプレグ1の機械的強度を向上する機能を有する。
 この繊維基材2としては、例えば、ガラス織布、ガラス不織布等のガラス繊維基材、
 ポリアミド樹脂繊維、芳香族ポリアミド樹脂繊維や全芳香族ポリアミド樹脂繊維等のアラミド繊維等のポリアミド系樹脂繊維、ポリエステル樹脂繊維、芳香族ポリエステル樹脂繊維、全芳香族ポリエステル樹脂繊維等のポリエステル系樹脂繊維、ポリパラフェニレンベンゾビスオキサゾール、ポリイミド樹脂繊維、フッ素樹脂繊維等のいずれか1種以上を主成分とする織布または不織布で構成される合成繊維基材、
 クラフト紙、コットンリンター紙、リンターとクラフトパルプの混抄紙等を主成分とする紙繊維基材等の有機繊維基材等の繊維基材等が挙げられる。これらのうち、いずれか1種以上の繊維基材を使用できる。
The fiber base material 2 has a function of improving the mechanical strength of the prepreg 1.
As this fiber base material 2, glass fiber base materials, such as glass woven fabric and glass nonwoven fabric,
Polyamide resin fibers, polyamide resin fibers such as aramid fibers such as aromatic polyamide resin fibers and wholly aromatic polyamide resin fibers, polyester resin fibers such as polyester resin fibers, aromatic polyester resin fibers, wholly aromatic polyester resin fibers, A synthetic fiber substrate composed of a woven or non-woven fabric mainly composed of at least one of polyparaphenylenebenzobisoxazole, polyimide resin fiber, fluororesin fiber, etc.,
Examples thereof include fiber base materials such as craft paper, cotton linter paper, and organic fiber base materials such as paper fiber base materials mainly composed of linter and kraft pulp mixed paper. Among these, any one or more fiber base materials can be used.
 これらの中でも、繊維基材2は、ガラス繊維基材であるのが好ましい。かかるガラス繊維基材を用いることにより、プリプレグ1の機械的強度をより向上することができる。また、プリプレグ1の熱膨張係数を小さくすることもできるという効果もある。 Among these, the fiber base material 2 is preferably a glass fiber base material. By using such a glass fiber substrate, the mechanical strength of the prepreg 1 can be further improved. In addition, there is an effect that the thermal expansion coefficient of the prepreg 1 can be reduced.
 このようなガラス繊維基材を構成するガラスとしては、例えば、Eガラス、Cガラス、Aガラス、Sガラス、Dガラス、NEガラス、Tガラス、Qガラス、Hガラス、UTガラス、Lガラス等が挙げられ、これらのうち、いずれか1種以上を使用できる。これらの中でも、ガラスは、Sガラス、Tガラス、UTガラス、または、Qガラスであることが好ましい。これにより、ガラス繊維基材の熱膨張係数を比較的小さくすることができ、このため、プリプレグ1をその熱膨張係数ができる限り小さいものとすることができる。 Examples of the glass constituting such a glass fiber substrate include E glass, C glass, A glass, S glass, D glass, NE glass, T glass, Q glass, H glass, UT glass, and L glass. Any one or more of these can be used. Among these, it is preferable that glass is S glass, T glass, UT glass, or Q glass. Thereby, the thermal expansion coefficient of a glass fiber base material can be made comparatively small, and for this reason, the prepreg 1 can be made as small as possible in the thermal expansion coefficient.
 繊維基材2の平均厚さTは、特に限定されないが、150μm以下であるのが好ましく、100μm以下であるのがより好ましく、10μm~50μm程度であるのがさらに好ましい。かかる厚さの繊維基材2を用いることにより、プリプレグ1の機械的強度を確保しつつ、その薄型化を図ることができる。さらには、プリプレグ1に対する孔あけ等の加工を施す際の加工性を向上することもできる。
 なお、繊維基材2の平均厚さTは、繊維基材2のたて糸とよこ糸の交点部分において、繊維基材2の一方の面から他方の面までの厚みを10箇所測定し、その平均値を算出することで得られる。
The average thickness T of the fiber substrate 2 is not particularly limited, but is preferably 150 μm or less, more preferably 100 μm or less, and even more preferably about 10 μm to 50 μm. By using the fiber substrate 2 having such a thickness, the mechanical strength of the prepreg 1 can be ensured and the thickness thereof can be reduced. Furthermore, workability when performing processing such as drilling on the prepreg 1 can also be improved.
In addition, the average thickness T of the fiber base material 2 measured 10 thicknesses from one surface of the fiber base material 2 to the other surface in the intersection part of the warp yarn and the weft of the fiber base material 2, and the average value It is obtained by calculating.
 この繊維基材2の一方の面側には、第1樹脂層3が設けられ、また、他方の面側には、第2樹脂層4が設けられている。また、第1樹脂層3は、第1樹脂組成物で構成され、第2樹脂層4は、前記第1樹脂組成物とは、異なる第2樹脂組成物で構成されている。
 第1樹脂層3は、繊維基材2の一方の面を被覆し、第2樹脂層4は、繊維基材2の他方の面を被覆している。
 第1樹脂層3は、その上部に、直接、配線部(金属層)が形成される層である。
 一方、第2樹脂層4は、回路層を埋め込む層である。
 なお、本発明において、プリプレグは、基板製造の際に剥離してしまうフィルムを含まないものである。
 なお、第1樹脂層3および第2樹脂層4は半硬化(Bステージ)の状態である。
The first resin layer 3 is provided on one surface side of the fiber substrate 2, and the second resin layer 4 is provided on the other surface side. Moreover, the 1st resin layer 3 is comprised with the 1st resin composition, and the 2nd resin layer 4 is comprised with the 2nd resin composition different from the said 1st resin composition.
The first resin layer 3 covers one surface of the fiber base material 2, and the second resin layer 4 covers the other surface of the fiber base material 2.
The first resin layer 3 is a layer on which a wiring part (metal layer) is directly formed.
On the other hand, the second resin layer 4 is a layer in which the circuit layer is embedded.
In the present invention, the prepreg does not include a film that peels off during the production of the substrate.
The first resin layer 3 and the second resin layer 4 are semi-cured (B stage).
 本実施形態では、第1樹脂層3上に金属製の配線部(回路部)を形成するために、第1樹脂組成物は、金属との密着性に優れるような組成に設定されている。より詳細に説明すると、当該プリプレグ1の第1樹脂層3を銅箔に重ね合わせ、荷重2MPa、温度220℃、1時間の条件下で大気中で熱処理した後の90°ピール強度Aが、当該プリプレグ1の第2樹脂層4を銅箔に重ね合わせ、荷重2MPa、温度220℃、1時間の条件下で大気中で熱処理した後の90°ピール強度Bよりも高い。
 ピール強度は、JIS C 6481の90度引き剥がし法に準じて、銅箔に対して樹脂層を90度方向に引き剥がして測定することができる。具体的には、25℃において、毎分50mmの速さで樹脂層を引きはがす際の90度ピール強度を、90度剥離試験機で測定する。
 より具体的には、ピール強度Aは、0.5kN/m以上が好ましい。さらには、0.6kN/m以上、特に0.8kN/m以上であることがより好ましい。0.5kN/m以上とすることで、配線部との密着性を高めることができる。なお、ピール強度Aの上限値は特に限定されないが、2kN/m以下であることが好ましい。
 一方で、ピール強度Bは、0.4N/m以上であることが好ましい。なかでも、0.5N/m以上であることが好ましい。0.4N/m以上とすることで、内層回路配線部との密着を高めることができる。一方で、ピール強度Bの上限値は特に限定されないが、1kN/m以下であることが好ましい。
 ピール強度A-ピール強度Bは、0.1kN/m以上であることが好ましく、さらには、1.6kN/m以下であることが好ましい。
In this embodiment, in order to form a metal wiring part (circuit part) on the 1st resin layer 3, the 1st resin composition is set to the composition which is excellent in adhesiveness with a metal. More specifically, the 90 ° peel strength A after the first resin layer 3 of the prepreg 1 is superposed on the copper foil and heat-treated in the air under the conditions of load 2 MPa, temperature 220 ° C., 1 hour is The second resin layer 4 of the prepreg 1 is superposed on the copper foil, and is higher than the 90 ° peel strength B after heat treatment in the air under the conditions of a load of 2 MPa, a temperature of 220 ° C. and 1 hour.
The peel strength can be measured by peeling the resin layer from the copper foil in the 90-degree direction according to JIS C 6481 90-degree peeling method. Specifically, at 25 ° C., the 90-degree peel strength when the resin layer is peeled off at a speed of 50 mm per minute is measured with a 90-degree peel tester.
More specifically, the peel strength A is preferably 0.5 kN / m or more. Furthermore, it is more preferably 0.6 kN / m or more, particularly 0.8 kN / m or more. Adhesiveness with a wiring part can be improved by setting it as 0.5 kN / m or more. The upper limit value of the peel strength A is not particularly limited, but is preferably 2 kN / m or less.
On the other hand, the peel strength B is preferably 0.4 N / m or more. Especially, it is preferable that it is 0.5 N / m or more. By setting it to 0.4 N / m or more, adhesion to the inner layer circuit wiring portion can be enhanced. On the other hand, the upper limit value of the peel strength B is not particularly limited, but is preferably 1 kN / m or less.
The peel strength A-peel strength B is preferably 0.1 kN / m or more, and more preferably 1.6 kN / m or less.
 また、他のプリプレグ1の配線部(回路)を確実に埋め込むために、第2樹脂組成物は、第2樹脂層4が第1樹脂層3よりも最低溶融粘度が低くなるような組成に設定されていることが好ましい。最低溶融粘度については後述する。
 また、本実施形態では、第2樹脂層4が繊維基材2内部に含浸するため、第2樹脂層4を構成する第2樹脂組成物は、繊維基材2への含浸性が良好な組成となっていることが好ましい。各樹脂組成物については、後に詳述する。
Further, in order to reliably embed the wiring portion (circuit) of the other prepreg 1, the second resin composition is set so that the second resin layer 4 has a minimum melt viscosity lower than that of the first resin layer 3. It is preferable that The minimum melt viscosity will be described later.
Moreover, in this embodiment, since the 2nd resin layer 4 impregnates the fiber base material 2 inside, the 2nd resin composition which comprises the 2nd resin layer 4 is a composition with the favorable impregnation property to the fiber base material 2. It is preferable that Each resin composition will be described in detail later.
 図1に示すように、本実施形態では、繊維基材2にその厚さ方向全体にわたって、第2樹脂層4の一部が含浸している。
 より、詳細に説明すると、第2樹脂層4は、繊維基材2内部に含浸した含浸部43と、繊維基材2の表面(他方の面)を被覆する被覆部42とで構成されている。
 ここで、第2樹脂層4の含浸部43は、少なくとも、繊維基材2の被覆部42で被覆された表面から、繊維基材2の厚みの90%の位置までにわたって繊維基材2に含浸されている。本実施形態では、含浸部43は、繊維基材2の厚み全体にわたって、繊維基材2に含浸している。含浸部43と第1樹脂層3とは接触しているが、含浸部43と第1樹脂層3とは互いに混ざりあっておらず、含浸部43と第1樹脂層3との間には、境界となる界面Fが形成されている。これにより、それぞれの樹脂層3,4の機能を確実に発揮させることができる。
As shown in FIG. 1, in this embodiment, the fiber base material 2 is impregnated with a part of the second resin layer 4 over the entire thickness direction.
More specifically, the second resin layer 4 includes an impregnation portion 43 impregnated in the fiber base 2 and a covering portion 42 that covers the surface (the other surface) of the fiber base 2. .
Here, the impregnation part 43 of the second resin layer 4 impregnates the fiber base material 2 from at least the surface covered with the covering part 42 of the fiber base material 2 to a position of 90% of the thickness of the fiber base material 2. Has been. In this embodiment, the impregnation part 43 impregnates the fiber base material 2 over the whole thickness of the fiber base material 2. Although the impregnation part 43 and the 1st resin layer 3 are contacting, the impregnation part 43 and the 1st resin layer 3 are not mutually mixed, Between the impregnation part 43 and the 1st resin layer 3, An interface F serving as a boundary is formed. Thereby, the function of each resin layer 3 and 4 can be exhibited reliably.
 また、含浸部43と第1樹脂層3との界面Fは、繊維基材2の外側に位置している。
 より詳細に説明すると、第1樹脂層3は、繊維基材2の一方の面に当接しているが、繊維基材2内部には含浸していない。そして、含浸部43と第1樹脂層3とが当接し、界面Fが形成されている。なお、本実施形態では、第1樹脂層3は、繊維基材2の一方の面に直接、当接しているが、これに限らず、含浸部43が繊維基材2の一方の面からはみ出るように含浸し、第1樹脂層3が繊維基材2の一方の面に直接、当接しなくてもよい。
 本実施形態では、繊維基材2の平均厚さTと、第2樹脂層4の厚み-taとが等しい。
 このように、第2樹脂層4と第1樹脂層3との界面が、繊維基材2の外部に存在することで、前記界面と繊維基材2との交点がなくなる。
 ここで、界面と繊維基材2との交点が多数ある場合、以下のような現象が発生すると懸念される。プリプレグにビアホール等の孔を形成し、この孔内部に金属層を形成した場合、金属イオンが繊維基材2と樹脂層間の界面との交点から進入し、さらに、前記界面をつたってマイグレートすると考えられる。一般に繊維基材2と樹脂層とは密着性が悪いため、金属イオンが繊維基材2と樹脂層間の界面との交点から進入やすいと考えられる。金属イオンがマイグレートすることで、ホール間の絶縁信頼性が低下してしまう。
 これに対し、界面と繊維基材2との交点をなくすことで、繊維基材2と第2樹脂層4との間から進入した金属イオンが前記界面をマイグレートしてしまうことを防止できる。これにより、ホール間の絶縁信頼性を高めることができる。
 また、本実施形態では、第1樹脂層3は、繊維基材2に含浸しないため、繊維基材2に対する含浸性を考慮する必要がない。そして、第1樹脂層3として、金属との密着性のよいものを選択すればよいので、第1樹脂層3の設計の幅を広げることができる。
 なお、プリプレグ1の厚さ方向に直交する断面をSEMで観察することで、第1樹脂層3と第2樹脂層4との界面を確認することができる。
 また、プリプレグ1の厚さ方向に直交する断面において、プリプレグ1の幅方向全体にわたって第1樹脂層3と第2樹脂層4との界面が形成されていることが好ましい。このような構造とすることで、各樹脂層3,4の機能を確実に発揮させることができる。
 なお、第1樹脂層3は、繊維基材2に含浸されておらず、第1樹脂層3中に他の繊維基材は存在しない。
Further, the interface F between the impregnated portion 43 and the first resin layer 3 is located outside the fiber substrate 2.
More specifically, the first resin layer 3 is in contact with one surface of the fiber base 2, but is not impregnated inside the fiber base 2. And the impregnation part 43 and the 1st resin layer 3 contact | abut, and the interface F is formed. In the present embodiment, the first resin layer 3 is in direct contact with one surface of the fiber base material 2, but not limited to this, the impregnation portion 43 protrudes from one surface of the fiber base material 2. Thus, the first resin layer 3 may not directly contact one surface of the fiber base 2.
In the present embodiment, the average thickness T of the fiber base 2 is equal to the thickness -ta of the second resin layer 4.
As described above, since the interface between the second resin layer 4 and the first resin layer 3 exists outside the fiber substrate 2, there is no intersection between the interface and the fiber substrate 2.
Here, when there are many intersections between the interface and the fiber base material 2, there is a concern that the following phenomenon occurs. When a hole such as a via hole is formed in the prepreg, and a metal layer is formed inside the hole, metal ions enter from the intersection between the fiber base material 2 and the resin layer, and further migrate through the interface. Conceivable. In general, since the fiber base 2 and the resin layer have poor adhesion, it is considered that metal ions are likely to enter from the intersection of the fiber base 2 and the interface between the resin layers. As metal ions migrate, the insulation reliability between holes decreases.
On the other hand, by eliminating the intersection between the interface and the fiber base material 2, it is possible to prevent metal ions entering from between the fiber base material 2 and the second resin layer 4 from migrating the interface. Thereby, the insulation reliability between holes can be improved.
Moreover, in this embodiment, since the 1st resin layer 3 does not impregnate the fiber base material 2, it is not necessary to consider the impregnation property with respect to the fiber base material 2. FIG. And what is necessary is just to select the thing with good adhesiveness with a metal as the 1st resin layer 3, Therefore The breadth of the design of the 1st resin layer 3 can be expanded.
In addition, the interface of the 1st resin layer 3 and the 2nd resin layer 4 can be confirmed by observing the cross section orthogonal to the thickness direction of the prepreg 1 by SEM.
In addition, in the cross section perpendicular to the thickness direction of the prepreg 1, it is preferable that the interface between the first resin layer 3 and the second resin layer 4 is formed over the entire width direction of the prepreg 1. By setting it as such a structure, the function of each resin layer 3 and 4 can be exhibited reliably.
The first resin layer 3 is not impregnated in the fiber base material 2, and no other fiber base material exists in the first resin layer 3.
 なお、本実施形態では、含浸部43は、繊維基材2の厚み全体にわたって、繊維基材2に含浸しているとしたが、これに限らず、第1樹脂層3も繊維基材2に含浸するものとしてもよい。図2に示すように、第2樹脂層4の含浸部43は繊維基材2の被覆部42で被覆された表面(他方の面)から、繊維基材2の厚みの90%以上の位置までにわたって繊維基材2に含浸する。すなわち、含浸部43の厚みta1は、繊維基材2の厚みTの90%以上である。また、第1樹脂層3の含浸部31が繊維基材2に含浸している。含浸部31は、被覆部32で被覆された繊維基材2の表面(一方の面)から繊維基材2の厚みの10%以下の位置までにわたって繊維基材2に含浸している。含浸部31の厚みtb1は、繊維基材2の厚みTの10%以下である。含浸部31は、含浸部43により含浸されていない領域を含浸している。そして、第1樹脂層3の一部である第1の含浸部31と第2樹脂層4の一部である第2の含浸部43とが繊維基材2内に位置する。繊維基材2内において、第1の含浸部31(第1樹脂層3の下面)と第2の含浸部43(第2樹脂層4の上面)とが接触している。また、第1の含浸部31と、含浸部43との境界には界面Fが形成されている。他の点は、図1と同様である。 In addition, in this embodiment, although the impregnation part 43 impregnated the fiber base material 2 over the whole thickness of the fiber base material 2, not only this but the 1st resin layer 3 is also in the fiber base material 2. It may be impregnated. As shown in FIG. 2, the impregnation portion 43 of the second resin layer 4 extends from the surface (the other surface) covered with the covering portion 42 of the fiber base material 2 to a position of 90% or more of the thickness of the fiber base material 2. The fiber substrate 2 is impregnated. That is, the thickness ta1 of the impregnated portion 43 is 90% or more of the thickness T of the fiber base 2. Further, the fiber base material 2 is impregnated with the impregnation portion 31 of the first resin layer 3. The impregnation part 31 impregnates the fiber base material 2 from the surface (one surface) of the fiber base material 2 covered with the covering part 32 to a position of 10% or less of the thickness of the fiber base material 2. The thickness tb1 of the impregnation part 31 is 10% or less of the thickness T of the fiber base 2. The impregnation part 31 impregnates a region not impregnated by the impregnation part 43. And the 1st impregnation part 31 which is a part of 1st resin layer 3, and the 2nd impregnation part 43 which is a part of 2nd resin layer 4 are located in the fiber base material 2. FIG. In the fiber base material 2, the 1st impregnation part 31 (lower surface of the 1st resin layer 3) and the 2nd impregnation part 43 (upper surface of the 2nd resin layer 4) are contacting. Further, an interface F is formed at the boundary between the first impregnation portion 31 and the impregnation portion 43. The other points are the same as in FIG.
 このように、含浸部43は繊維基材2の被覆部42で被覆された表面から、繊維基材2の厚みの90%以上の位置までにわたって繊維基材2に含浸することで、第2樹脂層4と第1樹脂層3との界面と繊維基材2との交点とを少なくすることができる。これにより、繊維基材2と第2樹脂層4との間から進入した金属イオンが前記界面をマイグレートしてしまうことを防止できる。これにより、ホール間の絶縁信頼性を高めることができる。
 これに加えて、含浸部31は、被覆部32で被覆された繊維基材2の表面から繊維基材2の厚みの10%以下の位置までにわたって繊維基材2に含浸しているが、含浸部31の含浸量はわずかであるため、含浸部31の繊維基材2に対する含浸性をほとんど考慮する必要がない。そのため、第1樹脂層3として、金属との密着性のよいものを選択すればよいので、第1樹脂層3の設計の幅を広げることができる。
 また、図2に示すように、繊維基材2内部で第1樹脂層3と第2樹脂層4とが接触することで、第1樹脂層3および第2樹脂層4間で剥離が生じることを防止できる。つまり、織り込まれた繊維基材2に、第1樹脂層3と第2樹脂層4とが含浸することで、繊維基材2に第1樹脂層3を構成する第1樹脂組成物、第2樹脂層4を構成する第2樹脂組成物が引っかかり、第1樹脂層3および第2樹脂層4間で剥離が生じることを防止できる。
Thus, the impregnation part 43 impregnates the fiber base material 2 from the surface covered with the covering part 42 of the fiber base material 2 to a position of 90% or more of the thickness of the fiber base material 2, whereby the second resin The intersection between the interface between the layer 4 and the first resin layer 3 and the fiber substrate 2 can be reduced. Thereby, it can prevent that the metal ion which entered from between the fiber base material 2 and the 2nd resin layer 4 migrates the said interface. Thereby, the insulation reliability between holes can be improved.
In addition to this, the impregnation part 31 impregnates the fiber base material 2 from the surface of the fiber base material 2 covered with the covering part 32 to a position of 10% or less of the thickness of the fiber base material 2. Since the impregnation amount of the portion 31 is small, it is not necessary to consider the impregnation property of the impregnation portion 31 with respect to the fiber base material 2. For this reason, since the first resin layer 3 may be selected from those having good adhesion to metal, the design range of the first resin layer 3 can be widened.
Moreover, as shown in FIG. 2, when the 1st resin layer 3 and the 2nd resin layer 4 contact in the fiber base material 2, peeling arises between the 1st resin layer 3 and the 2nd resin layer 4. As shown in FIG. Can be prevented. That is, the first resin composition constituting the first resin layer 3 in the fiber base material 2 is obtained by impregnating the woven fiber base material 2 with the first resin layer 3 and the second resin layer 4. It can prevent that the 2nd resin composition which comprises the resin layer 4 gets caught, and peeling arises between the 1st resin layer 3 and the 2nd resin layer 4. FIG.
 なお、第2樹脂層4が、繊維基材2の厚みの90%の位置までにわたって繊維基材2に含浸していることは、以下のようにして確認することができる。繊維基材2の厚みの平均値Tを算出し、この厚みの90%を算出する(数値C)。そして、繊維基材2の他方の面から、第1樹脂層3と第2樹脂層4との界面Fまでの距離の平均値D(10箇所測定)が数値Cを超えていればよい。 In addition, it can confirm that the 2nd resin layer 4 has impregnated the fiber base material 2 over the position of 90% of the thickness of the fiber base material 2 as follows. The average value T of the thickness of the fiber base material 2 is calculated, and 90% of this thickness is calculated (numerical value C). And the average value D (10 places measurement) of the distance from the other surface of the fiber base material 2 to the interface F of the 1st resin layer 3 and the 2nd resin layer 4 should just exceed the numerical value C.
 また、第1樹脂層3と第2樹脂層4との間に界面Fを形成するためには、詳しくは後述するが、たとえば、第1樹脂層3の最低溶融粘度η1、第2樹脂層4の最低溶融粘度η2の比(η1/η2)を1.1倍以上としたり、製造時に、いずれか一方の層をシート状で繊維基材2に供給するとともに、他方の層をワニス状で繊維基材2に供給すればよい。 Moreover, in order to form the interface F between the 1st resin layer 3 and the 2nd resin layer 4, although mentioned later in detail, the minimum melt viscosity (eta) 1 of the 1st resin layer 3, the 2nd resin layer 4 is mentioned, for example. The ratio (η1 / η2) of the minimum melt viscosity η2 is 1.1 times or more, and at the time of production, one of the layers is supplied to the fiber substrate 2 in the form of a sheet, and the other layer is varnished to form fibers. What is necessary is just to supply to the base material 2.
 また、第2樹脂層4の被覆部42の平均厚さをt[μm]とし、第1樹脂層3のうち、繊維基材2の一方の面を被覆する部分の平均厚さをt[μm]としたとき、tはtよりも大きいことが好ましい。プリプレグ1の表面(樹脂層3上)に配線部を高い加工性で形成することができる。一方、第2樹脂層4は、高い可撓性と十分な厚さを有することができるため、当該第2樹脂層4に他のプリプレグ1の配線部や他の繊維基材を埋め込む際、当該埋め込みを確実に行なうことができる、すなわち、他のプリプレグ1の配線部や他の繊維基材に対する埋め込み性が向上する。 Further, the average thickness of the covering portion 42 of the second resin layer 4 and t a [μm], among the first resin layer 3, the average thickness of the portion covering the one surface of the fiber substrate 2 t b [[mu] m] and the time, t a is preferably larger than t b. A wiring part can be formed on the surface of the prepreg 1 (on the resin layer 3) with high workability. On the other hand, since the second resin layer 4 can have high flexibility and sufficient thickness, when embedding the wiring portion of another prepreg 1 or another fiber base material in the second resin layer 4, The embedding can be performed reliably, that is, the embedding property to the wiring part of other prepreg 1 and other fiber base material is improved.
 具体的には、平均厚さtは、0.1~15μmであるのが好ましく、1~10μmであるのがより好ましい。一方、平均厚さtは、4~50μmであるのが好ましく、8~40μmであるのがより好ましい。 Specifically, the average thickness t b is preferably 0.1 to 15 μm, and more preferably 1 to 10 μm. On the other hand, the average thickness t a is preferably from 4 ~ 50 [mu] m, and more preferably 8 ~ 40 [mu] m.
 なお、平均厚さtおよび平均厚さtは、任意の間隔で10箇所測定し、その平均値を算出することで得られる。 The average thickness t a and the average thickness t b is measured 10 points at arbitrary intervals, obtained by calculating the average value.
 また、25℃から3℃/分の昇温速度で昇温したときの50~150℃の範囲における第1樹脂層3の最低溶融粘度(η1)と第2樹脂層4の最低溶融粘度(η2)との比η1/η2が1.1以上、100以下であることが好ましい。なお、第1樹脂層3の最低溶融粘度(η1)が、第2樹脂層4の最低溶融粘度(η2)よりも高い。このようにすることで、第2樹脂層4の繊維基材2への含浸性を高めるとともに、第1樹脂層3が繊維基材2に多量に含浸してしまうことを防止できる。
 また、最低溶融粘度比η1/η2を1.1以上とすることで、第1樹脂層3、第2樹脂層4が混合せずに、第1樹脂層3および第2樹脂層4間に界面を形成することができる。
 また、最低溶融粘度比η1/η2を100以下、特に、80以下とすることで、界面の密着性を向上させるという効果がある。
 最低溶融粘度の測定条件は、以下のようである。
 動的粘弾性測定装置を用いて、測定周波数62.83rad/sec、昇温速度3℃/分、50~150℃の条件で計測する。
 ここで、具体的には、第1樹脂層3の最低溶融粘度η1は、1000Pa・s以上、25000Pa・s以下であることが好ましい。
 一方で、第2樹脂層4の最低溶融粘度(η2)は、50Pa・s以上、10000Pa・s以下であることが好ましく、中でも、5000Pa・s以下、さらには、3000Pa・s以下であることが望ましい。
 第1樹脂層3の最低溶融粘度(η1)を、第2樹脂層4の最低溶融粘度(η2)の1.1倍以上とするとともに、各樹脂層の最低溶融粘度を上述した範囲とすることで、第2樹脂層4が少なくとも繊維基材2の厚みの90%の位置までにわたって繊維基材2に含浸したプリプレグを製造しやすくすることができる。
The minimum melt viscosity (η1) of the first resin layer 3 and the minimum melt viscosity (η2) of the second resin layer 4 in the range of 50 to 150 ° C. when the temperature is increased from 25 ° C. at a rate of 3 ° C./min. ) 1 / η2 is preferably 1.1 or more and 100 or less. In addition, the minimum melt viscosity (η1) of the first resin layer 3 is higher than the minimum melt viscosity (η2) of the second resin layer 4. By doing in this way, while improving the impregnation property to the fiber base material 2 of the 2nd resin layer 4, it can prevent that the 1st resin layer 3 impregnates the fiber base material 2 in large quantities.
Further, by setting the minimum melt viscosity ratio η1 / η2 to 1.1 or more, the first resin layer 3 and the second resin layer 4 are not mixed, and the interface between the first resin layer 3 and the second resin layer 4 is achieved. Can be formed.
Moreover, there exists an effect of improving the adhesiveness of an interface by making minimum melt viscosity ratio (eta) 1 / (eta) 2 into 100 or less, especially 80 or less.
The measurement conditions for the minimum melt viscosity are as follows.
Using a dynamic viscoelasticity measuring device, measurement is performed under the conditions of a measurement frequency of 62.83 rad / sec, a temperature rising rate of 3 ° C./min, and 50 to 150 ° C.
Here, specifically, the minimum melt viscosity η1 of the first resin layer 3 is preferably 1000 Pa · s or more and 25000 Pa · s or less.
On the other hand, the minimum melt viscosity (η2) of the second resin layer 4 is preferably 50 Pa · s or more and 10000 Pa · s or less, more preferably 5000 Pa · s or less, and further 3000 Pa · s or less. desirable.
The minimum melt viscosity (η1) of the first resin layer 3 is 1.1 times or more the minimum melt viscosity (η2) of the second resin layer 4, and the minimum melt viscosity of each resin layer is in the above-described range. Thus, the prepreg impregnated in the fiber base material 2 over the position where the second resin layer 4 is at least 90% of the thickness of the fiber base material 2 can be easily manufactured.
 さらに、本実施形態のプリプレグ1は、以下の特性も満たすことが好ましい。
 IPC-TM-650 Method 2.3.17に準拠し、171±3℃、1380±70kPaの条件で5分間加熱加圧して測定された樹脂流れが、15重量%以上50重量%以下であり、
 対向する一対のゴム板で該プリプレグ1を挟んだ状態で、120℃、2.5MPaの条件下に加熱及び加圧したとき、平面視で繊維基材2の外縁からはみ出る樹脂層の重量(第1樹脂層3および第2樹脂層4の合計重量)が、第1樹脂層3全体および第2樹脂層4全体の合計重量に対して、5%以下であり、前記ゴム板が下記(i)~(iii)を満たす。
(i)JIS K 6253 Aに準拠して測定したゴム硬度が60°
(ii)厚み3mm
(iii)材質がシリコン
Furthermore, it is preferable that the prepreg 1 of this embodiment also satisfies the following characteristics.
According to IPC-TM-650 Method 2.3.17, the resin flow measured by heating and pressurizing for 5 minutes under the conditions of 171 ± 3 ° C. and 1380 ± 70 kPa is 15 wt% or more and 50 wt% or less,
When the prepreg 1 is sandwiched between a pair of opposing rubber plates and heated and pressurized under the conditions of 120 ° C. and 2.5 MPa, the weight of the resin layer protruding from the outer edge of the fiber substrate 2 in plan view (first 1 resin layer 3 and the total weight of the second resin layer 4) is 5% or less with respect to the total weight of the entire first resin layer 3 and the entire second resin layer 4, and the rubber plate is the following (i) Satisfy (iii).
(I) Rubber hardness measured in accordance with JIS K 6253 A is 60 °
(Ii) Thickness 3mm
(Iii) Material is silicon
 IPC-TM-650 Method 2.3.17に準拠して、171±3℃、1380±70kPaの条件で5分間加熱加圧して測定された樹脂流れを15重量%以上とすることで、回路の埋め込み性に優れるプリプレグを得ることができる。また、樹脂流れの上限を50重量%以下とすることで、プリプレグを積層プレスしたときに、プリプレグからの樹脂層の流出を抑制することができる。したがって、内層回路基板13等のコア層(図5参照)に積層させるとき、内層回路基板13の回路の埋め込み性に優れ、かつ、積層プレス時のプリプレグからの樹脂層の流出を抑制できるビルドアップ用プリプレグとすることができる。
 さらに、対向する一対のゴム板でプリプレグ1を挟んだ状態で、120℃、2.5MPaの条件で加熱及び加圧したとき、平面視で繊維基材2の外縁からはみ出る樹脂層の重量を5重量%以下とすることで、得られる積層板の厚み均一性を向上させることができる。したがって、内層回路基板13に積層させるとき、内層回路基板13の回路の埋め込み性に優れ、積層プレス時のプリプレグからの樹脂層の流出を抑制でき、かつ、厚み均一性を向上させることができるプリプレグが実現可能になる。
 なお、対向する一対のゴム板でプリプレグ1を挟んだ状態で、120℃、2.5MPaの条件で加熱及び加圧したとき、平面視で繊維基材2の外縁からはみ出る樹脂層の重量の下限値は特に限定されないが、たとえば、0.1重量%である。
In accordance with IPC-TM-650 Method 2.3.17, the resin flow measured by heating and pressurizing for 5 minutes under the conditions of 171 ± 3 ° C. and 1380 ± 70 kPa is 15% by weight or more. A prepreg excellent in embedding property can be obtained. Moreover, when the upper limit of the resin flow is 50% by weight or less, the outflow of the resin layer from the prepreg can be suppressed when the prepreg is laminated and pressed. Therefore, when it is laminated on a core layer (see FIG. 5) such as the inner layer circuit board 13, the build-up is excellent in embedding of the circuit of the inner layer circuit board 13 and can suppress the outflow of the resin layer from the prepreg during the lamination press. Prepreg.
Further, when the prepreg 1 is sandwiched between a pair of opposed rubber plates and heated and pressurized under the conditions of 120 ° C. and 2.5 MPa, the weight of the resin layer protruding from the outer edge of the fiber substrate 2 in plan view is 5 The thickness uniformity of the obtained laminated board can be improved by setting it as the weight% or less. Therefore, when laminated on the inner layer circuit board 13, the prepreg has excellent circuit embedding properties, can suppress the outflow of the resin layer from the prepreg during the lamination press, and can improve the thickness uniformity. Becomes feasible.
In addition, the lower limit of the weight of the resin layer protruding from the outer edge of the fiber substrate 2 in plan view when heated and pressurized under the conditions of 120 ° C. and 2.5 MPa with the prepreg 1 sandwiched between a pair of opposing rubber plates Although a value is not specifically limited, For example, it is 0.1 weight%.
 ここで、上記の特性を有する第1樹脂層3および第2樹脂層4をそれぞれ得るために、第1樹脂組成物および第2樹脂組成物は、次のような組成とするのが好ましい。 Here, in order to obtain the first resin layer 3 and the second resin layer 4 having the above characteristics, the first resin composition and the second resin composition preferably have the following compositions.
 第1樹脂組成物は、例えば、熱硬化性樹脂を含み、必要に応じて、硬化助剤(例えば硬化剤、硬化促進剤等)および無機充填材のうちの少なくとも1種を含んで構成される。 The first resin composition includes, for example, a thermosetting resin, and includes at least one of a curing aid (for example, a curing agent and a curing accelerator) and an inorganic filler as necessary. .
 配線部を構成する金属との密着性を向上させるには、金属との密着性に優れる熱硬化性樹脂を使用する方法、金属との密着性を向上させる硬化助剤(例えば硬化剤、硬化促進剤等)を使用する方法、無機充填材として酸に可溶なものを用いる方法、無機充填材と有機充填材とを併用する方法、特定の熱可塑性樹脂を使用する方法等が挙げられる。 In order to improve the adhesion with the metal constituting the wiring part, a method of using a thermosetting resin having excellent adhesion with the metal, a curing aid that improves the adhesion with the metal (for example, curing agent, curing acceleration) And the like, a method using an acid-soluble material as an inorganic filler, a method using an inorganic filler and an organic filler in combination, a method using a specific thermoplastic resin, and the like.
 かかる熱硬化性樹脂には、例えば、ユリア(尿素)樹脂、メラミン樹脂、ビスマレイミド樹脂、ポリウレタン樹脂、ベンゾオキサジン環を有する樹脂、シアネートエステル樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールF型エポキシ樹脂およびビスフェノールSとビスフェノールFとの共重合エポキシ樹脂等のエポキシ樹脂等が好適に用いられる。これらのうち、いずれか1種以上を使用できる。
 また、これらの中でも、熱硬化性樹脂には、特に、シアネート樹脂(シアネート樹脂のプレポリマーを含む)を用いるのが好ましい。
Examples of such thermosetting resins include urea (urea) resins, melamine resins, bismaleimide resins, polyurethane resins, resins having a benzoxazine ring, cyanate ester resins, bisphenol S type epoxy resins, bisphenol F type epoxy resins, and bisphenols. An epoxy resin such as a copolymerized epoxy resin of S and bisphenol F is preferably used. Any one or more of these can be used.
Of these, it is particularly preferable to use a cyanate resin (including a prepolymer of cyanate resin) as the thermosetting resin.
 かかるシアネート樹脂は、例えば、ハロゲン化シアン化合物とフェノール類とを反応させ、必要に応じて、加熱等の方法でプレポリマー化することにより得ることができる。 Such a cyanate resin can be obtained, for example, by reacting a cyanogen halide with a phenol and prepolymerizing it by a method such as heating, if necessary.
 具体的なシアネート樹脂としては、例えば、ノボラック型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂等のビスフェノール型シアネート樹脂等を挙げることができる。これらのうち、いずれか1種以上を使用できる。これらの中でも、シアネート樹脂は、ノボラック型シアネート樹脂であるのが好ましい。 Specific examples of cyanate resins include novolak-type cyanate resins, bisphenol A-type cyanate resins, bisphenol E-type cyanate resins, and tetramethylbisphenol F-type cyanate resins. Any one or more of these can be used. Among these, it is preferable that cyanate resin is a novolak-type cyanate resin.
 ノボラック型シアネート樹脂を用いれば、後述する基板10(図5参照)を作製した後において、硬化後の第1樹脂層3中において架橋密度が増加するので、硬化後の第1樹脂層3(得られる基板)の耐熱性および難燃性の向上を図ることができる。 If a novolac-type cyanate resin is used, the cross-link density increases in the first resin layer 3 after curing after the substrate 10 (see FIG. 5) described later is manufactured, so that the first resin layer 3 (obtained after curing) is obtained. The heat resistance and flame retardancy of the substrate) can be improved.
 ここで、耐熱性の向上は、ノボラック型シアネート樹脂が硬化反応後にトリアジン環を形成することに起因すると考えられる。また、難燃性の向上は、ノボラック型シアネート樹脂がその構造上ベンゼン環の割合が高いため、このベンゼン環が炭化(グラファイト化)し易く、硬化後の第1樹脂層3中に炭化部分が生じることに起因すると考えられる。 Here, the improvement in heat resistance is thought to be due to the fact that the novolac-type cyanate resin forms a triazine ring after the curing reaction. In addition, the flame retardancy is improved because the novolak-type cyanate resin has a high proportion of benzene rings due to its structure, so that the benzene rings are easily carbonized (graphitized), and the first resin layer 3 after curing has carbonized portions. It is thought that it originates in what happens.
 さらに、ノボラック型シアネート樹脂を用いれば、プリプレグ1を薄型化(例えば、厚さ35μm以下)した場合であっても、プリプレグ1に優れた剛性を付与することができる。また、その硬化物は、加熱時における剛性にも優れるので、得られる基板10は、半導体素子500(図6参照)を実装する際の信頼性にも優れる。
 具体的には、式(I)で示されるノボラック型シアネート樹脂を用いることができる。 
Furthermore, if a novolac-type cyanate resin is used, even if the prepreg 1 is thinned (for example, 35 μm or less in thickness), excellent rigidity can be imparted to the prepreg 1. Moreover, since the cured product is excellent in rigidity at the time of heating, the obtained substrate 10 is also excellent in reliability when the semiconductor element 500 (see FIG. 6) is mounted.
Specifically, a novolac type cyanate resin represented by the formula (I) can be used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(I)で示されるノボラック型シアネート樹脂において、その平均繰り返し単位数「n」は、特に限定されないが、1~10であるのが好ましく、2~7であるのがより好ましい。平均繰り返し単位数「n」が前記下限値未満であると、ノボラック型シアネート樹脂は、結晶化し易くなるため、汎用溶媒に対する溶解性が低下する。このため、ノボラック型シアネート樹脂の含有量等によっては、第1樹脂組成物が取り扱い難くなる場合がある。また、プリプレグ1を作製した場合にタック性が生じ、プリプレグ1同士が接触したとき互いに付着したり、一方のプリプレグ1の第1樹脂組成物が他方のプリプレグ1に移行する現象(転写)が生じたりする場合がある。一方、平均繰り返し単位数「n」が前記上限値を超えると、第1樹脂組成物の粘度が高くなりすぎ、プリプレグ1を作製する際の効率(第1樹脂層3の成形性)が低下する場合がある。 In the novolak-type cyanate resin represented by the formula (I), the average number of repeating units “n” is not particularly limited, but is preferably 1 to 10, and more preferably 2 to 7. When the average number of repeating units “n” is less than the lower limit, the novolac cyanate resin is easily crystallized, and thus the solubility in a general-purpose solvent decreases. For this reason, the first resin composition may be difficult to handle depending on the content of the novolac-type cyanate resin. In addition, when the prepreg 1 is manufactured, tackiness occurs, and when the prepregs 1 come into contact with each other, a phenomenon occurs in which the prepregs 1 adhere to each other or the first resin composition of one prepreg 1 shifts to the other prepreg 1. Sometimes. On the other hand, if the average number of repeating units “n” exceeds the upper limit, the viscosity of the first resin composition becomes too high, and the efficiency (formability of the first resin layer 3) when producing the prepreg 1 is lowered. There is a case.
 また、金属との密着性を向上させる硬化剤または硬化促進剤を併用する場合には、上述の熱硬化性樹脂以外に、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂等のノボラック型フェノール樹脂、未変性のレゾールフェノール樹脂、桐油、アマニ油、クルミ油等で変性した油変性レゾールフェノール樹脂等のレゾール型フェノール樹脂等のフェノール樹脂、ビスフェノールAエポキシ樹脂、ビスフェノールFエポキシ樹脂等のビスフェノール型エポキシ樹脂、ノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂等のノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂等のエポキシ樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、シリコーン樹脂等の他の熱硬化性樹脂を用いることもできる。これらのうち、いずれか1種以上を使用できる。 Moreover, when using together the hardening | curing agent or hardening accelerator which improves adhesiveness with a metal, in addition to the above-mentioned thermosetting resin, for example, novolak type such as phenol novolak resin, cresol novolak resin, bisphenol A novolak resin, etc. Phenolic resins, unmodified resol phenolic resins, phenolic resins such as oil-modified resol phenolic resins modified with tung oil, linseed oil, walnut oil, etc., bisphenol types such as bisphenol A epoxy resin, bisphenol F epoxy resin, etc. Other thermosetting such as epoxy resin, novolak epoxy resin, cresol novolak epoxy resin such as cresol novolak epoxy resin, epoxy resin such as biphenyl type epoxy resin, unsaturated polyester resin, diallyl phthalate resin, silicone resin It is also possible to use fat. Any one or more of these can be used.
 熱硬化性樹脂の含有量は、特に限定されないが、第1樹脂組成物全体の5~50重量%であるのが好ましく、10~40重量%であるのがより好ましい。熱硬化性樹脂の含有量が前記下限値未満であると、熱硬化性樹脂の種類等によっては、第1樹脂組成物のワニスの粘度が低くなりすぎ、プリプレグ1を形成するのが困難となる場合がある。一方、熱硬化性樹脂の含有量が前記上限値を超えると、他の成分の量が少なくなり過ぎるため、熱硬化性樹脂の種類等によっては、プリプレグ1の機械的強度が低下する場合がある。
 なお、本明細書において、樹脂組成物という場合には、溶剤を除いたものをいい、溶剤以外の成分を100重量部として、各成分の含有量を規定している。
The content of the thermosetting resin is not particularly limited, but is preferably 5 to 50% by weight, more preferably 10 to 40% by weight, based on the entire first resin composition. When the content of the thermosetting resin is less than the lower limit, depending on the type of the thermosetting resin, the viscosity of the varnish of the first resin composition becomes too low, and it becomes difficult to form the prepreg 1. There is a case. On the other hand, if the content of the thermosetting resin exceeds the upper limit, the amount of other components is too small, and the mechanical strength of the prepreg 1 may decrease depending on the type of the thermosetting resin. .
In addition, in this specification, when it says a resin composition, it means what remove | excluded the solvent and the content of each component is prescribed | regulated by making components other than a solvent into 100 weight part.
 上述の硬化助剤(例えば硬化剤、硬化促進剤等)としては、例えば、トリエチルアミン、トリブチルアミン、ジアザビシクロ[2,2,2]オクタン等の3級アミン類、2-エチル-4-エチルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4-メチル-5-ヒドルキシメチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2,4-ジアミノ-6-〔2'-メチルイミダゾリル-(1')〕-エチル-s-トリアジン、2,4-ジアミノ-6-(2'-ウンデシルイミダゾリル)-エチル-s-トリアジン、2,4-ジアミノ-6-〔2'-エチル-4-メチルイミダゾリル-(1')〕-エチル-s-トリアジン、1-ベンジル-2-フェニルイミダゾール等のイミダゾール化合物が挙げられる。これらのうち、いずれか1種以上を使用できる。 Examples of the above-described curing aid (for example, a curing agent, a curing accelerator, etc.) include tertiary amines such as triethylamine, tributylamine, diazabicyclo [2,2,2] octane, 2-ethyl-4-ethylimidazole, 2-phenyl-4-methylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2,4-diamino-6- [2'-methyl Imidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- (2′-undecylimidazolyl) -ethyl-s-triazine, 2,4-diamino-6- [2′-ethyl Imidazole compounds such as -4-methylimidazolyl- (1 ′)]-ethyl-s-triazine and 1-benzyl-2-phenylimidazole It is. Any one or more of these can be used.
 これらの中でも、硬化助剤は、脂肪族炭化水素基、芳香族炭化水素基、ヒドロキシアルキル基およびシアノアルキル基の中から選ばれる官能基を2個以上有しているイミダゾール化合物のなかから選択される1種以上であることがこのましく、なかでも、2-フェニル-4,5-ジヒドロキシメチルイミダゾールであるのがより好ましい。 Among these, the curing aid is selected from imidazole compounds having two or more functional groups selected from an aliphatic hydrocarbon group, an aromatic hydrocarbon group, a hydroxyalkyl group, and a cyanoalkyl group. In particular, 2-phenyl-4,5-dihydroxymethylimidazole is more preferable.
 また、第1樹脂組成物には、例えば、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)、トリスアセチルアセトナートコバルト(III)等の有機金属塩、フェノール、ビスフェノールA、ノニルフェノール等のフェノール化合物、酢酸、安息香酸、サリチル酸、パラトルエンスルホン酸等の有機酸等を組み合わせて用いることができる。これらのうち、いずれか1種以上を使用できる。 Examples of the first resin composition include organic metal salts such as zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), and trisacetylacetonate cobalt (III). Further, phenol compounds such as phenol, bisphenol A and nonylphenol, organic acids such as acetic acid, benzoic acid, salicylic acid and paratoluenesulfonic acid can be used in combination. Any one or more of these can be used.
 硬化助剤を用いる場合、その含有量は、第1樹脂組成物全体の0.01~3重量%であるのが好ましく、0.1~1重量%であるのがより好ましい。 When a curing aid is used, the content thereof is preferably 0.01 to 3% by weight, more preferably 0.1 to 1% by weight, based on the entire first resin composition.
 また、第1樹脂組成物は、無機充填材を含むことが好ましい。これにより、プリプレグ1を薄型化(例えば、厚さ35μm以下)にしても、機械的強度に優れるプリプレグ1を得ることができる。さらに、プリプレグ1の低熱膨張化を向上することもできる。 The first resin composition preferably contains an inorganic filler. Thereby, even if the prepreg 1 is made thin (for example, a thickness of 35 μm or less), the prepreg 1 having excellent mechanical strength can be obtained. Furthermore, the low thermal expansion of the prepreg 1 can be improved.
 無機充填材としては、例えば、タルク、アルミナ、ガラス、溶融シリカのようなシリカ、マイカ、水酸化アルミニウム、水酸化マグネシウム等を挙げることができる。これらのうち、いずれか1種以上を使用できる。また、無機充填材の使用目的に応じて、破砕状、球状のものが適宜選択される。これらの中でも、低熱膨張性に優れる観点からは、無機充填剤は、シリカであるのが好ましく、溶融シリカ(特に球状溶融シリカ)であるのがより好ましい。 Examples of the inorganic filler include talc, alumina, glass, silica such as fused silica, mica, aluminum hydroxide, magnesium hydroxide, and the like. Any one or more of these can be used. Further, depending on the purpose of use of the inorganic filler, a crushed or spherical one is appropriately selected. Among these, from the viewpoint of excellent low thermal expansibility, the inorganic filler is preferably silica, and more preferably fused silica (particularly spherical fused silica).
 無機充填材の平均粒径は、0.01~5.0μmであるのが好ましく、0.2~2.0μmであるのがより好ましい。なお、この平均粒径は、d50であり、以下のようにして計測できる。
 無機充填材を水中で超音波により分散させ、動的光散乱式粒度分布測定装置(HORIBA社製、LB-550)により、無機充填材の粒度分布を体積基準で測定し、そのメディアン径を平均粒子径とした。
The average particle size of the inorganic filler is preferably 0.01 to 5.0 μm, and more preferably 0.2 to 2.0 μm. Incidentally, the average particle size is d 50, can be measured as follows.
The inorganic filler is dispersed in water by ultrasonic waves, and the particle size distribution of the inorganic filler is measured on a volume basis by a dynamic light scattering particle size distribution measuring device (LB-550, manufactured by HORIBA). The median diameter is averaged. The particle diameter was taken.
 特に、無機充填材としては、平均粒径5.0μm以下の球状溶融シリカが好ましい。 In particular, as the inorganic filler, spherical fused silica having an average particle size of 5.0 μm or less is preferable.
 また、第1樹脂層3と配線部との密着性を向上するために、無機充填材として、酸に可溶な無機充填材を用いてもよい。これにより、配線部(導体層)を第1樹脂層3上にメッキ法で形成した場合に、その配線部の第1樹脂層3に対する密着性(メッキ密着性)を向上することができる。この酸に可溶な無機充填材としては、例えば、炭酸カルシウム、酸化亜鉛、酸化鉄等の金属酸化物等が挙げられる。 In order to improve the adhesion between the first resin layer 3 and the wiring part, an acid-soluble inorganic filler may be used as the inorganic filler. Thereby, when the wiring part (conductor layer) is formed on the first resin layer 3 by plating, the adhesion (plating adhesion) of the wiring part to the first resin layer 3 can be improved. Examples of the acid-soluble inorganic filler include metal oxides such as calcium carbonate, zinc oxide, and iron oxide.
 また、第1樹脂層3と配線部との密着性を向上するために、無機充填材と有機充填材とを併用してもよい。この有機充填材としては、例えば、液晶ポリマー、ポリイミド等の樹脂系充填材が挙げられる。 Further, in order to improve the adhesion between the first resin layer 3 and the wiring part, an inorganic filler and an organic filler may be used in combination. Examples of the organic filler include resin fillers such as liquid crystal polymer and polyimide.
 無機充填材を用いる場合、その含有量は、特に限定されないが、第1樹脂組成物全体の20~70重量%であるのが好ましく、30~60重量%であるのがより好ましい。 When the inorganic filler is used, the content thereof is not particularly limited, but is preferably 20 to 70% by weight, more preferably 30 to 60% by weight of the entire first resin composition.
 熱硬化性樹脂としてシアネート樹脂(特に、ノボラック型シアネート樹脂)を用いる場合には、エポキシ樹脂(実質的にハロゲン原子を含まない)を併用することが好ましい。このエポキシ樹脂としては、例えば、フェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、アリールアルキレン型エポキシ樹脂等が挙げられる。これらのうち、いずれか1種以上を使用できる。 When using a cyanate resin (particularly a novolac-type cyanate resin) as the thermosetting resin, it is preferable to use an epoxy resin (substantially free of halogen atoms) in combination. Examples of the epoxy resin include phenol novolac type epoxy resin, bisphenol type epoxy resin, naphthalene type epoxy resin, arylalkylene type epoxy resin, and the like. Any one or more of these can be used.
 これらの中でも、エポキシ樹脂は、ナフタレン型エポキシ樹脂、アリールアルキレン型エポキシ樹脂のいずれか1以上であるのが好ましい。これらのエポキシ樹脂を用いることにより、硬化後の第1樹脂層3において、吸湿半田耐熱性(吸湿後の半田耐熱性)および難燃性を向上させることができる。 Among these, the epoxy resin is preferably at least one of a naphthalene type epoxy resin and an arylalkylene type epoxy resin. By using these epoxy resins, moisture absorption solder heat resistance (solder heat resistance after moisture absorption) and flame retardancy can be improved in the cured first resin layer 3.
 ナフタレン型エポキシ樹脂とは、繰り返し単位中にナフタレン骨格を有するものをいう。ナフタレン型エポキシ樹脂としては、ナフトール型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、2官能ないし4官能エポキシ型ナフタレン樹脂、ナフチレンエーテル型エポキシ樹脂などが好ましい。これらのうち、いずれか1種以上を使用できる。
これにより、耐熱性、低熱膨張性をさらに向上させることができる。また、ベンゼン環に比べナフタレン環のπ-πスタッキン効果が高いため、特に、低熱膨張性、低熱収縮性に優れる。更に、多環構造のため剛直効果が高く、ガラス転移温度が特に高いため、リフロー前後の熱収縮変化が小さい。ナフトール型エポキシ樹脂としては、例えば下記一般式(VII-1)、ナフタレンジオール型エポキシ樹脂としては下記式(VII-2)、2官能ないし4官能エポキシ型ナフタレン樹脂としては下記式(VII-3)(VII-4)(VII-5)、ナフチレンエーテル型エポキシ樹脂としては、例えば、下記一般式(VII-6)で示すことができ、これらのうち、いずれか1種以上を使用できる。なかでも、低吸水、低熱膨張の観点から、ナフチレンエーテル型エポキシ樹脂が好ましい。ナフチレンエーテル型エポキシ樹脂とは、ナフタレン骨格が酸素原子を介して、他のアリーレン構造と結合した構造を有するエポキシ樹脂である。
The naphthalene type epoxy resin means one having a naphthalene skeleton in a repeating unit. As the naphthalene type epoxy resin, a naphthol type epoxy resin, a naphthalene diol type epoxy resin, a bifunctional to tetrafunctional epoxy type naphthalene resin, a naphthylene ether type epoxy resin and the like are preferable. Any one or more of these can be used.
Thereby, heat resistance and low thermal expansibility can further be improved. In addition, since the naphthalene ring has a higher π-π stacking effect than the benzene ring, it is particularly excellent in low thermal expansion and low thermal shrinkage. Furthermore, since the polycyclic structure has a high rigidity effect and the glass transition temperature is particularly high, the change in heat shrinkage before and after reflow is small. As the naphthol type epoxy resin, for example, the following general formula (VII-1); as the naphthalene diol type epoxy resin, the following formula (VII-2); as the bifunctional or tetrafunctional epoxy type naphthalene resin, the following formula (VII-3): Examples of (VII-4) (VII-5) and naphthylene ether type epoxy resins can be represented by the following general formula (VII-6), and one or more of these can be used. Of these, naphthylene ether type epoxy resins are preferred from the viewpoint of low water absorption and low thermal expansion. The naphthylene ether type epoxy resin is an epoxy resin having a structure in which a naphthalene skeleton is bonded to another arylene structure via an oxygen atom.
Figure JPOXMLDOC01-appb-C000002

