JP5723505B2 - Resin composition, cured product, prepreg, and fiber reinforced composite material - Google Patents

Resin composition, cured product, prepreg, and fiber reinforced composite material Download PDF

Info

Publication number
JP5723505B2
JP5723505B2 JP2011077454A JP2011077454A JP5723505B2 JP 5723505 B2 JP5723505 B2 JP 5723505B2 JP 2011077454 A JP2011077454 A JP 2011077454A JP 2011077454 A JP2011077454 A JP 2011077454A JP 5723505 B2 JP5723505 B2 JP 5723505B2
Authority
JP
Japan
Prior art keywords
resin
resin composition
cured product
mass
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011077454A
Other languages
Japanese (ja)
Other versions
JP2012211255A (en
Inventor
櫻井 博志
博志 櫻井
石渡 豊明
豊明 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Rayon Co Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP2011077454A priority Critical patent/JP5723505B2/en
Publication of JP2012211255A publication Critical patent/JP2012211255A/en
Application granted granted Critical
Publication of JP5723505B2 publication Critical patent/JP5723505B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、樹脂組成物およびその硬化物、マトリクス樹脂として該樹脂組成物を強化繊維に含浸させて成るプリプレグ、ならびに該プリプレグを成形加工して得られる繊維強化複合材料に関する。   The present invention relates to a resin composition, a cured product thereof, a prepreg obtained by impregnating a reinforcing fiber with the resin composition as a matrix resin, and a fiber-reinforced composite material obtained by molding the prepreg.

炭素繊維やアラミド繊維などを強化繊維として用いる繊維強化複合材料は、その比強度・比弾性率の高さから、航空機や自動車の構造材料を始めとする航空宇宙・産業用途、テニスラケット、ゴルフシャフト、釣り竿などのスポーツ・レジャー用途に広く利用されている。   Fiber reinforced composite materials that use carbon fiber, aramid fiber, etc. as reinforcing fibers are aerospace / industrial applications such as structural materials for aircraft and automobiles, tennis rackets, and golf shafts because of their high specific strength and specific modulus. Widely used in sports and leisure applications such as fishing rods.

繊維強化複合材料の製造方法として、プリプレグを複数枚積層した後、加熱硬化させる方法がある。プリプレグとは、強化繊維に未硬化のマトリクス樹脂が含浸されたシート状中間材料である。   As a method for producing a fiber-reinforced composite material, there is a method in which a plurality of prepregs are laminated and then heat-cured. A prepreg is a sheet-like intermediate material in which reinforcing fibers are impregnated with an uncured matrix resin.

プリプレグに用いられる代表的なマトリクス樹脂としては、耐熱性や生産性の観点から、熱硬化性樹脂が挙げられる。   A typical matrix resin used for the prepreg includes a thermosetting resin from the viewpoint of heat resistance and productivity.

一般に、熱硬化性樹脂、とりわけエポキシ樹脂は耐熱性、強化繊維との接着性、寸法安定性、耐薬品性に優れる一方で、硬くて脆い性質を有する。このため、エポキシ樹脂をマトリクス樹脂として用いる場合、繊維強化複合材料は、寸法安定、強度や剛性といった機械物性に優れるが、その一方で、エポキシ樹脂由来の靱性の低さも反映される。   In general, thermosetting resins, especially epoxy resins, are excellent in heat resistance, adhesion to reinforcing fibers, dimensional stability, and chemical resistance, but are hard and brittle. For this reason, when an epoxy resin is used as the matrix resin, the fiber-reinforced composite material is excellent in mechanical properties such as dimensional stability, strength and rigidity, but on the other hand, the low toughness derived from the epoxy resin is also reflected.

従来、マトリクス樹脂として用いられる熱硬化性樹脂の靱性や耐衝撃性を向上させるため、種々の試みがなされている。   Conventionally, various attempts have been made to improve the toughness and impact resistance of thermosetting resins used as matrix resins.

例えば、熱硬化性樹脂中にゴム成分や熱可塑性樹脂の微細粒子を分散させ、島成分がゴム成分や熱可塑性樹脂等であり、海成分が熱硬化性樹脂硬化物である海島相分離構造を形成する方法がある。この方法により得られるマトリクス樹脂は、島成分に由来する優れた耐衝撃強度、曲げ・引っ張り強度により、耐衝撃性が向上する。しかし、この方法では、島成分のサイズを小さくすることが難しく、エネルギーを吸収するための充分な表面積を得ることができない。従って、この方法により繊維強化複合材料を飛躍的に高靱性化させることは困難であった。   For example, a sea-island phase separation structure in which fine particles of a rubber component or a thermoplastic resin are dispersed in a thermosetting resin, an island component is a rubber component or a thermoplastic resin, and a sea component is a thermosetting resin cured product. There is a method of forming. The matrix resin obtained by this method has improved impact resistance due to the excellent impact strength and bending / tensile strength derived from the island components. However, with this method, it is difficult to reduce the size of the island component, and a sufficient surface area for absorbing energy cannot be obtained. Therefore, it has been difficult to dramatically increase the toughness of the fiber-reinforced composite material by this method.

他の方法として、二成分系または三成分系からなるブロック共重合体を用いて、ナノサイズの相分離構造を形成させる方法がある(特許文献1〜3)。例えば、スチレン−ブタジエン共重合体、スチレン−ブタジエン−メタクリル酸共重合体、またはブタジエン−メタクリル酸共重合体を、特定のエポキシ樹脂に添加して用いる方法が提案される。しかし、これらの方法では、マトリクス樹脂の耐熱性の低下を招いたり、繊維強化複合材料の機械特性が依然として不十分である。また、これらのブロック共重合体は非常に高価であり、コスト競争力が低い。   As another method, there is a method of forming a nano-sized phase separation structure using a block copolymer composed of two or three components (Patent Documents 1 to 3). For example, a method is proposed in which a styrene-butadiene copolymer, a styrene-butadiene-methacrylic acid copolymer, or a butadiene-methacrylic acid copolymer is added to a specific epoxy resin. However, with these methods, the heat resistance of the matrix resin is lowered, and the mechanical properties of the fiber-reinforced composite material are still insufficient. In addition, these block copolymers are very expensive and have low cost competitiveness.

国際公開2006/077153号パンフレットInternational Publication No. 2006/075153 Pamphlet 特開2007−154160号公報JP 2007-154160 A 特開2008−7682号公報JP 2008-7682 A

本発明の目的は、硬化反応により優れた靭性、耐衝撃性、耐熱性、耐薬品性および弾性率を発現する樹脂組成物、およびその樹脂組成物を用いたプリプレグを安価に提供することにある。   An object of the present invention is to provide a resin composition that exhibits excellent toughness, impact resistance, heat resistance, chemical resistance and elastic modulus by a curing reaction, and a prepreg using the resin composition at low cost. .

本発明の他の目的は、そのプリプレグから得られる優れた靱性・機械強度を有する繊維強化複合材料を提供することにある。   Another object of the present invention is to provide a fiber-reinforced composite material having excellent toughness and mechanical strength obtained from the prepreg.

本発明者らは、前記課題について鋭意検討した結果、マトリクス樹脂を、島成分の主成分が熱硬化性樹脂と硬化剤の反応物であり、海成分の主成分が熱可塑性樹脂である海島相分離構造を有する硬化物とすることにより、上記問題を解決できることを見出した。   As a result of intensive studies on the above problems, the present inventors have determined that the matrix resin is a sea-island phase in which the main component of the island component is a reaction product of a thermosetting resin and a curing agent, and the main component of the sea component is a thermoplastic resin. It has been found that the above problem can be solved by using a cured product having a separation structure.

上記の硬化物を得るために硬化反応させる樹脂組成物において、熱可塑性樹脂の配合割合や、熱硬化性樹脂と熱可塑性樹脂の組合せの選定を工夫し、硬化物の島成分の平均粒子径等を制御することで、本発明を完成するに至った。   In the resin composition that undergoes a curing reaction to obtain the above cured product, the blending ratio of the thermoplastic resin and the selection of the combination of the thermosetting resin and the thermoplastic resin are devised, the average particle size of the island component of the cured product, etc. By controlling the above, the present invention has been completed.

本発明の樹脂組成物は、少なくとも熱硬化性樹脂と、硬化剤と、熱可塑性樹脂とからなり、該樹脂組成物は、硬化反応により、島成分が熱硬化性樹脂と硬化剤との反応物を主成分とし、海成分が熱可塑性樹脂を主成分とする海島相分離構造を有する硬化物を形成する。   The resin composition of the present invention comprises at least a thermosetting resin, a curing agent, and a thermoplastic resin, and the resin composition is a reaction product of an island component of a thermosetting resin and a curing agent by a curing reaction. A cured product having a sea-island phase separation structure in which the sea component is mainly composed of a thermoplastic resin.

本発明の樹脂組成物は、熱可塑性樹脂と熱硬化性樹脂とを相溶させる相溶化剤が添加されてなる樹脂組成物を包含する。   The resin composition of the present invention includes a resin composition to which a compatibilizing agent for compatibilizing a thermoplastic resin and a thermosetting resin is added.

80℃、せん断速度1000s−1における粘度が10〜1000Pa・sである樹脂組成物も包含する。 Also included is a resin composition having a viscosity of 10 to 1000 Pa · s at 80 ° C. and a shear rate of 1000 s −1 .

本発明の樹脂組成物に含まれる熱硬化性樹脂としては、エポキシ樹脂又は変性エポキシ樹脂であることが好ましい。   The thermosetting resin contained in the resin composition of the present invention is preferably an epoxy resin or a modified epoxy resin.

本発明の樹脂組成物に含まれる熱可塑性樹脂としては、ポリイミド、ポリエーテルイミド、ポリエーテルスルホン、ポリスルフォン、ポリアミドイミド、ポリカーボネート、これらの誘導体又はこれらの組合せであることが好ましい。これらの熱可塑性樹脂は、熱硬化性樹脂と反応可能な官能基を有することが好ましく、特に熱硬化性樹脂と反応可能な官能基としては水酸基、カルボン酸基、イミノ基、またはアミノ基であることが好ましい。熱可塑性樹脂の配合量は、樹脂組成物の全重量の5〜60質量%であることが好ましい。   The thermoplastic resin contained in the resin composition of the present invention is preferably polyimide, polyetherimide, polyethersulfone, polysulfone, polyamideimide, polycarbonate, derivatives thereof, or combinations thereof. These thermoplastic resins preferably have a functional group capable of reacting with the thermosetting resin, and in particular, the functional group capable of reacting with the thermosetting resin is a hydroxyl group, a carboxylic acid group, an imino group, or an amino group. It is preferable. It is preferable that the compounding quantity of a thermoplastic resin is 5-60 mass% of the total weight of a resin composition.

本発明の硬化物は、上記の樹脂組成物の硬化反応により得られる硬化物であり、島成分が熱硬化性樹脂と硬化剤の反応物を主成分とし、海成分が熱可塑性樹脂を主成分とする海島相分離構造を有する。硬化物のガラス転移点は、150℃以上であることが好ましい。また、島成分の平均粒子径は、0.01〜10μmであることが好ましく、0.01〜1μmであることがより好ましい。   The cured product of the present invention is a cured product obtained by the curing reaction of the above resin composition, the island component is mainly composed of a reaction product of a thermosetting resin and a curing agent, and the sea component is composed mainly of a thermoplastic resin. It has a sea-island phase separation structure. It is preferable that the glass transition point of hardened | cured material is 150 degreeC or more. Moreover, it is preferable that the average particle diameter of an island component is 0.01-10 micrometers, and it is more preferable that it is 0.01-1 micrometer.

本発明は、上記の樹脂組成物を強化繊維に含浸させてなるプリプレグを包含する。強化繊維としては、炭素繊維、シリコンカーバイド繊維、ガラス繊維、芳香族ポリアミド繊維、ポリイミド繊維、ポリベンゾオキサジン繊維、芳香族ポリエステル繊維などが挙げられ、それらの中でも、炭素繊維が特に好ましい。   The present invention includes a prepreg obtained by impregnating a reinforcing fiber with the above resin composition. Examples of the reinforcing fiber include carbon fiber, silicon carbide fiber, glass fiber, aromatic polyamide fiber, polyimide fiber, polybenzoxazine fiber, and aromatic polyester fiber. Among these, carbon fiber is particularly preferable.

本発明は、強化繊維に本発明の硬化物が含浸されてなる繊維強化複合材料も包含する。本発明の繊維強化複合材料は、前述のプリプレグを成形加工して得られる。   The present invention also includes a fiber reinforced composite material obtained by impregnating a reinforced fiber with the cured product of the present invention. The fiber-reinforced composite material of the present invention is obtained by molding the above-mentioned prepreg.

本発明により、硬化反応により、優れた靭性、耐熱性、耐薬品性および弾性率を発現する樹脂組成物、および該樹脂組成物を強化繊維に含浸させたプリプレグを提供することができる。   According to the present invention, it is possible to provide a resin composition that exhibits excellent toughness, heat resistance, chemical resistance, and elastic modulus by a curing reaction, and a prepreg in which reinforcing fibers are impregnated with the resin composition.

該硬化物をマトリクス樹脂とする本発明の繊維強化複合材料は、従来技術に比べ、耐衝撃性・層間破壊靭性強度に優れ、航空宇宙用途、産業用途、スポーツレジャー用途に適する。   The fiber reinforced composite material of the present invention using the cured product as a matrix resin is superior in impact resistance and interlaminar fracture toughness compared to the prior art, and is suitable for aerospace applications, industrial applications, and sports / leisure applications.

<樹脂組成物>
本発明の樹脂組成物は、少なくとも熱硬化性樹脂と、硬化剤と、熱可塑性樹脂とからなり、硬化反応により、島成分が熱硬化性樹脂と硬化剤との反応物を主成分とし、海成分が熱可塑性樹脂を主成分とする海島相分離構造を形成する。
<Resin composition>
The resin composition of the present invention comprises at least a thermosetting resin, a curing agent, and a thermoplastic resin, and the island component is mainly composed of a reaction product of the thermosetting resin and the curing agent by a curing reaction, The component forms a sea-island phase separation structure mainly composed of a thermoplastic resin.

本発明の樹脂組成物は、熱可塑性樹脂と熱硬化性樹脂とを相溶させる相溶化剤を添加しても良い。   The resin composition of the present invention may be added with a compatibilizing agent that makes the thermoplastic resin and the thermosetting resin compatible.

相溶化剤の種類は、特に限定されるものではないが、熱可塑性樹脂のモノマー単位ユニットに近い化学構造を持つ化合物が好ましい。特に、樹脂組成物の硬化反応後に、未硬化物として相溶化剤を残存させないために、相溶化剤としては、熱硬化性樹脂と反応可能な化合物を用いることが好ましく、熱硬化性樹脂の硬化剤を用いることがより好ましい。   The kind of the compatibilizer is not particularly limited, but a compound having a chemical structure close to that of the monomer unit of the thermoplastic resin is preferable. In particular, in order not to leave the compatibilizer as an uncured product after the curing reaction of the resin composition, it is preferable to use a compound that can react with the thermosetting resin as the compatibilizing agent, and to cure the thermosetting resin. It is more preferable to use an agent.

