JP2005105035A - Prepreg, manufacturing method thereof and laminated plate - Google Patents

Prepreg, manufacturing method thereof and laminated plate Download PDF

Info

Publication number
JP2005105035A
JP2005105035A JP2003337272A JP2003337272A JP2005105035A JP 2005105035 A JP2005105035 A JP 2005105035A JP 2003337272 A JP2003337272 A JP 2003337272A JP 2003337272 A JP2003337272 A JP 2003337272A JP 2005105035 A JP2005105035 A JP 2005105035A
Authority
JP
Japan
Prior art keywords
inorganic particles
yarn bundle
average particle
inorganic
glass cloth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003337272A
Other languages
Japanese (ja)
Inventor
Yasuyuki Kimura
康之 木村
Daisuke Matsuide
大祐 松出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Schwebel Co Ltd
Original Assignee
Asahi Schwebel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Schwebel Co Ltd filed Critical Asahi Schwebel Co Ltd
Priority to JP2003337272A priority Critical patent/JP2005105035A/en
Publication of JP2005105035A publication Critical patent/JP2005105035A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a prepreg which inhibits the increase in voids in a substrate, the melt viscosity rise in the prepreg and the bad influence on a copper foil while improving such lowering of a thermal expansion coefficient and such elevating of an elastic modulus under the environment of high temperatures as required for a printed wiring board and which is excellent in the productivity of laminated plates. <P>SOLUTION: The prepreg is inside the glass cloth yarn bundle arranged with inorganic particles having an average particle diameter of from 1 nm to 100 nm, is outside the glass cloth yarn bundle arranged with inorganic particles having an average particle diameter of 500 nm to 5,000 nm, and besides is on the surface layer of the glass cloth yarn bundle arranged with inorganic particles having an average particle diameter of from more than the average particle diameter of the inorganic particles inside the glass cloth yarn bundle to less than the average particle diameter of the inorganic particles outside the glass cloth yarn bundle. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、プリント配線基板に使用されるガラスクロス補強樹脂積層板を作るための、プリプレグに関するものである。より詳細には、本発明は低熱膨張率、高温環境下での高弾性率、低誘電率、低誘電正接、及びガラスクロス補強積層板を製造するにあたって良好な成型性を有するプリプレグに関するものである。   The present invention relates to a prepreg for making a glass cloth reinforced resin laminate used for a printed wiring board. More specifically, the present invention relates to a prepreg having a low thermal expansion coefficient, a high elastic modulus under a high temperature environment, a low dielectric constant, a low dielectric loss tangent, and a good moldability in manufacturing a glass cloth reinforced laminate. .

プリント配線基板等に加工されるガラスクロス補強樹脂積層板(以下、単に「積層板」ともいう。)は、以下のようにして製造されている。最初に、エポキシ樹脂、ポリイミド樹脂、等の熱硬化性樹脂を主成分とするマトリックス樹脂を有機溶剤に溶解したマトリックス樹脂溶液(以下、「樹脂ワニス」という。)を、ガラスクロスに含浸させる。次に、その有機溶剤を加熱乾燥し、マトリックス樹脂を半硬化状態(以下、「Bステージ」ともいう。)にしたガラスクロス樹脂含浸プリプレグ(以下、単に「プリプレグ」という。)を製造する。最後に、銅箔等の金属箔とプリプレグを1枚、又は複数枚重ね合わせて、加熱、及び加圧することによって積層成形を行い、Bステージのマトリックス樹脂を完全に硬化させて積層板を得る。   A glass cloth reinforced resin laminate (hereinafter simply referred to as “laminate”) processed into a printed wiring board or the like is manufactured as follows. First, a glass cloth is impregnated with a matrix resin solution (hereinafter referred to as “resin varnish”) in which a matrix resin mainly composed of a thermosetting resin such as an epoxy resin or a polyimide resin is dissolved in an organic solvent. Next, the organic solvent is dried by heating to produce a glass cloth resin-impregnated prepreg (hereinafter simply referred to as “prepreg”) in which the matrix resin is in a semi-cured state (hereinafter also referred to as “B stage”). Finally, one or a plurality of metal foils such as copper foil and prepregs are superposed, laminated by heating and pressurizing, and the B stage matrix resin is completely cured to obtain a laminate.

プリント配線基板の従来の用途は、半導体パッケージや電子部品を搭載するマザーボード用途が主であった。しかしながら、近年の電子機器の高速化、軽薄短小化に従い、半導体デバイスを搭載してパッケージを形成するサブストレート用途にまで拡大している。加えて、マザーボードに直接半導体デバイスを搭載するベアチップ実装と呼ばれる実装形態も検討されている。
上記のサブストレート用途やベアチップ実装形態のマザーボード用途の積層板では、微細パターンを有するプリント配線基板上への半導体デバイスの搭載が不可欠である。しかしながら、主にシリコンウエハからなる半導体デバイスの熱膨張率が3〜4ppm/℃であるのに対して、通常のエポキシ樹脂とEガラスクロスからなる積層板の熱膨張率は15〜30ppm/℃であるため、熱膨張率の不整合が存在し搭載不良が発生することがある。また、上記の軽薄短小化に伴い、薄いプリント配線基板上に半導体デバイスを高温リフロー条件下で搭載する為、該プリント配線基板の弾性率が低下し変形を生じて搭載不良が発生することがある。
The conventional use of the printed wiring board has been mainly a motherboard use for mounting semiconductor packages and electronic components. However, in recent years, as electronic devices have become faster and lighter, thinner and smaller, they have been expanded to use as a substrate for mounting semiconductor devices to form packages. In addition, a mounting form called “bare chip mounting” in which a semiconductor device is directly mounted on a mother board has been studied.
In the above-mentioned laminated board for substrate use or mother board use in a bare chip mounting form, it is essential to mount a semiconductor device on a printed wiring board having a fine pattern. However, the thermal expansion coefficient of a semiconductor device mainly composed of a silicon wafer is 3 to 4 ppm / ° C., whereas the thermal expansion coefficient of a laminated plate composed of a normal epoxy resin and E glass cloth is 15 to 30 ppm / ° C. For this reason, there is a mismatch in thermal expansion coefficient, which may cause mounting failure. In addition, along with the above-mentioned reduction in size, the semiconductor device is mounted on a thin printed wiring board under high-temperature reflow conditions, so that the elastic modulus of the printed wiring board is reduced and deformation may occur, resulting in mounting failure. .

この積層板の熱膨張率の不整合、高温環境下での低弾性率化を解決するためには、アルミナセラミックス基板が有用である。しかしながら、該アルミナセラミックス基板は焼成温度が1500〜1700℃と非常に高温であり汎用化が困難、穴あけ、切断、及び接着等の後加工性が悪い、並びに誘電率が9以上と高いために高速演算用の半導体デバイスを搭載するのに適さない、という欠点を有している。この為、ガラスクロス補強樹脂積層板を初めとする樹脂系複合材料で、低熱膨張率化、及び高温環境下での高弾性率化を実現するための研究が行われている。
その一例としては、ガラスクロス補強樹脂積層板に使用するガラスクロスにQガラスを用いる方法が挙げられるが、低熱膨張率化、高温環境下での高弾性率化に限界があり、加えて穴あけ加工時のドリル摩耗性が大きいという問題がある。
An alumina ceramic substrate is useful for solving the mismatch of the thermal expansion coefficient of the laminated plate and the reduction of the elastic modulus under a high temperature environment. However, the alumina ceramic substrate has a firing temperature as high as 1500 to 1700 ° C. and is difficult to be used for general purposes, has poor post-processability such as drilling, cutting, and bonding, and has a high dielectric constant of 9 or more, so it is high speed. There is a disadvantage that it is not suitable for mounting a semiconductor device for calculation. For this reason, research is being conducted to achieve a low thermal expansion coefficient and a high elastic modulus in a high temperature environment with resin-based composite materials such as glass cloth reinforced resin laminates.
An example of this is the method of using Q glass for the glass cloth used in the glass cloth reinforced resin laminate, but there is a limit to lowering the coefficient of thermal expansion and increasing the modulus of elasticity in high-temperature environments. There is a problem that the drill wearability at the time is great.

また、マトリックス樹脂側の改良としては、ガラスクロスに含浸させる樹脂ワニスに、アルミナ等の無機フィラーを分散させる方法(例えば、特許文献1を参照。)が提案されている。しかしながら、特許文献1記載の実施例においては、該無機フィラーは平均粒径80μmと大きく、樹脂ワニス中への分散量も20質量%にすぎない。すなわち、該無機フィラーは、樹脂ワニスに対する分散量の上限が低く、またガラスクロスの糸束内部の単糸間には充填されない粒径であるために、十分な効果が発揮されない。
また、ガラスクロスに、粒径45nmのコロイダルシリカ粒子を水に分散させた水溶液、または該水溶液と珪素アルコキシドのエタノール溶液の混合液を含浸させて熱処理することによって糸束内と表面にシリカ粒子を含ませたガラスクロスを作成した後、樹脂ワニスに含浸させて複合材料を形成する方法(特許文献2参照。)が提案されている。しかしながら、特許文献2記載の方法においては、樹脂ワニス中に無機粒子を含有させていないために、十分な硬化が発揮されない。
Further, as an improvement on the matrix resin side, a method of dispersing an inorganic filler such as alumina in a resin varnish to be impregnated into glass cloth (for example, see Patent Document 1) has been proposed. However, in the examples described in Patent Document 1, the inorganic filler has a large average particle size of 80 μm, and the amount of dispersion in the resin varnish is only 20% by mass. That is, the inorganic filler has a low upper limit of the amount of dispersion with respect to the resin varnish and has a particle size that is not filled between the single yarns inside the yarn bundle of the glass cloth, so that a sufficient effect is not exhibited.
Further, by impregnating a glass cloth with an aqueous solution in which colloidal silica particles having a particle diameter of 45 nm are dispersed in water, or a mixed solution of the aqueous solution and an ethanol solution of silicon alkoxide, heat treatment is performed so that silica particles are formed in and on the surface of the yarn bundle. A method of forming a composite material by making an impregnated glass cloth and then impregnating it with a resin varnish has been proposed (see Patent Document 2). However, in the method described in Patent Document 2, since the inorganic particles are not contained in the resin varnish, sufficient curing cannot be achieved.

特開平03−005140号公報JP 03-005140 A 特開平07−252370号公報(実施例1−1、及び1−16参照)JP 07-252370 A (see Examples 1-1 and 1-16)

本発明は、低熱膨張率化、高温環境下での高弾性率化を実現しつつ、低誘電率、低誘電正接、良好な成型性を有するプリプレグ、及びその製造方法、並びに該プリプレグを使用した積層板を提供することを課題とする。   The present invention uses a prepreg having a low dielectric constant, a low dielectric loss tangent, and a good moldability while realizing a low thermal expansion coefficient and a high elastic modulus in a high temperature environment, and a method for producing the same, and the prepreg. It is an object to provide a laminate.

本発明者らは上記の課題を解決するために、ガラス糸束内とガラス糸束外の双方に無機粒子を充填することを試みた。しかしながら、無機粒子の平均粒子径が大きい場合には、ガラス糸束内に該無機粒子は充填されない。一方、該平均粒子径が小さい場合には、樹脂ワニスの粘度があがって塗工性を低下させ、かつプリプレグの溶融粘度を上昇させることが判明した。鋭意検討した結果、第一にガラスクロスに粒子径の小さい無機粒子を分散させた溶液を塗布することでガラス糸束内、及びガラス糸束表層に無機粒子を充填し、第二に平均粒子径がより大きい無機粒子を分散させた樹脂ワニスを含浸することで、樹脂ワニスの塗工性を低下させたりプリプレグの溶融粘度をあげたりすることなく無機粒子の充填量をあげることができることを見出した。そして、上記発見に基づき、低熱膨張率化、高温環境下での高弾性率化を実現しつつ、低誘電率、低誘電正接、及び良好な成型性を有するプリプレグの発明に至った。   In order to solve the above-mentioned problems, the present inventors tried to fill inorganic particles both inside and outside the glass yarn bundle. However, when the average particle size of the inorganic particles is large, the glass particles are not filled with the inorganic particles. On the other hand, it has been found that when the average particle size is small, the viscosity of the resin varnish increases to lower the coatability and increase the melt viscosity of the prepreg. As a result of intensive studies, first, a glass cloth was coated with a solution in which inorganic particles having a small particle size were dispersed, and the surface layer of the glass yarn bundle was filled with inorganic particles. It was found that by impregnating a resin varnish in which larger inorganic particles are dispersed, the filling amount of the inorganic particles can be increased without reducing the coatability of the resin varnish or increasing the melt viscosity of the prepreg. . And based on the said discovery, it came to the invention of the prepreg which has low dielectric constant, low dielectric loss tangent, and favorable moldability, implement | achieving low thermal expansion coefficient and high elastic modulus under high temperature environment.

すなわち本発明の第一は、ガラスクロス、無機粒子、及びマトリックス樹脂からなるプリプレグであって、無機粒子が、ガラスクロスを構成するガラス糸束内に存在する糸束内無機粒子、該ガラス糸束外であって0.5〜10μmの厚さを有するガラス糸束表層部に存在する糸束表層無機粒子、及び該ガラス糸束表層の外に存在する糸束外無機粒子からなり、糸束内無機粒子は平均粒子径が1nm以上100nm以下であり、糸束外無機粒子は平均粒子径が500nm以上5000nm以下であり、糸束表層無機粒子の平均粒子径は糸束内無機粒子の平均粒子径以上、かつ糸束外無機粒子の平均粒子径未満であることを特徴とするプリプレグである。該糸束表層無機粒子の平均粒子径が糸束内無機粒子の平均粒子径より大きいものであるか、または、該糸束表層無機粒子の化学組成及び平均粒子径が糸束内無機粒子の化学組成及び平均粒子径と同一であることが好ましい。また、ガラスクロスが0.2回/インチ以下の撚り数のガラス糸束で構成されたものであることが好ましい。   That is, the first of the present invention is a prepreg comprising a glass cloth, inorganic particles, and a matrix resin, wherein the inorganic particles are present in the glass yarn bundle constituting the glass cloth, the glass yarn bundle The yarn bundle surface layer inorganic particles existing in the outer surface of the glass yarn bundle surface layer having a thickness of 0.5 to 10 μm, and the yarn bundle outer inorganic particles existing outside the glass yarn bundle surface layer, The inorganic particles have an average particle size of 1 nm or more and 100 nm or less, the inorganic particles outside the yarn bundle have an average particle size of 500 nm or more and 5000 nm or less, and the average particle size of the inorganic particles in the yarn bundle surface layer is the average particle size of the inorganic particles in the yarn bundle The prepreg is characterized in that it is less than the average particle diameter of the inorganic particles outside the yarn bundle. The average particle size of the inorganic particles in the yarn bundle surface is larger than the average particle size of the inorganic particles in the yarn bundle, or the chemical composition and average particle size of the inorganic particles in the yarn bundle surface layer are the chemistry of the inorganic particles in the yarn bundle. The composition and the average particle diameter are preferably the same. Moreover, it is preferable that the glass cloth is composed of a glass yarn bundle having a twist number of 0.2 times / inch or less.