(nは平均1以上6以下の数を示し、Rはグリシジル基または炭素数1以上10以下の炭化水素基を示す。ただし、いずれか一方のRは、グリシジル基である。)
Figure JPOXMLDOC01-appb-C000002

(N represents an average of 1 to 6 and R represents a glycidyl group or a hydrocarbon group having 1 to 10 carbon atoms, provided that one of R is a glycidyl group.)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005

(式中、Rは水素原子又はメチル基を表し、Rはそれぞれ独立的に水素原子、炭素原子数1~4のアルキル基、又はアラルキル基、又は、ナフタレン基、又はグリシジルエーテル基含有ナフタレン基を表し、o及びmはそれぞれ0~2の整数であって、かつo又はmの何れか一方は1以上である。)
Figure JPOXMLDOC01-appb-C000005

(In the formula, R 1 represents a hydrogen atom or a methyl group, and R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aralkyl group, a naphthalene group, or a glycidyl ether group-containing naphthalene. And o and m are each an integer of 0 to 2, and either o or m is 1 or more.)
 ナフチレンエーテル型エポキシ樹脂として、たとえば、以下の式(6)、(7)で示されるものを使用しても良い。 As the naphthylene ether type epoxy resin, for example, those represented by the following formulas (6) and (7) may be used.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006

Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007

 アリールアルキレン型エポキシ樹脂とは、繰り返し単位中に一つ以上のアリールアルキレン基を有するエポキシ樹脂をいい、例えば、キシリレン型エポキシ樹脂、ビフェニルジメチレン型エポキシ樹脂等が挙げられる。これらのうち、いずれか1種以上を使用できる。また、これらの中でも、アリールアルキレン型エポキシ樹脂は、ビフェニルジメチレン型エポキシ樹脂であるのが好ましい。 The arylalkylene type epoxy resin refers to an epoxy resin having one or more arylalkylene groups in a repeating unit, and examples thereof include a xylylene type epoxy resin and a biphenyldimethylene type epoxy resin. Any one or more of these can be used. Among these, the aryl alkylene type epoxy resin is preferably a biphenyl dimethylene type epoxy resin.
 具体的には、式(II)で示されるビフェニルジメチレン型エポキシ樹脂を用いることができる。 Specifically, a biphenyl dimethylene type epoxy resin represented by the formula (II) can be used.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(II)で示されるビフェニルジメチレン型エポキシ樹脂の平均繰り返し単位数「n」は、特に限定されないが、1~10であるのが好ましく、2~5であるのがより好ましい。平均繰り返し単位数「n」が前記下限値未満であると、ビフェニルジメチレン型エポキシ樹脂は、結晶化し易くなるため、汎用溶媒に対する溶解性が低下する。このため、第1樹脂組成物のワニスが取り扱い難くなる場合がある。一方、平均繰り返し単位数「n」が前記上限値を超えると、用いる溶媒によっては、第1樹脂組成物のワニスの粘度が上昇する恐れがある。この場合、第1樹脂組成物を繊維基材2に十分に含浸できず、結果として、プリプレグ1の成形不良や機械的強度の低下の原因となることがある。 The average number of repeating units “n” of the biphenyldimethylene type epoxy resin represented by the formula (II) is not particularly limited, but is preferably 1 to 10, and more preferably 2 to 5. When the average number of repeating units “n” is less than the lower limit, the biphenyldimethylene type epoxy resin is easily crystallized, so that the solubility in a general-purpose solvent decreases. For this reason, the varnish of the first resin composition may be difficult to handle. On the other hand, when the average number of repeating units “n” exceeds the upper limit, depending on the solvent used, the viscosity of the varnish of the first resin composition may increase. In this case, the fiber base material 2 cannot be sufficiently impregnated with the first resin composition, and as a result, molding failure of the prepreg 1 and mechanical strength may be reduced.
 エポキシ樹脂の含有量の下限は、とくに限定されないが、樹脂組成物全体において1重量%以上が好ましく、とくに2重量%以上が好ましい。含有量が小さすぎるとシアネート樹脂の反応性が低下したり、得られる製品の耐湿性が低下したりする場合がある。エポキシ樹脂の含有量の上限は、とくに限定されないが、40重量%以下が好ましい。含有量が大きすぎると耐熱性が低下する場合がある。 The lower limit of the content of the epoxy resin is not particularly limited, but is preferably 1% by weight or more, and particularly preferably 2% by weight or more in the entire resin composition. If the content is too small, the reactivity of the cyanate resin may decrease, or the moisture resistance of the resulting product may decrease. Although the upper limit of content of an epoxy resin is not specifically limited, 40 weight% or less is preferable. If the content is too large, the heat resistance may decrease.
 エポキシ樹脂の重量平均分子量(Mw)の下限は、とくに限定されないが、Mw500以上が好ましく、とくにMw800以上が好ましい。Mwが小さすぎると樹脂層にタック性が生じる場合がある。Mwの上限は、とくに限定されないが、Mw20,000以下が好ましく、とくにMw15,000以下が好ましい。Mwが大きすぎると絶縁樹脂層作製時、繊維基材への含浸性が低下し、均一な製品が得られない場合がある。エポキシ樹脂のMwは、例えばGPCで測定することができる。 The lower limit of the weight average molecular weight (Mw) of the epoxy resin is not particularly limited, but is preferably 500 or more, more preferably 800 or more. If Mw is too small, tackiness may occur in the resin layer. The upper limit of Mw is not particularly limited, but is preferably Mw 20,000 or less, and particularly preferably Mw 15,000 or less. If Mw is too large, the impregnation property to the fiber base material may be deteriorated during the production of the insulating resin layer, and a uniform product may not be obtained. The Mw of the epoxy resin can be measured by GPC, for example.
 さらに、第1樹脂組成物には、金属との密着性が向上するような成分(樹脂等を含む)を添加してもよい。かかる成分としては、例えば、フェノキシ樹脂、ポリビニルアセタール系樹脂、ポリアミド系樹脂の熱可塑性樹脂があげられ、これらのうち、いずれか1種以上を含むことがこのましい。これらの樹脂のなかでも、金属との密着性の観点から、フェノキシ樹脂を含むことが好ましい。
 さらには、第1樹脂組成物は、カップリング剤を含むことが好ましい。
Furthermore, you may add to a 1st resin composition the component (a resin etc. are included) which improves adhesiveness with a metal. Examples of such components include thermoplastic resins such as phenoxy resins, polyvinyl acetal resins, and polyamide resins, and it is preferable to include any one or more of these. Among these resins, it is preferable to include a phenoxy resin from the viewpoint of adhesion to a metal.
Furthermore, the first resin composition preferably contains a coupling agent.
 フェノキシ樹脂としては、例えば、ビスフェノール骨格を有するフェノキシ樹脂、ナフタレン骨格を有するフェノキシ樹脂、ビフェニル骨格を有するフェノキシ樹脂等が挙げられる。また、これらの骨格を複数種有した構造のフェノキシ樹脂を用いることもできる。フェノキシ樹脂としては、これらのうち、いずれか1種以上を使用できる。 Examples of the phenoxy resin include a phenoxy resin having a bisphenol skeleton, a phenoxy resin having a naphthalene skeleton, and a phenoxy resin having a biphenyl skeleton. A phenoxy resin having a structure having a plurality of these skeletons can also be used. Any one or more of these may be used as the phenoxy resin.
 これらの中でも、フェノキシ樹脂には、ビフェニル骨格およびビスフェノールS骨格を有するフェノキシ樹脂を用いるのが好ましい。これにより、ビフェニル骨格が有する剛直性により、フェノキシ樹脂のガラス転移温度を高くすることができるとともに、ビスフェノールS骨格の存在により、フェノキシ樹脂の金属との密着性を向上させることができる。その結果、第1樹脂層3の耐熱性の向上を図ることができるとともに、多層基板を製造する際に、第1樹脂層3に対する配線部(金属)の密着性を向上させることができる。 Among these, it is preferable to use a phenoxy resin having a biphenyl skeleton and a bisphenol S skeleton as the phenoxy resin. Accordingly, the glass transition temperature of the phenoxy resin can be increased due to the rigidity of the biphenyl skeleton, and the adhesion of the phenoxy resin to the metal can be improved due to the presence of the bisphenol S skeleton. As a result, the heat resistance of the first resin layer 3 can be improved, and the adhesion of the wiring part (metal) to the first resin layer 3 can be improved when a multilayer substrate is manufactured.
 また、フェノキシ樹脂には、ビスフェノールA骨格およびビスフェノールF骨格を有するフェノキシ樹脂を用いるのも好ましい。これにより、多層基板の製造時に、配線部の第1樹脂層3への密着性をさらに向上させることができる。 It is also preferable to use a phenoxy resin having a bisphenol A skeleton and a bisphenol F skeleton as the phenoxy resin. Thereby, the adhesiveness to the 1st resin layer 3 of a wiring part can further be improved at the time of manufacture of a multilayer substrate.
 フェノキシ樹脂の分子量は、特に限定されないが、重量平均分子量が5,000~70,000であるのが好ましく、10,000~60,000であるのがより好ましい。 The molecular weight of the phenoxy resin is not particularly limited, but the weight average molecular weight is preferably 5,000 to 70,000, more preferably 10,000 to 60,000.
 フェノキシ樹脂を用いる場合、その含有量は、特に限定されないが、第1樹脂組成物全体の1~40重量%であるのが好ましく、5~30重量%であるのがより好ましい。 When the phenoxy resin is used, its content is not particularly limited, but it is preferably 1 to 40% by weight, more preferably 5 to 30% by weight of the entire first resin composition.
 ポリビニルアセタール系樹脂は、ポリビニルアルコールをホルムアルデヒドやアセトアルデヒドなどのカルボニル化合物でアセタール化した樹脂であり、ポリビニルアセタール系樹脂としては、たとえば、ポリビニルホルマールやポリビニルブチラールなどが挙げられる。これらのうち、いずれか1種以上を使用できる。ポリビニルアセタール樹脂のアセタール化度は吸水性の観点から40%以上、相溶性の観点から80%以下が好ましい。
 ポリアミド系樹脂としては、耐熱性の観点から芳香族系ポリアミドが挙げられる。また、ポリアミド系樹脂は、導体層との密着性の観点から、重量平均分子量が1.5万以上であることが好ましい。
 ポリアミド系樹脂としては、フェノール性水酸基含有芳香族ポリアミド-ポリ(ブタジエン-アクリロニトリル)ブロック共重合体(たとえば、商品名KAYAFLEX BPAM-155(日本化薬、末端はアミド基)があげられる。 
The polyvinyl acetal resin is a resin obtained by acetalizing polyvinyl alcohol with a carbonyl compound such as formaldehyde or acetaldehyde. Examples of the polyvinyl acetal resin include polyvinyl formal and polyvinyl butyral. Any one or more of these can be used. The degree of acetalization of the polyvinyl acetal resin is preferably 40% or more from the viewpoint of water absorption and 80% or less from the viewpoint of compatibility.
Examples of the polyamide-based resin include aromatic polyamides from the viewpoint of heat resistance. Moreover, it is preferable that a weight average molecular weight of a polyamide-type resin is 15,000 or more from an adhesive viewpoint with a conductor layer.
Examples of the polyamide-based resin include phenolic hydroxyl group-containing aromatic polyamide-poly (butadiene-acrylonitrile) block copolymers (for example, trade name KAYAFLEX BPAM-155 (Nippon Kayaku, terminal is an amide group)).
 以上のような熱可塑性樹脂は、第1樹脂組成物全体の1~40重量%であるのが好ましく、10~30重量%であるのがより好ましい。 The thermoplastic resin as described above is preferably 1 to 40% by weight, more preferably 10 to 30% by weight, based on the entire first resin composition.
 カップリング剤には、例えば、エポキシシランカップリング剤、チタネート系カップリング剤、アミノシランカップリング剤およびシリコーンオイル型カップリング剤の中から選ばれる1種以上を用いるのが好ましい。 As the coupling agent, it is preferable to use at least one selected from, for example, an epoxy silane coupling agent, a titanate coupling agent, an aminosilane coupling agent, and a silicone oil type coupling agent.
 カップリング剤を用いる場合、その含有量は、特に限定されないが、無機充填材100重量部に対して0.05~3重量部であるのが好ましく、0.1~2重量部であるのがより好ましい。 When the coupling agent is used, its content is not particularly limited, but it is preferably 0.05 to 3 parts by weight, more preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the inorganic filler. More preferred.
 また、第1樹脂組成物は、以上に説明した成分のほか、必要に応じて消泡剤、レベリング剤、顔料、酸化防止剤等の添加剤を含有することができる。 In addition to the components described above, the first resin composition can contain additives such as an antifoaming agent, a leveling agent, a pigment, and an antioxidant as necessary.
 第2樹脂組成物は、第1樹脂組成物と異なる組成、具体的には、第2樹脂層4が第1樹脂層3より埋め込み性が良好となり、さらには、上述した物性を満たす組成に設定されている。 The second resin composition has a composition different from that of the first resin composition. Specifically, the second resin layer 4 has a better embedding property than the first resin layer 3 and further has a composition satisfying the above-described physical properties. Has been.
 第2樹脂組成物の構成成分には、第1樹脂組成物で挙げたものと同様のものを用いることができるが、樹脂や充填材等の種類および含有量、樹脂の分子量(平均繰り返し単位数)等が異なっている。その結果、第2樹脂層4は、第1樹脂層3と異なる特性を有している。
 第2樹脂組成物は、例えば上述した熱可塑性樹脂、熱硬化性樹脂、無機充填剤、硬化促進剤等を含んでいる。第2樹脂組成物は、たとえば、前述したエポキシ樹脂、シアネート樹脂および無機充填材を含む。エポキシ樹脂としては、前述したナフタレン骨格を有し、ナフタレン骨格が酸素原子を介して他のアリーレン構造と結合した構造を有するエポキシ樹脂が好ましい。
 ここで、第2樹脂層4に含まれる無機充填材は、平均粒径5.0μm以下の球状溶融シリカが好ましく、平均粒子径0.01~2.0μm、特に、平均粒径10~50nmの球状溶融シリカがより好ましい。このような平均粒径50nm以下のシリカ(ナノシリカ)を使用することで、プリプレグ1の耐熱性を高めることができる。
 平均粒径50nm以下のシリカを使用した場合には、繊維基材2のストランド中にシリカが分散するとともに、樹脂成分もストランド中に浸透することがわかっている。これにより、プリプレグ1の繊維基材2のストランド中に空隙が形成されてしまうことが抑制でき、プリプレグ1の耐熱性を向上させることができる。
 また、第2樹脂組成物は、粒径50nm以下の前記シリカに加えて、0.5~5μmの平均粒径のシリカを含むことが好ましい。
 一方で、第1樹脂組成物は、微細な凹凸を形成し、導体回路層との密着性を向上させるために、平均粒径0.5μm~50nmのシリカを使用することが好ましい。
The constituents of the second resin composition can be the same as those mentioned in the first resin composition, but the type and content of the resin and filler, the molecular weight of the resin (average number of repeating units) ) Etc. are different. As a result, the second resin layer 4 has different characteristics from the first resin layer 3.
The 2nd resin composition contains the thermoplastic resin mentioned above, a thermosetting resin, an inorganic filler, a hardening accelerator etc., for example. The second resin composition includes, for example, the above-described epoxy resin, cyanate resin, and inorganic filler. As the epoxy resin, an epoxy resin having the above-described naphthalene skeleton and a structure in which the naphthalene skeleton is bonded to another arylene structure via an oxygen atom is preferable.
Here, the inorganic filler contained in the second resin layer 4 is preferably spherical fused silica having an average particle diameter of 5.0 μm or less, and preferably has an average particle diameter of 0.01 to 2.0 μm, particularly an average particle diameter of 10 to 50 nm. Spherical fused silica is more preferred. The heat resistance of the prepreg 1 can be improved by using such silica (nanosilica) having an average particle size of 50 nm or less.
When silica having an average particle size of 50 nm or less is used, it is known that the silica is dispersed in the strands of the fiber base 2 and the resin component also penetrates into the strands. Thereby, it can suppress that a space | gap will be formed in the strand of the fiber base material 2 of the prepreg 1, and the heat resistance of the prepreg 1 can be improved.
The second resin composition preferably contains silica having an average particle diameter of 0.5 to 5 μm in addition to the silica having a particle diameter of 50 nm or less.
On the other hand, the first resin composition preferably uses silica having an average particle size of 0.5 μm to 50 nm in order to form fine irregularities and improve the adhesion to the conductor circuit layer.
 また、第2樹脂層4における熱可塑性樹脂の含有量は、第1樹脂層3における熱可塑性樹脂の含有量よりも低くなっている。このようにすることで、第2樹脂層4の回路の埋め込み性を高めることができる。一方で、第1樹脂層3における導体回路の密着性を良好なものとすることができる。具体的には、第2樹脂層4における熱可塑性樹脂の含有量は、第2樹脂層4を構成する第2樹脂組成物の10重量%以下、なかでも、5重量%以下であることが好ましい。ただし、第2樹脂層4は熱可塑性樹脂を含まないものとしてもよい。 Further, the content of the thermoplastic resin in the second resin layer 4 is lower than the content of the thermoplastic resin in the first resin layer 3. By doing in this way, the embedding property of the circuit of the 2nd resin layer 4 can be improved. On the other hand, the adhesiveness of the conductor circuit in the 1st resin layer 3 can be made favorable. Specifically, the content of the thermoplastic resin in the second resin layer 4 is preferably 10% by weight or less, more preferably 5% by weight or less of the second resin composition constituting the second resin layer 4. . However, the second resin layer 4 may not include a thermoplastic resin.
<プリプレグの製造方法>
 以上のようなプリプレグ1は、図3に示す製造装置を使用して、次のようにして製造することができる。
 図3に示すように、製造装置6は、ローラ621~628と、ノズル(吐出手段であるダイコータ)611と、乾燥装置64とを有している。
<Method for producing prepreg>
The prepreg 1 as described above can be manufactured as follows using the manufacturing apparatus shown in FIG.
As shown in FIG. 3, the manufacturing apparatus 6 includes rollers 621 to 628, a nozzle (a die coater that is a discharge means) 611, and a drying device 64.
 ローラ621は、第1樹脂層3となる第1樹脂シート3'を送り出す手段であり、そのローラ621には、支持体51付の第1樹脂シート3'(図3では、支持体51および第1樹脂シート3'とで構成されるシートをシート5とする)が巻き付けられている。ローラ621は、図示しないモータ(駆動源)により、回転するように構成されており、そのローラ621が回転すると、ローラ621から第1樹脂シート3'を含むシート5が送り出される。
 なお、支持体51としては、例えば、金属箔(金属層)、樹脂フィルム等が挙げられ、これらの中でも金属箔が好ましい。金属箔は、例えば、配線部(回路)等に加工される部分である。この金属箔を構成する金属材料としては、例えば、銅または銅系合金、アルミニウムまたはアルミニウム系合金、鉄または鉄系合金、ステンレス鋼等が挙げられる。そして、金属箔を構成する金属材料としては、これらの中でも、導電性に優れ、エッチングによる回路形成が容易であり、また、安価であることから、銅または銅系合金が好ましい。
 また、第1樹脂シート3'の50~150℃での最低溶融粘度は、1000Pa・s以上、25000Pa・s以下である。
 このように50~150℃での最低溶融粘度を1000Pa・s以上とすることで、第1樹脂シート3'が繊維基材2に含浸しにくくなる。また、第2樹脂層4と混ざりにくくなる。50~150℃での最低溶融粘度を25000Pa・s以下とすることで、繊維基材2との密着性を確保できる。なお、測定方法は前述したとおりである。
The roller 621 is a means for sending out a first resin sheet 3 ′ to be the first resin layer 3. The roller 621 includes a first resin sheet 3 ′ with a support 51 (in FIG. 3, the support 51 and the first resin sheet 3 '). A sheet composed of one resin sheet 3 ′ is referred to as a sheet 5). The roller 621 is configured to rotate by a motor (drive source) (not shown). When the roller 621 rotates, the sheet 5 including the first resin sheet 3 ′ is sent out from the roller 621.
In addition, as the support body 51, metal foil (metal layer), a resin film, etc. are mentioned, for example, Among these, metal foil is preferable. A metal foil is a part processed into a wiring part (circuit) etc., for example. Examples of the metal material constituting the metal foil include copper or a copper-based alloy, aluminum or an aluminum-based alloy, iron or an iron-based alloy, and stainless steel. And among these, as a metal material which comprises metal foil, it is excellent in electroconductivity, the circuit formation by an etching is easy, and since it is cheap, copper or a copper-type alloy is preferable.
Further, the minimum melt viscosity at 50 to 150 ° C. of the first resin sheet 3 ′ is 1000 Pa · s or more and 25000 Pa · s or less.
As described above, when the minimum melt viscosity at 50 to 150 ° C. is set to 1000 Pa · s or more, the first resin sheet 3 ′ is less likely to be impregnated into the fiber substrate 2. Moreover, it becomes difficult to mix with the second resin layer 4. By setting the minimum melt viscosity at 50 to 150 ° C. to 25000 Pa · s or less, adhesion to the fiber base material 2 can be secured. The measuring method is as described above.
 また、ローラ623は、繊維基材2を送り出す手段であり、そのローラ623には、繊維基材2が巻き付けられている。ローラ623は、図示しないモータにより、回転するように構成されており、そのローラ623が回転すると、ローラ623から繊維基材2が連続的に送り出される。 Further, the roller 623 is a means for feeding out the fiber base material 2, and the fiber base material 2 is wound around the roller 623. The roller 623 is configured to rotate by a motor (not shown), and when the roller 623 rotates, the fiber base material 2 is continuously sent out from the roller 623.
 また、ローラ622は、シート5の移動方向を規制する手段であり、ローラ621の後段に設置されている。 Further, the roller 622 is a means for regulating the moving direction of the sheet 5, and is installed at the subsequent stage of the roller 621.
 また、ローラ624は、繊維基材2の移動方向を規制する手段であり、ローラ622の後段に設置されている。 Further, the roller 624 is a means for regulating the moving direction of the fiber base material 2 and is installed at the rear stage of the roller 622.
 また、ローラ625は、第1樹脂シート3'と繊維基材2とを貼り合せる手段であり、ローラ622および624の後段に設置されている。
 このローラ625の外周面に沿って、前記外周面に接触するように、第1樹脂シート3'が搬送される。このとき、第1樹脂シート3'は、ローラ625の円周の1/4以上に支持体51を介して面接触する。
 また、繊維基材2もローラ625の外周面に沿って、前記外周面に接触するように、搬送される。繊維基材2は、ローラ625が第1樹脂シート3'と間接的に接触している箇所で、第1樹脂シート3'を介してローラ625と接触することとなる。繊維基材2は、ローラ625の外周面に沿って、前記外周面に接触するように搬送される。ただし、繊維基材2とローラ625との接触面積は、第1樹脂シート3'とローラ625との接触面積よりも小さい。
 また、繊維基材2および第1樹脂シート3'は、搬送方向に引っ張られ、これらには張力がかかっている。このようにすることで、ローラ625の外周面を利用して、第1樹脂シート3'と繊維基材2とを圧着することができる。
 このようにローラ625を使用して、繊維基材2と第1樹脂シート3'とを圧着することで、過剰に第1樹脂シート3'が繊維基材2に含浸されてしまうことを防止できる。
 また、ローラ626およびローラ627は、第1樹脂シート3'を含むシート5、繊維基材2、さらには、繊維基材2上の第2樹脂層4の移動方向を規制する手段であり、ローラ625の後段に、その順序で設置されている。
The roller 625 is a means for bonding the first resin sheet 3 ′ and the fiber base material 2, and is installed at the subsequent stage of the rollers 622 and 624.
The first resin sheet 3 ′ is conveyed along the outer peripheral surface of the roller 625 so as to contact the outer peripheral surface. At this time, the first resin sheet 3 ′ is in surface contact with the quarter of the circumference of the roller 625 through the support 51.
Further, the fiber base material 2 is also conveyed along the outer peripheral surface of the roller 625 so as to contact the outer peripheral surface. The fiber base 2 comes into contact with the roller 625 through the first resin sheet 3 ′ where the roller 625 is in indirect contact with the first resin sheet 3 ′. The fiber base material 2 is conveyed along the outer peripheral surface of the roller 625 so as to contact the outer peripheral surface. However, the contact area between the fiber base 2 and the roller 625 is smaller than the contact area between the first resin sheet 3 ′ and the roller 625.
Further, the fiber base 2 and the first resin sheet 3 ′ are pulled in the transport direction, and tension is applied to them. By doing in this way, the 1st resin sheet 3 'and the fiber base material 2 can be crimped | bonded using the outer peripheral surface of the roller 625. FIG.
Thus, by using the roller 625 and press-bonding the fiber base 2 and the first resin sheet 3 ′, it is possible to prevent the fiber base 2 from being excessively impregnated with the first resin sheet 3 ′. .
The rollers 626 and 627 are means for regulating the moving direction of the sheet 5 including the first resin sheet 3 ′, the fiber base 2, and the second resin layer 4 on the fiber base 2. They are installed in the order after 625.
 また、ローラ628は、プリプレグ1を巻き取る手段である。ローラ628は、図示しないモータにより、回転するように構成されており、そのローラ628が回転すると、ローラ628にプリプレグ1が巻き取られる。 The roller 628 is a means for winding the prepreg 1. The roller 628 is configured to rotate by a motor (not shown). When the roller 628 rotates, the prepreg 1 is wound around the roller 628.
 また、ノズル611は、繊維基材2の第1樹脂層3と反対側の面に、常温(25℃)で液状(ワニス状)の第2樹脂組成物を吐出(供給)する手段(例えば、ダイコータ)である。なお、液状とは、液体に限らず、流動性を有するものを含む概念である。 The nozzle 611 discharges (supplies) a liquid (varnish-like) second resin composition at normal temperature (25 ° C.) on the surface of the fiber base 2 opposite to the first resin layer 3 (for example, Die coater). The term “liquid” is not limited to liquid but is a concept that includes fluidity.
 乾燥装置64は、ノズル611とローラ626との間に設置されている。乾燥装置64としては、本実施形態では、対象物を水平に搬送しながら乾燥を行うものが用いられている。これにより、繊維基材2へ加わる張力を比較的小さくすることができ、内部ひずみを防止または抑制することができる。 The drying device 64 is installed between the nozzle 611 and the roller 626. As the drying device 64, in this embodiment, a device that performs drying while horizontally conveying an object is used. Thereby, the tension | tensile_strength added to the fiber base material 2 can be made comparatively small, and an internal distortion can be prevented or suppressed.
(第1の工程)
 図3に示すように、製造装置6のローラ621を回転させ、そのローラ621から第1樹脂シート3'を含むシート5を連続的に送り出し、また、ローラ623を回転させ、そのローラ623から繊維基材2を送り出す(連続的に供給する)とともに、ローラ628を回転させ、そのローラ628にプリプレグ1を巻き取る。
(First step)
As shown in FIG. 3, the roller 621 of the manufacturing apparatus 6 is rotated, the sheet 5 including the first resin sheet 3 ′ is continuously sent out from the roller 621, and the roller 623 is rotated so that the fiber from the roller 623 The substrate 2 is fed out (supplied continuously), the roller 628 is rotated, and the prepreg 1 is wound around the roller 628.
 第1樹脂シート3'は、Bステージ状態となっている。
 次に、ローラ625において、第1樹脂シート3'と繊維基材2とが圧着される。
The first resin sheet 3 ′ is in the B stage state.
Next, in the roller 625, the first resin sheet 3 ′ and the fiber base material 2 are pressure-bonded.
 このときの第1樹脂シート3'と繊維基材2とのなす角の角度(貼り合わせ角度)θは、鋭角であることが好ましい。これにより、繊維基材2に歪みが生じることを防止または抑制することができる。 The angle (bonding angle) θ between the first resin sheet 3 ′ and the fiber base material 2 at this time is preferably an acute angle. Thereby, it can prevent or suppress that distortion arises in the fiber base material 2. FIG.
 また、繊維基材2側の張力は、第1樹脂シート3'側の張力よりも小さいことが好ましい。具体的には、繊維基材2側の張力は、30N以下であることが好ましく、15~25N程度であることがより好ましい。これにより、繊維基材2の寸法変化や内部歪を防止または抑制することができる。
 なお、図2に示したように、第1樹脂層3を繊維基材2に含浸させる場合には、第1樹脂シート3'の張力を調整して、第1樹脂層を繊維基材2に含浸させることができる。
Moreover, it is preferable that the tension | tensile_strength by the side of the fiber base material 2 is smaller than the tension | tensile_strength by 1st resin sheet 3 'side. Specifically, the tension on the fiber base 2 side is preferably 30 N or less, and more preferably about 15 to 25 N. Thereby, the dimensional change and internal distortion of the fiber base material 2 can be prevented or suppressed.
In addition, as shown in FIG. 2, when impregnating the 1st resin layer 3 to the fiber base material 2, the tension | tensile_strength of 1st resin sheet 3 'is adjusted and a 1st resin layer is made into the fiber base material 2. As shown in FIG. Can be impregnated.
(第2の工程)
 次に、ノズル611から第2樹脂組成物を含むワニスを吐出し、繊維基材2の第1樹脂シート3'と反対側の面にそのワニスを供給する。
(Second step)
Next, the varnish containing the second resin composition is discharged from the nozzle 611, and the varnish is supplied to the surface of the fiber base 2 opposite to the first resin sheet 3 ′.
(第3の工程(乾燥工程))
 次に、乾燥装置64により、第1樹脂シート3'および第2樹脂組成物を含むワニスを加熱乾燥させる。これにより、プリプレグ1が得られる。そのプリプレグ1は、ローラ628に巻き取られる。
 なお、図2に示したように、第1樹脂層を繊維基材2に含浸させる場合には、この乾燥工程においても、第1樹脂層を繊維基材2に含浸させることができる。
(Third step (drying step))
Next, the varnish containing 1st resin sheet 3 'and 2nd resin composition is heat-dried with the drying apparatus 64. FIG. Thereby, the prepreg 1 is obtained. The prepreg 1 is wound around a roller 628.
In addition, as shown in FIG. 2, when impregnating the 1st resin layer in the fiber base material 2, the 1st resin layer can be impregnated in the fiber base material 2 also in this drying process.
 乾燥条件としては、特に限定されず、第1樹脂組成物および第2樹脂組成物の組成(特に、第2樹脂組成物の組成)や諸条件に応じて適宜設定されるが、第2樹脂組成物中の揮発成分が樹脂に対して1.5wt%以下になるように設定することが好ましく、0.8~1.0wt%程度になるように設定することがより好ましい。具体的には、乾燥温度は、100~150℃であることが好ましく、100~130℃程度であることがより好ましい。また、乾燥時間は、2~10分程度であることが好ましく、2~5分程度であることがより好ましい。 The drying conditions are not particularly limited, and are appropriately set according to the composition of the first resin composition and the second resin composition (particularly the composition of the second resin composition) and various conditions, but the second resin composition It is preferable to set the volatile component in the product to be 1.5 wt% or less with respect to the resin, and it is more preferable to set it to be about 0.8 to 1.0 wt%. Specifically, the drying temperature is preferably 100 to 150 ° C., more preferably about 100 to 130 ° C. The drying time is preferably about 2 to 10 minutes, more preferably about 2 to 5 minutes.
