WO2013127262A1 - 一种低压下产生分析用离子的方法和装置 - Google Patents
一种低压下产生分析用离子的方法和装置 Download PDFInfo
- Publication number
- WO2013127262A1 WO2013127262A1 PCT/CN2013/000195 CN2013000195W WO2013127262A1 WO 2013127262 A1 WO2013127262 A1 WO 2013127262A1 CN 2013000195 W CN2013000195 W CN 2013000195W WO 2013127262 A1 WO2013127262 A1 WO 2013127262A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sample
- electrospray
- ionization
- ions
- ion
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/04—Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
- H01J49/0459—Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for solid samples
- H01J49/0463—Desorption by laser or particle beam, followed by ionisation as a separate step
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/10—Ion sources; Ion guns
- H01J49/14—Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/10—Ion sources; Ion guns
- H01J49/16—Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
Definitions
- the present invention relates to a method and apparatus for generating ions for analysis, particularly ionization methods and apparatus for generating ions by a plurality of means at a lower pressure and combining the plurality of ion sources.
- ESI electrospray ionization
- MALDI matrix-assisted laser desorption ionization
- MALDI-generated ions are generally single-charged, but time-of-flight mass spectrometry (TOF) with a high mass range can still analyze macromolecules, and the development of TOF technology and TOF-TOF technology makes MALDI guarantee With a certain sensitivity, a higher flux analysis than ESI can be performed, but the MALDI source is more difficult to match with liquid chromatography, and its own sample preparation process is time consuming. If you can combine the two, you can not only take advantage of the two ionization methods at the same time, avoid the disadvantages of using them alone, and greatly expand the application range of a single mass spectrometer ion source.
- TOF time-of-flight mass spectrometry
- the mass spectrometer is usually used with time-of-flight mass spectrometry, mainly because the pulsed laser used by MALDI generates a pulsed ion current. It matches the characteristics of pulse acceleration, flight and detection in flight time, while the ion current formed by the ESI source is continuous. If ordinary pulse detection is performed, the sensitivity and quantitative performance will be greatly reduced. This is another reason why the ESI source and the MALDI source have not been matched for a long time.
- ion-conducting and analytical devices such as:
- higher-pressure buffer gas can be used after the source (eg 10 mtorr of helium) allows the ions to cool and form a semi-continuous flow, and then enter the quadrupole or multipole conduction device for transmission, which can achieve better quantitative;
- ESI source if using time-of-flight mass spectrometry
- the mass analyzer can store ions in the ion trap for a period of time before entering the flight tube, and then pulse into the flight tube to reduce ion loss and improve sensitivity. That is to say, the two ion sources are on the same mass spectrometer, and there are no obstacles in the requirements of ion conduction and analysis devices.
- the object of the present invention is to design a kind of ionization mode between electrospray ionization, laser desorption ionization or matrix-assisted laser desorption ionization, and even several ionization methods can be combined at the same time, and various ion sources can be maintained. High sensitivity method and device.
- the present invention provides a method of producing ions for analysis comprising: 1) providing a vacuum environment having a gas pressure of no more than 100 torr and a sample platform, electrospray ionization device, ion focusing device, 2) Place a solid or liquid sample on the platform, 3) generate charged droplets and ions by electrospray ionization, 4) produce sample neutral molecules or ions by desorption ionization, and 5) charged droplets and sample ions generated above
- the ion focusing device converges and guides into the ion analyzer.
- the above vacuum environment preferably does not exceed 50 torr, further preferably does not exceed 30 torr, and the ion focusing device is an ion transport device suitable for operation in the above-described low pressure environment.
- the above method for generating ions for analysis first includes electrospray ionization, and the electrospray process may be a nanoliter spray process. Then, according to the laser desorption ionization apparatus provided in the present invention, the sample is desorbed by laser irradiation to a solid or liquid sample located on the sample platform to generate gaseous neutral molecules or to desorb ionization to generate ions.
- the electrospray ionization and the laser desorption ionization described above are ionized at the same or different low pressures, and/or the electrospray ionization and the laser desorption ionization are performed simultaneously or in a time division manner.
- the different low pressures described above are, for example, for electrospray ionization at a pressure of 50 to 100 torr, and for laser desorption ionization at a pressure of no more than 20 torr.
- the electrospray ionization and the laser desorption ionization are simultaneously performed, the neutral molecules generated by desorption of the sample by laser irradiation or ions generated by further ionization are fused with charged droplets or ions generated by the electrospray, Thereby generating ions to be analyzed.
- the sample platform is movable, and by moving the sample platform, the laser can scan the surface of the sample to obtain surface information of the sample.
- the method for generating ions for analysis further comprises the steps of: the charged droplets generated by the electrospray tip directly act on the sample on the sample platform, so that the sample molecules are desorbed and ionized, and the generated sample ions are
- the ion focusing device converges and guides. Because of the use of the sample platform, it can be applied not only to liquid samples, but also to the ionization of solid samples, so that the high sensitivity of the above-mentioned electrospray ionization method at low pressure is equally applied to solid samples.
- the spray point of the electrospray scans the surface of the sample to obtain surface information of the sample.
- the method for generating ions for analysis further comprises the steps of: providing an ultraviolet photoionization source in the environment, the ultraviolet photoionization source and the electrospray and/or the laser desorption ionization Work at the same time or in time to generate ions.
- the method for generating ions for analysis further comprises the steps of: providing a discharge ionization source in the environment for generating a glow discharge over the sample, the glow discharge and the electrospray And/or laser desorption ionization acts simultaneously or in a time-sharing manner to generate ions.
- the method for generating ions for analysis further comprises the steps of: electrospray ionization of liquid sample molecules, providing a pulsed laser in the environment, the pulsed laser being incident from the back of the sample stage to be on the sample stage The surface generates a gas shock wave that interacts with the electrospray droplets above to help promote the desolvation process of the spray droplets.
- electrospray ionization and (matrix assisted) laser desorption ionization can be used simultaneously. It can even match more ion source types such as UV photoionization and/or glow discharge ionization, which can significantly increase the application range of the ion source, while maintaining the high sensitivity of each ionization source, even between different ion sources. Promote each other's sensitivity.
- rapid analysis methods such as electrospray desorption ionization (DESI) and electrospray laser desorption ionization (ELDI) can be performed at a low pressure to significantly improve sensitivity; on the other hand, for the case of use alone, the above two or more kinds of ionization
- DESI electrospray desorption ionization
- ELDI electrospray laser desorption ionization
- the method can be easily switched without any mechanical device, which improves the efficiency of the instrument and saves the use and maintenance costs.
- the present invention also provides an apparatus for generating ions for analysis, the apparatus comprising: 1) a vacuum system for providing a gas pressure of not more than 100 torr, 2) an electrospray device in the system for generating charged droplets And ions, 3) a sample platform in the system for placing solid or liquid samples, and 4) an ion focusing device in the system for converging and directing the ions into the ion analyzer.
- the pressure of the above vacuum system is preferably not more than 50 torr, further preferably not more than 30 torr.
- the apparatus for generating ions for analysis according to the present invention may further comprise a laser source for generating a laser and irradiating the laser with a solid or liquid sample on the sample platform.
- the apparatus for generating ions for analysis preferably, in the vacuum system, the electrospray needle and the sample stage are in a separate space communicating only by a small hole, such that the electrospray ionization and The laser desorption ionization is ionized at the same or different low pressures, and/or the electrospray ionization and the laser desorption ionization are performed simultaneously or in a time division manner.
- the different low pressures described above are, for example, for electrospray ionization at a pressure of 50 to 100 torr, and for laser desorption ionization at a pressure of no more than 20 torr.
- the spray device may comprise one or more nanoliter spray tips.
- the apparatus for generating ions for analysis of the present invention may further comprise a vacuum introduction means for introducing the sample platform into the system from an atmospheric environment.
- the sample platform in the apparatus of the present invention is movable.
- the apparatus for generating ions for analysis according to the present invention may further comprise ionization sourced from the system: a vacuum ultraviolet photoionization source, and/or one or more metal needle discharge ionization sources that apply a high voltage.
- An apparatus for generating ions for analysis according to the present invention wherein the ion focusing means is preferably an alternating electric field ion transporting means.
- the apparatus for generating ions for analysis according to the present invention can be used as an ion generating source of a mass spectrometer and/or an ion mobility spectrometer. Therefore, the ion device for generating an analysis according to the present invention can simultaneously perform electrospray ionization, (matrix assisted) laser desorption ionization, ultraviolet photoionization, and/or glow discharge ionization at a low pressure, and the application range of the ion source is expanded.
- the device of the invention does not require and does not require complicated mechanical means for ionizing the above two or more kinds. Switching modes improve the efficiency of the instrument and reduce the cost of use and maintenance.
- FIG. 1 is a schematic view of a device according to a first embodiment of the present invention.
- FIG 2 is a schematic view of a device according to a first variation of the first embodiment of the present invention.
- FIG 3 is a schematic view of a device according to a second variation of the first embodiment of the present invention.
- FIG 4 is a schematic view of a device according to a third variation of the first embodiment of the present invention.
- Figure 5 is a schematic view of the apparatus according to the second embodiment of the present invention.
- Figure 6 is a schematic view of the apparatus according to the third embodiment of the present invention.
- FIG. 7 is a schematic view of the apparatus according to the fourth embodiment of the present invention. detailed description
- a primary idea of the present invention is to operate electrospray and laser desorption ionization (matrix assisted or without a matrix) in the same vacuum chamber.
- the reason why the vacuum chamber is used is because the atmospheric piezoelectric ionization source (whether electrospray ionization or matrix-assisted laser desorption ionization) is not sensitive, and the main reason is that it will go from the atmospheric pressure ion generating zone to the low pressure ion transport zone and the analysis zone. Very severe ion loss, this loss will generally exceed 90%, so there is no advantage in placing both ionizing devices at atmospheric pressure.