相溶化剤を添加することで、樹脂組成物を硬化させた硬化物中の島成分の平均粒子径を制御出来る。相溶化剤の添加量が多いほど、熱硬化性樹脂と熱可塑性樹脂との相溶性が高くなる。その結果、島成分の平均粒子径を小さくすることができる。相溶化剤の添加量としては、樹脂組成物の全重量に対して0.01〜15質量%であることが好ましい。   By adding a compatibilizing agent, the average particle size of the island components in the cured product obtained by curing the resin composition can be controlled. The greater the amount of compatibilizer added, the higher the compatibility between the thermosetting resin and the thermoplastic resin. As a result, the average particle size of the island component can be reduced. The addition amount of the compatibilizer is preferably 0.01 to 15% by mass with respect to the total weight of the resin composition.

相溶化剤の添加量が0.01質量%未満であると、熱硬化性樹脂と熱可塑性樹脂を十分に相溶させることができず、島成分の平均粒子径が10μmを超える。島成分の平均粒子径が10μmを超えると、熱硬化性樹脂に由来する耐熱性、耐薬品性が発現されにくくなり、好ましくない。   When the addition amount of the compatibilizer is less than 0.01% by mass, the thermosetting resin and the thermoplastic resin cannot be sufficiently compatible, and the average particle size of the island component exceeds 10 μm. When the average particle size of the island component exceeds 10 μm, it is not preferable because the heat resistance and chemical resistance derived from the thermosetting resin are hardly expressed.

相溶化剤の添加量が15質量%を超えると、熱硬化性樹脂と熱可塑性樹脂の相溶性が高くなりすぎて両者が完全に相溶する。このため、海島相分離構造を形成することが出来ず、好ましくない。   When the addition amount of the compatibilizer exceeds 15% by mass, the compatibility between the thermosetting resin and the thermoplastic resin becomes too high and the both are completely compatible. For this reason, a sea-island phase separation structure cannot be formed, which is not preferable.

また、熱硬化性樹脂と熱可塑性樹脂の種類により変化するが、相溶化剤の添加量が、0.05〜10質量%の範囲であり、特に0.1〜3質量%の範囲であると、樹脂組成物を硬化させた硬化物中の島成分の平均粒子径を0.01〜1μmに制御できるため、より好ましい。   Moreover, although it changes with the kind of thermosetting resin and thermoplastic resin, the addition amount of a compatibilizing agent is in the range of 0.05 to 10% by mass, particularly in the range of 0.1 to 3% by mass. Since the average particle size of the island component in the cured product obtained by curing the resin composition can be controlled to 0.01 to 1 μm, it is more preferable.

本発明の樹脂組成物は、80℃、せん断速度1000s−1における粘度が、10〜3000Pa・sであることが好ましい。10〜1500Pa・sであることがより好ましく、50〜1000Pa・sであることが更に好ましく、60〜800Pa・sであることが特に好ましい。
所定の粘度は、後に説明する熱可塑性樹脂の配合割合を調節することにより得ることができる。
The resin composition of the present invention preferably has a viscosity of 10 to 3000 Pa · s at 80 ° C. and a shear rate of 1000 s −1 . It is more preferably 10 to 1500 Pa · s, further preferably 50 to 1000 Pa · s, and particularly preferably 60 to 800 Pa · s.
The predetermined viscosity can be obtained by adjusting the blending ratio of the thermoplastic resin described later.

樹脂組成物の粘度と樹脂組成物を硬化させた硬化物中の島成分の平均粒子径との間には相関があり、樹脂組成物の粘度が低くなるほど、島成分の平均粒子径が大きくなる傾向にある。また、樹脂組成物の粘度が高くなるほど、島成分の平均粒子径が小さくなる傾向がある。この原因は定かでないが、相分離速度と硬化反応速度との相対関係が、島成分の平均粒子径に影響していると推測される。   There is a correlation between the viscosity of the resin composition and the average particle size of the island component in the cured product obtained by curing the resin composition, and the average particle size of the island component tends to increase as the viscosity of the resin composition decreases. is there. Moreover, there exists a tendency for the average particle diameter of an island component to become small, so that the viscosity of a resin composition becomes high. The cause of this is not clear, but it is presumed that the relative relationship between the phase separation rate and the curing reaction rate affects the average particle size of the island components.

例えば樹脂組成物の粘度が高くなると、相分離速度が低下するため、相分離速度よりも硬化速度が速くなる。この場合、初期段階で硬化網目が形成されるため、熱可塑性樹脂は、島成分を形成することが出来ず、海成分になると考えられる。また、小さな分子サイズの網目構造がドメイン(島成分)になると考えられる。   For example, when the viscosity of the resin composition increases, the phase separation rate decreases, and the curing rate becomes faster than the phase separation rate. In this case, since a cured network is formed in the initial stage, it is considered that the thermoplastic resin cannot form an island component and becomes a sea component. Moreover, it is considered that a network structure having a small molecular size becomes a domain (island component).

樹脂組成物の粘度が10Pa・s未満の場合、樹脂組成物を熱硬化処理しても熱可塑性樹脂が海成分を形成することが出来ない場合がある。一方、3000Pa・sを超える場合、相分離速度と硬化速度との相対関係により、熱可塑性樹脂は海成分を形成しうる。しかし、高粘度のためにハンドリング性が著しく低下し、従来の製造設備でハンドリングすることが困難になる場合がある。   When the viscosity of the resin composition is less than 10 Pa · s, the thermoplastic resin may not be able to form a sea component even if the resin composition is heat-cured. On the other hand, when it exceeds 3000 Pa · s, the thermoplastic resin can form a sea component due to the relative relationship between the phase separation rate and the curing rate. However, due to the high viscosity, the handleability may be significantly reduced, making it difficult to handle with conventional manufacturing equipment.

本発明の樹脂組成物に含まれる熱硬化性樹脂としては、熱または光や電子線などの外部からのエネルギーにより硬化して、少なくとも部分的に三次元硬化物を形成する熱硬化性樹脂が好ましい。   The thermosetting resin contained in the resin composition of the present invention is preferably a thermosetting resin that is cured by heat or external energy such as light or electron beam to at least partially form a three-dimensional cured product. .

以下に好ましい熱硬化性樹脂を挙げる。これらの熱硬化性樹脂は、適宜選択して1種あるいは2種以上を混合して用いることができる。   Preferred thermosetting resins are listed below. These thermosetting resins can be appropriately selected and used alone or in combination of two or more.

好ましい熱硬化性樹脂としては、エポキシ樹脂、変性エポキシ樹脂、ビニルエステル樹脂、ベンゾオキサジン樹脂などを挙げることができる。特に好ましくは、エポキシ樹脂、変性エポキシ樹脂を挙げることができる。   Preferred examples of the thermosetting resin include an epoxy resin, a modified epoxy resin, a vinyl ester resin, and a benzoxazine resin. Particularly preferred are epoxy resins and modified epoxy resins.

エポキシ樹脂は、公知のエポキシ樹脂をいずれも用いることができ、特に限定されるものではない。例えば、ビスフェノール型エポキシ樹脂、アルコール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ヒドロフタル酸型エポキシ樹脂、ダイマー酸型エポキシ樹脂、脂環型エポキシ樹脂などの2官能エポキシ樹脂を挙げることができる。   As the epoxy resin, any known epoxy resin can be used and is not particularly limited. Examples thereof include bifunctional epoxy resins such as bisphenol-type epoxy resins, alcohol-type epoxy resins, biphenyl-type epoxy resins, hydrophthalic acid-type epoxy resins, dimer acid-type epoxy resins, and alicyclic epoxy resins.

ビスフェノール型に代表される2官能エポキシ樹脂は、分子量の違いにより液状から固形まで種々のグレードがあり、適宜混合して粘度調整を行う目的の成分とされる。ビスフェノール型エポキシ樹脂としては、ビスフェノールA型樹脂、ビスフェノールF型樹脂、ビスフェノールAD型樹脂、ビスフェノールS型樹脂等を挙げることができる。その具体的な商品名としては、ジャパンエポキシレジン社製jER815(商品名)、jER828(商品名)、jER834(商品名)、jER1001(商品名)、jER807(商品名)、三井石油化学製エポミックR−710(商品名)、大日本インキ化学工業製EXA1514(商品名)等を例示することができる。脂環型エポキシ樹脂の具体的な商品名としては、ハンツマン社製アラルダイトCY−179(商品名)、CY−178(商品名)、CY−182(商品名)、CY−183(商品名)等を例示することができる。他のエポキシ樹脂の例として、テトラキス(グリシジルオキシフェニル)エタン、トリス(グリシジルオキシフェニル)メタンのようなグリシジルエーテル型エポキシ樹脂や、テトラグリシジルジアミノジフェニルメタンのようなグリシジルアミン型エポキシ樹脂やナフタレン型エポキシ樹脂や、ノボラック型エポキシ樹脂であるフェノールノボラック型エポキシ樹脂や、クレゾールノボラック型エポキシ樹脂や、フェノール型エポキシ樹脂などの多官能エポキシ樹脂等を挙げることができる。   Bifunctional epoxy resins represented by the bisphenol type have various grades ranging from liquid to solid depending on the difference in molecular weight, and are intended components for adjusting viscosity by mixing as appropriate. Examples of the bisphenol type epoxy resin include bisphenol A type resin, bisphenol F type resin, bisphenol AD type resin, bisphenol S type resin, and the like. Specific product names include jER815 (product name), jER828 (product name), jER834 (product name), jER1001 (product name), jER807 (product name) manufactured by Japan Epoxy Resin Co., Ltd. -710 (trade name), EXA1514 (trade name) manufactured by Dainippon Ink & Chemicals, Inc. can be exemplified. Specific product names of alicyclic epoxy resins include Araldite CY-179 (product name), CY-178 (product name), CY-182 (product name), CY-183 (product name), etc. manufactured by Huntsman. Can be illustrated. Examples of other epoxy resins include glycidyl ether type epoxy resins such as tetrakis (glycidyloxyphenyl) ethane and tris (glycidyloxyphenyl) methane, glycidylamine type epoxy resins such as tetraglycidyldiaminodiphenylmethane, and naphthalene type epoxy resins. And a phenol novolac epoxy resin which is a novolac epoxy resin, a polyfunctional epoxy resin such as a cresol novolac epoxy resin, a phenol epoxy resin, and the like.

ウレタン変性エポキシ樹脂、ゴム変性エポキシ樹脂などの各種変性エポキシ樹脂を使用することもできる。ウレタン変性ビスフェノールAエポキシ樹脂の具体的な商品名としては、旭電化製アデカレジンEPU−6(商品名)、EPU−4(商品名)等を例示することができる。フェノールノボラック型エポキシ樹脂の具体的な商品名としては、ジャパンエポキシレジン社製jER152(商品名)、jER154(商品名)、ダウケミカル社製DEN431(商品名)、DEN485(商品名)、DEN438(商品名)、DIC社製エピクロンN740(商品名)等を例示することができる。   Various modified epoxy resins such as urethane-modified epoxy resin and rubber-modified epoxy resin can also be used. Specific examples of the trade name of the urethane-modified bisphenol A epoxy resin include Adeka Resin EPU-6 (trade name) and EPU-4 (trade name) manufactured by Asahi Denka. Specific product names of the phenol novolac type epoxy resin include jER152 (product name), jER154 (product name) manufactured by Japan Epoxy Resin, DEN431 (product name), DEN485 (product name), and DEN438 (product name) manufactured by Dow Chemical. Name), Epicron N740 (trade name) manufactured by DIC, and the like.

クレゾールノボラック型エポキシ樹脂の具体的な商品名としては、ハンツマン社製アラルダイトECN1235(商品名)、ECN1273(商品名)、ECN1280(商品名)、日本化薬製EOCN102(商品名)、EOCN103(商品名)、EOCN104(商品名)等を例示することができる。   Specific product names of the cresol novolak type epoxy resin include Araldite ECN1235 (product name), ECN1273 (product name), ECN1280 (product name), Nippon Kayaku EOCN102 (product name), and EOCN103 (product name) manufactured by Huntsman. ), EOCN104 (trade name), and the like.

本発明の樹脂組成物に含まれる硬化剤としては、熱硬化性樹脂を硬化させる公知の硬化剤を使用できる。硬化剤は熱硬化性樹脂と反応して、耐熱性、耐薬品性、高い弾性率の硬化樹脂を得るために必要な化合物である。硬化剤を相溶化剤として用いる場合、2種以上の硬化剤を併用しても良い。   As the curing agent contained in the resin composition of the present invention, a known curing agent that cures the thermosetting resin can be used. The curing agent is a compound necessary for reacting with the thermosetting resin to obtain a cured resin having heat resistance, chemical resistance, and high elastic modulus. When using a hardening | curing agent as a compatibilizing agent, you may use together 2 or more types of hardening | curing agents.

硬化剤の具体的な例としては、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノ−3,3’−ジエチル−5,5’−ジメチルジフェニルメタンおよびこれらの混合物が優れた力学特性を与えるため好ましい。   Specific examples of curing agents include 4,4′-diaminodiphenylsulfone, 3,3′-diaminodiphenylsulfone, 4,4′-diamino-3,3′-diethyl-5,5′-dimethyldiphenylmethane and These mixtures are preferred because they give excellent mechanical properties.

コート剤によりマイクロカプセル化されたジアミノジフェニルスルホン(mc−DDS)を用いることも可能である。mc−DDSは、室温状態において熱硬化性樹脂と反応することを防止するように、物理的、化学的な結合によりDDS粒子の表層が反応性の低い物質でコートされている。DDS粒子の表層をコートするコート剤は、具体的には、ポリアミド、変性尿素樹脂、変性メラミン樹脂、ポリオレフィン、ポリパラフィン(変性品も含む)等である。これらのコート剤は、単独使用又は併用してもよく、また、前記以外の種々のコート剤でマイクロカプセル化されたDDSを用いることもできる。   It is also possible to use diaminodiphenyl sulfone (mc-DDS) microencapsulated with a coating agent. In mc-DDS, the surface layer of DDS particles is coated with a low-reactivity substance by physical and chemical bonding so as to prevent reaction with a thermosetting resin at room temperature. Specific examples of the coating agent for coating the surface layer of the DDS particles include polyamide, modified urea resin, modified melamine resin, polyolefin, polyparaffin (including modified products), and the like. These coating agents may be used alone or in combination, and DDS microencapsulated with various coating agents other than those described above can also be used.

本発明の樹脂組成物には、本発明の効果を損なわない範囲で、必要に応じて、適宜、3級アミン、イミダゾール等のアミン化合物、ホスフィン類、ホスホニウム等のリン化合物、N,N−ジメチル尿素誘導体などの硬化促進剤、反応性希釈剤、充填剤、酸化防止剤、難燃剤、顔料等の各種添加剤を含有してもよい。   In the resin composition of the present invention, an amine compound such as tertiary amine and imidazole, a phosphine, a phosphorus compound such as phosphonium, N, N-dimethyl, and the like, as necessary, within a range not impairing the effects of the present invention. You may contain various additives, such as hardening accelerators, such as a urea derivative, a reactive diluent, a filler, antioxidant, a flame retardant, and a pigment.