 本実施形態では、第1樹脂シート3'を繊維基材2に圧着させる一方で、第2樹脂層4を形成する際には、第2樹脂組成物を含むワニスを繊維基材2へ供給している。これにより、第1樹脂層3および第2樹脂層4間の界面を確実に形成できる。
 さらに、本実施形態では、第2樹脂組成物を含むワニスを繊維基材2に供給しているため、繊維基材2へ第2樹脂組成物を含浸させやすい。一方で、第1樹脂層3は、あらかじめシート状に成形され、シート状で繊維基材2に対し供給されるので、第2樹脂層4に比べて、繊維基材2へ含浸しにくい状態となっている。これにより、第2樹脂層4が、少なくとも繊維基材2の厚みの90%の位置までにわたって繊維基材2に含浸したプリプレグ1を容易に製造することができる。
In the present embodiment, the first resin sheet 3 ′ is pressure-bonded to the fiber base 2, while the varnish containing the second resin composition is supplied to the fiber base 2 when forming the second resin layer 4. ing. Thereby, the interface between the 1st resin layer 3 and the 2nd resin layer 4 can be formed reliably.
Furthermore, in this embodiment, since the varnish containing a 2nd resin composition is supplied to the fiber base material 2, it is easy to make the fiber base material 2 impregnate a 2nd resin composition. On the other hand, the first resin layer 3 is formed into a sheet shape in advance and is supplied to the fiber base material 2 in a sheet shape. It has become. Thereby, the prepreg 1 which the 2nd resin layer 4 impregnated the fiber base material 2 over the position of 90% of the thickness of the fiber base material 2 can be manufactured easily.
 なお、本実施形態では、図3に示す製造装置6を使用して、プリプレグ1を製造するとしたが、図4に示す製造装置6aを使用して、プリプレグ1を製造することもできる。
 この製造装置6aは、製造装置6のノズル611を有しておらず、貼り合せ装置65およびローラ629を有している。他の点は、製造装置6と同じである。
In the present embodiment, the prepreg 1 is manufactured by using the manufacturing apparatus 6 shown in FIG. 3, but the prepreg 1 can also be manufactured by using the manufacturing apparatus 6a shown in FIG.
The manufacturing apparatus 6 a does not include the nozzle 611 of the manufacturing apparatus 6 but includes a bonding apparatus 65 and a roller 629. The other points are the same as the manufacturing apparatus 6.
 貼り合せ装置65は、ローラ627とローラ628との間に設置されている。貼り合せ装置65は、対向配置された1対のローラ651および652と、ローラ651および652を加熱する図示しない加熱部とを有し、ローラ651とローラ652との間で対象物を挟み、その対象物を加圧するとともに加熱するように構成されている。 The laminating device 65 is installed between the roller 627 and the roller 628. The laminating device 65 has a pair of rollers 651 and 652 arranged opposite to each other and a heating unit (not shown) that heats the rollers 651 and 652, and sandwiches an object between the rollers 651 and 652, The object is configured to be pressurized and heated.
 ローラ629は、貼り合せ装置65の前段に設置されている。ローラ629は、対象物を送り出す手段であり、そのローラ629には、後述するシート7が巻き付けられている。ローラ629は、図示しないモータにより、回転するように構成されており、そのローラ629が回転すると、ローラ629からシート7が連続的に送り出される。 The roller 629 is installed in the front stage of the bonding apparatus 65. The roller 629 is a means for feeding an object, and a sheet 7 described later is wound around the roller 629. The roller 629 is configured to be rotated by a motor (not shown). When the roller 629 rotates, the sheet 7 is continuously fed out from the roller 629.
 乾燥装置64においては、繊維基材2および第1樹脂シート3'が加熱され、第1樹脂シート3'が溶融する。
 なお、図1のように、第1樹脂層3を繊維基材2に含浸させない場合には、乾燥装置64はなくてもよい。
 製造装置6aのローラ629を回転させ、そのローラ629からシート7を送り出す。シート7は、図4に示すように、樹脂フィルム8と、この樹脂フィルム8の一方の面に設けられ、固形または半固形の第2樹脂組成物で構成された第2樹脂シート4'とを有している。第2樹脂シート4'はBステージ状態となっている。
 第2樹脂シート4'の50~150℃での最低溶融粘度(η2)は、第1樹脂シート3'の50~150℃での最低溶融粘度(η1)よりも低い。このようにすることで、第2樹脂シート4'を繊維基材2に含浸させやすくすることができ、第2樹脂層4を繊維機材2の厚みの90%以上まで、含浸させることができる。
 また、最低溶融粘度比η1/η2を1.1以上とすることで、第1樹脂層3、第2樹脂層4が混合せずに、第1樹脂層3および第2樹脂層4間に界面を形成することができる。
 また、最低溶融粘度比η1/η2を100以下、特に、80以下とすることで、界面の密着性を向上させるという効果がある。
 具体的には、第1樹脂シート3'の最低溶融粘度(η1)は、1000Pa・s以上、25000Pa・s以下であることが好ましい。
 一方で、第2樹脂シート4'の最低溶融粘度(η2)は、50Pa・s以上、10000Pa・s以下であることが好ましく、中でも、5000Pa・s以下、さらには、3000Pa・s以下であることが望ましい。なお、測定方法は前述したとおりである。
In the drying device 64, the fiber base 2 and the first resin sheet 3 ′ are heated, and the first resin sheet 3 ′ is melted.
In addition, when not impregnating the fiber base material 2 with the 1st resin layer 3 like FIG. 1, the drying apparatus 64 does not need to be.
The roller 629 of the manufacturing apparatus 6a is rotated, and the sheet 7 is sent out from the roller 629. As shown in FIG. 4, the sheet 7 includes a resin film 8 and a second resin sheet 4 ′ provided on one surface of the resin film 8 and made of a solid or semi-solid second resin composition. Have. The second resin sheet 4 ′ is in a B stage state.
The minimum melt viscosity (η2) at 50 to 150 ° C. of the second resin sheet 4 ′ is lower than the minimum melt viscosity (η1) at 50 to 150 ° C. of the first resin sheet 3 ′. By doing so, the second resin sheet 4 ′ can be easily impregnated into the fiber base material 2, and the second resin layer 4 can be impregnated up to 90% or more of the thickness of the fiber material 2.
Further, by setting the minimum melt viscosity ratio η1 / η2 to 1.1 or more, the first resin layer 3 and the second resin layer 4 are not mixed, and the interface between the first resin layer 3 and the second resin layer 4 is achieved. Can be formed.
Moreover, there exists an effect of improving the adhesiveness of an interface by making minimum melt viscosity ratio (eta) 1 / (eta) 2 into 100 or less, especially 80 or less.
Specifically, the lowest melt viscosity (η1) of the first resin sheet 3 ′ is preferably 1000 Pa · s or more and 25000 Pa · s or less.
On the other hand, the minimum melt viscosity (η2) of the second resin sheet 4 ′ is preferably 50 Pa · s or more and 10000 Pa · s or less, more preferably 5000 Pa · s or less, and further 3000 Pa · s or less. Is desirable. The measuring method is as described above.
 樹脂フィルム8としては、支持体51の樹脂フィルムとして説明したものと同様のものを用いることができる。 As the resin film 8, the same film as that described as the resin film of the support 51 can be used.
 本工程では、シート7と、繊維基材2と支持体51との積層体であるシート5とが、貼り合せ装置65のローラ651とローラ652との間を通過し、その際、シート7と、繊維基材2と支持体51との積層体とは、その貼り合せ装置65により、加圧されるとともに加熱される。これにより、シート7は、繊維基材2の第1樹脂層3と反対側の面に、第2樹脂シート4'を介して圧着され、積層シートであるプリプレグ1が得られる。そのプリプレグ1は、ローラ628に巻き取られる。 In this step, the sheet 7 and the sheet 5 that is a laminate of the fiber base material 2 and the support 51 pass between the roller 651 and the roller 652 of the laminating device 65, The laminated body of the fiber base material 2 and the support 51 is pressurized and heated by the laminating device 65. Thereby, the sheet | seat 7 is crimped | bonded to the surface on the opposite side to the 1st resin layer 3 of the fiber base material 2 via 2nd resin sheet 4 ', and the prepreg 1 which is a lamination sheet is obtained. The prepreg 1 is wound around a roller 628.
 前記圧着時の条件としては、特に限定されず、第2樹脂層4の第2樹脂組成物の組成や諸条件に応じて適宜設定されるが、圧力は、0.1~1.0MPa/cm程度であることが好ましく、0.3~0.5MPa/cm程度であることがより好ましい。また、加熱温度は、100~130℃であることが好ましい。
 この圧着時の加熱により、第1樹脂シート3'、第2樹脂シート4'は溶融するが、第2樹脂層4の最低溶融粘度を、第1樹脂層3よりも低くしておくことで、第2樹脂層4を繊維基材2に含浸させることができる。また、前述したように、第1樹脂層3と第2樹脂層4との最低溶融粘度比η1/η2を1.1以上としておくことで、第1樹脂層3と第2樹脂層4との間に界面を形成することができる。
The conditions at the time of the pressure bonding are not particularly limited, and are appropriately set according to the composition and various conditions of the second resin composition of the second resin layer 4, but the pressure is 0.1 to 1.0 MPa / cm. preferably 2 mm, more preferably 0.3 ~ 0.5 MPa / cm 2 or so. The heating temperature is preferably 100 to 130 ° C.
The first resin sheet 3 ′ and the second resin sheet 4 ′ are melted by heating at the time of the pressure bonding, but by keeping the minimum melt viscosity of the second resin layer 4 lower than that of the first resin layer 3, The second resin layer 4 can be impregnated into the fiber substrate 2. Further, as described above, the minimum melt viscosity ratio η1 / η2 between the first resin layer 3 and the second resin layer 4 is set to 1.1 or more, so that the first resin layer 3 and the second resin layer 4 An interface can be formed between them.
<基板>
 次に、本発明の基板について、図5を参照しつつ説明する。この図5に示す基板10は、積層体11と、この積層体11の両面に設けられた金属層12とを有している。
<Board>
Next, the substrate of the present invention will be described with reference to FIG. A substrate 10 shown in FIG. 5 includes a laminate 11 and metal layers 12 provided on both surfaces of the laminate 11.
 積層体11は、第2樹脂層4同士を内側にして配置された2つのプリプレグ1と、第2樹脂層4同士間で挟持された内層回路基板13とを備える。
 プリプレグ1の樹脂層3,4は、基板においては、完全に硬化した状態となっている。
The laminated body 11 includes two prepregs 1 arranged with the second resin layers 4 facing each other, and an inner layer circuit board 13 sandwiched between the second resin layers 4.
The resin layers 3 and 4 of the prepreg 1 are completely cured on the substrate.
 内層回路基板13の表面に形成された回路層(図示略)は、第2樹脂層4に確実に埋め込まれる。 The circuit layer (not shown) formed on the surface of the inner layer circuit board 13 is securely embedded in the second resin layer 4.
 金属層12は、配線部に加工される部分であり、例えば、銅箔、アルミ箔等の金属箔を積層体11に接合すること、銅、アルミニウムを積層体11の表面にメッキすること等により形成される。また、前述した支持体51を金属層12とすることもできる。 The metal layer 12 is a part that is processed into a wiring part, for example, by bonding a metal foil such as a copper foil or an aluminum foil to the laminate 11, or plating copper or aluminum on the surface of the laminate 11. It is formed. Moreover, the support body 51 mentioned above can also be used as the metal layer 12.
 金属層12と第1樹脂層3とのピール強度は、0.5kN/m以上であるのが好ましく、0.6kN/m以上であるのがより好ましい。これにより、金属層12を配線部に加工し、得られる半導体装置100(図6参照)における接続信頼性をより向上させることができる。 The peel strength between the metal layer 12 and the first resin layer 3 is preferably 0.5 kN / m or more, and more preferably 0.6 kN / m or more. Thereby, the connection reliability in the semiconductor device 100 (refer FIG. 6) obtained by processing the metal layer 12 into a wiring part can be improved more.
 このような基板10は、第1樹脂層3上に金属層12を形成したプリプレグ1を2つ用意し、これらのプリプレグ1で内層回路基板13を挟持した状態で、例えば、真空プレス、常圧ラミネータおよび真空下で加熱加圧するラミネータを用いて積層する方法が挙げられる。真空プレスは、平板に挟んで通常のホットプレス機等で実施できる。例えば、名機製作所社製の真空プレス、北川精機社製の真空プレス、ミカドテクノス社製の真空プレス等が挙げられる。また、ラミネータ装置としては、ニチゴー・モートン社製のバキュームアップリケーター、名機製作所社製の真空加圧式ラミネータ、日立テクノエンジニアリング社製の真空ロール式ドライコータ等のような市販の真空積層機、またはベルトプレス等を用いて製造することができる。 Such a substrate 10 is prepared by preparing two prepregs 1 in which a metal layer 12 is formed on the first resin layer 3 and sandwiching the inner layer circuit board 13 between these prepregs 1, for example, in a vacuum press, normal pressure, etc. A laminator and a method of laminating using a laminator that is heated and pressurized under vacuum are exemplified. The vacuum press can be performed with a normal hot press machine or the like sandwiched between flat plates. For example, a vacuum press manufactured by Meiki Seisakusho Co., Ltd., a vacuum press manufactured by Kitagawa Seiki Co., Ltd., a vacuum press manufactured by Mikado Technos, etc. Further, as a laminator apparatus, a commercially available vacuum laminating machine such as a vacuum applicator manufactured by Nichigo Morton, a vacuum pressure laminator manufactured by Meiki Seisakusho, a vacuum roll type dry coater manufactured by Hitachi Techno Engineering, or the like It can be manufactured using a belt press or the like.
 なお、本発明の基板10は、内層回路基板13が省略され、2つのプリプレグ1が第2樹脂層4同士を直接接合してなる積層体を含むものであってもよく、金属層12が省略されたものであってもよい。 The substrate 10 of the present invention may include a laminate in which the inner circuit board 13 is omitted and the two prepregs 1 are directly bonded to each other, and the metal layer 12 is omitted. It may be what was done.
<半導体装置>
 次に、本発明の半導体装置について、図6を参照しつつ説明する。なお、図6中では、繊維基材2、内層回路基板13を省略して示し、第1樹脂層3および第2樹脂層4を一体として示してある。
<Semiconductor device>
Next, the semiconductor device of the present invention will be described with reference to FIG. In FIG. 6, the fiber base material 2 and the inner circuit board 13 are omitted, and the first resin layer 3 and the second resin layer 4 are shown as an integral unit.
 図6に示す半導体装置100は、多層基板200と、多層基板200の上面に設けられたパッド部300と、多層基板200の下面に設けられた配線部400と、パッド部300にバンプ501を接続することにより、多層基板200上に搭載された半導体素子500とを有している。また、その他、多層基板200の下面には、配線部、パッド部、半田ボール等が設けられていてもよい。 A semiconductor device 100 shown in FIG. 6 connects a bump 501 to the multilayer substrate 200, a pad portion 300 provided on the upper surface of the multilayer substrate 200, a wiring portion 400 provided on the lower surface of the multilayer substrate 200, and the pad portion 300. Thus, the semiconductor element 500 mounted on the multilayer substrate 200 is provided. In addition, a wiring part, a pad part, a solder ball, and the like may be provided on the lower surface of the multilayer substrate 200.
 多層基板200は、コア基板として設けられた基板10と、この基板10の上側に設けられた3つのプリプレグ1a、1b、1cと、基板10の下側に設けられた3つのプリプレグ1d、1e、1fとを備えている。プリプレグ1a~1fは、プリプレグ1と同じものである。プリプレグ1a~1cは、基板10側に第2樹脂層4が位置するように、すなわち、基板10側から、第2樹脂層4、繊維基材2、第1樹脂層3の順になるように、プリプレグ1を配置したものである。一方でプリプレグ1d~1fは、基板10側に第2樹脂層4が位置するように、すなわち、第2樹脂層4、繊維基材2、第1樹脂層3の順となるように、プリプレグ1を配置したものである。
 多層基板200において、プリプレグ1の樹脂層3,4は完全に硬化した状態となっている。
The multilayer substrate 200 includes a substrate 10 provided as a core substrate, three prepregs 1a, 1b and 1c provided on the upper side of the substrate 10, and three prepregs 1d and 1e provided on the lower side of the substrate 10. 1f. The prepregs 1a to 1f are the same as the prepreg 1. The prepregs 1a to 1c are arranged so that the second resin layer 4 is located on the substrate 10 side, that is, in order of the second resin layer 4, the fiber base material 2, and the first resin layer 3 from the substrate 10 side. The prepreg 1 is disposed. On the other hand, the prepregs 1d to 1f are arranged such that the second resin layer 4 is positioned on the substrate 10 side, that is, the second resin layer 4, the fiber base material 2, and the first resin layer 3 are in this order. Is arranged.
In the multilayer substrate 200, the resin layers 3 and 4 of the prepreg 1 are completely cured.
 また、多層基板200は、プリプレグ1aとプリプレグ1bとの間に設けられた回路部201aと、プリプレグ1bとプリプレグ1cとの間に設けられた回路部201bと、プリプレグ1dとプリプレグ1eとの間に設けられた回路部201dと、プリプレグ1eとプリプレグ1fとの間に設けられた回路部201eとを有している。各回路部201a~201eは、第2樹脂層4により埋め込まれている。 The multilayer substrate 200 includes a circuit unit 201a provided between the prepreg 1a and the prepreg 1b, a circuit unit 201b provided between the prepreg 1b and the prepreg 1c, and a prepreg 1d and the prepreg 1e. The circuit portion 201d is provided, and the circuit portion 201e is provided between the prepreg 1e and the prepreg 1f. Each of the circuit portions 201 a to 201 e is embedded with the second resin layer 4.
 さらに、多層基板200は、各プリプレグ1a~1fをそれぞれ貫通して設けられたホールを有し、ホール内には、隣接する回路部同士や、回路部とパッド部とを電気的に接続する導体部202が形成されている。 Furthermore, the multilayer substrate 200 has holes provided through the respective prepregs 1a to 1f, and in the holes, conductors that electrically connect adjacent circuit parts or circuit parts and pad parts. A portion 202 is formed.
 基板10の各金属層12は、それぞれ、所定のパターンに加工され、当該加工された金属層12同士は、基板10を貫通して設けられた導体部203により電気的に接続されている。 Each metal layer 12 of the substrate 10 is processed into a predetermined pattern, and the processed metal layers 12 are electrically connected to each other by a conductor portion 203 provided through the substrate 10.
 なお、半導体装置100(多層基板200)は、基板10の片面側に、4つ以上のプリプレグ1を設けるようにしてもよい。さらに、半導体装置100は、本発明のプリプレグ1以外のプリプレグを含んでいてもよい。 In the semiconductor device 100 (multilayer substrate 200), four or more prepregs 1 may be provided on one side of the substrate 10. Furthermore, the semiconductor device 100 may include a prepreg other than the prepreg 1 of the present invention.
 なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 以上、本発明のプリプレグ、基板および半導体装置を図示の実施形態について説明したが、本発明は、これに限定されるものではなく、プリプレグ、基板および半導体装置を構成する各部は、同様の機能を発揮し得る任意の構成のものと置換することができる。また、任意の構成物が付加されていてもよい。
It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
As described above, the prepreg, the substrate, and the semiconductor device of the present invention have been described with respect to the illustrated embodiment. However, the present invention is not limited to this, and the respective parts constituting the prepreg, the substrate, and the semiconductor device have the same functions. It can be replaced with any configuration that can be exhibited. Moreover, arbitrary components may be added.
<付記>
  (付記1)
 繊維基材と、
 前記繊維基材の一方の面側を被覆し、第1樹脂組成物で構成された第1樹脂層と、
 前記繊維基材の他方の面側を被覆し、前記第1樹脂組成物とは異なる第2樹脂組成物で構成された第2樹脂層とを備え、
 前記第1樹脂層と前記第2樹脂層とが接触し、界面が形成されているプリプレグ。
  (付記2)
 付記1に記載のプリプレグにおいて、
 前記第1樹脂層は、その上面に金属層を設けるための層であり、
 前記第2樹脂層は、回路を埋め込むための層であるプリプレグ。
  (付記3)
 付記1または2に記載のプリプレグにおいて、
 前記第2樹脂層は、少なくとも、前記繊維基材の前記他方の面から前記繊維基材の厚みの中心までの間の領域にわたって前記繊維基材に含浸されているプリプレグ。
  (付記4)
 付記3に記載のプリプレグにおいて、
 前記第2樹脂層は、少なくとも、前記繊維基材の前記他方の面から、前記繊維基材の厚みの90%の位置までにわたって前記繊維基材に含浸されているプリプレグ。
  (付記5)
 付記4に記載のプリプレグにおいて、
 前記第2樹脂層は、前記繊維基材に含浸され、
 前記第1樹脂層と第2樹脂層との界面は、前記繊維基材の外部に位置しているプリプレグ。
  (付記6)
 付記1乃至5のいずれかに記載のプリプレグにおいて、
 前記第1樹脂層の熱可塑性樹脂の含有量は、前記第2樹脂層の熱可塑性樹脂の含有量よりも多いプリプレグ。
  (付記7)
 付記1乃至6のいずれかに記載のプリプレグにおいて、
 当該プリプレグの前記第1樹脂層を銅箔に重ね合わせ、荷重2MPa、温度220℃、1時間の条件下で熱処理した後の90°ピール強度Aが、
 当該プリプレグの前記第2樹脂層を銅箔に重ね合わせ、荷重2MPa、温度220℃、1時間の条件下で熱処理した後の90°ピール強度Bよりも高いプリプレグ。
  (付記8)
 付記1乃至7のいずれかに記載のプリプレグにおいて、
 IPC-TM-650 Method 2.3.17に準拠し、171±3℃、1380±70kPaの条件で5分間加熱加圧して測定された樹脂流れが、15重量%以上50重量%以下であり、
 対向する一対のゴム板で該プリプレグを挟んだ状態で、120℃、2.5MPaの条件下で加熱及び加圧したとき、平面視で前記繊維基材の外縁からはみ出る前記第1樹脂層および前記第2樹脂層の合計重量が、前記第1樹脂層全体および前記第2樹脂層全体の合計重量に対して、5%以下であり、前記ゴム板が下記(i)~(iii)を満たすプリプレグ。
(i)JIS K 6253 Aに準拠して測定したゴム硬度が60°
(ii)厚み3mm
(iii)材質がシリコン
  (付記9)
 付記1乃至8のいずれかに記載のプリプレグにおいて、
 前記第1樹脂層は、熱可塑性樹脂を含み、
 前記熱可塑性樹脂は、フェノキシ樹脂、ポリビニルアルコール系樹脂、ポリアミド系樹脂のいずれか1種以上を含むプリプレグ。
  (付記10)
 付記1乃至9のいずれかに記載のプリプレグにおいて
 前記第2樹脂層は、エポキシ樹脂、シアネート樹脂および無機充填材を含むプリプレグ。
  (付記11)
 付記1乃至10のいずれかに記載のプリプレグにおいて、
 前記第1樹脂層および前記第2樹脂層は、ナフタレン骨格を有し、ナフタレン骨格が酸素原子を介して他のアリーレン構造と結合した構造を有するエポキシ樹脂を含むプリプレグ。
  (付記12)
 付記1乃至11のいずれかに記載のプリプレグにおいて
 当該プリプレグは、前記第1樹脂層を、前記繊維基材の一方の面に対して、第1樹脂層となる第1樹脂シートを当接させるとともに、
 第2樹脂層となる第2樹脂シートまたは、前記第2樹脂組成物を含む液状の組成物を前記繊維基材の他方の面側から含浸させることで製造されたものであるプリプレグ。
  (付記13)
 付記1乃至12のいずれかに記載のプリプレグにおいて、
 25℃から3℃/分の昇温速度で昇温したときの50℃以上150℃以下の範囲における第1樹脂層の最低溶融粘度η1と第2樹脂層の最低溶融粘度η2との比η1/η2が1.1倍以上、100倍以下であるプリプレグ。
  (付記14)
 付記1乃至13のいずれかに記載のプリプレグにおいて、
 前記第2樹脂層は、粒径が50nm以下のシリカを含むプリプレグ。
  (付記15)
 付記14に記載のプリプレグにおいて、
 前記繊維基材はガラスクロスであり、
 当該ガラスクロスのストランド中に前記シリカが存在するプリプレグ。
  (付記16)
 付記1乃至15のいずれかに記載のプリプレグを有する基板であり、
 回路層を備え、
 前記プリプレグの前記2樹脂層により、前記回路層を埋め込むとともに、
 前記プリプレグの前記第1樹脂層上に金属層が設けられた基板。
  (付記17)
 付記16に記載の基板と、
 前記基板に搭載された半導体素子とを備えることを特徴とする半導体装置。
<Appendix>
(Appendix 1)
A fiber substrate;
A first resin layer that covers one surface side of the fiber substrate and is composed of a first resin composition;
Covering the other surface side of the fiber substrate, and comprising a second resin layer composed of a second resin composition different from the first resin composition,
A prepreg in which the first resin layer and the second resin layer are in contact with each other to form an interface.
(Appendix 2)
In the prepreg described in Appendix 1,
The first resin layer is a layer for providing a metal layer on the upper surface thereof,
The second resin layer is a prepreg that is a layer for embedding a circuit.
(Appendix 3)
In the prepreg according to appendix 1 or 2,
The prepreg in which the second resin layer is impregnated in the fiber substrate over at least a region between the other surface of the fiber substrate and the center of the thickness of the fiber substrate.
(Appendix 4)
In the prepreg described in appendix 3,
The second resin layer is a prepreg impregnated in the fiber base material from at least the other surface of the fiber base material to a position of 90% of the thickness of the fiber base material.
(Appendix 5)
In the prepreg described in appendix 4,
The second resin layer is impregnated in the fiber base material,
The interface between the first resin layer and the second resin layer is a prepreg located outside the fiber substrate.
(Appendix 6)
In the prepreg according to any one of appendices 1 to 5,
The prepreg in which the content of the thermoplastic resin in the first resin layer is larger than the content of the thermoplastic resin in the second resin layer.
(Appendix 7)
In the prepreg according to any one of appendices 1 to 6,
90 ° peel strength A after superposing the first resin layer of the prepreg on copper foil and heat-treating under conditions of load 2 MPa, temperature 220 ° C., 1 hour,
A prepreg higher than 90 ° peel strength B after the second resin layer of the prepreg is superposed on a copper foil and heat-treated under the conditions of a load of 2 MPa, a temperature of 220 ° C. and 1 hour.
(Appendix 8)
In the prepreg according to any one of appendices 1 to 7,
According to IPC-TM-650 Method 2.3.17, the resin flow measured by heating and pressurizing for 5 minutes under the conditions of 171 ± 3 ° C. and 1380 ± 70 kPa is 15 wt% or more and 50 wt% or less,
When the prepreg is sandwiched between a pair of opposing rubber plates and heated and pressurized under the conditions of 120 ° C. and 2.5 MPa, the first resin layer protruding from the outer edge of the fiber substrate in plan view and the The total weight of the second resin layer is 5% or less with respect to the total weight of the entire first resin layer and the entire second resin layer, and the rubber plate satisfies the following (i) to (iii): .
(I) Rubber hardness measured in accordance with JIS K 6253 A is 60 °
(Ii) Thickness 3mm
(Iii) Material is silicon (Appendix 9)
In the prepreg according to any one of appendices 1 to 8,
The first resin layer includes a thermoplastic resin,
The thermoplastic resin is a prepreg containing at least one of a phenoxy resin, a polyvinyl alcohol resin, and a polyamide resin.
(Appendix 10)
The prepreg according to any one of appendices 1 to 9, wherein the second resin layer includes an epoxy resin, a cyanate resin, and an inorganic filler.
(Appendix 11)
In the prepreg according to any one of appendices 1 to 10,
The first resin layer and the second resin layer have a naphthalene skeleton, and the prepreg includes an epoxy resin having a structure in which the naphthalene skeleton is bonded to another arylene structure through an oxygen atom.
(Appendix 12)
The prepreg according to any one of appendices 1 to 11, wherein the prepreg causes the first resin layer to abut the first resin sheet serving as the first resin layer against one surface of the fiber base material. ,
A prepreg produced by impregnating a second resin sheet serving as a second resin layer or a liquid composition containing the second resin composition from the other surface side of the fiber substrate.
(Appendix 13)
In the prepreg according to any one of appendices 1 to 12,
Ratio η1 / of the lowest melt viscosity η1 of the first resin layer and the lowest melt viscosity η2 of the second resin layer in the range of 50 ° C. to 150 ° C. when the temperature is raised from 25 ° C. at a rate of 3 ° C./min. A prepreg having η2 of 1.1 times or more and 100 times or less.
(Appendix 14)
In the prepreg according to any one of appendices 1 to 13,
The second resin layer is a prepreg containing silica having a particle size of 50 nm or less.
(Appendix 15)
In the prepreg described in appendix 14,
The fiber base material is a glass cloth,
A prepreg in which the silica is present in the strand of the glass cloth.
(Appendix 16)
A substrate having the prepreg according to any one of appendices 1 to 15,
With a circuit layer,
The circuit layer is embedded by the two resin layers of the prepreg,
A substrate in which a metal layer is provided on the first resin layer of the prepreg.
(Appendix 17)
The substrate according to appendix 16, and
A semiconductor device comprising: a semiconductor element mounted on the substrate.
  (付記18)
 第1樹脂シートを繊維基材の一方の面に圧着して第1樹脂組成物からなる第1樹脂層を設ける工程と、
 前記繊維基材の他方の面側に、前記第1樹脂組成物とは異なる第2樹脂組成物からなる第2樹脂層を形成する工程とを含み、
 第2樹脂層を形成する前記工程では、
 少なくとも、前記繊維基材の他方の面から前記繊維基材の厚みの90%にわたって、前記繊維基材に含浸した第2樹脂層を形成するプリプレグの製造方法。
  (付記19)
 付記18に記載のプリプレグの製造方法において、
 前記第1樹脂シートの50~150℃での最低溶融粘度は、1000Pa・s以上、25000Pa・s以下であるプリプレグの製造方法。
  (付記20)
 付記18または19に記載のプリプレグの製造方法において、
 第2樹脂層を形成する前記工程では、
 前記繊維基材の他方の面側に、液状の第2樹脂組成物を供給するプリプレグの製造方法。
  (付記21)
 付記18または19に記載のプリプレグの製造方法において、
 第2樹脂層を形成する前記工程では、
 前記繊維基材の他方の面側に、第2樹脂層となる第2樹脂シートを供給し、前記第2樹脂シートを加熱して、前記繊維基材に含浸させ、
 25℃から3℃/分の昇温速度で昇温したときの50℃以上150℃以下の範囲における第1樹脂シートの最低溶融粘度η1と第2樹脂シートの最低溶融粘度η2との比η1/η2が1.1倍以上、100倍以下であるプリプレグの製造方法。