- US Pat. No. 7,671,344 the use of sub-atmospheric electrospray, like low-pressure matrix-assisted laser desorption ionization, achieves higher sensitivity than atmospheric pressure.
- a suitable ion focusing device suitable for the gas pressure is used, for example, an ion funnel which can be applied to a higher pressure (up to 30 torr).
- This ion focusing device is generally driven by an alternating electric field.
- the alternating electric field For electrospray in a low pressure environment, the alternating electric field also partially desolvates the droplets generated by the electrospray, further increasing the amount of ion generation to improve the final sensitivity.
- the intensity of the pulsed laser is high, so that the excited ions are sputtered.
- the initial average velocity of sputtering is about 400 m/s ( It was measured using a 4-hydroxy-a-cyanocinnamic acid standard as a substrate, and its distribution in the direction of velocity was also wide.
- a repeller electrode can be used to avoid rapid deceleration of ions, ensuring that most of the ions move to the ion transport device. If the ion decelerates too quickly, even before it leaves the surface of the sample stage, we can add a high voltage to the repeller electrode, or use pulse dynamic focusing (tan PV, Anal.
- a pulsed accelerating high voltage is applied so that the ejected ions momentarily leave the surface of the sample stage, and then the accelerating voltage is quickly turned off, and then the ion focusing device is used.
- Improve ion transport can achieve an appropriate increase in gas pressure without causing large ion transport losses.
- the use of a higher gas pressure than the ordinary matrix-assisted laser desorption ionization not only does not significantly reduce the sensitivity, but also has other advantages.
- the deceleration caused by the collision of molecular ions can compensate for the broadening of the initial sputtering speed, and because of the higher air pressure, the velocity can be reduced to a relatively uniform distance within a short distance, so the effect on the initial position is broadened. It is also relatively small, and can maintain good speed and uniformity of position after passing through the ion focusing device, which can reduce the difficulty of performing ion beam compression and the like in the latter stage.
- high-pressure matrix-assisted laser desorption ionization is a softer ionization method that reduces the degradation of some analytes (such as biological macromolecules such as tissue samples), resulting in more accurate biometric information (0 ' Connor PB , Rapid Commun. Mass Spectrom. 15: 1862-1868, 2001 ).
- the present invention places both ionizing devices in a vacuum chamber of no more than 100 torr, preferably no more than 50 torr, and more preferably no more than 30 torr, allowing them to work simultaneously or without any mechanical operation. Work while maintaining the high sensitivity of the two ionization devices.
- the electrospray needle and the sample stage are co-located in a vacuum chamber, and the electrospray needle generates an electrospray after the high voltage is applied.
- the sample required for the electrospray can be obtained from liquid chromatography or obtained from a capillary electrophoresis apparatus.
- the charged droplets generated by the electrospray are subjected to the necessary desolvation measures, passed through an ion transport device, and then analyzed into the analyzer.
- the sample platform can be connected to and controlled by the mechanical device.
- the sample platform includes a sample stage and a sample holder placed thereon. The sample stage and the sample holder can be combined without destroying the vacuum of the chamber.
- Vacuum guide The inlet device moves between atmospheric pressure and the vacuum chamber. In this way, the sample can be spotted onto the sample holder at atmospheric pressure and the sample is then moved into the vacuum chamber for analysis. A laser beam is then applied to the sample through a window in the vacuum chamber to desorb the sample and simultaneously ionize. The resulting sample ions are then passed through an ion transport device (eg, an ion funnel) into the analyzer for analysis.
- an ion transport device eg, an ion funnel
- electrospray and laser desorption ionization can operate independently at different times without interfering with each other, and switching between the two modes does not require any mechanical operation.
- the two ionization methods can also work at the same time.
- the liquid used for the electrospray can be a sample or a pure solvent containing no analyte, and the sample to be tested is still added to the sample holder through the spotting method to enter the vacuum chamber. .
- the two ionization sources are beneficial to each other's sensitivity.
- the charged droplets generated by the electrospray will interact with the sample that has been desorbed or ionized by the laser, so that some of the sample molecules that have not been ionized by the laser are ionized by electrospray ionization.
- the generation of multi-charged ions increases the final sensitivity. If the sample enters from the capillary of the electrospray, there is no sample on the sample stage, or only the matrix molecules are retained. When the pulsed laser hits the sample stage from the back, a gas shock wave is generated on the surface of the sample stage.
- This shock wave can effectively block The spray beam of the electrospray makes the spray droplets oscillate and slow down, which facilitates the desolvation of the droplets and produces more spray ions to increase the sensitivity of the electrospray.
- Such an impact wave can also be generated by using a pulsed airflow against the back side of the sample stage without using a pulsed laser, or by using, for example, ultrasonic oscillation, ferroelectric oscillation, or the like. More specifically, the two ionization methods can be simultaneously or alternately operated according to a certain time rule.
- a pulsed laser of a certain frequency is used as a light source in the matrix-assisted laser desorption ionization mode (the practice of most commercial instruments)
- a pulsed high voltage of the same frequency is applied to the electrospray needle to maintain a certain pulse between the two pulse waveforms.
- Time delay so that the spray droplets generated by the pulse and the pulsed sample beam can be well fused, so that most of the sample molecules are ionized separately by the two ionization sources, thereby improving the overall ionization efficiency, and at the same time
- the interference of neutral molecules is reduced, thereby increasing sensitivity.
- the ions obtained by laser desorption ionization generally have both positive ions and negative ions.
- electrospray can also add positive and negative alternating high voltages, so that both positive and negative ions can be produced.
- Electrospray needles are typically nanoliter spray tips. This is because at the low pressure applicable to the patent, if the electric field strength is too high, it is easy to break down the air to cause a discharge, affecting the electrospray signal.
- the use of nanoliter spray tips from a few microns to tens of microns in diameter allows for stable electrospray at lower voltages (eg, less than 1200V) to avoid discharge effects.
- a gas having a strong electron-withdrawing ability such as sulfur hexafluoride or carbon dioxide into the cavity to further suppress the discharge. You can use only one nanoliter spray needle or a multi-needle needle array to increase throughput.
- the direction of the needle can be perpendicular to the direction of transport of the ion funnel, which has the advantage that the solvent impurities in the spray can be removed.
- Other angles can also be used, such as 45 degree spray, 60 degree spray or even 0 degree direct spray. All are within the scope of this patent.
- adjust the direction of the sample holder to avoid mutual interference.
- it is possible to use the necessary techniques for assisting the desolvation of the spray droplets such as heating the spray droplets, purging the droplets with a gas stream, and the like.
- matrix assist is not necessarily necessary. If only a pure sample, such as a pure sample with a solvent or an actual sample, is used, this becomes a pure laser desorption ionization. At this time, the low-voltage electrospray above the sample still works, and the gaseous molecules of the sample desorbed by the laser heating, and the charged droplets or gaseous ions generated by the electrospray, fuse and interact to cause charge transfer or charge redistribution. The process of charging the sample molecules into ions and then entering the focusing device for analysis. When using such samples, the corresponding requirements for the excitation source should also be considered. For example, pulsed lasers are not necessarily necessary, and continuous lasers with lower intensity can also function as partial soft ionization, or only use lasers. The thermal action causes the sample to desorb and is ionized by electrospray.
- either a conventional reflection mode or a field-free transmission mode can be used to direct the laser from the rear of the transparent sample holder to the sample.
- the sample stage and the sample holder must use a material having a high transmittance of the wavelength of the laser used.
- the material is preferably made of quartz glass.
- the transmission mode has three main advantages: First, compared to the reflection mode, the transmission mode requires a smaller space structure and is easier to design; the second is 180 degrees.
- the incident angle can make the generated ion beam finer, the sputtering range is smaller, and the initial velocity is faster, no pulse power focusing is needed, so the fieldless structure can be adopted, the device is simple and can improve the sensitivity of the analysis; Samples distributed on the surface of the substrate, incident from behind, allow the laser to act on the substrate to better protect the sample, resulting in fewer fragment ions in the pattern. Also, in the present invention, we have already mentioned that such a pulsed laser transmission mode can be used to promote the desolvation process of electrospray.
- the sample may be a solid sample or a liquid sample, but it should be noted that the saturated vapor pressure of the liquid should be less than the working pressure of the ion source.
- the sample can be spotted with conventional atmospheric pressure, then blown with nitrogen, or it can be spotted with a newer developed liquid chromatography, or even spotted directly in a low pressure environment.
- a capillary device feeds the sample from the atmospheric pressure into the vacuum chamber.
- a device such as a precision syringe pump may be required to control the sample entry velocity and the amount of entry, and then the different positions are spotted by controlling the moving sample stage.
- the laser can be scanned on the surface of the sample by controlling the moving sample platform to obtain analysis information of the sample surface at each scanning point.
- This method is called mass spectrometry.
- mass spectrometry Generally used for surface composition analysis of biological tissues. As described above, in the bio-mass imaging process, since the biological tissue sample is at a higher gas pressure than the conventional matrix-assisted laser desorption ionization technique, the degradation process of the biological sample can be reduced, especially for a long time. When scanning, it can better maintain the stability of the composition of biological samples and improve the accuracy of the analysis. Sex.
- the ion focusing device can be an ion funnel suitable for higher pressure (1 ⁇ 30torr) transmission, focusing, Q-array guide and octopole, which constitute the first, second and third stage ion transmission respectively. , focusing device area.
- An ion focusing device suitable for higher air pressure is necessary in the present invention.
- other multipole guiding devices, traveling wave electrode guiding devices, and wire electrode guiding can also be used. Device, etc.
- the geometry and voltage settings of these ion guides must meet certain special conditions to overcome the negative effects of aerodynamics on ion transport at high atmospheric pressure.