本発明の樹脂組成物に含まれる熱可塑性樹脂としては、ポリイミド、ポリエーテルイミド(PEI)、ポリエーテルスルホン(PES)、ポリアミドイミド、ポリスルフォン、ポリカーボネート、ポリエーテルエーテルケトン、ナイロン6、ナイロン12、非晶性ナイロンなどのポリアミド、アラミド、アリレート、ポリエステルカーボネート、アクリロニトリルブタジエンゴム、アクリル樹脂等を挙げることができる。   Examples of the thermoplastic resin contained in the resin composition of the present invention include polyimide, polyetherimide (PEI), polyethersulfone (PES), polyamideimide, polysulfone, polycarbonate, polyetheretherketone, nylon 6, nylon 12, Examples thereof include polyamide such as amorphous nylon, aramid, arylate, polyester carbonate, acrylonitrile butadiene rubber, acrylic resin, and the like.

硬化物の耐熱性を向上させる観点から、ポリイミド、ポリエーテルイミド、ポリエーテルスルホン、ポリスルフォン、ポリアミドイミド、ポリカーボネート、これらの誘導体又はこれらの組合せが、より好ましい。これらの熱可塑性樹脂は単独で用いてもよいし、任意の割合で二種以上を併用することもできる。   From the viewpoint of improving the heat resistance of the cured product, polyimide, polyetherimide, polyethersulfone, polysulfone, polyamideimide, polycarbonate, derivatives thereof, or combinations thereof are more preferable. These thermoplastic resins may be used alone or in combination of two or more at any ratio.

本発明の樹脂組成物は、いわゆるLCST(下限臨界溶液温度)型の相図を形成することが好ましい。相図の低温域では、熱硬化性樹脂と熱可塑性樹脂が相溶する。高温域では、架橋反応による熱硬化性樹脂の分子量増大に伴い、2相域が拡大し相溶域は減少する。かかる相溶域の減少過程で相分離が起り、海島相分離構造を形成する。   The resin composition of the present invention preferably forms a so-called LCST (Lower Critical Solution Temperature) phase diagram. In the low temperature region of the phase diagram, the thermosetting resin and the thermoplastic resin are compatible. In the high temperature range, with the increase in the molecular weight of the thermosetting resin due to the cross-linking reaction, the two-phase region expands and the compatible region decreases. Phase separation occurs in the process of decreasing the compatibility zone, and a sea-island phase separation structure is formed.

本発明は、樹脂組成物の硬化反応により相分離が誘発される。LCST型の相図を形成するためには、熱可塑性樹脂が熱硬化性樹脂との間に水素結合を形成することが好ましい。熱硬化性樹脂と硬化剤は、窒素、酸素、硫黄、ハロゲンなどの電気陰性度の大きな原子を分子内に持つ。本発明で使用される熱可塑性樹脂は、これらの電気陰性度の大きな原子と水素結合を作りやすい官能基を有することが好ましい。   In the present invention, phase separation is induced by the curing reaction of the resin composition. In order to form an LCST phase diagram, it is preferable that the thermoplastic resin forms a hydrogen bond with the thermosetting resin. Thermosetting resins and curing agents have atoms with large electronegativity such as nitrogen, oxygen, sulfur, and halogen in the molecule. The thermoplastic resin used in the present invention preferably has a functional group that easily forms a hydrogen bond with these atoms having a large electronegativity.

従って、本発明の樹脂組成物に含まれる熱可塑性樹脂は熱硬化性樹脂と反応可能な官能基を持つことが好ましい。熱可塑性樹脂が熱硬化性樹脂と反応することで、熱可塑性樹脂が硬化物の3次元ネットワークに取り込まれる。これにより、熱可塑性樹脂の欠点である耐薬品性を著しく改善することが出来る。   Therefore, it is preferable that the thermoplastic resin contained in the resin composition of the present invention has a functional group capable of reacting with the thermosetting resin. When the thermoplastic resin reacts with the thermosetting resin, the thermoplastic resin is taken into the three-dimensional network of the cured product. Thereby, the chemical resistance which is the fault of a thermoplastic resin can be improved remarkably.

本発明に含まれる熱可塑性樹脂は、官能基として、水酸基、カルボン酸基、イミノ基、アミノ基などの官能基を有することが好ましく、水酸基を持つことがより好ましい。熱可塑性樹脂は、これらの官能基を介して、硬化剤や、熱可塑性樹脂中に溶けた熱硬化性樹脂と結合する。これにより本発明の樹脂組成物は、硬化反応により、島成分が熱硬化性樹脂と硬化剤との反応物を主成分とし、海成分が熱可塑性樹脂を主成分とする海島相分離構造を形成する。   The thermoplastic resin included in the present invention preferably has a functional group such as a hydroxyl group, a carboxylic acid group, an imino group, or an amino group as a functional group, and more preferably has a hydroxyl group. The thermoplastic resin is bonded to a curing agent or a thermosetting resin dissolved in the thermoplastic resin through these functional groups. As a result, the resin composition of the present invention forms a sea-island phase-separated structure by the curing reaction, in which the island component is a reaction product of a thermosetting resin and a curing agent as a main component and the sea component is a thermoplastic resin as a main component. To do.

官能基の数としては、熱可塑性樹脂の質量平均分子量10000〜70000に対して水酸基、カルボン酸基、イミノ基、アミノ基などの官能基を1つ持つことが好ましく、更には10000〜30000に対して官能基を1つ持つことがより好ましい。   As the number of functional groups, it is preferable to have one functional group such as a hydroxyl group, a carboxylic acid group, an imino group, and an amino group with respect to a mass average molecular weight of 10,000 to 70,000 of the thermoplastic resin, and further to 10,000 to 30,000. It is more preferable to have one functional group.

熱可塑性樹脂の質量平均分子量70000以上に対して官能基を1つ持つ場合、熱可塑性樹脂と熱硬化性樹脂との間の水素結合が少なくなる。その場合、樹脂組成物がLCST型の相図を取ることができず、硬化過程で海島相分離構造を形成しにくくなる。熱可塑性樹脂の質量平均分子量10000未満に対して官能基を1つ持つ場合、熱可塑性樹脂同士の分子内水素結合が支配的になる。その場合、熱硬化性樹脂との相溶性が著しく低下する傾向がある。   When having one functional group with respect to the mass average molecular weight of 70,000 or more of the thermoplastic resin, hydrogen bonding between the thermoplastic resin and the thermosetting resin is reduced. In that case, the resin composition cannot take an LCST phase diagram, and it is difficult to form a sea-island phase separation structure during the curing process. In the case of having one functional group with respect to the mass average molecular weight of the thermoplastic resin of less than 10,000, intramolecular hydrogen bonding between the thermoplastic resins becomes dominant. In that case, the compatibility with the thermosetting resin tends to be significantly reduced.

本発明の樹脂組成物は、熱可塑性樹脂を樹脂組成物全重量の5〜60質量%の配合割合とすることが好ましく、10〜55質量%がより好ましく、15〜45質量%がさらに好ましく、19〜45質量%が特に好ましく、25〜45質量%が最も好ましい。   The resin composition of the present invention preferably has a thermoplastic resin content of 5 to 60% by mass, more preferably 10 to 55% by mass, still more preferably 15 to 45% by mass, based on the total weight of the resin composition. 19-45 mass% is especially preferable, and 25-45 mass% is the most preferable.

熱可塑性樹脂の配合割合が樹脂組成物の全重量の60質量%を超えると、樹脂組成物の粘度が高くなり、プリプレグ製造のプロセス性を悪くする傾向がある。一方、熱可塑性樹脂の配合割合が樹脂組成物の全重量の5質量%未満であると、流動性が良くプロセス性は向上する。しかし、硬化物の海相の主成分が熱硬化性樹脂と硬化剤との反応物となり、硬化物の著しい靱性低下を引き起こすため好ましくない。   When the blending ratio of the thermoplastic resin exceeds 60% by mass of the total weight of the resin composition, the viscosity of the resin composition increases, and the processability of prepreg production tends to deteriorate. On the other hand, when the blending ratio of the thermoplastic resin is less than 5% by mass of the total weight of the resin composition, the fluidity is good and the processability is improved. However, it is not preferable because the main component of the sea phase of the cured product is a reaction product of the thermosetting resin and the curing agent, causing a significant decrease in toughness of the cured product.

本発明の樹脂組成物は、少なくとも熱可塑性樹脂、熱硬化性樹脂、硬化剤を添加・混練することで製造される。各成分の混練は、一段で行っても、各成分を逐次添加して多段的に行っても良い。各成分を逐次添加する場合は、任意の順序で添加することができる。各成分の混練・添加方法としては、予め、熱硬化性樹脂に、熱可塑性樹脂の一部又は全量を混練せしめて粘度調整した後に、逐次的に硬化剤、残りの熱可塑性樹脂を添加しながら混練する方法がある。混練・添加順序は特に限定されないが、樹脂組成物の保存安定性の観点から、硬化剤を最後に添加することが好ましい。   The resin composition of the present invention is produced by adding and kneading at least a thermoplastic resin, a thermosetting resin, and a curing agent. The kneading of each component may be performed in a single stage, or may be performed in multiple stages by sequentially adding each component. When adding each component sequentially, it can add in arbitrary orders. As a kneading / adding method of each component, the viscosity is adjusted by kneading a part or all of the thermoplastic resin in advance in the thermosetting resin, and then sequentially adding the curing agent and the remaining thermoplastic resin. There is a method of kneading. The order of kneading and addition is not particularly limited, but it is preferable to add the curing agent last from the viewpoint of the storage stability of the resin composition.

熱可塑性樹脂は、粘度調整のために、適時固体粒子として添加しても良い。これにより、樹脂組成物の取扱性、成形性も良好に維持される。該熱可塑性樹脂の平均粒子径は、1〜100μmの範囲であることが好ましく、1〜50μmであることがより好ましい。1μmより小さいと、嵩密度が高くなり、樹脂組成物の粘度を著しく増粘させる場合がある。100μmより大きいと、樹脂組成物中に粒子を分散させることが困難となり、熱可塑性樹脂を樹脂組成物中に概ね均一に配合することができなくなる。また、得られる樹脂組成物をシート状に形成する際、均質な厚みのシートが得られにくい場合がある。   The thermoplastic resin may be added as solid particles in a timely manner for viscosity adjustment. Thereby, the handleability of a resin composition and a moldability are also maintained favorable. The average particle diameter of the thermoplastic resin is preferably in the range of 1 to 100 μm, more preferably 1 to 50 μm. When it is smaller than 1 μm, the bulk density is increased, and the viscosity of the resin composition may be remarkably increased. When it is larger than 100 μm, it becomes difficult to disperse the particles in the resin composition, and the thermoplastic resin cannot be blended almost uniformly into the resin composition. Moreover, when forming the resin composition obtained in a sheet form, it may be difficult to obtain a sheet having a uniform thickness.

樹脂組成物製造時の混練温度は、10〜150℃の範囲が好ましい。150℃を超えると部分的な硬化反応が開始し、得られる樹脂組成物の保存安定性が低下する場合がある。10℃より低いと樹脂組成物の粘度が高く、実質的に混練が困難となる場合がある。好ましくは20〜120℃であり、更に好ましくは30〜100℃の範囲である。   The kneading temperature during production of the resin composition is preferably in the range of 10 to 150 ° C. When it exceeds 150 degreeC, a partial hardening reaction will start and the storage stability of the resin composition obtained may fall. If it is lower than 10 ° C., the viscosity of the resin composition is high, and it may be difficult to knead substantially. Preferably it is 20-120 degreeC, More preferably, it is the range of 30-100 degreeC.

樹脂組成物製造時に用いる混練機械装置としては、従来公知のものを用いることができる。具体的には、ロールミル、プラネタリーミキサー、ニーダー、エクストルーダー、バンバリーミキサー、攪拌翼を供えた混合容器、横型混合槽などを挙げることができる。   As the kneading machine apparatus used at the time of producing the resin composition, a conventionally known apparatus can be used. Specific examples include a roll mill, a planetary mixer, a kneader, an extruder, a Banbury mixer, a mixing vessel provided with a stirring blade, and a horizontal mixing vessel.

<硬化物>
本発明の硬化物は、上記の樹脂組成物の硬化反応により得られる、海島相分離構造を有する硬化物である。前記海島相分離構造は、島成分が熱硬化性樹脂と硬化剤との反応物を主成分とし、海成分が熱可塑性樹脂を主成分とする。
<Hardened product>
The cured product of the present invention is a cured product having a sea-island phase separation structure obtained by the curing reaction of the above resin composition. In the sea-island phase separation structure, the island component has a reaction product of a thermosetting resin and a curing agent as a main component, and the sea component has a thermoplastic resin as a main component.

本発明の硬化物は、海成分が熱可塑性樹脂を主成分とするため、熱可塑性樹脂に由来する耐衝撃強度、曲げ・引張り強度特性に優れ、熱硬化性樹脂に由来する靱性の低さが著しく改善される。   Since the sea component of the cured product of the present invention is mainly composed of a thermoplastic resin, it has excellent impact strength and bending / tensile strength properties derived from the thermoplastic resin, and low toughness derived from the thermosetting resin. Significantly improved.

海成分を構成する熱可塑性樹脂は全重量の5〜60質量%を占める。従来の海島相分離構造は、少量成分が島成分となる。しかし、本発明では、熱可塑性樹脂が全重量の5〜60質量%の範囲で海成分となり、所謂「逆海島相分離構造」を形成する。この特徴により、本発明の硬化物は、熱硬化性樹脂を海成分とする従来の硬化物では達成できない、優れた耐衝撃強度、曲げ・引張り強度特性を発現する。   The thermoplastic resin constituting the sea component accounts for 5 to 60% by mass of the total weight. In the conventional sea-island phase separation structure, a small amount of components becomes island components. However, in the present invention, the thermoplastic resin becomes a sea component in the range of 5 to 60% by mass of the total weight to form a so-called “reverse sea island phase separation structure”. Due to this feature, the cured product of the present invention exhibits excellent impact strength and bending / tensile strength characteristics that cannot be achieved by a conventional cured product having a thermosetting resin as a sea component.

熱可塑性樹脂が全重量の5質量%未満であると、熱可塑性樹脂が海成分の主成分にならず、熱硬化性樹脂に由来する靱性の低さが顕著に現れるため好ましくない。一方、熱可塑性樹脂が全重量の60質量%を超えると、熱可塑性樹脂の欠点である低弾性率、耐薬品性の低下が顕著に現れるため好ましくない。   When the thermoplastic resin is less than 5% by mass of the total weight, the thermoplastic resin does not become a main component of the sea component, and the low toughness derived from the thermosetting resin appears remarkably, which is not preferable. On the other hand, if the thermoplastic resin exceeds 60% by mass of the total weight, it is not preferable because the low elastic modulus and chemical resistance, which are disadvantages of the thermoplastic resin, are significantly reduced.

本発明の硬化物は、熱硬化性樹脂と硬化剤との反応物を主成分とする島成分の平均粒子径が0.01〜10μmであることが好ましい。0.01〜5μmであることが、より好ましく0.01〜1μmであることが更に好ましく、0.01〜0.6μmであることが特に好ましい。   The cured product of the present invention preferably has an average particle size of 0.01 to 10 μm of an island component mainly composed of a reaction product of a thermosetting resin and a curing agent. The thickness is preferably 0.01 to 5 μm, more preferably 0.01 to 1 μm, and particularly preferably 0.01 to 0.6 μm.