本発明の第二は、ガラスクロスに平均粒子径が1nm以上500nm未満の無機粒子を分散させた液体を塗布乾燥後、平均粒子径が500nm以上5000nm以下の無機粒子を含む樹脂ワニスを塗工することを特徴とするプリプレグの製造方法である。
本発明の第三は、本発明の第一であるプリプレグの1枚以上と、金属箔とを重ね合わせて積層成型したことを特徴とする積層板である。
In the second aspect of the present invention, after applying and drying a liquid in which inorganic particles having an average particle size of 1 nm or more and less than 500 nm are dispersed in a glass cloth, a resin varnish containing inorganic particles having an average particle size of 500 nm or more and 5000 nm or less is applied. It is a manufacturing method of the prepreg characterized by the above-mentioned.
A third aspect of the present invention is a laminated board characterized in that one or more prepregs according to the first aspect of the present invention and a metal foil are laminated and molded.

本発明の積層板は、低熱膨張率化、高温環境下での高弾性率化を実現しつつ、低誘電率、及び低誘電正接という効果を有し、本発明のプリプレグはこれらの効果に加えて良好な成型性を示すという効果を有する。   The laminate of the present invention has the effects of low dielectric constant and low dielectric loss tangent while realizing low thermal expansion coefficient and high elastic modulus under high temperature environment, and the prepreg of the present invention adds to these effects. And has an effect of showing good moldability.

以下、本発明を詳細に説明する。
(1)ガラスクロス
本発明のプリプレグに使用するガラスクロスは、Eガラス、Aガラス、Dガラス、Sガラス等のいずれのガラスクロスでも良く、ガラスの組成は問わない。ガラスクロスの織り密度は10〜200本/25mmであり、好ましくは15〜100本/25mmであり、さらに好ましくは40〜80本/25mmである。ガラスクロスの質量は5〜400g/m2 、好ましくは10〜300g/m2 であり、織り方は平織り、朱子織り、綾織り、ななこ織り等のガラスクロスが使用できる。また、構成するガラス糸として、撚り数が0.2回/インチ以下の糸(以下「無撚糸」という。)を使用したガラスクロスは、内在する捻り方向の応力を低減できるので、積層板の反りを低減できるという効果を奏するので好ましい。無撚糸として、0.1回/インチ以下の糸を使用すると、上述の効果がさらに大きくなるので、より好ましい。
ガラスクロスの表面処理については、製織に必要な集束剤を除去した段階のガラスクロス、あるいは該ガラスクロスに公知の表面処理法でシランカップリング剤などを処理したガラスクロスが好ましい。また、柱状流等の高圧水流、または水中での高周波振動法による超音波等によって開繊加工を施したガラスクロスも好ましい。
Hereinafter, the present invention will be described in detail.
(1) Glass cloth The glass cloth used for the prepreg of the present invention may be any glass cloth such as E glass, A glass, D glass, S glass, etc., and the composition of the glass is not limited. The weave density of the glass cloth is 10 to 200/25 mm, preferably 15 to 100/25 mm, and more preferably 40 to 80/25 mm. The mass of the glass cloth is 5 to 400 g / m 2 , preferably 10 to 300 g / m 2 , and glass cloths such as plain weave, satin weave, twill weave, and nanako weave can be used. Moreover, since the glass cloth which uses the thread | yarn whose number of twists is 0.2 times / inch or less (henceforth "non-twisted thread") as a glass thread to comprise can reduce the stress of the twist direction which exists, This is preferable because the effect of reducing warpage can be achieved. As the non-twisted yarn, it is more preferable to use a yarn of 0.1 times / inch or less because the above-described effect is further increased.
Regarding the surface treatment of the glass cloth, a glass cloth at a stage where a sizing agent necessary for weaving is removed, or a glass cloth obtained by treating the glass cloth with a silane coupling agent or the like by a known surface treatment method is preferable. Further, a glass cloth subjected to fiber opening processing by a high-pressure water flow such as a columnar flow or an ultrasonic wave by a high-frequency vibration method in water is also preferable.

(2)無機粒子
一般的なプリプレグ製造用のガラスクロスに使用されるガラス糸は4μm〜8μm径の単糸50〜1000本が束ねられて1本のガラス糸束を形成しており、ガラスクロスは該ガラス糸束をたて糸およびよこ糸に使って製織される。本発明のプリプレグに使用する無機粒子は、ガラスクロスを構成するガラス糸束に対する存在位置、または平均粒子径の差異によって、糸束内無機粒子、糸束表層無機粒子、及び糸束外無機粒子の3種にわけて考えるものとする。
本発明のガラス糸束内、ガラス糸束外の定義においては、糸の長さ方向に垂直なガラス糸束の断面において、ガラス糸束を構成する複数の単糸のうち最も外側に存在する単糸群において、隣接する2つの単糸の共通接線を順次つないだ線を境界線1といい、該境界線1の内側をガラス糸束内、該境界線1の外側をガラス糸束外というものとする。隣接する最も外側の単糸2A、単糸2B間の間隔が該単糸の直径以下の場合は、境界線1は単糸2A、単糸2Bをそのままつなぐものとする(図1参照)。一方、隣接する最も外側の単糸2A、単糸2B間の間隔4が該単糸の直径より大きい場合は、境界線1は単糸2Aと単糸2B間に存在する最も外側の単糸2Cを経由して単糸2A、単糸2Bをつなぐものとする(図2参照)。
(2) Inorganic particles The glass yarn used for the glass cloth for manufacturing a general prepreg is formed by bundling 50 to 1000 single yarns having a diameter of 4 μm to 8 μm to form one glass yarn bundle. Is woven using the glass yarn bundle for warp and weft. The inorganic particles used in the prepreg of the present invention are formed of the inorganic particles in the yarn bundle, the inorganic particles in the yarn bundle, and the inorganic particles outside the yarn bundle depending on the position of the glass yarn constituting the glass cloth or the difference in the average particle diameter. Consider three types.
In the definition of the inside of the glass yarn bundle of the present invention and the outside of the glass yarn bundle, in the cross section of the glass yarn bundle perpendicular to the length direction of the yarn, the single unit present on the outermost side among the plurality of single yarns constituting the glass yarn bundle. In the yarn group, a line obtained by sequentially connecting the common tangents of two adjacent single yarns is referred to as a boundary line 1, the inside of the boundary line 1 is inside the glass yarn bundle, and the outside of the boundary line 1 is outside the glass yarn bundle. To do. When the distance between adjacent outermost single yarn 2A and single yarn 2B is equal to or smaller than the diameter of the single yarn, boundary line 1 connects single yarn 2A and single yarn 2B as they are (see FIG. 1). On the other hand, when the distance 4 between the adjacent outermost single yarn 2A and single yarn 2B is larger than the diameter of the single yarn, the boundary line 1 is the outermost single yarn 2C existing between the single yarn 2A and the single yarn 2B. It is assumed that the single yarn 2A and the single yarn 2B are connected to each other (see FIG. 2).

糸束内無機粒子とは、ガラス糸束内であってガラス糸束を構成する単糸と単糸の間に存在する無機粒子のことをいう。糸束内無機粒子は、2種以上の無機粒子の混合物であってもよい。
糸束表層無機粒子とは、ガラス糸束外であって境界線1に接した外側の部分(以下、「糸束表層部」という。)に存在する平均粒子径が後述の糸束外無機粒子の平均粒子径より小さい無機粒子をいう。該糸束表層部の厚さは、境界線1から0.5μmないし10μmの範囲であることが好ましい。糸束表層無機粒子は、2種以上の無機粒子の混合物であってもよい。
上述の糸束内無機粒子と糸束表層無機粒子とは、平均粒子径及び化学組成の双方が同一の無機粒子(以下、「同種無機粒子」という。)であってもよく、平均粒子径または化学組成の少なくとも片方が異なる無機粒子(以下、「異種無機粒子」という。)であってもよい。無機粒子が無機粒子Aと無機粒子Bとの混合物である場合は、その混合割合が糸束内無機粒子と糸束表層無機粒子とで異なるという状態も上記異種無機粒子に相当するものとする。
The inorganic particles in the yarn bundle mean the inorganic particles existing between the single yarns constituting the glass yarn bundle in the glass yarn bundle. The inorganic particles in the yarn bundle may be a mixture of two or more kinds of inorganic particles.
The yarn bundle surface inorganic particles are inorganic particles outside the glass yarn bundle whose average particle diameter is present on the outer part in contact with the boundary line 1 (hereinafter referred to as “yarn bundle surface layer portion”). Inorganic particles smaller than the average particle diameter of The thickness of the yarn bundle surface layer portion is preferably in the range of 0.5 μm to 10 μm from the boundary line 1. The yarn bundle surface layer inorganic particles may be a mixture of two or more inorganic particles.
The above-mentioned inorganic particles in the yarn bundle and the inorganic particles on the surface of the yarn bundle may be inorganic particles having the same average particle size and chemical composition (hereinafter referred to as “same inorganic particles”). It may be inorganic particles having different chemical compositions (hereinafter referred to as “different inorganic particles”). When the inorganic particles are a mixture of the inorganic particles A and the inorganic particles B, the state that the mixing ratio is different between the inorganic particles in the yarn bundle and the inorganic particles in the yarn bundle surface layer also corresponds to the different inorganic particles.

糸束外無機粒子とは、ガラス糸束外であって上述の糸束表層部の外側に部分に存在する無機粒子をいう。糸束外無機粒子の平均粒子径は、500nm以上5000nm以下であり糸束表層無機粒子の平均粒子径とは異なるので、糸束表層無機粒子と糸束外無機粒子は異種無機粒子である。従って、糸束表層無機粒子と糸束外無機粒子との間には境界線が存在する(以下、「境界線2」という。)。本発明でいう糸束表層部の厚さとは、前記境界線2と境界線1の距離の平均値で表され、プリプレグを包埋樹脂に埋め込んで切削してガラス糸束の断面を露出させ、電子顕微鏡によりその断面を観察することで求めるものとする。
なお、本発明においては、無機粒子の平均粒子径とは、粒子の直径の平均のことをいうものとする。粒子の形状が直方体、円柱、繊維状等、球以外の立体の場合は、該立体と同じ体積の球の直径である等体積球相当径の平均のことをいうものとする。また、2種以上の無機粒子の混合物からなる場合の平均粒子径は下式(i)に示す体積平均で算出するものとする。
平均粒子径=1/100×Σ(Di×Vi) −式(i)
Di:無機粒子iの平均粒子径
Vi:無機粒子iの全無機粒子中に占める体積分率(%)
The non-yarn bundle inorganic particles are inorganic particles that are outside the glass yarn bundle and are present outside the above-described yarn bundle surface layer. Since the average particle size of the inorganic particles outside the yarn bundle is 500 nm or more and 5000 nm or less and different from the average particle size of the inorganic particles on the surface of the yarn bundle, the inorganic particles outside the yarn bundle and the inorganic particles outside the yarn bundle are different inorganic particles. Therefore, a boundary line exists between the yarn bundle surface layer inorganic particles and the yarn bundle non-thread inorganic particles (hereinafter referred to as “boundary line 2”). The thickness of the surface portion of the yarn bundle referred to in the present invention is represented by an average value of the distance between the boundary line 2 and the boundary line 1, and the cross section of the glass yarn bundle is exposed by cutting the prepreg embedded in an embedding resin, It is determined by observing the cross section with an electron microscope.
In the present invention, the average particle diameter of the inorganic particles means the average of the diameters of the particles. When the shape of the particles is a solid other than a sphere, such as a rectangular parallelepiped, a cylinder, a fiber, or the like, it means the average of the equivalent volume sphere equivalent diameter which is the diameter of a sphere having the same volume as the solid. Moreover, the average particle diameter in the case of comprising a mixture of two or more kinds of inorganic particles is calculated by the volume average shown in the following formula (i).
Average particle diameter = 1/100 × Σ (Di × Vi) −Formula (i)
Di: average particle diameter of inorganic particles i
Vi: Volume fraction (%) of all inorganic particles i in all inorganic particles

(2a)糸束内無機粒子
本発明のプリプレグに使用する糸束内無機粒子は、平均粒子径が1nm以上100nm以下の無機粒子であることが好ましい。糸束内無機粒子の平均粒子径は、5nm以上80nm以下であることがより好ましく、8nm以上70nm以下であることが最も好ましい。該無機粒子をガラス糸束内の単糸の隙間に充分な密度で充填するためには、その平均粒子径が100nm未満である必要がある。また、平均粒子径が1nmより小さい場合は、表面積が大きくなりすぎてプリプレグ作成時にマトリックス樹脂の含浸不良が生じる可能性がある。
上述の無機粒子としては、無機酸化物からなる無機粒子が好ましく、酸化チタン、アモルファスシリカ等の二酸化珪素、アルミナ、酸化亜鉛や、ゾルゲル法により金属アルコキシドを成長させたコロイダルシリカ、アルミナゾル等が例示される。
特に、糸束内無機粒子としては、平衡水分率5質量%以下、より好ましくは3質量%以下の無機酸化物を、80質量%以上、より好ましくは90質量%以上含有する無機粒子が、電気特性に優れる積層板を得られる点で好ましい。なお、ここでいう、平衡水分率とは23℃、相対湿度65%の条件にて48時間養生して吸湿平衡状態にした後、JISK5101に準じて、110℃で2時間乾燥した際の、乾燥重量減少率を示す。
(2a) Inorganic particles in the yarn bundle The inorganic particles in the yarn bundle used for the prepreg of the present invention are preferably inorganic particles having an average particle diameter of 1 nm or more and 100 nm or less. The average particle size of the inorganic particles in the yarn bundle is more preferably 5 nm or more and 80 nm or less, and most preferably 8 nm or more and 70 nm or less. In order to fill the inorganic particles with a sufficient density in the gaps between the single yarns in the glass yarn bundle, the average particle size needs to be less than 100 nm. Further, when the average particle size is smaller than 1 nm, the surface area becomes too large, and there is a possibility that poor impregnation of the matrix resin may occur at the time of preparing the prepreg.
As the above-mentioned inorganic particles, inorganic particles made of an inorganic oxide are preferable, and examples include silicon dioxide such as titanium oxide and amorphous silica, alumina, zinc oxide, colloidal silica obtained by growing metal alkoxide by a sol-gel method, alumina sol, and the like. The
In particular, as the inorganic particles in the yarn bundle, inorganic particles containing an inorganic oxide having an equilibrium moisture content of 5% by mass or less, more preferably 3% by mass or less, of 80% by mass or more, more preferably 90% by mass or more, It is preferable at the point which can obtain the laminated board which is excellent in a characteristic. The equilibrium moisture content referred to here is the drying at the time of drying for 2 hours at 110 ° C. according to JISK5101 after curing for 48 hours under conditions of 23 ° C. and 65% relative humidity. Indicates the weight loss rate.