  (付記22)
 付記18乃至21のいずれかに記載のプリプレグの製造方法において、
 前記第1樹脂シートを繊維基材の一方の面に圧着する前記工程では、
 前記第1樹脂シートをラミネートロールに直接あるいは間接的に面接触するように、前記第1樹脂シートを前記ラミネートロールの外周面に沿って連続的に搬送し、
 前記ラミネートロールと前記第1樹脂シートとが接触している箇所で、前記第1樹脂シートを介して前記ラミネートロールに接触するように、前記繊維基材を前記ラミネートロールに向けて連続的に搬送するプリプレグの製造方法。
  (付記23)
 付記18乃至22のいずれかに記載のプリプレグの製造方法において、
 前記第1樹脂シートがロール状に巻かれており、当該ロールから前記第1樹脂シートを送出し、前記第1樹脂シートを繊維基材の一方の面に圧着する前記工程では、この送り出された前記第1樹脂シートを繊維基材の一方の面に圧着するプリプレグの製造方法。
  (付記24)
 付記18乃至23のいずれかに記載のプリプレグの製造方法において、
 前記第1樹脂シートは、支持体上に形成されており、
 前記第1樹脂シートを繊維基材の一方の面に圧着する前記工程では、前記支持体上の前記第1樹脂シートを繊維基材の一方の面に圧着するプリプレグの製造方法。
(Appendix 18)
Providing a first resin layer made of the first resin composition by pressure-bonding the first resin sheet to one surface of the fiber base;
Forming a second resin layer made of a second resin composition different from the first resin composition on the other surface side of the fiber substrate,
In the step of forming the second resin layer,
The manufacturing method of the prepreg which forms the 2nd resin layer which impregnated the said fiber base material over 90% of the thickness of the said fiber base material from the other surface of the said fiber base material at least.
(Appendix 19)
In the method for producing a prepreg according to appendix 18,
The method for producing a prepreg, wherein the first resin sheet has a minimum melt viscosity at 50 to 150 ° C. of 1000 Pa · s or more and 25000 Pa · s or less.
(Appendix 20)
In the method for producing a prepreg according to appendix 18 or 19,
In the step of forming the second resin layer,
The manufacturing method of the prepreg which supplies a liquid 2nd resin composition to the other surface side of the said fiber base material.
(Appendix 21)
In the method for producing a prepreg according to appendix 18 or 19,
In the step of forming the second resin layer,
Supplying the second resin sheet to be the second resin layer to the other surface side of the fiber substrate, heating the second resin sheet, and impregnating the fiber substrate;
Ratio η1 / of minimum melt viscosity η1 of the first resin sheet and minimum melt viscosity η2 of the second resin sheet in the range of 50 ° C. to 150 ° C. when the temperature is increased from 25 ° C. at a rate of 3 ° C./min. The manufacturing method of the prepreg whose (eta) 2 is 1.1 times or more and 100 times or less.
(Appendix 22)
In the method for producing a prepreg according to any one of appendices 18 to 21,
In the step of pressure-bonding the first resin sheet to one surface of the fiber base material,
Conveying the first resin sheet continuously along the outer peripheral surface of the laminate roll so that the first resin sheet is in direct or indirect surface contact with the laminate roll,
The fiber base material is continuously conveyed toward the laminating roll so as to come into contact with the laminating roll via the first resin sheet at a position where the laminating roll and the first resin sheet are in contact with each other. A method for manufacturing a prepreg.
(Appendix 23)
In the method for producing a prepreg according to any one of appendices 18 to 22,
The first resin sheet is wound in a roll shape, and the first resin sheet is delivered from the roll, and the first resin sheet is sent out in the step of pressure-bonding the first resin sheet to one surface of the fiber base material. A method for producing a prepreg, wherein the first resin sheet is pressure-bonded to one surface of a fiber base material.
(Appendix 24)
In the method for producing a prepreg according to any one of appendices 18 to 23,
The first resin sheet is formed on a support,
In the step of pressure-bonding the first resin sheet to one surface of the fiber base material, a prepreg manufacturing method in which the first resin sheet on the support is pressure-bonded to one surface of the fiber base material.
 次に、本発明の実施例について説明する。
(実施例1)
(第1樹脂組成物)
 表1のA-1の第1樹脂組成物を作成した。
 はじめに、ナフタレン型エポキシ樹脂(日本化薬社製、商品名NC-7300)12.2重量部、ナフタレン型エポキシ樹脂(DIC社製、商品名HP4700)5重量部、フェノールノボラック型シアネート樹脂(ロンザ社製、商品名PT-30)17.2重量部、ビフェニル型フェノキシ樹脂(三菱化学社製、商品名YX-6954BH30)15重量部(固形分換算)、硬化剤として1-ベンジルー2-メチルイミダゾール(四国化成社製、 キュアゾール1B2PZ)0.4重量部をメチルエチルケトンに溶解させた。さらに、無機充填材として、球状シリカ(電気化学工業社製、商品名SFP-20M 平均粒径0.3μm)を50重量部、エポキシシランカップリング剤(信越化学工業社製、商品名KBM-403E)を0.2重量部添加して、高速攪拌機を用いて60分間攪拌した。これにより、樹脂組成物70重量%のワニスを作成した。
 次に、キャリアフィルムとしてポリエチレンテレフタレートフィルム(ユニチカ社製、厚さ38μm、幅560mm)を用い、上記ワニスをコンマコータ装置で塗布し、乾燥装置で170℃3分乾燥させて、厚さ5μm、幅540mmの第1樹脂シート(第1樹脂層となる層)を形成した。
 なお、シリカの平均粒径は、シリカを水中で超音波により分散させ、動的光散乱式粒度分布測定装置(HORIBA社製、LB-550)により、シリカの粒度分布を体積基準で測定し、そのメディアン径を平均粒子径とした。具体的には、平均粒子径は体積累計粒径d50で規定される。以下の実施例、比較例においても同様である。
Next, examples of the present invention will be described.
(Example 1)
(First resin composition)
A first resin composition of A-1 in Table 1 was prepared.
First, naphthalene type epoxy resin (Nippon Kayaku Co., Ltd., trade name NC-7300) 12.2 parts by weight, naphthalene type epoxy resin (DIC, trade name HP 4700) 5 parts by weight, phenol novolac type cyanate resin (Lonza) Product name: PT-30) 17.2 parts by weight Biphenyl type phenoxy resin (Mitsubishi Chemical Co., Ltd., trade name YX-6654BH30) 15 parts by weight (in terms of solid content), 1-benzyl-2-methylimidazole as a curing agent ( 0.4 parts by weight of Shikoku Kasei Co., Ltd., Curazole 1B2PZ) was dissolved in methyl ethyl ketone. Furthermore, as an inorganic filler, 50 parts by weight of spherical silica (trade name SFP-20M, average particle size 0.3 μm, manufactured by Denki Kagaku Kogyo Co., Ltd.), epoxy silane coupling agent (trade name KBM-403E, manufactured by Shin-Etsu Chemical Co., Ltd.) ) Was added in an amount of 0.2 part by weight and stirred for 60 minutes using a high-speed stirrer. As a result, a varnish of 70% by weight of the resin composition was prepared.
Next, a polyethylene terephthalate film (manufactured by Unitika, thickness 38 μm, width 560 mm) is used as a carrier film, and the varnish is applied with a comma coater and dried at 170 ° C. for 3 minutes with a drying device, thickness 5 μm, width 540 mm. The 1st resin sheet (layer used as the 1st resin layer) was formed.
The average particle size of silica is determined by measuring the particle size distribution of silica on a volume basis with a dynamic light scattering particle size distribution analyzer (LB-550, manufactured by HORIBA) by dispersing silica in water with ultrasonic waves. The median diameter was defined as the average particle diameter. Specifically, the average particle size is defined by the volume cumulative particle diameter d 50. The same applies to the following examples and comparative examples.
(第2樹脂組成物)
 表2のB-1に示す組成の第2樹脂組成物を作成した。ナフタレンエーテル型エポキシ樹脂(DIC社製、商品名HP-6000)9重量部、ビフェニルアラルキル型フェノール樹脂(日本化薬社製商品名NC-3000)6重量部、フェノールノボラック型シアネート樹脂(ロンザ社製、商品名PT-30)15.5重量部をメチルエチルケトンに溶解させた。さらに、無機充填材として、球状シリカ(アドマテックス社製、SO-31R 平均粒径1.0μm)を66重量部、球状シリカ(アドマテックス社製、商品名アドマナノ 平均粒径50nm)を3重量部、エポキシシランカップリング剤(信越化学工業社製、商品名KBM-403E)を0.5重量部添加して、高速攪拌機を用いて60分間攪拌した。これにより、樹脂組成物70重量%のワニスを作成した。
(Second resin composition)
A second resin composition having the composition shown in B-1 of Table 2 was prepared. 9 parts by weight of a naphthalene ether type epoxy resin (manufactured by DIC, trade name HP-6000), 6 parts by weight of a biphenyl aralkyl type phenol resin (trade name NC-3000, manufactured by Nippon Kayaku Co., Ltd.), a phenol novolac type cyanate resin (manufactured by Lonza) 15.5 parts by weight of trade name PT-30) was dissolved in methyl ethyl ketone. Furthermore, as inorganic fillers, 66 parts by weight of spherical silica (manufactured by Admatechs, SO-31R average particle size 1.0 μm) and 3 parts by weight of spherical silica (manufactured by Admatechs, trade name Admanano average particle size 50 nm) Then, 0.5 part by weight of an epoxy silane coupling agent (trade name KBM-403E, manufactured by Shin-Etsu Chemical Co., Ltd.) was added, and the mixture was stirred for 60 minutes using a high-speed stirrer. As a result, a varnish of 70% by weight of the resin composition was prepared.
(プリプレグの作成)
 図3に示す製造装置6によりプリプレグを製造した。
 製造装置6のローラ621を回転させ、そのローラ621からキャリアフィルム付の第1樹脂シート3'を送り出した。また、ローラ623を回転させ、そのローラ623から繊維基材2(日東紡社製WEX-1017、坪重量12g/m、13μm)を送り出した。ローラ625において、第1樹脂シート3'と繊維基材2とを圧着した。このときローラ625の温度は95℃であった。
 その後、ノズル611から第2樹脂組成物を含む前記ワニス吐出し、繊維基材2の第1樹脂層3と反対側の面に前記ワニスを供給した。そして、次に、乾燥装置64により、第1樹脂シート3'および第2樹脂組成物を含むワニスを120℃で2分加熱乾燥した。これにより、プリプレグ1(厚み35μm)が得られた。
(Create prepreg)
A prepreg was manufactured by the manufacturing apparatus 6 shown in FIG.
The roller 621 of the manufacturing apparatus 6 was rotated, and the first resin sheet 3 ′ with a carrier film was sent out from the roller 621. Further, the roller 623 was rotated, and the fiber substrate 2 (WEX-1017 manufactured by Nittobo Co., Ltd., basis weight 12 g / m 2 , 13 μm) was fed from the roller 623. In the roller 625, the first resin sheet 3 ′ and the fiber base 2 were pressure bonded. At this time, the temperature of the roller 625 was 95 ° C.
Thereafter, the varnish containing the second resin composition was discharged from the nozzle 611, and the varnish was supplied to the surface of the fiber base 2 opposite to the first resin layer 3. Then, the varnish containing the first resin sheet 3 ′ and the second resin composition was dried by heating at 120 ° C. for 2 minutes by the drying device 64. Thereby, prepreg 1 (thickness: 35 μm) was obtained.
(実施例2)
(第1樹脂組成物)
 表1のA-2の第1樹脂組成物を作成した。
 はじめに、ナフタレン変性クレゾールノボラックエポキシ樹脂(DIC社製、商品名HP-5000)12.2重量部、ナフタレン型エポキシ樹脂(DIC社製、商品名HP4700)5重量部、フェノールノボラック型シアネート樹脂(ロンザ社製、商品名PT-30)17.2重量部、ビフェニル型フェノキシ樹脂(三菱化学社製、商品名YX-6954BH30)15重量部(固形分換算)、硬化剤として1-ベンジルー2-メチルイミダゾール(四国化成社製、 キュアゾール1B2PZ)0.4重量部をメチルエチルケトンに溶解させた。さらに、無機充填材として、球状溶融シリカ(電気化学工業社製、商品名SFP-20M 平均粒径0.3μm)を50重量部、エポキシシランカップリング剤(信越化学工業社製、商品名KBM-403E)を0.2重量部添加して、高速攪拌機を用いて60分間攪拌した。これにより、樹脂組成物70重量%のワニスを作成した。
 次に、キャリアフィルムとしてポリエチレンテレフタレートフィルム(ユニチカ社製、厚さ38μm、幅560mm)を用い、上記ワニスをコンマコータ装置で塗布し、乾燥装置で170℃3分乾燥させて、厚さ5μm、幅540mmの第1樹脂シート(第1樹脂層となる層)を形成した。
(Example 2)
(First resin composition)
A first resin composition of A-2 in Table 1 was prepared.
First, 12.2 parts by weight of a naphthalene-modified cresol novolak epoxy resin (manufactured by DIC, trade name HP-5000), 5 parts by weight of a naphthalene-type epoxy resin (manufactured by DIC, trade name HP 4700), a phenol novolac-type cyanate resin (Lonza) Product name: PT-30) 17.2 parts by weight Biphenyl type phenoxy resin (Mitsubishi Chemical Co., Ltd., trade name YX-6654BH30) 15 parts by weight (in terms of solid content), 1-benzyl-2-methylimidazole as a curing agent ( 0.4 parts by weight of Shikoku Kasei Co., Ltd., Curazole 1B2PZ) was dissolved in methyl ethyl ketone. Furthermore, as an inorganic filler, 50 parts by weight of spherical fused silica (trade name SFP-20M, average particle size 0.3 μm, manufactured by Denki Kagaku Kogyo Co., Ltd.), epoxy silane coupling agent (trade name KBM-, manufactured by Shin-Etsu Chemical Co., Ltd.) 403E) was added by 0.2 parts by weight, and the mixture was stirred for 60 minutes using a high-speed stirrer. As a result, a varnish of 70% by weight of the resin composition was prepared.
Next, a polyethylene terephthalate film (manufactured by Unitika, thickness 38 μm, width 560 mm) is used as a carrier film, and the varnish is applied with a comma coater and dried at 170 ° C. for 3 minutes with a drying device, thickness 5 μm, width 540 mm. The 1st resin sheet (layer used as the 1st resin layer) was formed.
(第2樹脂組成物)
 第2樹脂組成物としては、実施例1と同様のものを準備した。
(プリプレグの製造)
 上記ポリエチレンテレフタレートフィルム付樹脂層、上記第2樹脂組成物を含むワニスを使用して、実施例1と同様の方法でプリプレグを製造した。
(Second resin composition)
As the 2nd resin composition, the same thing as Example 1 was prepared.
(Manufacture of prepreg)
A prepreg was produced in the same manner as in Example 1, using the resin layer with a polyethylene terephthalate film and a varnish containing the second resin composition.
(実施例3)
(第1樹脂組成物)
 表1のA-3の第1樹脂組成物を作成した。
 はじめに、ナフタレン変性クレゾールノボラックエポキシ樹脂(DIC社製、商品名HP-5000)16.2重量部、ナフタレン型エポキシ樹脂(DIC社製、商品名HP4700)9重量部、フェノールノボラック型シアネート樹脂(ロンザ社製、商品名PT-30)24.2重量部、ゴム変性フェノールOH含有ポリアミド樹脂(日本化薬社製、商品名BPAM-155、Mw=1.5万以上)15重量部、硬化剤として1-ベンジルー2-メチルイミダゾール(四国化成社製、 キュアゾール1B2PZ)0.4重量部をメチルエチルケトンに溶解させた。さらに、無機充填材として、球状溶融シリカ(電気化学工業社製、商品名SFP-20M 平均粒径0.3μm)を35重量部、エポキシシランカップリング剤(信越化学工業社製、商品名KBM-403E)を0.2重量部添加して、高速攪拌機を用いて60分間攪拌した。これにより、樹脂組成物70重量%のワニスを作成した。
 次に、キャリアフィルムとしてポリエチレンテレフタレートフィルム(ユニチカ社製、厚さ38μm、幅560mm)を用い、上記ワニスをコンマコータ装置で塗布し、乾燥装置で170℃3分乾燥させて、厚さ5μm、幅540mmの第1樹脂シート(第1樹脂層となる層)を形成した。
(第2樹脂組成物)
 第2樹脂組成物としては、実施例1と同様のものを準備した。
(プリプレグの製造)
 上記ポリエチレンテレフタレートフィルム付樹脂層、上記第2樹脂組成物を含むワニスを使用して、実施例1と同様の方法でプリプレグを製造した。
(Example 3)
(First resin composition)
A first resin composition A-3 in Table 1 was prepared.
First, 16.2 parts by weight of naphthalene-modified cresol novolac epoxy resin (DIC, trade name HP-5000), 9 parts by weight of naphthalene type epoxy resin (DIC, trade name HP 4700), phenol novolac cyanate resin (Lonza) Product name PT-30) 24.2 parts by weight, rubber-modified phenol OH-containing polyamide resin (Nippon Kayaku Co., Ltd., trade name BPAM-155, Mw = 15,000 or more) 15 parts by weight, 1 as a curing agent -0.4 parts by weight of benzyl-2-methylimidazole (manufactured by Shikoku Kasei Co., Ltd., Curesol 1B2PZ) was dissolved in methyl ethyl ketone. Further, as an inorganic filler, 35 parts by weight of spherical fused silica (trade name SFP-20M, average particle size 0.3 μm, manufactured by Denki Kagaku Kogyo Co., Ltd.), epoxy silane coupling agent (trade name KBM-, manufactured by Shin-Etsu Chemical Co., Ltd.) Then, 0.2 part by weight of 403E) was added and stirred for 60 minutes using a high-speed stirrer. As a result, a varnish of 70% by weight of the resin composition was prepared.
Next, a polyethylene terephthalate film (manufactured by Unitika, thickness 38 μm, width 560 mm) is used as a carrier film, and the varnish is applied with a comma coater and dried at 170 ° C. for 3 minutes with a drying device, thickness 5 μm, width 540 mm. The 1st resin sheet (layer used as the 1st resin layer) was formed.
(Second resin composition)
As the 2nd resin composition, the same thing as Example 1 was prepared.
(Manufacture of prepreg)
A prepreg was produced in the same manner as in Example 1, using the resin layer with a polyethylene terephthalate film and a varnish containing the second resin composition.
(実施例4)
(第1樹脂組成物)
 実施例3と同様の第1樹脂組成物を作成し、実施例1と同様のポリエチレンテレフタレートフィルム付樹脂層を使用した。
(第2樹脂組成物)
 表2のB-2に示す組成の第2樹脂組成物を作成した。
 ジシクロペンタジエン型エポキシ樹脂(DIC社製、商品名HP-7200L)9重量部、ビフェニルアラルキル型フェノール樹脂(日本化薬社製商品名GPH-65)6重量部、フェノールノボラック型シアネート樹脂(ロンザ社製、商品名PT-30)15.5重量部をメチルエチルケトンに溶解させた。さらに、無機充填材として、球状シリカ(アドマテックス社製、SO-31R 平均粒径1.0μm)を66重量部、球状溶融シリカ(アドマテックス社製、商品名アドマナノ 平均粒径50nm)を3重量部、エポキシシランカップリング剤(信越化学工業社製、商品名KBM-403E)を0.5重量部添加して、高速攪拌機を用いて60分間攪拌した。これにより、樹脂組成物70重量%のワニスを作成した。
(プリプレグの製造)
 上記ポリエチレンテレフタレートフィルム付樹脂層、上記第2樹脂組成物のワニスを使用して、実施例1と同様の方法でプリプレグを製造した。
(Example 4)
(First resin composition)
The same 1st resin composition as Example 3 was created, and the same resin layer with a polyethylene terephthalate film as Example 1 was used.
(Second resin composition)
A second resin composition having the composition shown in B-2 of Table 2 was prepared.
9 parts by weight of dicyclopentadiene type epoxy resin (made by DIC, trade name HP-7200L), 6 parts by weight of biphenyl aralkyl type phenol resin (trade name GPH-65 made by Nippon Kayaku Co., Ltd.), phenol novolac type cyanate resin (Lonza) 15.5 parts by weight of product name PT-30) was dissolved in methyl ethyl ketone. Further, as inorganic fillers, 66 parts by weight of spherical silica (manufactured by Admatechs, SO-31R average particle diameter 1.0 μm), 3 parts by weight of spherical fused silica (manufactured by Admatechs, trade name Admanano average particle diameter 50 nm) 0.5 parts by weight of an epoxy silane coupling agent (trade name KBM-403E, manufactured by Shin-Etsu Chemical Co., Ltd.) was added and stirred for 60 minutes using a high-speed stirrer. As a result, a varnish of 70% by weight of the resin composition was prepared.
(Manufacture of prepreg)
A prepreg was produced in the same manner as in Example 1 using the resin layer with a polyethylene terephthalate film and the varnish of the second resin composition.
(実施例5)
(第1樹脂組成物)
 実施例3と同様の第1樹脂組成物を作成し、実施例1と同様のポリエチレンテレフタレートフィルム付樹脂層を使用した。
(第2樹脂組成物)
 表2のB-3に示す組成の第2樹脂組成物を作成した。
 ナフタレンエーテル型エポキシ樹脂(DIC社製、商品名HP-6000)10重量部、ビフェニルアラルキル型フェノール樹脂(日本化薬社製商品名GPH-65)8重量部、フェノールノボラック型シアネート樹脂(ロンザ社製、商品名PT-30)14.5重量部、ビフェニル型フェノキシ樹脂(三菱化学社製、商品名YX-6954BH30)2重量部(固形分換算)、をメチルエチルケトンに溶解させた。さらに、無機充填材として、球状溶融シリカ(アドマテックス社製、SO-31R 平均粒径1.0μm)を65重量部、エポキシシランカップリング剤(信越化学工業社製、商品名KBM-403E)を0.5重量部添加して、高速攪拌機を用いて60分間攪拌した。これにより、樹脂組成物70重量%のワニスを作成した。
(プリプレグの製造)
 上記ポリエチレンテレフタレートフィルム付樹脂層、上記第2樹脂組成物のワニスを使用して、実施例1と同様の方法でプリプレグを製造した。
(Example 5)
(First resin composition)
The same 1st resin composition as Example 3 was created, and the same resin layer with a polyethylene terephthalate film as Example 1 was used.
(Second resin composition)
A second resin composition having the composition shown in B-3 of Table 2 was prepared.
10 parts by weight of a naphthalene ether type epoxy resin (manufactured by DIC, trade name HP-6000), 8 parts by weight of a biphenyl aralkyl type phenol resin (trade name GPH-65, manufactured by Nippon Kayaku Co., Ltd.), a phenol novolac type cyanate resin (manufactured by Lonza) 14.5 parts by weight of a trade name PT-30) and 2 parts by weight (converted to a solid content) of a biphenyl type phenoxy resin (trade name YX-6654BH30, manufactured by Mitsubishi Chemical Corporation) were dissolved in methyl ethyl ketone. Furthermore, 65 parts by weight of spherical fused silica (manufactured by Admatechs, SO-31R average particle size 1.0 μm) and an epoxy silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., trade name KBM-403E) are used as inorganic fillers. 0.5 part by weight was added and stirred for 60 minutes using a high-speed stirrer. As a result, a varnish of 70% by weight of the resin composition was prepared.
(Manufacture of prepreg)
A prepreg was produced in the same manner as in Example 1 using the resin layer with a polyethylene terephthalate film and the varnish of the second resin composition.
(実施例6)
(第1樹脂組成物)
 実施例3と同様の第1樹脂組成物を作成し、実施例1と同様のポリエチレンテレフタレートフィルム付樹脂層を使用した。
(第2樹脂組成物)
 表2のB-4に示す組成の第2樹脂組成物を作成した。
 ジシクロペンタジエン型エポキシ樹脂(DIC社製、商品名HP-7200L)10重量部、ビフェニルアラルキル型フェノール樹脂((日本化薬社製商品名GPH-65))8重量部、フェノールノボラック型シアネート樹脂(ロンザ社製、商品名PT-30)14.5重量部、ビフェニル型フェノキシ樹脂(三菱化学社製、商品名YX-6954BH30)2重量部(固形分換算)、をメチルエチルケトンに溶解させた。さらに、無機充填材として、球状溶融シリカ(アドマテックス社製、SO-31R 平均粒径1.0μm)を65重量部、エポキシシランカップリング剤(信越化学工業社製、商品名KBM-403E)を0.5重量部添加して、高速攪拌機を用いて60分間攪拌した。これにより、樹脂組成物70重量%のワニスを作成した。
(プリプレグの製造)
 上記ポリエチレンテレフタレートフィルム付樹脂層、上記第2樹脂組成物のワニスを使用して、実施例1と同様の方法でプリプレグを製造した。
(Example 6)
(First resin composition)
The same 1st resin composition as Example 3 was created, and the same resin layer with a polyethylene terephthalate film as Example 1 was used.
(Second resin composition)
A second resin composition having the composition shown in B-2 of Table 2 was prepared.
10 parts by weight of a dicyclopentadiene type epoxy resin (manufactured by DIC, trade name HP-7200L), 8 parts by weight of a biphenyl aralkyl type phenol resin (trade name GPH-65, manufactured by Nippon Kayaku Co., Ltd.), a phenol novolac type cyanate resin ( 14.5 parts by weight of Lonza Corporation, trade name PT-30) and 2 parts by weight of biphenyl type phenoxy resin (trade name YX-6654BH30, manufactured by Mitsubishi Chemical Corporation) (in terms of solid content) were dissolved in methyl ethyl ketone. Furthermore, 65 parts by weight of spherical fused silica (manufactured by Admatechs, SO-31R average particle size 1.0 μm) and an epoxy silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., trade name KBM-403E) are used as inorganic fillers. 0.5 part by weight was added and stirred for 60 minutes using a high-speed stirrer. As a result, a varnish of 70% by weight of the resin composition was prepared.
(Manufacture of prepreg)
A prepreg was produced in the same manner as in Example 1 using the resin layer with a polyethylene terephthalate film and the varnish of the second resin composition.
(比較例1)
 実施例1で製造したA-1の組成の第1樹脂組成物のワニスと、B-1で示す組成の第2樹脂組成物のワニスとを使用して、プリプレグを製造した。
 繊維基材の両面からダイコーターを用い、一方の面に、第1樹脂組成物のワニスを、他方の面に、第2樹脂組成物のワニスを塗布し、180℃で2分加熱乾燥した。これにより、プリプレグ(厚み35μm)が得られた。
(Comparative Example 1)
A prepreg was produced using the varnish of the first resin composition having the composition of A-1 produced in Example 1 and the varnish of the second resin composition having the composition represented by B-1.
A die coater was used from both sides of the fiber base, and the varnish of the first resin composition was applied to one side, and the varnish of the second resin composition was applied to the other side, and dried by heating at 180 ° C. for 2 minutes. Thereby, a prepreg (thickness: 35 μm) was obtained.
(比較例2)
 ここでは、国際公開WO2007/063960のパンフレットの実施例1と同様の方法で、プリプレグを製造した。詳細は以下の通りである。
1.第1樹脂層のワニスの調製
シアネート樹脂(ロンザジャパン社製、プリマセット PT-30、重量平均分子量約2,600)24重量%、エポキシ樹脂としてビフェニルジメチレン型エポキシ樹脂(日本化薬社製、NC-3000、エポキシ当量275)24重量%、フェノキシ樹脂としてビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂との共重合体であり、末端部はエポキシ基を有しているフェノキシ樹脂(ジャパンエポキシレジン社製・EP-4275、重量平均分子量60,000)11.8重量%、硬化触媒としてイミダゾール化合物(四国化成工業社製・「2-フェニル-4,5-ジヒドロキシメチルイミダゾール」)0.2重量%をメチルエチルケトンに溶解させた。さらに、無機充填材として球状溶融シリカ(アドマテックス社製、SO-25H、平均粒径0.5μm)39.8重量%とエポキシシラン型カップリング剤(日本ユニカー社製、A-187)0.2重量%を添加して、高速攪拌装置を用いて60分間攪拌して、樹脂組成物70重量%の樹脂ワニスを調製した(表3のA-4の組成)。
(Comparative Example 2)
Here, the prepreg was manufactured by the method similar to Example 1 of the pamphlet of international publication WO2007 / 063960. Details are as follows.
1. Preparation of first resin layer varnish Cyanate resin (Lonza Japan, Primaset PT-30, weight average molecular weight about 2,600) 24% by weight, biphenyldimethylene type epoxy resin (manufactured by Nippon Kayaku Co., Ltd.) NC-3000, epoxy equivalent 275) 24% by weight, phenoxy resin is a copolymer of bisphenol A type epoxy resin and bisphenol F type epoxy resin, and the terminal part is a phenoxy resin having an epoxy group (Japan epoxy resin) 11.8% by weight, EP-4275, weight average molecular weight 60,000), 0.2 weight by weight of imidazole compound as a curing catalyst (“2-phenyl-4,5-dihydroxymethylimidazole” manufactured by Shikoku Chemicals) % Was dissolved in methyl ethyl ketone. Further, 39.8% by weight of spherical fused silica (manufactured by Admatechs, SO-25H, average particle size 0.5 μm) as an inorganic filler and epoxy silane type coupling agent (manufactured by Nihon Unicar, A-187) 0. 2% by weight was added and stirred for 60 minutes using a high-speed stirrer to prepare a resin varnish of 70% by weight of the resin composition (composition A-4 in Table 3).
2.第2樹脂層のワニスの調製
熱硬化性樹脂としてノボラック型シアネート樹脂(ロンザジャパン社製、プリマセット PT-30、重量平均分子量約2,600)15重量%、エポキシ樹脂としてビフェニルジメチレン型エポキシ樹脂(日本化薬社製、NC-3000、エポキシ当量275)8.7重量%、フェノール樹脂としてビフェニルジメチレン型フェノール樹脂(日本化薬社製、GPH-65、水酸基当量200)6.3重量%をメチルエチルケトンに溶解させた。さらに、無機充填材として球状溶融シリカ(アドマテックス社製、SO-25H、平均粒径0.5μm)69.7重量%とエポキシシラン型カップリング剤(日本ユニカー社製、A-187)0.3重量%を添加して、高速攪拌装置を用いて60分間攪拌して、樹脂組成物70重量%の第2樹脂層のワニスを調製した(表3のB-5の組成)。
2. Preparation of varnish of second resin layer 15% by weight of novolak-type cyanate resin (manufactured by Lonza Japan, Primaset PT-30, weight average molecular weight of about 2,600) as thermosetting resin, biphenyldimethylene type epoxy resin as epoxy resin (Nippon Kayaku Co., Ltd., NC-3000, epoxy equivalent 275) 8.7% by weight, phenol resin biphenyldimethylene type phenol resin (Nippon Kayaku Co., Ltd., GPH-65, hydroxyl equivalent 200) 6.3% by weight Was dissolved in methyl ethyl ketone. Further, spherical fused silica (manufactured by Admatechs, SO-25H, average particle size 0.5 μm) 69.7% by weight as an inorganic filler and epoxysilane type coupling agent (Nihon Unicar Co., Ltd., A-187) 0. 3% by weight was added, and the mixture was stirred for 60 minutes using a high-speed stirrer to prepare a varnish for the second resin layer of 70% by weight of the resin composition (composition B-5 in Table 3).
3.キャリア材料の製造