- the RF voltage in the ion funnel can form an infinite multipole field within the funnel, which produces a significant rebound of droplets or ions near the inner wall of the funnel, avoiding ion transport losses.
- the traveling wave electrode guiding device not only binds ions at a high pressure through a multipole field, but also can drive ions in the axial direction with a traveling wave voltage.
- the open structure of the wire electrode guiding device can evacuate the gas in a predetermined direction to form a gas flow which is convenient for ion transport or to minimize the negative influence of the gas flow.
- the typical pressure in the vacuum chamber and the first stage ion transporter region is 6 to 20 torr
- the pressure in the second stage ion transport device is 1 to 2 torr
- the third level is generally less than 1 mtorr.
- the electrospray can be operated above lO torr first, then the electrospray is turned off, and the size of the mechanical pump port or the size of the external gas inlet port is changed to lower the air pressure to 1. ⁇ 2 torr is even lower, then turn on the laser for laser desorption ionization for higher sensitivity.
- a flange with a small hole can be provided between the low pressure spray needle and the matrix assisted laser desorption ionization zone, while the mechanical pump port is still located in the laser desorption ionization zone, thus increasing One level differential pumping.
- the advantage of this is that different pressure ranges can be obtained which make the two ionization sources work more suitable.
- the electrospray working pressure is 50 ⁇ 100 torn, which can fully make the charged droplets be solvent removed, and can use larger caliber.
- the needle is dispensed without worrying about the discharge, while the working pressure of the matrix-assisted laser desorption ionization is maintained at 10 torr or even lower. Both ionization sources achieve higher sensitivity and allow the two ionization sources to operate at different pressures simultaneously than the time-dependent method of changing the gas pressure.
- the ion funnel (with small holes at the end) can be moved to the cavity of the needle and used to replace the flange.
- the electrospray can be operated at 10 ⁇ 30 torr, and the pressure in the vacuum chamber of the matrix-assisted laser desorption ionization operation is 1-2 torr or even lower.
- the advantage of this is that in addition to further optimizing the working pressure of the two ionization sources, the desolvation efficiency and transmission efficiency of the electrospray droplets can be improved by replacing the sampling holes with an ion funnel.
- it is difficult to perform ionization operation after laser desorption electrospray because the collision cross section of the molecules desorbed by the laser after sufficient desolvation becomes small, and the charge exchange process is limited.
- the ions are analyzed by entering an ion analysis device, which in principle can be any mass analyzer, but the invention
- an ion analysis device which in principle can be any mass analyzer, but the invention
- the main advantage is in the analysis of biomacromolecules, and most of the MALDI produces singly charged ions with a large mass-to-charge ratio. Therefore, it is best to use mass analyzers with a wide range of mass, such as time-of-flight mass analyzers, Fourier transform cyclotron resonance mass analyzers and ion trap mass analyzers.
- mass analyzers with a wide range of mass, such as time-of-flight mass analyzers, Fourier transform cyclotron resonance mass analyzers and ion trap mass analyzers.
- mass analyzers with a wide range of mass, such as time-of-flight mass analyzers, Fourier transform cyclotron resonance mass analyzers and ion trap mass analyzers.
- mass analyzers with a wide range of
- the time-of-flight mass analyzer since the ESI source is a continuous source, it is best to use an ion storage device to temporarily store ions before entering the time-of-flight analyzer, and for the cascade mass spectrometry, before the ion storage device. It can be combined with a quadrupole as a pre-analytical device.
- the post-stage analyzing device of the present invention may be an ion mobility spectrometer or the like.
- more ion source species such as chemical reaction ionization (CI) and photoionization (PI) may be added in or outside the cavity, but as long as the cavity still contains an electrospray device.
- CI chemical reaction ionization
- PI photoionization
- one or more discharge needle tips may be additionally introduced, and a high voltage is applied to the needle tip to generate a glow discharge over the sample in the cavity.
- the application range of the glow discharge ionization source is The range of applications for electrospray or laser desorption ionization is very different, which further expands the range of applications for this ion source.
- the reactive ions generated by the power source and the charged droplets or ions generated by the electrospray, as well as the ions generated by the laser desorption ionization and the neutral molecules can interact to bring more map information.
- a vacuum ultraviolet light source instead of the above-mentioned discharge needle tip, which can photo-ionize the gaseous sample molecules which have been desorbed by the laser and formed above the sample stage, or act on the charged droplets generated by the electrospray to improve the ionization. effectiveness.
- the advantage of placing the UV source at low pressure is that higher sensitivity can be obtained, which is due to the fact that UV light has a longer transmission distance under vacuum.
- the advantage of introducing an ultraviolet light source into the cavity is to further expand the application range of the ion source device.
- electrospray ionization samples are usually polar compounds, and photoionization can be applied to weakly polar or nonpolar compounds. .
- 1 is an embodiment of a first embodiment of the present invention, in which 1 is a vacuum chamber in which an ion source is located,
- the electrospray needle 2 generates an electrospray after the high pressure is applied.
- the electrospray needle is a nanoliter spray tip.
- the direction of the needle is perpendicular to the direction of transport of the ion funnel.
- the charged droplets generated by the electrospray are subjected to the necessary desolvation measures and passed through an ion focusing device (in turn, ion funnel 8, Q-array guide 12 and octopole 13) and then into the analyzer for analysis.
- the sample stage 3 and the sample holder 4 placed thereon constitute a sample platform, the sample stage 3 is connected to the mechanical device and controlled to move, and the sample stage 3 passes through the vacuum together with the sample holder 4 without damaging the cavity vacuum.
- the introduction device 5 moves between the atmospheric pressure and the vacuum chamber.
- the sample is spotted onto the sample holder 4 under atmospheric pressure and the sample is then moved into the vacuum chamber 1 for analysis. Thereafter, a laser beam 6 is irradiated onto the sample through a window 7 on the vacuum chamber 1, and the sample is desorbed and simultaneously ionized.
- the low-voltage electrospray above the sample still works, and the gaseous molecules of the sample desorbed by the laser heating fuse and interact with the charged droplets or gaseous ions generated by the electrospray, and a process such as charge transfer or charge redistribution occurs, so that the sample The molecules are charged and become ions, and the resulting sample ions are sequentially passed through the ion funnel 8, the Q-array guide 12 and the octopole 13 into the analyzer for analysis.
- the typical pressure of the vacuum chamber and the first stage ion transport device region 9 is 6-20 torr
- the pressure of the second stage ion transport device region 10 is 1 ⁇ 2 torr
- the pressure at the third stage 11 Generally less than 1 m torr.
- Fig. 2 is a modification of the first embodiment of the present invention. This variant is based on the original embodiment with the addition of a flange 14 with a small hole between the low pressure spray needle and the matrix assisted laser desorption ionization zone, while the pumping of the mechanical pump is still at the laser desorption ionization. Within the region, a differential pumping of one more stage than in Example 1 is formed, thereby allowing the two ionization sources to operate at different pressure ranges that are more suitable.
- Fig. 3 is another modification of the first embodiment of the present invention. This variation moves the ion funnel 8 from the previous variation to the cavity of the needle and is used to replace the flange aperture 14. At this time, the electrospray is operated at 10 to 30 torn and the pressure inside the vacuum chamber 15 of the assisted laser desorption ionization operation is l ⁇ 2 torr or even lower.
- Fig. 4 is still another modification of the first embodiment of the present invention. Compared with the first embodiment, the difference is that the angle formed between the laser-producing directions is in the field-free transmission mode, so that the laser is incident from the rear of the transparent sample stage.
- the sample stage uses quartz glass with a high wavelength transmittance for the ultraviolet laser used.
- the analyte to be analyzed is first directly placed on the sample holder 4 on the sample stage 3 and sent to the vacuum chamber. Then the electrospray needle 2 starts to spray, and the charged droplets of the spray directly act on the sample. The product is fused with the sample molecule, and a process such as charge transfer or charge redistribution occurs, causing the sample molecules to be charged and become ions. At this time, the sample ions are in the form of gaseous ions or in the form of charged droplets. Under the action of the airflow, it is carried into the focusing device by the airflow, and after going through the desolvation process, it enters the mass analyzer for analysis. This process can obtain multiple charged ions.
- This ionization method can be used in combination with laser desorption ionization as needed, and can also be combined with electrospray desorption ionization and laser desorption ionization.
- Fig. 6 is an embodiment of a third embodiment of the present invention.
- a discharge needle tip 16 is additionally introduced, and a high voltage is applied to the needle tip to generate a glow discharge over the sample in the chamber, and the reaction generated by the power source is discharged.
- Charged droplets or ions generated by ions and electrospray, as well as ions generated by laser desorption ionization and neutral molecules can interact to bring more map information.
- a metal mesh cover 17 is applied to the sample stage and the electrospray needle to ensure that the discharge does not occur throughout the cavity.
- Fig. 7 is a view showing an embodiment of a fourth embodiment of the present invention.