この平衡水分率が5質量%以下の無機酸化物としては、ゾルゲル粒子を焼成する方法や金属粉末を酸化気流中で自己燃焼させる方法で得られる酸化チタン、二酸化珪素、アルミナ、酸化亜鉛等が好ましい。上述したコロイダルシリカは親水性のシラノール基を有するため平衡水分率が高くなり、その結果として誘電正接が高くなることがあるので、400℃程度で焼成することによってシラノール基を減少させ平衡水分率を低下させたものを使用することがより好ましい。特に、100nm以下の微粒子が工業的に安定生産されている酸化チタンを、80質量%以上、より好ましくは90質量%以上含有する糸束内無機粒子を使用することが、プリプレグを安定に生産できるため、より好ましい。本発明で使用できる酸化チタンの形態は制約されないが、化学的に安定なルチル型酸化チタンが好ましく、安定性を向上させるためにシリカ、アルミナ等で表面被覆された酸化チタンであることがより好ましい。
また、糸束内無機粒子が、マトリックス樹脂との相溶性、接着性を向上させるためにシランカップリング剤、チタネートカップリング剤等による表面処理を施したものであっても良い。
As the inorganic oxide having an equilibrium moisture content of 5% by mass or less, titanium oxide, silicon dioxide, alumina, zinc oxide or the like obtained by a method of firing sol-gel particles or a method of self-combusting metal powder in an oxidizing gas stream is preferable. . Since the colloidal silica described above has a hydrophilic silanol group, the equilibrium moisture content is increased, and as a result, the dielectric loss tangent may be increased. Therefore, by firing at about 400 ° C., the silanol group is reduced to reduce the equilibrium moisture content. It is more preferable to use a reduced one. In particular, it is possible to stably produce a prepreg by using inorganic particles in a yarn bundle containing 80% by mass or more, more preferably 90% by mass or more of titanium oxide in which fine particles of 100 nm or less are industrially stably produced. Therefore, it is more preferable. The form of titanium oxide that can be used in the present invention is not limited, but chemically stable rutile titanium oxide is preferable, and titanium oxide surface-coated with silica, alumina or the like is more preferable in order to improve stability. .
The inorganic particles in the yarn bundle may be subjected to a surface treatment with a silane coupling agent, a titanate coupling agent or the like in order to improve compatibility with the matrix resin and adhesion.

(2b)糸束表層無機粒子
本発明のプリプレグに使用する糸束表層無機粒子は、平均粒子径が糸束内無機粒子の平均粒子径以上、かつ糸束外無機粒子の平均粒子径未満のものである。糸束表層無機粒子の平均粒子径は、1nm以上500nm未満であることが好ましく、50nm以上400nm未満であることがより好ましく、80nm以上300nm未満であることが最も好ましい。該糸束表層無機粒子の平均粒子径を糸束外無機粒子の平均粒子径より小さくすることによって、ガラス糸束表層の凹凸により高密度に無機粒子を充填することができる。特に、4μm〜8μm径の単糸から形成される凹凸を有するガラス糸束の表層に充分な密度で充填するためには、その平均粒子径が500nm未満であることが好ましい。また、平均粒子径が1nmより小さい場合は、表面積が大きくなりすぎてプリプレグ作成時にマトリックス樹脂の含浸不良が生じる可能性がある。
(2b) Yarn bundle surface layer inorganic particles Yarn bundle surface layer inorganic particles used in the prepreg of the present invention have an average particle size equal to or larger than the average particle size of the inorganic particles in the yarn bundle and smaller than the average particle size of the inorganic particles outside the yarn bundle. It is. The average particle diameter of the yarn bundle surface layer inorganic particles is preferably 1 nm or more and less than 500 nm, more preferably 50 nm or more and less than 400 nm, and most preferably 80 nm or more and less than 300 nm. By making the average particle size of the inorganic particles on the surface of the yarn bundle smaller than the average particle size of the inorganic particles outside the yarn bundle, the inorganic particles can be filled with high density by the unevenness of the surface layer of the glass yarn bundle. In particular, the average particle diameter is preferably less than 500 nm in order to fill the surface layer of the glass fiber bundle having irregularities formed from single yarns having a diameter of 4 μm to 8 μm with sufficient density. Further, when the average particle size is smaller than 1 nm, the surface area becomes too large, and there is a possibility that poor impregnation of the matrix resin may occur at the time of preparing the prepreg.

糸束表層無機粒子が、糸束内無機粒子と異種無機粒子である場合には、糸束表層無機粒子の平均粒子径を前述の範囲内でより大きくなるように設定することで、ガラス糸束内への無機粒子の充填密度の向上と、マトリックス樹脂含浸性の改良とを両立させることができ、好ましい。一方、糸束表層無機粒子が、糸束内無機粒子と同種無機粒子である場合には、両無機粒子を一度に塗布することも可能になるので製法が簡略化でき好ましい。
また、糸束表層無機粒子が存在する糸束表層部の厚さは、使用するガラスクロスの厚さ、作成しようとするプリプレグの厚さにより、設定する必要がある。マトリックス樹脂の流動性を確保し、成型性を維持するためには、糸束表層部の厚さが0.5〜10μmであることが好ましく、1〜8μmがより好ましく、2〜6μmが最も好ましい
When the yarn bundle surface layer inorganic particles are different from the inorganic particles in the yarn bundle, by setting the average particle diameter of the yarn bundle surface inorganic particles to be larger within the above range, the glass yarn bundle The improvement of the packing density of the inorganic particles into the inside and the improvement of the matrix resin impregnation property can be made compatible, which is preferable. On the other hand, when the yarn bundle surface layer inorganic particles are the same inorganic particles as the yarn bundle inorganic particles, both inorganic particles can be applied at once, which is preferable because the production method can be simplified.
Further, the thickness of the yarn bundle surface layer portion where the yarn bundle surface layer inorganic particles are present needs to be set depending on the thickness of the glass cloth used and the thickness of the prepreg to be prepared. In order to ensure the fluidity of the matrix resin and maintain the moldability, the thickness of the yarn bundle surface layer is preferably 0.5 to 10 μm, more preferably 1 to 8 μm, and most preferably 2 to 6 μm.

糸束表層無機粒子としては、糸束内無機粒子と同様に無機酸化物が好ましく、酸化チタン、アモルファスシリカ等の二酸化珪素、アルミナ、酸化亜鉛や、ゾルゲル法により金属アルコキシドを成長させたコロイダルシリカ、アルミナゾル等が例示される。特に、糸束表層無機粒子としては、平衡水分率5質量%以下、より好ましくは3質量%以下の二酸化珪素を、50質量%以上、より好ましくは70質量%以上含有する無機粒子が、電気特性に優れる積層板を与える点で好ましい。
また、糸束表層無機粒子が、マトリックス樹脂との相溶性、接着性を向上させるためにシランカップリング剤、チタネートカップリング剤等による表面処理を施したものであっても良い。
As the yarn bundle surface layer inorganic particles, inorganic oxides are preferable like the inorganic particles in the yarn bundle, silicon dioxide such as titanium oxide and amorphous silica, alumina, zinc oxide, colloidal silica obtained by growing metal alkoxide by a sol-gel method, An alumina sol etc. are illustrated. In particular, the inorganic particles containing 50% by mass or more, more preferably 70% by mass or more of silicon dioxide having an equilibrium moisture content of 5% by mass or less, more preferably 3% by mass or less are used as the yarn bundle surface layer inorganic particles. It is preferable at the point which gives the laminated board which is excellent in.
The yarn bundle surface layer inorganic particles may be subjected to surface treatment with a silane coupling agent, a titanate coupling agent or the like in order to improve compatibility with the matrix resin and adhesion.

(2c)糸束外無機粒子
本発明のプリプレグに使用する糸束外無機粒子は、平均粒子径が500nm以上5000nm以下の無機粒子である。後述のプリプレグ製造のところで記載するように、糸束外無機粒子は樹脂ワニスに分散させてガラスクロスに含浸させる。従って、積層成型時の接着性や、多層基板の場合は配線パターン間への充填性を確保するために、樹脂ワニスの熱溶融、流動性を妨げないことが必要である。無機粒子がマトリックス樹脂の溶融粘度に与える影響は、化学組成、形状により異なるが、粒子径が小さいほど溶融粘度を高くする為、平均粒子径は500nm以上、好ましくは750nm以上、より好ましくは1000nm以上である。また、粒子径が小さいほど基板の表面平滑性、配線パターンへの充填性が低下する為、平均粒子径は5000nm以下、好ましくは4000nm以下、より好ましくは3000nm以下である。
(2c) Inorganic particles outside the yarn bundle The inorganic particles outside the yarn bundle used for the prepreg of the present invention are inorganic particles having an average particle diameter of 500 nm or more and 5000 nm or less. As will be described later in the prepreg production, inorganic particles outside the yarn bundle are dispersed in a resin varnish and impregnated into a glass cloth. Therefore, it is necessary not to disturb the heat melting and fluidity of the resin varnish in order to ensure the adhesiveness at the time of lamination molding and the filling property between the wiring patterns in the case of a multilayer substrate. The influence of the inorganic particles on the melt viscosity of the matrix resin varies depending on the chemical composition and shape, but the average particle size is 500 nm or more, preferably 750 nm or more, more preferably 1000 nm or more in order to increase the melt viscosity as the particle size decreases. It is. Moreover, since the surface smoothness of a board | substrate and the filling property to a wiring pattern fall, so that a particle diameter is small, an average particle diameter is 5000 nm or less, Preferably it is 4000 nm or less, More preferably, it is 3000 nm or less.

糸束外無機粒子としては、酸化チタン、アモルファスシリカ等の二酸化珪素、アルミナ、酸化亜鉛や、ゾルゲル法により金属アルコキシドを成長させたコロイダルシリカ、アルミナゾル等のような無機酸化物粒子や、タルク、マイカ、ワラストナイトのような鉱物を粉砕した無機粒子や、水酸化アルミニウム、水酸化マグネシウムのような無機水酸化粒子が好ましく使用できる。特に、糸束外無機粒子としては、平衡水分率5質量%以下、より好ましくは3質量%以下の二酸化珪素を、50質量%以上、より好ましくは70質量%以上含有する無機粒子が、電気特性に優れる積層板を得られる点で好ましい。
また、糸束外無機粒子が、マトリックス樹脂との相溶性、接着性を向上させるためにシランカップリング剤、チタネートカップリング剤等による表面処理を施したものであっても良い。
Examples of inorganic particles outside the yarn bundle include inorganic oxide particles such as silicon dioxide such as titanium oxide and amorphous silica, alumina and zinc oxide, colloidal silica obtained by growing metal alkoxide by a sol-gel method, and alumina sol, talc and mica. Inorganic particles obtained by pulverizing minerals such as wollastonite and inorganic hydroxide particles such as aluminum hydroxide and magnesium hydroxide can be preferably used. In particular, as inorganic particles outside the yarn bundle, inorganic particles containing 50% by mass or more, more preferably 70% by mass or more of silicon dioxide having an equilibrium moisture content of 5% by mass or less, more preferably 3% by mass or less are electrical characteristics. It is preferable at the point from which the laminated board which is excellent in is obtained.
In addition, the inorganic particles outside the yarn bundle may be subjected to a surface treatment with a silane coupling agent, a titanate coupling agent or the like in order to improve compatibility with the matrix resin and adhesion.