島成分の平均粒子径が0.01μm未満の場合、硬化物の機械物性、熱特性がする傾向にあるため、好ましくない。島成分の平均粒子径が10μmを超えると、硬化物の機械物性、熱特性、耐薬品性が著しく低下する傾向にあるため好ましくない。   If the average particle size of the island component is less than 0.01 μm, the cured product tends to have mechanical properties and thermal characteristics, which is not preferable. If the average particle size of the island component exceeds 10 μm, the mechanical properties, thermal properties, and chemical resistance of the cured product tend to be remarkably lowered, which is not preferable.

硬化物中の島成分の平均粒子径は、樹脂組成物の製造時に、熱可塑性樹脂と、熱硬化性樹脂と、硬化剤とに相溶化剤を添加して混練することで、調節できる。相溶化剤の添加量が多いほど、熱硬化性樹脂と熱可塑性樹脂との相溶性が高くなる。その結果、島成分の平均粒子径を小さくすることができる。   The average particle size of the island component in the cured product can be adjusted by adding a compatibilizing agent to the thermoplastic resin, the thermosetting resin, and the curing agent and kneading them during the production of the resin composition. The greater the amount of compatibilizer added, the higher the compatibility between the thermosetting resin and the thermoplastic resin. As a result, the average particle size of the island component can be reduced.

本発明の硬化物のガラス転移温度は、150℃以上が好ましく、180℃以上がより好ましく、200℃以上が更に好ましく、230℃以上が特に好ましい。ガラス転移温度が300℃を超える場合、樹脂組成物の粘度が著しく高くなり、プロセス性に悪影響を及ぼすことがある。硬化物のガラス転移温度が150℃未満であると、硬化物中に未硬化物が残存することがある。その場合、硬化物の分解、長期安定性不良、耐炎性不良、耐熱性不良などの問題を引き起こすことがあり、好ましくない。   150 degreeC or more is preferable, as for the glass transition temperature of the hardened | cured material of this invention, 180 degreeC or more is more preferable, 200 degreeC or more is further more preferable, and 230 degreeC or more is especially preferable. When glass transition temperature exceeds 300 degreeC, the viscosity of a resin composition becomes remarkably high and may adversely affect processability. If the glass transition temperature of the cured product is less than 150 ° C., an uncured product may remain in the cured product. In that case, problems such as decomposition of the cured product, poor long-term stability, poor flame resistance and poor heat resistance may occur, which is not preferable.

本発明の硬化物は、本発明の樹脂組成物を硬化反応させることにより得られるものであれば、どのような方法で製造されても良い。例えば熱硬化性樹脂、硬化剤、熱可塑性樹脂を混練して樹脂組成物を製造した後、該樹脂組成物を加熱処理して硬化反応させることにより製造する方法がある。この方法について以下に記載する。   The cured product of the present invention may be produced by any method as long as it is obtained by curing reaction of the resin composition of the present invention. For example, there is a method in which a thermosetting resin, a curing agent, and a thermoplastic resin are kneaded to produce a resin composition, and then the resin composition is heated to cause a curing reaction. This method is described below.

該樹脂組成物の加熱処理条件としては0.5〜20℃/分の昇温速度で120〜300℃の範囲まで昇温後、最高到達温度で0〜500分保持することが好ましい。最高到達温度としては、150〜250℃の範囲が好ましい。最高到達温度が120℃未満の場合、樹脂組成物中に残る熱可塑性樹脂の粒子が溶解しないことがある。一方、300℃を越えると熱硬化性樹脂が分解することがある。最高到達温度での保持時間は、生産性の観点から500分未満であることが好ましい。加熱処理中に0.1〜7MPaの圧力を付与しても良い。   As the heat treatment conditions for the resin composition, it is preferable that the temperature is raised to a range of 120 to 300 ° C. at a temperature rising rate of 0.5 to 20 ° C./min and then held at the maximum temperature for 0 to 500 minutes. The maximum temperature reached is preferably in the range of 150 to 250 ° C. When the maximum temperature reached is less than 120 ° C., the thermoplastic resin particles remaining in the resin composition may not be dissolved. On the other hand, when it exceeds 300 ° C., the thermosetting resin may be decomposed. The holding time at the highest temperature is preferably less than 500 minutes from the viewpoint of productivity. A pressure of 0.1 to 7 MPa may be applied during the heat treatment.

この方法により製造される硬化物は、島成分の主成分が熱硬化性樹脂と硬化剤の反応物であり、海成分の主成分が熱可塑性樹脂である海島相分離構造を有する。これにより、本発明の硬化物は、靱性、耐衝撃性、耐熱性、耐薬品性および弾性率に優れる。また、海成分の主成分が熱可塑性樹脂となることで、熱硬化性樹脂を多量に含むにも拘らず、加熱により熱可塑性樹脂のように流動する。このため加熱による賦形性も有し、硬化物に亀裂が生じた場合、接着剤等を用いることなく、加熱により自己修復させることが出来る。   The cured product produced by this method has a sea-island phase separation structure in which the main component of the island component is a reaction product of a thermosetting resin and a curing agent, and the main component of the sea component is a thermoplastic resin. Thereby, the hardened | cured material of this invention is excellent in toughness, impact resistance, heat resistance, chemical resistance, and elastic modulus. In addition, since the main component of the sea component is a thermoplastic resin, it flows like a thermoplastic resin by heating despite containing a large amount of thermosetting resin. For this reason, it also has formability by heating, and when a cured product cracks, it can be self-repaired by heating without using an adhesive or the like.

<プリプレグ>
本発明のプリプレグは、本発明の樹脂組成物を強化繊維に含浸させることで得ることが出来る。
<Prepreg>
The prepreg of the present invention can be obtained by impregnating the reinforcing fiber with the resin composition of the present invention.

本発明のプリプレグに使用する強化繊維としては、炭素繊維、シリコンカーバイド繊維、ガラス繊維、芳香族ポリアミド繊維、ポリイミド繊維、ポリベンゾオキサゾール繊維、ポリベンゾオキサジン繊維、芳香族ポリエステル繊維などを挙げることができる。これらの中でも特に、高強度、高弾性率を有する炭素繊維が好ましい。炭素繊維にはピッチ系、PAN系のどちらの炭素繊維を用いても良い。また、これら強化繊維を単独で用いてもよいし、二種以上を併用してもよい。   Examples of the reinforcing fiber used in the prepreg of the present invention include carbon fiber, silicon carbide fiber, glass fiber, aromatic polyamide fiber, polyimide fiber, polybenzoxazole fiber, polybenzoxazine fiber, and aromatic polyester fiber. . Among these, carbon fibers having high strength and high elastic modulus are particularly preferable. As the carbon fiber, either pitch-based or PAN-based carbon fiber may be used. Moreover, these reinforcing fibers may be used independently and may use 2 or more types together.

強化繊維の形態や配列は特に限定されず、例えば、一方向に引き揃えた長繊維、単一のトウ、織物、不織布、マット、ニット、組み紐等が採用できる。   The form and arrangement of the reinforcing fibers are not particularly limited, and for example, long fibers arranged in one direction, a single tow, a woven fabric, a nonwoven fabric, a mat, a knit, a braid, and the like can be employed.

強化繊維の目付は30〜700g/mの範囲が好ましい。強化繊維の目付が30g/m未満であると、繊維強化複合材料を軽量化することが出来るが、十分な強度を持たせることが出来ず好ましくない。700g/mを超える場合、繊維強化複合材料の軽量化が困難であり好ましくない。強化繊維の目付のより好ましい範囲は50〜300g/mである。 The basis weight of the reinforcing fiber is preferably in the range of 30 to 700 g / m 2 . When the basis weight of the reinforcing fiber is less than 30 g / m 2 , the fiber-reinforced composite material can be reduced in weight, but it is not preferable because sufficient strength cannot be provided. When it exceeds 700 g / m 2 , it is difficult to reduce the weight of the fiber-reinforced composite material, which is not preferable. A more preferable range of the basis weight of the reinforcing fiber is 50 to 300 g / m 2 .

本発明のプリプレグにおける樹脂組成物の含有率は、25〜45質量%が好ましく、30〜40質量%がより好ましい。   25-45 mass% is preferable and, as for the content rate of the resin composition in the prepreg of this invention, 30-40 mass% is more preferable.

プリプレグは、樹脂組成物を、溶媒に溶解して低粘度化し、含浸させるウエット法や、加熱により低粘度化し、含浸させるホットメルト法(ドライ法)等、従来公知の製造方法により作成できる。中でもホットメルト法により、製造することが好ましい。ホットメルト法により得られるプリプレグは、残存溶剤の影響がなく、長い貯蔵安定性を有する。   The prepreg can be prepared by a conventionally known production method such as a wet method in which a resin composition is dissolved in a solvent to lower the viscosity and impregnated, or a hot melt method (dry method) in which the viscosity is decreased by heating and impregnated. Among them, it is preferable to produce the product by a hot melt method. The prepreg obtained by the hot melt method is not affected by the residual solvent and has a long storage stability.

ホットメルト法でプリプレグを作成する場合、まず、強化繊維に含浸させる樹脂組成物を、シート状に形成する。   When preparing a prepreg by the hot melt method, first, a resin composition to be impregnated into reinforcing fibers is formed into a sheet shape.

樹脂組成物をシート状に形成する方法としては、従来公知の方法を特に限定することなく用いることができる。具体的には、加熱して粘度を低下させた樹脂組成物を、離型紙、離型フィルムなどの支持体上に流延、キャストをする方法がある。支持体への流延、キャストを行う場合には、ダイ、アプリケーター、リバースロールコーター、コンマコーターなどを用いることができる。   As a method for forming the resin composition into a sheet, a conventionally known method can be used without any particular limitation. Specifically, there is a method in which a resin composition whose viscosity has been reduced by heating is cast and cast on a support such as a release paper or a release film. When casting or casting on a support, a die, applicator, reverse roll coater, comma coater, or the like can be used.

支持体上に流延する際の樹脂温度としては、その樹脂組成・粘度に応じて適宜設定可能であるが、20〜160℃が好ましく、60〜145℃がより好ましく、70〜140℃が更に好ましい。   The resin temperature at the time of casting on the support can be appropriately set according to the resin composition and viscosity, but is preferably 20 to 160 ° C, more preferably 60 to 145 ° C, and further preferably 70 to 140 ° C. preferable.

シート状樹脂組成物の厚さは、使用する繊維強化シートの目付で異なるが、概ね8〜350μmとすることが好ましく、10〜200μmとすることがより好ましい。   Although the thickness of a sheet-like resin composition changes with the fabric weight of the fiber reinforced sheet | seat to be used, it is preferable to set it as 8-350 micrometers in general, and it is more preferable to set it as 10-200 micrometers.

次に、上記の方法により形成されたシート状樹脂組成物を強化繊維に含浸させる。   Next, the reinforcing fiber is impregnated with the sheet-shaped resin composition formed by the above method.

樹脂組成物を強化繊維に含浸させるには、まずシート状樹脂組成物とシート状の強化繊維とを積重する。続いて積重したシート状樹脂組成物とシート状の強化繊維とを加圧下で加熱する。   In order to impregnate the resin composition with the reinforcing fiber, first, the sheet-shaped resin composition and the sheet-shaped reinforcing fiber are stacked. Subsequently, the stacked sheet-shaped resin composition and the sheet-shaped reinforcing fibers are heated under pressure.

このときの加圧圧力は、その樹脂組成物の粘度・樹脂フローなどを勘案し、1〜10MPaで任意の圧力とすることが出来る。   The pressurizing pressure at this time can be set to an arbitrary pressure of 1 to 10 MPa in consideration of the viscosity and resin flow of the resin composition.

加圧時の加熱温度の範囲は50〜160℃であり、より好ましくは、60〜155℃であり、更に好ましくは70〜145℃である。50℃未満の場合、樹脂組成物の粘度が十分低下せず、強化繊維に樹脂組成物が十分含浸しない場合がある。160℃以上の場合、樹脂組成物の硬化反応が開始され、プリプレグの保存安定性が低下したり、ドレープ性が低下したりする場合がある。   The range of the heating temperature at the time of pressurization is 50-160 degreeC, More preferably, it is 60-155 degreeC, More preferably, it is 70-145 degreeC. When the temperature is lower than 50 ° C., the viscosity of the resin composition is not sufficiently lowered, and the reinforcing fiber may not be sufficiently impregnated with the resin composition. When the temperature is 160 ° C. or higher, the curing reaction of the resin composition is started, and the storage stability of the prepreg may be reduced, or the drapeability may be reduced.

シート状の強化繊維並びにシート状樹脂組成物のシート幅や生産速度は、特に限定されるものではないが、工業的に連続生産する場合は、生産性、経済性の観点から、以下のものが好ましい。   The sheet width and production rate of the sheet-like reinforcing fiber and the sheet-shaped resin composition are not particularly limited, but when industrially produced continuously, from the viewpoint of productivity and economy, the following are available: preferable.

シート幅は、30cm以上が好ましく、実質的に5m程度までである。5mを超えるとその生産安定性が低下する場合がある。生産速度は、1m/分以上とすることが好ましく、3m/分以上とすることがより好ましく、5m/分以上とすることが更に好ましい。   The sheet width is preferably 30 cm or more, and is substantially up to about 5 m. If it exceeds 5 m, the production stability may decrease. The production rate is preferably 1 m / min or more, more preferably 3 m / min or more, and further preferably 5 m / min or more.

樹脂組成物を強化繊維に含浸させる回数を、1回ではなく複数回に分けて、任意の圧力と温度で多段的に含浸させることもできる。一般的に樹脂組成物は、粘度が高くなると、強化繊維への含浸性が低下して、プリプレグのタック性向上と内部空隙率減少との両立が困難になる場合がある。この様な場合には、樹脂組成物を複数回に分けて強化繊維に含浸させることにより、プリプレグのタック性の向上と内部空隙率減少との両立を図ることが望ましい。   The number of times the resin composition is impregnated into the reinforcing fiber can be divided into a plurality of times instead of once, and can be impregnated in multiple stages at an arbitrary pressure and temperature. In general, when the viscosity of the resin composition increases, the impregnation property of the reinforcing fiber is lowered, and it may be difficult to achieve both improvement in tackiness of the prepreg and reduction in internal porosity. In such a case, it is desirable to improve both the tackiness of the prepreg and reduce the internal porosity by impregnating the reinforcing fiber in a plurality of times.

樹脂組成物を複数回に分けて強化繊維に含浸させる場合、まずシート状の強化繊維に1枚目のシート状樹脂組成物を積重する。シート状樹脂組成物を積重させた強化繊維を、加圧下で50℃〜150℃に加熱して、樹脂組成物を強化繊維に含浸させる。次いで、1枚目のシート状樹脂組成物を含浸させたシート状の強化繊維の同じ面に、2枚目のシート状樹脂組成物を積重し、加圧下で50℃から90℃に加熱する。必要により、同様の操作を繰り返す。   When the resin composition is divided into a plurality of times and impregnated into the reinforcing fibers, first, the first sheet-shaped resin composition is stacked on the sheet-shaped reinforcing fibers. The reinforcing fiber on which the sheet-shaped resin composition is stacked is heated to 50 ° C. to 150 ° C. under pressure to impregnate the reinforcing fiber with the resin composition. Next, the second sheet-shaped resin composition is stacked on the same surface of the sheet-shaped reinforcing fiber impregnated with the first sheet-shaped resin composition, and heated from 50 ° C. to 90 ° C. under pressure. . Repeat as necessary.