キャリアフィルムとしてポリエチレンテレフタレートフィルム(三菱化学ポリエステル社製、SFB-38、厚さ38μmm、幅480mm)を用い、上述の第1樹脂層のワニスをコンマコーター装置で塗工し、170℃の乾燥装置で3分間乾燥させ、厚さ9μm、幅410mmの樹脂層が、キャリアフィルムの幅方向の中心に位置するように形成してキャリア材料I(最終的に第1樹脂層を形成)を得た。
また、同様の方法で塗工する第2樹脂層のワニスの量を調整して、厚さ14μm、幅360mmの樹脂層が、キャリアフィルムの幅方向の中心に位置するように形成してキャリア材料II(最終的に第2樹脂層を形成)を得た。
3. Production of carrier material A polyethylene terephthalate film (manufactured by Mitsubishi Chemical Polyester Co., Ltd., SFB-38, thickness 38 μmm, width 480 mm) was used as a carrier film. The carrier material I (finally the first resin layer is finally formed) is formed by drying for 3 minutes using a drying apparatus and forming a resin layer having a thickness of 9 μm and a width of 410 mm at the center in the width direction of the carrier film. Obtained.
Further, the amount of the varnish of the second resin layer to be coated by the same method is adjusted so that the resin layer having a thickness of 14 μm and a width of 360 mm is positioned at the center in the width direction of the carrier film. II (final formation of the second resin layer) was obtained.
4.プリプレグの製造
繊維基材としてガラス織布(クロスタイプ♯1015、幅360mm、厚さ15μm、坪量17g/m2)を用い、真空ラミネート装置および熱風乾燥装置によりプリプレグを製造した。
具体的には、ガラス織布の両面に前記キャリア材料Iおよびキャリア材料IIがガラス織布の幅方向の中心に位置するように、それぞれ重ね合わせ、1330Paの減圧条件下で、80℃のラミネートロールを用いて接合した。
ここで、ガラス織布の幅方向寸法の内側領域においては、キャリア材料Iおよびキャリア材料IIの樹脂層を繊維布の両面側にそれぞれ接合するとともに、ガラス織布の幅方向寸法の外側領域においては、キャリア材料Iおよびキャリア材料IIの樹脂層同士を接合した。
次いで、上記接合したものを、120℃に設定した横搬送型の熱風乾燥装置内を2分間通すことによって、圧力を作用させることなく加熱処理して、厚さ30μm(第1樹脂層:5μm、繊維基材:15μm、第2樹脂層:10μm)のプリプレグを得た。
4). Production of Prepreg Glass woven fabric (cross type # 1015, width 360 mm, thickness 15 μm, basis weight 17 g / m 2 ) was used as a fiber substrate, and a prepreg was produced by a vacuum laminating apparatus and a hot air drying apparatus.
Specifically, the carrier material I and the carrier material II are overlapped on both surfaces of the glass woven fabric so as to be positioned at the center in the width direction of the glass woven fabric, respectively, and are laminated at 80 ° C. under a reduced pressure of 1330 Pa. Was used for bonding.
Here, in the inner region of the width direction dimension of the glass woven fabric, the resin layers of the carrier material I and the carrier material II are respectively bonded to both sides of the fiber cloth, and in the outer region of the width direction dimension of the glass woven fabric. The resin layers of carrier material I and carrier material II were joined together.
Next, the bonded material was heat-treated without applying pressure by passing it through a horizontal conveyance type hot-air drying apparatus set at 120 ° C. for 2 minutes to obtain a thickness of 30 μm (first resin layer: 5 μm, A prepreg having a fiber base material of 15 μm and a second resin layer of 10 μm was obtained.
(評価方法)
 上述した実施例、比較例で製造したプリプレグの評価を行なった。
(Evaluation methods)
The prepregs produced in the above-described examples and comparative examples were evaluated.
(界面の有無)
 各プリプレグの厚さ方向に直交する断面をSEM(倍率1000倍)で観察し、第1樹脂層と第2樹脂層との間の界面が確認できるかどうかで、界面が形成されているかどうかを評価した。
 表4に結果を示すとともに、図8~10に実施例1,5,6のSEM写真を示し、図11,12に比較例1,2のSEM写真を示す。
 なお、実施例5,6のプリプレグでは、第1樹脂層が繊維基材表面に直接接触している領域、および第2樹脂層が繊維基材の外側まではみ出し、第1樹脂層は、直接繊維基材には接触していない領域がある。
(Existence of interface)
The cross section perpendicular to the thickness direction of each prepreg is observed with an SEM (magnification 1000 times), and whether or not the interface between the first resin layer and the second resin layer can be confirmed. evaluated.
Table 4 shows the results, FIGS. 8 to 10 show SEM photographs of Examples 1, 5, and 6, and FIGS. 11 and 12 show SEM photographs of Comparative Examples 1 and 2, respectively.
In the prepregs of Examples 5 and 6, the region in which the first resin layer is in direct contact with the surface of the fiber base and the second resin layer protrude to the outside of the fiber base. There are areas that are not in contact with the substrate.
(含浸率)
 各プリプレグの厚さ方向に直交する断面をSEM(倍率500倍)で観察し、ガラスクロスの表面から、第1樹脂層と第2樹脂層との界面までの距離の平均値B(10箇所測定)を算出した。そして、ガラスクロスの厚みの平均値A(10箇所測定)を算出し、B/A×100(%)で含浸率を算出した。結果を表4に示す。なお、ガラスクロスの厚みは、たて糸とよこ糸の交点部分で計測している。
(Impregnation rate)
The cross section perpendicular to the thickness direction of each prepreg was observed with SEM (500 times magnification), and the average value B (measured at 10 points) from the surface of the glass cloth to the interface between the first resin layer and the second resin layer ) Was calculated. And the average value A (10 places measurement) of the thickness of a glass cloth was computed, and the impregnation rate was computed by B / Ax100 (%). The results are shown in Table 4. The thickness of the glass cloth is measured at the intersection of the warp and the weft.
(樹脂層の性能)
1. ピール強度
 各実施例、比較例の第1樹脂層、第2樹脂層のピール強度を測定した。測定方法は以下の通りである。
 プリプレグ1の第1樹脂層3を銅箔に重ね合わせ、荷重2MPa、温度220℃、1時間の条件下で大気中で熱処理した後の90°ピール強度Aを測定した。さらに、当該プリプレグの第2樹脂層4を銅箔に重ね合わせ、荷重2MPa、温度220℃、1時間の条件下で大気中で熱処理した後の90°ピール強度Bを測定した。
 ピール強度は、JIS C 6481の90度引き剥がし法に準じて、銅箔に対して樹脂層を90度方向に引き剥がして測定した。具体的には、25℃において、毎分50mmの速さで樹脂層を引きはがす際の90度ピール強度を、90度剥離試験機で測定した。
 また、銅箔は、厚さ2μmの銅箔(表面粗さRz=2.0μm、三井金属工業社製商品名MT Ex-2)である。結果を表4に示す。
2. 埋め込み性
 表面に回路パターンを有し、回路厚み18μm、残銅率50%の内層回路基板を用意した。この内層回路基板の回路パターンに第2樹脂層が接触するようにプリプレグを重ね、加圧加熱成形(1MPa、200℃、90分)して基板を10枚得た。
 各基板の断面を顕微鏡で観察した。そして、第2樹脂層の埋め込み性を評価した。
◎:すべての基板において、埋め込み性に優れていた。
○:板端に、実質上問題なし微小ボイド発生した。
×:埋め込みが不十分であり、ボイドが多数発生した。
結果を表4に示す。
(Performance of resin layer)
1. Peel strength The peel strength of the first resin layer and the second resin layer of each of the examples and comparative examples was measured. The measuring method is as follows.
The first resin layer 3 of the prepreg 1 was placed on a copper foil, and the 90 ° peel strength A after heat treatment in the atmosphere under the conditions of a load of 2 MPa, a temperature of 220 ° C. and 1 hour was measured. Further, the second resin layer 4 of the prepreg was placed on a copper foil, and the 90 ° peel strength B after heat treatment in the atmosphere under the conditions of a load of 2 MPa, a temperature of 220 ° C. and 1 hour was measured.
The peel strength was measured in accordance with JIS C 6481 90 degree peeling method by peeling the resin layer from the copper foil in the 90 degree direction. Specifically, at 25 ° C., the 90 ° peel strength when the resin layer was peeled off at a speed of 50 mm per minute was measured with a 90 ° peel tester.
The copper foil is a copper foil having a thickness of 2 μm (surface roughness Rz = 2.0 μm, trade name MT Ex-2 manufactured by Mitsui Kinzoku Kogyo Co., Ltd.). The results are shown in Table 4.
2. Embeddability An inner layer circuit board having a circuit pattern on the surface, a circuit thickness of 18 μm, and a remaining copper ratio of 50% was prepared. A prepreg was stacked so that the second resin layer was in contact with the circuit pattern of the inner layer circuit board, and pressure heating molding (1 MPa, 200 ° C., 90 minutes) was performed to obtain 10 substrates.
The cross section of each substrate was observed with a microscope. Then, the embedding property of the second resin layer was evaluated.
(Double-circle): It was excellent in the embedding property in all the board | substrates.
○: Microvoids occurred at the edge of the plate with virtually no problem.
X: Insufficient embedding and many voids occurred.
The results are shown in Table 4.
(ビア間信頼性)
 実施例、比較例で得られたプリプレグを8枚重ね、両面に厚さ12μmの銅箔を重ねて、圧力4MPa、温度200℃で2時間加熱加圧成形することによって、両面に銅箔を有する積層板を得た。プリプレグを重ねる際には、第1樹脂層と第2樹脂層とが交互に配置されるように、プリプレグを積み重ねた。その後、コンフォーマルマスク法で炭酸レーザを用いて径0.15mm、壁間距離100μmのスルーホールを開け、その後メッキ、回路配線を形成して、130℃、85%RH、印加電圧20Vの条件下で500h処理し、20Vで絶縁抵抗を測定した。測定用の試料は、N=10用意した。
◎:全ての試料が1.0×10Ω以上
○:1.0×10Ω以上となる試料が8個以上、9個未満
×:1.0×10Ω以上となる試料が8個未満
(Reliability between vias)
Eight prepregs obtained in Examples and Comparative Examples are stacked, and a copper foil having a thickness of 12 μm is stacked on both sides, and then heated and pressed at a pressure of 4 MPa and a temperature of 200 ° C. for 2 hours to have copper foils on both sides. A laminate was obtained. When the prepregs were stacked, the prepregs were stacked so that the first resin layer and the second resin layer were alternately arranged. Thereafter, a carbon dioxide laser is used to form a through hole having a diameter of 0.15 mm and a wall-to-wall distance of 100 μm by a conformal mask method. Thereafter, plating and circuit wiring are formed, under conditions of 130 ° C., 85% RH, and applied voltage of 20 V. And the insulation resistance was measured at 20V. N = 10 samples were prepared for measurement.
◎: All samples 1.0 × 10 7 Ω or higher ○: 1.0 × 10 7 Ω or more and consisting sample 8 or more, 9 fewer than ×: the sample to be 1.0 × 10 7 Ω or more 8 Less than
(最低溶融粘度)
 最低溶融粘度の測定条件は、以下のようである。結果を表4に示す。
 実施例、比較例において、50~150℃における第1樹脂層、第2樹脂層の最低溶融粘度を計測した。ここでは、前記各実施例、比較例で得られた第1樹脂組成物のワニス、第2樹脂組成物のワニスをコンマコータ装置で塗布し、乾燥装置で170℃3分乾燥させて、厚さ5μmのフィルムとしたものを測定対象としている。ただし、ここでの計測結果は、プリプレグの状態における第1樹脂層、第2樹脂層の最低溶融粘度と一致する。
測定条件は、以下の通りである。
 動的粘弾性測定装置(Anton Paar社製、装置名Physica MCR-301)
 周波数:62.83rad/sec
 測定温度:25~200℃、3℃/min
 ジオメトリー:パラレルプレート
 プレート直径:10mm
 プレート間隔:0.1mm
 荷重(ノーマルフォース):0N(一定)
 ストレイン:0.3%
 測定雰囲気:空気
(Minimum melt viscosity)
The measurement conditions for the minimum melt viscosity are as follows. The results are shown in Table 4.
In Examples and Comparative Examples, the lowest melt viscosities of the first resin layer and the second resin layer at 50 to 150 ° C. were measured. Here, the varnish of the first resin composition and the varnish of the second resin composition obtained in the respective Examples and Comparative Examples were applied with a comma coater device, dried at 170 ° C. for 3 minutes with a drying device, and a thickness of 5 μm. The film is a measurement object. However, the measurement result here corresponds to the minimum melt viscosity of the first resin layer and the second resin layer in the prepreg state.
The measurement conditions are as follows.
Dynamic viscoelasticity measuring device (manufactured by Anton Paar, device name Physica MCR-301)
Frequency: 62.83 rad / sec
Measurement temperature: 25-200 ° C, 3 ° C / min
Geometry: Parallel plate Plate diameter: 10mm
Plate spacing: 0.1mm
Load (normal force): 0N (constant)
Strain: 0.3%
Measurement atmosphere: Air
(樹脂流れ(重量%))
 実施例、比較例のプリプレグを用いてIPC-TM-650 Method 2.3.17に準拠して測定した。すなわち、図7で示すように、実施例、比較例のプリプレグを102mm×102mmの正方形にカットし、これを4枚重ね、重量(W(g))を測定した。そして、プリプレグの最外層の両面には、離型フィルム(製品名:セパニウム20M2C-S、製造元:サン・アルミニウム工業株式会社、サイズ:200mm×240mm)を貼り付けた(図7(a))。その後、2枚のSUS板の間にプリプレグを配置して、171℃、1.38MPaに加熱加圧して、5分間熱板プレスした(図7(b))。ついで、離型フィルムを剥離し、プリプレグの積層方向が高さ方向となるよう径81mmの円柱状にプリプレグを切り抜き(図7(c))、得られた円柱状のプリプレグの重量(W(g))を測定した。式(1)から樹脂流れを求めた。結果を表3に示す。なお、式(1)中、%は、重量%である。
(Resin flow (wt%))
The measurement was performed according to IPC-TM-650 Method 2.3.17 using the prepregs of Examples and Comparative Examples. That is, as shown in FIG. 7, the prepregs of Examples and Comparative Examples were cut into 102 mm × 102 mm squares, four of them were stacked, and the weight (W 0 (g)) was measured. A release film (product name: Sepanium 20M2C-S, manufacturer: Sun Aluminum Co., Ltd., size: 200 mm × 240 mm) was attached to both surfaces of the outermost layer of the prepreg (FIG. 7A). Thereafter, a prepreg was placed between the two SUS plates, heated and pressurized to 171 ° C. and 1.38 MPa, and hot plate pressed for 5 minutes (FIG. 7B). Next, the release film is peeled off, and the prepreg is cut out into a columnar shape having a diameter of 81 mm so that the stacking direction of the prepreg is in the height direction (FIG. 7C), and the weight (W 2 ( g)) was measured. The resin flow was determined from equation (1). The results are shown in Table 3. In the formula (1),% is% by weight.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
(樹脂はみ出し量)
 200mm×200mmにカットした実施例、比較例のプリプレグをニチゴ―・モートン(株)製CVP300のホットプレス装置を用いてプレスし、樹脂はみ出し量を測定した。具体的には、このホットプレス装置の2つの熱板(SUS1.5mm)に挟まれた2枚のゴム板の間に上記実施例又は比較例のプリプレグを戴置し、120℃、2.5MPaの条件で、60秒プレスした。ゴム板は、JIS K 6253 Aに準拠して測定したゴム硬度が60°であり、厚みが3mmのシリコンゴムとした。結果を表4に示す。
(Resin protrusion amount)
The prepregs of Examples and Comparative Examples cut to 200 mm × 200 mm were pressed using a hot press device of CVP300 manufactured by Nichigo-Morton Co., Ltd., and the amount of resin protrusion was measured. Specifically, the prepreg of the above example or comparative example is placed between two rubber plates sandwiched between two hot plates (SUS 1.5 mm) of this hot press apparatus, and the conditions are 120 ° C. and 2.5 MPa. And pressed for 60 seconds. The rubber plate was a silicon rubber having a rubber hardness measured according to JIS K 6253 A of 60 ° and a thickness of 3 mm. The results are shown in Table 4.
(積層体厚み)
 実施例、比較例で得られたプリプレグを8枚重ね、両面に厚さ12μmの銅箔を重ねて、圧力3.5MPa、温度200℃で2時間加熱加圧成形することによって、両面に銅箔を有する積層体を得た。この積層体において、上層側の4枚のプリプレグは、第1樹脂層が、上層の銅箔側に配置されており、他の4枚のプリプレグは、第1樹脂層が、下層の銅箔側に配置されている。
 その後、銅箔を全てエッチング液(塩化鉄)でエッチングして除去し、積層板(400mm角)の対角線を40mmピッチで厚み測定を行い、最大-最小値を算出した。結果を表4に示す。
 ◎:10μm未満
 △:10μm以上30μm未満
 ×:30μm以上
(Laminate thickness)
Eight prepregs obtained in Examples and Comparative Examples are stacked, and a copper foil having a thickness of 12 μm is stacked on both sides, and then heated and pressure-molded at a pressure of 3.5 MPa and a temperature of 200 ° C. for 2 hours. A laminated body having was obtained. In this laminate, the upper four prepregs have the first resin layer disposed on the upper copper foil side, and the other four prepregs have the first resin layer on the lower copper foil side. Is arranged.
Thereafter, all the copper foil was removed by etching with an etching solution (iron chloride), and the thickness of the diagonal line of the laminated plate (400 mm square) was measured at a pitch of 40 mm to calculate the maximum-minimum value. The results are shown in Table 4.
A: Less than 10 μm Δ: 10 μm or more and less than 30 μm ×: 30 μm or more
(積層体の反り)
 実施例、比較例で得られたプリプレグを8枚重ね、両面に厚さ12μmの銅箔を重ねて、圧力3.5MPa、温度200℃で2時間加熱加圧成形することによって、両面に銅箔を有する積層体を得た。この積層体において、上層側の4枚のプリプレグは、第1樹脂層が、上層の銅箔側に配置されており、他の4枚のプリプレグは、第1樹脂層が、下層の銅箔側に配置されている。
 その後、銅箔を全てエッチング液(塩化鉄)でエッチングして除去し、50mm角の個片の反りを測定した。結果を表4に示す。
 ◎:200μm未満
 ×:200μm以上
(Lamination of laminate)
Eight prepregs obtained in Examples and Comparative Examples are stacked, and a copper foil having a thickness of 12 μm is stacked on both sides, and then heated and pressure-molded at a pressure of 3.5 MPa and a temperature of 200 ° C. for 2 hours. A laminated body having was obtained. In this laminate, the upper four prepregs have the first resin layer disposed on the upper copper foil side, and the other four prepregs have the first resin layer on the lower copper foil side. Is arranged.
Thereafter, all the copper foil was removed by etching with an etching solution (iron chloride), and the warpage of a 50 mm square piece was measured. The results are shown in Table 4.
A: Less than 200 μm ×: 200 μm or more
(耐熱性)
 実施例、比較例で得られたプリプレグを8枚重ね、両面に厚さ12μmの銅箔を重ねて、圧力3.5MPa、温度200℃で2時間加熱加圧成形することによって、両面に銅箔を有する積層体を得た。この積層体において、上層側の4枚のプリプレグは、第1樹脂層が、上層の銅箔側に配置されており、他の4枚のプリプレグは、第1樹脂層が、下層の銅箔側に配置されている。
 次に、JEDEC規格レベル2に準拠した熱処理、吸湿処理を行い、吸湿耐熱信頼性評価を行った。具体的には、前記積層体に対し、125℃/24時間のプレ乾燥を行った後、85℃60%RHで196時間の吸湿処理を行い、さらにピーク温度が260℃の鉛フリー半田対応リフロープロファイルの赤外リフロー炉を20回通した。リフロー毎に積層体の外観を観察して膨れの有無を確認した。また、前記赤外リフロー炉を10回通した後SAT(超音波映像装置)を用いて積層体内部の膨れについても調査した。結果を表4に示す。
 ◎:リフロー炉20回通した後、外観の膨れなし。積層体内部の膨れなし。
 ○:リフロー炉20回通した後、外観の膨れなし。積層体内部の膨れあり。
 ×:リフロー炉1~5回通した後のいずれかで、外観の膨れあり。
(Heat-resistant)
Eight prepregs obtained in Examples and Comparative Examples are stacked, and a copper foil having a thickness of 12 μm is stacked on both sides, and then heated and pressure-molded at a pressure of 3.5 MPa and a temperature of 200 ° C. for 2 hours. A laminated body having was obtained. In this laminate, the upper four prepregs have the first resin layer disposed on the upper copper foil side, and the other four prepregs have the first resin layer on the lower copper foil side. Is arranged.
Next, heat treatment and moisture absorption treatment according to JEDEC standard level 2 were performed, and moisture absorption heat resistance reliability evaluation was performed. Specifically, the laminated body is pre-dried at 125 ° C./24 hours, then subjected to moisture absorption treatment at 85 ° C. and 60% 196 hours, and reflow for lead-free solder having a peak temperature of 260 ° C. The profile infrared reflow oven was passed 20 times. At each reflow, the appearance of the laminate was observed to confirm the presence or absence of swelling. Moreover, after passing through the infrared reflow furnace 10 times, the swelling inside the laminate was also investigated using SAT (ultrasonic imaging device). The results are shown in Table 4.
(Double-circle): There is no swelling of an external appearance after passing 20 times of reflow ovens. No swelling inside the laminate.
○: No swelling of the appearance after passing through the reflow furnace 20 times. There is swelling inside the laminate.
×: Appearance swelled after passing through the reflow furnace 1 to 5 times.
 実施例1~6においては、第2樹脂層が、少なくとも、繊維基材の表面から、繊維基材の厚みの90%の位置までにわたって繊維基材に含浸されているので、第2樹脂層を含浸性の高い樹脂組成物で構成すればよく、第1樹脂層の樹脂組成物は含浸性の高いものに制限されない。
 また、実施例1~6においては、第2樹脂層が、少なくとも、繊維基材の表面から、繊維基材の厚みの90%の位置までにわたって繊維基材に含浸されているのでビア間信頼性も良好である。
 また、実施例1~6においては、第1樹脂層と第2樹脂層とが接触し、界面が存在することが確認された。第1樹脂層の最低溶融粘度η1と第2樹脂層の最低溶融粘度η2との比η1/η2が1.1倍以上であるため、明確な界面が形成されたと考えられる。また、η1/η2を1.1倍以上とすることで、第2樹脂層を繊維基材に対して含浸させやすくなったと考えられる。なお、実施例1~6ではη1/η2が100以下であるため、第1樹脂層と第2樹脂層の界面の密着性に優れたものとなった。
 また、実施例1~6では、第1樹脂層のピール強度Aが、第2樹脂層のピール強度Bよりも高く、第1樹脂層、第2樹脂層のピール強度が所望の強度となっていることがわかる。さらには、回路パターンの埋め込み性も良好であり、第1樹脂層、第2樹脂層が所望の特性を発揮できていることがわかる。
 さらに、樹脂流れが15重量%以上であり、回路の埋め込み性に優れることもわかる。また、樹脂流れが50重量%以下であり、プレス時の樹脂の流出が抑制できた。
 また、樹脂のはみ出し量が5重量%以下であるため、積層板の厚み均一性が良好であり、反りの発生も抑制されている。
 また、実施例1~4では、第2樹脂層に平均粒径が50nmのシリカを使用したことで耐熱性が非常に良好となっている。
 さらに、実施例1~4では、第2樹脂層に平均粒径が50nmのシリカを使用したことでビア間信頼性が非常に高くなっている。繊維束内にナノシリカが侵入し、ナノシリカが繊維に付着した状態となることで、ビア間信頼性が向上すると考えられる。
 さらに、ナフチレンエーテル型エポキシ樹脂を使用したプリプレグは、低吸水、低熱膨張であった。
In Examples 1 to 6, since the second resin layer is impregnated into the fiber base material at least from the surface of the fiber base material to a position of 90% of the thickness of the fiber base material, What is necessary is just to comprise with a resin composition with high impregnation property, and the resin composition of a 1st resin layer is not restrict | limited to that with high impregnation property.
In Examples 1 to 6, since the second resin layer is impregnated into the fiber base material from at least the surface of the fiber base material to a position of 90% of the thickness of the fiber base material, the reliability between vias Is also good.
In Examples 1 to 6, it was confirmed that the first resin layer and the second resin layer were in contact with each other and an interface was present. Since the ratio η1 / η2 between the minimum melt viscosity η1 of the first resin layer and the minimum melt viscosity η2 of the second resin layer is 1.1 times or more, it is considered that a clear interface was formed. Moreover, it is thought that it became easy to impregnate the 2nd resin layer with respect to a fiber base material by making (eta) 1 / (eta) 2 1.1 times or more. In Examples 1 to 6, since η1 / η2 was 100 or less, the adhesion at the interface between the first resin layer and the second resin layer was excellent.
In Examples 1 to 6, the peel strength A of the first resin layer is higher than the peel strength B of the second resin layer, and the peel strength of the first resin layer and the second resin layer becomes the desired strength. I understand that. Furthermore, the embedding property of the circuit pattern is also good, and it can be seen that the first resin layer and the second resin layer can exhibit desired characteristics.
Further, it can be seen that the resin flow is 15% by weight or more, and the circuit embedding property is excellent. Further, the resin flow was 50% by weight or less, and the outflow of the resin during pressing could be suppressed.
Moreover, since the protrusion amount of resin is 5 weight% or less, the thickness uniformity of a laminated board is favorable and generation | occurrence | production of curvature is also suppressed.
In Examples 1 to 4, the heat resistance is very good because silica having an average particle diameter of 50 nm is used for the second resin layer.
Furthermore, in Examples 1 to 4, the reliability between vias is very high because silica having an average particle diameter of 50 nm is used for the second resin layer. It is considered that the reliability between vias is improved when nanosilica enters the fiber bundle and nanosilica adheres to the fiber.
Furthermore, the prepreg using the naphthylene ether type epoxy resin had low water absorption and low thermal expansion.
 比較例1では、同程度の粘度のワニスを繊維基材に含浸させているので、第1樹脂層、第2樹脂層の含浸速度は同程度となり、含浸率は50%程度であると考えられる。さらに、比較例2では、最低溶融粘度が非常に近い樹脂シート同士を繊維基材に張り合わせているので、第1樹脂層、第2樹脂層の含浸速度は同程度となり、含浸率は50%程度であると考えられる。このような比較例1,2では、第1樹脂層、第2樹脂層を同程度、繊維基材に含浸させる必要があるので、樹脂組成物の選択が制限される。
 さらに、比較例1では、第1樹脂層と第2樹脂層との界面が確認できず、第1樹脂層と第2樹脂層とが混合してしまっている。そのため、実施例1に比べて、第1樹脂層のピール強度が弱くなっている。さらには、回路パターンの埋め込み性が実施例1に比べて劣り、第1樹脂層、第2樹脂層が所望の特性を発揮できていない。
 さらに、ビア間信頼性が不良であり、積層板の厚み均一性が悪く、反りが発生している。比較例1において、ビア間信頼性が不良である点は、第1樹脂層を構成するワニス、第2樹脂層を構成するワニスが不均一に混ざり合ったことに起因すると考えられる。
 比較例2においても、第1樹脂層と第2樹脂層との界面が確認できず、第1樹脂層と第2樹脂層とが混合してしまっている。そのため、第1樹脂層のピール強度が所望の値よりも、低くなっている。さらに、比較例2においては積層板に反りが発生している。これは、銅箔側の第1樹脂層の粘度が低いため、積層板に厚みにばらつきが生じるためである。
In Comparative Example 1, since the fiber base material is impregnated with the varnish having the same degree of viscosity, the impregnation rates of the first resin layer and the second resin layer are the same, and the impregnation rate is considered to be about 50%. . Furthermore, in Comparative Example 2, since the resin sheets having very close minimum melt viscosities are bonded to the fiber base material, the impregnation rates of the first resin layer and the second resin layer are approximately the same, and the impregnation rate is approximately 50%. It is thought that. In such Comparative Examples 1 and 2, since it is necessary to impregnate the fiber base material to the same extent with the first resin layer and the second resin layer, the selection of the resin composition is limited.
Further, in Comparative Example 1, the interface between the first resin layer and the second resin layer cannot be confirmed, and the first resin layer and the second resin layer are mixed. Therefore, the peel strength of the first resin layer is weaker than that of Example 1. Furthermore, the embedding property of the circuit pattern is inferior to that of Example 1, and the first resin layer and the second resin layer cannot exhibit desired characteristics.
Furthermore, the reliability between vias is poor, the thickness uniformity of the laminate is poor, and warping occurs. In Comparative Example 1, the point that the reliability between vias is poor is considered to be due to the non-uniform mixing of the varnish constituting the first resin layer and the varnish constituting the second resin layer.
Also in Comparative Example 2, the interface between the first resin layer and the second resin layer cannot be confirmed, and the first resin layer and the second resin layer are mixed. Therefore, the peel strength of the first resin layer is lower than the desired value. Further, in Comparative Example 2, warpage occurs in the laminated plate. This is because the first resin layer on the copper foil side has a low viscosity, and thus the thickness of the laminated plate varies.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 この出願は、2012年2月28日に出願された日本特許出願第2012-41917号および、2012年2月28日に出願された日本特許出願第2012-41886号を基礎とする優先権を主張し、その開示をすべてここに取り込む。 This application claims priority based on Japanese Patent Application No. 2012-41917 filed on February 28, 2012 and Japanese Patent Application No. 2012-41886 filed on February 28, 2012. The entire disclosure of which is incorporated herein.

