JP7467906B2 - Fiber-reinforced resin molded body and composite molded body - Google Patents

Fiber-reinforced resin molded body and composite molded body Download PDF

Info

Publication number
JP7467906B2
JP7467906B2 JP2019231595A JP2019231595A JP7467906B2 JP 7467906 B2 JP7467906 B2 JP 7467906B2 JP 2019231595 A JP2019231595 A JP 2019231595A JP 2019231595 A JP2019231595 A JP 2019231595A JP 7467906 B2 JP7467906 B2 JP 7467906B2
Authority
JP
Japan
Prior art keywords
fiber
resin
molded body
region
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019231595A
Other languages
Japanese (ja)
Other versions
JP2021098319A (en
Inventor
佳樹 武部
雅登 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2019231595A priority Critical patent/JP7467906B2/en
Publication of JP2021098319A publication Critical patent/JP2021098319A/en
Application granted granted Critical
Publication of JP7467906B2 publication Critical patent/JP7467906B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)

Description

本発明は、熱硬化性樹脂および熱可塑性樹脂の両者を含む繊維強化樹脂成形体に関する。 The present invention relates to a fiber-reinforced resin molding that contains both thermosetting and thermoplastic resins.

熱硬化性樹脂や熱可塑性樹脂をマトリックス樹脂として用い、炭素繊維やガラス繊維などの強化繊維と組み合わせた繊維強化樹脂は、軽量でありながら、強度や剛性などの力学特性や耐熱性や耐食性に優れているため、航空・宇宙、自動車、鉄道車両、船舶、土木建築およびスポーツ用品などの数多くの分野に活用されている。 Fiber-reinforced resins, which use thermosetting or thermoplastic resins as a matrix resin and combine them with reinforcing fibers such as carbon fiber or glass fiber, are lightweight yet have excellent mechanical properties such as strength and rigidity, as well as heat resistance and corrosion resistance, and are therefore used in many fields such as aerospace, automobiles, railway vehicles, ships, civil engineering and construction, and sporting goods.

一般に、繊維強化樹脂は、複雑な形状を有する部品や成形体を単一の成形工程で製造するには不向きであり、複雑な形状を形成するためには、繊維強化樹脂からなる部材を作製し、次いで、別の部材と接合する必要がある。航空機や自動車用の構造部材や準構造部材として用いる場合、現状、接着剤を用いる接合手法や、リベットなどの機械的締結による接合手法が用いられている。しかし、接着剤を用いた場合は、繊維強化樹脂成形体と別の部材との境界面で剥離などによる接合不良が発生する可能性がある。また、機械的締結を用いた場合は、繊維強化樹脂および別の部材に穴開けを行うため、穴部の強度が低下する可能性があるといった課題がある。 In general, fiber-reinforced resin is not suitable for manufacturing parts or molded bodies with complex shapes in a single molding process. To form complex shapes, it is necessary to create a component made of fiber-reinforced resin and then join it to another component. When used as structural or semi-structural components for aircraft or automobiles, currently, joining methods using adhesives or mechanical fastening methods such as rivets are used. However, when adhesives are used, there is a risk of poor joining due to peeling at the interface between the fiber-reinforced resin molded body and the other component. In addition, when mechanical fastening is used, holes are drilled in the fiber-reinforced resin and the other component, which poses the issue of the strength of the holes being reduced.

熱可塑性樹脂をマトリックス樹脂に用いた繊維強化樹脂は、他の熱可塑性樹脂を用いた部材と溶着により接合することができるため、比較的工程を簡略化しやすいと言える。例えば、特許文献1には、熱硬化性樹脂層と熱可塑性樹脂層が凹凸形状の境界面を形成して接合されている繊維強化樹脂製の積層体が開示されており、そのような積層体は、優れた接合強度を発現するとともに、高温環境下で容易に解体できることが記載されている。 Fiber-reinforced resins that use thermoplastic resins as the matrix resin can be joined by welding to components that use other thermoplastic resins, so it can be said that the process is relatively easy to simplify. For example, Patent Document 1 discloses a fiber-reinforced resin laminate in which a thermosetting resin layer and a thermoplastic resin layer are joined by forming an uneven boundary surface, and describes that such a laminate exhibits excellent joining strength and can be easily disassembled in a high-temperature environment.

国際公開第2004/060658号International Publication No. WO 2004/060658

特許文献1に示される手法は、穴開けの必要が無く、繊維強化樹脂成形体の強度や剛性などの特性を有効に活用でき、接合工程が簡便であることから高い生産性を有する。しかし、製品としての適応範囲の拡大のためには、さらなる接合強度の向上が求められていた。 The method described in Patent Document 1 does not require drilling holes, can effectively utilize the strength, rigidity, and other properties of fiber-reinforced resin moldings, and has high productivity due to the simple joining process. However, further improvements in joining strength are required to expand the range of applications for products.

本発明は、高度な接合性を有し、最終製品としての適応範囲が広い繊維強化樹脂成形体を提供することを課題とする。 The objective of the present invention is to provide a fiber-reinforced resin molding that has high bonding properties and a wide range of applications as a final product.

上記課題を解決するための本発明は、強化繊維(A)、熱硬化性樹脂(B)、熱可塑性樹脂(C)および無機充填材(D)を含む、繊維強化樹脂成形体であって、連続した強化繊維(A)から構成される強化繊維群と、熱硬化性樹脂(B)を主成分とする領域および熱可塑性樹脂(C)を主成分とする領域を有するマトリックス樹脂とが複合化されてなり、強化繊維(A)の一部および無機充填材(D)の一部が、前記熱硬化性樹脂(B)を主成分とする領域および前記熱可塑性樹脂(C)を主成分とする領域の両者と接しており、かつ少なくとも一方の表面に前記熱可塑性樹脂(C)を主成分とする領域が存在する繊維強化樹脂成形体である。 The present invention, which aims to solve the above problems, is a fiber-reinforced resin molding that includes reinforcing fibers (A), a thermosetting resin (B), a thermoplastic resin (C), and an inorganic filler (D), and is a composite of a reinforcing fiber group consisting of continuous reinforcing fibers (A) and a matrix resin having a region mainly composed of a thermosetting resin (B) and a region mainly composed of a thermoplastic resin (C), in which a part of the reinforcing fibers (A) and a part of the inorganic filler (D) are in contact with both the region mainly composed of the thermosetting resin (B) and the region mainly composed of the thermoplastic resin (C), and the region mainly composed of the thermoplastic resin (C) is present on at least one surface of the fiber-reinforced resin molding.

本発明に係る繊維強化樹脂成形体の模式図である。1 is a schematic diagram of a fiber-reinforced resin molding according to the present invention. 本発明に係る繊維強化樹脂成形体の断面模式図である。1 is a schematic cross-sectional view of a fiber-reinforced resin molded body according to the present invention. 無機充填剤(D)の凝集ストラクチャー長さを説明するための模式図である。FIG. 2 is a schematic diagram for explaining the aggregate structure length of an inorganic filler (D).

以下に、本発明について説明する。 The present invention is described below.

<繊維強化樹脂成形体>
本発明の繊維強化樹脂成形体(以下、単に「成形体」という場合がある)は、連続した強化繊維(A)から構成される強化繊維群と、熱硬化性樹脂(B)領域および熱可塑性樹脂(C)領域を有するマトリックス樹脂とが複合化されてなるものである。以下、本明細書においては、連続した強化繊維(A)から構成される強化繊維群を「強化繊維群」、熱硬化性樹脂(B)領域を「熱硬化性樹脂領域」、熱可塑性樹脂(C)領域を「熱可塑性樹脂領域」と略称する。
<Fiber-reinforced resin molded body>
The fiber-reinforced resin molded article of the present invention (hereinafter, sometimes simply referred to as "molded article") is a composite of a reinforcing fiber group composed of continuous reinforcing fibers (A) and a matrix resin having a thermosetting resin (B ) region and a thermoplastic resin (C ) region . Hereinafter, in this specification, the reinforcing fiber group composed of continuous reinforcing fibers (A) will be abbreviated as "reinforcing fiber group", the thermosetting resin (B ) region will be abbreviated as "thermosetting resin region", and the thermoplastic resin (C ) region will be abbreviated as "thermoplastic resin region".

図2は本発明の繊維強化樹脂成形体の一実施形態において、図1に示すように強化繊維(A)の配向方向に対し45度の角度をなし、かつ成形体の面方向に垂直に切った断面を示す模式図である。図2において、強化繊維(A)6は紙面に垂直な方向から45度傾いた角度に配向する多数本の強化繊維(A)6から構成される強化繊維群を構成している。そして、当該強化繊維群に、熱硬化性樹脂領域8と熱可塑性樹脂領域7とからなるマトリックス樹脂が複合化され、全体として強化繊維樹脂成形体を構成している。このように、本発明の繊維強化樹脂成形体において、熱硬化性樹脂領域と熱可塑性樹脂領域とは界面を形成しつつ接している。 Figure 2 is a schematic diagram showing a cross section of one embodiment of the fiber-reinforced resin molded body of the present invention, cut at an angle of 45 degrees to the orientation direction of the reinforcing fiber (A) as shown in Figure 1 and perpendicular to the surface direction of the molded body. In Figure 2, the reinforcing fiber (A) 6 constitutes a reinforcing fiber group consisting of a large number of reinforcing fibers (A) 6 oriented at an angle of 45 degrees from the direction perpendicular to the paper surface. Then, the reinforcing fiber group is compounded with a matrix resin consisting of a thermosetting resin region 8 and a thermoplastic resin region 7, and as a whole, the reinforced fiber resin molded body is constituted. Thus, in the fiber-reinforced resin molded body of the present invention, the thermosetting resin region and the thermoplastic resin region are in contact while forming an interface.

そして、本発明の成形体においては、少なくとも一方の表面に前記熱可塑性樹脂領域が存在する。このようにすることで、成形体を別の部材との接合する場合に、熱可塑性樹脂領域が接合面となり、射出成形や熱溶着などの簡便な工程にて接合することが可能となる。熱可塑性樹脂領域は、表面の50%以上の面積占めていることが好ましく、80%以上を占めていることがより好ましく、とりわけ好ましくは100%、すなわち表面全てが熱可塑性樹脂領域であることである。また、両面に熱可塑性樹脂領域が存在することも好ましい。 In the molded article of the present invention, the thermoplastic resin region is present on at least one surface. By doing so, when the molded article is joined to another member, the thermoplastic resin region becomes the joining surface, and joining can be achieved by a simple process such as injection molding or heat welding. The thermoplastic resin region preferably occupies 50% or more of the surface area, more preferably 80% or more, and particularly preferably 100%, i.e., the entire surface is a thermoplastic resin region. It is also preferable that the thermoplastic resin region exists on both sides.

図2に示すように、熱可塑性樹脂領域と熱硬化性樹脂領域とは層状構造をなしていることが好ましい。すなわち、熱可塑性樹脂層と熱硬化性樹脂層が界面を形成しつつ積層されている形態であることが好ましい。このような積層構造をとることで、成形体を別の部材と接合する場合により接合強度を向上させることができる。 As shown in FIG. 2, it is preferable that the thermoplastic resin region and the thermosetting resin region have a layered structure. In other words, it is preferable that the thermoplastic resin layer and the thermosetting resin layer are laminated while forming an interface. By adopting such a layered structure, it is possible to improve the bonding strength when the molded body is bonded to another member.

熱硬化性樹脂領域と熱可塑性樹脂領域との界面に関しては、図1に示すように、成形体を、強化繊維(A)の配向方向に対し45度の角度をなし、かつ成形体の面方向に垂直な断面を観察した場合に、当該断面において、両樹脂領域の界面がなす曲線(以下、「界面曲線」という)の粗さ平均長さRSmが100μm以下であり、かつ粗さ平均高さRcが3.5μm以上であることが好ましい。ここで、粗さ平均長さRSmおよび粗さ平均高さRcは、JIS B0601(2013)に従って算出される、輪郭曲線の粗さを表すパラメータである。 As for the interface between the thermosetting resin region and the thermoplastic resin region, as shown in FIG. 1, when the molded body is observed in a cross section that is at an angle of 45 degrees to the orientation direction of the reinforcing fibers (A) and perpendicular to the surface direction of the molded body, it is preferable that the curve formed by the interface between the two resin regions (hereinafter referred to as the "interface curve") in the cross section has a roughness average length RSm of 100 μm or less and a roughness average height Rc of 3.5 μm or more. Here, the roughness average length RSm and the roughness average height Rc are parameters that represent the roughness of the contour curve, calculated in accordance with JIS B0601 (2013).

かかる断面観察において、界面曲線の粗さ平均長さRSmが100μm以下であると、化学的または/および物理的な結合力のみならず、交絡という機械的な結合力も加わりやすく、両樹脂領域が剥離しにくくなる。RSmの下限値は、特に限定されないが、応力集中による機械的な結合力の低下を忌避するという観点から、好ましくは15μm以上である。 In such cross-sectional observation, if the roughness average length RSm of the interface curve is 100 μm or less, not only chemical and/or physical bonding forces but also mechanical bonding forces of entanglement are likely to be applied, making it difficult for the two resin regions to peel off. There are no particular limitations on the lower limit of RSm, but from the viewpoint of avoiding a decrease in mechanical bonding strength due to stress concentration, it is preferably 15 μm or more.

また、当該界面曲線の粗さ平均高さRcが3.5μm以上であることにより、上記の交絡による機械的な結合力に加え、境界面上に存在する強化繊維(A)が熱硬化性樹脂領域および熱可塑性樹脂領域の双方と物理的な凹凸形状を形成しやすくなり、両樹脂領域の密着力が向上する。Rcの好ましい範囲としては、強化繊維(A)および後述する無機充填剤(D)が両樹脂領域に接しやすくなることによって密着力がより向上する10μm以上であり、より好ましくは20μm以上である。上限値は、特に限定されないが、応力集中による機械的な結合力の低下を忌避するという観点から、好ましくは100μm以下である。 Furthermore, by having the roughness average height Rc of the interface curve be 3.5 μm or more, in addition to the mechanical bonding strength due to the above-mentioned entanglement, the reinforcing fiber (A) present on the interface is more likely to form a physical uneven shape with both the thermosetting resin region and the thermoplastic resin region, improving the adhesion strength of both resin regions. The preferred range of Rc is 10 μm or more, which allows the reinforcing fiber (A) and the inorganic filler (D) described later to easily come into contact with both resin regions, thereby further improving the adhesion strength, and more preferably 20 μm or more. The upper limit is not particularly limited, but from the viewpoint of avoiding a decrease in the mechanical bonding strength due to stress concentration, it is preferably 100 μm or less.