この操作は、シート状の強化繊維の片面だけでなく、両面で行うことができる。その場合、両面にそれぞれ1枚ずつシート状樹脂組成物を積重させて、2枚のシート状樹脂組成物を同時に含浸させることもできる。   This operation can be performed not only on one side of the sheet-like reinforcing fiber but also on both sides. In that case, two sheet-shaped resin compositions can be impregnated simultaneously by stacking one sheet-shaped resin composition on each of both surfaces.

該樹脂組成物は、熱可塑性樹脂の配合量に拘らず成形加工性に優れるため、複数回含浸させる場合において、含浸させる硬化物の組成を、一回目の含浸と二回目以降の含浸とで同一にすることができ、又は、一回目の含浸と二回目以降の含浸とで変えても良い。   Since the resin composition is excellent in molding processability regardless of the blending amount of the thermoplastic resin, when impregnated a plurality of times, the composition of the cured product to be impregnated is the same for the first impregnation and the second and subsequent impregnations. Or may be changed between the first impregnation and the second and subsequent impregnations.

シート状硬化物を2回以上に分けて強化繊維に含浸させる方法でプリプレグを得る場合、プリプレグに、強化繊維層と樹脂層を形成させることができる。強化繊維層は、強化繊維と、強化繊維間に含浸された樹脂組成物とからなる。樹脂層は、該強化繊維層の片面または両面を被覆する層である。強化繊維層表面に形成される樹脂層は、二回目以降に積重されるシート状樹脂組成物により形成される。この構造をもつプリプレグは、タック性に優れる。   When the prepreg is obtained by a method in which the sheet-like cured product is impregnated into the reinforcing fiber in two or more times, the reinforcing fiber layer and the resin layer can be formed on the prepreg. The reinforcing fiber layer is composed of reinforcing fibers and a resin composition impregnated between the reinforcing fibers. The resin layer is a layer that covers one side or both sides of the reinforcing fiber layer. The resin layer formed on the surface of the reinforcing fiber layer is formed of a sheet-like resin composition that is stacked after the second time. A prepreg having this structure is excellent in tackiness.

プリプレグに樹脂層を形成させる場合、樹脂層は、強化繊維を含まず、強化繊維層の表面を所定の厚さで被覆することが好ましい。樹脂層の厚さは2〜50μmが好ましく、5〜45μmがより好ましく、10〜40μmが特に好ましい。樹脂層の厚みが2μm未満の場合、タック性が不十分となり、プリプレグの成形加工性が著しく低下する場合がある。50μmを超えると、プリプレグを均質な厚みでロール状に巻き取ることが困難となり、成形精度が著しく低下する場合がある。   When forming a resin layer in a prepreg, it is preferable that a resin layer does not contain a reinforced fiber and coat | covers the surface of a reinforced fiber layer with predetermined thickness. The thickness of the resin layer is preferably 2 to 50 μm, more preferably 5 to 45 μm, and particularly preferably 10 to 40 μm. When the thickness of the resin layer is less than 2 μm, the tackiness becomes insufficient, and the moldability of the prepreg may be significantly lowered. If it exceeds 50 μm, it will be difficult to wind the prepreg into a roll with a uniform thickness, and the molding accuracy may be significantly reduced.

<繊維強化複合材料>
本発明の繊維強化複合材料は、該硬化物をマトリクス樹脂とする繊維強化複合材料である。
<Fiber-reinforced composite material>
The fiber-reinforced composite material of the present invention is a fiber-reinforced composite material using the cured product as a matrix resin.

本発明の繊維強化複合材料は、強化繊維の短繊維を硬化前の樹脂組成物に練りこみ、型にはめ込んで硬化させて製造される。また、本発明のプリプレグを複数枚積層した後、加熱硬化させても製造することができる。例えば、プリプレグを型の表面に敷設し、プリプレグをその厚さ方向に型の表面に向かって加圧した状態で加熱・硬化させることにより、繊維強化複合材料を製造することができる。加熱温度は150〜200℃、加圧圧力は0.3〜7MPaとすることが好ましい。この製造方法により得られる繊維強化複合材料は、強化繊維の配向が厳密に制御される。また積層構成の設計自由度が高いため、高性能である。   The fiber-reinforced composite material of the present invention is manufactured by kneading short fibers of reinforcing fibers into a resin composition before being cured, and setting them into a mold and curing them. Moreover, it can also manufacture even if it heat-hardens, after laminating | stacking several prepreg of this invention. For example, a fiber-reinforced composite material can be manufactured by laying a prepreg on the surface of a mold and heating and curing the prepreg in a state where the prepreg is pressed in the thickness direction toward the surface of the mold. The heating temperature is preferably 150 to 200 ° C. and the pressurizing pressure is preferably 0.3 to 7 MPa. In the fiber-reinforced composite material obtained by this manufacturing method, the orientation of the reinforcing fibers is strictly controlled. In addition, since the degree of freedom in designing the laminated structure is high, the performance is high.

本発明の繊維強化複合材料は、優れた機械特性を有する。特に耐衝撃性と層間靭性、耐薬品性に非常に優れる。また、本発明の硬化物を繊維強化複合材料に用いることで、硬化物が加熱により流動する。このため、賦形性も有する。従って、繊維強化複合材料に亀裂が生じた場合、自己修復させることも出来る。   The fiber reinforced composite material of the present invention has excellent mechanical properties. Particularly excellent in impact resistance, interlayer toughness, and chemical resistance. Moreover, hardened | cured material flows by heating by using the hardened | cured material of this invention for a fiber reinforced composite material. For this reason, it also has formability. Accordingly, when a crack occurs in the fiber reinforced composite material, it can be self-repaired.

以下、実施例により本発明を更に具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、操作条件の評価、各物性の測定は以下の方法で実施した。実施例1および実施例2の評価結果および測定結果を表1に示す。比較例1ないし3および比較例5、6の評価結果および測定結果を表2に示す。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In addition, evaluation of operating conditions and measurement of each physical property were performed by the following methods. The evaluation results and measurement results of Example 1 and Example 2 are shown in Table 1. Table 2 shows the evaluation results and measurement results of Comparative Examples 1 to 3 and Comparative Examples 5 and 6.

[水酸基/カルボン酸基の検出]
本発明における熱可塑性樹脂中の水酸基、カルボン酸基、イミノ基、アミノ基などの官能基の検出は、熱可塑性樹脂をクロロホルム/ヘキサフルオロイソプロパノールに溶解し、H−NMR法で測定し、官能基の結合箇所を確認した。
[Detection of hydroxyl group / carboxylic acid group]
Detection of functional groups such as hydroxyl groups, carboxylic acid groups, imino groups and amino groups in the thermoplastic resin in the present invention is carried out by dissolving the thermoplastic resin in chloroform / hexafluoroisopropanol and measuring it by 1 H-NMR method. The bonding site of the group was confirmed.

[質量平均分子量]
本発明における熱可塑性樹脂の質量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定した分子量を、標準ポリスチレンの分子量に換算した。GPC測定機器において、検出器は示差屈折計(株式会社島津製作所製RID−6A)、カラムは昭光通商(株)製SHODEXを直列に接続したものを使用した。ジメチルホルムアミドを溶離液とし、温度40℃、流速1.0mL/minであった。濃度1mg/ml(1%ヘキサフルオロイソプロパノールを含むクロロホルム)の試料を10μL注入して、分子量を測定した。
[Mass average molecular weight]
For the mass average molecular weight of the thermoplastic resin in the present invention, the molecular weight measured by gel permeation chromatography (GPC) was converted to the molecular weight of standard polystyrene. In the GPC measuring instrument, a differential refractometer (RID-6A manufactured by Shimadzu Corporation) was used as a detector, and a column in which SHODEX manufactured by Shoko Tsusho Co., Ltd. was connected in series. Dimethylformamide was used as an eluent, and the temperature was 40 ° C. and the flow rate was 1.0 mL / min. 10 μL of a sample having a concentration of 1 mg / ml (chloroform containing 1% hexafluoroisopropanol) was injected, and the molecular weight was measured.

[ガラス転移温度]
DSC測定装置(DSC2920:TAインストルメント製)を用いて、硬化物を10℃ /分の昇温速度にて室温から300℃まで昇温し、ガラス転移温度を測定した。
[Glass-transition temperature]
The cured product was heated from room temperature to 300 ° C. at a rate of temperature increase of 10 ° C./min using a DSC measuring device (DSC2920: manufactured by TA Instrument), and the glass transition temperature was measured.

[樹脂組成物の粘度測定]
樹脂組成物の80℃、1000s−1における粘度は、東洋精機製作所製のキャピログラフ1Dで評価した。
[Measurement of viscosity of resin composition]
The viscosity at 80 ° C. and 1000 s −1 of the resin composition was evaluated with a capillograph 1D manufactured by Toyo Seiki Seisakusho.

[海成分と島成分の主成分確認]
TEM−EELS分光法(日本電子製JEM2010)によって硬化物の海成分と島成分の元素マッピングを行い、各成分の主成分を確認した。
[Confirmation of main components of sea and island components]
Elemental mapping of the sea component and the island component of the cured product was performed by TEM-EELS spectroscopy (JEM2010 manufactured by JEOL Ltd.), and the main components of each component were confirmed.

[島成分の平均粒子径]
硬化物の断面加工を行い、高い分解能を持つ透過型電子顕微鏡(日本電子製JEM2010)で、断面に現れる海島相分離構造を確認した。島成分500個の粒子径を計り、その平均値を平均粒子径とした。
[Average particle size of island components]
Cross-section processing of the cured product was performed, and the sea-island phase separation structure appearing in the cross-section was confirmed with a transmission electron microscope (JEM 2010 manufactured by JEOL) having high resolution. The particle diameter of 500 island components was measured, and the average value was defined as the average particle diameter.

[耐溶剤試験]
硬化物の板を25℃のメチルエチルケトン中に浸け30日間放置後、目視による外観と150℃で1時間乾燥後の質量変化を測定した。
[Solvent resistance test]
The cured plate was immersed in methyl ethyl ketone at 25 ° C. and allowed to stand for 30 days, and the visual appearance and mass change after drying at 150 ° C. for 1 hour were measured.

[試験片の層間破壊靭性(GIIC)]
樹脂組成物を用いて製造したプリプレグをカットし、0°方向に10層積層した積層体を2つ作製した。初期クラックを発生させるために離型フィルム(幅80mm、長さ130mm)を2つの積層体の間にはさみ、両者を組み合わせ、積層構成[0]20のプリプレグ積層体を得た。真空オートクレーブ成形法を用い、0.5MPaの圧力下、180℃の条件で2時間前記積層体を成形した。得られた成形物を幅 12.7 mm × 長さ 304.8 mmの寸法に切断し、GIICの試験片を得た。この試験片を用いて、GIIC試験を行った。
[Interlaminar fracture toughness of specimens (GIIC)]
The prepreg produced using the resin composition was cut to prepare two laminates in which 10 layers were laminated in the 0 ° direction. In order to generate an initial crack, a release film (width 80 mm, length 130 mm) was sandwiched between the two laminates, and both were combined to obtain a prepreg laminate having a laminate configuration [0] 20 . Using the vacuum autoclave molding method, the laminate was molded under the condition of 180 ° C. under a pressure of 0.5 MPa for 2 hours. The obtained molded product was cut into a size of width 12.7 mm × length 304.8 mm to obtain a GIIC test piece. A GIIC test was conducted using this test piece.

まず、離型フィルムにより作製したクラックが、支点から38.1mmとなる位置に試験片を配置し、2.54mm/minの速度で曲げの負荷をかけ、初期クラックを形成させた。その後にクラックが支点から25.4mmの位置に試験片を配置し、1試験片について3回のGIIC試験を実施した。GIIC試験の試験速度は、2.54mm/minとした。   First, the test piece was placed at a position where the crack produced by the release film was 38.1 mm from the fulcrum, and an initial crack was formed by applying a bending load at a speed of 2.54 mm / min. Thereafter, the test piece was placed at a position where the crack was 25.4 mm from the fulcrum, and three GIIC tests were performed on one test piece. The test speed of the GIIC test was 2.54 mm / min.

[衝撃後圧縮強度(CAI)試験]
プリプレグをカットし、プリプレグを4層積層して積層構成[+45/0/−45/90]3Sの積層体を得た。オートクレーブ成形法を用い、0.5MPaの圧力下、180℃の条件で2時間成形した。得られた成形物を幅101.6mm × 長さ152.4mmの寸法に切断し、衝撃後圧縮強度試験の試験片を得た。なお、試験片には厚さ1mm当たり6.67Jの衝撃エネルギーを与えた。この試験片を用いて30.5kJ衝撃後のCAIを測定した。
[Compressive strength after impact (CAI) test]
The prepreg was cut, and four layers of the prepreg were laminated to obtain a laminate having a laminated structure [+ 45/0 / −45 / 90] 3S . Using an autoclave molding method, molding was performed for 2 hours at 180 ° C. under a pressure of 0.5 MPa. The obtained molded product was cut into a size of width 101.6 mm × length 152.4 mm to obtain a test piece for a compression strength test after impact. The test piece was given an impact energy of 6.67 J per 1 mm thickness. Using this test piece, the CAI after 30.5 kJ impact was measured.

[実施例1]
グリシジルアミン型エポキシ樹脂(ジャパンエポキシレジン社製 Ep604)100質量部に平均粒子径10μmに粉砕したポリエーテルスルホン(住友化学工業社製スミカエクセルPES−5003P)10質量部添加し、プラネタリミキサーで80℃にて混練して、Ep604にポリエーテルスルホンを完全に溶解したエポキシ樹脂溶液を得た。
[Example 1]
10 parts by mass of polyethersulfone (Sumika Excel PES-5003P manufactured by Sumitomo Chemical Co., Ltd.) pulverized to an average particle size of 10 μm was added to 100 parts by mass of glycidylamine type epoxy resin (Ep604 manufactured by Japan Epoxy Resin Co., Ltd.), and 80 ° C. with a planetary mixer. To obtain an epoxy resin solution in which polyethersulfone is completely dissolved in Ep604.

H−NMR法測定からポリエーテルスルホンのポリマー末端は水酸基であり、GPCで見積もった質量平均分子量は56100であった。すなわち、質量平均分子量28050あたりに水酸基を1つ持つことを確認した。 From the 1 H-NMR method measurement, the polymer terminal of polyethersulfone was a hydroxyl group, and the mass average molecular weight estimated by GPC was 56100. That is, it was confirmed that the polymer had one hydroxyl group per mass average molecular weight 28050.

70℃に設定したロールミルで、上述のエポキシ樹脂溶液全量と平均粒子径10μmに粉砕したポリエーテルスルホン129質量部とを混練した。ポリエーテルスルホンの仕込み量は全質量に対して46.1質量%であった。   In a roll mill set at 70 ° C., the total amount of the epoxy resin solution described above and 129 parts by mass of polyethersulfone pulverized to an average particle size of 10 μm were kneaded. The amount of polyethersulfone charged was 46.1% by mass relative to the total mass.