- a vacuum ultraviolet light source 18 is additionally introduced, which optically decouples the gaseous sample molecules that have been desorbed by the laser and formed above the sample stage, or The action of charged droplets generated by electrospray increases the ionization efficiency.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Electron Tubes For Measurement (AREA)
Abstract
一种产生分析用离子的方法和装置,特别是在较低气压下通过多种方式产生离子并将该多种离子复合使用的电离方法和装置。该方法和装置中将电喷雾离子源(2)和其他解吸/电离装置(6,16,18)放置于同一真空腔体(1)中,对该真空腔体(1)内的样品分子分别独立作用或共同作用,电离产生的离子通过离子聚焦装置(8,12,13)被送入离子分析器以待分析。
Description
说 明 书
一种低压下产生分析用离子的方法和装置 技术领域
本发明涉及一种产生分析用离子的方法和装置, 特别是在较低气压下通过多种方式产 生离子并将该多种离子源复合使用的电离方法和装置。 背景技术
对于大分子 (如蛋白、 多肽、 DNA分子) 的质谱分析, 通常需要较柔和的电离方式。 目前应用于此领域的电离方法通常有: 电喷雾电离 (ESI ) 和基质辅助激光解吸电离 (MALDI)。 这两种电离方式各有优缺点, 比如, ESI可以产生多电荷离子, 搭配高分辨 的质谱可以方便的对大分子定性, 所以 ESI源目前得到了极为广泛的应用, 但 ESI—般不 能同时满足高通量和高灵敏度; MALDI产生的离子一般是单电荷, 但是搭配质量范围高 的飞行时间质谱 (TOF) 仍然可以对大分子进行分析, 而且 TOF技术和 TOF-TOF技术的 发展使得 MALDI在保证一定灵敏度的情况下, 可以进行比 ESI 更高的通量分析, 不过 MALDI源跟液相色谱的搭配比较困难, 而且其本身制样过程比较费时。 如果能够将两者 结合起来使用, 不仅可以同时发挥两种电离方式的优点, 避免单独使用时的缺点, 而且可 以极大的扩展单台质谱仪离子源的应用范围。
但目前为止, 对每一台质谱仪, 这两种不同的电离方式还不能同时使用, 或者在保持 各自最优工作条件下, 不能方便的切换使用。 造成这个问题的主要原因在于不同离子源的 工作气压不一样, ESI 的工作气压一般是大气压, 而 MALDI源的工作气压一般要低于 Ιθ οπ 这样带来的不同气压接口的问题, 使得 ESI源和 MALDI源很难简单切换。 专利 US6515279, US2008/0067345和 US2010/0096542都提出了 ESI和 MALDI装配于同一台质 谱仪并进行切换的方法, 但都需要较复杂的机械装置, 甚至需要停掉真空再重新抽气等操 作, 费时费力。尽管已经出现了大气压的 MALDI技术(Laiko VV, Anal. Chem. 72: 652-657, 2000), 但是由于电离效率和传输效率的原因, 使得灵敏度很难跟真空下的 MALDI技术相 比较, 而且, 大气压 MALDI源和真空 MALDI源的应用范围也有所差异, 不能完全相互 代替。 另一方面, US7621344专利提出一种低压下进行电喷雾的方法, 可在 lOtorr及以上 气压范围内得到稳定、 干净的电喷雾, 如果去溶剂化充分, 在其中的某段气压内还可以得 到比大气压更高的灵敏度。 但并没有指出可以将低压电喷雾与低压的 MALDI源匹配共同 确认本
使用。
而且, 两种离子源对后级离子传导或分析装置的要求通常不同, 比如对于 MALDI, 通常会搭配飞行时间质谱做质量分析器, 这主要是因为 MALDI所使用的脉冲激光会产生 脉冲的离子流, 与飞行时间的脉冲加速、 飞行并检测的特点正好匹配, 而 ESI源形成的离 子流是连续的, 如果做普通的脉冲检测会造成灵敏度和定量性能的大幅降低。 这也是 ESI 源与 MALDI源在很长时间以来没有得到匹配使用的又一原因。 不过, 最近四极杆-飞行时 间或者离子阱 -飞行时间仪器的发展使得对离子传导、 分析装置的要求可以统一化, 比如: 对 MALDI源, 可以在源后使用较高气压的缓冲气 (如 10 mtorr左右的氦气) 使得离子冷 却并形成半连续流, 然后再进入四极杆或多极杆传导装置进行传输, 这样可以取得较好的 定量性; 对于 ESI源, 如果使用飞行时间质谱做质量分析器, 可以在离子进入飞行管之前 先在离子阱里储存一段时间, 再脉冲发射进飞行管, 这样来减少离子损失, 提高灵敏度。 也就是说, 把两种离子源做到同一台质谱仪上, 在离子传导和分析装置的要求方面, 已经 没有障碍。
另一方面, 在专利 US2005/0199823和文献 Rapid Commun. Mass Spectrom.2005, 19, 3701 中将 ESI 后电离技术与激光解吸技术匹配使用, 即所谓的电喷辅助激光解吸电离 (ELDI), 这种技术已经在质谱直接分析领域取得了成功。 甚至可以用文献 Science 2004, 306, 471中说明的技术, 将 ESI的喷雾液滴直接与大气压下放置于样品台的样品分子相互 作用,产生样品离子,这就是所谓的解吸电喷雾技术电离(DESI)。还有,大气压的 MALDI 技术现在也经常被做为一种直接分析方法来使用。 但是, 这些直接分析方法都实施于大气 压下, 产生的离子在进入真空系统时会有巨大的损失。在专利 201010165176.4中提出了一 种将大气压解吸和低压 ESI后电离结合的技术, 将中性分子而不是离子从大气引入真空系 统, 来提高引入效率。 但是, 即使是中性分子, 仍然会在真空接口处产生损失, 离子源灵 敏度仍然不够高。 所以, 我们需要的应该是这样一种技术, 它不仅可以将 ESI、 MALDI 相关的这几类直接分析离子源分别或结合使用, 而且必须要使得该离子源的灵敏度也能得 到提高。 发明内容
为了解决以上问题, 本发明人经过潜心研究, 发明了以下产生分析用离子的方法和装 置。 本发明的目的是设计一种可以在电喷雾、 激光解吸电离或者基质辅助激光解吸电离这 几种电离方式之间方便切换, 甚至几种电离方式可以同时结合使用, 又能保持各种离子源 较高灵敏度的方法和装置。
根据上述目的, 本发明提供一种产生分析用离子的方法, 其包括: 1 ) 提供气压不超 过 100 torr的真空环境以及处于该系统内的样品平台、电喷雾电离装置、离子聚焦装置, 2) 将固体或液体样品放置于该平台上, 3 ) 通过电喷雾电离产生带电液滴和离子, 4) 通过解 吸电离产生样品中性分子或离子, 以及 5 ) 以上产生的带电液滴和样品离子经离子聚焦装 置会聚、 引导后进入离子分析器。 上述真空环境优选为不超过 50 torr, 进一步优选不超过 30 torr, 而且所述离子聚焦装置是适合于在上述低压环境下工作的离子传输装置。
根据本发明, 上述用以产生分析用离子的方法首先包括电喷雾电离, 所述电喷雾过程 可以为纳升喷雾过程。 然后根据本发明中提供的激光解吸电离装置, 通过激光照射到位于 所述样品平台上的固体或液体样品, 使样品解吸而产生气态中性分子或者解吸电离而产生 离子。 以上所述电喷雾电离和所述激光解吸电离在相同或者不同的低压下进行电离, 以及 /或者,所述电喷雾电离和所述激光解吸电离同时或者分时进行。上述不同的低气压是例如, 对于电喷雾电离是在 50~100 torr的压力下,对于激光解吸电离是在不大于 20 torr的压力下。
当所述电喷雾电离和所述激光解吸电离同时进行时, 所述样品经激光照射而解吸产生 的中性分子或进一步电离产生的离子与所述电喷雾产生的带电液滴或离子发生融合, 从而 产生待分析离子。
根据本发明, 样品平台是可以移动的, 通过移动所述样品平台, 所述激光可以对样品 表面进行扫描, 从而获得样品的表面信息。
根据本发明的另一方面, 上述用以产生分析用离子的方法还包括步骤: 电喷雾针尖产 生的带电液滴直接作用于样品平台上的样品, 使得样品分子解吸电离, 所产生的样品离子 被所述离子聚焦装置会聚和引导。因为采用了样品平台的方式,不仅可以应用于液体样品, 还可以应用于固体样品的电离, 使得上述低压下的电喷雾电离法的高灵敏度的优点同样应 用于固体样品。
同样的, 通过移动所述样品平台, 所述电喷雾的喷雾点对样品表面进行扫描, 从而获 得样品的表面信息。
根据本发明的另一方面, 上述用以产生分析用离子的方法还包括步骤: 在所述环境中 提供紫外光电离源, 该紫外光电离源与所述电喷雾和 /或所述激光解吸电离同时或分时工 作, 用以产生离子。
根据本发明的另一方面, 上述用以产生分析用离子的方法还包括步骤: 在所述环境中 提供放电电离源, 用以在样品上方产生辉光放电, 该辉光放电与所述电喷雾和 /或激光解吸 电离同时或分时作用, 用以产生离子。
根据本发明的另一方面, 上述用以产生分析用离子的方法还包括步骤: 液体样品分子 经电喷雾电离, 在所述环境中提供脉冲激光, 该脉冲激光从样品台背面入射以在样品台表 面产生气体冲击波, 该气体冲击波与上方的电喷雾液滴相互作用, 以帮助促进喷雾液滴的 去溶剂化过程.