ここで、界面曲線の粗さ平均高さRcおよび粗さ平均長さRSmを測定するための断面を得る方法としては、図1に示すように、成形体における、熱可塑性樹脂領域を有する側の最表面に配向する強化繊維の方向を0度とし基準とし、その垂線方向(強化繊維の断面が真円に観察される方向)に対して、45度の角度となるように、ダイヤモンドカッターなどを用いて、切削研磨を行うことにより観察断面を得ることができる。このとき、湿式研磨紙は所望する断面の観察画像が鮮鋭に観察できるようにするために、#1500程度の砥粒サイズで仕上げ研磨することを好ましく例示することができる。得られた断面から、界面曲線の粗さ平均高さRcおよび粗さ平均長さRSmを測定する方法は、例えば、X線CTを用いて断面画像を取得する方法、エネルギー分散型X線分光器(EDS)を用いた断面の元素分析マッピング画像を用いる方法、あるいは光学顕微鏡あるいは走査電子顕微鏡(SEM)あるいは透過型電子顕微鏡(TEM)による断面観察画像を用いる方法が挙げられる。観察においては、両樹脂領域のコントラストを調整するため、熱硬化性樹脂(B)および/または熱可塑性樹脂(C)を染色しても良い。上記のいずれかの手法により得られる画像において、500μm四方の範囲において、界面曲線の粗さ平均高さRcおよび粗さ平均長さRSmを測定する。 Here, as a method for obtaining a cross section for measuring the roughness average height Rc and roughness average length RSm of the interface curve, as shown in FIG. 1, the direction of the reinforcing fibers oriented on the outermost surface of the molded body having the thermoplastic resin region is set as 0 degrees as a reference, and the observation cross section can be obtained by cutting and polishing using a diamond cutter or the like so that the angle is 45 degrees with respect to the perpendicular direction (the direction in which the cross section of the reinforcing fibers is observed as a perfect circle). At this time, a preferred example of the wet abrasive paper is finish polishing with an abrasive grain size of about #1500 so that the observation image of the desired cross section can be observed sharply. Methods for measuring the roughness average height Rc and roughness average length RSm of the interface curve from the obtained cross section include, for example, a method of obtaining a cross section image using X-ray CT, a method of using an elemental analysis mapping image of the cross section using an energy dispersive X-ray spectrometer (EDS), or a method of using a cross section observation image using an optical microscope, a scanning electron microscope (SEM), or a transmission electron microscope (TEM). In the observation, the thermosetting resin (B) and/or the thermoplastic resin (C) may be dyed to adjust the contrast between the two resin regions. In the image obtained by any of the above methods, the roughness average height Rc and roughness average length RSm of the interface curve are measured within an area of 500 μm square.

界面曲線の粗さ平均高さRcおよび粗さ平均長さRSmの測定方法(界面曲線要素の測定方法)は、以下の通りである。長方形型の観察画像9の熱硬化性樹脂(B)を含む樹脂領域側の端部11を基準線として、熱硬化性樹脂(B)を含む樹脂領域8から熱可塑性樹脂(C)を含む樹脂領域7に向かって5μm間隔で垂基線12を描く。基準線から描かれる垂基線が初めて熱可塑性樹脂(C)と交わる点をプロットし、プロットされた点を結んだ線を界面曲線13とする。得られた界面曲線13につき、JIS B0601(2013)に基づくフィルタリング処理を行い、界面曲線13の粗さ平均高さRcおよび粗さ平均長さRSmを算出する。 The method for measuring the roughness average height Rc and roughness average length RSm of the interface curve (method for measuring interface curve elements) is as follows. Using the end 11 on the resin region side containing thermosetting resin (B) of the rectangular observation image 9 as a reference line, vertical base lines 12 are drawn at 5 μm intervals from the resin region 8 containing thermosetting resin (B) toward the resin region 7 containing thermoplastic resin (C). The point where the vertical base line drawn from the reference line first intersects with the thermoplastic resin (C) is plotted, and the line connecting the plotted points is taken as the interface curve 13. The obtained interface curve 13 is subjected to a filtering process based on JIS B0601 (2013), and the roughness average height Rc and roughness average length RSm of the interface curve 13 are calculated.

そして、本発明においては、強化繊維群を構成している強化繊維(A)のうち一部の強化繊維(A)が、熱硬化性樹脂領域および熱可塑性樹脂領域の両者と接している。図2を参照すると、強化繊維(A)6の一部である強化繊維(A)6Aおよび6Bは、その断面の一部で熱硬化性樹脂領域と熱可塑性樹脂領域の両者と接している。なお、ここでは図2を用いてある特定の断面のみに基づいて説明したが、一部の強化繊維(A)は、特定の断面において両樹脂領域に接していなくても、その全長のどこかで両者と接していれば、両樹脂領域に接していると言える。この場合、そのような強化繊維(A)が両樹脂領域を跨ぐ部分の断面においては、当該強化繊維(A)の断面は図2における強化繊維(A)6Aや6Bのように両樹脂領域に接する状態で観察されることになる。 In the present invention, some of the reinforcing fibers (A) constituting the reinforcing fiber group are in contact with both the thermosetting resin region and the thermoplastic resin region. Referring to FIG. 2, reinforcing fibers (A) 6A and 6B, which are part of the reinforcing fiber (A) 6, are in contact with both the thermosetting resin region and the thermoplastic resin region in a part of their cross section. Note that, although the explanation has been given based on only a specific cross section using FIG. 2, some reinforcing fibers (A) can be said to be in contact with both resin regions even if they are not in contact with both resin regions in a specific cross section, as long as they are in contact with both resin regions somewhere along their entire length. In this case, in the cross section of the part where such reinforcing fiber (A) straddles both resin regions, the cross section of the reinforcing fiber (A) is observed in a state of contact with both resin regions, like reinforcing fibers (A) 6A and 6B in FIG. 2.

強化繊維(A)は、成形体の全体に渡り連続していても、あるいは分断されていてもよいが、10mm以上の長さを有していることが好ましく、成形体の全体に渡り連続していることがより好ましい。 The reinforcing fibers (A) may be continuous throughout the entire molded body or may be interrupted, but preferably have a length of 10 mm or more, and more preferably are continuous throughout the entire molded body.

本発明の繊維強化樹脂成形体は、さらに無機充填材(D)を含み、その一部の無機充填剤(D)もまた熱硬化性樹脂領域および熱可塑性樹脂領域の両者と接している。図2を参照すると、無機充填材(D)14Aは、その断面から明らかなように、熱硬化性樹脂領域と熱可塑性樹脂領域の両者と接している。ここで、無機充填剤(D)は一般的に強化繊維(A)よりも短小ではあるが、両樹脂領域に接する状態についての説明は前述した強化繊維(A)の場合と同様であるため省略する。 The fiber-reinforced resin molding of the present invention further contains an inorganic filler (D), and a portion of the inorganic filler (D) is also in contact with both the thermosetting resin region and the thermoplastic resin region. Referring to FIG. 2, the inorganic filler (D) 14A is in contact with both the thermosetting resin region and the thermoplastic resin region, as is clear from the cross section. Here, although the inorganic filler (D) is generally shorter and smaller than the reinforcing fiber (A), the explanation of the state in which it is in contact with both resin regions is omitted because it is the same as the case of the reinforcing fiber (A) described above.

本発明の繊維強化樹脂成形体は、強化繊維(A)だけでなく、一部の無機充填剤(D)が熱硬化性樹脂領域と熱可塑性樹脂領域の両者に接していることにより、繊維強化樹脂成形体とした場合に、両樹脂領域が優れた接合性を示す。 In the fiber-reinforced resin molding of the present invention, not only the reinforcing fiber (A) but also a portion of the inorganic filler (D) is in contact with both the thermosetting resin region and the thermoplastic resin region, so that when the fiber-reinforced resin molding is formed, both resin regions exhibit excellent bonding properties.

繊維強化樹脂成形体における熱可塑性樹脂領域の目付は、10g/m2以上であると好ましい。熱可塑性樹脂領域の目付は、50g/m2以上であるとより優れた接合強度を発現するための十分な厚みを得やすいため好ましく、さらに好ましくは100g/m2である。目付の上限値は特に限定されないが、比強度と比弾性率に優れる積層体を得る観点から、好ましくは500g/m2以下である。ここで、熱可塑性樹脂領域の目付とは、成形体1m2あたりに含まれる熱可塑性樹脂(C)の質量(g)を指す。 The basis weight of the thermoplastic resin region in the fiber-reinforced resin molded body is preferably 10 g/m2 or more. The basis weight of the thermoplastic resin region is preferably 50 g/m2 or more because it is easier to obtain a sufficient thickness to achieve better bonding strength, and is more preferably 100 g/m2. There is no particular upper limit to the basis weight, but from the viewpoint of obtaining a laminate with excellent specific strength and specific elastic modulus, it is preferably 500 g/m2 or less. Here, the basis weight of the thermoplastic resin region refers to the mass (g) of thermoplastic resin (C) contained per 1 m2 of the molded body.

また、繊維強化樹脂成形体の単位面積あたりの強化繊維量は、30~2,000g/m2であることが好ましい。かかる強化繊維量が30g/m2以上であると、積層体成形の際に所定の厚みを得るための積層枚数を少なくすることができ、作業が簡便となりやすい。一方で、強化繊維量が2,000g/m2以下であると、繊維強化樹脂成形体のドレープ性が向上しやすくなる。 The amount of reinforcing fibers per unit area of the fiber-reinforced resin molded body is preferably 30 to 2,000 g/m2. If the amount of reinforcing fibers is 30 g/m2 or more, the number of layers required to obtain a desired thickness during laminate molding can be reduced, making the process easier. On the other hand, if the amount of reinforcing fibers is 2,000 g/m2 or less, the drapeability of the fiber-reinforced resin molded body is more likely to be improved.

繊維強化樹脂成形体における強化繊維(A)の質量含有率は、好ましくは30~90質量%であり、より好ましくは35~85質量%であり、更に好ましくは40~80質量%である。質量含有率が30質量%以上であると、樹脂の量が繊維対比多くなりすぎず、比強度と比弾性率に優れる繊維強化樹脂成形体の利点が得られやすくなり、また、成形の際、硬化時の発熱量が過度に高くなりにくい。また、質量含有率が90質量%以下であると、熱硬化性樹脂の含浸不良が生じにくく、得られる繊維強化樹脂成形体内のボイドが少なくなりやすい。 The mass content of the reinforcing fiber (A) in the fiber-reinforced resin molding is preferably 30 to 90 mass%, more preferably 35 to 85 mass%, and even more preferably 40 to 80 mass%. If the mass content is 30 mass% or more, the amount of resin is not too large compared to the fiber, making it easier to obtain the advantages of a fiber-reinforced resin molding having excellent specific strength and specific elastic modulus, and also making it difficult for the amount of heat generated during curing during molding to be excessively high. Furthermore, if the mass content is 90 mass% or less, impregnation failure of the thermosetting resin is unlikely to occur, and voids in the obtained fiber-reinforced resin molding are likely to be reduced.

<強化繊維(A)>
本発明の成形体において、強化繊維群は、一方向に配向した強化繊維(A)が、一層または複数層配列されている形態、または、織物構造をとって配列されている形態かのいずれかの状態であることができる。軽量で耐久性がより高い成形体を得るためには、強化繊維群は一方向に配向した強化繊維(A)が一層または複数層配列されている形態であることが好ましい。また、一方向に配向した強化繊維(A)が複数層配列されている形態の場合、各層を構成する強化繊維群は、同方向に配向していてもよく、また直交するように配向していてもよい。
<Reinforcing fiber (A)>
In the molded article of the present invention, the reinforcing fiber group can be in a state in which the reinforcing fibers (A) oriented in one direction are arranged in one or more layers, or in a state in which they are arranged in a woven structure. In order to obtain a molded article that is lightweight and has higher durability, it is preferable that the reinforcing fiber group is in a state in which the reinforcing fibers (A) oriented in one direction are arranged in one or more layers. In addition, in the case of a form in which the reinforcing fibers (A) oriented in one direction are arranged in multiple layers, the reinforcing fiber group constituting each layer may be oriented in the same direction or may be oriented perpendicularly.

強化繊維(A)は、炭素繊維、ガラス繊維からなる群より選ばれる少なくとも1種の強化繊維であることが、成形体自体の強度、弾性率や経済性の観点から好ましい。強化繊維(A)としては、上記以外にも、本発明の効果を損なわない範囲で、金属繊維、芳香族ポリアミド繊維、ポリアラミド繊維、アルミナ繊維、炭化珪素繊維、ボロン繊維、玄武岩繊維などを用いても良い。これらは、単独で用いてもよいし、適宜2種以上併用して用いてもよい。 From the viewpoints of strength, elastic modulus, and economy of the molded body itself, it is preferable that the reinforcing fiber (A) is at least one type of reinforcing fiber selected from the group consisting of carbon fiber and glass fiber. In addition to the above, metal fibers, aromatic polyamide fibers, polyaramid fibers, alumina fibers, silicon carbide fibers, boron fibers, basalt fibers, etc. may also be used as the reinforcing fiber (A) within the scope that does not impair the effects of the present invention. These may be used alone or in combination of two or more types as appropriate.

これらの強化繊維(A)は、表面処理が施されているものであっても良い。表面処理としては、金属の被着処理、カップリング剤による処理、サイジング剤による処理、添加剤の付着処理などがある。これらの強化繊維の中には、導電性を有する強化繊維も含まれている。 These reinforcing fibers (A) may be surface-treated. Examples of surface treatments include metal deposition treatment, treatment with a coupling agent, treatment with a sizing agent, and treatment with an additive. Some of these reinforcing fibers have electrical conductivity.

強化繊維(A)としては、炭素繊維が、比重が小さく、高強度、高弾性率であることから、好ましく使用される。炭素繊維の市販品としては、“トレカ(登録商標)”T800G-24K、“トレカ(登録商標)”T800S-24K、“トレカ(登録商標)”T700G-24K、“トレカ(登録商標)”T700S-24K、“トレカ(登録商標)”T300-3K、および“トレカ(登録商標)”T1100G-24K(以上、東レ(株)製)などが挙げられる。 As the reinforcing fiber (A), carbon fiber is preferably used because of its low specific gravity, high strength, and high elastic modulus. Commercially available carbon fiber products include "TORAYCA (registered trademark)" T800G-24K, "TORAYCA (registered trademark)" T800S-24K, "TORAYCA (registered trademark)" T700G-24K, "TORAYCA (registered trademark)" T700S-24K, "TORAYCA (registered trademark)" T300-3K, and "TORAYCA (registered trademark)" T1100G-24K (all manufactured by Toray Industries, Inc.).

また、強化繊維(A)の、JIS R7608(2007)の樹脂含浸ストランド試験法に準拠して測定したストランド引張強度が3.5GPa以上であると、引張強度に加え、優れた接合強度を有する積層体繊維強化複合材料が得られるため、好ましい。当該ストランド引張強度は、4.5GPa以上であるとより好ましい。 In addition, it is preferable that the strand tensile strength of the reinforcing fiber (A), measured in accordance with the resin-impregnated strand test method of JIS R7608 (2007), is 3.5 GPa or more, since this results in a laminated fiber-reinforced composite material that has excellent bonding strength in addition to tensile strength. It is even more preferable that the strand tensile strength is 4.5 GPa or more.

<熱硬化性樹脂(B)>
熱硬化性樹脂(B)は、エポキシ、フェノール、不飽和ポリエステル、ビニルエステル、熱硬化ポリイミド、シアネートエステル樹脂、ビスマレイミド樹脂、ベンゾオキサジン樹脂からなる群より選ばれる少なくとも1種の熱硬化性樹脂であることが、繊維強化樹脂成形体としたときの強度・弾性率や、製品とした場合の耐熱性の選択幅を拡げる観点から好ましい。なお、本明細書において、「熱硬化性樹脂(B)」は、硬化剤や添加剤を含んだ組成物であっても包含する用語であるものとする。
<Thermosetting resin (B)>
The thermosetting resin (B) is preferably at least one thermosetting resin selected from the group consisting of epoxy, phenol, unsaturated polyester, vinyl ester, thermosetting polyimide, cyanate ester resin, bismaleimide resin, and benzoxazine resin, from the viewpoint of expanding the range of choices of strength and elastic modulus when made into a fiber-reinforced resin molded body and heat resistance when made into a product. In this specification, the term "thermosetting resin (B)" is intended to include even compositions containing curing agents and additives.