次いで、硬化剤として4,4’−ジアミノ−3,3’−ジエチル−5,5’−ジメチルジフェニルメタン(イハラケミカル製キュアハードMED)60.7質量部、3,3’−ジアミノジフェニルスルホン2質量部を混練して樹脂組成物を得た。樹脂組成物の80℃、せん断速度1000s−1における粘度は823Pa・sであった。なお、3,3’−ジアミノジフェニルスルホンは、エポキシ樹脂とポリエーテルスルホンの相溶化剤としての特性も有している。 Next, 6,4′-diamino-3,3′-diethyl-5,5′-dimethyldiphenylmethane (Cure Hard MED manufactured by Ihara Chemical) as a curing agent is 60.7 parts by mass, and 3,3′-diaminodiphenylsulfone is 2 masses. Parts were kneaded to obtain a resin composition. The viscosity of the resin composition at 80 ° C. and a shear rate of 1000 s −1 was 823 Pa · s. Note that 3,3′-diaminodiphenylsulfone also has characteristics as a compatibilizer for epoxy resin and polyethersulfone.

この樹脂組成物を金型に仕込み、オートクレーブ法で室温から3℃/分で180℃まで昇温後、同温度で60分保持することで硬化物を得た。   This resin composition was charged into a mold, heated from room temperature to 180 ° C. at 3 ° C./min by an autoclave method, and then held at that temperature for 60 minutes to obtain a cured product.

硬化物の断面加工を行い透過型電子顕微鏡(TEM)で観察したところ、島成分の平均粒子径は387nmであった。   When the cross section of the cured product was processed and observed with a transmission electron microscope (TEM), the average particle size of the island components was 387 nm.

TEM−EELS分光法測定のS,N元素マッピングからポリエーテルスルホンに由来するS元素は主に海成分で観察されることを確認した。エポキシ樹脂と硬化剤に由来するN元素は主に島成分から観察されることを確認した。このことから、島成分の主成分が熱硬化性樹脂と硬化剤であり、海成分の主成分が熱可塑性樹脂であることを確認した。   From the S and N element mapping of the TEM-EELS spectroscopy measurement, it was confirmed that the S element derived from the polyether sulfone was mainly observed in the sea component. It was confirmed that the N element derived from the epoxy resin and the curing agent was mainly observed from the island component. From this, it was confirmed that the main component of the island component was a thermosetting resin and a curing agent, and the main component of the sea component was a thermoplastic resin.

硬化物のガラス転移温度は238℃であった。   The glass transition temperature of the cured product was 238 ° C.

硬化物(幅1cm、長さ5cm、厚さ2mm)の板を25℃のメチルエチルケトン中に浸け30日放置した。その後、硬化物を溶剤中から取り出し、150℃で1時間真空乾燥させた。乾燥後の硬化物の外観に変化はなく、質量変化も認められなかった。   A plate of the cured product (width 1 cm, length 5 cm, thickness 2 mm) was immersed in methyl ethyl ketone at 25 ° C. and left for 30 days. Thereafter, the cured product was taken out from the solvent and vacuum dried at 150 ° C. for 1 hour. There was no change in the appearance of the cured product after drying, and no change in mass was observed.

上述の樹脂組成物をフィルムコーターで離型フィルム上に塗布し、目付51.2g/mの離型フィルム付樹脂組成物シートを作製した。次いで、炭素繊維[東邦テナックス社製:テナックス(登録商標)UTS−50]を平行に並べ、樹脂組成物シート2枚で挟み込み、温度100℃、圧力0.3MPaで加熱することで樹脂組成物を炭素繊維間に含浸させた。その結果、炭素繊維の目付が190g/m、樹脂含有率が35質量%の一方向プリプレグを得た。プリプレグの製造は連続的に行われ、その製造速度は5m/分、製造幅は50cmであった。 The above resin composition was applied onto a release film with a film coater to prepare a resin composition sheet with a release film having a basis weight of 51.2 g / m 2 . Next, carbon fibers [Toho Tenax Co., Ltd .: Tenax (registered trademark) UTS-50] are arranged in parallel, sandwiched between two resin composition sheets, and heated at a temperature of 100 ° C. and a pressure of 0.3 MPa to obtain a resin composition. Impregnation between carbon fibers. As a result, a unidirectional prepreg having a carbon fiber basis weight of 190 g / m 2 and a resin content of 35% by mass was obtained. The production of the prepreg was carried out continuously, the production speed was 5 m / min, and the production width was 50 cm.

このプリプレグを用いて、前記試験法に記載した方法で繊維強化複合材料からなる試験片を作製した。得られた繊維強化複合材料の試験片の層間破壊靭性(GIIC)は4050kJ/mであり、衝撃後圧縮強度(CAI)は527MPaであり、いずれも高いものであった。 Using this prepreg, a test piece made of a fiber-reinforced composite material was produced by the method described in the above test method. The fiber reinforced composite material specimen had an interlaminar fracture toughness (GIIC) of 4050 kJ / m 2 and a post-impact compressive strength (CAI) of 527 MPa, both of which were high.

[実施例2]
グリシジルアミン型エポキシ樹脂(ジャパンエポキシレジン社製 Ep604)100質量部に平均粒子径10μmに粉砕したポリエーテルスルホン(住友化学工業社製スミカエクセルPES−5003P)10質量部添加し、プラネタリミキサーで80℃にて混練して、Ep604にポリエーテルスルホンを完全に溶解したエポキシ樹脂溶液を得た。
[Example 2]
10 parts by mass of polyethersulfone (Sumika Excel PES-5003P manufactured by Sumitomo Chemical Co., Ltd.) pulverized to an average particle size of 10 μm was added to 100 parts by mass of glycidylamine type epoxy resin (Ep604 manufactured by Japan Epoxy Resin Co., Ltd.), and 80 ° C. with a planetary mixer. To obtain an epoxy resin solution in which polyethersulfone is completely dissolved in Ep604.

H−NMR法測定からポリエーテルスルホンのポリマー末端は水酸基であり、GPCで見積もった質量平均分子量は56100であった。すなわち、質量平均分子量28050あたりに水酸基を1つ持つことを確認した。 From the 1 H-NMR method measurement, the polymer terminal of polyethersulfone was a hydroxyl group, and the mass average molecular weight estimated by GPC was 56100. That is, it was confirmed that the polymer had one hydroxyl group per mass average molecular weight 28050.

70℃に設定したロールミルで、上述のエポキシ樹脂溶液全量と平均粒子径10μmに粉砕したポリエーテルスルホン30質量部とを混練した。ポリエーテルスルホンの仕込み量は全質量に対して19.8質量%であった。   In a roll mill set at 70 ° C., the total amount of the epoxy resin solution described above and 30 parts by mass of polyethersulfone pulverized to an average particle size of 10 μm were kneaded. The amount of polyethersulfone charged was 19.8% by mass relative to the total mass.

次いで、硬化剤として4,4’−ジアミノ−3,3’−ジエチル−5,5’−ジメチルジフェニルメタン(イハラケミカル製キュアハードMED)60.7質量部、3,3’−ジアミノジフェニルスルホン1質量部を混練して樹脂組成物を得た。樹脂組成物の80℃、せん断速度1000s−1における粘度は323Pa・sであった。なお、3,3’−ジアミノジフェニルスルホンは、エポキシ樹脂とポリエーテルスルホンの相溶化剤としての特性も有している。 Next, 4,4′-diamino-3,3′-diethyl-5,5′-dimethyldiphenylmethane (Ihara Chemical Cure Hard MED) 60.7 parts by mass, 3,3′-diaminodiphenylsulfone 1 mass as a curing agent Parts were kneaded to obtain a resin composition. The viscosity of the resin composition at 80 ° C. and a shear rate of 1000 s −1 was 323 Pa · s. Note that 3,3′-diaminodiphenylsulfone also has characteristics as a compatibilizer for epoxy resin and polyethersulfone.

この樹脂組成物を金型に仕込み、オートクレーブ法で室温から3℃/分で180℃まで昇温後、同温度で60分保持することで硬化物を得た。   This resin composition was charged into a mold, heated from room temperature to 180 ° C. at 3 ° C./min by an autoclave method, and then held at that temperature for 60 minutes to obtain a cured product.

硬化物の断面加工を行い、透過型電子顕微鏡(TEM)で観察したところ、島成分の平均粒子径は2.1μmであった。   When the cross section of the cured product was processed and observed with a transmission electron microscope (TEM), the average particle size of the island components was 2.1 μm.

TEM−EELS分光法測定のS,N元素マッピングからポリエーテルスルホンに由来するS元素は海成分で主に観察されることを確認した。エポキシ樹脂と硬化剤に由来するN元素は主に島成分から観察されることを確認した。このことから、島成分の主成分が熱硬化性樹脂と硬化剤であり、海成分の主成分が熱可塑性樹脂であることを確認した。   From the S and N element mapping of the TEM-EELS spectroscopy measurement, it was confirmed that the S element derived from the polyether sulfone was mainly observed in the sea component. It was confirmed that the N element derived from the epoxy resin and the curing agent was mainly observed from the island component. From this, it was confirmed that the main component of the island component was a thermosetting resin and a curing agent, and the main component of the sea component was a thermoplastic resin.

硬化物のガラス転移温度は239℃であった。   The glass transition temperature of the cured product was 239 ° C.

硬化物(幅1cm、長さ5cm、厚さ2mm)の板を25℃のメチルエチルケトン中に浸け30日放置した。その後、硬化物を溶剤中から取り出し、150℃で1時間真空乾燥させた。乾燥後の硬化物の外観に変化はなく、質量変化も認められなかった。   A plate of the cured product (width 1 cm, length 5 cm, thickness 2 mm) was immersed in methyl ethyl ketone at 25 ° C. and left for 30 days. Thereafter, the cured product was taken out from the solvent and vacuum dried at 150 ° C. for 1 hour. There was no change in the appearance of the cured product after drying, and no change in mass was observed.

上述の樹脂組成物をフィルムコーターで離型フィルム上に塗布し、目付51.2g/mの離型フィルム付樹脂組成物シートを作製した。次いで、炭素繊維[東邦テナックス社製:テナックス(登録商標)UTS−50]を平行に並べ、樹脂組成物シート2枚で挟み込み、温度100℃、圧力0.3MPaで加熱することで樹脂組成物を炭素繊維間に含浸させた。 The above resin composition was applied onto a release film with a film coater to prepare a resin composition sheet with a release film having a basis weight of 51.2 g / m 2 . Next, carbon fibers [Toho Tenax Co., Ltd .: Tenax (registered trademark) UTS-50] are arranged in parallel, sandwiched between two resin composition sheets, and heated at a temperature of 100 ° C. and a pressure of 0.3 MPa to obtain a resin composition. Impregnation between carbon fibers.

その結果、炭素繊維の目付が190g/m、樹脂組成物の含有率が35質量%の一方向プリプレグを得た。プリプレグの製造は連続的に行われ、その製造速度は5m/分、製造幅は50cmであった。 As a result, a unidirectional prepreg having a carbon fiber basis weight of 190 g / m 2 and a resin composition content of 35% by mass was obtained. The production of the prepreg was carried out continuously, the production speed was 5 m / min, and the production width was 50 cm.

このプリプレグを用いて、前記試験法に記載した方法で繊維強化複合材料からなる試験片を作製した。得られた繊維強化複合材料の試験片の層間破壊靭性(GIIC)は3250kJ/mであり、衝撃後圧縮強度(CAI)は437MPaであり、いずれも高いものであった。 Using this prepreg, a test piece made of a fiber-reinforced composite material was produced by the method described in the above test method. The test specimen of the obtained fiber reinforced composite material had an interlaminar fracture toughness (GIIC) of 3250 kJ / m 2 and a compressive strength after impact (CAI) of 437 MPa, both of which were high.

[比較例1]
グリシジルアミン型エポキシ樹脂(ジャパンエポキシレジン社製 Ep604)100質量部に平均粒子径10μmに粉砕したポリエーテルスルホン(住友化学工業社製 スミカエクセルPES−5003P)7質量部を添加した。この混合物を、プラミタリミキサーにて80℃で混練し、Ep604にポリエーテルスルホンが完全に溶解したエポキシ樹脂溶液を得た。
[Comparative Example 1]
7 parts by mass of polyethersulfone (Sumitomo Chemical Co., Ltd. Sumika Excel PES-5003P) pulverized to an average particle size of 10 μm was added to 100 parts by mass of a glycidylamine type epoxy resin (Ep604 manufactured by Japan Epoxy Resin Co., Ltd.). This mixture was kneaded at 80 ° C. with a planetary mixer to obtain an epoxy resin solution in which polyethersulfone was completely dissolved in Ep604.

H−NMR法測定からポリエーテルスルホンのポリマー末端は水酸基であり、GPCで見積もった質量平均分子量は56100であった。すなわち、質量平均分子量28050あたりに水酸基を1つ持つことを確認した。 From the 1 H-NMR method measurement, the polymer terminal of polyethersulfone was a hydroxyl group, and the mass average molecular weight estimated by GPC was 56100. That is, it was confirmed that the polymer had one hydroxyl group per mass average molecular weight 28050.

70℃に設定したロールミルで、上記エポキシ樹脂と硬化剤として4,4’−ジアミノ−3,3’−ジエチル−5,5’−ジメチルジフェニルメタン(イハラケミカル製キュアハードMED)60.7質量部とを混練して樹脂組成物を得た。なお、ポリエーテルスルホンの仕込み量は全質量に対して4.2質量%であった。また、樹脂組成物の80℃、せん断速度1000s−1における粘度は9Pa・sであった。 In a roll mill set at 70 ° C., 60.7 parts by mass of the above epoxy resin and 4,4′-diamino-3,3′-diethyl-5,5′-dimethyldiphenylmethane (Cure Hard MED manufactured by Ihara Chemical) as a curing agent; Were kneaded to obtain a resin composition. The amount of polyethersulfone charged was 4.2% by mass with respect to the total mass. The viscosity of the resin composition at 80 ° C. and a shear rate of 1000 s −1 was 9 Pa · s.

この樹脂組成物を金型に仕込み、オートクレーブ法で室温から3℃/分で180℃まで昇温後、同温度で60分保持することで硬化物を得た。   This resin composition was charged into a mold, heated from room temperature to 180 ° C. at 3 ° C./min by an autoclave method, and then held at that temperature for 60 minutes to obtain a cured product.

硬化物の断面加工を行い透過型電子顕微鏡(TEM)で観察したところ、島成分の平均粒子径は1.5μmであった。   When the cross-section of the cured product was processed and observed with a transmission electron microscope (TEM), the average particle size of the island component was 1.5 μm.

TEM−EELS分光法測定のS,N元素マッピングからポリエーテルスルホンに由来するS元素は島成分で主に観察されることを確認した。エポキシ樹脂と硬化剤に由来するN元素は、主に海成分から観察されることを確認した。このことから、実施例1および実施例2とは異なり、比較例1は、島成分の主成分が熱可塑性樹脂であり、海成分の主成分が熱硬化性樹脂と硬化剤であることを確認した。   From the S and N element mapping of the TEM-EELS spectroscopy measurement, it was confirmed that the S element derived from the polyethersulfone was mainly observed in the island component. It was confirmed that the N element derived from the epoxy resin and the curing agent was mainly observed from the sea component. From this, unlike Example 1 and Example 2, Comparative Example 1 confirms that the main component of the island component is a thermoplastic resin and the main component of the sea component is a thermosetting resin and a curing agent. did.