根据本发明的上述几个方面, 可以同时使用电喷雾电离和(基质辅助)激光解吸电离。 甚至可以匹配紫外光电离、和 /或辉光放电电离等更多离子源种类, 能够显著提高离子源的 应用范围, 同时又保持了每种电离源较高的灵敏度, 甚至不同离子源之间可以相互促进各 自的灵敏度。 尤其是, 可以在低压下实施电喷雾解吸电离(DESI)和电喷雾激光解吸电离 (ELDI)等快速分析方法以显著提高灵敏度; 另一方面, 对于单独使用的情形, 上述两种 或者多种电离方式能够方便的切换而无需任何机械装置, 提高了仪器的使用效率并节约了 使用及维护成本。
本发明还提供一种用于产生分析用离子的装置, 该装置包括: 1 ) 用以提供气压不超 过 100 torr的真空系统, 2 ) 处于该系统中的电喷雾装置, 用于产生带电液滴和离子, 3) 处于该系统中的样品平台, 用于放置固体或液体样品, 以及 4) 处于该系统中的离子聚焦 装置, 用于会聚和引导所述离子进入离子分析器。 上述真空系统的压力优选为不超过 50 torr, 进一步优选不超过 30 torr。
根据本发明的用于产生分析用离子的装置还可以包含激光光源, 用于产生激光并将激 光照射处于样品平台上的固体或液体样品。
根据本发明的产生分析用离子的装置, 优选在所述真空系统中, 所述电喷雾喷针和所 述样品平台处于仅由一小孔相连通的独立空间内, 使得所述电喷雾电离和所述激光解吸电 离在相同或者不同的低气压下进行电离, 以及 /或者, 所述电喷雾电离和所述激光解吸电离 同时或者分时进行。上述不同的低气压是例如,对于电喷雾电离是在 50~100 torr的压力下, 对于激光解吸电离是在不大于 20 torr的压力下。
根据本发明的产生分析用离子的装置, 所述喷雾装置可以包含一根或多根纳升喷雾针 尖。 本发明的产生分析用离子的装置还可以包含真空导入装置, 用以将所述样品平台从大 气压环境导入到所述系统内。 而且, 本发明的装置中的样品平台是可移动的。
根据本发明的产生分析用离子的装置, 还可以包含下述电离源于所述系统中: 真空紫 外光电离源、 和 /或包含一根或多根施加高压的金属针放电电离源。
根据本发明的产生分析用离子的装置, 其中离子聚焦装置优选为交变电场离子传输装 置。
根据本发明的产生分析用离子的装置可用作质谱仪和 /或离子迁移谱仪的离子发生源。 因此,根据本发明的用以产生分析用离子装置可以在低压下同时进行电喷雾电离、(基 质辅助)激光解吸电离、 紫外光电离、 和 /或辉光放电电离, 离子源的应用范围扩大的同时 又保持了每种电离源高灵敏度, 甚至不同离子源之间可以相互促进各自的灵敏度; 另一方 面, 本发明的装置没有也不需要繁琐的机械装置用以对上述两种或者多种电离方式进行切 换, 提高了仪器的使用效率并降低了使用及维护成本。 附图说明
图 1为本发明中第一实施方式所述的装置示意图。
图 2为本发明中第一实施方式所述的第一变化例的装置示意图。
图 3为本发明中第一实施方式所述的第二变化例的装置示意图。
图 4为本发明中第一实施方式所述的第三变化例的装置示意图。
图 5为本发明中第二实施方式所述的装置示意图。
图 6为本发明中第三实施方式所述的装置示意图。
图 7为本发明中第四实施方式所述的装置示意图。 具体实施方式
为让本发明的上述目的、 特征和优点能更明显易懂, 以下结合附图对本发明的具体实 施方式作详细说明。
本发明的一个主要思想是将电喷雾和激光解吸电离 (基质辅助或者无需基质) 在同一 真空腔体中进行工作。 之所以采用真空腔体, 是由于大气压电离源 (无论是电喷雾电离还 是基质辅助激光解吸电离) 灵敏度不高, 主要的原因是从大气压的离子产生区到低压的离 子传输区和分析区会经历很严重的离子损失, 这种损失一般会超过 90%, 所以将两种电离 装置都放于大气压下并无优势。 专利 US7671344中, 使用低于大气压的电喷雾, 和低压的 基质辅助激光解吸电离一样, 取得了比大气压下更高的灵敏度。
目前, 基质辅助激光解吸电离取得最高灵敏度的气压范围, 一般小于 O.l mtorr, 而从 专利 US767134和文献 Anal. Chem. 2010, 82, 9344 - 9349中的结果来看, 低压电喷雾在采 取较充分去溶剂化手段的情况下, 取得最高灵敏度并稳定喷雾的气压范围是 10~30 torr。 但折中考虑, 工作在这两个气压区间之间 (如 6~20 torr), 尽管仍然有到下一级真空的传 输损失, 但可以使用某些方法来抵消灵敏度的降低。 在本发明中, 首先是采用了适合此气 压下合适的离子聚焦装置, 比如使用可以适用于较高气压(最高可到 30 torr)的离子漏斗,
这样可以使得从激光解吸电离产生或者电喷雾产生的离子束以近似 100%的效率传输到下 一级真空。 这种离子聚焦装置一般由交流电场驱动, 对于低压环境下的电喷雾, 交流电场 对电喷雾产生的液滴还有部分的去溶剂化作用, 进一步提高了离子产生数量来提高最终的 灵敏度。 对于基质辅助激光解吸电离模式, 由于脉冲激光的强度很高, 使得被激发出的离 子呈溅射状态, 大部分商用 MALDI-TOF仪器中, 其溅射的初始平均速度在 400 m/s左右 (使用 4-羟基- α -氰基肉桂酸(4-hydroxy-a-cyanocinnamic acid)标准品做基质而测定得到), 而且其速度方向的分布也较宽。但在高于 1 mtorr的气压下,离子会很快减速到热运动的速 度, 然后发生扩散损失。 本发明中, 可以使用一个推斥电极来避免离子的迅速减速, 保证 大部分离子运动到离子传输装置。 如果这种离子减速太快, 甚至来不及离开样品台表面, 那么我们可以把推斥电极的电压加的很高, 还可以采用诸如脉冲动力聚焦 (pulse dynamic focusing, Tan PV, Anal. Chem. 76:2462-2469, 2004) 的方法, 在激光脉冲打到样品上之后, 加一个脉冲式的加速高电压使得被打出的离子瞬间离开样品台表面, 然后加速电压迅速关 闭, 之后再通过离子聚焦装置来改善离子传输。 总之, 本发明可以做到适当的提高气压而 不产生大的离子传输损失。
需要注意的是, 本发明中, 使用比普通基质辅助激光解吸电离更高的气压, 不仅不会 大幅降低灵敏度, 还有一些其他好处。 比如, 较高气压下, 分子离子碰撞引起的减速可以 弥补初始溅射速度的展宽, 而且由于气压较高, 在很短的距离内就可以使得速度降到比较 均一, 所以对初始位置的展宽影响也比较小, 在经过离子聚焦装置之后仍然可以保持较好 的速度、 位置的均一性, 这样就可以降低在后级进行离子束压缩等操作的难度。 还有, 高 气压的基质辅助激光解吸电离是一种更柔和的电离方式, 可以减少一些分析物(比如组织 样品等生物大分子) 的降解, 从而获得更准确的生物图谱信息 (0 ' Connor PB, Rapid Commun. Mass Spectrom. 15: 1862-1868, 2001 )。
所以, 本发明将这两种电离装置都放置于不超过 100 torr、优选不超过 50 torr、进一步 优选不超过 30 torr的真空腔体中,使之同时工作或者无需任何机械操作而使之切换交替工 作, 同时又保持了两种电离装置较高的灵敏度。
本实施方式中, 电喷针和样品台共同处于真空腔体中, 电喷针在加上高压后产生电喷 雾, 电喷雾所需的样品可以从液相色谱获得, 或者从毛细管电泳装置获得。 电喷雾产生的 带电液滴经过必要的去溶剂化措施后, 通过离子传输装置, 然后进入分析器被分析。 作为 另外一种电离方式, 样品平台可以与机械装置相连并被控制移动, 样品平台包括样品台和 放置于其上的样品架, 在不破坏腔体真空的条件下, 样品台与样品架可以一起通过真空导
入装置在大气压与真空腔体间移动。 这样, 样品可以在大气压环境下点到样品架上, 然后 样品被移入真空腔体以待分析。 之后一束激光透过真空腔体上的窗口照射到样品上, 对样 品进行解吸附并同时电离。 产生的样品离子再通过离子传输装置 (例如, 离子漏斗) 进入 分析器进行分析。
根据本发明的另一实施方式, 电喷雾和激光解吸电离可以在不同的时刻独立工作, 不 会相互影响, 而且切换两种方式不需要任何机械操作。 两种电离方式也可以同时工作, 这 时, 电喷雾所用的液体可以是样品, 也可以选用不含被测物的纯溶剂, 而被测样品依然通 过点样方式加到样品架上进入真空腔。 两者同时工作时, 这两种电离源对对方的灵敏度提 高都有好处。 比如, 如果样品分子位于样品台上有激光解吸电离, 那么由电喷雾产生的带 电液滴会与已被激光解吸或电离的样品相互作用, 使得部分还没被激光电离的样品分子被 电喷雾电离而产生多电荷离子, 提高最终灵敏度。 而如果样品从电喷雾的毛细管进入, 样 品台上没有样品, 或者只保留基质分子, 在脉冲激光从背面打到样品台上时, 会在样品台 表面产生一个气体冲击波, 这个冲击波可以有效地阻挡电喷雾的喷雾束, 使得喷雾液滴振 荡并降速, 有利于液滴的去溶剂化, 产生更多的喷雾离子以提高电喷雾的灵敏度。 这种冲 击波也可以不用脉冲激光, 而用脉冲的气流打击样品台背面而产生, 也可以采用比如超声 振荡、 铁电振荡等方式产生。 更特别的, 可以使两种电离方式按照某种时间规律同时或交 替工作。比如,如果在基质辅助激光解吸电离模式中采用一定频率的脉冲激光做为光源(大 多数商用仪器的做法), 而电喷雾针上也施加同频的脉冲高压, 保持两个脉冲波形之间一 定的时间延迟, 以使得脉冲产生的喷雾液滴和被脉冲激发的样品束能够保持较好的融合, 这样可以使得大部分样品分子被两种电离源分别电离, 提高了整体的电离效率, 同时又降 低了中性分子的干扰, 从而提高灵敏度。另外,激光解吸电离得到的离子一般既有正离子, 又有负离子。 为了与之更好的匹配, 电喷雾也可以加正负交替的高压, 使得正、 负离子都 可以产生。
电喷雾的喷针通常为纳升喷雾针尖。 这是因为在该专利适用的低压下, 如果电场强度 太高, 则很容易击穿空气造成放电, 影响电喷雾信号。 采用直径在几微米到几十微米的纳 升喷雾针尖, 可以使得在较低电压下 (比如小于 1200V) 就可以产生稳定的电喷雾, 避免 放电影响。 另外也可以在腔体中通入六氟化硫、 二氧化碳等具有较强吸电子能力的气体来 进一步抑制放电。 可以只使用一根纳升喷雾针, 也可以使用多根喷针组成的喷针阵列, 以 提高分析通量。 喷针的方向可以与离子漏斗的传输方向相互垂直, 这样的好处是可以将喷 雾中的溶剂杂质去掉。 也可以选用其它角度, 比如 45度喷雾, 60度喷雾甚至 0度直喷等,
都在本专利保护范围之内。 当然, 选用其他角度时需相应调整样品架的方向以避免相互干 涉。 还有, 为了进一步提高灵敏度, 可以使用必要的帮助喷雾液滴去溶剂化的技术手段, 比如加热喷雾液滴、 用气流吹扫液滴等。
对于本实施方式中的激光解吸电离, 基质辅助不一定是必须的, 如果只采用纯样, 比 如带有溶剂的纯样或者实际样品, 这样就变成了单纯的激光解吸电离。 此时样品上方低压 电喷雾仍然工作, 因被激光加热作用而解吸的样品气态分子, 和电喷雾产生的带电荷的液 滴或者气态离子, 两者融合并相互作用, 发生电荷转移或者电荷重新分配等过程, 使得样 品分子带电而变成离子, 再进入聚焦装置以待分析。 采用这类样品时, 相应的对激发光源 的要求也应考虑, 比如, 脉冲式激光不一定是必要的, 强度较低的连续激光也一样可以起 到部分软电离的作用, 或者只利用激光的热作用使得样品解吸附, 而依靠电喷雾来电离。
关于激光-样品产生方向之间形成的角度可以采用传统的反射模式,也可以采用无场透 射模式, 使激光从透明样品架后方射向样品。 这时的样品台和样品架一定要选用对所用激 光波长透过率高的材料, 比如如果选用紫外激光, 则材料最好釆用石英玻璃。 根据文献 Rapid Commun. Mass Sepctrom. 23: 3023-3027,2009,透射模式主要有三个好处: 一是相比反 射模式, 透射模式所需的空间结构更小, 设计起来更简便; 二是 180度的入射角度可以使 得产生的离子束更细, 溅射范围更小, 且初速度更快, 不需要脉冲动力聚焦, 所以可以采 用无场结构, 装置既简便又可以提高分析的灵敏度; 三是对于有些分布在基质上表面的样 品, 从后面入射可以使得激光只能作用到基质上从而更好的保护了样品, 使得图谱中的碎 片离子更少。 还有, 在本发明中, 我们已经提到了这种脉冲激光透射模式可以用来促进电 喷雾的去溶剂化过程。
另外, 样品可以是固体样品, 也可以是液体样品, 但需注意该液体的饱和蒸汽压应小 于离子源的工作气压。 对于样品点样方式, 可以用传统的大气压点样, 然后用氮气吹干, 也可以用较新发展的液相色谱离线式点样方式, 甚至可以直接在低压环境中点样, 这时需 要另外一根毛细管装置将样品从大气压通入真空腔体, 可能需要精密注射泵等装置控制样 品进入速度和进入量, 然后通过控制移动样品台实现不同位置点样。
在使用激光解吸电离方式时, 可以通过控制移动样品平台, 使得激光在样品表面进行 扫描, 获得样品表面在每个扫描点的分析信息。 这种方式被称为质谱成像。 一般用于生物 组织表面成分分析。 如前所述, 本发明在进行生物质谱成像过程时, 由于生物组织样品所 处的气压比使用传统基质辅助激光解吸电离技术时要高, 因此可以降低生物样品的降解过 程, 特别在进行长时间的扫描时, 可更好的保持生物样品的成分稳定性, 提高分析的准确
性。
离子聚焦装置可以依次是适用于较高气压 (l~30torr) 传输、 聚焦的离子漏斗, Q-阵 列导引器和八极杆, 它们分别构成第一级、 第二级和第三级离子传输、 聚焦装置区域。 适 合于较高气压的离子聚焦装置在本发明中是必要的, 除了 US6107628 中描述的离子漏斗 夕卜, 也可以使用其它多极杆导引装置, 行波电极导引装置, 丝状电极导引装置等。 一般来 说这些离子导引装置的几何结构和电压设置必须满足某些特殊条件, 以克服离子在高气压 下空气动力学对离子传输的负面影响。 比如, 离子漏斗中的射频电压可以在漏斗内形成无 限多极场, 这样对靠近漏斗内壁的液滴或离子产生明显的反弹作用, 避免离子传输损失。 行波电极导引装置不仅通过多极场束缚高气压下的离子, 而且可以用行波电压驱动离子在 轴向上传输。 而丝状电极导引装置的开放结构可以将气体按照某一预定方向抽走, 形成便 于离子传输的气流, 或者将气流的负面影响降到最低。
真空腔体和第一级离子传输装置区域的典型气压为 6~20 torr, 第二级离子传输装置区 域的气压为 1~2 torr, 第三级的气压一般小于 1 mtorr。 但在电喷雾和基质辅助激光解吸电 离分时工作时, 也可以先使电喷雾工作在 lO torr以上, 之后电喷雾关闭, 改变机械泵抽口 大小或者外部气体进入口的大小使得气压降低到 1~2 torr甚至更低, 然后开启激光进行激 光解吸电离, 以获得较高的灵敏度。
根据本实施方式的一个变型, 可以在低压喷雾针和基质辅助激光解吸电离区域之间设 置一个带有小孔的法兰, 而机械泵的抽口仍然位于激光解吸电离区域内, 这样就增加了一 级差分抽气。 这样做的好处是可以得到使两种电离源工作更加合适的不同气压区间, 比如 电喷雾工作的气压在 50~100 torn 这样可以充分的使得带电液滴被去除溶剂, 同时可以使 用更大口径的喷针而不用担心放电,而基质辅助激光解吸电离的工作气压保持在 lO torr甚 至更低。 这样两种电离源都会取得较高的灵敏度, 而且相比分时改变气压的方法, 可以允 许两种电离源同时在不同气压下工作。
此外, 可以将离子漏斗 (末端带有小孔)移到了喷针的腔体处并且用来代替法兰。 这 时可以使电喷雾工作在 10~30 torr, 而基质辅助激光解吸电离工作的真空腔体里面气压为 1-2 torr甚至更低。 这样做的好处除了可以进一步优化两种电离源的工作气压之外, 还因 为用离子漏斗代替了取样孔, 可以提高电喷雾液滴的去溶剂化效率和传输效率。 但是这种 方式下, 进行激光解吸电喷雾后电离操作时就比较困难, 因为液滴经过充分去溶剂化后跟 激光解吸出来的分子的碰撞截面变得很小, 电荷交换过程会受限制。
最后离子进入离子分析装置被分析, 该装置原则上可以是任何质量分析器, 但本发明
的主要优势是在生物大分子分析方面, 而且 MALDI产生的多数是单电荷离子, 质荷比很 大。 因此最好选用质量范围很大的质量分析器, 如飞行时间质量分析器, 傅里叶变换回旋 共振质量分析器和离子阱质量分析器等。 而且如发明背景中所述, 由于两种电离源本身的 特性,对质量分析器还有些别的特殊限制。比如, 如果搭配飞行时间质量分析器, 由于 ESI 源是连续源, 因此在进入飞行时间分析器之前最好搭配一个离子贮存装置以暂时贮存离 子,而为了进行串级质谱分析,在离子储存装置之前可以再搭配四极杆做为前级分析装置。 另外, 除了质量分析器, 本发明的后级分析装置还可以是离子迁移谱仪等。
根据本发明的其他实施方式,可以在腔体中或者腔体外添加更多的离子源种类,比如, 化学反应电离 (CI)和光电离 (PI) 等, 但只要腔体中仍然包含电喷雾装置和承载待测样 品的样品平台, 也在本专利的保护范围之内。
例如, 在如上所述的装置以外, 可以另外引入了一根或多根放电针尖, 在该针尖上加 上高压, 可在腔体内样品上方产生辉光放电, 辉光放电电离源的应用范围与电喷雾或者激 光解吸电离的应用范围差异很大, 这样就进一步扩大了该离子源的应用范围。 而且放电源 产生的反应离子与电喷雾产生的带电液滴或离子, 还有激光解吸电离产生的离子以及中性 分子可以相互作用, 带来更多的图谱信息。 比如, 文献 Laiko VV, Anal. Chem. 72: 652-657, 2000中表明,在较高气压下在基质解吸电离电离源中引入放电源(这种气压下为电晕放电) 之后, 可以使得基质的离子信号增加 20到 40倍, 尽管尚未有证据表明基质离子增多会带 来实际分析物 (如多肽) 的信号增强, 但可以通过改换基质的方法来研究该电离过程的电 荷转移和分配机制。 另外, 也可以用放电针对电喷雾解吸电离产生的带电液滴作用, 提高 电离效率来增加灵敏度。当然,在真空中要特别注意控制放电区域, 如果腔体是金属外壳, 一定要采取一定的屏蔽手段使得放电不要发生在整个腔体之中。 比如可以在样品台和电喷 针上加上金属网罩或者采取其它手段。
或者另外引入了一个真空紫外光源代替上述的放电针尖, 该紫外光源可以将已被激光 解吸而在样品台上方形成的气态样品分子进行光电离, 或者对电喷雾产生的带电液滴作 用, 提高电离效率。 相比大气压光电离源, 紫外光源置于低压下的好处是可以得到更高的 灵敏度, 这来源于紫外光在真空下有更远的传输距离。 而将紫外光源引入腔体的好处是进 一步扩大了该离子源装置的应用范围, 比如电喷雾电离的样品通常是极性较强的化合物, 而光电离可以应用于弱极性或者无极性的化合物。
[实施例 1]
如图 1所示为根据本发明的第一实施方式的实施例,图中 1为离子源所处的真空腔体,
电喷针 2在加上高压后产生电喷雾。 该电喷针为纳升喷雾针尖。 喷针的方向与离子漏斗的 传输方向相互垂直。 电喷雾产生的带电液滴经过必要的去溶剂化措施后, 通过离子聚焦装 置 (依次为离子漏斗 8, Q-阵列导引器 12和八极杆 13 ) , 然后进入分析器被分析。 样品台 3与放置在上面的样品架 4共同组成了样品平台,样品台 3与机械装置相连并被控制移动, 而且在不破坏腔体真空的条件下, 样品台 3与样品架 4一起通过真空导入装置 5在大气压 与真空腔体间移动。 样品在大气压环境下点到样品架 4上, 然后样品被移入真空腔体 1以 待分析。 之后一束激光 6透过真空腔体 1上的窗口 7照射到样品上, 对样品进行解吸附并 同时电离。 此时样品上方低压电喷雾仍然工作, 被激光加热作用而解吸的样品气态分子与 电喷雾产生的带电荷的液滴或者气态离子融合并相互作用, 发生电荷转移或者电荷重新分 配等过程, 使得样品分子带电而变成离子, 产生的样品离子再依次通过离子漏斗 8, Q-阵 列导引器 12和八极杆 13进入分析器进行分析。
在该实施例中, 真空腔体和第一级离子传输装置区域 9的典型气压为 6~20 torr, 第二 级离子传输装置区域 10的气压为 l~2 torr, 第三级 11处的气压一般小于 1 mtorr。
[实施例 2]
图 2是本发明的第一实施方式的变化例。 这个变化例在原来的实施例基础上, 加了一 个带有小孔的法兰 14, 法兰位于低压喷雾针和基质辅助激光解吸电离区域之间, 而机械泵 的抽口仍然位于激光解吸电离区域内, 形成了比实施例 1多一级的差分抽气, 从而使得两 种电离源工作更加合适的不同气压区间。
[实施例 3]
图 3是本发明的第一实施方式的另一变化例。 这个变化例将上个变化例中的离子漏斗 8移到了喷针的腔体处并且用来代替法兰小孔 14。 这时, 电喷雾工作在 10〜30 torn 而基 质辅助激光解吸电离工作的真空腔体 15里面气压为 l~2 torr甚至更低。
【实施例 4】
图 4是本发明的第一实施方式的又一变化例。 相比于实施例 1, 不同之处在于激光-样 品产生方向之间形成的角度采用无场透射模式, 使激光从透明样品台后方射入。 样品台采 用对所用紫外激光波长透过率高的石英玻璃。
[实施例 5]
本发明的第二实施方式的实施例, 如图 5中所示, 首先直接将待分析物点到样品台 3 上的样品架 4上并送入真空腔体。 然后电喷针 2开始喷雾, 喷雾的带电液滴直接作用到样
品处, 与样品分子融合, 发生电荷转移或者电荷重新分配等过程, 使得样品分子带电而变 成离子, 此时的样品离子或者是气态离子形式, 或者是带电小液滴形式, 这些离子在辅助 气流的作用下,被气流携带进入聚焦装置,经历去溶剂化过程后进入质量分析器进行分析。 这个过程可以获得多电荷离子。 这种电离方式可以与激光解吸电离按需要分时使用, 也可 以将电喷雾解吸电离和激光解吸电离共同作用。
[实施例 6]
图 6是本发明的第三个实施方式的实施例。 在本实施例中, 除了采用实施例 4所示的 装置以外, 另外引入了一根放电针尖 16, 在该针尖上加上高压, 可在腔体内样品上方产生 辉光放电, 放电源产生的反应离子与电喷雾产生的带电液滴或离子, 还有激光解吸电离产 生的离子以及中性分子可以相互作用, 带来更多的图谱信息。 如图 6所示, 样品台和电喷 针上被加上金属网罩 17以保证放电不发生在整个腔体之中。
[实施例 7]
图 7是本发明的第四个实施方式的实施例。 在该实施例中, 除了采用实施例 4所示的 装置以外, 另外引入了一个真空紫外光源 18, 该紫外光源将已被激光解吸而在样品台上方 形成的气态样品分子进行光电离, 或者对电喷雾产生的带电液滴作用, 提高电离效率。 除此之外, 其它基于本专利发明内容, 但对专业内人士只需做细小改变、 易于实现的 变体, 比如在本发明所述腔体基础上增加了电子轰击电离(EI), 或者采用亚稳态原子跃迁 的能量进行电离, 在解吸方式上不采用激光解吸, 而采用热解吸或者超声波振荡解吸等方 式, 也在本专利内容涵盖范围之内。
Claims
权利要求书 一种产生分析用离子的方法, 包括:
提供气压不超过 100 torn的真空环境以及处于该系统内的样品平台、电喷雾电离装置、 以及离子聚焦装置,
将固体或液体样品放置于该平台上,
通过电喷雾电离产生带电液滴和离子,
通过解吸电离产生样品中性分子或离子,
以上产生的带电液滴和样品离子经离子聚焦装置会聚、 引导后进入离子分析器。
2、 根据权利要求 1 所述的方法, 其特征在于, 所述电喷雾针尖产生的带电液滴直接 作用于样品平台上的样品, 使得样品分子解吸电离, 所产生的样品离子被所述离子聚焦装 置会聚和引导。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述电喷雾过程为纳升喷雾过程。
4、 根据权利要求 1或 1所述的方法, 其特征在于, 所述电喷雾电离装置包含气体入 口, 用以辅助样品解吸。
5、 根据权利要求 2所述的方法, 其特征在于, 通过移动所述样品平台, 所述电喷雾 的喷雾点对样品表面进行扫描, 从而获得样品的表面信息。
6、 根据权利要求 1 所述的方法, 其特征在于, 还包括: 提供激光解吸电离装置, 通 过激光照射使所述固体或液体样品解吸而产生气态中性分子或者解吸电离而产生离子。
7、 根据权利要求 6所述的方法, 其特征在于, 所述电喷雾电离和所述激光解吸电离 在相同或者不同的低气压下进行电离。
8、 根据权利要求 6所述的方法, 其特征在于, 所述电喷雾电离和所述激光解吸电离 同时或者分时进行。
9、 根据权利要求 8所述的方法, 其特征在于, 所述电喷雾电离和所述激光解吸电离 同时进行, 所述样品经激光照射而解吸产生的中性分子或进一步电离产生的离子与所述电 喷雾产生的带电液滴或离子发生融合, 从而产生待分析离子。
10、 根据权利要求 6所述的方法, 其特征在于, 通过移动所述样品平台, 所述激光可 以对样品表面进行扫描, 从而获得样品的表面信息。
11、 根据权利要求 6所述的方法, 其特征在于, 所述激光解吸电离装置产生脉冲激光 并使该脉冲激光从样品平台的背面入射, 使得样品平台表面产生的气体冲击波作用于由电 喷雾电离产生带电液滴上。
12、 根据权利要求 1或 6所述的方法, 其特征在于, 还包括: 在所述环境中提供紫外 光电离源, 该紫外光电离源与所述电喷雾和 /或所述激光解吸电离同时或分时工作, 用以产 生离子。
13、 根据权利要求 1或 6所述的方法, 其特征在于, 还包括: 在所述环境中提供放电 电离源, 用以在样品上方产生辉光放电, 该辉光放电与所述电喷雾和 /或激光解吸电离同时 或分时作用, 用以产生离子。
14、 一种用于产生分析用离子的装置, 该装置包括:
用以提供气压不超过 lOO torr的真空系统,
处于该系统中的电喷雾装置, 用于产生带电液滴和离子,
处于该系统中的样品平台, 用于放置固体或液体样品,
处于该系统中的离子聚焦装置, 用于会聚和引导所述离子进入离子分析器。
15、 根据权利要求 14所述的装置, 其特征在于, 还包含激光光源, 用于产生激光并 将激光照射处于样品平台上的固体或液体样品。
16、 根据权利要求 14或 15所述的装置, 其特征在于, 在所述真空系统中, 所述电喷 雾喷针和所述样品平台处于仅由一小孔相连通的独立空间内。
17、 根据权利要求 14所述的装置, 其特征在于, 所述喷雾装置包含至少一根纳升喷 雾针尖。
18、 根据权利要求 14所述的装置, 其特征在于, 还包含真空导入装置, 用以将所述 样品平台从大气压环境导入到所述系统内。
19、 根据权利要求 14所述的装置, 其特征在于, 所述样品平台是可移动的。
20、 根据权利要求 14所述的装置, 其特征在于, 还包含紫外光电离源于所述系统中。
21、 根据权利要求 14所述的装置, 其特征在于, 还包含至少一根施加高压的金属针 放电电离源于所述系统中。
22、 根据权利要求 14或 15所述的装置, 其特征在于, 所述离子聚焦装置为交变电场 离子聚焦装置。
23、 根据权利要求 14所述的装置, 其特征在于, 所述离子分析器选自质谱仪和离子 迁移谱仪中的一种或多种。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210052257.2 | 2012-03-01 | ||
CN201210052257.2A CN103295873B (zh) | 2012-03-01 | 2012-03-01 | 一种低压下产生分析用离子的方法和装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013127262A1 true WO2013127262A1 (zh) | 2013-09-06 |
Family
ID=49081599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/000195 WO2013127262A1 (zh) | 2012-03-01 | 2013-02-27 | 一种低压下产生分析用离子的方法和装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103295873B (zh) |
WO (1) | WO2013127262A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108400080A (zh) * | 2018-02-11 | 2018-08-14 | 复旦大学 | 一种低真空条件下的质谱离子源装置 |
CN110416059A (zh) * | 2018-04-27 | 2019-11-05 | 岛津分析技术研发(上海)有限公司 | 样本解吸及电离装置以及应用该装置的质谱仪及分析方法 |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105097412A (zh) * | 2014-05-08 | 2015-11-25 | 岛津分析技术研发(上海)有限公司 | 一种质量校准物离子化与引入装置 |
CN104316592A (zh) * | 2014-11-05 | 2015-01-28 | 西安石油大学 | 基于溶质迁移电喷雾电离技术的生物样品质谱分析方法 |
EP3265797B1 (en) | 2015-03-06 | 2022-10-05 | Micromass UK Limited | Inlet instrumentation for ion analyser coupled to rapid evaporative ionisation mass spectrometry ("reims") device |
EP3266035B1 (en) | 2015-03-06 | 2023-09-20 | Micromass UK Limited | Collision surface for improved ionisation |
EP3726562B1 (en) | 2015-03-06 | 2023-12-20 | Micromass UK Limited | Ambient ionization mass spectrometry imaging platform for direct mapping from bulk tissue |
EP3266037B8 (en) | 2015-03-06 | 2023-02-22 | Micromass UK Limited | Improved ionisation of samples provided as aerosol, smoke or vapour |
EP3265821B1 (en) | 2015-03-06 | 2021-06-16 | Micromass UK Limited | Liquid trap or separator for electrosurgical applications |
CN107646089B (zh) | 2015-03-06 | 2020-12-08 | 英国质谱公司 | 光谱分析 |
US11239066B2 (en) | 2015-03-06 | 2022-02-01 | Micromass Uk Limited | Cell population analysis |
WO2016142675A1 (en) | 2015-03-06 | 2016-09-15 | Micromass Uk Limited | Imaging guided ambient ionisation mass spectrometry |
US11282688B2 (en) | 2015-03-06 | 2022-03-22 | Micromass Uk Limited | Spectrometric analysis of microbes |
WO2016142679A1 (en) | 2015-03-06 | 2016-09-15 | Micromass Uk Limited | Chemically guided ambient ionisation mass spectrometry |
US11037774B2 (en) | 2015-03-06 | 2021-06-15 | Micromass Uk Limited | Physically guided rapid evaporative ionisation mass spectrometry (“REIMS”) |
CN107580675B (zh) * | 2015-03-06 | 2020-12-08 | 英国质谱公司 | 拭子和活检样品的快速蒸发电离质谱(“reims”)和解吸电喷雾电离质谱(“desi-ms”)分析 |
JP6783240B2 (ja) | 2015-03-06 | 2020-11-11 | マイクロマス ユーケー リミテッド | 生体内内視鏡的組織同定機器 |
GB2556994B (en) | 2015-03-06 | 2021-05-12 | Micromass Ltd | Identification of bacterial strains in biological samples using mass spectrometry |
GB201517195D0 (en) | 2015-09-29 | 2015-11-11 | Micromass Ltd | Capacitively coupled reims technique and optically transparent counter electrode |
TWI644325B (zh) * | 2015-12-28 | 2018-12-11 | 強納森 摩勒 | 融合反應器 |
US11454611B2 (en) | 2016-04-14 | 2022-09-27 | Micromass Uk Limited | Spectrometric analysis of plants |
CN106783513A (zh) * | 2016-12-16 | 2017-05-31 | 浙江和谱生物科技有限公司 | 激光解吸电离质谱装置 |
CN108335964A (zh) * | 2017-01-20 | 2018-07-27 | 广州智纯科学仪器有限公司 | 离子迁移谱与飞行时间质谱联用仪及其联用接口结构 |
WO2019155835A1 (ja) * | 2018-02-09 | 2019-08-15 | 浜松ホトニクス株式会社 | 試料支持体、イオン化法及び質量分析方法 |
CN108511309A (zh) * | 2018-05-28 | 2018-09-07 | 河南太粒科技有限公司 | 一种激光离子源装置 |
CN109192648B (zh) * | 2018-08-09 | 2023-09-15 | 金华职业技术学院 | 一种自由基光产物测试方法 |
CN110967391A (zh) * | 2018-09-28 | 2020-04-07 | 中国科学院大连化学物理研究所 | 一种基于质谱的金团簇离子反应活性分析方法 |
CN111540665A (zh) * | 2020-04-20 | 2020-08-14 | 清华大学深圳国际研究生院 | 一种离子化装置及其应用 |
DE102020120394B4 (de) * | 2020-08-03 | 2023-10-12 | Bruker Daltonics GmbH & Co. KG | Desorptions-Ionenquelle mit Dotiergas-unterstützter Ionisierung |
CN115938909B (zh) * | 2022-11-22 | 2024-04-19 | 广东智普生命科技有限公司 | 一种激光耦合的电喷雾萃取电离源及分析系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5015845A (en) * | 1990-06-01 | 1991-05-14 | Vestec Corporation | Electrospray method for mass spectrometry |
JP2006190526A (ja) * | 2005-01-05 | 2006-07-20 | Shimadzu Corp | 質量分析装置 |
CN101073137A (zh) * | 2004-03-30 | 2007-11-14 | 普渡研究基金会 | 用于解吸电喷雾离子化的方法和系统 |
US7671344B2 (en) * | 2007-08-31 | 2010-03-02 | Battelle Memorial Institute | Low pressure electrospray ionization system and process for effective transmission of ions |
TWI334027B (en) * | 2007-04-30 | 2010-12-01 | Univ Nat Sun Yat Sen | Mass spectrometric analysis for detecting analytes in a solid-state sample |
CN102232238A (zh) * | 2008-10-13 | 2011-11-02 | 普度研究基金会 | 用于转移离子以供分析的系统和方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6777671B2 (en) * | 2001-04-10 | 2004-08-17 | Science & Engineering Services, Inc. | Time-of-flight/ion trap mass spectrometer, a method, and a computer program product to use the same |
-
2012
- 2012-03-01 CN CN201210052257.2A patent/CN103295873B/zh active Active
-
2013
- 2013-02-27 WO PCT/CN2013/000195 patent/WO2013127262A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5015845A (en) * | 1990-06-01 | 1991-05-14 | Vestec Corporation | Electrospray method for mass spectrometry |
CN101073137A (zh) * | 2004-03-30 | 2007-11-14 | 普渡研究基金会 | 用于解吸电喷雾离子化的方法和系统 |
JP2006190526A (ja) * | 2005-01-05 | 2006-07-20 | Shimadzu Corp | 質量分析装置 |
TWI334027B (en) * | 2007-04-30 | 2010-12-01 | Univ Nat Sun Yat Sen | Mass spectrometric analysis for detecting analytes in a solid-state sample |
US7671344B2 (en) * | 2007-08-31 | 2010-03-02 | Battelle Memorial Institute | Low pressure electrospray ionization system and process for effective transmission of ions |
CN102232238A (zh) * | 2008-10-13 | 2011-11-02 | 普度研究基金会 | 用于转移离子以供分析的系统和方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108400080A (zh) * | 2018-02-11 | 2018-08-14 | 复旦大学 | 一种低真空条件下的质谱离子源装置 |
WO2019153788A1 (zh) * | 2018-02-11 | 2019-08-15 | 复旦大学 | 一种低真空条件下的质谱离子源装置 |
CN110416059A (zh) * | 2018-04-27 | 2019-11-05 | 岛津分析技术研发(上海)有限公司 | 样本解吸及电离装置以及应用该装置的质谱仪及分析方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103295873B (zh) | 2016-11-02 |
CN103295873A (zh) | 2013-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013127262A1 (zh) | 一种低压下产生分析用离子的方法和装置 | |
US7109479B2 (en) | Method and system for mass spectroscopy | |
JP3840417B2 (ja) | 質量分析装置 | |
US8299444B2 (en) | Ion source | |
US6744040B2 (en) | Means and method for a quadrupole surface induced dissociation quadrupole time-of-flight mass spectrometer | |
US7170051B2 (en) | Method and apparatus for ion fragmentation in mass spectrometry | |
JP4564696B2 (ja) | 不安定な分子の分子量を決定するための方法および装置 | |
CA2333031C (en) | Atmospheric pressure matrix assisted laser desorption | |
US7405397B2 (en) | Laser desorption ion source with ion guide coupling for ion mass spectroscopy | |
JP4331398B2 (ja) | パルスイオン源及びイオン運動を制動するための輸送デバイスを備えた分析計並びにその使用方法 | |
US6930305B2 (en) | Method and system for high-throughput quantitation of small molecules using laser desorption and multiple-reaction-monitoring | |
US7397029B2 (en) | Method and apparatus for ion fragmentation in mass spectrometry | |
US20110139977A1 (en) | Matrix-assisted laser desorption with high ionization yield | |
US7388194B2 (en) | Method and system for high-throughput quantitation using laser desorption and multiple-reaction-monitoring | |
US7271397B2 (en) | Combined chemical/biological agent detection system and method utilizing mass spectrometry | |
WO2010049973A1 (ja) | 質量分析方法 | |
JP5504969B2 (ja) | 質量分析装置 | |
Moskovets et al. | A comparative study on the analytical utility of atmospheric and low-pressure MALDI sources for the mass spectrometric characterization of peptides | |
Diologent et al. | Laser induced post-desolvation of MALDI clusters | |
Hossain et al. | The Mass Spectrometer and Its Components | |
GB2453407A (en) | Matrix-assisted laser desorption with high ionization yield |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13755730 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13755730 Country of ref document: EP Kind code of ref document: A1 |