(3)マトリックス樹脂
本発明で使用されるマトリックス樹脂としては、熱硬化性樹脂、熱可塑性樹脂の何れも使用可能である。熱硬化性樹脂としては、a)エポキシ基を有する化合物と、エポキシ基と反応するアミノ基、フェノール基、酸無水物基、ヒドラジド基、イソシアネート基、シアネート基、水酸基等を有する化合物を、無触媒、又は、イミダゾール化合物、3級アミン化合物、尿素化合物、燐化合物等の反応触媒能を持つ触媒を添加して、反応させて硬化させるエポキシ樹脂、b)アリル基、メタクリル基、アクリル基を有する化合物を、熱分解型触媒、または光分解型触媒を反応開始剤として使用して、硬化させるラジカル重合型硬化樹脂、c)シアネート基を有する化合物とマレイミド基を有する化合物を反応させて硬化させるマレイミドトリアジン樹脂、d)マレイミド化合物とアミン化合物を反応させて硬化させる熱硬化性ポリイミド樹脂、e)ベンゾオキサジン環を有する化合物を加熱重合により架橋硬化させるベンゾオキサジン樹脂等が例示される。
(3) Matrix resin As the matrix resin used in the present invention, either a thermosetting resin or a thermoplastic resin can be used. As a thermosetting resin, a) a compound having an epoxy group and a compound having an amino group, a phenol group, an acid anhydride group, a hydrazide group, an isocyanate group, a cyanate group, a hydroxyl group, etc. that react with the epoxy group Or an epoxy resin to be cured by adding a catalyst having a reaction catalytic ability such as an imidazole compound, a tertiary amine compound, a urea compound, or a phosphorus compound, and b) a compound having an allyl group, a methacryl group, or an acrylic group A radical polymerization type curable resin that is cured using a thermal decomposition catalyst or a photodecomposition type catalyst as a reaction initiator, and c) a maleimide triazine that is cured by reacting a compound having a cyanate group with a compound having a maleimide group Resin, d) thermosetting polyimide resin that cures by reacting maleimide compound and amine compound, e) Benzoxazine resin to crosslink cured by thermal polymerization of a compound having a Zookisajin ring are exemplified.

また、熱可塑性樹脂としては、ポリフェニレンエーテル、変性ポリフェニレンエーテル、ポリフェニレンサルファイド、ポリスルホン、ポリエーテルスルフォン、ポリアリレート、芳香族ポリアミド、ポリエーテルエーテルケトン、熱可塑性ポリイミド、不溶性ポリイミド、ポリアミドイミド、フッ素樹脂等が例示される。また、熱硬化性樹脂と、熱可塑性樹脂を併用しても良い。
上述したマトリックス樹脂を有機溶媒に溶解させて、樹脂ワニスを作成する。有機溶媒としては、トルエン、キシレン、アセトン、2−ブタノン、2−メトキシエタノール、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等が好ましく使用できる。
Examples of the thermoplastic resin include polyphenylene ether, modified polyphenylene ether, polyphenylene sulfide, polysulfone, polyether sulfone, polyarylate, aromatic polyamide, polyether ether ketone, thermoplastic polyimide, insoluble polyimide, polyamideimide, and fluororesin. Illustrated. Moreover, you may use together a thermosetting resin and a thermoplastic resin.
A resin varnish is prepared by dissolving the matrix resin described above in an organic solvent. As the organic solvent, toluene, xylene, acetone, 2-butanone, 2-methoxyethanol, N, N-dimethylformamide, N, N-dimethylacetamide and the like can be preferably used.

(4)プリプレグ製造
本発明のプリプレグの製造方法においては、まず、ガラスクロスを構成するガラス糸束内とガラス糸束表層部に無機粒子を塗布した無機粒子充填付着ガラスクロスを作成する。ガラスクロスに無機粒子を塗布する方法としては、該無機粒子を水、または有機溶媒に分散させた分散液(以下、「無機粒子分散液」という。)を作成し、A)該無機粒子分散液をバスに溜め、該バス内にガラスクロスを通過させた後、ガラスクロスに無機粒子分散液が所定量塗布されるようにスリット、又はマングルでガラスクロスを絞液し、ガラス糸束表面に付着した余剰の無機粒子分散液を除去し一定量の処理液塗布量を得る方法、または、B)ロールコーター、ダイコーター、グラビアコーター等で押圧しながらガラスクロスに直接一定量の無機粒子分散液を塗布する方法(以下、A,Bの両方法をあわせて単に「含浸」という。)、が好ましく使用できる。
(4) Prepreg production In the method for producing a prepreg of the present invention, first, an inorganic particle-filled glass cloth in which inorganic particles are applied to the inside of the glass yarn bundle constituting the glass cloth and the surface portion of the glass yarn bundle is prepared. As a method for applying inorganic particles to glass cloth, a dispersion liquid in which the inorganic particles are dispersed in water or an organic solvent (hereinafter referred to as “inorganic particle dispersion liquid”) is prepared, and A) the inorganic particle dispersion liquid. After the glass cloth is passed through the bath, the glass cloth is squeezed with a slit or mangle so that a predetermined amount of the inorganic particle dispersion is applied to the glass cloth and adhered to the surface of the glass yarn bundle. Removing the excess inorganic particle dispersion and obtaining a certain amount of treatment liquid coating, or B) applying a certain amount of inorganic particle dispersion directly to the glass cloth while pressing with a roll coater, die coater, gravure coater, etc. A method of coating (hereinafter, both A and B methods are simply referred to as “impregnation”) can be preferably used.

糸束表層無機粒子と糸束内無機粒子が同種無機粒子である無機粒子充填付着ガラスクロスを製造するにあたっては、ガラスクロスに平均粒子径が1nm以上100nm以下の無機粒子を分散させた無機粒子分散液を塗布乾燥することによって糸束表層無機粒子と糸束内無機粒子を塗布する方法が好ましい。ガラス糸束表層部を厚くしたい場合には、その厚さが10μmを超えない範囲で同一の無機粒子分散液を2回以上塗布してもよい。
一方、糸束表層無機粒子の平均粒子径が糸束内無機粒子の平均粒子径より大きい無機粒子充填付着ガラスクロスを製造するにあたっては、主として糸束内無機粒子となる粒子径の小さい無機粒子分散液を塗布した後、主として糸束表層無機粒子となる粒子径のやや大きい無機粒子分散液を塗布する方法が使用できる。また、ガラスクロス自体が粒子のふるいとして作用することを利用して、平均粒子径が1nm以上100nm以下の無機粒子Aと、平均粒子径が1nm以上500nm未満、かつ無機粒子Aの平均粒子径より大きい無機粒子Bを混合した無機粒子分散液を用いて、一度に糸束内無機粒子と糸束表層無機粒子を塗布する方法も使用できる。後者の方法は、塗布が1回ですむという長所を有するので好ましい。
In producing an inorganic particle-filled glass cloth in which the inorganic particles in the yarn bundle surface layer and the inorganic particles in the yarn bundle are the same kind of inorganic particles, an inorganic particle dispersion in which inorganic particles having an average particle diameter of 1 nm to 100 nm are dispersed in the glass cloth. A method of coating the yarn bundle surface layer inorganic particles and the yarn bundle inorganic particles by coating and drying the liquid is preferred. In order to increase the thickness of the surface layer of the glass yarn bundle, the same inorganic particle dispersion may be applied twice or more within a range in which the thickness does not exceed 10 μm.
On the other hand, when producing an inorganic particle-filled glass cloth in which the average particle size of the inorganic particles in the yarn bundle surface layer is larger than the average particle size of the inorganic particles in the yarn bundle, the inorganic particle dispersion having a small particle size mainly serving as the inorganic particles in the yarn bundle After applying the liquid, a method of applying an inorganic particle dispersion liquid having a slightly larger particle diameter, which mainly becomes the yarn bundle surface layer inorganic particles, can be used. Further, by utilizing the fact that the glass cloth itself acts as a particle sieve, the average particle diameter is 1 nm or more and 100 nm or less, the average particle diameter is 1 nm or more and less than 500 nm, and the average particle diameter of the inorganic particles A is A method of applying the inorganic particles in the yarn bundle and the inorganic particles on the surface of the yarn bundle at a time using the inorganic particle dispersion mixed with the large inorganic particles B can also be used. The latter method is preferable because it has the advantage of being applied only once.

無機粒子充填付着ガラスクロスにおける無機粒子の付着量は、ガラスクロスの種類にもよるが、3〜30質量%程度が好ましい。
次に、無機粒子充填付着ガラスクロスからプリプレグを製造する方法としては、糸束外無機粒子を混合した樹脂ワニス(以下、「無機粒子分散ワニス」という。)をバスに溜め、該バス内に無機粒子充填付着ガラスクロスを通過させた後、スリット、又はマングルで一定厚みにする方法が好ましく使用できる(以下、「塗工」という。)。
無機粒子分散ワニス中のマトリックス樹脂成分に対する無機粒子の重量比は30〜80%が好ましく、40〜75%がより好ましい。この時、該無機粒子充填付着ガラスクロスは、無機粒子分散液を塗布後一度乾燥させてから無機粒子分散ワニスに含浸させることが好ましいが、無機粒子分散液の溶媒が無機粒子分散ワニスと相溶する有機溶媒である場合には、乾燥させずに直接該無機粒子分散ワニスに含浸させてもよい。
The amount of inorganic particles attached to the inorganic particle-filled glass cloth is preferably about 3 to 30% by mass, although it depends on the type of glass cloth.
Next, as a method for producing a prepreg from an inorganic particle-filled adhered glass cloth, a resin varnish mixed with inorganic particles outside the yarn bundle (hereinafter referred to as “inorganic particle dispersion varnish”) is accumulated in a bath, and an inorganic material is contained in the bath. After passing through the particle-filled adhering glass cloth, a method of making a constant thickness with a slit or mangle can be preferably used (hereinafter referred to as “coating”).
The weight ratio of the inorganic particles to the matrix resin component in the inorganic particle-dispersed varnish is preferably 30 to 80%, more preferably 40 to 75%. At this time, the inorganic particle-filled adhered glass cloth is preferably dried once after coating the inorganic particle dispersion and then impregnated into the inorganic particle dispersion varnish, but the solvent of the inorganic particle dispersion is compatible with the inorganic particle dispersion varnish. In the case of the organic solvent to be used, the inorganic particle-dispersed varnish may be directly impregnated without drying.

最後に、無機粒子分散ワニスの有機溶剤を加熱乾燥し、Bステージ化することでプリプレグが製造される。Bステージ化は90〜200℃、30秒〜5分間の条件で行うことが好ましい。
なお、上記の無機粒子充填付着ガラスクロスを、バッチ式の加熱装置や連続加装置で、100℃〜1000℃の温度により加熱して、無機酸化物の水分や水酸基を除去する事も可能である。また、無機粒子充填付着ガラスクロスを、無機粒子分散ワニスに含浸させる前に、シランカップリング剤、チタネートカップリング剤等で表面処理する事も可能である。このカップリング剤表面処理方法としては、水にカップリング剤を分散、又は溶解させた液(以下、「表面処理液」という。)を塗布、乾燥する湿式法、有機溶媒にを分散、又は溶解させた液を塗布、乾燥する乾式法、カップリング剤単独、または溶媒、分散液とともに噴霧、もしくは気化した雰囲気下で処理する気相法等の表面処理方法が可能である。
Finally, the organic solvent of the inorganic particle-dispersed varnish is heated and dried to be B-staged to produce a prepreg. The B-stage is preferably performed under conditions of 90 to 200 ° C. and 30 seconds to 5 minutes.
In addition, it is also possible to remove the water | moisture content and hydroxyl group of an inorganic oxide by heating said inorganic particle filling adhesion glass cloth with the temperature of 100 to 1000 degreeC with a batch-type heating apparatus or a continuous heating apparatus. . In addition, before impregnating the inorganic particle-filled glass cloth with the inorganic particle-dispersed varnish, it is possible to surface-treat with a silane coupling agent, a titanate coupling agent, or the like. As a surface treatment method of this coupling agent, a wet method in which a liquid in which a coupling agent is dispersed or dissolved in water (hereinafter referred to as “surface treatment liquid”) is applied and dried, or is dispersed or dissolved in an organic solvent. A surface treatment method such as a dry method in which the applied liquid is applied and dried, a coupling agent alone, or a gas phase method in which the treatment is performed in a sprayed or vaporized atmosphere with a solvent and a dispersion is possible.

次に実施例及び比較例によって本発明をさらに詳細に説明する。
(ガラスクロス)
ガラスクロスA:焼却法により製織用集束剤を除去したスタイル1037ガラスクロス(旭シュエーベル株式会社製、ガラス種:Eガラス、単糸径:4μm、糸を構成する単糸本数:100本、織り方:平織り、織り密度:タテ70本/インチ、ヨコ73本/インチ、糸の撚り数:1回/インチ、重量28.0g/m2 、体積量:11.0cm3 /m2 )を使用した。
ガラスクロスB:上述のガラスクロスAにシランカップリング剤による表面処理を施したガラスクロスを使用した。
ガラスクロスC:焼却法により製織用集束剤を除去したスタイル1116ガラスクロス(旭シュエーベル株式会社製、ガラス種:Eガラス、単糸径:5μm、糸を構成する単糸本数:400本、織り方:平織り、織り密度:タテ60本/インチ、ヨコ58本/インチ、糸の撚り数:1回/インチ、重量104.2g/m2 、体積量:41.0cm3 /m2 )を使用した。
ガラスクロスD:糸の撚り数が0.1回/インチの無撚糸を用いて製織したこと以外はガラスクロスCと同一のガラスクロスを使用した。
Next, the present invention will be described in more detail with reference to Examples and Comparative Examples.
(Glass cloth)
Glass cloth A: Style 1037 glass cloth from which weaving sizing agent is removed by an incineration method (manufactured by Asahi Schwer, glass type: E glass, single yarn diameter: 4 μm, number of single yarns constituting yarn: 100, weaving method : Plain weave, weave density: warp 70 / inch, width 73 / inch, yarn twist number: 1 turn / inch, weight 28.0 g / m 2 , volume 11.0 cm 3 / m 2 ) .
Glass cloth B: A glass cloth obtained by subjecting the above-described glass cloth A to a surface treatment with a silane coupling agent was used.
Glass cloth C: Style 1116 glass cloth from which weaving sizing agent is removed by incineration method (Asahi Sebel Inc., glass type: E glass, single yarn diameter: 5 μm, number of single yarns constituting yarn: 400, weaving method : Plain weave, weave density: vertical 60 pieces / inch, width 58 pieces / inch, yarn twist number: 1 turn / inch, weight 104.2 g / m 2 , volume amount: 41.0 cm 3 / m 2 ) .
Glass cloth D: The same glass cloth as the glass cloth C was used except that weaving was performed using a non-twisted yarn having a yarn twist number of 0.1 times / inch.

(無機粒子分散液)
無機粒子分散液A:平衡水分率6%、平均粒子径30nmのコロイダルシリカ20質量%水分散液(扶桑化学株式会社製 PL−3)を作成した。尚、本コロイダルシリカを400℃で10時間加熱することにより、平衡水分率が4%になることを確認した。
無機粒子分散液B:平衡水分率2%、平均粒子径10nmの二酸化珪素表面処理酸化チタン(堺化学工業株式会社製、STR100W)25質量%水分散液を作成した。
無機粒子分散液C:平均粒子径300nmの焼成法により作成された非晶性二酸化珪素(以下「焼成アモルファスシリカ」という。)(扶桑化学株式会社製SP−0.3B)25質量%水分散液を作成した。
無機粒子分散液D:平均粒子径200nmの表面保護酸化チタン(石原産業株式会社製R9020)25質量%水分散液を作成した。
無機粒子分散液E:平均粒子径4μmの焼成アモルファスシリカ(扶桑化学株式会社製 SP−4B)25質量%水分散液を作成した。
(Inorganic particle dispersion)
Inorganic particle dispersion A: A colloidal silica 20% by mass aqueous dispersion (PL-3 manufactured by Fuso Chemical Co., Ltd.) having an equilibrium moisture content of 6% and an average particle diameter of 30 nm was prepared. It was confirmed that the equilibrium moisture content was 4% by heating the colloidal silica at 400 ° C. for 10 hours.
Inorganic particle dispersion B: A silicon dioxide surface-treated titanium oxide (STR100W, manufactured by Sakai Chemical Industry Co., Ltd.) having an equilibrium moisture content of 2% and an average particle diameter of 10 nm was prepared in an amount of 25% by mass.
Inorganic particle dispersion C: amorphous silicon dioxide (hereinafter referred to as “calcined amorphous silica”) prepared by a firing method having an average particle size of 300 nm (SP-0.3B manufactured by Fuso Chemical Co., Ltd.) 25% by mass aqueous dispersion It was created.
Inorganic particle dispersion D: A surface-protective titanium oxide (R9020 manufactured by Ishihara Sangyo Co., Ltd.) 25 mass% aqueous dispersion having an average particle diameter of 200 nm was prepared.
Inorganic particle dispersion E: A fired amorphous silica (SP-4B manufactured by Fuso Chemical Co., Ltd.) 25 mass% aqueous dispersion having an average particle diameter of 4 μm was prepared.

(マトリックス樹脂)
マトリックス樹脂A:テトラグリシジルジアミノジフェニルメタン(商品名エピコート604、ジャパンエポキシレジン株式会社製)25.0質量%、ビスフェノールA型エポキシ樹脂(商品名エピコート1001、ジャパンエポキシレジン株式会社製)25.0質量%、高臭素ビスフェノールA型エポキシ樹脂(商品名エピコート5050、ジャパンエポキシレジン株式会社製)46.9質量%、ジシアンジアミド3.0質量%、2−エチル−4−メチルイミダゾール0.1質量%からなる樹脂組成物を調整した。
マトリックス樹脂B:トリアリルイソシアヌレート(登録商標TAIC、日本化成株式会社製)20.0質量%、オルソジアリルフタレートプレポリマー(登録商標ダイソーDAP、ダイソー株式会社製)65.0質量%、デカブロモジフェニルエタン10.0質量%、2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)ヘキサン(登録商標パーヘキサ25B,日本油脂株式会社製)5.0質量%からなる樹脂組成物を調整した。
(Matrix resin)
Matrix resin A: Tetraglycidyldiaminodiphenylmethane (trade name Epicoat 604, manufactured by Japan Epoxy Resin Co., Ltd.) 25.0 mass%, bisphenol A type epoxy resin (trade name Epicoat 1001, manufactured by Japan Epoxy Resins Co., Ltd.) 25.0 mass% , High bromine bisphenol A type epoxy resin (trade name Epicoat 5050, manufactured by Japan Epoxy Resin Co., Ltd.) 46.9% by mass, dicyandiamide 3.0% by mass, 2-ethyl-4-methylimidazole 0.1% by mass The composition was adjusted.
Matrix resin B: triallyl isocyanurate (registered trademark TAIC, Nippon Kasei Co., Ltd.) 20.0 mass%, orthodiallyl phthalate prepolymer (registered trademark Daiso DAP, Daiso Corporation) 65.0 mass%, decabromodiphenyl A resin composition comprising 10.0% by mass of ethane and 5.0% by mass of 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane (registered trademark Perhexa 25B, manufactured by NOF Corporation) was prepared. did.

(有機溶媒)
有機溶媒A:N,N−ジメチルホルムアミド40.0質量部、2−メトキシエタノール40.0質量部、2−ブタノン20.0質量部からなる有機溶媒を調整した。
有機溶媒B:トルエン20.0質量部、アセトン20.0質量部、2−ブタノン60.0質量部からなる有機溶媒を調整した。
(Organic solvent)
Organic solvent A: An organic solvent comprising 40.0 parts by mass of N, N-dimethylformamide, 40.0 parts by mass of 2-methoxyethanol, and 20.0 parts by mass of 2-butanone was prepared.
Organic solvent B: An organic solvent comprising 20.0 parts by mass of toluene, 20.0 parts by mass of acetone, and 60.0 parts by mass of 2-butanone was prepared.

(無機粒子分散ワニス)
無機粒子分散ワニスA:マトリックス樹脂A20質量%、有機溶媒A50質量%、平均粒子径4μmの焼成アモルファスシリカ(扶桑化学株式会社製 SP−4B)30質量%の樹脂溶液を作成した。
無機粒子分散ワニスB:マトリックス樹脂B20質量%、有機溶媒B50質量%、平均粒子径4μmの焼成アモルファスシリカ(扶桑化学株式会社製 SP−4B)30質量%の樹脂溶液を作成した。
無機粒子分散ワニスC:マトリックス樹脂A20質量%、有機溶媒A50質量%、平均粒子径4μmの焼成タルク(日本タルク株式会社製 BST)30質量%の樹脂溶液を作成した。
無機粒子分散ワニスD:マトリックス樹脂A15.4質量%、有機溶媒A50質量%、平均粒子径4μmの焼成アモルファスシリカ(扶桑化学株式会社製 SP−4B)34.6質量%の樹脂溶液を作成した。
無機粒子分散ワニスE:マトリックス樹脂A17.5質量%、有機溶媒A50質量%、平均粒子径4μmの焼成アモルファスシリカ(扶桑化学株式会社製 SP−4B)32.5質量%の樹脂溶液を作成した。
無機粒子分散ワニスF:マトリックス樹脂A20質量%、有機溶媒A50質量%、平均粒子径30nmのアエロジル型二酸化珪素(以下、「アエロジル型シリカ」という。)(日本アエロジル株式会社製 AEROSIL50)30質量%の樹脂溶液を作成した。
無機粒子分散ワニスG:マトリックス樹脂A20質量%、有機溶媒A50質量%、平均粒子径25μmの焼成アモルファスシリカ(扶桑化学株式会社製 SP−25B)30質量%の樹脂溶液を作成した。
(Inorganic particle dispersion varnish)
Inorganic particle-dispersed varnish A: A resin solution of 20% by mass of matrix resin A, 50% by mass of organic solvent A, and 30% by mass of calcined amorphous silica (SP-4B manufactured by Fuso Chemical Co., Ltd.) having an average particle diameter of 4 μm was prepared.
Inorganic particle-dispersed varnish B: A resin solution of 20% by mass of matrix resin B, 50% by mass of organic solvent B, and 30% by mass of calcined amorphous silica (SP-4B manufactured by Fuso Chemical Co., Ltd.) having an average particle size of 4 μm was prepared.
Inorganic particle-dispersed varnish C: A resin solution of 20% by mass of matrix resin A, 50% by mass of organic solvent A, and 30% by mass of calcined talc (BST manufactured by Nippon Talc Co., Ltd.) having an average particle diameter of 4 μm was prepared.
Inorganic particle-dispersed varnish D: A resin solution of 15.4% by mass of matrix resin A, 50% by mass of organic solvent A, and 44.6% of calcined amorphous silica (SP-4B, manufactured by Fuso Chemical Co., Ltd.) was prepared.
Inorganic particle-dispersed varnish E: A resin solution of 12.5% by mass of matrix resin A, 50% by mass of organic solvent A, and 32.5% by mass of calcined amorphous silica (SP-4B manufactured by Fuso Chemical Co., Ltd.) having an average particle size of 4 μm was prepared.
Inorganic particle-dispersed varnish F: 20% by mass of matrix resin A, 50% by mass of organic solvent A, and 30% by mass of Aerosil-type silicon dioxide (hereinafter referred to as “Aerosil-type silica”) having an average particle size of 30 nm A resin solution was prepared.
Inorganic particle-dispersed varnish G: A resin solution of 20% by mass of matrix resin A, 50% by mass of organic solvent A, and 30% by mass of calcined amorphous silica (SP-25B manufactured by Fuso Chemical Co., Ltd.) having an average particle size of 25 μm was prepared.

(表面処理液)
表面処理液A:エタノール80質量%、エポキシシラン(東レダウコーニング株式会社製SH6040)10質量%、蒸留水10質量%のシランカップリング剤溶液を作成した。
表面処理液B:エタノール80質量%、メタクリルシラン(東レダウコーニング株式会社製SZ6030)10質量%、蒸留水10質量%のシランカップリング剤溶液を作成した。
(Surface treatment liquid)
Surface treatment liquid A: A silane coupling agent solution containing 80% by mass of ethanol, 10% by mass of epoxy silane (SH6040 manufactured by Toray Dow Corning Co., Ltd.) and 10% by mass of distilled water was prepared.
Surface treatment liquid B: A silane coupling agent solution containing 80% by mass of ethanol, 10% by mass of methacrylsilane (SZ6030 manufactured by Toray Dow Corning Co., Ltd.) and 10% by mass of distilled water was prepared.

<実施例1>
ガラスクロスAに、無機粒子分散液Aを含浸させて乾燥し、平均粒子径30nmのコロイダルシリカを3.25g/m2 付着させたガラスクロスを作成した後、無機粒子分散液Cを含浸させて乾燥し、平均粒子径が300nmの焼成アモルファスシリカを12.50g/m2 付着させた無機粒子充填付着ガラスクロスを作成した。該無機粒子充填付着ガラスクロスに表面処理液Aを塗布して乾燥させた後、無機粒子分散ワニスAを塗工してBステージ化し、マトリックス樹脂、及び平均粒子径が4μmの焼成アモルファスシリカが合計で52.55g/m2 付着した厚さ50μmのプリプレグを得た。
<Example 1>
After impregnating the glass cloth A with the inorganic particle dispersion A and drying to produce a glass cloth having 3.25 g / m 2 of colloidal silica having an average particle diameter of 30 nm attached thereto, the glass cloth A is impregnated with the inorganic particle dispersion C. It dried and produced the inorganic particle filling adhesion glass cloth which made 12.50 g / m < 2 > adhere the baking amorphous silica whose average particle diameter is 300 nm. After the surface treatment liquid A is applied to the inorganic particle-filled glass cloth and dried, the inorganic particle-dispersed varnish A is applied to form a B stage, and the matrix resin and the calcined amorphous silica having an average particle diameter of 4 μm are added. Thus, a prepreg having a thickness of 50 μm adhered to 52.55 g / m 2 was obtained.

<実施例2>
ガラスクロスAに、無機粒子分散液Aを含浸させて乾燥し、平均粒子径30nmのコロイダルシリカを3.25g/m2 付着させたガラスクロスを作成した後、無機粒子分散液Cを含浸させて乾燥し、平均粒子径が300nmの焼成アモルファスシリカを12.50g/m2 付着させた無機粒子充填付着ガラスクロスを作成した。該無機粒子充填付着ガラスクロスを400℃のオーブンにより24時間加熱してコロイダルシリカの平衡水分率を4質量%にし、冷却して表面処理液Aを塗布して乾燥させた後、無機粒子分散ワニスAを塗工してBステージ化し、マトリックス樹脂、及び平均粒子径が4μmの焼成アモルファスシリカが合計で52.55g/m2 付着した厚さ50μmのプリプレグを得た。
<Example 2>
After impregnating the glass cloth A with the inorganic particle dispersion A and drying to produce a glass cloth having 3.25 g / m 2 of colloidal silica having an average particle diameter of 30 nm attached thereto, the glass cloth A is impregnated with the inorganic particle dispersion C. It dried and produced the inorganic particle filling adhesion glass cloth which made 12.50 g / m < 2 > adhere the baking amorphous silica whose average particle diameter is 300 nm. The inorganic particle-filled adhering glass cloth is heated in an oven at 400 ° C. for 24 hours to bring the equilibrium moisture content of the colloidal silica to 4% by mass, cooled, coated with the surface treatment liquid A and dried, and then inorganic particle-dispersed varnish. A was applied to form a B stage to obtain a prepreg having a thickness of 50 μm to which a total of 52.55 g / m 2 of a matrix resin and a fired amorphous silica having an average particle diameter of 4 μm adhered.

<実施例3>
ガラスクロスAに、無機粒子分散液Bを含浸させて乾燥し、平均粒子径10nmの酸化チタンを5.76g/m2 付着させたガラスクロスを作成した後、無機粒子分散液Cを含浸させて乾燥し、平均粒子径が300nmの焼成アモルファスシリカを12.50g/m2 付着させた無機粒子充填付着ガラスクロスを作成した。該無機粒子充填付着ガラスクロスに表面処理液Aを塗布して乾燥させた後、無機粒子分散ワニスAを塗工してBステージ化し、マトリックス樹脂、及び平均粒子径が4μmの焼成アモルファスシリカが合計で52.55g/m2 付着した厚さ50μmのプリプレグを得た。
<Example 3>
Glass cloth A is impregnated with inorganic particle dispersion B and dried to form glass cloth with 5.76 g / m 2 of titanium oxide having an average particle diameter of 10 nm adhered, and then impregnated with inorganic particle dispersion C. It dried and produced the inorganic particle filling adhesion glass cloth which made 12.50 g / m < 2 > adhere the baking amorphous silica whose average particle diameter is 300 nm. After the surface treatment liquid A is applied to the inorganic particle-filled glass cloth and dried, the inorganic particle-dispersed varnish A is applied to form a B stage, and the matrix resin and the calcined amorphous silica having an average particle diameter of 4 μm are added. Thus, a prepreg having a thickness of 50 μm adhered to 52.55 g / m 2 was obtained.

<実施例4>
ガラスクロスBに、無機粒子分散液Bを含浸させて乾燥し、平均粒子径10nmの酸化チタンを5.76g/m2 付着させたガラスクロスを作成した後、無機粒子分散液Cを含浸させて乾燥し、平均粒子径が300nmの焼成アモルファスシリカを12.50g/m2 付着させた無機粒子充填付着ガラスクロスを作成した。該無機粒子充填付着ガラスクロスに表面処理液Aを塗布して乾燥させた後、無機粒子分散ワニスAを塗工してBステージ化し、マトリックス樹脂、及び平均粒子径が4μmの焼成アモルファスシリカが合計で52.55g/m2 付着した厚さ50μmのプリプレグを得た。
<Example 4>
The glass cloth B was impregnated with the inorganic particle dispersion B and dried to prepare a glass cloth having 5.76 g / m 2 of titanium oxide having an average particle diameter of 10 nm adhered thereto, and then impregnated with the inorganic particle dispersion C. It dried and produced the inorganic particle filling adhesion glass cloth which made 12.50 g / m < 2 > adhere the baking amorphous silica whose average particle diameter is 300 nm. After the surface treatment liquid A is applied to the inorganic particle-filled glass cloth and dried, the inorganic particle-dispersed varnish A is applied to form a B stage, and the matrix resin and the calcined amorphous silica having an average particle diameter of 4 μm are added. Thus, a prepreg having a thickness of 50 μm adhered to 52.55 g / m 2 was obtained.

<実施例5>
ガラスクロスAに、無機粒子分散液Bを含浸させて乾燥し、平均粒子径10nmの酸化チタンを5.76g/m2 付着させたガラスクロスを作成した後、無機粒子分散液Dを含浸させて乾燥し、平均粒子径が200nmの酸化チタンを22.16g/m2 付着させた無機粒子充填付着ガラスクロスを作成した。該無機粒子充填付着ガラスクロスに表面処理液Aを塗布して乾燥させた後、無機粒子分散ワニスAを塗工してBステージ化し、マトリックス樹脂、及び平均粒子径が4μmの焼成アモルファスシリカが合計で52.55g/m2 付着した厚さ50μmのプリプレグを得た。
<Example 5>
Glass cloth A was impregnated with inorganic particle dispersion B and dried to prepare glass cloth with 5.76 g / m 2 of titanium oxide having an average particle diameter of 10 nm adhered, and then impregnated with inorganic particle dispersion D. It dried and produced the inorganic particle filling adhesion | attachment glass cloth which adhered 22.16 g / m < 2 > of the titanium oxide with an average particle diameter of 200 nm. After the surface treatment liquid A is applied to the inorganic particle-filled glass cloth and dried, the inorganic particle-dispersed varnish A is applied to form a B stage, and the matrix resin and the calcined amorphous silica having an average particle diameter of 4 μm are added. Thus, a prepreg having a thickness of 50 μm adhered to 52.55 g / m 2 was obtained.

<実施例6>
ガラスクロスAに、無機粒子分散液Bと無機粒子分散液Cを質量比で、43:57の混合比で混ぜた無機粒子分散液を含浸させて乾燥し、平均粒子径10nmの酸化チタンと、平均粒子径300nmの焼成アモルファスシリカが合計で18.26g/m2 付着した無機粒子充填付着ガラスクロスを作成した。該無機粒子充填付着ガラスクロスに表面処理液Aを塗布して乾燥させた後、無機粒子分散ワニスBを塗工してBステージ化し、マトリックス樹脂、及び平均粒子径が4μmの焼成アモルファスシリカが合計で52.55g/m2 付着した厚さ50μmのプリプレグを得た。
<Example 6>
Glass cloth A is impregnated with an inorganic particle dispersion liquid in which inorganic particle dispersion liquid B and inorganic particle dispersion liquid C are mixed at a mass ratio of 43:57 and dried, and titanium oxide having an average particle diameter of 10 nm; An inorganic particle-filled glass cloth having a total of 18.26 g / m 2 of calcined amorphous silica with an average particle diameter of 300 nm was prepared. After the surface treatment liquid A is applied to the inorganic particle-filled adhered glass cloth and dried, the inorganic particle-dispersed varnish B is applied to form a B stage, and the matrix resin and the calcined amorphous silica having an average particle diameter of 4 μm are added. Thus, a prepreg having a thickness of 50 μm adhered to 52.55 g / m 2 was obtained.

<実施例7>
ガラスクロスAに、無機粒子分散液Bと無機粒子分散液Cを質量比で、43:57の混合比で混ぜた無機粒子分散液を含浸させて乾燥し、平均粒子径10nmの酸化チタンと、平均粒子径300nmの焼成アモルファスシリカが合計で18.26g/m2 付着した無機粒子充填付着ガラスクロスを作成した。該無機粒子充填付着ガラスクロスに表面処理液Bを塗布して乾燥させた後、無機粒子分散ワニスAを塗工してBステージ化し、マトリックス樹脂、及び平均粒子径が4μmの焼成アモルファスシリカが合計で52.55g/m2 付着した厚さ50μmのプリプレグを得た。
<Example 7>
Glass cloth A is impregnated with an inorganic particle dispersion liquid in which inorganic particle dispersion liquid B and inorganic particle dispersion liquid C are mixed at a mass ratio of 43:57 and dried, and titanium oxide having an average particle diameter of 10 nm; An inorganic particle-filled glass cloth having a total of 18.26 g / m 2 of calcined amorphous silica with an average particle diameter of 300 nm was prepared. After the surface treatment liquid B is applied to the inorganic particle filled glass cloth and dried, the inorganic particle-dispersed varnish A is applied to form a B stage, and the matrix resin and the calcined amorphous silica having an average particle diameter of 4 μm are added. Thus, a prepreg having a thickness of 50 μm adhered to 52.55 g / m 2 was obtained.

<実施例8>
ガラスクロスAに、無機粒子分散液Bを含浸させて乾燥し、平均粒子径10nmの酸化チタンを5.76g/m2 付着させたガラスクロスを作成した後、無機粒子分散液Cを含浸させて乾燥し、平均粒子径が300nmの焼成アモルファスシリカを12.50g/m2 付着させた無機粒子充填付着ガラスクロスを作成した。該無機粒子充填付着ガラスクロスに表面処理液Aを塗布して乾燥させた後、無機粒子分散ワニスCを塗工してBステージ化し、マトリックス樹脂、及び平均粒子径が4μmの焼成タルクが合計で66.45g/m2 付着した厚さ50μmのプリプレグを得た。
<Example 8>
Glass cloth A is impregnated with inorganic particle dispersion B and dried to form glass cloth with 5.76 g / m 2 of titanium oxide having an average particle diameter of 10 nm adhered, and then impregnated with inorganic particle dispersion C. It dried and produced the inorganic particle filling adhesion glass cloth which made 12.50 g / m < 2 > adhere the baking amorphous silica whose average particle diameter is 300 nm. After the surface treatment liquid A is applied to the inorganic particle-filled adhered glass cloth and dried, the inorganic particle-dispersed varnish C is applied to form a B-stage, and the matrix resin and the calcined talc having an average particle diameter of 4 μm are combined. A prepreg having a thickness of 50 μm adhered to 66.45 g / m 2 was obtained.

<実施例9>
ガラスクロスCに、無機粒子分散液Bを含浸させて乾燥し、平均粒子径10nmの酸化チタンを10.80g/m2 付着させた無機粒子充填付着ガラスクロスを作成した。該無機粒子充填付着ガラスクロスに表面処理液Aを塗布して乾燥させた後、無機粒子分散ワニスAを塗工してBステージ化し、マトリックス樹脂、及び平均粒子径が4μmの焼成アモルファスシリカが合計で92.80g/m2 付着した厚さ100μmのプリプレグを得た。
<Example 9>
The glass cloth C was impregnated with the inorganic particle dispersion B and dried to prepare an inorganic particle-filled glass cloth in which 10.80 g / m 2 of titanium oxide having an average particle diameter of 10 nm was adhered. After the surface treatment liquid A is applied to the inorganic particle-filled glass cloth and dried, the inorganic particle-dispersed varnish A is applied to form a B stage, and the matrix resin and the calcined amorphous silica having an average particle diameter of 4 μm are added. A prepreg having a thickness of 100 μm and 92.80 g / m 2 was obtained.

<実施例10>
ガラスクロスDに、無機粒子分散液Bを含浸させて乾燥し、平均粒子径10nmの酸化チタンを10.80g/m2 付着させた無機粒子充填付着ガラスクロスを作成した。該無機粒子充填付着ガラスクロスに表面処理液Aを塗布して乾燥させた後、無機粒子分散ワニスAを塗工してBステージ化し、マトリックス樹脂、及び平均粒子径が4μmの焼成アモルファスシリカが合計で92.80g/m2 付着した厚さ100μmのプリプレグを得た。
<Example 10>
The glass cloth D was impregnated with the inorganic particle dispersion B and dried to prepare an inorganic particle-filled glass cloth in which 10.80 g / m 2 of titanium oxide having an average particle diameter of 10 nm was adhered. After the surface treatment liquid A is applied to the inorganic particle-filled glass cloth and dried, the inorganic particle-dispersed varnish A is applied to form a B stage, and the matrix resin and the calcined amorphous silica having an average particle diameter of 4 μm are added. A prepreg having a thickness of 100 μm and 92.80 g / m 2 was obtained.

<比較例1>
ガラスクロスBに、無機粒子分散ワニスDを塗工してBステージ化し、マトリックス樹脂、及び平均粒子径が4μmのアモルファスシリカが合計で68.30g/m2 付着した厚さ50μmのプリプレグを得た。
<比較例2>
ガラスクロスAに、無機粒子分散液Cを含浸させて乾燥し、平均粒子径が300nmの焼成アモルファスシリカを15.75g/m2 付着させた無機粒子充填付着ガラスクロスを作成した。該無機粒子充填付着ガラスクロスに表面処理液Aを塗布して乾燥させた後、無機粒子分散ワニスAを塗工してBステージ化し、マトリックス樹脂、及び平均粒子径が4μmの焼成アモルファスシリカが合計で52.55g/m2 付着した厚さ50μmのプリプレグを得た。
<Comparative Example 1>
A glass cloth B was coated with an inorganic particle-dispersed varnish D to form a B stage to obtain a 50 μm thick prepreg in which a total of 68.30 g / m 2 of a matrix resin and amorphous silica having an average particle diameter of 4 μm adhered. .
<Comparative example 2>
The glass cloth A was impregnated with the inorganic particle dispersion C and dried to prepare an inorganic particle-filled attached glass cloth in which 15.75 g / m 2 of fired amorphous silica having an average particle diameter of 300 nm was adhered. After the surface treatment liquid A is applied to the inorganic particle-filled glass cloth and dried, the inorganic particle-dispersed varnish A is applied to form a B stage, and the matrix resin and the calcined amorphous silica having an average particle diameter of 4 μm are added. Thus, a prepreg having a thickness of 50 μm adhered to 52.55 g / m 2 was obtained.

<比較例3>
ガラスクロスAに、無機粒子分散液Bを含浸させて乾燥し、平均粒子径10nmの酸化チタンを5.76g/m2 付着させたガラスクロスを作成した後、無機粒子分散液Eを含浸させて乾燥し、平均粒子径が4μmの焼成アモルファスシリカを5.00g/m2 付着させた無機粒子充填付着ガラスクロスを作成した。該無機粒子充填付着ガラスクロスに表面処理液Aを塗布して乾燥させた後、無機粒子分散ワニスEを塗工してBステージ化し、マトリックス樹脂、及び平均粒子径が4μmの焼成アモルファスシリカが合計で39.05g/m2 付着した厚さ50μmのプリプレグを得た。
<Comparative Example 3>
Glass cloth A was impregnated with inorganic particle dispersion B and dried to form glass cloth with 5.76 g / m 2 of titanium oxide having an average particle diameter of 10 nm adhered, and then impregnated with inorganic particle dispersion E. It dried and produced the inorganic particle filling adhesion glass cloth which adhered 5.00 g / m < 2 > of the baking amorphous silica whose average particle diameter is 4 micrometers. After the surface treatment liquid A is applied to the inorganic particle-filled glass cloth and dried, the inorganic particle-dispersed varnish E is applied to form a B stage, and the matrix resin and the calcined amorphous silica having an average particle diameter of 4 μm are combined. Thus, a prepreg having a thickness of 50 μm adhered to 39.05 g / m 2 was obtained.

<比較例4>
ガラスクロスAに、無機粒子分散液Bを含浸させて乾燥し、平均粒子径10nmの酸化チタンを5.76g/m2 付着させたガラスクロスを作成した後、無機粒子分散液Cを含浸させて乾燥し、平均粒子径が300nmの焼成アモルファスシリカを12.50g/m2 付着させた無機粒子充填付着ガラスクロスを作成した。該無機粒子充填付着ガラスクロスに表面処理液Aを塗布して乾燥させた後、無機粒子分散ワニスFを塗工してBステージ化し、マトリックス樹脂、及び平均粒子径が30nmのアエロジル型シリカが合計で52.55g/m2 付着した厚さ50μmのプリプレグを得た。
<Comparative example 4>
Glass cloth A is impregnated with inorganic particle dispersion B and dried to form glass cloth with 5.76 g / m 2 of titanium oxide having an average particle diameter of 10 nm adhered, and then impregnated with inorganic particle dispersion C. It dried and produced the inorganic particle filling adhesion glass cloth which made 12.50 g / m < 2 > adhere the baking amorphous silica whose average particle diameter is 300 nm. After the surface treatment liquid A is applied to the inorganic particle-filled adhered glass cloth and dried, the inorganic particle-dispersed varnish F is applied to form a B stage, and the matrix resin and the aerosil-type silica having an average particle diameter of 30 nm are combined. Thus, a prepreg having a thickness of 50 μm adhered to 52.55 g / m 2 was obtained.

<比較例5>
ガラスクロスAに、無機粒子分散液Bを含浸させて乾燥し、平均粒子径10nmの酸化チタンを5.76g/m2 付着させたガラスクロスを作成した後、無機粒子分散液Cを含浸させて乾燥し、平均粒子径が300nmの焼成アモルファスシリカを12.50g/m2 付着させた無機粒子充填付着ガラスクロスを作成した。該無機粒子充填付着ガラスクロスに表面処理液Aを塗布して乾燥させた後、無機粒子分散ワニスGを塗工してBステージ化し、マトリックス樹脂、及び平均粒子径が25μmの焼成アモルファスシリカが合計で52.55g/m2 付着した厚さ50μmのプリプレグを得た。
<比較例6>
ガラスクロスCに表面処理液Aを塗布して乾燥させた後、無機粒子分散ワニスDを塗工してBステージ化し、マトリックス樹脂、及び平均粒子径が4μmの焼成アモルファスシリカが合計で100.51g/m2 付着した厚さ100μmのプリプレグを得た。
<Comparative Example 5>
Glass cloth A is impregnated with inorganic particle dispersion B and dried to form glass cloth with 5.76 g / m 2 of titanium oxide having an average particle diameter of 10 nm adhered, and then impregnated with inorganic particle dispersion C. It dried and produced the inorganic particle filling adhesion glass cloth which made 12.50 g / m < 2 > adhere the baking amorphous silica whose average particle diameter is 300 nm. After the surface treatment liquid A is applied to the inorganic particle-filled adhered glass cloth and dried, the inorganic particle-dispersed varnish G is applied to form a B stage, and the matrix resin and the calcined amorphous silica having an average particle diameter of 25 μm are added. Thus, a prepreg having a thickness of 50 μm adhered to 52.55 g / m 2 was obtained.
<Comparative Example 6>
After the surface treatment liquid A is applied to glass cloth C and dried, inorganic particle-dispersed varnish D is applied to form a B stage, and a total of 100.51 g of matrix resin and calcined amorphous silica having an average particle diameter of 4 μm. A prepreg having a thickness of 100 μm adhered to / m 2 was obtained.

(観察用基板作成)
実施例及び比較例で作成したプリプレグ1枚を、圧力4G・Paの条件下で、室温から180℃までの昇温速度を5℃/分、その後180℃で120分間加熱加圧成型して、観察用基板を作成した。
(積層板作成)
20cm角のサイズで、12μm厚さの銅箔2枚の間に、実施例及び比較例で作成したプリプレグ20枚を挟み込んで、圧力10G・Paの条件下で、室温から180℃までの昇温速度を10℃/分、その後180℃で120分間加熱加圧成型して、積層板を作成した。
(プリプレグ中の無機粒子の配置状態観察)
観察用基板の断面を電子顕微鏡(倍率:500倍)により観察し、a)ガラス糸束内への無機粒子の配置の有無確認、b)ガラス糸束表層部の厚さを測定した。
(Preparation of observation substrate)
One piece of the prepreg prepared in Examples and Comparative Examples was molded under heat and pressure at a rate of temperature increase from room temperature to 180 ° C. at 5 ° C./minute, and then at 180 ° C. for 120 minutes under a pressure of 4 G · Pa. An observation substrate was prepared.
(Laminate creation)
Twenty prepregs created in Examples and Comparative Examples are sandwiched between two 12 μm thick copper foils with a size of 20 cm square, and the temperature is raised from room temperature to 180 ° C. under a pressure of 10 G · Pa. A laminate was prepared by heating and pressing at a rate of 10 ° C./minute and then at 180 ° C. for 120 minutes.
(Observation of arrangement of inorganic particles in prepreg)
The cross section of the substrate for observation was observed with an electron microscope (magnification: 500 times), a) confirmation of the presence or absence of the arrangement of inorganic particles in the glass yarn bundle, and b) the thickness of the surface portion of the glass yarn bundle.

(プリプレグ中のボイド数の評価)
観察用基板をガラスクロスタテ糸方向に垂直な断面で切断し、ヨコ糸方向の幅1cm×該ガラスクロスの厚みの範囲を電子顕微鏡(倍率:500倍)により観察し、範囲内のボイドの個数を計測した。
(プリプレグの溶融粘度評価)
プリプレグを10枚重ねた状態で、RDAII(レオメトリックス(株)製)により、昇温速度10℃/分条件で粘度を測定し、その最低値を求めた。
(積層板の表面欠点評価)
積層板の表面を目視観察し、銅箔が破れて、樹脂が銅箔の表面に流れ出ている箇所数を計測し、表裏両面の数を合計した)。
(Evaluation of number of voids in prepreg)
The substrate for observation was cut in a cross section perpendicular to the glass cross warp direction, the width of the weft direction was 1 cm x the thickness of the glass cloth was observed with an electron microscope (magnification: 500 times), and the number of voids in the range Was measured.
(Evaluation of melt viscosity of prepreg)
In the state where 10 prepregs were stacked, the viscosity was measured with RDAII (manufactured by Rheometrics Co., Ltd.) at a temperature rising rate of 10 ° C./min, and the minimum value was determined.
(Surface defect evaluation of laminates)
The surface of the laminate was visually observed, the number of locations where the copper foil was torn and the resin was flowing out on the surface of the copper foil was counted, and the number of both front and back surfaces was summed).

(積層板の熱膨張係数の測定)
積層板の銅箔をエッチングにより除去、水洗した後、窒素雰囲気において200℃で3時間加熱乾燥したサンプルについて、熱機械的分析装置(セイコーインスツルメント(株)製 TMASS6000)を用いて、10℃/分の昇温速度、10mN端子加重時条件で、100℃における厚さ方向の熱膨張係数を測定した。
(積層板の誘電正接測定)
積層板の銅箔をエッチングにより除去、水洗した後、窒素雰囲気において200℃で3時間加熱乾燥したサンプルについて、インピ−ダンスアナライザ−(日本ヒューレットパッカード(株)製 HP4291B)を用いて、誘電正接を測定した。
(Measurement of thermal expansion coefficient of laminate)
The copper foil of the laminated plate was removed by etching, washed with water, and then heated and dried at 200 ° C. for 3 hours in a nitrogen atmosphere using a thermomechanical analyzer (TMASS6000, manufactured by Seiko Instruments Inc.) at 10 ° C. The coefficient of thermal expansion in the thickness direction at 100 ° C. was measured at a heating rate of 10 min / min under conditions of 10 mN terminal load.
(Measurement of dielectric loss tangent of laminate)
After removing the copper foil of the laminated plate by etching, washing with water, and using a impedance analyzer (HP4291B, manufactured by Hewlett-Packard Japan) for the sample heat-dried at 200 ° C. for 3 hours in a nitrogen atmosphere, the dielectric loss tangent is obtained. It was measured.

(反り測定用積層板の測定)
20cm角のサイズで、12μm厚さの銅箔2枚の間に、実施例及び比較例で作成したプリプレグ2枚を挟み込んで、圧力10G・Paの条件下で、室温から180℃までの昇温速度を10℃/分、その後180℃で120分間加熱加圧成型して、反り測定用積層板を作成した。該反り測定用積層板の銅箔をエッチングにより除去、水洗した後、5cm角に切断し、260℃の溶融ハンダに20秒間浸漬することを3回繰り返した後の、板の反り量を測定した。反り量は定盤上に積層板を置き、定盤から浮いている板の四隅の高さを定規で計測し、その最大値とした。
(Measurement of warp measurement laminate)
Two prepregs created in Examples and Comparative Examples are sandwiched between two 12 μm thick copper foils with a size of 20 cm square, and the temperature is raised from room temperature to 180 ° C. under a pressure of 10 G · Pa. A laminate for warpage measurement was prepared by heating and pressing at a rate of 10 ° C./min and then at 180 ° C. for 120 minutes. The copper foil of the warp measurement laminate was removed by etching, washed with water, cut into 5 cm squares, and immersed in 260 ° C. molten solder for 20 seconds three times to measure the amount of warpage of the plate. . The amount of warpage was determined by placing a laminated plate on a surface plate and measuring the height of the four corners of the plate floating from the surface plate with a ruler.

実施例1〜10、及び比較例1〜6で作成したプリプレグ及び積層板の評価結果を表1〜表3に示す。
表1から明らかなように、実施例1〜10で得られた本発明のプリプレグは、良好な特性を示す。
それに対して、比較例1は、糸束内無機粒子、及び糸束表層無機粒子が配置されていないプリプレグであり、従来の一般的に生産されている低熱膨張基板用プリプレグ相当品である。この比較例1のプリプレグに実施例1相当の量の無機粒子を充填しようとすると糸束外無機粒子の密度を上げざるを得ない。このためプリプレグの溶融粘度は高くなった。
加えて、実施例のように糸束中に無機粒子が存在する場合、空間も小さく、毛細管現象で効率良く樹脂成分が入り込むが、比較例1の場合、毛細管現象が働きにくく、この空間に樹脂成分が充填されにくくなった。
以上の理由で、この比較例1の観察用基板はガラス糸束内にボイドが発生した。
そして、糸束内の空隙に樹脂成分のみが入り込むために、糸束外の無機粒子密度は更に上昇し、溶融粘度は8000Pa・sと高くなった。
また一方、糸束内の空間には無機粒子が存在せず、充填された樹脂成分のより大きな熱膨張が強く影響し、作成した積層板の熱膨張係数は35ppm/℃と大きなものであった。
Tables 1 to 3 show the evaluation results of the prepregs and laminates prepared in Examples 1 to 10 and Comparative Examples 1 to 6.
As is clear from Table 1, the prepregs of the present invention obtained in Examples 1 to 10 exhibit good characteristics.
On the other hand, Comparative Example 1 is a prepreg in which the yarn bundle inorganic particles and the yarn bundle surface inorganic particles are not arranged, and is a conventional prepreg for a low thermal expansion substrate that is generally produced. If an attempt is made to fill the prepreg of Comparative Example 1 with an amount of inorganic particles equivalent to that of Example 1, the density of the inorganic particles outside the yarn bundle must be increased. For this reason, the melt viscosity of the prepreg was high.
In addition, when inorganic particles are present in the yarn bundle as in the example, the space is small and the resin component efficiently enters by capillary action, but in the case of Comparative Example 1, the capillary phenomenon is difficult to work, and the resin is in this space. It became difficult to be filled with ingredients.
For the above reason, voids were generated in the glass yarn bundle in the observation substrate of Comparative Example 1.
And since only the resin component entered into the voids in the yarn bundle, the density of inorganic particles outside the yarn bundle further increased, and the melt viscosity became as high as 8000 Pa · s.
On the other hand, inorganic particles are not present in the space inside the yarn bundle, and the larger thermal expansion of the filled resin component has a strong influence, and the thermal expansion coefficient of the produced laminate is as large as 35 ppm / ° C. .

比較例2は、糸束内無機粒子が配置されていないプリプレグであり、比較例1と同様の現象が見られた。具体的には表2記載のように、この比較例2のプリプレグから作成した観察用基板はガラス糸束内にボイドが発生した。また、この比較例2のプリプレグの溶融粘度は7000Pa・sと高く、かつ、作成した積層板の熱膨張係数は30ppm/℃と大きなものであった。
比較例3は、糸束表層無機粒子と、糸束外無機粒子が同じ粒子径(4μm)で構成されたプリプレグである。
比較例3では、糸束表層の無機粒子の空間が大きく、その空間を樹脂成分で埋める必要があるために、表2に記載のように、この比較例3のプリプレグから作成した観察用基板はガラス糸束外にボイドが発生した。
また、糸束表層無機粒子の空間に樹脂が必要なために、糸束外の無機粒子密度が上昇し、この比較例3のプリプレグの溶融粘度は7500Pa・sと高いものであった。
比較例4は、平均粒子径が30nmの糸束外無機粒子が配置されているプリプレグである。粒子径が小さいほど樹脂ワニス粘度およびプリプレグの粘度を上昇させる。このため、糸束内に樹脂成分が充填されにくく、表2に記載のように、この比較例4のプリプレグから作成した観察用基板はガラス糸束内にボイドが発生した。また、この比較例4のプリプレグの溶融粘度は9000Pa・sと高いものであった。
Comparative Example 2 was a prepreg in which the inorganic particles in the yarn bundle were not arranged, and the same phenomenon as Comparative Example 1 was observed. Specifically, as shown in Table 2, in the observation substrate prepared from the prepreg of Comparative Example 2, voids were generated in the glass yarn bundle. Further, the melt viscosity of the prepreg of Comparative Example 2 was as high as 7000 Pa · s, and the thermal expansion coefficient of the prepared laminate was as high as 30 ppm / ° C.
Comparative example 3 is a prepreg in which the yarn bundle surface layer inorganic particles and the yarn bundle outer inorganic particles have the same particle diameter (4 μm).
In Comparative Example 3, since the space of the inorganic particles on the surface of the yarn bundle is large and the space needs to be filled with the resin component, the observation substrate made from the prepreg of Comparative Example 3 as shown in Table 2 is Voids were generated outside the glass yarn bundle.
Further, since a resin was required in the space of the yarn bundle surface layer inorganic particles, the density of inorganic particles outside the yarn bundle increased, and the melt viscosity of the prepreg of Comparative Example 3 was as high as 7500 Pa · s.
Comparative Example 4 is a prepreg in which inorganic particles outside the yarn bundle having an average particle diameter of 30 nm are arranged. The smaller the particle size, the higher the resin varnish viscosity and the prepreg viscosity. For this reason, the resin component was hardly filled in the yarn bundle, and as shown in Table 2, the observation substrate made from the prepreg of Comparative Example 4 had voids in the glass yarn bundle. The melt viscosity of the prepreg of Comparative Example 4 was as high as 9000 Pa · s.

比較例5は、平均粒子径が25μmの糸束外無機粒子が配置されているプリプレグである。糸束外粒子が大きい場合、粒子間の空間が大きくなり、プリプレグ作成における溶媒乾燥等による泡が粒子間に残りやすくなり、表2に記載のように、この比較例5のプリプレグから作成した観察用基板はガラス糸束外にボイドが発生し、また銅箔の厚さよりも大きな粒子径の無機粒子による銅箔の破れが原因と思われる表面欠点が多いものであった。
比較例6は、比較例1のプリプレグと同様に、糸束内無機粒子、及び糸束表層無機粒子が配置されていないプリプレグであり、従来の一般的に生産されている低熱膨張基板用プリプレグ相当品であり、比較例1と同様の現象が見られた。具体的には表2に記載のように、この比較例6のプリプレグから作成した観察用基板はガラス糸束内にボイドが発生した。また、溶融粘度は7500Pa・sと高く、かつ、作成した積層板の熱膨張係数は22ppm/℃とやや大きなものであった。
また、表3に記載のように、本発明のプリプレグに使用するガラスクロスとして特に無撚糸を用いたガラスクロスを使用すると、積層板の反りが少ないものを得ることができた。
Comparative Example 5 is a prepreg in which inorganic particles outside the yarn bundle having an average particle diameter of 25 μm are arranged. When the particles outside the yarn bundle are large, the space between the particles becomes large, and bubbles due to solvent drying or the like in the preparation of the prepreg tend to remain between the particles. As shown in Table 2, the observation made from the prepreg of this comparative example 5 The substrate for the substrate had voids outside the glass yarn bundle, and had many surface defects that were thought to be caused by the copper foil being broken by inorganic particles having a particle diameter larger than the thickness of the copper foil.
Comparative Example 6, like the prepreg of Comparative Example 1, is a prepreg in which the inorganic particles in the yarn bundle and the inorganic particles in the surface of the yarn bundle are not disposed, and is equivalent to a conventional prepreg for a low thermal expansion substrate that is generally produced. The same phenomenon as in Comparative Example 1 was observed. Specifically, as shown in Table 2, in the observation substrate prepared from the prepreg of Comparative Example 6, voids were generated in the glass yarn bundle. Further, the melt viscosity was as high as 7500 Pa · s, and the thermal expansion coefficient of the prepared laminate was slightly high at 22 ppm / ° C.
In addition, as shown in Table 3, when a glass cloth using untwisted yarn was used as the glass cloth used in the prepreg of the present invention, it was possible to obtain a laminate with less warping.

Figure 2005105035
Figure 2005105035

Figure 2005105035
Figure 2005105035

Figure 2005105035
Figure 2005105035

本発明のプリプレグ及び積層板は、プリント配線基板の分野で好適に利用できる。   The prepreg and laminate of the present invention can be suitably used in the field of printed wiring boards.

境界線1を説明するためのガラス糸束の断面の一態様の模式図である。It is a schematic diagram of the one aspect | mode of the cross section of the glass yarn bundle for demonstrating the boundary line 1. FIG. 境界線1を説明するためのガラス糸束の断面の別の態様の模式図である。It is a schematic diagram of another aspect of the cross section of the glass yarn bundle for demonstrating the boundary line 1. FIG.

符号の説明Explanation of symbols

1 ガラス糸束
2 単糸
2A 最も外側の単糸
2B 最も外側の単糸であって2Aに隣接する単糸
2C 単糸2Aと単糸2B間に存在する最も外側の単糸
3 境界線1
4 隣接する最も外側の単糸2A、単糸2B間の間隔
DESCRIPTION OF SYMBOLS 1 Glass yarn bundle 2 Single yarn 2A Outermost single yarn 2B Outermost single yarn 2C Single yarn 2C which adjoins 2A Single yarn 2A and outermost single yarn 3 which exists between single yarn 2B Boundary line 1
4 Distance between adjacent outermost single yarn 2A and single yarn 2B

Claims (6)

ガラスクロス、無機粒子、及びマトリックス樹脂からなるプリプレグであって、無機粒子が、ガラスクロスを構成するガラス糸束内に存在する糸束内無機粒子、該ガラス糸束外であって0.5〜10μmの厚さを有するガラス糸束表層部に存在する糸束表層無機粒子、及び該ガラス糸束表層の外に存在する糸束外無機粒子からなり、糸束内無機粒子は平均粒子径が1nm以上100nm以下であり、糸束外無機粒子は平均粒子径が500nm以上5000nm以下であり、糸束表層無機粒子の平均粒子径は糸束内無機粒子の平均粒子径以上、かつ糸束外無機粒子の平均粒子径未満であることを特徴とするプリプレグ。   A prepreg composed of a glass cloth, inorganic particles, and a matrix resin, wherein the inorganic particles are present in the glass yarn bundles constituting the glass cloth, outside the glass yarn bundles and 0.5 to It consists of yarn bundle surface inorganic particles existing in the surface portion of the glass yarn bundle having a thickness of 10 μm and inorganic particles outside the yarn bundle existing outside the surface layer of the glass yarn bundle, and the inorganic particles in the yarn bundle have an average particle diameter of 1 nm. The inorganic particle outside the yarn bundle has an average particle size of 500 nm or more and 5000 nm or less, the average particle size of the inorganic particle on the surface of the yarn bundle is not less than the average particle size of the inorganic particle in the yarn bundle, and the inorganic particle outside the yarn bundle. A prepreg having an average particle size of less than 1. 糸束表層無機粒子の平均粒子径が、糸束内無機粒子の平均粒子径より大きいことを特徴とする請求項1記載のプリプレグ。   The prepreg according to claim 1, wherein the average particle diameter of the inorganic particles in the surface of the yarn bundle is larger than the average particle size of the inorganic particles in the yarn bundle. 糸束表層無機粒子の化学組成及び平均粒子径が、糸束内無機粒子の化学組成及び平均粒子径と同一であることを特徴とする請求項1記載のプリプレグ。   2. The prepreg according to claim 1, wherein the chemical composition and average particle diameter of the yarn bundle surface layer inorganic particles are the same as the chemical composition and average particle diameter of the inorganic particles in the yarn bundle. ガラスクロスが、0.2回/インチ以下の撚り数のガラス糸束で構成されていることを特徴とする請求項1ないし3のいずれか1項に記載のプリプレグ。   The prepreg according to any one of claims 1 to 3, wherein the glass cloth is formed of a glass yarn bundle having a twist number of 0.2 times / inch or less. ガラスクロスに平均粒子径が1nm以上500nm未満の無機粒子を分散させた液体を塗布乾燥後、平均粒子径が500nm以上5000nm以下の無機粒子を含む樹脂ワニスを塗工することを特徴とするプリプレグの製造方法。   A prepreg characterized by coating a liquid in which inorganic particles having an average particle diameter of 1 nm or more and less than 500 nm are dispersed on a glass cloth and then applying a resin varnish containing inorganic particles having an average particle diameter of 500 nm or more and 5000 nm or less. Production method. 請求項1ないし4のいずれか1項に記載のプリプレグの1枚以上と、金属箔とを重ね合わせて積層成型したことを特徴とする積層板。   A laminated board, wherein one or more of the prepregs according to any one of claims 1 to 4 and a metal foil are laminated and molded.
JP2003337272A 2003-09-29 2003-09-29 Prepreg, manufacturing method thereof and laminated plate Pending JP2005105035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003337272A JP2005105035A (en) 2003-09-29 2003-09-29 Prepreg, manufacturing method thereof and laminated plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003337272A JP2005105035A (en) 2003-09-29 2003-09-29 Prepreg, manufacturing method thereof and laminated plate

Publications (1)

Publication Number Publication Date
JP2005105035A true JP2005105035A (en) 2005-04-21

Family

ID=34533149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003337272A Pending JP2005105035A (en) 2003-09-29 2003-09-29 Prepreg, manufacturing method thereof and laminated plate

Country Status (1)

Country Link
JP (1) JP2005105035A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283929A (en) * 2008-04-25 2009-12-03 Semiconductor Energy Lab Co Ltd Manufacturing process of semiconductor device and semiconductor device
JP2010522097A (en) * 2006-12-13 2010-07-01 ヨーロピアン・エアロノーティック・ディフェンス・アンド・スペース・カンパニー・イーエーディーエス・フランス Process for producing a composite member made from a composite material having long fibers and a thermosetting matrix
JP2011105888A (en) * 2009-11-19 2011-06-02 Panasonic Electric Works Co Ltd Transparent film
JP2011109108A (en) * 2009-11-20 2011-06-02 E I Du Pont De Nemours & Co Thin film transistor composition and method relating to the same
JP2012006990A (en) * 2010-06-22 2012-01-12 Nippon Zeon Co Ltd Method for producing prepreg and prepreg
WO2012101991A1 (en) * 2011-01-24 2012-08-02 住友ベークライト株式会社 Pre-preg, laminate board, printed wiring board, and semiconductor device
JP2013209626A (en) * 2012-02-28 2013-10-10 Sumitomo Bakelite Co Ltd Prepreg and prepreg manufacturing method
JP2013221154A (en) * 2012-04-12 2013-10-28 Samsung Electro-Mechanics Co Ltd Prepreg, printed circuit board containing the same and method for manufacturing printed circuit board
JP2019075485A (en) * 2017-10-18 2019-05-16 セイコーインスツル株式会社 Film substrate, and method for manufacturing film substrate
JP2020170828A (en) * 2019-04-05 2020-10-15 Tdk株式会社 Substrate and laminated substrate
CN113699794A (en) * 2020-05-21 2021-11-26 南通碧辉石业有限公司 Modification method for toughened marble back-adhered fiber mesh cloth

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010522097A (en) * 2006-12-13 2010-07-01 ヨーロピアン・エアロノーティック・ディフェンス・アンド・スペース・カンパニー・イーエーディーエス・フランス Process for producing a composite member made from a composite material having long fibers and a thermosetting matrix
US9171808B2 (en) 2008-04-25 2015-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2009283929A (en) * 2008-04-25 2009-12-03 Semiconductor Energy Lab Co Ltd Manufacturing process of semiconductor device and semiconductor device
US8637932B2 (en) 2008-04-25 2014-01-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2011105888A (en) * 2009-11-19 2011-06-02 Panasonic Electric Works Co Ltd Transparent film
JP2011109108A (en) * 2009-11-20 2011-06-02 E I Du Pont De Nemours & Co Thin film transistor composition and method relating to the same
JP2012006990A (en) * 2010-06-22 2012-01-12 Nippon Zeon Co Ltd Method for producing prepreg and prepreg
WO2012101991A1 (en) * 2011-01-24 2012-08-02 住友ベークライト株式会社 Pre-preg, laminate board, printed wiring board, and semiconductor device
JP2012167256A (en) * 2011-01-24 2012-09-06 Sumitomo Bakelite Co Ltd Prepreg, laminate, printed wiring board, and semiconductor device
JP2013209626A (en) * 2012-02-28 2013-10-10 Sumitomo Bakelite Co Ltd Prepreg and prepreg manufacturing method
JP2013221154A (en) * 2012-04-12 2013-10-28 Samsung Electro-Mechanics Co Ltd Prepreg, printed circuit board containing the same and method for manufacturing printed circuit board
JP2019075485A (en) * 2017-10-18 2019-05-16 セイコーインスツル株式会社 Film substrate, and method for manufacturing film substrate
JP7060938B2 (en) 2017-10-18 2022-04-27 セイコーインスツル株式会社 Film substrate and manufacturing method of film substrate
JP2020170828A (en) * 2019-04-05 2020-10-15 Tdk株式会社 Substrate and laminated substrate
CN111800940A (en) * 2019-04-05 2020-10-20 Tdk株式会社 Substrate and laminated substrate
CN113699794A (en) * 2020-05-21 2021-11-26 南通碧辉石业有限公司 Modification method for toughened marble back-adhered fiber mesh cloth

Similar Documents

Publication Publication Date Title
TW457266B (en) Glass fiber strands coated with thermally conductive inorganic particles and products including the same
JP5608977B2 (en) Semiconductor package, core layer material, buildup layer material, and sealing resin composition
JP5660272B2 (en) Flip chip semiconductor package connection structure, build-up layer material, sealing resin composition, and circuit board
JP5771987B2 (en) Multilayer circuit board, insulating sheet, and semiconductor package using multilayer circuit board
WO2011010672A1 (en) Resin compositions, resin sheet, prepreg, metal-clad laminate, printed wiring board, and semiconductor device
TW464639B (en) Impregnated glass fiber strands and products including the same
WO2012101991A1 (en) Pre-preg, laminate board, printed wiring board, and semiconductor device
CN104943297B (en) Prepreg, metal-clad stack and printed wiring board
JP5533657B2 (en) Laminate board, circuit board and semiconductor device
JPWO2008096540A1 (en) Laminated body, circuit board including laminated body, semiconductor package, and laminated body manufacturing method
JP2005105035A (en) Prepreg, manufacturing method thereof and laminated plate
TWI424510B (en) Circuit board manufacturing method and semiconductor manufacturing device
JP5573392B2 (en) Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
CN109476862A (en) Prepreg, metal-coated laminated board and printed wiring board
JP5263134B2 (en) Circuit board resin composition, prepreg, laminate, resin sheet, multilayer printed wiring board, and semiconductor device
JP4446754B2 (en) Glass cloth
JP2012131946A (en) Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
JP2004277671A (en) Prepreg and printed circuit board using the same
JP5493948B2 (en) Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
JP5448414B2 (en) Resin composition, prepreg, laminate, multilayer printed wiring board, and semiconductor device
JP2009067852A (en) Insulation resin sheet impregnated with glass fiber woven fabric, laminated plate, multilayered printed wiring board, and semiconductor device
JP4840303B2 (en) Insulated resin sheet with glass fiber woven fabric, laminated board, multilayer printed wiring board, and semiconductor device
JP2012138484A (en) Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board and semiconductor device
KR20230061353A (en) Methods for preparing powder dispersions and composites
JP5493524B2 (en) Glass cloth, prepreg manufacturing method, prepreg and laminate