熱硬化性樹脂(B)としては、例えば、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、ポリイミド樹脂、シアネートエステル樹脂、ビスマレイミド樹脂、ベンゾオキサジン樹脂、またはこれらの共重合体、変性体、および、これらの少なくとも2 種類をブレンドした樹脂がある。耐衝撃性向上のために、熱硬化性樹脂には、エラストマーもしくはゴム成分が添加されていても良い。 Thermosetting resins (B) include, for example, unsaturated polyester resins, vinyl ester resins, epoxy resins, phenolic resins, urea resins, melamine resins, polyimide resins, cyanate ester resins, bismaleimide resins, benzoxazine resins, copolymers or modified products thereof, and resins in which at least two of these types are blended. To improve impact resistance, elastomers or rubber components may be added to the thermosetting resins.

中でも、エポキシ樹脂は、力学特性、耐熱性および強化繊維との接着性に優れ、好ましい。エポキシ樹脂の主剤としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂などのビスフェノール型エポキシ樹脂、テトラブロモビスフェノールAジグリシジルエーテルなどの臭素化エポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、ナフタレン骨格を有するエポキシ樹脂、ジシクロペンタジエン骨格を有するエポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂、N,N,O-トリグリシジル-m-アミノフェノール、N,N,O-トリグリシジル-p-アミノフェノール、N,N,O-トリグリシジル-4-アミノ-3-メチルフェノール、N,N,N’,N’-テトラグリシジル-4,4’-メチレンジアニリン、N,N,N’,N’-テトラグリシジル-2,2’-ジエチル-4,4’-メチレンジアニリン、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、N,N-ジグリシジルアニリン、N,N-ジグリシジル-o-トルイジンなどのグリシジルアミン型エポキシ樹脂、レゾルシンジグリシジルエーテル、トリグリシジルイソシアヌレートなどを挙げることができる。 Among them, epoxy resins are preferred because of their excellent mechanical properties, heat resistance, and adhesion to reinforcing fibers. Examples of the main component of epoxy resins include bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, and bisphenol S type epoxy resin; brominated epoxy resins such as tetrabromobisphenol A diglycidyl ether; epoxy resins having a biphenyl skeleton, epoxy resins having a naphthalene skeleton, epoxy resins having a dicyclopentadiene skeleton, novolac type epoxy resins such as phenol novolac type epoxy resin and cresol novolac type epoxy resin; and N,N,O-triglycidyl-m-aminophenol. Examples of glycidyl amine type epoxy resins include phenol, N,N,O-triglycidyl-p-aminophenol, N,N,O-triglycidyl-4-amino-3-methylphenol, N,N,N',N'-tetraglycidyl-4,4'-methylenedianiline, N,N,N',N'-tetraglycidyl-2,2'-diethyl-4,4'-methylenedianiline, N,N,N',N'-tetraglycidyl-m-xylylenediamine, N,N-diglycidylaniline, and N,N-diglycidyl-o-toluidine, resorcinol diglycidyl ether, and triglycidyl isocyanurate.

エポキシ樹脂の硬化剤としては、例えば、ジシアンジアミド、芳香族アミン化合物、フェノールノボラック樹脂、クレゾールノボラック樹脂、ポリフェノール化合物、イミダゾール誘導体、テトラメチルグアニジン、チオ尿素付加アミン、カルボン酸ヒドラジド、カルボン酸アミド、ポリメルカプタンなどが挙げられる。 Examples of epoxy resin curing agents include dicyandiamide, aromatic amine compounds, phenol novolac resins, cresol novolac resins, polyphenol compounds, imidazole derivatives, tetramethylguanidine, thiourea-added amines, carboxylic acid hydrazides, carboxylic acid amides, and polymercaptans.

<熱可塑性樹脂(C)>
熱可塑性樹脂(C)は、前記熱硬化性樹脂(B)の硬化反応温度範囲にて溶融状態となる熱可塑性樹脂であることが、繊維強化樹脂成形体内において、強化繊維(A)および無機充填材(D)を前記(B)と前記(C)からなる境界面に接しやすくすることができることから好ましい。
<Thermoplastic resin (C)>
It is preferable that the thermoplastic resin (C) be a thermoplastic resin that is in a molten state within the curing reaction temperature range of the thermosetting resin (B), because this makes it easier for the reinforcing fiber (A) and the inorganic filler (D) to come into contact with the boundary surface consisting of (B) and (C) within the fiber-reinforced resin molding.

また、熱可塑性樹脂の溶融温度は、次のようにして測定することができる。熱可塑性樹脂をJIS K7121(1987)に規定される「プラスチックの転移温度測定方法」に準拠して融解温度のピーク値を測定する。測定前に試料の調整として、炉内温度50℃で制御された真空乾燥機中で24時間以上乾燥させたものを、示差走査熱量測定装置にて、前記規格による融解温度を得て、ピークトップを溶融温度と定義する。なお、本明細書において、「熱可塑性樹脂(C)」もまた、充填材や添加剤を含んだ組成物も包含する用語として用いる。 The melting temperature of a thermoplastic resin can be measured as follows. The peak melting temperature of a thermoplastic resin is measured in accordance with the "Method for measuring transition temperature of plastics" specified in JIS K7121 (1987). Before the measurement, the sample is dried for 24 hours or more in a vacuum dryer controlled at an oven temperature of 50°C. The melting temperature according to the above standard is obtained using a differential scanning calorimeter, and the peak top is defined as the melting temperature. In this specification, the term "thermoplastic resin (C)" is also used to include compositions containing fillers and additives.

熱可塑性樹脂(C)としては、例えば、ポリエチレンテレフタレート 、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、液晶ポリエステル等のポリエステル系樹脂や、ポリエチレン、ポリプロピレン、ポリブチレン等のポリオレフィンや、スチレン系樹脂、ウレタン樹脂の他や、ポリオキシメチレン、ポリアミド6、ポリアミド66等のポリアミド、ポリカーボネート、ポリメチルメタクリレート、ポリ塩化ビニルや、ポリフェニレンスルフィド等のポリアリーレンスルフィド、ポリフェニレンエーテル、変性ポリフェニレンエーテル、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリスルホン、変性ポリスルホン 、ポリエーテルスルホンや、ポリケトン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン等のポリアリーレンエーテルケトン、ポリアリレート、ポリエーテルニトリル、フェノール系樹脂、フェノキシ樹脂などが挙げられる。また、これら熱可塑性樹脂は、上述の樹脂の共重合体や変性体、および/または2種類以上ブレンドした樹脂などであってもよい。 Examples of the thermoplastic resin (C) include polyester-based resins such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, and liquid crystal polyester; polyolefins such as polyethylene, polypropylene, and polybutylene; styrene-based resins; urethane resins; polyamides such as polyoxymethylene, polyamide 6, and polyamide 66; polycarbonate; polymethyl methacrylate; polyvinyl chloride; polyarylene sulfides such as polyphenylene sulfide; polyphenylene ether, modified polyphenylene ether, polyimide, polyamideimide, polyetherimide, polysulfone, modified polysulfone, polyethersulfone; polyarylene ether ketones such as polyketone, polyether ketone, polyether ether ketone, and polyether ketone ketone; polyarylate; polyether nitrile; phenolic resins; and phenoxy resins. These thermoplastic resins may also be copolymers or modified bodies of the above-mentioned resins, and/or resins blended with two or more of them.

これらの中でも、成形加工性と耐熱性や力学特性とのバランスから、ポリオレフィン、ポリカーボネート、ポリエステル、ポリアリーレンスルフィド、ポリアミド、ポリオキシメチレン、ポリエーテルイミド、ポリエーテルスルホン、ポリアリーレンエーテルケトンからなる群より選ばれる少なくとも1種の熱可塑性樹脂であることが好ましい。 Among these, from the viewpoint of the balance between moldability, heat resistance, and mechanical properties, it is preferable to use at least one thermoplastic resin selected from the group consisting of polyolefin, polycarbonate, polyester, polyarylene sulfide, polyamide, polyoxymethylene, polyetherimide, polyethersulfone, and polyarylene ether ketone.

さらに、熱可塑性樹脂(C)は、用途等に応じ、本発明の目的を損なわない範囲で適宜、他の充填材や添加剤を含有しても良い。例えば、難燃剤、導電性付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、染料、発泡剤、制泡剤、カップリング剤などが挙げられる。 Furthermore, the thermoplastic resin (C) may contain other fillers and additives as appropriate depending on the application, etc., within the scope of the present invention. Examples include flame retardants, electrical conductivity imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, vibration dampers, antibacterial agents, insect repellents, deodorants, coloring inhibitors, heat stabilizers, release agents, antistatic agents, plasticizers, lubricants, colorants, pigments, dyes, foaming agents, foam control agents, coupling agents, etc.

<無機充填材(D)>
本発明において、無機充填材(D)は、アスペクト比が5以上であることが好ましい。このような無機充填剤(D)を用いることで、熱硬化性樹脂領域と熱可塑性樹脂領域の界面において、無機充填剤(D)が両領域に接する構造を形成しやすくすることができ、また、当該界面の界面曲線の粗さ平均長さRSmおよび粗さ平均高さRcを所定範囲に制御しやすくなる。同様の理由により、かかるアスペクト比は、さらに好ましくは50以上、さらに好ましくは100以上であり、無機充填材の取り扱い性の観点から上限は1000以下が好ましい。
<Inorganic filler (D)>
In the present invention, the inorganic filler (D) preferably has an aspect ratio of 5 or more. By using such an inorganic filler (D), it is possible to easily form a structure in which the inorganic filler (D) contacts both regions at the interface between the thermosetting resin region and the thermoplastic resin region, and it is also easy to control the roughness average length RSm and roughness average height Rc of the interface curve at the interface within a predetermined range. For the same reason, the aspect ratio is more preferably 50 or more, more preferably 100 or more, and from the viewpoint of the handleability of the inorganic filler, the upper limit is preferably 1000 or less.

さらに、無機充填剤(D)は、凝集ストラクチャー長Lが、強化繊維(A)の単繊維径の2倍以下であることが好ましい。ここで、無機充填材(D)の凝集ストラクチャー長Lは、以下のように測定される数値である。前提として、「ストラクチャー」とは、無機充填剤(D)が凝集により鎖状や塊状の様態を形成したもののことをいう。図1に示すように、繊維強化樹脂成形体および成形体を熱硬化性樹脂領域と熱可塑性樹脂領域の両方を含む断面を切り出し、それを走査型電子顕微鏡などの顕微鏡にて1000倍以上に拡大し、無作為に凝集体をなしている無機充填材の凝集物(図3に例示する様態に観察される、なお図3では無機充填材(D)の形状は簡易的に楕円で示している)を選び、その最外位置(例えば、16)を通る外接円を引き、その外接円の直径を計測し、凝集ストラクチャー長とする。ここで、測定数を50(n=50)以上とし、その算術平均値を凝集ストラクチャー長とする。無機充填剤(D)がこのような凝集状態で存在することにより、熱硬化性樹脂領域と熱可塑性樹脂領域がなす界面曲線の粗さ平均長さRSmおよび粗さ平均高さRcが所定範囲になりやすい。 Furthermore, it is preferable that the aggregate structure length L of the inorganic filler (D) is not more than twice the single fiber diameter of the reinforcing fiber (A). Here, the aggregate structure length L of the inorganic filler (D) is a value measured as follows. As a premise, "structure" refers to the inorganic filler (D) forming a chain-like or block-like state by aggregation. As shown in FIG. 1, a cross section including both the thermosetting resin region and the thermoplastic resin region of the fiber-reinforced resin molded body and the molded body is cut out, and it is magnified by a microscope such as a scanning electron microscope by 1000 times or more, and an aggregate of the inorganic filler that randomly forms an aggregate (observed in the form exemplified in FIG. 3, the shape of the inorganic filler (D) is shown as an ellipse for simplicity) is selected, and a circumscribed circle passing through the outermost position (for example, 16) is drawn, and the diameter of the circumscribed circle is measured and taken as the aggregate structure length. Here, the number of measurements is 50 (n = 50) or more, and the arithmetic average value is taken as the aggregate structure length. When the inorganic filler (D) is present in such an aggregated state, the roughness average length RSm and roughness average height Rc of the interface curve between the thermosetting resin region and the thermoplastic resin region tend to fall within the specified range.

無機充填材(D)は繊維強化樹脂成形体100質量%に対して、0.01~2.0質量%の範囲内で含まれると、熱硬化性樹脂領域と熱可塑性樹脂領域境界面において両樹脂領域に接しやすくすることができ、さらにはその界面曲線の粗さ平均長さRSm、粗さ平均高さRcを所定範囲に制御しやすくなることから好ましい。さらに、熱硬化性樹脂(B)や熱可塑性樹脂(C)との配合のしやすさから、0.05~1.0質量%の範囲内で含まれることが特に好ましい。 When the inorganic filler (D) is contained within the range of 0.01 to 2.0 mass% relative to 100 mass% of the fiber-reinforced resin molding, it is possible to easily bring the thermosetting resin region and the thermoplastic resin region into contact with each other at the boundary surface between the two resin regions, and it is also preferable because it is easier to control the roughness average length RSm and roughness average height Rc of the interface curve within a predetermined range. Furthermore, it is particularly preferable that the inorganic filler (D) is contained within the range of 0.05 to 1.0 mass% because it is easier to blend with the thermosetting resin (B) and the thermoplastic resin (C).

無機充填材(D)は、例えば、カーボンブラック、炭素繊維、カーボンナノチューブ、カーボンナノホーン、チタン酸カリウムウィスカ、酸化亜鉛ウィスカ、炭酸カルシウムウィスカー、ワラストナイトウィスカー、硼酸アルミニウムウィスカ、アラミド繊維、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などの繊維状充填材、あるいはフラーレン、タルク、ワラストナイト、ゼオライト、セリサイト、マイカ、カオリン、クレー、パイロフィライト、シリカ、ベントナイト、アスベスト、アルミナシリケートなどの珪酸塩、酸化珪素、酸化マグネシウム、アルミナ、酸化ジルコニウム、酸化チタン、酸化鉄などの金属化合物、炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウムなどの水酸化物、ガラスビーズ、ガラスフレーク、ガラス粉、セラミックビーズ、窒化ホウ素、炭化珪素、カーボンブラックおよびシリカ、黒鉛などの非繊維状充填材が用いられる。なかでもカーボンブラック、黒鉛粉末、気相成長炭素繊維、カーボンナノチューブ、ミルド炭素繊維、ミルドガラス繊維、ワラストナイト、タルク、マイカからなる群より選ばれる少なくとも1種の無機充填材であることが、接着強度の向上、各種樹脂中への配合のしやすさ、汎用性、経済性の観点から好ましい。とりわけ、カーボンブラック、カーボンナノチューブ、ワラストナイト、タルクが樹脂との接着特性、汎用性の観点から特に好ましい。またこれらの無機充填材は2種類以上併用することも可能である。さらに、これらの無機充填材はイソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物およびエポキシ化合物などのカップリング剤で予備処理して使用してもよい。 Examples of the inorganic filler (D) that can be used include fibrous fillers such as carbon black, carbon fibers, carbon nanotubes, carbon nanohorns, potassium titanate whiskers, zinc oxide whiskers, calcium carbonate whiskers, wollastonite whiskers, aluminum borate whiskers, aramid fibers, alumina fibers, silicon carbide fibers, ceramic fibers, asbestos fibers, gypsum fibers, and metal fibers; and non-fibrous fillers such as fullerenes, talc, wollastonite, zeolite, sericite, mica, kaolin, clay, pyrophyllite, silica, bentonite, asbestos, and silicates such as alumina silicate, silicon oxide, magnesium oxide, alumina, zirconium oxide, titanium oxide, and iron oxide, carbonates such as calcium carbonate, magnesium carbonate, and dolomite, sulfates such as calcium sulfate and barium sulfate, hydroxides such as calcium hydroxide, magnesium hydroxide, and aluminum hydroxide, glass beads, glass flakes, glass powder, ceramic beads, boron nitride, silicon carbide, carbon black, and silica and graphite. Among them, at least one inorganic filler selected from the group consisting of carbon black, graphite powder, vapor-grown carbon fiber, carbon nanotube, milled carbon fiber, milled glass fiber, wollastonite, talc, and mica is preferred from the viewpoints of improving adhesive strength, ease of incorporation into various resins, versatility, and economy. In particular, carbon black, carbon nanotube, wollastonite, and talc are particularly preferred from the viewpoints of adhesive properties with resins and versatility. Two or more of these inorganic fillers can also be used in combination. Furthermore, these inorganic fillers may be pretreated with a coupling agent such as an isocyanate compound, an organic silane compound, an organic titanate compound, an organic borane compound, or an epoxy compound before use.

<複合成形体>
本発明の成形体は、繊維強化樹脂成形体の表面に存在する熱可塑性樹脂領域に、他の部材を接合させて複合成形体とすることができる。他の部材としては、熱可塑性樹脂を含む部材が挙げられる。このような熱可塑性樹脂を含む他の部材には、強化繊維やフィラー等が含まれていても良い。一体化手法は特に制限はなく、例えば、熱溶着、振動溶着、超音波溶着、レーザー溶着、抵抗溶着、誘導溶着、インサート射出成形、アウトサート射出成形などを挙げることができる。この場合、他の部材に含まれる熱可塑性樹脂は、成形体が含有する熱可塑性樹脂(C)と同種の樹脂であることが好ましい。
<Composite Molded Body>
The molded article of the present invention can be made into a composite molded article by joining other members to the thermoplastic resin region present on the surface of the fiber-reinforced resin molded article. Examples of the other members include members containing thermoplastic resin. Such other members containing thermoplastic resin may contain reinforcing fibers, fillers, etc. The integration method is not particularly limited, and examples thereof include heat welding, vibration welding, ultrasonic welding, laser welding, resistance welding, induction welding, insert injection molding, and outsert injection molding. In this case, it is preferable that the thermoplastic resin contained in the other members is the same type of resin as the thermoplastic resin (C) contained in the molded article.

他の部材と一態様としては、本発明の繊維強化樹脂成形体が挙げられる。これはすなわち、本発明の繊維強化樹脂成形体の熱可塑性樹脂領域同士を接合する態様である。このように接合することで、繊維強化樹脂成形体に用いられている熱可塑性樹脂(C)が、同種であることから、溶融時に相溶しやすく、強固な接合特性を得ることができる。 An example of another embodiment of the member is the fiber-reinforced resin molded product of the present invention. This is an embodiment in which the thermoplastic resin regions of the fiber-reinforced resin molded product of the present invention are joined together. By joining in this manner, since the thermoplastic resin (C) used in the fiber-reinforced resin molded product is the same type, it is easy to dissolve in the melt, and strong joining characteristics can be obtained.

<用途>
本発明の繊維強化樹脂成形体および該成形体を用いた複合成形体は、航空機構造部材、風車羽根、自動車外板、ICトレイやノートパソコンの筐体、さらにはゴルフシャフトやテニスラケットなどスポーツ用品に好ましく用いられる。
<Applications>
The fiber-reinforced resin molded product of the present invention and a composite molded product using said molded product are preferably used for aircraft structural members, wind turbine blades, automobile exterior panels, IC trays, notebook computer housings, and further for sporting goods such as golf shafts and tennis rackets.

以下、実施例により本発明をさらに詳細に説明する。ただし、本発明の範囲はこれらの実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples. However, the scope of the present invention is not limited to these examples.

なお、各種特性の測定は、特に注釈のない限り温度23℃、相対湿度50%の環境下で行った。 All measurements of various characteristics were performed in an environment with a temperature of 23°C and a relative humidity of 50%, unless otherwise noted.

<表中で用いた略称>
[強化繊維(A)]
・CF-1
ポリアクリロニトリルを主成分とする共重合体から紡糸、焼成処理、及び表面酸化処理を行って得た総単糸数24,000本の連続した炭素繊維。特性は下記の通り。
単繊維径:7μm
密度:1.8g/cm3
引張強度:4600MPa
引張弾性率:220GPa
・CF-2
ポリアクリロニトリルを主成分とする共重合体から紡糸、焼成処理、及び表面酸化処理を行って得られた総単糸数24,000本の連続した炭素繊維。特性は下記の通り。
単繊維径:5μm
密度:1.8g/cm3
引張強度:5900MPa
引張弾性率:294GPa
・GF-1
集束処理を施した総単糸数1,600本の連続した連続E-ガラス繊維。特性は下記の通り。
単繊維径:13μm
引張強度:3400MPa
引張弾性率:72GPa
引張伸度:3%
密度:2.6g/cm3。
<Abbreviations used in the table>
[Reinforcing fiber (A)]
CF-1
A continuous carbon fiber with a total of 24,000 single fibers obtained by spinning, baking, and surface oxidation treatment from a copolymer whose main component is polyacrylonitrile. The characteristics are as follows.
Single fiber diameter: 7 μm
Density: 1.8g/cm3
Tensile strength: 4600 MPa
Tensile modulus: 220 GPa
CF-2
A continuous carbon fiber with a total of 24,000 single fibers obtained by spinning, baking, and surface oxidation treatment from a copolymer whose main component is polyacrylonitrile. The characteristics are as follows.
Single fiber diameter: 5 μm
Density: 1.8g/cm3
Tensile strength: 5900 MPa
Tensile modulus: 294 GPa
・GF-1
A continuous E-glass fiber with a total of 1,600 single yarns that have been bundled. The characteristics are as follows:
Single fiber diameter: 13 μm
Tensile strength: 3400 MPa
Tensile modulus: 72 GPa
Tensile elongation: 3%
Density: 2.6 g/cm3.

[熱硬化性樹脂(B)]
・EP
エポキシ樹脂(詳細は後述)
[熱可塑性樹脂(C)]
・PA
ポリアミド樹脂(詳細は後述)
[無機充填材(D)]
・CNT-1
“Signis(登録商標)”CG-200(ケミカル アドバンスド マテリアルス社製、平均直径1.3nm、中心長さ1μm、アスペクト比769)
・CNT-2
“NANOCYL(登録商標)”NC-3000(Nanocyl社製、平均直径9.5nm、長さ1.5μm、アスペクト比158)
・CB-1
“Printex(登録商標)”L6(オリオン・エンジニアドカーボンズ社製、平均粒径23nm)
・CB-2
“ケッチェンブラック”EC300J(ライオン・スペシャリティ・ケミカルズ(株)製、平均粒径39.5nm)
・CB-3
“GRANOC(登録商標)”HC-600(日本グラファイトファイバー(株)製、平均直径12.5μm、長さ100μm、アスペクト比8)
・IF-1
“ワラストナイト”FPW#400(キンセイマテック(株)製、平均径 8μm、平均長40μm、アスペクト比5)
・IF-2
”タルク”JM-209(浅田製粉(株)製、平均粒径3.9μm、アスペクト比7)
<評価方法>
(1)繊維強化樹脂成形体内の無機充填材(D)の存在状態および凝集ストラクチャー長
走査型電子顕微鏡(日立製作所(株)製S-4000)にて、複合構造体の繊維強化樹脂成形体部分の厚み方向の断面を5000倍以上に拡大し写真撮影し、無作為に凝集体をなしている無機充填材(D)(図3に例示する様態に観察される)を選び、外接円を描いた。その外接円の直径を凝集体のストラクチャー長として測定した。測定数を50(n=50)以上とし、その平均値を凝集ストラクチャー長とした。
[Thermosetting resin (B)]
・EP
Epoxy resin (more on this later)
[Thermoplastic resin (C)]
・PA
Polyamide resin (details below)
[Inorganic filler (D)]
・CNT-1
"Signis (registered trademark)" CG-200 (manufactured by Chemical Advanced Materials, Inc., average diameter 1.3 nm, center length 1 μm, aspect ratio 769)
・CNT-2
"NANOCYL (registered trademark)" NC-3000 (manufactured by Nanocyl, average diameter 9.5 nm, length 1.5 μm, aspect ratio 158)
・CB-1
"Printex (registered trademark)" L6 (manufactured by Orion Engineered Carbons, average particle size 23 nm)
・CB-2
"Ketjen Black" EC300J (manufactured by Lion Specialty Chemicals Co., Ltd., average particle size 39.5 nm)
・CB-3
"GRANOC (registered trademark)" HC-600 (manufactured by Nippon Graphite Fiber Co., Ltd., average diameter 12.5 μm, length 100 μm, aspect ratio 8)
IF-1
"Wollastonite"FPW#400 (Kinsei Matec Co., Ltd., average diameter 8 μm, average length 40 μm, aspect ratio 5)
IF-2
"Talc" JM-209 (manufactured by Asada Flour Milling Co., Ltd., average particle size 3.9 μm, aspect ratio 7)
<Evaluation method>
(1) State of inorganic filler (D) in fiber-reinforced resin molded body and aggregate structure length Using a scanning electron microscope (S-4000 manufactured by Hitachi, Ltd.), a cross section in the thickness direction of the fiber-reinforced resin molded body part of the composite structure was photographed at a magnification of 5000 times or more, and inorganic filler (D) forming aggregates (observed in the form exemplified in FIG. 3) was randomly selected and a circumscribed circle was drawn. The diameter of the circumscribed circle was measured as the structure length of the aggregate. The number of measurements was 50 (n = 50) or more, and the average value was taken as the aggregate structure length.

(2)繊維強化樹脂成形体の接合強度の測定方法
各実施例・比較例で作製した成形体を、0°方向を試験片の長さ方向として、幅250mm、長さ92.5mmの形状に2枚カットし、真空オーブン中で24時間乾燥させた。その後、幅250mm、長さ92.5mmの形状にカットした2枚のパネルを、0°方向を長さ方向として、幅25mm×長さ12.5mmとして重ね合わせ、用いた前記(C)の熱可塑性樹脂の融点よりも20℃高い温度にて、3MPaの圧力をかけて、1分間保持することで、重ね合わせた面を溶着し、前記成形品を得た。得られた成形品に、ISO4587:1995(JIS K6850(1994))に準拠してタブを接着し、幅25mmでカットすることで、目的の試験片を得た。
(2) Method for measuring the bonding strength of a fiber-reinforced resin molded body The molded body produced in each Example and Comparative Example was cut into two pieces with a width of 250 mm and a length of 92.5 mm, with the 0° direction as the length direction of the test piece, and dried in a vacuum oven for 24 hours. Thereafter, the two panels cut into a width of 250 mm and a length of 92.5 mm were overlapped with a width of 25 mm x a length of 12.5 mm, with the 0° direction as the length direction, and a pressure of 3 MPa was applied at a temperature 20° C. higher than the melting point of the thermoplastic resin (C) used, and held for 1 minute to weld the overlapped surfaces to obtain the molded product. A tab was attached to the obtained molded product in accordance with ISO4587:1995 (JIS K6850 (1994)), and the target test piece was obtained by cutting it to a width of 25 mm.

得られた試験片を、真空オーブン中で24時間乾燥させ、ISO4587:1995(JIS K6850(1994))に基づく接合強度評価実験を行い、破壊後に分断された試験片の表面を顕微鏡にて観察し、熱可塑性樹脂の付着面積を画像から算出した。測定結果に基づいて以下のように評価した。
good:試験片の両方の破壊面に熱可塑性樹脂(C)が80%を超えて付着している。
fair:試験片の両方の破壊面に、熱可塑性樹脂(C)が60%以上~80%未満付着しており、残りの面には熱硬化性樹脂(B)が観察される。
bad:試験片の両方の破壊面に、熱可塑性樹脂(C)が60%未満付着しており、残りの面には熱硬化性樹脂(B)が観察される。
worst:試験片の破壊面の片方に、熱可塑性樹脂(C)が100%付着しており、もう片方の面には熱硬化性樹脂(B)が観察される。
The obtained test pieces were dried in a vacuum oven for 24 hours, and a bonding strength evaluation experiment based on ISO4587:1995 (JIS K6850 (1994)) was performed. The surfaces of the test pieces that were divided after destruction were observed under a microscope, and the adhesion area of the thermoplastic resin was calculated from the image. Based on the measurement results, the following evaluation was performed.
Good: More than 80% of the thermoplastic resin (C) was attached to both fracture surfaces of the test piece.
Fair: 60% or more but less than 80% of the thermoplastic resin (C) is adhered to both fracture surfaces of the test piece, and the thermosetting resin (B) is observed on the remaining surfaces.
Bad: Less than 60% of the thermoplastic resin (C) was adhered to both fractured surfaces of the test piece, and the thermosetting resin (B) was observed on the remaining surfaces.
Worst: Thermoplastic resin (C) is 100% adhered to one of the fractured surfaces of the test piece, and thermosetting resin (B) is observed on the other surface.

(3)別の部材と接合した複合成形品の接合強度の測定方法
各実施例・比較例で作製した成形体を、0°方向を試験片の長さ方向として、幅250mm、長さ92.5mmの形状に1枚カットし、真空オーブン中で24時間乾燥させた。その後、射出成形機の金型間にセットし、射出成形材料として下記のように作製した材料を用い、シリンダ温度、金型温度を表4記載のように設定して、繊維強化樹脂成形体における熱可塑性樹脂(C)側の面に射出成形して接合させた複合成形体を得た。
(3) Method for measuring the bonding strength of a composite molded product bonded to another member The molded body produced in each Example and Comparative Example was cut into a shape of 250 mm wide and 92.5 mm long with the 0° direction as the length direction of the test piece, and dried in a vacuum oven for 24 hours. Then, it was set between the molds of an injection molding machine, and the material prepared as shown below was used as the injection molding material, and the cylinder temperature and mold temperature were set as shown in Table 4 to obtain a composite molded body that was injection molded and bonded to the surface of the thermoplastic resin (C) side in the fiber reinforced resin molded body.

・NY6射出材料
二軸押出機中に、NY6(“アミラン(登録商標)”CM1007、東レ(株)製)を80部およびCF-1を20部投入し、250℃で加熱混練を行い、射出成形用のペレットを得た。ペレット中のCF-1の数平均繊維長は0.1mmであった。
NY6 Injection Material 80 parts of NY6 ("Amilan (registered trademark)" CM1007, manufactured by Toray Industries, Inc.) and 20 parts of CF-1 were put into a twin-screw extruder and mixed at 250°C to obtain pellets for injection molding. The number average fiber length of CF-1 in the pellets was 0.1 mm.

・PP射出材料
二軸押出機中に、PP( “プライムポリプロ”(登録商標)、プライムポリマー(株)製、J105Gを79質量%と、 “アドマー” (登録商標)QB510、三井化学(株)製を20質量%とをドライブレンドしたもの)を80部およびCF-1を20部投入し、200℃で加熱混練を行い、射出成形用のペレットを得た。ペレット中のCF-1の数平均繊維長は0.1mmであった。
PP Injection Material 80 parts of PP (a dry blend of 79% by mass of "Prime Polypro" (registered trademark), manufactured by Prime Polymer Co., Ltd., J105G and 20% by mass of "Admer" (registered trademark) QB510, manufactured by Mitsui Chemicals, Inc.) and 20 parts of CF-1 were placed in a twin-screw extruder and heated and kneaded at 200°C to obtain pellets for injection molding. The number average fiber length of CF-1 in the pellets was 0.1 mm.

・PEKK射出成形材料
二軸押出機中に、PEKK(“KEPSTAN(登録商標)”7002、アルケマ(株)製、融点331℃)を80部およびCF-1を20部投入し、320℃で加熱混練を行い、射出成形用のペレットを得た。ペレット中のCF-1の数平均繊維長は0.1mmであった。
PEKK injection molding material 80 parts of PEKK ("KEPSTAN (registered trademark)" 7002, manufactured by Arkema Co., Ltd., melting point 331°C) and 20 parts of CF-1 were placed in a twin-screw extruder and heated and kneaded at 320°C to obtain pellets for injection molding. The number average fiber length of CF-1 in the pellets was 0.1 mm.

得られた複合成形体に、ISO4587:1995(JIS K6850(1994))に準拠してタブを接着し、幅25mmでカットすることで、目的の試験片を得た。 Tabs were attached to the resulting composite molding in accordance with ISO4587:1995 (JIS K6850 (1994)) and the product was cut to a width of 25 mm to obtain the desired test specimen.

得られた試験片を、真空オーブン中で24時間乾燥させ、ISO4587:1995(JIS K6850(1994))に基づき、接合強度評価実験を行い、破壊後に分断された試験片の表面を顕微鏡にて観察し、熱可塑性樹脂の付着面積を画像から算出した。測定結果に基づいて以下のように評価した。結果は表4に記載した。
good:試験片の両方の破壊面に熱可塑性樹脂(C)が80%を超えて付着している。
fair:試験片の両方の破壊面に、熱可塑性樹脂(C)が60%以上~80%未満付着しており、残りの面には熱硬化性樹脂(B)が観察される。
bad:試験片の両方の破壊面に、熱可塑性樹脂(C)が60%未満付着しており、残りの面には熱硬化性樹脂(B)が観察される。
worst:試験片の破壊面の片方に、熱可塑性樹脂(C)が100%付着しており、もう片方の面には熱硬化性樹脂(B)が観察される。
The obtained test pieces were dried in a vacuum oven for 24 hours, and a bonding strength evaluation experiment was performed based on ISO4587:1995 (JIS K6850 (1994)). The surface of the test pieces divided after destruction was observed under a microscope, and the adhesion area of the thermoplastic resin was calculated from the image. Based on the measurement results, the evaluation was performed as follows. The results are shown in Table 4.
Good: More than 80% of the thermoplastic resin (C) was attached to both fracture surfaces of the test piece.
Fair: 60% or more but less than 80% of the thermoplastic resin (C) is adhered to both fracture surfaces of the test piece, and the thermosetting resin (B) is observed on the remaining surfaces.
Bad: Less than 60% of the thermoplastic resin (C) was adhered to both fractured surfaces of the test piece, and the thermosetting resin (B) was observed on the remaining surfaces.
Worst: Thermoplastic resin (C) is 100% adhered to one of the fractured surfaces of the test piece, and thermosetting resin (B) is observed on the other surface.

(4)界面曲線の粗さ平均長さRSmおよび粗さ平均高さRc
上記で作製した繊維強化樹脂成形体ないしは複合成形品を用い、前記両樹脂領域に含まれる強化繊維[A]の任意の配向方向に対し、繊維強化樹脂成形体の平面視における45度の角度にて繊維強化樹脂成形体の平面方向に対し垂直に、ダイヤモンドカッターを用いてカットした。カットにより得られた断面を、湿式研磨紙(#1500)を用いて、切削研磨を行うことにより観察断面を仕上げ研磨を行った。断面において、光学顕微鏡を用いて、1000倍の画像を撮影した。得られた画像中の任意の500μm四方の観察範囲において、前記界面曲線要素の測定方法1により得られる界面曲線要素のJIS B0601(2013)で定義される、粗さ平均長さRSmおよび粗さ平均高さRcを測定した。
(4) Roughness average length RSm and roughness average height Rc of the interface curve
Using the fiber-reinforced resin molded body or composite molded product prepared above, the fiber-reinforced resin molded body was cut perpendicular to the planar direction of the fiber-reinforced resin molded body at an angle of 45 degrees in a plan view of the fiber-reinforced resin molded body with respect to any orientation direction of the reinforcing fiber [A] contained in both resin regions, using a diamond cutter. The cross section obtained by the cut was cut and polished using wet abrasive paper (#1500) to finish polish the observed cross section. An image of the cross section was taken at a magnification of 1000 times using an optical microscope. In an arbitrary observation range of 500 μm square in the obtained image, the roughness average length RSm and roughness average height Rc of the interface curve element obtained by the measurement method 1 of the interface curve element, as defined in JIS B0601 (2013), were measured.

<実施例1>
[熱可塑プリプレグ(PP+C)]
ポリプロピレン(PP)樹脂として、二軸押出機中に、未変性ポリプロピレン樹脂(プライムポリマー(株)製“プライムポリプロ”(登録商標)J105G、融点161℃)79質量%と、酸変性ポリプロピレン樹脂(三井化学(株)製“アドマー” (登録商標)QB510、融点164℃)樹脂を20質量%、無機充填材(D)としてCNT-1を1質量%となるように調製し、200℃で加熱混練を行った。得られた混練物を100g/m2となるように調製し、2枚の金属板の間に挟みこんだものを、熱盤温度を200℃に調整したプレス機に面圧3MPaにて金属板と共に加圧・加熱を行った。5分後、プレス機の加圧を止めて解放し、金属板ごと、熱盤温度が50℃に調整したプレス機に移動させ、面圧3MPaで加圧・冷却をおこなうことで樹脂シート(PP)を得た。
Example 1
[Thermoplastic prepreg (PP+C)]
As polypropylene (PP) resin, 79% by mass of unmodified polypropylene resin (Prime Polymer Co., Ltd. "Prime Polypro" (registered trademark) J105G, melting point 161 ° C.) and 20% by mass of acid-modified polypropylene resin (Mitsui Chemicals Co., Ltd. "Admer" (registered trademark) QB510, melting point 164 ° C.) resin were added to a twin-screw extruder, and 1% by mass of CNT-1 was added as an inorganic filler (D). The mixture was prepared to be 100 g / m2 and sandwiched between two metal plates, and pressurized and heated together with the metal plates at a surface pressure of 3 MPa in a press machine with a hot platen temperature adjusted to 200 ° C. After 5 minutes, the pressurization of the press machine was stopped and released, and the metal plates were moved to a press machine with a hot platen temperature adjusted to 50 ° C., and pressurized and cooled at a surface pressure of 3 MPa to obtain a resin sheet (PP).

強化繊維(A)としてCF-1を、一方向に引き揃えた強化繊維シート(目付193g/m2)に、樹脂シート(PP)を当該強化繊維シート上に配置して、IRヒータで200℃に加熱し、前記樹脂シートを溶融し、連続強化繊維シート片面全面に付着させ、表面温度が熱可塑性樹脂(C)の融点以下である、80℃に保たれたニップロールで加圧して、冷却して繊維強化樹脂成形体の中間体である熱可塑プリプレグ(PP+C)を得た。 A resin sheet (PP) was placed on a reinforcing fiber sheet (193 g/m2) in which CF-1 was aligned in one direction as reinforcing fibers (A), and the sheet was heated to 200°C with an IR heater to melt the resin sheet and adhere it to the entire surface of one side of the continuous reinforcing fiber sheet. The sheet was then pressed with nip rolls whose surface temperature was kept at 80°C, below the melting point of the thermoplastic resin (C), and cooled to obtain a thermoplastic prepreg (PP+C), which is an intermediate for a fiber-reinforced resin molded product.

[熱硬化性樹脂フィルム(EP)]
熱硬化性樹脂(B)として、実施例1と同様の熱硬化性樹脂(EP)を、ナイフコーターを用いて樹脂目付50g/m2で調整しながら離型紙上にコーティングし、熱硬化性樹脂フィルム(EP)を作製した。
[Thermosetting resin film (EP)]
As the thermosetting resin (B), the same thermosetting resin (EP) as in Example 1 was coated on a release paper while adjusting the resin basis weight to 50 g/m2 using a knife coater, to produce a thermosetting resin film (EP).

[繊維強化樹脂成形体]
前記熱可塑プリプレグ(PP+C)における、樹脂シートを含浸させた反対の表面に前記熱硬化性樹脂フィルム(EP)を重ね、ヒートロールにより加熱加圧しながら樹脂フィルムを中間体に含浸させ、繊維強化樹脂成形体を成形するための複合プリプレグを得た。
[Fiber-reinforced resin molded body]
The thermosetting resin film (EP) was placed on the surface of the thermoplastic prepreg (PP+C) opposite to the surface impregnated with the resin sheet, and the intermediate was impregnated with the resin film while being heated and pressurized by a heat roll, thereby obtaining a composite prepreg for molding a fiber-reinforced resin molding.

前記熱硬化プリプレグ6枚、前記複合プリプレグ2枚を、強化繊維(A)の配向方向を0°とし、軸直交方向を90°と定義して、[0°/90°]2s(記号sは、鏡面対称を示す)で積層し、プリフォームを作製した。このとき両面それぞれの最外層の2枚は前記複合プリプレグとなるように積層し、プリフォームの両側の表層が、熱可塑性樹脂層となるように配置した。このプリフォームをプレス成形金型にセットし、プレス機で0.6MPaの圧力をかけ、180℃で2時間加温することで、繊維強化樹脂成形体を作製した。 Six sheets of the thermosetting prepreg and two sheets of the composite prepreg were laminated at [0°/90°]2s (the symbol s indicates mirror symmetry), with the orientation direction of the reinforcing fiber (A) defined as 0° and the axially perpendicular direction defined as 90°, to produce a preform. At this time, the two outermost layers on each side were laminated to form the composite prepreg, and the surface layers on both sides of the preform were arranged to form thermoplastic resin layers. This preform was set in a press molding die, and a pressure of 0.6 MPa was applied with a press machine and heated at 180°C for two hours to produce a fiber-reinforced resin molded body.

<実施例2>
[熱硬化プリプレグ(EP)]
ビスフェノールA型エポキシ樹脂(“jER”(登録商標)825(三菱ケミカル(株)製))を50質量部、テトラグリシジルジアミノジフェニルメタン(“スミエポキシ(登録商標)”ELM434(住友化学(株)製))を50質量部、ポリエーテルスルホン(“スミカエクセル(登録商標)”PES5003P(住友化学(株)製))を8質量部投入し、加熱混練を行い、ポリエーテルスルホンを溶解させた。次いで、混練を続けたまま100℃以下の温度まで降温させ、4,4’-ジアミノジフェニルスルホン(セイカキュアS(和歌山精化工業(株)製))を45質量部加えて撹拌し、熱硬化性樹脂(EP)を得た。
Example 2
[Thermosetting prepreg (EP)]
50 parts by mass of bisphenol A type epoxy resin ("jER" (registered trademark) 825 (manufactured by Mitsubishi Chemical Co., Ltd.)), 50 parts by mass of tetraglycidyl diaminodiphenylmethane ("Sumiepoxy (registered trademark)" ELM434 (manufactured by Sumitomo Chemical Co., Ltd.)), and 8 parts by mass of polyethersulfone ("Sumikaexcel (registered trademark)" PES5003P (manufactured by Sumitomo Chemical Co., Ltd.)) were added and heated and kneaded to dissolve the polyethersulfone. Next, while continuing the kneading, the temperature was lowered to a temperature of 100°C or less, and 45 parts by mass of 4,4'-diaminodiphenylsulfone (Seikacure S (manufactured by Wakayama Seika Kogyo Co., Ltd.)) was added and stirred to obtain a thermosetting resin (EP).

熱硬化性樹脂(B)として熱硬化性樹脂(EP)を、ナイフコーターを用いて樹脂目付50g/m2で離型紙上にコーティングし、熱硬化性樹脂フィルムを作製した。この熱硬化性樹脂フィルムを、炭素繊維CF-1を一方向に引き揃えた強化繊維シート(目付193g/m2)の両側に重ね合せてヒートロールを用い、加熱加圧しながら熱硬化性樹脂フィルムを強化繊維(A)に含浸させた熱硬化プリプレグ(EP)を得た。 Thermosetting resin (EP) was used as the thermosetting resin (B) and coated on release paper with a resin weight of 50 g/m2 using a knife coater to produce a thermosetting resin film. This thermosetting resin film was superimposed on both sides of a reinforcing fiber sheet (weight 193 g/m2) in which carbon fiber CF-1 was aligned in one direction, and a heat roll was used to apply heat and pressure while impregnating the reinforcing fiber (A) with the thermosetting resin film to produce a thermosetting prepreg (EP).

[樹脂シート(PA+C)]
二軸押出機中に、熱可塑性樹脂(C)としてポリアミド(PA)系樹脂である“アミラン(登録商標)”CM4000(東レ(株)製、3元共重合ポリアミド樹脂、融点155℃)を99質量%、無機充填材(D)としてCNT-2を1質量%となるように調製し、180℃で加熱混練を行った。得られた混練物を100g/m2となるように調製し、2枚の金属板の間に挟みこんだものを、熱盤温度を180℃に調整したプレス機に面圧3MPaにて金属板と共に加圧・加熱を行った。5分後、プレス機の加圧を止めて解放し、金属板ごと、熱盤温度が50℃に調整したプレス機に移動させ、面圧3MPaで加圧・冷却をおこなうことで樹脂シート(PA+C)を得た。
[Resin sheet (PA+C)]
In the twin-screw extruder, 99% by mass of polyamide (PA) resin "Amilan (registered trademark)" CM4000 (manufactured by Toray Industries, Inc., ternary copolymer polyamide resin, melting point 155 ° C.) was used as the thermoplastic resin (C), and 1% by mass of CNT-2 was used as the inorganic filler (D), and the mixture was heated and kneaded at 180 ° C. The resulting kneaded product was prepared to be 100 g / m2, sandwiched between two metal plates, and pressed and heated together with the metal plates at a surface pressure of 3 MPa in a press machine with a hot platen temperature adjusted to 180 ° C. After 5 minutes, the press machine was stopped and released, and the metal plates were moved to a press machine with a hot platen temperature adjusted to 50 ° C., and pressed and cooled at a surface pressure of 3 MPa to obtain a resin sheet (PA + C).

[繊維強化樹脂成形体]
次いで、熱硬化プリプレグに含まれる強化繊維(A)の配向方向を0°とし、軸直交方向を90°と定義して、[0°/90°]2s(記号sは、鏡面対称を示す)で熱硬化プリプレグを8枚積層した。そして、さらにその両側に樹脂シート(PA+C)を1枚ずつ配置してプリフォームを得た。当該プリフォームをプレス成形金型にセットし、プレス機で0.6MPaの圧力をかけ、180℃で2時間加温することで、繊維強化樹脂成形体を作製した。
[Fiber-reinforced resin molded body]
Next, the orientation direction of the reinforcing fiber (A) contained in the thermosetting prepreg was defined as 0°, and the axial orthogonal direction was defined as 90°, and eight thermosetting prepregs were laminated at [0°/90°]2s (the symbol s indicates mirror symmetry). Then, one resin sheet (PA+C) was placed on each side to obtain a preform. The preform was set in a press molding die, and a pressure of 0.6 MPa was applied with a press machine and heated at 180°C for 2 hours to produce a fiber-reinforced resin molded body.

<実施例3~5>
CNT-2に代えて表1に示す無機充填材(D)を用いた以外は、実施例2と同様にして、繊維強化樹脂成形体を作製した。
<Examples 3 to 5>
A fiber-reinforced resin molded body was produced in the same manner as in Example 2, except that the inorganic filler (D) shown in Table 1 was used instead of CNT-2.

<実施例6>
強化繊維(A)としてCF-1に代えてCF-2を用いたこと、および無機充填材(D)CNT-1の配合量を熱可塑性樹脂(C)に対して、1.7質量%となるように調製したこと以外は実施例1と同様にして、繊維強化樹脂成形体を作製した。
Example 6
Except for using CF-2 instead of CF-1 as the reinforcing fiber (A) and adjusting the amount of inorganic filler (D) CNT-1 to 1.7 mass% relative to the thermoplastic resin (C), a fiber-reinforced resin molded body was produced in the same manner as in Example 1.

<実施例7>
無機充填材(D)CNT-1の配合量を熱可塑性樹脂(C)に対して、0.5質量%となるように調製した以外は実施例1と同様にして、繊維強化樹脂成形体を作製した。
Example 7
A fiber-reinforced resin molding was produced in the same manner as in Example 1, except that the amount of the inorganic filler (D) CNT-1 was adjusted to 0.5% by mass relative to the thermoplastic resin (C).

<実施例8>
強化繊維(A)としてCF-1に代えてCF-2を用い、無機充填材(D)としてCNT-2を用いた以外は実施例7と同様にして、繊維強化樹脂成形体を作製した。
Example 8
A fiber-reinforced resin molded body was produced in the same manner as in Example 7, except that CF-2 was used instead of CF-1 as the reinforcing fiber (A) and CNT-2 was used as the inorganic filler (D).

<実施例9>
強化繊維(A)としてCF-1に代えてGF-1を用い、無機充填材(D)としてCNT-2を用いた以外は実施例7と同様にして、繊維強化樹脂成形体を作製した。
<Example 9>
A fiber-reinforced resin molded body was produced in the same manner as in Example 7, except that GF-1 was used instead of CF-1 as the reinforcing fiber (A) and CNT-2 was used as the inorganic filler (D).

<実施例10>
[熱硬化プリプレグ(EP+C)]
ビスフェノールA型エポキシ樹脂(“jER”(登録商標)825(三菱ケミカル(株)製))を50質量部、テトラグリシジルジアミノジフェニルメタン(“スミエポキシ(登録商標)”ELM434(住友化学(株)製))を50質量部、ポリエーテルスルホン(“スミカエクセル(登録商標)”PES5003P(住友化学(株)製))を8質量部投入し、加熱混練を行い、ポリエーテルスルホンを溶解させ、混練物を得た。
Example 10
[Thermosetting prepreg (EP+C)]
50 parts by mass of bisphenol A type epoxy resin ("jER" (registered trademark) 825 (manufactured by Mitsubishi Chemical Corporation)), 50 parts by mass of tetraglycidyldiaminodiphenylmethane ("Sumiepoxy" (registered trademark) ELM434 (manufactured by Sumitomo Chemical Co., Ltd.)), and 8 parts by mass of polyethersulfone ("Sumikaexcel" (registered trademark) PES5003P (manufactured by Sumitomo Chemical Co., Ltd.)) were added and heated and kneaded to dissolve the polyethersulfone, thereby obtaining a kneaded product.

次いで、無機充填材としてCNT-2を1質量%秤量し、上記混練物とともに二軸押出機に投入し、混練を続けた。次いで、混練を続けたまま100℃以下の温度まで降温させ、4,4’-ジアミノジフェニルスルホン(セイカキュアS(和歌山精化工業(株)製))を45質量部加えて撹拌し、CNT-2を含有する熱硬化性樹脂組成物を得た。 Next, 1% by mass of CNT-2 was weighed out as an inorganic filler and fed into a twin-screw extruder together with the above kneaded material, and kneading was continued. Next, while continuing kneading, the temperature was lowered to 100°C or lower, and 45 parts by mass of 4,4'-diaminodiphenyl sulfone (Seikacure S (Wakayama Seika Kogyo Co., Ltd.)) was added and stirred to obtain a thermosetting resin composition containing CNT-2.

当該熱硬化性樹脂組成物を、ナイフコーターを用いて樹脂目付50g/m2で離型紙上にコーティングし、熱硬化性樹脂フィルムを作製した。この熱硬化性樹脂フィルムを、一方向に引き揃えた強化繊維シート(目付193g/m2)の両側に重ね合せてヒートロールを用い、加熱加圧しながら熱硬化性樹脂フィルムを強化繊維(A)に含浸させ、無機充填剤(D)が配合された熱硬化プリプレグ(EP+C)を得た。 The thermosetting resin composition was coated on release paper with a knife coater at a resin weight of 50 g/m2 to produce a thermosetting resin film. This thermosetting resin film was superimposed on both sides of a reinforcing fiber sheet (weight 193 g/m2) aligned in one direction, and the thermosetting resin film was impregnated into the reinforcing fiber (A) while applying heat and pressure using a heat roll, obtaining a thermosetting prepreg (EP+C) containing inorganic filler (D).

[樹脂シート(PA)]
PA系樹脂として、 “アミラン(登録商標)”CM4000(東レ(株)製、3元共重合ポリアミド樹脂、融点155℃)を使用し、樹脂シート(PA)を作製した。樹脂シート(PA)は、CM4000を100g/m2となるように調製し、2枚の金属板の間に挟みこんだものを、熱盤温度を180℃に調整したプレス機に面圧3MPaにて金属板と共に加圧・加熱を行った。5分後、プレス機の加圧を止めて解放し、金属板ごと、熱盤温度が50℃に調整したプレス機に移動させ、面圧3MPaで加圧・冷却をおこなうことで樹脂シート(PA)を得た。
[Resin sheet (PA)]
A resin sheet (PA) was produced using "Amilan (registered trademark)" CM4000 (manufactured by Toray Industries, Inc., ternary copolymer polyamide resin, melting point 155 ° C.) as a PA resin. The resin sheet (PA) was prepared by preparing CM4000 at 100 g / m2, sandwiching it between two metal plates, and pressing and heating it together with the metal plate at a surface pressure of 3 MPa in a press machine with a hot plate temperature adjusted to 180 ° C. After 5 minutes, the pressure of the press machine was stopped and released, and the metal plate was moved to a press machine with a hot plate temperature adjusted to 50 ° C., and pressed and cooled at a surface pressure of 3 MPa to obtain a resin sheet (PA).

次いで、熱硬化プリプレグ(EP+C)と樹脂シート(PA)とを実施例1と同様に積層・プレス成形して繊維強化樹脂成形体を作製した。 Next, the thermosetting prepreg (EP+C) and the resin sheet (PA) were laminated and press molded in the same manner as in Example 1 to produce a fiber-reinforced resin molded body.

<実施例11>
[熱可塑プリプレグ(PP+C)]
ポリプロピレン(PP)樹脂として、二軸押出機中に、未変性ポリプロピレン樹脂(プライムポリマー(株)製“プライムポリプロ”(登録商標)J105G、融点161℃)79質量%と、酸変性ポリプロピレン樹脂(三井化学(株)製“アドマー” (登録商標)QB510、融点164℃)樹脂を20質量%、無機充填材(D)としてCNT-2を1質量%となるように調製し、200℃で加熱混練を行った。得られた混練物を100g/m2となるように調製し、2枚の金属板の間に挟みこんだものを、熱盤温度を200℃に調整したプレス機に面圧3MPaにて金属板と共に加圧・加熱を行った。5分後、プレス機の加圧を止めて解放し、金属板ごと、熱盤温度が50℃に調整したプレス機に移動させ、面圧3MPaで加圧・冷却をおこなうことで樹脂シート(PP)を得た。
Example 11
[Thermoplastic prepreg (PP+C)]
As polypropylene (PP) resin, 79% by mass of unmodified polypropylene resin (Prime Polymer Co., Ltd. "Prime Polypro" (registered trademark) J105G, melting point 161 ° C.) and 20% by mass of acid-modified polypropylene resin (Mitsui Chemicals Co., Ltd. "Admer" (registered trademark) QB510, melting point 164 ° C.) resin were added to a twin-screw extruder, and 1% by mass of CNT-2 was added as an inorganic filler (D). The mixture was prepared to be 100 g / m2 and sandwiched between two metal plates, and pressurized and heated together with the metal plates at a surface pressure of 3 MPa in a press machine with a hot platen temperature adjusted to 200 ° C. After 5 minutes, the pressurization of the press machine was stopped and released, and the metal plates were moved to a press machine with a hot platen temperature adjusted to 50 ° C., and pressurized and cooled at a surface pressure of 3 MPa to obtain a resin sheet (PP).

強化繊維(A)としてCF-1を、一方向に引き揃えた強化繊維シート(目付193g/m2)に、樹脂シート(PP)を当該強化繊維シート上に配置して、IRヒータで200℃に加熱し、前記樹脂シートを溶融し、連続強化繊維シート片面全面に付着させ、表面温度が熱可塑性樹脂(C)の融点以下である、80℃に保たれたニップロールで加圧して、冷却して繊維強化樹脂成形体の中間体である熱可塑プリプレグ(PP+C)を得た。 A resin sheet (PP) was placed on a reinforcing fiber sheet (193 g/m2) in which CF-1 was aligned in one direction as reinforcing fibers (A), and the sheet was heated to 200°C with an IR heater to melt the resin sheet and adhere it to the entire surface of one side of the continuous reinforcing fiber sheet. The sheet was then pressed with nip rolls whose surface temperature was kept at 80°C, below the melting point of the thermoplastic resin (C), and cooled to obtain a thermoplastic prepreg (PP+C), which is an intermediate for a fiber-reinforced resin molded product.

[熱硬化性樹脂フィルム(EP)]
熱硬化性樹脂(B)として、実施例1と同様の熱硬化性樹脂(EP)を、ナイフコーターを用いて樹脂目付50g/m2で調整しながら離型紙上にコーティングし、熱硬化性樹脂フィルム(EP)を作製した。
[Thermosetting resin film (EP)]
As the thermosetting resin (B), the same thermosetting resin (EP) as in Example 1 was coated on a release paper while adjusting the resin basis weight to 50 g/m2 using a knife coater, to produce a thermosetting resin film (EP).

[繊維強化樹脂成形体]
前記熱可塑プリプレグ(PP+C)における、樹脂シートを含浸させた反対の表面に前記熱硬化性樹脂フィルム(EP)を重ね、ヒートロールにより加熱加圧しながら樹脂フィルムを中間体に含浸させ、繊維強化樹脂成形体を成形するための複合プリプレグを得た。
[Fiber-reinforced resin molded body]
The thermosetting resin film (EP) was placed on the surface of the thermoplastic prepreg (PP+C) opposite to the surface impregnated with the resin sheet, and the intermediate was impregnated with the resin film while being heated and pressurized by a heat roll, thereby obtaining a composite prepreg for molding a fiber-reinforced resin molding.

前記熱硬化プリプレグ6枚、前記複合プリプレグ2枚を、強化繊維(A)の配向方向を0°とし、軸直交方向を90°と定義して、[0°/90°]2s(記号sは、鏡面対称を示す)で積層し、プリフォームを作製した。このとき両面それぞれの最外層の2枚は前記複合プリプレグとなるように積層し、プリフォームの両側の表層が、熱可塑性樹脂層となるように配置した。このプリフォームをプレス成形金型にセットし、プレス機で0.6MPaの圧力をかけ、180℃で2時間加温することで、繊維強化樹脂成形体を作製した。 Six sheets of the thermosetting prepreg and two sheets of the composite prepreg were laminated at [0°/90°]2s (the symbol s indicates mirror symmetry), with the orientation direction of the reinforcing fiber (A) defined as 0° and the axially perpendicular direction defined as 90°, to produce a preform. At this time, the two outermost layers on each side were laminated to form the composite prepreg, and the surface layers on both sides of the preform were arranged to form thermoplastic resin layers. This preform was set in a press molding die, and a pressure of 0.6 MPa was applied with a press machine and heated at 180°C for two hours to produce a fiber-reinforced resin molded body.

<実施例12>
[熱可塑プリプレグ(NY6+C)]
二軸押出機中に、“アミラン(登録商標)”CM1007(東レ(株)製、融点225℃)を99質量%、無機充填材(D)として、CNT-2を1質量%となるように調製し、250℃で加熱混練を行った。得られた混練物を100g/m2となるように調製し、2枚の金属板の間に挟みこんだものを、熱盤温度を250℃に調整したプレス機に面圧3MPaにて金属板と共に加圧・加熱を行った。5分後、プレス機の加圧を止めて解放し、金属板ごと、熱盤温度が80℃に調整したプレス機に移動させ、面圧3MPaで加圧・冷却をおこなうことでシート化し、樹脂シート(NY6)を作製した。
Example 12
[Thermoplastic prepreg (NY6+C)]
In a twin-screw extruder, "Amilan (registered trademark)" CM1007 (manufactured by Toray Industries, Inc., melting point 225 ° C.) was prepared to be 99% by mass, and CNT-2 was prepared to be 1% by mass as an inorganic filler (D), and was heated and kneaded at 250 ° C. The obtained kneaded product was prepared to be 100 g / m2, sandwiched between two metal plates, and pressurized and heated together with the metal plates at a surface pressure of 3 MPa in a press machine with a hot platen temperature adjusted to 250 ° C. After 5 minutes, the pressurization of the press machine was stopped and released, and the metal plates were moved to a press machine with a hot platen temperature adjusted to 80 ° C., and pressed and cooled at a surface pressure of 3 MPa to form a sheet, and a resin sheet (NY6) was produced.

強化繊維(A)としてCF-1を、一方向に引き揃えた強化繊維シート(目付193g/m2)に、熱可塑性樹脂(C)からなる樹脂シートを当該強化繊維シート上に配置して、IRヒータで250℃に加熱し、前記樹脂シートを溶融し、連続強化繊維シート片面全面に付着させ、表面温度が前記(C)の融点以下である、80℃に保たれたニップロールで加圧して、冷却して繊維強化樹脂成形体の中間体である熱可塑プリプレグ(NY6+C)を得た。 A resin sheet made of thermoplastic resin (C) was placed on a reinforcing fiber sheet (193 g/m2) in which CF-1 reinforcing fibers (A) were aligned in one direction, and the sheet was heated to 250°C with an IR heater to melt the resin sheet and adhere it to the entire surface of one side of the continuous reinforcing fiber sheet. The sheet was then pressed with nip rolls kept at 80°C, which is below the melting point of (C), and cooled to obtain a thermoplastic prepreg (NY6+C), which is an intermediate for a fiber-reinforced resin molded product.

[繊維強化樹脂成形体]
前記熱可塑プリプレグ(NY6+C)における、樹脂シートを含浸させた反対の表面に、実施例11に記載した方法により作製した熱硬化性樹脂フィルム(EP)を重ね、ヒートロールにより加熱加圧しながら樹脂フィルムを中間体に含浸させ、繊維強化樹脂成形体を成形するための複合プリプレグを得た。
[Fiber-reinforced resin molded body]
A thermosetting resin film (EP) produced by the method described in Example 11 was laminated on the surface of the thermoplastic prepreg (NY6+C) opposite to the surface impregnated with the resin sheet, and the resin film was impregnated into the intermediate while heating and pressurizing with a heat roll, thereby obtaining a composite prepreg for molding a fiber-reinforced resin molded body.

前記熱硬化プリプレグ6枚、前記複合プリプレグ2枚を、強化繊維(A)の配向方向を0°とし、軸直交方向を90°と定義して、[0°/90°]2s(記号sは、鏡面対称を示す)で積層し、プリフォームを作製した。このとき両面それぞれの最外層の2枚は前記複合プリプレグとなるように積層し、プリフォームの両側の表層が、熱可塑性樹脂層となるように配置した。このプリフォームをプレス成形金型にセットし、プレス機で0.6MPaの圧力をかけ、180℃で2時間加温することで、繊維強化樹脂成形体を作製した。 Six sheets of the thermosetting prepreg and two sheets of the composite prepreg were laminated at [0°/90°]2s (the symbol s indicates mirror symmetry), with the orientation direction of the reinforcing fiber (A) defined as 0° and the axially perpendicular direction defined as 90°, to produce a preform. At this time, the two outermost layers on each side were laminated to form the composite prepreg, and the surface layers on both sides of the preform were arranged to form thermoplastic resin layers. This preform was set in a press molding die, and a pressure of 0.6 MPa was applied with a press machine and heated at 180°C for two hours to produce a fiber-reinforced resin molded body.

<実施例13>
[熱可塑プリプレグ(PEKK+C)]
二軸押出機中に、“KEPSTAN(登録商標)”7002(アルケマ(株)製、融点331℃)を99質量%、無機充填材(D)として、CNT-2を1質量%となるように調製し、350℃で加熱混練を行った。得られた混練物を100g/m2となるように調製し、2枚の金属板の間に挟みこんだものを、熱盤温度を350℃に調整したプレス機に面圧3MPaにて金属板と共に加圧・加熱を行った。5分後、プレス機の加圧を止めて解放し、金属板ごと、熱盤温度が120℃に調整したプレス機に移動させ、面圧3MPaで加圧・冷却をおこなうことでシート化し、樹脂シート(PEKK)を作製した。
Example 13
[Thermoplastic prepreg (PEKK+C)]
In a twin-screw extruder, "KEPSTAN (registered trademark)" 7002 (manufactured by Arkema Co., Ltd., melting point 331 ° C.) was prepared to 99 mass%, CNT-2 was prepared as an inorganic filler (D) to 1 mass%, and heated and kneaded at 350 ° C. The obtained kneaded product was prepared to 100 g / m2, sandwiched between two metal plates, and pressurized and heated together with the metal plates at a surface pressure of 3 MPa in a press machine with a hot platen temperature adjusted to 350 ° C. After 5 minutes, the pressurization of the press machine was stopped and released, and the metal plates were moved to a press machine with a hot platen temperature adjusted to 120 ° C., and pressed and cooled at a surface pressure of 3 MPa to form a sheet, and a resin sheet (PEKK) was produced.

強化繊維(A)としてCF-1を、一方向に引き揃えた強化繊維シート(目付193g/m2)に、熱可塑性樹脂(C)からなる樹脂シートを当該強化繊維シート上に配置して、IRヒータで350℃に加熱し、前記樹脂シートを溶融し、連続強化繊維シート片面全面に付着させ、表面温度が前記(C)の融点以下である、120℃に保たれたニップロールで加圧して、冷却して繊維強化樹脂成形体の中間体である熱可塑プリプレグ(PEKK+C)を得た。 A resin sheet made of thermoplastic resin (C) was placed on a reinforcing fiber sheet (weight 193 g/m2) in which CF-1 was aligned in one direction as reinforcing fiber (A), and the sheet was heated to 350°C with an IR heater to melt the resin sheet and adhere it to the entire surface of one side of the continuous reinforcing fiber sheet. The sheet was then pressed with nip rolls kept at 120°C, which is below the melting point of (C), and cooled to obtain a thermoplastic prepreg (PEKK+C), which is an intermediate for a fiber-reinforced resin molded body.

[熱硬化性樹脂フィルム(EP+C)]
ビスフェノールA型エポキシ樹脂(“jER”(登録商標)825(三菱ケミカル(株)製))を50質量部、テトラグリシジルジアミノジフェニルメタン(“スミエポキシ(登録商標)”ELM434(住友化学(株)製))を50質量部、ポリエーテルスルホン(“スミカエクセル(登録商標)”PES5003P(住友化学(株)製))を8質量部投入し、加熱混練を行い、ポリエーテルスルホンを溶解させ、混練物を得た。
[Thermosetting resin film (EP+C)]
50 parts by mass of bisphenol A type epoxy resin ("jER" (registered trademark) 825 (manufactured by Mitsubishi Chemical Corporation)), 50 parts by mass of tetraglycidyldiaminodiphenylmethane ("Sumiepoxy" (registered trademark) ELM434 (manufactured by Sumitomo Chemical Co., Ltd.)), and 8 parts by mass of polyethersulfone ("Sumikaexcel" (registered trademark) PES5003P (manufactured by Sumitomo Chemical Co., Ltd.)) were added and heated and kneaded to dissolve the polyethersulfone, thereby obtaining a kneaded product.

次いで、無機充填材としてCNT-2を1質量%秤量し、上記混練物とともに二軸押出機に投入し、混練を続けた。次いで、混練を続けたまま100℃以下の温度まで降温させ、4,4’-ジアミノジフェニルスルホン(セイカキュアS(和歌山精化工業(株)製))を45質量部加えて撹拌し、CNT-2を含有した熱硬化性樹脂組成物を得た。当該熱硬化性樹脂組成物を、ナイフコーターを用いて樹脂目付50g/m2で調整しながら離型紙上にコーティングし、熱硬化性樹脂フィルム(EP+C)を作製した。 Next, 1% by mass of CNT-2 was weighed out as an inorganic filler and put into a twin-screw extruder together with the above kneaded product, and kneading was continued. Next, while continuing kneading, the temperature was lowered to 100°C or less, and 45 parts by mass of 4,4'-diaminodiphenyl sulfone (Seikacure S (Wakayama Seika Kogyo Co., Ltd.)) was added and stirred to obtain a thermosetting resin composition containing CNT-2. The thermosetting resin composition was coated on release paper using a knife coater while adjusting the resin basis weight to 50 g/m2, and a thermosetting resin film (EP+C) was produced.

[繊維強化樹脂成形体]
前記熱可塑プリプレグ(PEKK+C)における、樹脂シートを含浸させた反対の表面に前記熱硬化性樹脂フィルム(EP+C)を重ね、ヒートロールにより加熱加圧しながら樹脂フィルムを中間体に含浸させ、繊維強化樹脂成形体を成形するための複合プリプレグを得た。
[Fiber-reinforced resin molded body]
The thermosetting resin film (EP+C) was superimposed on the surface of the thermoplastic prepreg (PEKK+C) opposite to the surface impregnated with the resin sheet, and the intermediate was impregnated with the resin film while being heated and pressurized with a heat roll, thereby obtaining a composite prepreg for molding a fiber-reinforced resin molded body.

前記熱硬化プリプレグ6枚、前記複合プリプレグ2枚を、強化繊維(A)の配向方向を0°とし、軸直交方向を90°と定義して、[0°/90°]2s(記号sは、鏡面対称を示す)で積層し、プリフォームを作製した。このとき両面それぞれの最外層の2枚は前記複合プリプレグとなるように積層し、プリフォームの両側の表層が、熱可塑性樹脂層となるように配置した。このプリフォームをプレス成形金型にセットし、プレス機で0.6MPaの圧力をかけ、180℃で2時間加温することで、繊維強化樹脂成形体を作製した。 Six sheets of the thermosetting prepreg and two sheets of the composite prepreg were laminated at [0°/90°]2s (the symbol s indicates mirror symmetry), with the orientation direction of the reinforcing fiber (A) defined as 0° and the axially perpendicular direction defined as 90°, to produce a preform. At this time, the two outermost layers on each side were laminated to form the composite prepreg, and the surface layers on both sides of the preform were arranged to form thermoplastic resin layers. This preform was set in a press molding die, and a pressure of 0.6 MPa was applied with a press machine and heated at 180°C for two hours to produce a fiber-reinforced resin molded body.

<実施例14>
無機充填材(D)CB-1の配合量を5質量%とした以外は、実施例3と同様に繊維強化樹脂成形体を作製した。
<Example 14>
A fiber-reinforced resin molding was produced in the same manner as in Example 3, except that the blending amount of the inorganic filler (D) CB-1 was 5 mass %.

<実施例15>
無機充填材(D)にCB-3を用い、熱硬化性樹脂(B)への配合量を5質量%とした以外は実施例10に記載の方法と同様の方法で、熱硬化プリプレグ(EP+C)を作製した。
Example 15
A thermosetting prepreg (EP+C) was produced in the same manner as in Example 10, except that CB-3 was used as the inorganic filler (D) and the amount of the filler blended with the thermosetting resin (B) was 5% by mass.

無機充填材(D)CB-3の配合量を5質量%となるように調製した以外は、実施例5に記載の方法と同様の方法で、樹脂シート(PA+C)を作製した。 A resin sheet (PA+C) was produced in the same manner as described in Example 5, except that the amount of inorganic filler (D) CB-3 was adjusted to 5 mass%.

次いで、熱硬化プリプレグ(EP+C)に含まれる強化繊維の配向方向を0°とし、軸直交方向を90°と定義して、[0°/90°]2s(記号sは、鏡面対称を示す)で熱硬化プリプレグを8枚積層した。そして、さらにその両側に樹脂シート(PA+C)を1枚ずつ配置してプリフォームを得た。当該プリフォームをプレス成形金型にセットし、プレス機で0.6MPaの圧力をかけ、180℃で2時間加温することで、繊維強化樹脂成形体を作製した。 Next, the orientation direction of the reinforcing fibers contained in the thermosetting prepreg (EP+C) was defined as 0°, and the direction perpendicular to the axis was defined as 90°, and eight thermosetting prepregs were laminated at [0°/90°]2s (the symbol s indicates mirror symmetry). A resin sheet (PA+C) was then placed on each side of the prepreg to obtain a preform. The preform was set in a press molding die, and a pressure of 0.6 MPa was applied with a press machine and heated at 180°C for two hours to produce a fiber-reinforced resin molded body.

<実施例16>
無機充填材(D)としてCNT-1に代えてIF-1を用い、熱可塑性樹脂シートへの配合量を2質量%とした以外は実施例1と同様にして、繊維強化樹脂成形体を作製した。
<Example 16>
A fiber-reinforced resin molded body was produced in the same manner as in Example 1 except that IF-1 was used instead of CNT-1 as the inorganic filler (D) and the amount blended into the thermoplastic resin sheet was 2% by mass.

<実施例17>
無機充填材(D)としてCNT-1に代えてIF-2を用い、熱可塑性樹脂シートへの配合量を2質量%とした以外は実施例1と同様にして、繊維強化樹脂成形体を作製した。
<Example 17>
A fiber-reinforced resin molded body was produced in the same manner as in Example 1 except that IF-2 was used instead of CNT-1 as the inorganic filler (D) and the amount blended into the thermoplastic resin sheet was 2% by mass.

<比較例1>
無機充填材(D)を配合しなかった以外は実施例1と同様に繊維強化樹脂成形体に用いる基材、成形体を作製し、評価に供した。
<Comparative Example 1>
A substrate to be used for a fiber-reinforced resin molded product and a molded product were prepared in the same manner as in Example 1 except that the inorganic filler (D) was not blended, and were subjected to evaluation.

<比較例2>
実施例1と同様に、熱硬化プリプレグ(EP)および樹脂シート(PA+C)を作製した。
<Comparative Example 2>
In the same manner as in Example 1, a thermosetting prepreg (EP) and a resin sheet (PA+C) were prepared.

前記熱硬化プリプレグ8枚を、強化繊維の配向方向を0°とし、軸直交方向を90°と定義して、[0°/90°]2s(記号sは、鏡面対称を示す)で積層し、プレス成形金型にセットし、プレス機で0.6MPaの圧力をかけ、180℃で2時間加温することで、硬化させて熱硬化性樹脂成形体を得た。 Eight sheets of the thermosetting prepreg were laminated at [0°/90°]2s (the symbol s indicates mirror symmetry), with the orientation direction of the reinforcing fibers defined as 0° and the direction perpendicular to the axis defined as 90°, and then set in a press molding die. A pressure of 0.6 MPa was applied using a press machine, and the prepreg was heated at 180°C for two hours to harden the prepreg, yielding a thermosetting resin molded body.

その後、当該熱硬化性樹脂成形体の両側に熱可塑性樹脂シートを配置し、熱可塑性樹脂(C)が溶融する温度(180℃)に調整したプレス成形盤面にセットし、プレス機で0.6MPaの圧力をかけ、150℃で5分間加温することで、熱硬化性樹脂成形体と熱可塑性樹脂シートを密着させて、繊維強化樹脂成形体を作製した。 Then, thermoplastic resin sheets were placed on both sides of the thermosetting resin molded body, and the body was set on a press molding platen surface adjusted to the temperature at which the thermoplastic resin (C) melts (180°C). A pressure of 0.6 MPa was applied using a press machine, and the body was heated at 150°C for 5 minutes to adhere the thermosetting resin molded body and the thermoplastic resin sheets together, producing a fiber-reinforced resin molded body.

<検討>
各実施例および比較例の概要および評価結果を表1~4に示す。
<Consideration>
The outline and evaluation results of each of the examples and comparative examples are shown in Tables 1 to 4.

実施例1~17および比較例1、2の比較により、繊維強化樹脂成形体に無機充填材(D)を用い、かつ、繊維強化樹脂成形体内における熱硬化性樹脂(B)と熱可塑性樹脂(C)との境界面における、強化繊維(A)がなす形態、無機充填材(D)の形態を本発明の範囲を満足し、また、無機充填材(D)の凝集ストラクチャー長、粗さ平均長さRSm、粗さ平均高さRcを満足した場合に接合強度評価が満足するものとなった。さらに、接合強度評価後の破壊面を観察したところ、破壊後の試験片面の両面に熱可塑性樹脂(C)が観察され、熱可塑性樹脂(C)の強度以上の接合強度であることから、十分な接合強度を有していることが明らかであった。 Comparing Examples 1 to 17 and Comparative Examples 1 and 2, when inorganic filler (D) is used in the fiber-reinforced resin molding, and the shape of the reinforcing fiber (A) and the shape of the inorganic filler (D) at the boundary surface between the thermosetting resin (B) and the thermoplastic resin (C) in the fiber-reinforced resin molding satisfy the range of the present invention, and the aggregate structure length, roughness average length RSm, and roughness average height Rc of the inorganic filler (D) are satisfied, the bond strength evaluation was satisfactory. Furthermore, when the fracture surface after the bond strength evaluation was observed, thermoplastic resin (C) was observed on both sides of the test piece after fracture, and the bond strength was equal to or greater than the strength of the thermoplastic resin (C), so it was clear that sufficient bond strength was provided.

特に、実施例1と比較例1の対比により、無機充填材(D)の配合効果が明確となった。さらに、実施例1~5においては、無機充填材(D)の配合量および凝集ストラクチャー長を満足することで、本発明の課題である接合強度の向上をその種類を問わず実現することができた。 In particular, the effect of adding inorganic filler (D) became clear by comparing Example 1 with Comparative Example 1. Furthermore, in Examples 1 to 5, by satisfying the amount of inorganic filler (D) added and the length of the aggregate structure, it was possible to achieve the improvement in bonding strength, which is the objective of the present invention, regardless of the type of inorganic filler.

実施例6、7、16、17および実施例14、15との対比より無機充填材(D)の配合に最適量があることが明確となった。これは、接着評価における試験片の破断面が熱硬化性樹脂(B)にて破壊されていることから、無機充填材(D)の配合量過多により、凝集ストラクチャー長が大きくなり、熱硬化性樹脂領域と熱可塑性樹脂領域の境界面が脆弱となったためと考えられた。 It became clear that there was an optimum amount of inorganic filler (D) to be blended, as compared with Examples 6, 7, 16, and 17 and Examples 14 and 15. This was thought to be because, since the fracture surface of the test piece in the adhesion evaluation was destroyed by the thermosetting resin (B), the length of the aggregated structure increased due to the blending amount of inorganic filler (D) being excessive, and the boundary surface between the thermosetting resin region and the thermoplastic resin region became weak.

比較例2においては、繊維強化樹脂成形体に配合した熱硬化性樹脂(B)を予め硬化させた中間体に、熱可塑性樹脂(C)を貼付したが、その効果は限定的であった。これは、繊維強化樹脂成形体において、熱硬化性樹脂領域と熱可塑性樹脂領域の境界面にて、強化繊維(A)を共有することができなかったためと考えられた。 In Comparative Example 2, the thermoplastic resin (C) was applied to an intermediate product obtained by previously curing the thermosetting resin (B) blended in the fiber-reinforced resin molded body, but the effect was limited. This was thought to be because the reinforcing fiber (A) could not be shared at the boundary between the thermosetting resin region and the thermoplastic resin region in the fiber-reinforced resin molded body.

実施例2および実施例11~13との対比により、本発明に則れば、熱可塑性樹脂種の影響を大きく受けることなく、融点の異なる熱可塑性樹脂(C)を接着層として用いることができることが示唆された。 Compared with Example 2 and Examples 11 to 13, it was suggested that, according to the present invention, it is possible to use thermoplastic resins (C) with different melting points as adhesive layers without being significantly affected by the type of thermoplastic resin.

Figure 0007467906000001
Figure 0007467906000001

Figure 0007467906000002
Figure 0007467906000002

Figure 0007467906000003
Figure 0007467906000003

Figure 0007467906000004
Figure 0007467906000004

本発明に係る繊維強化樹脂成形体およびその複合成形体によれば、熱可塑性樹脂溶着層を有し、熱可塑性樹脂との高い接合特性を有する繊維強化樹脂成形体およびそれを用いた複合成形体を提供できる。 The fiber-reinforced resin molded body and its composite molded body according to the present invention can provide a fiber-reinforced resin molded body having a thermoplastic resin welding layer and high bonding properties with thermoplastic resin, and a composite molded body using the same.

1:繊維強化樹脂成形体
2:強化繊維(A)
3:熱硬化性樹脂(B)または熱可塑性樹脂(C)
4:任意の繊維束の配向方向
5:断面観察面
6:強化繊維(A)
7:熱硬化性樹脂(B)領
8:熱可塑性樹脂(C)領
9:観察画像
10:境界面
11:基準線
12:垂基線
13:界面曲線
14:無機充填材(D)
15:無機充填材(D)の凝集物
16:無機充填材(D)
17:外接円
L:凝集ストラクチャー長
1: Fiber-reinforced resin molding 2: Reinforced fiber (A)
3: Thermosetting resin (B) or thermoplastic resin (C)
4: Orientation direction of any fiber bundle 5: Cross-sectional observation surface 6: Reinforcement fiber (A)
7: Thermosetting resin (B ) region 8: Thermoplastic resin (C ) region 9: Observed image 10: Boundary 11: Reference line 12: Vertical base line 13: Interface curve 14: Inorganic filler (D)
15: Aggregate of inorganic filler (D) 16: Inorganic filler (D)
17: Circumscribed circle L: length of coagulation structure

Claims (10)

強化繊維(A)、熱硬化性樹脂(B)、熱可塑性樹脂(C)および無機充填材(D)を含む、繊維強化樹脂成形体であって、
連続した強化繊維(A)から構成される強化繊維群と、熱硬化性樹脂(B)領域および熱可塑性樹脂(C)領域を有するマトリックス樹脂とが複合化されてなり、
前記熱硬化性樹脂(B)領域と、前記熱可塑性樹脂(C)領域が層状構造をなしており、
前記無機充填材(D)の凝集ストラクチャー長の平均値が、強化繊維(A)の単繊維径の2倍以下であり、
強化繊維(A)の一部および無機充填材(D)の一部が、前記熱硬化性樹脂(B)領域および前記熱可塑性樹脂(C)領域の両者と接しており、かつ少なくとも一方の表面に前記熱可塑性樹脂(C)領域が存在する繊維強化樹脂成形体。
A fiber-reinforced resin molded body comprising reinforcing fibers (A), a thermosetting resin (B), a thermoplastic resin (C) and an inorganic filler (D),
A reinforcing fiber group composed of continuous reinforcing fibers (A) is composited with a matrix resin having a thermosetting resin (B) region and a thermoplastic resin (C) region,
The thermosetting resin (B) region and the thermoplastic resin (C) region form a layer structure,
The average aggregate structure length of the inorganic filler (D) is not more than twice the single fiber diameter of the reinforcing fiber (A);
A portion of the reinforcing fiber (A) and a portion of the inorganic filler (D) are in contact with both the thermosetting resin (B) region and the thermoplastic resin (C) region, and the thermoplastic resin (C) region is present on at least one surface. A fiber-reinforced resin molded body.
強化繊維(A)の配向方向に対し45度異なる角度の方向から、繊維強化樹脂成形体の平面に垂直な断面を得た場合に、該断面において、前記熱硬化性樹脂(B)領域と、前記熱可塑性樹脂(C)領域との境界がなす界面曲線の、JIS B0601(2013)で定義される粗さ平均長さRSmが100μm以下であり、粗さ平均高さRcが3.5μm以上である、請求項1に記載の繊維強化樹脂成形体。 When a cross section perpendicular to the plane of the fiber-reinforced resin molded body is obtained from a direction at an angle of 45 degrees different from the orientation direction of the reinforcing fibers (A), the interface curve formed by the boundary between the thermosetting resin (B) region and the thermoplastic resin (C) region in the cross section has a roughness average length RSm defined in JIS B0601 (2013) of 100 μm or less and a roughness average height Rc of 3.5 μm or more. The fiber-reinforced resin molded body according to claim 1 . 無機充填材(D)のアスペクト比が5以上である、請求項1または2に記載の繊維強化樹脂成形体。 The fiber-reinforced resin molding according to claim 1 or 2 , wherein the inorganic filler (D) has an aspect ratio of 5 or more. 無機充填材(D)が、繊維強化樹脂成形体100質量%に対して、0.01~2.0質量%の範囲内で含まれる、請求項1~のいずれかに記載の繊維強化樹脂成形体。 The fiber-reinforced resin molded body according to any one of claims 1 to 3 , wherein the inorganic filler (D) is contained in a range of 0.01 to 2.0 mass% relative to 100 mass% of the fiber-reinforced resin molded body. 無機充填材(D)が、カーボンブラック、黒鉛粉末、気相成長炭素繊維、カーボンナノチューブ、ミルド炭素繊維、ミルドガラス繊維、ワラストナイト、タルク、マイカからなる群より選ばれる少なくとも1種である、請求項1~のいずれかに記載の繊維強化樹脂成形体。 The fiber-reinforced resin molding according to any one of claims 1 to 4, wherein the inorganic filler (D) is at least one selected from the group consisting of carbon black, graphite powder, vapor -grown carbon fiber, carbon nanotubes, milled carbon fiber, milled glass fiber, wollastonite, talc, and mica. 強化繊維(A)が、炭素繊維、ガラス繊維からなる群より選ばれる少なくとも1種である、請求項1~のいずれかに記載の繊維強化樹脂成形体。 The fiber-reinforced resin molding according to any one of claims 1 to 5 , wherein the reinforcing fiber (A) is at least one selected from the group consisting of carbon fiber and glass fiber. 熱硬化性樹脂(B)が、エポキシ、フェノール、不飽和ポリエステル、ビニルエステル、熱硬化ポリイミド、シアネートエステル樹脂、ビスマレイミド樹脂、ベンゾオキサジン樹脂からなる群より選ばれる少なくとも1種の熱硬化性樹脂である、請求項1~のいずれかに記載の繊維強化樹脂成形体。 The fiber-reinforced resin molding according to any one of claims 1 to 6, wherein the thermosetting resin (B) is at least one thermosetting resin selected from the group consisting of epoxy, phenol, unsaturated polyester, vinyl ester, thermosetting polyimide, cyanate ester resin, bismaleimide resin , and benzoxazine resin. 熱可塑性樹脂(C)は、前記熱硬化性樹脂(B)の硬化反応温度範囲にて溶融状態となる熱可塑性樹脂である、請求項1~のいずれかに記載の繊維強化樹脂成形体。 The fiber-reinforced resin molding according to any one of claims 1 to 7 , wherein the thermoplastic resin (C) is a thermoplastic resin that is in a molten state within the curing reaction temperature range of the thermosetting resin (B). 前記熱可塑性樹脂(C)領域が、表層の50%以上の面積を覆ってなる、請求項1~8のいずれかに記載の繊維強化樹脂成形体。 The fiber-reinforced resin molded body according to any one of claims 1 to 8 , wherein the thermoplastic resin (C) region covers 50% or more of an area of the surface layer. 請求項1~のいずれかに記載の繊維強化樹脂成形体における熱可塑性樹脂(C)の面に、別の部材が加熱により接合してなる、複合成形体。
A composite molded body obtained by bonding another member to a surface of the thermoplastic resin (C) in the fiber-reinforced resin molded body according to any one of claims 1 to 9 by heating.
JP2019231595A 2019-12-23 2019-12-23 Fiber-reinforced resin molded body and composite molded body Active JP7467906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019231595A JP7467906B2 (en) 2019-12-23 2019-12-23 Fiber-reinforced resin molded body and composite molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019231595A JP7467906B2 (en) 2019-12-23 2019-12-23 Fiber-reinforced resin molded body and composite molded body

Publications (2)

Publication Number Publication Date
JP2021098319A JP2021098319A (en) 2021-07-01
JP7467906B2 true JP7467906B2 (en) 2024-04-16

Family

ID=76541794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019231595A Active JP7467906B2 (en) 2019-12-23 2019-12-23 Fiber-reinforced resin molded body and composite molded body

Country Status (1)

Country Link
JP (1) JP7467906B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004060658A1 (en) 2002-12-27 2004-07-22 Toray Industries, Inc. Layered product, electromagnetic-shielding molded object, and processes for producing these
JP2012144708A (en) 2010-12-24 2012-08-02 Toray Ind Inc Prepreg and carbon fiber-reinforced composite material
JP2013209626A (en) 2012-02-28 2013-10-10 Sumitomo Bakelite Co Ltd Prepreg and prepreg manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004060658A1 (en) 2002-12-27 2004-07-22 Toray Industries, Inc. Layered product, electromagnetic-shielding molded object, and processes for producing these
JP2012144708A (en) 2010-12-24 2012-08-02 Toray Ind Inc Prepreg and carbon fiber-reinforced composite material
JP2013209626A (en) 2012-02-28 2013-10-10 Sumitomo Bakelite Co Ltd Prepreg and prepreg manufacturing method

Also Published As

Publication number Publication date
JP2021098319A (en) 2021-07-01

Similar Documents

Publication Publication Date Title
JP6555360B2 (en) Prepreg, prepreg laminate, and fiber reinforced composite material
JP6699986B2 (en) Preform and method for manufacturing integrated sheet material
JP5723505B2 (en) Resin composition, cured product, prepreg, and fiber reinforced composite material
JP7047923B2 (en) Prepregs, laminates and moldings
US11878478B2 (en) Prepreg, laminate, and molding
WO2021131382A1 (en) Composite prepreg and fiber-reinforced resin molded product
WO2020235484A1 (en) Prepreg, laminate, and molded article
WO2020235490A1 (en) Fiber-reinforced resin substrate, integrated molded article, and method for manufacturing fiber-reinforced resin substrate
WO2020235485A1 (en) Prepreg, laminate, and molded article
JP7467906B2 (en) Fiber-reinforced resin molded body and composite molded body
WO2021246466A1 (en) Fiber reinforced plastic, integrally molded product, and prepreg
WO2021131347A1 (en) Prepreg, molded article, and integrally molded article
TWI779294B (en) Carbon fiber reinforced plastic sheet and method for producing carbon fiber reinforced plastic sheet
TW202231739A (en) Fiber-reinforced resin substrate, preform, integrated molded article, and method for producing fiber-reinforced resin substrate
TWI843916B (en) Prepregs, laminates and one-piece products
WO2021117461A1 (en) Prepreg, laminate, and integrated molded article
WO2021152957A1 (en) Composite prepreg, preform and fiber reinforced composite material bonded body using said prepreg, and method for producing said prepreg
CN114746491B (en) Prepreg, laminate, and integrated molded article
WO2021117460A1 (en) Prepreg, laminate and integrated molded article
WO2021117465A1 (en) Prepreg, laminate and integrated molded article
JP2021098318A (en) Fiber reinforced resin material, integrally molded product, and method for manufacturing integrally molded product
WO2023171753A1 (en) Thermoplastic resin composition, thermoplastic resin film, prepreg, fiber-reinforced composite material, method for producing prepreg, and method for producing fiber-reinforced composite material
JP2020192807A (en) Method for producing fiber-reinforced resin base material, fiber-reinforced resin base material and integral molding of the same
CN116761713A (en) Prepreg, molded body, and integrated molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240318

R150 Certificate of patent or registration of utility model

Ref document number: 7467906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150