硬化物のガラス転移温度は243℃であった。   The glass transition temperature of the cured product was 243 ° C.

硬化物(幅1cm、長さ5cm、厚さ2mm)の板を25℃のメチルエチルケトン中に浸け30日放置した。その後、硬化物を溶剤中から取り出し、150℃で1時間真空乾燥させた。乾燥後の樹脂板の外観に変化はなく、質量変化も認められなかった。   A plate of the cured product (width 1 cm, length 5 cm, thickness 2 mm) was immersed in methyl ethyl ketone at 25 ° C. and left for 30 days. Thereafter, the cured product was taken out from the solvent and vacuum dried at 150 ° C. for 1 hour. There was no change in the appearance of the resin plate after drying, and no change in mass was observed.

上述の樹脂組成物をフィルムコーターにより離型フィルム上に塗布し、目付51.2g/mの離型フィルム付樹脂組成物シートを作製した。次いで、炭素繊維[東邦テナックス社製:テナックス(登録商標)UTS−50]を平行に並べ、樹脂組成物シート2枚で挟み込み、温度100℃、圧力0.3MPaで加熱することで樹脂組成物を炭素繊維間に含浸させた。その結果、炭素繊維の目付が190g/m、樹脂組成物の含有率が35質量%の一方向プリプレグを得た。プリプレグの製造は連続的に行われ、その製造速度は5m/分、製造幅は50cmであった。 The above resin composition was applied onto a release film by a film coater to prepare a resin composition sheet with a release film having a basis weight of 51.2 g / m 2 . Next, carbon fibers [Toho Tenax Co., Ltd .: Tenax (registered trademark) UTS-50] are arranged in parallel, sandwiched between two resin composition sheets, and heated at a temperature of 100 ° C. and a pressure of 0.3 MPa to obtain a resin composition. Impregnation between carbon fibers. As a result, a unidirectional prepreg having a carbon fiber basis weight of 190 g / m 2 and a resin composition content of 35% by mass was obtained. The production of the prepreg was carried out continuously, the production speed was 5 m / min, and the production width was 50 cm.

このプリプレグを用いて、前記試験法に記載した方法で繊維強化複合材料からなる試験片を作製した。得られた繊維強化複合材料の試験片の層間破壊靭性(GIIC)は1020kJ/mであり、衝撃後圧縮強度(CAI)は258MPaであり、いずれも実施例1と実施例2に比べ低いものであった。 Using this prepreg, a test piece made of a fiber-reinforced composite material was produced by the method described in the above test method. The test specimen of the obtained fiber reinforced composite material has an interlaminar fracture toughness (GIIC) of 1020 kJ / m 2 and a compressive strength after impact (CAI) of 258 MPa, both of which are lower than those of Examples 1 and 2. Met.

[比較例2]
グリシジルアミン型エポキシ樹脂(ジャパンエポキシレジン社製 Ep604)65質量部と、ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製 Ep828)15質量部と、ウレタン変性エポキシ樹脂(アデカ社製 EPU−6)20質量部に、平均粒子径10μmに粉砕したポリエーテルスルホン(住友化学工業社製 スミカエクセルPES−5003P)10質量部添加した。これらを、プラミタリミキサーで80℃にて混練して、エポキシ樹脂にポリエーテルスルホンが完全に溶解したエポキシ樹脂溶液を得た。
[Comparative Example 2]
65 parts by mass of a glycidylamine type epoxy resin (Ep604 made by Japan Epoxy Resin), 15 parts by mass of a bisphenol A type epoxy resin (Ep828 made by Japan Epoxy Resin), and 20 parts by mass of a urethane-modified epoxy resin (EPU-6 made by Adeka) 10 parts by mass of polyethersulfone (Sumitomo Chemical Co., Ltd. Sumika Excel PES-5003P) pulverized to an average particle size of 10 μm was added to the part. These were kneaded at 80 ° C. with a planetary mixer to obtain an epoxy resin solution in which polyethersulfone was completely dissolved in the epoxy resin.

H−NMR法測定からポリエーテルスルホンのポリマー末端は水酸基であり、GPCで見積もった質量平均分子量は56100であった。すなわち、質量平均分子量28050に対して水酸基を1つ持つことを確認した。 From the 1 H-NMR method measurement, the polymer terminal of polyethersulfone was a hydroxyl group, and the mass average molecular weight estimated by GPC was 56100. That is, it was confirmed to have one hydroxyl group with respect to the mass average molecular weight 28050.

70℃に設定したロールミルで、上述のエポキシ樹脂溶液全量と平均粒子径10μmに粉砕したポリエーテルスルホン25質量部とを混練した。その後、10質量%のメラニン樹脂微粒子をコート剤とするマイクロカプセル化された4,4’−ジアミノジフェニルスルホン45質量部を混練して樹脂組成物を得た。ポリエーテルスルホンの仕込み量は全質量に対して19.4質量%であった。また、樹脂組成物の80℃、せん断速度1000s−1における粘度は498Pa・sであった。 In a roll mill set at 70 ° C., the total amount of the epoxy resin solution described above and 25 parts by mass of polyethersulfone pulverized to an average particle size of 10 μm were kneaded. Thereafter, 45 parts by mass of microencapsulated 4,4′-diaminodiphenylsulfone having 10% by mass of melanin resin fine particles as a coating agent was kneaded to obtain a resin composition. The amount of polyethersulfone charged was 19.4% by mass relative to the total mass. The viscosity of the resin composition at 80 ° C. and a shear rate of 1000 s −1 was 498 Pa · s.

この樹脂組成物を金型に仕込み、オートクレーブ法で室温から3℃/分で180℃まで昇温後、同温度で60分保持することで硬化物を得た。   This resin composition was charged into a mold, heated from room temperature to 180 ° C. at 3 ° C./min by an autoclave method, and then held at that temperature for 60 minutes to obtain a cured product.

硬化物の透過型電子顕微鏡の結果、島成分の平均粒子径は9.8μmであった。   As a result of the transmission electron microscope of the cured product, the average particle size of the island component was 9.8 μm.

TEM−EELS分光法測定のS,N元素マッピングからポリエーテルスルホンに由来するS元素は島成分で主に観察されることを確認した。エポキシ樹脂と硬化剤に由来するN元素は主に海成分から観察されることを確認した。このことから、実施例1および実施例2とは異なり、比較例2は、島成分の主成分が熱可塑性樹脂であり、海成分の主成分が熱硬化性樹脂と硬化剤であることを確認した。   From the S and N element mapping of the TEM-EELS spectroscopy measurement, it was confirmed that the S element derived from the polyethersulfone was mainly observed in the island component. It was confirmed that the N element derived from the epoxy resin and the curing agent was mainly observed from the sea component. From this, unlike Example 1 and Example 2, Comparative Example 2 confirms that the main component of the island component is a thermoplastic resin and the main component of the sea component is a thermosetting resin and a curing agent. did.

硬化物のガラス転移温度は213℃であった。   The glass transition temperature of the cured product was 213 ° C.

硬化物(幅1cm、長さ5cm、厚さ2mm)の板を25℃のメチルエチルケトン中に浸け30日放置した。その後、硬化物を溶剤中から取り出し、150℃で1時間真空乾燥させた。乾燥後の樹脂板の外観に変化はなく、質量変化も認められなかった。   A plate of the cured product (width 1 cm, length 5 cm, thickness 2 mm) was immersed in methyl ethyl ketone at 25 ° C. and left for 30 days. Thereafter, the cured product was taken out from the solvent and vacuum dried at 150 ° C. for 1 hour. There was no change in the appearance of the resin plate after drying, and no change in mass was observed.

上述の樹脂組成物をフィルムコーターにより離型フィルム上に塗布し、目付51.2g/mの離型フィルム付樹脂組成物シートを作製した。次いで、炭素繊維[東邦テナックス社製:テナックス(登録商標)UTS−50]を平行に並べ、樹脂組成物シート2枚で挟み込み、温度100℃、圧力0.3MPaで加熱することで樹脂組成物を炭素繊維間に含浸させた。その結果、炭素繊維の目付190g/m、樹脂組成物の含有率が35質量%の一方向プリプレグを得た。 The above resin composition was applied onto a release film by a film coater to prepare a resin composition sheet with a release film having a basis weight of 51.2 g / m 2 . Next, carbon fibers [Toho Tenax Co., Ltd .: Tenax (registered trademark) UTS-50] are arranged in parallel, sandwiched between two resin composition sheets, and heated at a temperature of 100 ° C. and a pressure of 0.3 MPa to obtain a resin composition. Impregnation between carbon fibers. As a result, a unidirectional prepreg having a basis weight of carbon fiber of 190 g / m 2 and a resin composition content of 35% by mass was obtained.

プリプレグの製造は連続的に行われ、その製造速度は5m/分、製造幅は50cmであった。このプリプレグを用いて、前記試験法に記載した方法で繊維強化複合材料からなる試験片を作製した。得られた繊維強化複合材料の試験片の層間破壊靭性(GIIC)は2203kJ/mであり、衝撃後圧縮強度(CAI)は318MPaであり、いずれも実施例1と実施例2に比べ低いものであった。 The production of the prepreg was carried out continuously, the production speed was 5 m / min, and the production width was 50 cm. Using this prepreg, a test piece made of a fiber-reinforced composite material was produced by the method described in the above test method. The test specimen of the obtained fiber reinforced composite material has an interlaminar fracture toughness (GIIC) of 2203 kJ / m 2 and a post-impact compressive strength (CAI) of 318 MPa, both of which are lower than those of Examples 1 and 2. Met.

[比較例3]
グリシジルアミン型エポキシ樹脂(ジャパンエポキシレジン社製 Ep604)100質量部に平均粒子径10μmに粉砕したポリエーテルスルホン(住友化学工業社製 スミカエクセルPES−5003P)5質量部を添加した。これらを、プラミタリミキサーで80℃にて混練して、Ep604にポリエーテルスルホンを完全に溶解したエポキシ樹脂溶液を得た。
[Comparative Example 3]
5 parts by mass of polyethersulfone (Sumitomo Chemical Co., Ltd., Sumika Excel PES-5003P) pulverized to an average particle size of 10 μm was added to 100 parts by mass of a glycidylamine type epoxy resin (Ep604 manufactured by Japan Epoxy Resin Co., Ltd.). These were kneaded at 80 ° C. with a planetary mixer to obtain an epoxy resin solution in which polyethersulfone was completely dissolved in Ep604.

H−NMR法測定からポリエーテルスルホンのポリマー末端は水酸基であり、GPCで見積もった質量平均分子量は56100であった。すなわち、質量平均分子量28050あたりに水酸基を1つ持つことを確認した。 From the 1 H-NMR method measurement, the polymer terminal of polyethersulfone was a hydroxyl group, and the mass average molecular weight estimated by GPC was 56100. That is, it was confirmed that the polymer had one hydroxyl group per mass average molecular weight 28050.

70℃に設定したロールミルで、上述のエポキシ樹脂溶液全量と平均粒子径10μmに粉砕したポリエーテルスルホン33.4質量部とを混練した。ポリエーテルスルホンの仕込み量は全質量に対して20質量%であった。   The total amount of the epoxy resin solution described above and 33.4 parts by mass of polyethersulfone pulverized to an average particle size of 10 μm were kneaded with a roll mill set at 70 ° C. The amount of polyethersulfone charged was 20% by mass relative to the total mass.

硬化剤として4,4’−ジアミノ−3,3’−ジエチル−5,5’−ジメチルジフェニルメタン(イハラケミカル製キュアハードMED)28.3質量部、3,3’−ジアミノジフェニルスルホン24.9質量部を混練して、樹脂組成物を得た。樹脂組成物の80℃、せん断速度1000s−1における粘度は385Pa・sであった。 4,4′-diamino-3,3′-diethyl-5,5′-dimethyldiphenylmethane (Cure Hard MED manufactured by Ihara Chemical) as a curing agent, 28.3 parts by mass, 3,3′-diaminodiphenylsulfone 24.9 parts by mass The parts were kneaded to obtain a resin composition. The viscosity of the resin composition at 80 ° C. and a shear rate of 1000 s −1 was 385 Pa · s.

樹脂組成物を金型に仕込み、オートクレーブ法で室温から3℃/分で180℃まで昇温後、同温度で60分保持することで透明な硬化物を得た。硬化物の断面加工を行い透過型電子顕微鏡(TEM)で観察したところ、海島相分離構造は認められなかった。   The resin composition was charged into a mold, heated from room temperature to 180 ° C. at 3 ° C./min by an autoclave method, and held at that temperature for 60 minutes to obtain a transparent cured product. When a cross-section of the cured product was processed and observed with a transmission electron microscope (TEM), no sea-island phase separation structure was observed.

[比較例4]
平均粒子径10μmに粉砕したポリエーテルスルホン(住友化学工業社製 スミカエクセルPES−5003P)をプレス成形し、幅1cm、長さ5cm、厚さ2mmの樹脂板を作製した。
[Comparative Example 4]
Polyethersulfone (Sumika Excel PES-5003P manufactured by Sumitomo Chemical Co., Ltd.) pulverized to an average particle size of 10 μm was press-molded to produce a resin plate having a width of 1 cm, a length of 5 cm, and a thickness of 2 mm.

この樹脂板を25℃のメチルエチルケトン中に浸け30日放置した。その後、樹脂板を溶剤中から取り出そうとしたが、その大半が溶解し、残った一部(約10質量%)は白化し、容器に付着しており、回収することが出来なかった。   This resin plate was immersed in 25 ° C. methyl ethyl ketone and allowed to stand for 30 days. Thereafter, an attempt was made to remove the resin plate from the solvent, but most of it was dissolved, and the remaining part (about 10% by mass) was whitened and adhered to the container, and could not be recovered.

[比較例5]
グリシジルアミン型エポキシ樹脂(ジャパンエポキシレジン社製 Ep604)100質量部に平均粒子径10μmに粉砕したポリエーテルスルホン(住友化学社製スミカエクセル3600P)5質量部添加し、プラミタリミキサーで80℃にて混練して、Ep604にポリエーテルスルホンを完全に溶解したエポキシ樹脂溶液を得た。
[Comparative Example 5]
5 parts by weight of polyethersulfone (Sumitomo Chemical Sumika Excel 3600P) pulverized to an average particle size of 10 μm was added to 100 parts by weight of glycidylamine type epoxy resin (Ep604 manufactured by Japan Epoxy Resin Co., Ltd.), and at 80 ° C. with a planetary mixer. By kneading, an epoxy resin solution in which polyethersulfone was completely dissolved in Ep604 was obtained.

H−NMR法測定からポリエーテルスルホンのポリマー末端は水酸基であり、GPCで見積もった質量平均分子量は14200であった。すなわち、質量平均分子量7100あたりに水酸基を1つ持つことを確認した。 From the 1 H-NMR method measurement, the polymer terminal of polyethersulfone was a hydroxyl group, and the mass average molecular weight estimated by GPC was 14,200. That is, it was confirmed that the polymer had one hydroxyl group per mass average molecular weight of 7,100.