Claims (25)

  1.  繊維基材と、
     前記繊維基材の一方の面側を被覆し、第1樹脂組成物で構成された第1樹脂層と、
     前記繊維基材の他方の面側を被覆し、前記第1樹脂組成物とは異なる第2樹脂組成物で構成された第2樹脂層とを備え、
     前記第2樹脂層は、少なくとも、前記繊維基材の他方の面から前記繊維基材の厚みの90%にわたって、前記繊維基材に含浸されているプリプレグ。
    A fiber substrate;
    A first resin layer that covers one surface side of the fiber substrate and is composed of a first resin composition;
    Covering the other surface side of the fiber substrate, and comprising a second resin layer composed of a second resin composition different from the first resin composition,
    The second resin layer is a prepreg impregnated in the fiber base material over at least 90% of the thickness of the fiber base material from the other surface of the fiber base material.
  2.  請求項1に記載のプリプレグにおいて、
     前記第1樹脂層と前記第2樹脂層とが接触し、界面が形成されているプリプレグ。
    The prepreg according to claim 1,
    A prepreg in which the first resin layer and the second resin layer are in contact with each other to form an interface.
  3.  請求項1または2に記載のプリプレグにおいて、
     前記第1樹脂層は、その上面に金属層を設けるための層であり、
     前記第2樹脂層は、回路を埋め込むための層であるプリプレグ。
    The prepreg according to claim 1 or 2,
    The first resin layer is a layer for providing a metal layer on the upper surface thereof,
    The second resin layer is a prepreg that is a layer for embedding a circuit.
  4.  請求項1乃至3のいずれかに記載のプリプレグにおいて、
     前記第1樹脂層および前記第2樹脂層は、熱硬化性の層であり、半硬化の状態であるプリプレグ。
    The prepreg according to any one of claims 1 to 3,
    The first resin layer and the second resin layer are thermosetting layers and are semi-cured prepregs.
  5.  請求項1乃至4のいずれかに記載のプリプレグにおいて、
     前記第2樹脂層は、前記繊維基材に含浸され、
     前記第1樹脂層と前記第2樹脂層とが接触し、界面が形成され、
     前記第1樹脂層と第2樹脂層との界面は、前記繊維基材の外部に位置しているプリプレグ。
    The prepreg according to any one of claims 1 to 4,
    The second resin layer is impregnated in the fiber base material,
    The first resin layer and the second resin layer are in contact with each other to form an interface;
    The interface between the first resin layer and the second resin layer is a prepreg located outside the fiber substrate.
  6.  請求項1乃至5のいずれかに記載のプリプレグにおいて、
     前記第1樹脂層の熱可塑性樹脂の含有量は、前記第2樹脂層の熱可塑性樹脂の含有量よりも多いプリプレグ。
    The prepreg according to any one of claims 1 to 5,
    The prepreg in which the content of the thermoplastic resin in the first resin layer is larger than the content of the thermoplastic resin in the second resin layer.
  7.  請求項1乃至6のいずれかに記載のプリプレグにおいて、
     当該プリプレグの前記第1樹脂層を銅箔に重ね合わせ、荷重2MPa、温度220℃、1時間の条件下で熱処理した後の90°ピール強度Aが、
     当該プリプレグの前記第2樹脂層を銅箔に重ね合わせ、荷重2MPa、温度220℃、1時間の条件下で熱処理した後の90°ピール強度Bよりも高いプリプレグ。
    The prepreg according to any one of claims 1 to 6,
    90 ° peel strength A after superposing the first resin layer of the prepreg on copper foil and heat-treating under conditions of load 2 MPa, temperature 220 ° C., 1 hour,
    A prepreg higher than 90 ° peel strength B after the second resin layer of the prepreg is superposed on a copper foil and heat-treated under the conditions of a load of 2 MPa, a temperature of 220 ° C. and 1 hour.
  8.  請求項7に記載のプリプレグにおいて、
     90°ピール強度A-90°ピール強度B≧0.1kN/mであるプリプレグ。
    The prepreg according to claim 7, wherein
    90 ° peel strength A-90 ° peel strength B ≧ 0.1 kN / m prepreg.
  9.  請求項1乃至8のいずれかに記載のプリプレグにおいて、
     IPC-TM-650 Method 2.3.17に準拠し、171±3℃、1380±70kPaの条件で5分間加熱加圧して測定された樹脂流れが、15重量%以上50重量%以下であり、
     対向する一対のゴム板で該プリプレグを挟んだ状態で、120℃、2.5MPaの条件下で加熱及び加圧したとき、平面視で前記繊維基材の外縁からはみ出る前記第1樹脂層および前記第2樹脂層の合計重量が、前記第1樹脂層全体および前記第2樹脂層全体の合計重量に対して、5%以下であり、前記ゴム板が下記(i)~(iii)を満たすプリプレグ。
    (i)JIS K 6253 Aに準拠して測定したゴム硬度が60°
    (ii)厚み3mm
    (iii)材質がシリコン
    The prepreg according to any one of claims 1 to 8,
    According to IPC-TM-650 Method 2.3.17, the resin flow measured by heating and pressurizing for 5 minutes under the conditions of 171 ± 3 ° C. and 1380 ± 70 kPa is 15 wt% or more and 50 wt% or less,
    When the prepreg is sandwiched between a pair of opposing rubber plates and heated and pressurized under the conditions of 120 ° C. and 2.5 MPa, the first resin layer protruding from the outer edge of the fiber substrate in plan view and the The total weight of the second resin layer is 5% or less with respect to the total weight of the entire first resin layer and the entire second resin layer, and the rubber plate satisfies the following (i) to (iii): .
    (I) Rubber hardness measured in accordance with JIS K 6253 A is 60 °
    (Ii) Thickness 3mm
    (Iii) Material is silicon
  10.  請求項1乃至9のいずれかに記載のプリプレグにおいて、
     前記第1樹脂層は、熱可塑性樹脂を含み、
     前記熱可塑性樹脂は、フェノキシ樹脂、ポリビニルアセタール系樹脂、ポリアミド系樹脂のいずれか1種以上を含むプリプレグ。
    The prepreg according to any one of claims 1 to 9,
    The first resin layer includes a thermoplastic resin,
    The thermoplastic resin is a prepreg containing at least one of a phenoxy resin, a polyvinyl acetal resin, and a polyamide resin.
  11.  請求項1乃至10のいずれかに記載のプリプレグにおいて、
     前記第2樹脂層は、エポキシ樹脂、シアネート樹脂および無機充填材を含むプリプレグ。
    The prepreg according to any one of claims 1 to 10,
    The second resin layer is a prepreg including an epoxy resin, a cyanate resin, and an inorganic filler.
  12.  請求項1乃至11のいずれかに記載のプリプレグにおいて、
     前記第1樹脂層および前記第2樹脂層のうち、少なくともいずれか一方は、ナフタレン骨格を有し、ナフタレン骨格が酸素原子を介して他のアリーレン構造と結合した構造を有するエポキシ樹脂を含むプリプレグ。
    The prepreg according to any one of claims 1 to 11,
    At least one of the first resin layer and the second resin layer has a naphthalene skeleton, and the prepreg includes an epoxy resin having a structure in which the naphthalene skeleton is bonded to another arylene structure through an oxygen atom.
  13.  請求項1乃至12のいずれかに記載のプリプレグにおいて、
     当該プリプレグは、前記第1樹脂層を、前記繊維基材の一方の面に対して、第1樹脂層となる第1樹脂シートを当接させるとともに、
     第2樹脂層となる第2樹脂シートまたは、前記第2樹脂組成物を含む液状の組成物を前記繊維基材の他方の面側から含浸させることで製造されたものであるプリプレグ。
    The prepreg according to any one of claims 1 to 12,
    In the prepreg, the first resin layer is brought into contact with the first resin sheet as the first resin layer with respect to one surface of the fiber base material,
    A prepreg produced by impregnating a second resin sheet serving as a second resin layer or a liquid composition containing the second resin composition from the other surface side of the fiber substrate.
  14.  請求項1乃至13のいずれかに記載のプリプレグにおいて、
     25℃から3℃/分の昇温速度で昇温したときの50℃以上150℃以下の範囲における第1樹脂層の最低溶融粘度η1と第2樹脂層の最低溶融粘度η2との比η1/η2が1.1以上、100以下であるプリプレグ。
    The prepreg according to any one of claims 1 to 13,
    Ratio η1 / of minimum melt viscosity η1 of the first resin layer and minimum melt viscosity η2 of the second resin layer in the range of 50 ° C. to 150 ° C. when the temperature is increased from 25 ° C. at a rate of 3 ° C./min. A prepreg having η2 of 1.1 or more and 100 or less.
  15.  請求項1乃至14のいずれかに記載のプリプレグにおいて、
     前記第2樹脂層は、粒径が50nm以下のシリカを含むプリプレグ。
    The prepreg according to any one of claims 1 to 14,
    The second resin layer is a prepreg containing silica having a particle size of 50 nm or less.
  16.  請求項15に記載のプリプレグにおいて、
     前記繊維基材はガラスクロスであり、
     当該ガラスクロスのストランド中に前記シリカが存在するプリプレグ。
    The prepreg according to claim 15, wherein
    The fiber base material is a glass cloth,
    A prepreg in which the silica is present in the strand of the glass cloth.
  17.  請求項1乃至16のいずれかに記載のプリプレグの硬化体を有する基板であり、
     回路層を備え、
     前記プリプレグの硬化体の前記第2樹脂層が、前記回路層を埋め込むとともに、
     前記プリプレグの硬化体の前記第1樹脂層上に金属層が設けられた基板。
    A substrate having a cured body of the prepreg according to any one of claims 1 to 16,
    With a circuit layer,
    The second resin layer of the cured body of the prepreg embeds the circuit layer,
    The board | substrate with which the metal layer was provided on the said 1st resin layer of the hardening body of the said prepreg.
  18.  請求項17に記載の基板と、
     前記基板に搭載された半導体素子とを備える半導体装置。
    A substrate according to claim 17;
    A semiconductor device comprising: a semiconductor element mounted on the substrate.
  19.  第1樹脂シートを繊維基材の一方の面に圧着して第1樹脂組成物からなる第1樹脂層を設ける工程と、
     前記繊維基材の他方の面側に、前記第1樹脂組成物とは異なる第2樹脂組成物からなる第2樹脂層を形成する工程とを含み、
     第2樹脂層を形成する前記工程では、
     少なくとも、前記繊維基材の他方の面から前記繊維基材の厚みの90%にわたって、前記繊維基材に含浸した第2樹脂層を形成するプリプレグの製造方法。
    Providing a first resin layer made of the first resin composition by pressure-bonding the first resin sheet to one surface of the fiber base;
    Forming a second resin layer made of a second resin composition different from the first resin composition on the other surface side of the fiber substrate,
    In the step of forming the second resin layer,
    The manufacturing method of the prepreg which forms the 2nd resin layer which impregnated the said fiber base material over 90% of the thickness of the said fiber base material from the other surface of the said fiber base material at least.
  20.  請求項19に記載のプリプレグの製造方法において、
     前記第1樹脂シートの50~150℃での最低溶融粘度は、1000Pa・s以上、25000Pa・s以下であるプリプレグの製造方法。
    In the manufacturing method of the prepreg of Claim 19,
    The method for producing a prepreg, wherein the first resin sheet has a minimum melt viscosity at 50 to 150 ° C. of 1000 Pa · s or more and 25000 Pa · s or less.
  21.  請求項19または20に記載のプリプレグの製造方法において、
     第2樹脂層を形成する前記工程では、
     前記繊維基材の他方の面側に、液状の第2樹脂組成物を供給するプリプレグの製造方法。
    In the manufacturing method of the prepreg of Claim 19 or 20,
    In the step of forming the second resin layer,
    The manufacturing method of the prepreg which supplies a liquid 2nd resin composition to the other surface side of the said fiber base material.
  22.  請求項19または20に記載のプリプレグの製造方法において、
     第2樹脂層を形成する前記工程では、
     前記繊維基材の他方の面側に、第2樹脂層となる第2樹脂シートを供給し、前記第2樹脂シートを加熱して、前記繊維基材に含浸させ、
     25℃から3℃/分の昇温速度で昇温したときの50℃以上150℃以下の範囲における第1樹脂シートの最低溶融粘度η1と第2樹脂シートの最低溶融粘度η2との比η1/η2が1.1以上、100以下であるプリプレグの製造方法。
    In the manufacturing method of the prepreg of Claim 19 or 20,
    In the step of forming the second resin layer,
    Supplying the second resin sheet to be the second resin layer to the other surface side of the fiber substrate, heating the second resin sheet, and impregnating the fiber substrate;
    Ratio η1 / of the lowest melt viscosity η1 of the first resin sheet and the lowest melt viscosity η2 of the second resin sheet in the range of 50 ° C. to 150 ° C. when the temperature is raised from 25 ° C. at a rate of 3 ° C./min. The manufacturing method of the prepreg whose (eta) 2 is 1.1 or more and 100 or less.
  23.  請求項19乃至22のいずれかに記載のプリプレグの製造方法において、
     前記第1樹脂シートを繊維基材の一方の面に圧着する前記工程では、
     前記第1樹脂シートをラミネートロールに直接あるいは間接的に面接触するように、前記第1樹脂シートを前記ラミネートロールの外周面に沿って連続的に搬送し、
     前記ラミネートロールと前記第1樹脂シートとが接触している箇所で、前記第1樹脂シートを介して前記ラミネートロールに接触するように、前記繊維基材を前記ラミネートロールに向けて連続的に搬送するプリプレグの製造方法。
    In the manufacturing method of the prepreg in any one of Claims 19 thru | or 22,
    In the step of pressure-bonding the first resin sheet to one surface of the fiber base material,
    Conveying the first resin sheet continuously along the outer peripheral surface of the laminate roll so that the first resin sheet is in direct or indirect surface contact with the laminate roll,
    The fiber base material is continuously conveyed toward the laminating roll so as to come into contact with the laminating roll via the first resin sheet at a position where the laminating roll and the first resin sheet are in contact with each other. A method for manufacturing a prepreg.
  24.  請求項19乃至23のいずれかに記載のプリプレグの製造方法において、
     前記第1樹脂シートがロール状に巻かれており、当該ロールから前記第1樹脂シートを送出し、前記第1樹脂シートを繊維基材の一方の面に圧着する前記工程では、この送り出された前記第1樹脂シートを繊維基材の一方の面に圧着するプリプレグの製造方法。
    In the manufacturing method of the prepreg in any one of Claim 19 thru | or 23,
    The first resin sheet is wound in a roll shape, and the first resin sheet is delivered from the roll, and the first resin sheet is sent out in the step of pressure-bonding the first resin sheet to one surface of the fiber base material. A method for producing a prepreg, wherein the first resin sheet is pressure-bonded to one surface of a fiber base material.
  25.  請求項19乃至24のいずれかに記載のプリプレグの製造方法において、
     前記第1樹脂シートは、支持体上に形成されており、
     前記第1樹脂シートを繊維基材の一方の面に圧着する前記工程では、前記支持体上の前記第1樹脂シートを繊維基材の一方の面に圧着するプリプレグの製造方法。

     
    In the manufacturing method of the prepreg in any one of Claim 19 thru | or 24,
    The first resin sheet is formed on a support,
    In the step of pressure-bonding the first resin sheet to one surface of the fiber base material, a prepreg manufacturing method in which the first resin sheet on the support is pressure-bonded to one surface of the fiber base material.

PCT/JP2013/000891 2012-02-28 2013-02-19 Prepreg and prepreg manufacturing method WO2013128841A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020147018952A KR20140127803A (en) 2012-02-28 2013-02-19 Prepreg and prepreg manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-041917 2012-02-28
JP2012-041886 2012-02-28
JP2012041917 2012-02-28
JP2012041886 2012-02-28

Publications (1)

Publication Number Publication Date
WO2013128841A1 true WO2013128841A1 (en) 2013-09-06

Family

ID=49082057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000891 WO2013128841A1 (en) 2012-02-28 2013-02-19 Prepreg and prepreg manufacturing method

Country Status (4)

Country Link
JP (1) JP6102319B2 (en)
KR (1) KR20140127803A (en)
TW (1) TWI575003B (en)
WO (1) WO2013128841A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190104535A (en) * 2017-01-13 2019-09-10 파나소닉 아이피 매니지먼트 가부시키가이샤 Thick conductor embedded printed wiring board and manufacturing method thereof
CN111148612A (en) * 2017-07-31 2020-05-12 巴斯夫欧洲公司 Device for impregnating fibers with a defined fiber volume content
CN113767007A (en) * 2019-05-23 2021-12-07 东丽株式会社 Method for producing fiber-reinforced resin base material, and integrated molded article thereof
CN113811439A (en) * 2019-05-23 2021-12-17 东丽株式会社 Fiber-reinforced resin base material, integrated molded article, and method for producing fiber-reinforced resin base material
CN114133918A (en) * 2015-12-28 2022-03-04 日立造船株式会社 Carbon nanotube composite material and method for producing carbon nanotube composite material
WO2022059613A1 (en) * 2020-09-17 2022-03-24 三菱重工航空エンジン株式会社 Method for producing prepreg and method for molding composite material
AT525720A2 (en) * 2020-04-03 2023-05-15 Panasonic Ip Man Co Ltd Thermosetting resin sheet and printed wiring board

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9631279B2 (en) * 2014-05-19 2017-04-25 Sierra Circuits, Inc. Methods for forming embedded traces
US9380700B2 (en) * 2014-05-19 2016-06-28 Sierra Circuits, Inc. Method for forming traces of a printed circuit board
JP2016009763A (en) * 2014-06-24 2016-01-18 イビデン株式会社 Multilayer printed wiring board and method of manufacturing the same
KR102163043B1 (en) * 2014-09-05 2020-10-08 삼성전기주식회사 Prepreg and method for manufacturing the same
KR102306718B1 (en) * 2014-11-26 2021-09-30 삼성전기주식회사 Prepreg
KR102508061B1 (en) * 2015-03-26 2023-03-09 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Fiber-reinforced plastic molding material, its manufacturing method and molded product
US11312091B2 (en) 2015-06-16 2022-04-26 Gh Craft Ltd. Molding apparatus and manufacturing method
JP2017081136A (en) * 2015-10-30 2017-05-18 住友ベークライト株式会社 Fiber-reinforced plastic molded product
JP6711245B2 (en) * 2016-11-21 2020-06-17 株式会社デンソー Printed circuit board manufacturing method and electronic device manufacturing method
JP7063327B2 (en) * 2017-03-28 2022-05-09 昭和電工マテリアルズ株式会社 Method for producing FRP precursor and method for producing FRP
JP6777017B2 (en) * 2017-06-08 2020-10-28 マツダ株式会社 Molding material and molding method for fiber reinforced plastic molded products
JPWO2021117460A1 (en) * 2019-12-11 2021-06-17
EP4074765A4 (en) * 2019-12-11 2023-12-20 Toray Industries, Inc. Prepreg, laminate, and integrated molded article
JP7467906B2 (en) * 2019-12-23 2024-04-16 東レ株式会社 Fiber-reinforced resin molded body and composite molded body
WO2023218969A1 (en) * 2022-05-10 2023-11-16 株式会社レゾナック Method for manufacturing frp precursor and method for manufacturing frp

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007176169A (en) * 2005-12-01 2007-07-12 Sumitomo Bakelite Co Ltd Prepreg, substrate and semiconductor apparatus
WO2010050472A1 (en) * 2008-10-29 2010-05-06 住友ベークライト株式会社 Resin composition, resin sheet, prepreg, laminate board, multilayer printed wiring board, and semiconductor device
JP2011144361A (en) * 2009-12-14 2011-07-28 Ajinomoto Co Inc Resin composition

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003313324A (en) * 2002-04-24 2003-11-06 Mitsubishi Gas Chem Co Inc Method for manufacturing base material-filled b-staged resin composition sheet
JP2003342399A (en) * 2002-05-28 2003-12-03 Matsushita Electric Works Ltd Prepreg and laminated plate having inner layer circuit obtained by using this prepreg
JP2005105035A (en) * 2003-09-29 2005-04-21 Asahi Schwebel Co Ltd Prepreg, manufacturing method thereof and laminated plate
JP4903989B2 (en) * 2004-07-27 2012-03-28 株式会社アドマテックス Composition for printed circuit boards
WO2007040125A1 (en) * 2005-09-30 2007-04-12 Sumitomo Bakelite Co., Ltd. Process for producing prepreg with carrier, prepreg with carrier, process for producing thin-type double sided board, thin-type double sided board, and process for producing multilayered printed wiring board
CN101321813B (en) * 2005-12-01 2012-07-04 住友电木株式会社 Prepreg, process for producing prepreg, substrate, and semiconductor device
WO2008090614A1 (en) * 2007-01-25 2008-07-31 Panasonic Electric Works Co., Ltd. Prepreg, printed wiring board, multilayer circuit board and process for manufacturing printed wiring board
WO2008129815A1 (en) * 2007-03-30 2008-10-30 Sumitomo Bakelite Co., Ltd. Prepreg with carrier, method for manufacturing the prepreg, multilayered printed wiring board, and semiconductor device
JP5547678B2 (en) * 2011-03-14 2014-07-16 住友ベークライト株式会社 Laminate production method
US9629240B2 (en) * 2011-12-28 2017-04-18 Zeon Corporation Prepreg and laminate including prepreg

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007176169A (en) * 2005-12-01 2007-07-12 Sumitomo Bakelite Co Ltd Prepreg, substrate and semiconductor apparatus
WO2010050472A1 (en) * 2008-10-29 2010-05-06 住友ベークライト株式会社 Resin composition, resin sheet, prepreg, laminate board, multilayer printed wiring board, and semiconductor device
JP2011144361A (en) * 2009-12-14 2011-07-28 Ajinomoto Co Inc Resin composition

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114133918A (en) * 2015-12-28 2022-03-04 日立造船株式会社 Carbon nanotube composite material and method for producing carbon nanotube composite material
EP3570648B1 (en) * 2017-01-13 2023-10-25 Panasonic Intellectual Property Management Co., Ltd. Thick conductor built-in type printed wiring board and method for producing same
KR20190104535A (en) * 2017-01-13 2019-09-10 파나소닉 아이피 매니지먼트 가부시키가이샤 Thick conductor embedded printed wiring board and manufacturing method thereof
KR102512589B1 (en) * 2017-01-13 2023-03-21 파나소닉 아이피 매니지먼트 가부시키가이샤 Printed wiring board with built-in thick conductor and method for manufacturing the same
CN111148612B (en) * 2017-07-31 2022-06-17 巴斯夫欧洲公司 Device for impregnating fibers with a defined fiber volume content
CN111148612A (en) * 2017-07-31 2020-05-12 巴斯夫欧洲公司 Device for impregnating fibers with a defined fiber volume content
CN113811439A (en) * 2019-05-23 2021-12-17 东丽株式会社 Fiber-reinforced resin base material, integrated molded article, and method for producing fiber-reinforced resin base material
EP3974142A4 (en) * 2019-05-23 2023-06-14 Toray Industries, Inc. Method for producing fiber-reinforced resin substrate, fiber-reinforced resin substrate, and molded article integrated therewith
CN113767007A (en) * 2019-05-23 2021-12-07 东丽株式会社 Method for producing fiber-reinforced resin base material, and integrated molded article thereof
AT525720A2 (en) * 2020-04-03 2023-05-15 Panasonic Ip Man Co Ltd Thermosetting resin sheet and printed wiring board
AT525720A5 (en) * 2020-04-03 2023-10-15 Panasonic Ip Man Co Ltd Thermosetting resin layer and printed wiring board
AT525720B1 (en) * 2020-04-03 2024-01-15 Panasonic Ip Man Co Ltd Thermosetting resin layer and printed wiring board
WO2022059613A1 (en) * 2020-09-17 2022-03-24 三菱重工航空エンジン株式会社 Method for producing prepreg and method for molding composite material
EP4169688A4 (en) * 2020-09-17 2023-12-20 Mitsubishi Heavy Industries Aero Engines, Ltd. Method for producing prepreg and method for molding composite material

Also Published As

Publication number Publication date
TW201343740A (en) 2013-11-01
JP2013209626A (en) 2013-10-10
JP6102319B2 (en) 2017-03-29
KR20140127803A (en) 2014-11-04
TWI575003B (en) 2017-03-21

Similar Documents

Publication Publication Date Title
JP6102319B2 (en) Prepreg and prepreg manufacturing method
JP4957552B2 (en) Manufacturing method of prepreg with carrier for printed wiring board, prepreg with carrier for printed wiring board, manufacturing method of thin double-sided board for printed wiring board, thin double-sided board for printed wiring board, and manufacturing method of multilayer printed wiring board
TWI453228B (en) Epoxy resin composition, prepreg, laminate, multilayered printed circuit board, and semiconductor device and insulating resin sheet and method for manufacturing multilayered printed circuit board
JP5685946B2 (en) Prepreg lamination method, printed wiring board manufacturing method, and prepreg roll
TW201341439A (en) Method for making the prepreg
JPWO2012002434A1 (en) Prepreg, wiring board and semiconductor device
KR20110040704A (en) Epoxy resin composition, prepreg, metal-clad laminate, printed wiring board and semiconductor device
KR20130102654A (en) Pre-preg, laminate board, printed wiring board, and semiconductor device
JP2012153752A (en) Resin composition, prepreg, laminate, resin sheet, printed wiring board and semiconductor device
JP5157103B2 (en) Prepreg, substrate and semiconductor device
JPWO2008099596A1 (en) Interlayer insulating film with carrier material and multilayer printed circuit board using the same
TWI491323B (en) A prepreg for use in build-up process
JP2012054323A (en) Prepreg, substrate and semiconductor device
JP6540452B2 (en) Resin composition for circuit board, prepreg, metal-clad laminate, circuit board, and semiconductor package
JP2012051232A (en) Method of manufacturing laminate sheet and laminate sheet
JP5977969B2 (en) Insulating sheet, method for manufacturing insulating sheet, and multilayer substrate
JP5552969B2 (en) Prepreg, substrate and semiconductor device
TWI548526B (en) Method for manufacturing laminated sheet and apparatus therefor
JP2012158645A (en) Epoxy resin composition for printed wiring board, prepreg, metal-clad laminate, resin sheet, printed wiring board, and semiconductor device
JP2013006328A (en) Laminate, circuit board, and semiconductor package
JP2013057065A (en) Prepreg, substrate, and semiconductor device
JP4784082B2 (en) Printed wiring board and manufacturing method thereof
JP2012051987A (en) Prepreg, substrate, and semiconductor device
JP2012051988A (en) Prepreg, substrate, and semiconductor device
JP2012051990A (en) Prepreg, substrate, and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755834

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147018952

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13755834

Country of ref document: EP

Kind code of ref document: A1