70℃に設定したロールミルで、上述のエポキシ樹脂溶液全量に平均粒子径10μmに粉砕したポリエーテルスルホン33.4質量部を混練した。ポリエーテルスルホンの仕込み量は全質量に対して20質量%であった。   In a roll mill set at 70 ° C., 33.4 parts by mass of polyethersulfone pulverized to an average particle size of 10 μm was kneaded with the total amount of the epoxy resin solution described above. The amount of polyethersulfone charged was 20% by mass relative to the total mass.

次に硬化剤として4,4’−ジアミノ−3,3’−ジエチル−5,5’−ジメチルジフェニルメタン(イハラケミカル製キュアハードMED)28.3質量部、3,3’−ジアミノジフェニルスルホン24.9質量部を混練して樹脂組成物を得た。樹脂組成物の80℃、せん断速度1000s−1における粘度は235Pa・sであった。 Next, 28.3 parts by mass of 4,4′-diamino-3,3′-diethyl-5,5′-dimethyldiphenylmethane (Cure Hard MED manufactured by Ihara Chemical) as a curing agent, 3,3′-diaminodiphenylsulfone 24. 9 parts by mass was kneaded to obtain a resin composition. The viscosity of the resin composition at 80 ° C. and a shear rate of 1000 s −1 was 235 Pa · s.

この硬化物を金型に仕込み、オートクレーブ法で室温から3℃/分で180℃まで昇温後、同温度で60分保持することで透明な硬化物を得た。硬化物の断面加工を行い透過型電子顕微鏡(TEM)で観察したところ、海島相分離構造は認められなかった。   This cured product was charged into a mold, heated from room temperature to 180 ° C. at 3 ° C./min by an autoclave method, and held at that temperature for 60 minutes to obtain a transparent cured product. When a cross-section of the cured product was processed and observed with a transmission electron microscope (TEM), no sea-island phase separation structure was observed.

[比較例6]
グリシジルアミン型エポキシ樹脂(ジャパンエポキシレジン社製 Ep604)100質量部に平均粒子径10μmに粉砕したポリエーテルスルホン(住友化学工業社製スミカエクセルPES−5003P)10質量部添加し、プラネタリミキサーで80℃にて混練して、Ep604にポリエーテルスルホンを完全に溶解したエポキシ樹脂溶液を得た。
[Comparative Example 6]
10 parts by mass of polyethersulfone (Sumika Excel PES-5003P manufactured by Sumitomo Chemical Co., Ltd.) pulverized to an average particle size of 10 μm was added to 100 parts by mass of glycidylamine type epoxy resin (Ep604 manufactured by Japan Epoxy Resin Co., Ltd.), and 80 ° C. with a planetary mixer. To obtain an epoxy resin solution in which polyethersulfone is completely dissolved in Ep604.

H−NMR法測定からポリエーテルスルホンのポリマー末端は水酸基であり、GPCで見積もった質量平均分子量は56100であった。すなわち、質量平均分子量28050あたりに水酸基を1つ持つことを確認した。 From the 1 H-NMR method measurement, the polymer terminal of polyethersulfone was a hydroxyl group, and the mass average molecular weight estimated by GPC was 56100. That is, it was confirmed that the polymer had one hydroxyl group per mass average molecular weight 28050.

70℃に設定したロールミルで、上述のエポキシ樹脂溶液全量と硬化剤として4,4’−ジアミノ−3,3’−ジエチル−5,5’−ジメチルジフェニルメタン(イハラケミカル製キュアハードMED)60.7質量部、3,3’−ジアミノジフェニルスルホン2質量部、平均粒子径10μmに粉砕したポリエーテルスルホン240質量部を混練して樹脂組成物を得た。ポリエーテルスルホンの仕込み量は全質量に対して60.6質量%であった。なお、樹脂組成物の80℃、せん断速度1000s−1における粘度は9732Pa・sであった。 In a roll mill set at 70 ° C., the total amount of the above epoxy resin solution and 4,4′-diamino-3,3′-diethyl-5,5′-dimethyldiphenylmethane (Cure Hard MED manufactured by Ihara Chemical) 60.7 as a curing agent 2 parts by mass of 2,3 parts of 3,3′-diaminodiphenylsulfone and 240 parts by mass of polyethersulfone pulverized to an average particle size of 10 μm were kneaded to obtain a resin composition. The amount of polyethersulfone charged was 60.6% by mass relative to the total mass. The viscosity of the resin composition at 80 ° C. and a shear rate of 1000 s −1 was 9732 Pa · s.

この樹脂組成物を金型に仕込み、オートクレーブ法で室温から3℃/分で180℃まで昇温後、同温度で60分保持することで硬化物を得ようとしたが、高粘度のため無数の気泡を抱き込み、評価可能な硬化物を得ることが出来なかった。また、上述の樹脂組成物をフィルムコーターで離型フィルム上に塗布し、目付51.2g/mの離型フィルム付樹脂組成物シートを作製しようとしたが、樹脂組成物が高粘度であるため、樹脂フィルムを製造することが出来なかった。
This resin composition was charged into a mold, and after an increase in temperature from room temperature to 180 ° C. at room temperature by 3 ° C./min, an attempt was made to obtain a cured product by holding at that temperature for 60 minutes. It was not possible to obtain a cured product that could be evaluated by embedding the bubbles. Further, the above resin composition was applied on a release film with a film coater to produce a resin composition sheet with a release film having a basis weight of 51.2 g / m 2. However, the resin composition has a high viscosity. Therefore, the resin film could not be manufactured.

Figure 0005723505
Figure 0005723505

Figure 0005723505
Figure 0005723505

Claims (11)

少なくとも熱硬化性樹脂と、硬化剤と、熱可塑性樹脂と、前記熱可塑性樹脂と前記熱硬化性樹脂とを相溶させる相溶化剤と、からなり、硬化反応により、島成分が前記熱硬化性樹脂と前記硬化剤及び前記相溶化剤との反応物を含有し、海成分が前記熱可塑性樹脂を含有する海島相分離構造を形成する樹脂組成物であって、
前記相溶化剤は前記熱硬化性樹脂と反応して硬化させる化合物であり、前記相溶化剤の添加量は樹脂組成物の全量に対して0.01〜15質量%であり、
前記熱硬化性樹脂はエポキシ樹脂であり、
前記熱可塑性樹脂はポリエーテルスルホンであり、
前記相溶化剤はジアミノジフェニルスルホンである樹脂組成物。
At least a thermosetting resin, a curing agent, a thermoplastic resin, and a compatibilizing agent that compatibilizes the thermoplastic resin and the thermosetting resin, and the island component is converted into the thermosetting by a curing reaction. A resin composition containing a reaction product of a resin, the curing agent, and the compatibilizer, wherein a sea component forms a sea-island phase separation structure containing the thermoplastic resin,
It said compatibilizing agent is a compound capable of curing by reacting with the thermosetting resin, the addition amount of the compatibilizer Ri 0.01 to 15% by mass relative to the total amount of the resin composition,
The thermosetting resin is an epoxy resin,
The thermoplastic resin is a polyethersulfone;
The resin composition, wherein the compatibilizer is diaminodiphenyl sulfone .
前記硬化剤が4,4’−ジアミノ−3,3’−ジエチル−5,5’−ジメチルジフェニルメタンである請求項1に記載の樹脂組成物。   The resin composition according to claim 1, wherein the curing agent is 4,4'-diamino-3,3'-diethyl-5,5'-dimethyldiphenylmethane. 80℃、せん断速度1000s−1における粘度が10〜1000Pa・sである請求項1または請求項2に記載の樹脂組成物。 3. The resin composition according to claim 1, wherein the resin composition has a viscosity at 80 ° C. and a shear rate of 1000 s −1 of 10 to 1000 Pa · s. 前記熱可塑性樹脂が、前記熱硬化性樹脂と反応可能な官能基を有する、請求項1ないし請求項3のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3 , wherein the thermoplastic resin has a functional group capable of reacting with the thermosetting resin. 前記熱可塑性樹脂が、水酸基、カルボン酸基、イミノ基、またはアミノ基を有する、請求項4に記載の樹脂組成物。 The resin composition according to claim 4 , wherein the thermoplastic resin has a hydroxyl group, a carboxylic acid group, an imino group, or an amino group. 前記熱可塑性樹脂を、前記樹脂組成物の全重量の5〜60質量%の配合割合で含む請求項1ないし請求項5のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5 , comprising the thermoplastic resin in a blending ratio of 5 to 60% by mass of the total weight of the resin composition. 請求項1に記載の樹脂組成物の硬化反応により得られる海島相分離構造を有する硬化物であって、
前記海島相分離構造は、島成分が前記熱硬化性樹脂と前記硬化剤及び前記相溶化剤との反応物を含み、海成分が前記熱可塑性樹脂を含む硬化物。
A cured product having a sea-island phase separation structure obtained by a curing reaction of the resin composition according to claim 1,
The sea-island phase separation structure, the island component comprises a reaction product of the curing agent and the compatibilizer with the thermosetting resin, cured sea component comprises the thermoplastic resin.
前記熱硬化性樹脂と前記硬化剤及び前記相溶化剤との反応物の平均粒子径が、0.01〜10μmである請求項7に記載の硬化物。 The cured product according to claim 7 , wherein an average particle diameter of a reaction product of the thermosetting resin, the curing agent, and the compatibilizing agent is 0.01 to 10 μm. 前記硬化物のガラス転移温度が、150℃以上である請求項7または請求項8に記載の硬化物。 The cured product according to claim 7 or 8 , wherein a glass transition temperature of the cured product is 150 ° C or higher. 請求項1に記載の樹脂組成物を強化繊維に含浸させたプリプレグ。   A prepreg obtained by impregnating a reinforcing fiber with the resin composition according to claim 1. 請求項7ないし請求項9のいずれかに記載の硬化物をマトリクス樹脂とする繊維強化複合材料。 Fiber-reinforced composite material with the matrix resin cured product according to any one of claims 7 to 9.
JP2011077454A 2011-03-31 2011-03-31 Resin composition, cured product, prepreg, and fiber reinforced composite material Expired - Fee Related JP5723505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011077454A JP5723505B2 (en) 2011-03-31 2011-03-31 Resin composition, cured product, prepreg, and fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011077454A JP5723505B2 (en) 2011-03-31 2011-03-31 Resin composition, cured product, prepreg, and fiber reinforced composite material

Publications (2)

Publication Number Publication Date
JP2012211255A JP2012211255A (en) 2012-11-01
JP5723505B2 true JP5723505B2 (en) 2015-05-27

Family

ID=47265478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011077454A Expired - Fee Related JP5723505B2 (en) 2011-03-31 2011-03-31 Resin composition, cured product, prepreg, and fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JP5723505B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6056517B2 (en) * 2013-02-05 2017-01-11 東レ株式会社 Sizing agent-coated carbon fiber, method for producing sizing agent-coated carbon fiber, prepreg, and carbon fiber-reinforced thermoplastic resin composition
JP6451204B2 (en) * 2014-10-22 2019-01-16 日立化成株式会社 Resin composition, prepreg, metal foil with resin, and laminate and printed wiring board using these
JP6698397B2 (en) * 2016-03-25 2020-05-27 帝人株式会社 How to join wood members
JP6996500B2 (en) * 2016-05-13 2022-01-17 昭和電工マテリアルズ株式会社 Prepreg, prepreg with metal foil, laminated board, metal-clad laminated board and printed circuit board
TWI777919B (en) * 2016-05-13 2022-09-21 日商昭和電工材料股份有限公司 Prepregs, Prepregs with Metal Foils, Laminates, Metal-Clad Laminates, and Printed Circuit Boards
TWI778410B (en) * 2016-05-13 2022-09-21 日商昭和電工材料股份有限公司 Prepregs, Prepregs with Metal Foils, Laminates, Metal-Clad Laminates, and Printed Circuit Boards
CN107793700B (en) * 2016-09-02 2019-11-26 江苏先诺新材料科技有限公司 A kind of composite material and preparation method of carbon fiber/polyamide imine fiber hybrid fabric as enhancing main body
JP7398311B2 (en) * 2020-03-27 2023-12-14 帝人株式会社 Method for repairing damaged parts of thermosetting resin moldings
US20230106362A1 (en) * 2020-03-31 2023-04-06 Toray Industries, Inc. Fiber-reinforced resin, integrated molded article and method for producing fiber-reinforced resin
WO2023038043A1 (en) * 2021-09-08 2023-03-16 株式会社カネカ Benzoxazine composition and use thereof
WO2023076460A1 (en) * 2021-10-29 2023-05-04 Kaneka Corporation Crosslinkable thermoplastics
CN114058184B (en) * 2021-12-23 2023-07-04 广东优巨先进新材料股份有限公司 High-strength polysulfone composite material and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278412A (en) * 1994-02-17 1995-10-24 Toray Ind Inc Epoxy resin composition, prepreg and fiber reinforced plastic
KR100189169B1 (en) * 1996-11-27 1999-06-01 윤덕용 Carbon fiber reinforced composite material having a morphology gradient
JP2007297549A (en) * 2006-05-02 2007-11-15 Yokohama Rubber Co Ltd:The Epoxy resin composition
JP4910684B2 (en) * 2006-12-25 2012-04-04 横浜ゴム株式会社 Epoxy resin composition for fiber reinforced composite materials

Also Published As

Publication number Publication date
JP2012211255A (en) 2012-11-01

Similar Documents

Publication Publication Date Title
JP5723505B2 (en) Resin composition, cured product, prepreg, and fiber reinforced composite material
JP6007914B2 (en) Pre-preg for vacuum forming, fiber reinforced composite material and method for producing the same
KR101318093B1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP6663626B2 (en) Epoxy resin composition, prepreg, carbon fiber reinforced composite material, and method for producing these
US9738782B2 (en) EPOXY resin composition, prepreg and fiber-reinforced composite materials
TWI435887B (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
KR101314349B1 (en) Prepreg, fiber-reinforced composite material, and method for producing prepreg
JP5469086B2 (en) Thermosetting resin composition and prepreg using the same
JP5761366B2 (en) Epoxy resin composition, and film, prepreg, and fiber reinforced plastic using the same
JP5747763B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
WO2013122033A1 (en) Fiber-reinforced composite material
JP7213620B2 (en) Epoxy resin composition, prepreg, carbon fiber reinforced composite material and manufacturing method thereof
WO2013122034A1 (en) Fiber-reinforced composite material
JP2008007682A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
WO2014030636A1 (en) Epoxy resin composition and film, prepreg, and fiber-reinforced plastic using same
JP2016169381A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP2013166853A (en) Fiber-reinforced composite material
JP2010095557A (en) Prepreg and fiber-reinforced composite material
WO2019176935A1 (en) Prepreg and carbon fiber-reinforced composite material
JP5912920B2 (en) Fiber reinforced composite material
JP5912922B2 (en) Fiber reinforced composite material
JP2006219513A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2016199682A (en) Fiber-reinforced composite material
JP5912921B2 (en) Fiber reinforced composite material
WO2024071090A1 (en) Prepreg, and method for producing fiber-reinforced composite material using said prepreg

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150328

R150 Certificate of patent or registration of utility model

Ref document number: 5723505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees