WO2013127241A1 - 生产炸药的工艺流程 - Google Patents

生产炸药的工艺流程 Download PDF

Info

Publication number
WO2013127241A1
WO2013127241A1 PCT/CN2012/087543 CN2012087543W WO2013127241A1 WO 2013127241 A1 WO2013127241 A1 WO 2013127241A1 CN 2012087543 W CN2012087543 W CN 2012087543W WO 2013127241 A1 WO2013127241 A1 WO 2013127241A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
preparation
substrate
station
raw material
Prior art date
Application number
PCT/CN2012/087543
Other languages
English (en)
French (fr)
Inventor
薛世忠
Original Assignee
Xue Shizhong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2012100473754A external-priority patent/CN102584508A/zh
Priority claimed from CN201210144397.2A external-priority patent/CN102643151B/zh
Priority claimed from CN201210175526.4A external-priority patent/CN102675012B/zh
Priority claimed from CN2012102589736A external-priority patent/CN102749001A/zh
Application filed by Xue Shizhong filed Critical Xue Shizhong
Priority to EA201491594A priority Critical patent/EA029243B1/ru
Publication of WO2013127241A1 publication Critical patent/WO2013127241A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • C06B21/0008Compounding the ingredient

Definitions

  • the invention belongs to a method for producing explosives, in particular to a process flow layout capable of producing both an emulsion explosive and a multi-explosive explosive to meet the specific conditions of different blasting sites.
  • a very common method of controlling the rate of detonation is to control the density of explosives in the production process.
  • a fixed explosive production line often only produced a single type of explosive, such as emulsion explosives, ammonium explosives, expanded ammonium nitrate explosives, or mobile ground stations could only produce emulsion explosives.
  • the density value is fixed, the explosive detonation speed is fixed, and it is not possible to produce suitable explosives as the rock properties change.
  • the water-containing blastholes dry blastholes, rock joints, rock unjoined, rock hard When the rock is soft, the explosive production capacity is extremely limited, and there is no suitable method and process to meet the needs of the blasting environment.
  • the ammonium explosive when the ammonium explosive is not water-repellent, the mass consumption of the emulsion explosive is high, and the hardness coefficient of the rock changes, the production of the explosive type cannot be effectively replaced at any time. Due to the limitations of explosives, density, and unadjustable explosion speed, the blasting site cannot be met, the expected blasting effect can not be achieved, and the blasting cost can be increased. At the same time, it affects the safety of blasting, which in turn causes blasting accidents and secondary disasters, which seriously affects blasting efficiency and affects production capacity.
  • the closest prior art is also a mobile ground station, which requires various equipment for producing emulsified substrates to be placed on a mobile ground station, and is melted and emulsified by steam heating by externally inputting the same raw materials of ammonium nitrate and oil.
  • the milk process then transported to an on-site mixed truck and transported to the blasting site.
  • the process has high energy consumption, low productivity, high cost, poor safety, unstable quality, high pollution, and extremely limited promotion.
  • ammonium explosives are not waterproof and the density is not adjustable; such as emulsion explosives, high consumption, low production efficiency, very small density adjustment range, heavy ammonium sleeves Explosives have a limited proportion of porous ammonium nitrate, and the density is not adjustable. It is not suitable for variable blasting site rock conditions.
  • the overall performance is in water holes, wet blastholes, dry holes, soft and hard rock, joint development, or filling explosives. In the case of different densities, the space selected is extremely limited, so the manufacturing cost is high and the blasting cost is high.
  • the main raw material for the production of emulsion explosives is ammonium nitrate.
  • ammonium nitrate For its transportation, it is dehydrated, granulated in the factory, produced in solid form, packaged and transported to the explosives manufacturer. The problem with this is:
  • ammonium nitrate must consume energy from liquid to solid
  • cerium nitrate When cerium nitrate is transported to the explosive production site, it changes from solid to liquid, and heating must consume energy;
  • reference numeral 17 is a spacer
  • reference numeral 15 is a material for the backfill section of the blasthole seal, such as slag.
  • the existing spacer technology process is roughly as follows: Calculate the explosive consumption, select the fixed density explosive 16, and place the spacer 17 to separate the explosive 16 in the blasthole.
  • the height of the blasthole is reduced, and the soft rock is used to raise the column. Or to overcome the blasting hazard caused by the high detonation speed, the section is detonated after the interval charge. Or in order to overcome the failure of the explosive at the bottom of the blasthole, or to make the charge difficult, it is often used to solve these difficulties.
  • the air plug, the inner hanging bag, the PVC pipe, the bamboo plug, and the slag are used for spacing, although the forms are different, but the purpose is the same.
  • the explosive unit consumption was usually a fixed value
  • the explosive density was a fixed value
  • the explosive detonation speed was a fixed value. Therefore, a spacer was used to increase the length of the syrup. Since the density of the explosive is fixed, in order to reduce the explosive consumption or improve the blasting effect, people usually change the explosive type.
  • the range of explosives available for selection is very limited, and it is difficult to reduce the explosive consumption while ensuring the blasting effect.
  • the range of use of the spacer is also limited. Many of the methods for filling the hole for reducing the consumption of explosives cannot use spacers for various reasons, such as the softness and hardness of the rock, the high water content, and the blasting purpose.
  • the ammonium explosive is not waterproof.
  • the spacer is used to separate the water and then the ammonium explosive is filled. Because the drilling operation has been carried out, the blasthole is formed, but the explosive is not actually filled, resulting in waste of perforation.
  • the spacer is also used to separate water from the explosive by a spacer when the water content is below a certain height, such as 1-3 meters. Otherwise, when the ammonium explosive is filled, since the ammonium explosive is not waterproof, the wet hole or the hydrated hole may cause some explosives to fail, which affects the blasting efficiency and effect.
  • the spacer is also used to separate the upper and lower medicines when the explosives in the blasthole are detonated. Therefore, under the premise of reducing the unit consumption of the explosive, the charging height is unchanged, and the explosive blasting range is unchanged. Since there are no multi-density explosives in the mine, only spacers can be selected to save the explosives. Reducing the consumption of explosives is the driving force of the enterprise, but the consumption of emulsion explosives is high and cannot be reduced. Therefore, spacers are used to increase the dosage of the explosives to reduce the consumption of explosives.
  • the explosive energy of the explosive cannot uniformly act on the entire blasthole, which affects the bursting effect, and the construction process increases the process of placing the spacer, affecting the construction efficiency and increasing the cost.
  • the role of the air spacer in the blasthole is to increase the blasting range of the charge cartridge, with no explosives at the spacer spacing. At the moment of explosive explosion, the explosion pressure is filled with the blasthole, which is equivalent to using the rest of the explosive to explode the rock in the interval part.
  • spacers are used to space the explosives in the blastholes, resulting in higher costs, complicated processes, poor blasting efficiency, and low efficiency.
  • the material sent to the substrate distribution station is an emulsified substrate maintained at a preset temperature, which is sent to the on-site filling station together with the sensitizer;
  • the materials sent to the filling preparation station are emulsified matrix, porous ammonium nitrate, diesel, sensitizer, physical density modifier, which can be directly input from the outside or from the preparation station.
  • the proportion of the components of the explosives production raw materials is matched according to the blasting design or according to the specific conditions of the blasting site.
  • the emulsified substrate can be sent to the substrate distribution station in part, and a portion is sent to the field loading station along with the porous granule ammonium nitrate, diesel oil, sensitizer, and physical density adjuster.
  • the substrate transported to the loading preparation station is divided into two parts because a portion can be supplemented to the substrate distribution station to cope with the blending required for the latter substrate.
  • the loading preparation station accepts the materials input by the preparation workstation, only the substrate is maintained at a preset temperature, and the sensitizer, the physical density adjuster, the porous granular ammonium nitrate, and the diesel oil are temporarily stored and assembled at the station. To match the preparation of different types of explosives.
  • the combination of all materials in the filling preparation station can meet the needs of any blasting environment; the substrate insulation can achieve low viscosity pumping and also ensure the filling quality; the combination of these materials, in dry holes, wet blastholes, rocks High hardness, When the hardness is low, the joints of the rock are developed and the joints are not joint, the corresponding supply of explosive materials is guaranteed.
  • This overcomes the shortcomings of the prior art in which the variety of explosive materials is limited. While ensuring the blasting effect, the problem that the ammonium frying agent is not waterproof and the production cost of the emulsion explosive is high is overcome. Reduced blasting costs and increased production efficiency.
  • the on-site filling station comprises a supervision unit, a filling unit, and a testing unit; when the substrate and the sensitizer are input to the on-site filling station, after being screened and recorded by the supervision unit, the unit is sent to the filling unit.
  • the substrate is maintained at a preset temperature range, and is immersed in the blasthole together with the sensitizer to mix, complete the sensitization reaction, and generate an emulsion explosive. At this time, if a detonator and a detonating bomb are present, the detonation may occur.
  • the perfusion unit injects the matrix and the sensitizer together into the blasthole, and may have a sampling procedure, that is, the mixed matrix and the sensitizer mixed sample are tested for density and detonation velocity, and tested by a preset value. If it is qualified, the mixture will continue to be filled into the blasthole. If it is not qualified, the amount of sensitizing liquid mixed or the concentration of the sensitizer will be adjusted, and then the input of the above material of the priming unit will be started.
  • the on-site filling station comprises a supervision unit, a filling unit, and a test unit; when the substrate, the sensitizer, the porous granular ammonium nitrate, the diesel oil, and the physical density adjuster are input to the field loading station, After being screened and recorded by the regulatory unit, it is sent to the filling unit to maintain the substrate within the preset temperature range, together with the sensitizer, porous granular ammonium nitrate, diesel oil, physical density adjuster, according to the components set by the loading preparation station. Proportion, stir into a mixture, infuse into the blasthole, complete the sensitization reaction, and generate the explosive of the preset density value. At this time, if there is a detonator and a detonating bomb, it can be detonated.
  • the blasting site needs to overcome the shortcomings of the prior art that the bulk explosives cannot be effectively supervised and the production of multi-explosive explosives cannot be effectively realized.
  • the infusion unit mixes the matrix, the sensitizer, the porous granular ammonium nitrate, the diesel, and the physical density adjuster
  • a sampling procedure that is, extracting the mixture sample to detect its density and detonation velocity, and testing with the preset value. If it is qualified, the mixture is continuously filled into the blasthole. If it is unqualified, the filling preparation is adjusted.
  • the proportion of the matrix, sensitizer, porous granular ammonium nitrate, diesel, physical density adjuster in the station and then start to enter the above materials into the field loading station.
  • the infusion unit is a perfusion unit, which is a perfusion tool with a thermal insulation device for blasting the site, and the emulsion matrix and the sensitizer are respectively dropped or squeezed into the blasthole through different feeding pipes. .
  • the emulsion explosive is directly filled, and the explosive energy is high. It is suitable for any small-diameter blasthole charge and hard rock charge, and can effectively discharge the inside of the blasthole.
  • the accumulated water is suitable for all underground mines and municipal engineering constructions. It overcomes the shortcomings of the prior art that only the detonator sensitivity package explosives can be selected, the danger level is lowered, the blasting effect is good, and the explosive cost is greatly reduced.
  • the infusion unit is a perfusion unit 2, which is a perfusion tool for a blasting site with a substrate insulation device, which mixes the matrix, the sensitizer, the porous granular cerium nitrate, the diesel oil, and the physical density adjuster. , drip or squeeze into the blasthole.
  • the delivery station comprises an emulsion matrix input unit, a storage unit, a heat preservation unit, a pumping unit, an output loading unit, a sensitizer unit; an emulsification matrix required for explosive production is described by
  • the input unit is sent to the delivery station, temporarily stored in the storage unit, and the pumping unit is activated according to the progress of the explosive consumption, and the emulsified substrate is sent from the storage unit to the output loading unit, and the same
  • the sensitizer produced by the chemical unit is transported to the blasting site for loading operation.
  • the storage unit is heated or insulated by the thermal insulation unit.
  • the solution can use the hot water circulation heating system to solve the problem of matrix insulation, keep the emulsion matrix within the preset temperature range, and the heat retained by the matrix directly enters the output filling unit to achieve stable shipping and filling, thereby ensuring the quality of the explosive. stable. It is embodied in seven aspects, namely:
  • the emulsified substrate is sent from the input unit to the delivery station in any of the following three ways:
  • the pump is connected to the storage unit to pump the emulsified substrate into the storage unit;
  • the input unit has a heating or holding container in which the emulsification matrix is contained, and after the input unit enters the delivery station, the heating or The insulated container is completely unloaded, placed in the distribution station, converted into a storage unit, and then connected to the heat preservation unit and the pumping unit by pipes;
  • the input unit enters the distribution station, and after stopping, it is converted into a storage unit, and is connected to the insulation unit and the pumping unit by pipes.
  • the solution can realize the rapid and convenient transfer of the emulsified substrate, that is, solve the problem of the insulation of the substrate, and realize the quick filling in the blast hole.
  • the substrate input unit is a transport vehicle with a heating or holding container that maintains the emulsified substrate contained therein at a preset temperature;
  • the storage unit includes at least one container with a heat insulating device, The contained emulsified matrix is maintained at a preset temperature.
  • the heat of the emulsified substrate is not lost, that is, the problem that the emulsified substrate increases the viscosity due to the temperature decrease, and the stable blasting field filling can be realized, and the low carbon environmental protection can be realized.
  • the pumping unit is a suitable pumping device such as a screw pump, a plunger pump or a diaphragm pump, powered by an air compressor, an electric motor, or a hydraulic device.
  • the solution solves the problem of substrate back-transport due to the stable realization of stable transmission and transfer of the emulsion matrix, and the power source is simple, convenient and adaptable.
  • the thermal insulation unit comprises a heating device, a heat exchange conduit circulation system, and a heat insulating material, the circulation system and the heat insulating material being distributed around the periphery of the storage unit to maintain the emulsion matrix therein within a preset temperature range.
  • the solution maintains a relatively high temperature by utilizing the heat in the matrix manufacturing process, and solves the problem of unstable pumping and pumping in a low temperature environment, so that the quality of the explosive is stable and reliable.
  • the storage unit, all pumping devices, the circulation system, and the heat insulating material are disposed in the same closed space. Since the solution integrates multiple functional modules into one, it can try to reduce the impact of environmental factors, ensuring stable pumping and easy to use.
  • the output loading unit is a transporting vehicle 2 with a heating or holding container, and the transporting vehicle 2 is loaded with an emulsified substrate holding the preset temperature, and together with the sensitizer, to the explosive loading site.
  • the entire emulsion matrix delivery station is mobile and has a power device itself to move between different regions;
  • the emulsification matrix delivery station only includes a storage unit, a thermal insulation unit, a pumping unit, and a sensitizer unit, wherein the storage unit also serves as an emulsification matrix input unit; or
  • the entire emulsified matrix distribution station is assembled for each unit, without its own power device, and is dragged by the vehicle in whole or in part, and quickly assembled after moving between different regions;
  • the emulsified matrix delivery station includes an emulsion matrix input unit, a storage unit, All of the thermal insulation unit, the pumping unit, the output charging unit, and the sensitizer unit; or,
  • the entire emulsifying matrix distribution station which is a ground fixture, is established between different blasting sites or matrix production facilities according to the distance specified by the regulations, and supplies the matrix required for various explosives at the blasting site;
  • the emulsified matrix distribution station includes emulsification The matrix input unit, the storage unit, the thermal insulation unit, the pumping unit, the output loading unit, and the sensitizer unit.
  • the explosives factory of Class 1.1 dangerous goods grade will be converted into a 5.1-stage strong oxidant dangerous grade explosive preparation station, and all raw materials will be loaded into the gun. Kong became a finished product of explosives.
  • the preparation workstation includes raw material storage and transportation unit, raw material storage and transportation unit, water phase preparation unit, oil phase preparation unit, matrix preparation and transportation unit, mixing Loading and conveying unit, additive unit;
  • the raw material 1 and the raw material 2 are transported from the outside to the preparation station, wherein the raw material is sent to the raw material storage unit, and then the aqueous phase is formed by the aqueous phase preparation unit, together with the oil phase.
  • the oil phase produced by the preparation unit is sent to the substrate preparation and transport unit to form a matrix, and the substrate is sent to the external substrate distribution station, and the other portion is sent to the mixing and conveying unit;
  • the mixing and conveying unit After the mixing and conveying unit receives the substrate, the raw material 2 from the raw material storage and transportation unit is received, and the additive from the additive unit is received, and the three are separately stored, insulated, and mixed together.
  • the loading and conveying unit is sent to the outside of the preparation station.
  • the above scheme is mainly used for heavy emulsion explosives, density-adjustable heavy emulsion explosives, low-density emulsion explosives, ultra-low-density emulsion explosives, heavy ammonium explosives, density-adjustable heavy ammonium explosives, porous granular ammonium explosives, and density.
  • the manufacture of any of the nine products, such as porous granular ammonium explosives and pure emulsion explosives, can be selected.
  • This design compared with the traditional technology, simplifies many process links, reduces costs, improves manufacturing efficiency, saves energy and reduces emissions, and achieves low carbon environmental protection. Also, because there are fewer links, the probability of accidental burning and explosion is reduced, and Increased the level of safety.
  • the raw material has at least a temperature of 100 130 ° C, a concentration of 70% 95% liquid ammonium nitrate, or at least one of an oxidizing agent such as sodium nitrate, calcium nitrate, sodium perchlorate, etc.
  • the agents are respectively input to the preparation workstation; the storage facilities of the raw materials one are set to avoid sunlight and shelter from rain;
  • the raw material storage and transportation unit is an insulated transport vehicle or an insulated storage facility; or
  • the raw material storage and transportation unit is an insulated transport vehicle and an insulated storage facility, and the raw material is sent to the thermal storage storage facility through the insulated transport vehicle, and is prepared for use in the water phase;
  • the insulated transport vehicle or the thermal storage facility of the raw material 1 is provided with a device for heating the raw material and a steam cleaning device.
  • the raw material is at least one of solid ammonium nitrate or at least one of an oxidizing agent such as sodium nitrate, calcium nitrate or sodium perchlorate, and a flame-damping agent is added to the preparation station;
  • the storage facility of the raw material one is arranged to avoid sunlight and shelter from rain;
  • the raw material storage and storage unit comprises a storage facility and a crushing facility, and the solid ammonium nitrate and the other oxidant are broken into particles, and the water phase is prepared for use. .
  • the reason for retaining a part of the solid raw material is to adjust the concentration of the oxidizing salt aqueous solution in the next step, and to prevent the liquid raw material from being introduced in an alternative manner. Insulation and protection from light are necessary to maintain the required temperature.
  • the raw material has at least a temperature of 100 to 130 t; a concentration of 70% to 95% of liquid ammonium nitrate, or at least one of an oxidizing agent such as sodium nitrate, calcium nitrate or sodium perchlorate, respectively Entering the preparation workstation; the storage facilities of the raw material one are set to avoid sunlight and shelter from the rain;
  • the raw material storage and transportation unit is an insulated transport vehicle or an insulated storage facility; or
  • the raw material storage and transportation unit is an insulated transport vehicle and an insulated storage facility, and the raw material is sent to the thermal storage facility via the insulated transport vehicle, and is prepared for use in the water phase;
  • the insulated transport vehicle or the insulated storage facility of the raw material 1 is provided with a device for heating the raw material and a steam cleaning device.
  • the raw material is at least one of solid ammonium nitrate or at least one of an oxidizing agent such as sodium nitrate, calcium nitrate or sodium perchlorate, and is separately input into the preparation station;
  • the facility is arranged to avoid sunlight and shelter from rain;
  • the raw material storage unit comprises a storage facility and a crushing facility, and the solid ammonium nitrate and the other oxidant are broken into particles, and are prepared for use in the aqueous phase.
  • the aqueous phase preparation unit comprises the following steps:
  • the oxidant salt aqueous solution is an aqueous phase, which is heated and stored by hot water or steam, and stored for use.
  • the storage facility of the aqueous phase is set to avoid sunlight and rain.
  • Residual liquid recovery is based on raw material conservation, energy saving and emission reduction.
  • the explosive chemical production industry has long had the technical ability to recycle, filter and recycle, but this technology has not been introduced in the prior art process.
  • Insulation storage the purpose is also to reduce the link, so as to directly enter the next process, avoiding the part that is cooled and reheated.
  • the purpose of avoiding light, hot water or steam heating is to strengthen the control of temperature.
  • the oil phase preparation unit comprises the following steps:
  • the oil material is metered and controlled to prepare an oil phase
  • the oil phase is sent to the storage and maintained at 55 ° C ⁇ 90 ° C with hot water or steam, and the storage facilities of the oil phase are set to avoid sunlight and rain.
  • the purpose is also to reduce the link, so as to directly enter the next process, avoiding the part that is cooled and reheated.
  • the substrate preparation and delivery unit comprises a matrix preparation unit and a substrate delivery unit, comprising the steps of: a. in the matrix preparation unit, the oil phase and the aqueous phase, through an insulated pipe and a pump, Metered control and preset The composition ratio is emulsified in an emulsifier at a set temperature and pressure to form a latex matrix; b. one of the latex matrix transport destinations:
  • the latex matrix does not pass through Directly inputting the substrate to the substrate transport unit, and sending the unit to the substrate delivery station outside the preparation station;
  • the latex matrix must also be sent to the second:
  • the latex matrix is directly input into the mixing and conveying unit without passing through the memory;
  • the memory of the substrate, the substrate transport unit, the substrate preparation unit, the mixing and transport unit are all set to protect against sunlight and rain.
  • the substrate transport unit can be embodied as an insulated delivery vehicle, and the storage can be embodied as an insulated container.
  • the purpose is to save the heat generated during the preparation and transportation, and to generate as little heat as possible, and also to make the fluid, or half.
  • the fluid matrix goes directly to the next process, such as blasting site modulation from a few kilometers to hundreds of kilometers away, and the hole filling does not require energy and processes to change the shape. The remaining advantages are the same as above.
  • the additive from the additive unit received by the mixing and conveying unit is a predetermined proportion of clavicle sleeves and sensitizers stored separately from each other, or a predetermined ratio and stored separately from each other. Diesel, sensitizer and physical density modifier; the containers of the additives are arranged to protect against sunlight and rain.
  • a mixing and conveying unit such as a mixed truck, such as several kilometers to several In the blasting site 100 kilometers away
  • the latex matrix belongs to the strong oxidant of 5.1 grade.
  • the safety level of diesel, sensitizer and density regulator is not high. It belongs to general chemicals, far less than the general chemical. Any kind of finished explosives, which are stored separately in different containers in the car, are very suitable for transportation, so the safety factor will naturally be higher.
  • the raw material 2 is porous granular ammonium nitrate; in the raw material storage and transportation unit, the porous granular ammonium nitrate is input from the outside of the preparation station, is stored, and is sent to the mixing and conveying unit; the container 2 of the raw material 2 is transported.
  • the unit is set to protect against sunlight and rain.
  • the raw material 2 is porous granular ammonium nitrate as an oxidizing agent in the finished explosive.
  • the raw material storage and transportation unit, the aqueous phase preparation unit, the oil phase preparation unit, the substrate preparation and transportation unit, the mixing and conveying unit, and other preparation workstations And equipment for accommodating firewood The parts of the liquid (fluid or semi-fluid) other than the oil and the sensitizer are subjected to heat preservation and heat-reinforcing measures by heating the device uniformly or separately to the water, the liquid material, the water phase, the oil phase, and the substrate to the preset. Value, for pipes, pumps, vessels, or valves covered with hot water or steam circulation insulation, or, hot water or steam circulation ring sandwich/set.
  • Warming and replenishment are carried out both inside and outside the workstation, with the aim of reducing the number of links and costs so that they can go directly to the next process and avoid being reheated after being cooled.
  • the liquid ammonium nitrate input from the outside is 120 ° C, and the concentration is 88% to 94%. This value comes from the best range of trial and error.
  • the temperature of liquid ammonium nitrate from the factory to the preparation station is about 120 °C; the concentration is also the above value, and this concentration is suitable for the preparation of the water phase. .
  • the purpose of this design is to maintain the temperature required for the next explosive production step at the lowest cost.
  • the liquid material of the liquid ammonium nitrate, the substrate, the diesel oil, the water phase, the oil phase, and the sensitizer is transferred by pumping, wherein the substrate is a screw pump, a diaphragm pump, or a column. Plug pump; the solid ammonium nitrate, physical density modifier, and porous granular ammonium nitrate are transferred by a screw feeder. This eliminates labor, automates loading, and improves efficiency. The efficiency of material transfer between units is increased, which in turn increases the capacity and efficiency of explosives.
  • the entire preparation workstation is mobile, and has a power device for moving between different regions and quickly entering a working state; or
  • the entire preparation workstation is assembled for the unit, without its own power device, dragged by the vehicle, quickly assembled and put into operation after moving between different regions; or,
  • the entire preparation station is a fixed object, which is built between the detonation sites in different regions, and produces and distributes various explosive semi-finished products and/or raw materials for the detonation site.
  • a preparation workstation for producing explosives comprising a raw material storage unit, an aqueous phase preparation unit, an oil phase preparation unit, a matrix preparation and delivery unit, a mixing and conveying unit, and an additive unit;
  • the raw material is transported from the outside to the preparation station, wherein the raw material is sent to the raw material storage unit, and then the aqueous phase preparation unit generates an aqueous phase, together with the oil phase preparation unit.
  • the resulting oil phase is transported to the substrate preparation and transport unit to form a matrix, a portion of which is sent to an external substrate distribution station and another portion to the mixing and transport unit;
  • the mixing and conveying unit After receiving the substrate, the mixing and conveying unit receives the additive from the additive unit, and the two are separately stored and stored in thermal storage, and are sent together by the mixing and conveying unit to the outside of the preparation station, such as blasting. Live, then mix Loading into the blast hole becomes explosive.
  • a plurality of density explosives are loaded into the plurality of blastholes at the blasting site, for example, a predetermined density of explosives may be filled in the blasting holes, and the blasting guns may be filled. Hole space, cancel the spacer, reserve a certain length of the seal backfill at the outermost end of the blasthole.
  • the blasthole is backfilled and sealed.
  • the density of the explosives is pre-set differently, which leads to different detonation speeds, which in turn leads to the required and different blasting effects.
  • Different presets for the density of the explosives are embodied in various explosives of different densities, which are generally referred to as multi-density explosives in the present invention.
  • the explosive consumption of the explosive remains unchanged, and the length of the charge increases, so the explosive energy can be uniformly applied to the blasthole, thereby achieving the purpose of improving efficiency, simplifying the process, optimizing the blasting effect, and reducing the mining cost.
  • multi-density explosives are used. Because they contain physical density modifiers, they do not participate in explosive chemical reactions, which is equivalent to differentiating the gaps in the prior art and evenly distributing them in explosives. In the middle, a continuous drug column is formed, that is, a multi-density explosive, and the detonation energy can uniformly act on the blasthole, and the blasting effect is obviously better.
  • the charging efficiency is improved, the process is simpler, and the cost is lower.
  • the density of explosives in the blasthole can be adjusted instantly, and the detonation velocity can be adjusted to achieve a fully coupled charge; this also results in the explosive energy fully acting on the rock, reducing the cost of perforation.
  • multi-density explosives also eliminates the need for a spacer charging process, which saves costs and increases efficiency. Since the spacers are not necessary, they can be banned, which not only saves various forms of spacers, such as bamboo buckets, or PVC buckets, slag, gas plugs, and hanging bags, but also eliminates the existence of spacers in use. All kinds of drawbacks.
  • the process of filling the blasthole with multi-density explosives allows the design of the lowest backfill height.
  • the height of the hole backfill is 20-35
  • the diameter of the blasthole is preferably 20-23 times, which can effectively overcome the large-scale gravel after the blasting of the backfill section of the orifice while ensuring the blasting effect.
  • Explosive unit consumption refers to the explosive consumption per cubic meter of rock or per ton of rock, in units of kg/m3 or kg/t. Since there is no spacer, the multi-density explosive is uniformly filled in the blasthole, and the shock wave uniformly acts on the rock of the blasthole wall when the explosive is detonated. By then fully coupling the charge, the rock can be broken better. Since the height of the backfilling is reduced, the problem of large gravel in the orifice can be effectively overcome, the amount of secondary crushing can be reduced, and the optimization of the pore network parameters can further reduce the unit consumption of the explosive.
  • FIG. 1 is a full view of the present invention
  • Figure 2 is a full view of the substrate delivery station in the present invention.
  • FIG. 3 is a schematic view showing an embodiment in which the heating/insulation container can be completely removed and placed into a distribution station and converted into a storage unit;
  • FIG. 4 is a schematic view showing an embodiment of the substrate input unit entering the distribution station after being stopped and converted into a storage unit; Preparing the workstation master map;
  • FIG. 6 is an embodiment in which the raw material in the raw material storage unit is embodied as an oxidant such as liquid ammonium nitrate
  • FIG. 7 is an embodiment in which the raw material in the raw material storage unit is embodied as an oxidant such as solid ammonium nitrate
  • Figure 8 is an embodiment of an aqueous phase preparation unit
  • Figure 9 is an embodiment of an oil phase preparation unit
  • Figure 10 is an embodiment of a raw material storage and transportation unit
  • Figure 11 is an embodiment of a combination of a substrate preparation and transport unit, a mixing and transport unit;
  • Figure 11-2 is another embodiment of a matrix preparation unit in a matrix preparation and delivery unit
  • Figure 12 is one of the preferred embodiments
  • Figure B is a general view of a preparation workstation for producing only emulsion explosives according to the present invention.
  • Figure 14 is a comparison diagram of the filling method of the blasthole of the present invention.
  • the process for producing explosives includes on-site filling stations, loading preparation stations, preparation and distribution systems; the preparation and distribution system includes preparation stations and substrate distribution stations, as shown in Figure 1, in the dotted line, the on-site loading station, ie The site where the blasthole is filled with explosives.
  • the details are as follows: Prepare the materials shipped from the workstation and send them to the loading preparation station and the substrate distribution station respectively;
  • the material sent to the substrate distribution station is an emulsified substrate maintained at a preset temperature, which is sent to the on-site filling station together with the sensitizer;
  • the materials sent to the filling preparation station are emulsified matrix, porous ammonium nitrate, diesel, sensitizer, physical density modifier, which can be directly input from the outside or from the preparation station.
  • the proportion of the components of the explosives production raw materials is matched according to the blasting design or according to the specific conditions of the blasting site.
  • the emulsified substrate may be sent to a substrate distribution station, and a portion thereof is supplied to the field loading with a porous material such as ammonium nitrate, diesel, sensitizer, and physical density adjuster through a transportation vehicle such as an on-site mixed vehicle. station.
  • Embodiment 1 after the loading preparation station receives the materials input by the preparation workstation, only the substrate is maintained at a preset temperature, and the sensitizer, the physical density adjuster, the porous granular ammonium nitrate, and the diesel oil are temporarily stored and assembled in the station. To match the preparation of different types of explosives.
  • the on-site filling station comprises a supervision unit, a perfusion unit, and a test unit; when the substrate and the sensitizer are input to the on-site filling station, after being screened and recorded by the supervision unit, sent to the perfusion unit, The substrate is maintained at a preset temperature range, and is immersed in the blasthole together with the sensitizer to mix, complete the sensitization reaction, and generate an emulsion explosive. At this time, if a detonator and a detonating bomb are present, the detonation may occur.
  • the perfusion unit injects the matrix and the sensitizer together into the blasthole, and may have a sampling procedure, that is, the mixed matrix and the sensitizer mixed sample are tested for density and detonation velocity, and tested by a preset value. If it is qualified, the mixture will continue to be filled into the blasthole. If it is not qualified, the amount of sensitizing liquid mixed or the concentration of the sensitizer will be adjusted, and then the input of the above material of the priming unit will be started.
  • the field loading station comprises a supervision unit, a filling unit, and a testing unit; when the substrate, the sensitizer, the porous granular ammonium nitrate, the diesel oil, and the physical density adjuster are input to the field loading station, After being screened and recorded by the regulatory unit, it is sent to the filling unit to maintain the substrate within the preset temperature range, together with the sensitizer, porous granular ammonium nitrate, diesel oil, physical density adjuster, according to the components set by the loading preparation station. Proportion, stir into a mixture, infuse into the blasthole, complete the sensitization reaction, and generate the explosive of the preset density value. At this time, if there is a detonator and a detonating bomb, it can be detonated.
  • the filling unit mixes the matrix, the sensitizer, the porous granular ammonium nitrate, the diesel oil, the physical density adjuster, and before injecting into the blasthole, and may have a sampling procedure, that is, extracting the mixture sample to detect the density and the detonation velocity. Test with the preset value. If it is qualified, continue to fill the mixture with the blast hole. If it fails, adjust the proportion of the matrix, sensitizer, porous granular ammonium nitrate, diesel oil, physical density adjuster in the loading preparation station. Then start to enter the site loading station The above materials.
  • the pouring unit is a filling unit, which is a pouring tool with a heat insulating device for blasting the site, and the emulsified substrate and the sensitizer are respectively passed through different feeds.
  • the tube is dripped or squeezed into the blasthole.
  • It is a kind of on-site mixing equipment with the functions of heat preservation and filling. It can be expressed as open-pit mine on-site mixing equipment and special-purpose vehicles, tunnel engineering on-site mixed equipment and special vehicles, portable on-site mixed equipment, underground mine on-site mixing. Optional one or combination of equipment and special vehicles, or multiple detonation on-site mixed vehicles.
  • the emulsion matrix and sensitizer are loaded into the blasthole through the drug delivery tube.
  • the pouring unit is a filling unit 2, which is a perfusion tool for a blasting site with a substrate heat insulating device, a substrate, a sensitizer, and a porous granular ammonium nitrate.
  • a filling unit 2 which is a perfusion tool for a blasting site with a substrate heat insulating device, a substrate, a sensitizer, and a porous granular ammonium nitrate.
  • the diesel oil and the physical density adjuster drip or squeeze into the blasthole.
  • it is also a kind of on-site mixing equipment, which has the functions of heat preservation and filling. It can be expressed as open-pit mine on-site mixing equipment and special vehicles, tunnel engineering on-site mixed equipment and special vehicles, portable on-site mixing equipment, underground mine site. Optional one or combination of mixed equipment and special vehicles, or multiple detonation on-site mixed vehicles.
  • the mixing device or the mixing device in the vehicle is started.
  • the matrix, sensitizer, porous granular ammonium nitrate, diesel oil, and physical density adjuster are stirred according to the proportion of the components determined by the loading station to form a mixture and sent to the blasthole.
  • the delivery station includes an emulsion matrix input unit, a storage unit, a heat retention unit, a pumping unit, an output loading unit, and a sensitizer unit; an emulsion matrix required for explosive production is sent to the delivery by the input unit Standing in the storage unit, the pumping unit is activated according to the progress of the explosive consumption, and the emulsification substrate is sent from the storage unit to the output loading unit, together with the sensitization generated by the sensitizer unit.
  • the agent is transported to the blasting site to carry out the filling operation;
  • the storage unit is heated or insulated by the thermal insulation unit.
  • the emulsified substrate is sent from the input unit to the delivery station in any of the following three ways: 1. After the input unit enters the delivery station, the pump is connected to the storage unit to pump the emulsified substrate into the storage unit; The input unit has a heating or heat preservation container in which the emulsification substrate is placed. After the input unit enters the delivery station, the heating or heat preservation container is completely unloaded and placed in the distribution station, converted into a storage unit, and then connected by a pipe. Insulation unit and pumping unit.
  • the input unit is represented by a tank truck 1 , as shown in Fig. 3, which has a heating/insulation container, that is, a tank 2, in which the emulsified substrate is contained, and after the input unit enters the delivery station, the tank 2 is completely removed, Lifting into the delivery station, as shown in the large arrow 3 in Figure 3, the tank can be moved to a storage unit, and then connected to the insulation by pipes.
  • the input unit enters the distribution station. After stopping, it is converted into a storage unit and connected to the insulation unit and the pumping unit by pipes.
  • the input unit such as the tank truck 1 enters the distribution station, is turned into a storage unit in the direction indicated by the large arrow 8, and is connected to the thermal insulation unit 4 and the pumping unit 5 through the pipeline.
  • the substrate input unit is a transport vehicle with a heating or holding container, and the emulsified substrate contained therein is maintained at a preset temperature, such as a tank car 1, a tank 2 and a vehicle body thereon. It can be separated or integrated; the storage unit contains at least one container with a heat preservation device. The emulsified matrix it contains is maintained at a preset temperature.
  • the pumping unit 5 is a suitable device such as a screw pump, a plunger pump or a diaphragm pump, and is powered by an air compressor, an electric motor, or a hydraulic device.
  • the heat preservation unit 4 includes a water heating device 6, a heat exchange pipe circulation system 7, and a heat insulating material, the circulation system 7 and the heat insulating material are distributed around the periphery of the storage unit, and heated to maintain the emulsion matrix therein. Set within the temperature range.
  • the storage unit, the entire pumping device, the circulation system, and the heat insulating material are all disposed in the same closed space, and the personnel are imported and exported, and are not open-air.
  • Embodiment 6 The output loading unit is a transport vehicle 2 with a heating or heat preservation container, which can be represented as a trolley 8 as shown in FIG. 3, and the transport vehicle 2 is loaded with an emulsion matrix maintained at a preset temperature, together with the sensitizer. , drive to the explosive filling site.
  • a heating or heat preservation container which can be represented as a trolley 8 as shown in FIG. 3, and the transport vehicle 2 is loaded with an emulsion matrix maintained at a preset temperature, together with the sensitizer. , drive to the explosive filling site.
  • Embodiment 7 The entire emulsified substrate delivery station is mobile, and has a power device for moving between different regions; the emulsified substrate delivery station includes only a storage unit, a thermal insulation unit, a pumping unit, and a sensitizer unit.
  • the storage unit also serves as an emulsion matrix input unit.
  • the output of the emulsified matrix and sensitizer is delivered by a trolley from the blasting site or
  • the entire emulsified matrix distribution station is assembled for each unit, without its own power device, and is dragged by the vehicle in whole or in part, and quickly assembled after moving between different regions;
  • the emulsified matrix delivery station includes an emulsion matrix input unit, a storage unit, All of the insulation unit, pumping unit, output loading unit, and sensitizer unit.
  • the entire emulsifying matrix distribution station which is a ground fixture, is established between different blasting sites or matrix production facilities according to the distance specified by the regulations, and supplies the matrix required for various explosives at the blasting site;
  • the emulsified matrix distribution station includes emulsification The matrix input unit, the storage unit, the thermal insulation unit, the pumping unit, the output loading unit, and the sensitizer unit.
  • the entire substrate distribution station can be equipped with air compressors, hydraulic stations, or explosion-proof motors for power supply, boilers for hot water heating, lightning protection grounding systems, fire protection systems, and information processing systems for input and output of substrates. Conduct information control.
  • air compressors for power supply
  • boilers for hot water heating
  • lightning protection grounding systems for fire protection systems
  • information processing systems for input and output of substrates.
  • Conduct information control In terms of the above preparation workstations away from the blasting site:
  • the preparation station includes a raw material storage and transportation unit 9, a raw material storage and transportation unit 13, a water phase preparation unit 10, and an oil phase preparation.
  • Unit 11 matrix preparation and transport unit 12, mixing and transport unit, additive unit.
  • the raw material 1 and the raw material 2 are transported from the outside to the preparation station, wherein the raw material is sent to the raw material storage and transportation unit 9, and then the aqueous phase is generated by the aqueous phase preparation unit 10, together with the oil phase generated by the oil phase preparation unit 11,
  • the substrate is transported to the substrate preparation and transport unit 12 to form a substrate, a portion of which is sent to an external substrate dispensing station and the other portion to a mixing and transport unit.
  • the mixing and conveying unit After the mixing and conveying unit receives the substrate, the raw material 2 from the raw material storage and transportation unit 13 is received, and the additive from the additive unit is received, and the three are separately stored and insulated, and are mixed and transported to the outside of the preparation station. .
  • FIG. 5 is a general view of a preparation workstation for producing explosives according to the present invention.
  • a preparation workstation for producing explosives There are two kinds of raw materials for the production of explosives.
  • One is a mixture of oxides such as ammonium nitrate, calcium nitrate, sodium nitrate, and sodium perchlorate, and the other is often porous granular ammonium nitrate. They are transported from the factory to the workstations and then enter the different units. Of course, there are other raw materials that are shipped in, as they are not the creative of this patent, so they are not mentioned.
  • This design simplifies the process of unpacking, solid material crushing, dissolving, heating, cooling, and packaging compared to conventional technologies, saving energy and reducing costs. Also, due to the lack of many links, the product shipped out of the preparation station is not a finished product of explosives, only an oxidant of class 5.1; the sensitization process after being transported to the blasting site begins, and it is also convenient to load in the blasthole in the blasting site; Only in the blasthole of the construction blasting site, all the processes are completed, and the finished explosives that can be detonated by the detonator and the detonating bomb are completed. This reduces the probability of accidental burning and explosion in transportation, storage, and process flow, which greatly increases the level of intrinsic safety.
  • each embodiment is embodied as follows:
  • FIG. 6 is an example in which the raw material in the raw material-storage unit 9 is embodied as an oxidizing agent such as liquid ammonium nitrate.
  • the raw material has at least a temperature of 100 to 130 ⁇ , a concentration of 70% to 95% of liquid ammonium nitrate, or at least one of an oxidizing agent such as sodium nitrate, calcium nitrate or sodium perchlorate, and a flame-retardant agent, such as a coal mine.
  • the medicinal anti-flame agent sodium chloride is separately input into the preparation station; the storage facilities of the raw materials are set to avoid sunlight and rain;
  • the raw material storage and transportation unit 9 is an insulated transport vehicle or an insulated storage facility; or
  • the raw material storage and transportation unit 9 is an insulated transport vehicle and an insulated storage facility.
  • the raw materials are sent to the thermal storage facility after being transported to the thermal storage facility for use in the preparation of the aqueous phase;
  • the raw material of the insulated transport vehicle or the insulated storage facility with a heating device and a steam cleaning device.
  • Directly feeding the raw material such as hot liquid ammonium nitrate eliminates the step of dissolving the solid from the solid into a liquid, and also eliminates the packaging, unpacking, and handling of the solid raw material. Due to the fact that it has a certain amount of heat, it saves a considerable part of the energy and materials for the temperature increase required for the preparation of the next aqueous phase.
  • the second example is an example in which the raw material in the raw material-storage unit 9 is embodied as an oxidant such as solid ammonium nitrate.
  • the raw material has at least one solid ammonium nitrate, or at least one of an oxidizing agent such as sodium nitrate, calcium nitrate or sodium perchlorate, and a flame-retardant agent, such as a coal mine-used explosive anti-flame agent sodium chloride, respectively Input preparation workstation;
  • Raw material one storage facilities are set to avoid sunlight and shelter from rain;
  • Raw material one storage and transportation unit 9 contains storage facilities and crushing facilities, solid ammonium nitrate and other oxidants are broken into particles, and then prepared for use in the aqueous phase.
  • the reason for retaining a portion of the solid ammonium nitrate introduction preparation station is to consider the next step in the adjustment of the concentration of the oxidizer brine solution or when the supply of liquid material is interrupted.
  • the raw material has at least a temperature of 100 ⁇ 130'C, a concentration of 70% ⁇ 95% liquid ammonium nitrate, or at least one of an oxidant such as sodium nitrate, calcium nitrate or sodium perchlorate, and is input separately.
  • the raw material storage and transportation unit 9 is an insulated transport vehicle or an insulated storage facility; or
  • the raw material storage and transportation unit 9 is an insulated transport vehicle and an insulated storage facility.
  • the raw materials are sent to the thermal storage facility after being transported to the thermal storage facility for use in the preparation of the aqueous phase;
  • the raw material of the insulated transport vehicle or the insulated storage facility with a heating device and a steam cleaning device.
  • the raw material is at least one of solid ammonium nitrate, or at least one of an oxidizing agent such as sodium nitrate, calcium nitrate or sodium perchlorate, and is separately input into the preparation station; the storage facilities of the raw materials are all set to avoid the sunlight. And the rain-proof; the raw material-storage unit 9 includes a storage facility and a crushing facility. After the solid ammonium nitrate and other oxidants are broken into particles, the aqueous phase is prepared for use.
  • an oxidizing agent such as sodium nitrate, calcium nitrate or sodium perchlorate
  • Example 5 is an embodiment of the aqueous phase preparation unit 10.
  • the aqueous phase preparation unit 10 comprises the following steps: a. For ammonium nitrate, or other oxidizing agent, after metering control, adding water, heating with hot water or steam to a preset temperature, stirring, accompanied by concentration adjustment;
  • the oxidant brine solution is the water phase. It is heat-preserved by hot water or steam, stored and used. The storage facility of the water phase is set to avoid sunlight and rain.
  • the diatomaceous earth coarse filtration fine filtration technology and device can be used to filter and remove the impurities of the aqueous phase solution, and the waste water and the washed ammonium nitrate can be recovered by the oxidizing agent aqueous solution preparation technology to achieve zero discharge. Residual liquid recovery is based on raw material conservation, energy saving and emission reduction, and containment of environmental pollution. At the same time, the explosive chemical production industry has long had the technical ability to recycle, filter and recycle, but it has not been introduced in the existing technical field. . Insulation storage, the purpose is also to reduce the link, so as to directly enter the next process, without having to wait for cooling and then reheat.
  • Example 6 is an embodiment of the oil phase preparation unit 11, comprising the following steps - a. Hydrogen, such as paraffin, paraffin oil, white oil, microcrystalline wax, composite wax, and the like, and an emulsifier Melting, heating, or measuring the emulsifier-containing composite oil phase by melting and heating to obtain an oil phase;
  • Hydrogen such as paraffin, paraffin oil, white oil, microcrystalline wax, composite wax, and the like
  • emulsifier Melting, heating, or measuring the emulsifier-containing composite oil phase by melting and heating to obtain an oil phase
  • the oil phase is sent to the storage and maintained at 55 °C ⁇ 90'C with hot water or steam.
  • the storage system of the oil phase is set to avoid sunlight and rain.
  • Heating or storing in hot water or steam the purpose is also to reduce the link with low carbon and low emission, so as to go directly to the next process without having to cool and reheat.
  • Example 7, Figure 11 is an embodiment of a combination of a matrix preparation and delivery unit 12, a mixing and delivery unit.
  • the memory 14 entering the matrix preparation unit 12a is represented by the smallest two dashed boxes in FIG. 11, and is kept warm, waiting for input to the substrate conveying unit 12b with the heat insulating device, which can be expressed as a matrix delivery vehicle, and then through the delivery vehicle.
  • the latex matrix is directly fed into the substrate delivery vehicle without the storage 14 and is sent to the outside of the preparation station via the delivery vehicle, such as a blasting site or a substrate delivery station, tens or hundreds of kilometers away;
  • the latex matrix must also be sent to the second:
  • the storage unit 14 entering the substrate preparation unit 12a is insulated, waiting for input to the mixing and conveying unit, and the unit can also be embodied as a mixed vehicle; or, the latex matrix can be directly input into the mixing vehicle without passing through the memory 14.
  • the substrate storage 14, the substrate transport unit 12b, the substrate preparation unit 12a, the mixing and transport unit are all arranged to protect against sunlight and rain.
  • the content of the largest dashed box in Figure 11 is the matrix preparation and transport unit 12, and the two small dashed lines are the matrix thermal storage memory 14.
  • the presence or absence of these two memories 14 is not affected.
  • the presence of this memory 14 buffers the temporary excess of production when it is too late to transport the substrate out of the matrix preparation unit 12a.
  • the substrate delivery vehicle and the thermal storage 14 are also designed to dissipate the heat generated during the preparation process, and also to transport the fluid, or semi-fluid, substrate directly to subsequent processes, such as several kilometers to several hundred kilometers.
  • the process of material modulation, blasthole filling and other processes in the blasting site eliminates the need to consume energy and processes to change the shape of many of the above materials.
  • Figure 11-2 shows another embodiment of the matrix preparation unit 12a in the substrate preparation and delivery unit 12, with respect to the arrangement of Figure 11, a memory is reduced, the remaining structure and function are identical, i.e., after the latex matrix is formed, It leads to the left side of the substrate delivery vehicle and to the right side to the mixed vehicle.
  • the only substrate insulation memory 14 here can also be omitted.
  • Example 8 as shown in Figure 11, the mixing and conveying unit, can be expressed as a mixed vehicle, which accepts the additive from the additive unit in a predetermined proportion, separately stored diesel and sensitizer, or a preset ratio Diesel, sensitizer and physical density regulators, which are stored separately from each other, are designed to protect against sunlight and rain.
  • a mixed vehicle which accepts the additive from the additive unit in a predetermined proportion, separately stored diesel and sensitizer, or a preset ratio Diesel, sensitizer and physical density regulators, which are stored separately from each other, are designed to protect against sunlight and rain.
  • the concept of the upper mixing and conveying unit and the lower mixing vehicle can be equivalent to the same. That is to say, the mixing and conveying unit can be represented as a uniform external delivery vehicle with several sub-tank containers, screw conveyors, pumping devices and pipes and other necessary components, and can also be expressed as a combination of several.
  • the car itself can be designed as a container with several bins, a screw conveyor, and an insulated conveyor with pumping devices to maintain the temperature of the material over a long few hundred or even thousands of kilometers.
  • There are no finished explosives in the compartment only such as porous granular ammonium nitrate, matrix, diesel, sensitizer, physical density regulator, and each other are stored in a separate position, which is relatively safe in transit. After entering the blasting site, it directly enters the next process, saving time and improving efficiency and quality.
  • Figure 12 is one of the preferred embodiments of the present invention. Taking liquid ammonium nitrate as an example, all the specific examples and specific examples of the present invention are integrated. Relatively inferior and best performing forms of materials, specific methods, etc.
  • the dashed box in Figure 12 indicates the process by which the latex matrix is held in the reservoir 14, which may be omitted, i.e., after the matrix is produced in the emulsifier, it may be fed directly into the substrate holding cart or the mixing cart.
  • the dotted line frame 9 in Fig. 12 is the raw material storage and transportation unit 9; the broken line frame 10 is the water phase preparation unit 10; the broken line frame 11 is the oil phase preparation unit 11; the broken line frame 12 is the matrix preparation and delivery unit 12; the dotted line frame 13 is the raw material storage and storage unit 13; the broken line frame 14 is the latex matrix thermal insulation memory 14. Therefore, Fig. 12 is actually the embodiment of Fig. 5, which is roughly the sum of Fig. 6, Fig. 7, Fig. 8, Fig. 9, Fig. 10, and Fig. 11.
  • Fig. 10 shows an embodiment of the raw material storage and transportation unit 13, in which the raw material 2 is porous granular ammonium nitrate, which is used for adjusting the oxygen balance in the explosive.
  • the porous granular ammonium nitrate is input from the outside of the preparation station, stored, and sent to the mixing and conveying unit.
  • the container and conveying device of the raw material 2 are all set to avoid sunlight and rain.
  • Example 10 the raw material storage and transportation unit 9, the aqueous phase preparation unit 10, the oil phase preparation unit 11, the substrate preparation and delivery unit 12, the mixing and conveying unit, and other preparation stations are used in the entire process and equipment for accommodating diesel and
  • the parts of the liquid other than the sensitizer such as liquid ammonium nitrate, aqueous phase preparation, oil phase preparation and storage, matrix preparation, substrate transportation and storage, pipeline and unit transportation, are all insulated, heat-retaining measures, methods Uniformly or separately heating water, liquid material, water phase, oil phase, substrate for the heating device, covering the pipeline, pump, storage facility or valve with insulation layer for hot water or steam circulation, or hot water or steam circulation interlayer/set . Insulation is applied to the storage, transportation, and on-site mixing of the substrate. Insulation and heat recovery are all aimed at reducing the number of steps so that they can go directly to the next step and avoid being reheated after being cooled.
  • the liquid ammonium nitrate input from the outside is 120 ° C and the concentration is 88% to 94%. This value comes from the best range of trial and error.
  • the temperature of liquid ammonium nitrate from the factory to the preparation station is about 120 °C; the concentration is also the above value, and this concentration is just right for the preparation of the water phase. .
  • the purpose of this design is to maintain the temperature required for the next explosive production step at the lowest cost.
  • the liquid material such as liquid ammonium nitrate, substrate, crust sleeve, water phase, sleeve phase, sensitizer is transferred by pumping, wherein the substrate is a screw pump, a diaphragm pump, or a plunger pump; Solid ammonium nitrate, physical density modifiers, and porous granular ammonium nitrate are transferred by a screw feeder.
  • the substrate is a screw pump, a diaphragm pump, or a plunger pump
  • Solid ammonium nitrate, physical density modifiers, and porous granular ammonium nitrate are transferred by a screw feeder.
  • the physical density modifier may be a polystyrene or polyethylene granule, a suitable thermoplastic polymer foam granule, or a dried plant granule, expanded perlite granule. These substances work well as density modifiers.
  • the physical density modifier is preferably a porous material in the particle, including an expanded polymeric material such as: polystyrene, polyethylene; expanded ore Products, such as perlite, are preferably polystyrene granules, which are used as density modifiers to achieve the different densities of multi-species explosives.
  • Example 13 The entire preparation workstation is mobile, with its own power device, to move between different regions and quickly enter the working state; or
  • the entire preparation station is assembled for the unit, without its own power device, dragged by the vehicle, quickly assembled and put into operation after moving between different regions; or,
  • the entire preparation station is a fixed object, which is built between the detonation sites in different regions, and produces and distributes various explosive semi-finished products and/or raw materials for the detonation site.
  • the fourteenth example is a preparation workstation for producing explosives. Unlike all the above technical solutions, it is only used for the production of emulsion explosives.
  • the solution comprises a raw material storage and transportation unit 9, an aqueous phase preparation unit 10, an oil phase preparation unit 11, a substrate preparation and delivery unit 12, a mixing and conveying unit, and an additive unit;
  • the raw material 1, such as ammonium nitrate, is transported from the outside to the preparation station, wherein an oxidant such as ammonium nitrate is sent to the raw material storage unit 9, and then the aqueous phase is produced by the aqueous phase preparation unit 10, together with the oil phase preparation unit 11
  • the resulting oil phase is transported to the substrate preparation and transport unit 12 to form a matrix, a portion of which is sent to an external substrate distribution station and another portion to the mixing and transport unit;
  • the mixing and conveying unit such as a mixed vehicle, receives the matrix, and then receives additives from the additive unit, such as sensitizers, which are stored separately and stored in thermal storage, and are sent together by the mixing vehicle to the outside of the preparation station, such as The blasting site is then loaded into the blasthole and mixed to become an emulsion explosive.
  • additives such as sensitizers
  • the first step is to calculate the explosive consumption per unit of blasthole or per unit blasting area according to the blasting environment and the preset blasting purpose.
  • the second step is to blast according to the rock hardness, rock joint, water content around the blasthole, etc.
  • the purpose is to preset the density of various explosives, such as matrix, sensitizer, porous granular ammonium nitrate, diesel oil, and physical density modifier, in a plurality of preset ratios, such as the diameter of the stone after blasting;
  • a plurality of density preset in the second step a plurality of density explosives are loaded on the plurality of blastholes at the blasting site. For example, a blasting blasthole is filled with explosives of a predetermined density, the blasthole space is filled, the spacer 17 is eliminated, and a sealing backfill section 15 of a certain length is reserved at the outermost end of the blasthole.
  • the left diagram of Fig. 14 shows a spacer spacer 17 at the bottom of the blasthole in the prior art.
  • the middle figure shows a spacer spacer 17 at the top of the blasthole in the prior art, both of which use a spacer.
  • What is used in the prior art is a fixed density explosive 16, as shown in the left and middle figures of Figure 14.
  • the right picture of Fig. 14 is that the spacer 17 is no longer used when the multi-density explosive 19 is loaded while the unit consumption of the explosive is maintained. This is because the explosive contains a physical density adjuster, which can improve the efficiency, the cost is not increased, the process is simple, and the blasting effect is good while achieving continuous charging.
  • the space of the spacer 17 used in the prior art is filled by the multi-density explosive 19 by not using the spacer 17 in the blasthole by filling the multi-density explosive 19. That is, by increasing or decreasing the charge density, the occupied blasthole space is adjusted.
  • the physical density modifier added to the multi-density explosive 19 does not participate in the explosive chemical reaction and is in the form of a solid particle. This solid particle fills the blasthole, which is equivalent to mixing the portion of the prior art spacer 18 with the particulate material in the explosive to reduce the density of the explosive, and to differentiate a portion of the bulky segment 18.
  • the tiny space occupied by the innumerable solid particles is distributed in the explosive, so that the density of the explosive is reduced, and the space interval of the spacer is not required, and the purpose of improving the blasting effect and reducing the unit consumption of the explosive can also be achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Disintegrating Or Milling (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Accessories For Mixers (AREA)

Abstract

本发明涉及一种生产炸药的工艺流程,含现场装填站、装填准备站、准备及配送系统;准备及配送系统又包含准备工作站和基质配送站;准备工作站运出的物料,分别送往装填准备站和基质配送站为匹配不同品种炸药制备所需。以制备不同爆速炸药为目的,现场装填站包含监管单元、灌注单元、测试单元;物料输入现场装填站后,经所述监管单元甄别与记录后,送往灌注单元一起灌注入炮孔,混合、完成敏化生成预设种类的炸药,通过雷管和起爆弹引爆。还可有一个抽检程序,即提取混合物样品检测其密度和爆速,合格则继续向炮孔灌装,否则调节组份比例后再输入物料。如此设计,可在一个相对广泛的地域内,安全、充足且稳定地供应生产多品种炸药所需。

Description

说 明 书 生产炸药的工艺流程 技术领域
本发明属于一种炸药生产的方法, 尤其涉及一种既能生产乳化炸药, 又能生产多爆速炸药 的工艺流程布局, 以适应不同爆破现场具体情况所需。
背景技术
控制爆速的一个很常用的方法, 就是在生产流程中控制炸药的密度。 以往工业炸药生产技 术中, 一个固定的炸药生产线, 往往只能生产单一品种的炸药, 如乳化炸药、 铵油炸药、 膨 化硝铵炸药等, 或者是移动式的地面站只能生产乳化炸药。 其中任何一种生产线, 其密度值 是固定的, 炸药爆速是固定的, 不能随着岩石性质的变化生产适宜的炸药, 在含水炮孔、 干 燥的炮孔、 岩石节理、 岩石不节理、 岩石坚硬、 和岩石较软时炸药品种的选择生产能力极度 有限, 没有提供一种适合的方法和工艺满足爆破环境变化的需要。尤其是当铵油炸药不防水、 乳化炸药单耗高的状态下、 岩石硬度系数变化的状态下, 则不能随时有效进行更换炸药品种 的生产。 由于存在着炸药品种限制、 密度、 爆速不可调等问题, 则导致不能满足爆破现场的 需要, 不能实现可预期的爆破效果, 增加爆破成本。 同时, 影响爆破安全, 进而引发爆破事 故和次生灾害, 严重影响爆破效率, 影响产能。
在基质配送方面:
民用乳化炸药生产工艺中, 目前市场上没有用到乳化基质配送站。包装炸药技术一般都用 于矿山工程建设施工, 其生产过程成本高、 污染大、 效率低、 不环保。 而现有的地面站式炸 药生产工艺所生产的铵油炸药不防水, 它所生产的重铵油炸药仅适合于露天矿, 不适合地下 矿的工程施工。
最相近的现有技术还有一种移动式地面站,需将各种生产乳化基质的设备安放在移动式地 面站上, 通过外部输入的硝酸铵和油相等原材料, 通过蒸汽加热溶化、 乳化完成制乳过程; 然后输送到一种现场混装车上, 运到爆破现场。 该工艺能耗高、 产能低、 成本高、 安全性差、 质量不稳定、 污染大, 推广极度受限。
在炸药的现场制备前的准备工作方面:
以往工业炸药生产技术中, 由一般炸药厂生产的包装炸药, 其成本较高、 密度为固定值, 且生产的是 1.1 级危险品, 安全隐患极大, 尤其是包装成本和管理成本都较高, 一次性投入 大, 劳动生产密集, 生产效率低。
也有现场混装的炸药生产技术, 但所造出的产品如铵油炸药, 其不防水、 密度不可调; 如 乳化炸药单耗高, 且生产效率极低、 密度调节范围非常小, 重铵袖炸药多孔硝铵比例有限, 且密度不可调, 不适合多变的爆破现场岩石条件, 总体表现为在水孔、 潮湿炮孔、 干孔、 软 硬岩、 节理发育不一、 或所装填炸药需不同密度的场合时, 所选择的空间极有限, 故制造成 本高、 爆破成本高。
另外制造环节也较多, 不仅浪费能源还增加了排放。 如乳化炸药的主要生产原料硝酸铵, 为了它的运输, 都是在工厂脱水、 造粒, 以固态的形式生成、 包装后运输到炸药生产厂家。 这样做的问题在于:
1. 浪费了在原料工厂生产硝酸铵时所耗费的热能;
2. 在原料工厂, 硝酸铵从液态变为固态必须消耗能源;
3. 硝酸钹运到炸药生产场所时, 由固态变为液态、 加热必须消耗能源;
4. 包装工序的存在, 必然占用一部分成本。
同理, 炸药成品生产所需的其他半成品, 比如水相、 油相、 乳胶基质在以往生产过程中都 没有离开冷却一加热、 固化、 包装等过程, 这导致诸多环节都不得不重新加热、 熔融、 溶解, 不仅浪费能源, 而且在装药和包装后的输送过程中, 都留下了安全隐患。 众所周知, 上述成 品或半成品炸药, 在包装、 储存、 运输、 使用中遇到不慎, 比如摩擦、 振动、 明火、 气温变 化都可能会导致意外燃烧或起爆。 另外, 还有很多工序, 如: 敏化工序、 冷却工序、 运转工 序、 装药工序、 包装工序、 暂存与入库工序、 切纸工序、 卷纸筒工序、 中包工序、 捆扎工序、 辅助材料保管、 封口工序、 套袋工序等很多中间环节的存在, 不仅增加成本, 还增加危险, 不得不去管制。 这导致国家监管部门不得不出台若干技术和管理标准, 来规范这些炸药及其 原料的库存、 生产、 暂存、 运输、 中转、 使用, 从而不得不消耗大量公权成本来进行消防及 其他防范措施。 同时, 由于生产环节多, 诸如乳胶基质生产的非连续性, 以及各个工艺环节 之间, 多为车辆运输、 人工搬运, 这就进一步增高成本, 从而限制了产能和生产率。
在爆破现场的炮孔装填技术方面:
以往炮孔的装填, 为降低炸药单耗, 改善爆破效果, 增加爆轰波做功空间, 靠的是用一种 间隔器, 材质多为气塞、 孔内吊袋、 PVC管、 竹塞、 矿渣等。 如图 14 中的左图和中图, 附 图标记 17为间隔器; 附图标记 15为炮孔封口回填段的物质, 比如岩渣。
现有间隔器技术工艺流程大致如下: 计算炸药单耗、 选择固定密度炸药 16、 安放间隔器 17去间隔炮孔中的炸药 16。
为降低炸药单耗, 减少炮孔填塞高度, 软岩时则提高药柱。 或为克服高爆速带来的爆破震 动危害, 则进行间隔装药后分段起爆。 或为了克服炮孔底部的积水导致炸药失效、 或装药困 难, 则经常采用间隔器, 意图解决这些困难。 目前的间隔技术中用到了气塞、孔内吊袋、 PVC 管、 竹塞、 矿渣进行间隔, 虽形式不同, 但目的一致。
以往在炮孔中装药时, 炸药单耗通常是固定值, 炸药密度是固定值, 炸药爆速是固定值, 故而采用间隔器增加药柱长度的方法。 由于炸药的密度是固定的, 所以为降低炸药单耗或改 善爆破效果, 人们通常更换炸药品种。 但是炸药品种可供选择的范围非常有限, 很难在保证 爆破效果的同时, 降低炸药单耗。 另外, 间隔器使用范围也有限, 许多为降低炸药单耗的炮 孔填塞方法中, 由于各种原因不能使用间隔器, 如岩石的软硬不一、 含水量高低、 爆破目的 不一时的情形。
铵油炸药不防水, 孔底含水时, 利用间隔器将水隔开, 再装填铵油炸药。 因为已经进行了 钻孔作业, 形成了炮孔, 但实际上并未装填炸药, 则造成了穿孔的浪费。 间隔器还用于在含 水量低于一定高度时, 如 1-3米时, 通过间隔器将水与炸药隔开。 否则, 装填铵油炸药时, 由于铵油炸药不防水, 潮湿孔或含水孔会导致部份炸药失效, 影响爆破效率和效果。
间隔器还用于将炮孔内的炸药分段起爆时, 将上下两个药柱分开, 从而在降低炸药单耗的 前提下, 使装药高度不变, 使炸药爆破作用范围不变。 因矿山没有多密度炸药, 则只能选择 间隔器来节省炸药。 降低炸药单耗是企业的利益驱使, 但乳化炸药单耗高, 无法降低, 故使 用间隔器提高药柱来降低炸药单耗。
上述的空气间隔器技术, 即气塞技术中, 炸药爆炸能量不能均匀作用于整个炮孔, 影响爆 破效果, 且施工工艺增加了安放间隔器的工序, 影响施工效率, 增加了成本。 空气间隔器在 炮孔中的作用是提高装药药柱的爆破作用范围, 被间隔器间隔部份无炸药。 在炸药爆炸瞬间 将爆压充满炮孔, 相当于利用其余部份的炸药进行对间隔部份的岩石起爆炸作用。
在矿山, 也有采用矿渣间隔进行分段装药的工艺。 一个目的是为了降低炸药单耗, 另一个 目的是为了降低最大一段起爆药量。 该做法在使用多密度炸药时, 由于是连续装药, 此时则 需要使用数码电子雷管微差间隔实施分段起爆。
在矿山, 还有采用空气间隔器在炮孔顶部进行间隔, 即利用底部的装药段对位于顶部的岩 石进行爆破。 此时提高药柱的目的一是为了降低炸药单耗, 另一个目的是缩小炮孔顶部的填 塞高度, 降低顶部的大块率。 但这种方法仅适合于软岩及节理发育的岩石, 硬岩及不发育的 岩石不适合该方法。 间隔器仅适合于软岩、及节理发育岩石的场合, 由于岩石已经有了节理, 利用其余药段的 炸药能量则可以起到破碎和抛掷岩石的作用。 当岩石较硬, 节理不发育, 间隔器则不会发生 实质作用, 此时若使用间隔器来提高装药药柱, 爆破效果较差。
综上, 采用间隔器对炮孔中的炸药实施间隔, 导致成本较高, 工艺较复杂, 爆破效果差, 效率低。
发明内容
为克服现有技术上的上述缺陷, 以及不仅能生产乳化炸药, 还能生产多爆速炸药之目的, 同时还保证整个工艺流程的安全, 现在提供一种生产炸药的工艺流程, 包含现场装填站、 装 填准备站、 准备及配送系统; 准备及配送系统又包含准备工作站和基质配送站。
准备工作站运出的物料, 分别送往装填准备站和基质配送站;
送往基质配送站的物料, 是保持着预设温度的乳化基质, 该基质和敏化剂一起再送往现场 装填站;
送往装填准备站的物料, 为乳化基质、 多孔粒硝酸铵、 柴油、 敏化剂、 物理密度调节剂, 它们可以由外部直接输入, 还可以来自于准备工作站。 根据爆破设计或根据爆破现场的具体 情况进行炸药生产原料的组份比例的匹配。经此, 其中乳化基质可以一部份送往基质配送站, 一部份随多孔粒硝酸铵、 柴油、 敏化剂、 物理密度调节剂, 送往现场装填站。
这么做, 既保证了乳化基质预设温度, 减少了热能排放, 做到了热量循环利用, 又能保证 装填质量。 同时其它生产所需原料能够实现多品种炸药生产的互换, 如能够实现铵油炸药、 重铵油炸药、乳化炸药、重乳化炸药以及各品种不同密度和不同爆速值炸药品种生产的互换。 这就能够满足爆破现场不同环境的需要, 克服了现有技术中可选品种少, 成本高、适用性差、 安全性差的缺点。
运往装填准备站中的基质, 之所以分两部份, 是因为一部份可以为基质配送站提供补充, 以应对后者基质供不应求时所需之调配。
该方案分为如下几个子方案, 进一步详细为:
第一方面,装填准备站接纳准备工作站输入的物料后,仅给基质维持预设温度,而敏化剂、 物理密度调节剂、 多孔粒硝酸铵、 柴油则在此站暂存并组份配制, 以匹配不同品种炸药制备 所需。
这么做, 装填准备站所有物料的组合, 能够满足任何的爆破环境的需要; 基质保温能够实 现低粘度可泵送, 还能够保证装填质量; 这些物料的组合, 在干孔、 潮湿炮孔、 岩石硬度高、 硬度低、 岩石节理发育和不节理时, 保证都有对应的炸药原料供应。 这就克服了现有技术中 炸药原料品种受限的缺点。 在能够保证爆破效果的同时, 克服了铵油炸药不防水和乳化炸药 之生产单耗高的难题。 降低了爆破成本, 提高了生产效率。
第二方面, 以制备乳化炸药为目的时, 现场装填站包含监管单元、 灌注单元、 测试单元; 当基质和敏化剂输入现场装填站后, 经监管单元甄别与记录后, 送往灌注单元, 将基质维 持在预设温度范围内, 和敏化剂一起灌注入炮孔, 混合、 完成敏化反应、 生成乳化炸药, 此 时若存在雷管和起爆弹, 则可引爆。
这么做, 当矿山或工地需要乳化炸药时, 则通过装填设备装填, 通过监管单元实施信息监 管, 对生产的合法性、 生产量、 时间、 地点、 操作者和单位的合法性进行监管, 能够有效控 制乳化基质的合法流向, 避免了非法流失, 这就克服了现有技术中无法实施有效监管的缺点。 且这些流转的物料在地面以上仅属于 5.1级的氧化剂范畴, 即,将 1.1级危险品的等级降低为 5.1级的防火等级, 保证了作业安全。
第三方面, 灌注单元将基质和敏化剂一起灌注入炮孔前, 可以有一个抽检程序, 即, 提取 基质和敏化剂混合样品检测其密度和爆速, 以预设值为标准进行测试, 合格则继续向炮孔灌 装混合物, 不合格则调节混入敏化液的量或调整敏化剂的浓度, 之后再启动灌注单元的上述 物料的输入。
这么做, 就能够对现场混装的炸药品质进行有效控制, 通过抽检炸药密度和爆速, 确认炸 药质量是否符合爆破需求, 避免不符合爆破要求的产品装入炮孔, 影响爆破效果。 克服了现 有技术中不能对现场混装炸药进行即时检测的缺点。
第四方面, 以制备多爆速炸药为目的时, 现场装填站包含监管单元、灌注单元、测试单元; 当基质、 敏化剂、 多孔粒状硝酸铵、 柴油、 物理密度调节剂输入现场装填站后, 经监管单 元甄别与记录后, 送往灌注单元, 将基质维持在预设温度范围内, 和敏化剂、 多孔粒状硝酸 铵、 柴油、 物理密度调节剂一起, 依照装填准备站设定的组份比例, 搅拌成混合物、 灌注入 炮孔、 完成敏化反应、 生成预设密度值的炸药, 此时若存在雷管和起爆弹, 则可引爆。
这么做, 既能够对多爆速炸药进行生产的合法性、 生产时间、 地点、 生产量和装填的合法 性进行监管, 又能够实现以不同密度和不同爆速为生产目的的原料自由组合, 满足不同的爆 破现场需要, 克服现有技术中不能对散装炸药实现有效监管和不能有效实现多爆速炸药品种 生产的缺点。
第五方面, 灌注单元将基质、 敏化剂、 多孔粒状硝酸铵、 柴油、 物理密度调节剂一起混合 后、 灌注入炮孔前, 可以有一个抽检程序, 即, 提取混合物样品检测其密度和爆速, 以预设 值为标准进行测试, 合格则继续向炮孔灌装混合物, 不合格则调节装填准备站内对基质、 敏 化剂、 多孔粒状硝酸铵、 柴油、 物理密度调节剂的组份比例, 之后再启动往现场装填站输入 上述物料。
这么做, 能够对现场混装的多爆速炸药品质进行有效控制, 通过抽检炸药密度和爆速, 确 认炸药质量是否符合爆破需求, 避免不符合爆破要求的产品装入炮孔, 影响爆破效果, 克服 了现有技术中不能对现场混装炸药进行即时检测的缺点。
第六方面, 灌注单元为灌注单元一, 是一种用于爆破现场的、 带有保温装置的灌注工具, 把乳化基质和敏化剂, 分别通过不同的输料管滴入或挤入炮孔。
这么做, 当炮孔内含水, 或需要的爆破能量较高时, 直接装填乳化炸药, 炸药能量高, 适 合任何的小直径炮孔装药和硬岩装药, 能够有效排出炮孔内的积水, 适合所有的地下矿山和 市政工程类施工, 克服了现有技术中只能选择雷管感度包装炸药的缺点, 降低了危险等级, 爆破效果好, 炸药成本大幅度降低。
第七方面, 灌注单元为灌注单元二, 是一种用于爆破现场的、带有为基质保温装置的灌注 工具, 把基质、 敏化剂、 多孔粒状硝酸钹、 柴油、 物理密度调节剂混合后, 滴入或挤入炮孔。
这么做, 能够生产适合任何爆破作业环境的炸药品种, 通过调整密度实现调整爆速, 实现 多爆速炸药现场混装, 改善爆破效果, 降低爆破成本, 提高爆破安全。 这就克服了现有技术 中现场混装炸药密度和爆速不可调的缺点。 基质配送方面:
为了克服上述现有技术中的诸多缺陷, 所述配送站包括乳化基质输入单元、 存储单元、保 温单元、 泵送单元、 输出装填单元、 敏化剂单元; 炸药生产所需的乳化基质由所述输入单元 送入所述配送站, 暂存于所述存储单元, 根据炸药消耗进度决定启动所述泵送单元, 把乳化 基质由所述存储单元送往并装上所述输出装填单元, 连同敏化剂单元产生的敏化剂运往爆破 现场实施装填作业。
由所述保温单元对所述存储单元进行加热或保温。
该方案可釆用热水循环加热系统, 解决了基质保温问题, 使乳化基质保持在预设的温度范 围内, 基质保持的热量直接进入输出装填单元, 以实现稳定装运和装填, 从而保障炸药质量 稳定。 具体化为七个方面, 分别为:
第一方面, 乳化基质由输入单元送入配送站的方式有如下三种之任一种:
输入单元进入配送站后, 通过泵接驳到存储单元, 把乳化基质泵入存储单元; 输入单元上有一种加热或保温容器, 乳化基质盛放于其中, 输入单元进入配送站后, 把加 热或保温容器整个卸下、 安放到配送站内, 转变为存储单元, 再以管道接驳到保温单元和泵 送单元;
输入单元进入配送站, 停稳后, 转变为存储单元, 以管道接驳到保温单元和泵送单元。 该方案由于能够实现乳化基质的快速方便的转移, 即解决了基质保温问题, 又能够实现快 速在爆孔中装填。
第二方面, 基质输入单元为一种带有加热或保温容器的输送车一, 使其所容纳的乳化基质 维持在预设的温度; 存储单元至少包含一种带有保温装置的容器, 使其所容纳的乳化基质维 持在预设的温度。
该方案由于设计了保温系统, 使乳化基质的热量不散失, 即解决了乳化基质由于温度降低 增加粘度的问题, 能够实现稳定的爆破现场装填, 又能够实现低碳环保。
第三方面, 泵送单元为螺杆泵、 柱塞泵或隔膜泵等适宜的泵送装置, 由空压机、 电动机、 或液压装置提供动力。
该方案由于稳定实现乳化基质稳定传输和转移, 则解决了基质倒运问题, 动力来源简单, 方便, 适应性强。
第四方面, 保温单元含有加热装置、热交换管道循环系统、 和隔热材料, 该循环系统和隔 热材料遍布存储单元外围, 使其内的乳化基质维持在预设温度范围内。
该方案由于利用了基质制造过程中的热量, 保持了相对高的温度, 解决了低温环境泵送不 稳定和泵送困难的问题, 使得炸药质量稳定可靠。
第五方面, 存储单元、 全部泵送装置、 循环系统、 隔热材料都设置于同一封闭空间内。 该方案由于把多个功能模块整合为一体, 则可尽力降低环境因素造成的影响, 确保泵送稳 定, 使用方便。
第六方面, 输出装填单元为带有加热或保温容器的输送车二, 该输送车二装载着保持着预 设温度的乳化基质、 和敏化剂一起, 驶往炸药装填现场。
该方案由于在保温状态下运输、爆破现场装填,所以装填效果好,所生成炸药的质量稳定。 第七方面,整个乳化基质配送站, 为移动式, 自身带有动力装置, 以在不同地域之间移动; 该乳化基质配送站只包括存储单元、 保温单元、 泵送单元、 敏化剂单元, 其中存储单元兼任 乳化基质输入单元; 或,
整个乳化基质配送站, 为各单元拼装式, 自身不带动力装置, 整体或局部由车辆拖拽, 在 不同地域之间移动后快速拼装; 该乳化基质配送站包括乳化基质输入单元、 存储单元、 保温 单元、 泵送单元、 输出装填单元、 敏化剂单元之全部; 或,
整个乳化基质配送站, 为地面固定物, 依据法规规定的距离, 建立在不同地域的爆破现场 或基质生产设施之间, 为爆破现场配送诸种炸药所需的基质; 该乳化基质配送站包括乳化基 质输入单元、 存储单元、 保温单元、 泵送单元、 输出装填单元、 敏化剂单元之全部。
如此设计, 选择性和适应性强, 方便灵活, 投资小, 投产快速, 工艺简单, 污染物少。 在远离爆破现场的上述准备工作站方面:
为克服炸药生产和使用过程中的上述诸多缺陷, 将生产 1.1级危险品等级的炸药厂, 全面 地、 无缝隙地转换为 5.1 级强氧化剂危险等级的炸药准备工作站, 让所有原料直到装入炮孔 才变为炸药成品。
总体上设计为:远离爆破现场数公里到数百公里不等,该准备工作站包括原料一储运单元、 原料二储运单元、 水相制备单元、 油相制备单元、 基质制备及输送单元、 混装及输送单元、 添加剂单元;
所述原料一和原料二, 从外部运到所述准备工作站, 其中所述原料一输往所述原料一储运 单元, 接着经所述水相制备单元生成水相后, 连同所述油相制备单元所生成的油相一起, 输 送往所述基质制备及输送单元, 生成基质, 基质则一部分送往外部的基质配送站, 另一部分 输送往所述混装及输送单元;
所述混装及输送单元接纳所述基质后, 再接纳来自所述原料二储运单元的原料二, 又接纳 来自所述添加剂单元的添加剂, 三者分开存放、 保温存储, 一同被所述混装及输送单元送往 所述准备工作站外部。
上述方案主要用于重乳化炸药、密度可调的重乳化炸药、 低密度乳化炸药、超低密度乳化 炸药、 重铵油炸药、 密度可调的重铵油炸药、 多孔粒状铵油炸药、 密度可调的多孔粒状铵油 炸药、 纯乳化炸药这九种产品之任一的制造, 可选择。
如此设计, 跟传统技术比, 简化了诸多工艺环节, 降低了成本、 提升了制造效率、 节能减 排、 做到了低碳环保。 还由于少了诸多环节, 则降低了意外燃烧、 爆炸的概率, 实质性地提 升了安全水平。
根据上述总体设计, 分别如下具体化为若干方面:
第一方面, 所述原料一至少有温度 100 130°C、 浓度 70% 95%液态硝酸铵, 或再加上硝 酸钠、 硝酸钙、 高氯酸钠等氧化剂当中的至少一种, 加消焰剂, 彼此分别输入所述准备工作 站; 所述原料一的存储设施均设置为避阳光和避雨;
所述原料一储运单元为保温运输车或保温存储设施; 或者,
所述原料一储运单元为保温运输车和保温存储设施,所述原料一经所述保温运输车送往所 述保温存储设施, 为水相制备待用;
所述原料一的所述保温运输车或保温存储设施,带有为所述原料一加热的装置和蒸汽清扫 装置。
如此设计, 直接运进热的液态硝酸铵等原料, 则省略了从固体溶解为液体的步骤, 也省却 了固态原料的包装、 装卸步骤。 由于自身带有一定热量以及保温措施, 则为下一步水相制备 所需的温度提升而省却了相当大一部分能源。 由于对工艺设备的阳光直射和风吹雨打, 都容 易导致诸多化学反应所需的温度偏离设定值, 从而影响产品质量, 故设置为避光避雨。 对装 运原料一的槽罐车一类的运输工具和存储设施进行保温, 目的在于充分利用其从工厂制备过 程中自带的热量。 蒸汽清扫在于保证清扫时的安全, 防止摩擦产生明火, 且清扫洁净。
第二方面, 所述原料一至少有固态硝酸铵, 或再加上硝酸钠、 硝酸钙、 高氯酸钠等氧化剂 当中的至少一种, 加消焰剂, 彼此分别输入所述准备工作站; 所述原料一的存储设施均设置 为避阳光和避雨; 所述原料一储运单元包含存储设施和破碎设施, 所述固态硝酸铵和其他所 述氧化剂破碎成颗粒后, 为水相制备待用。
之所以保留一部分固态原料的引入, 是用于下一步氧化剂盐水溶液的浓度调整, 以及防止 万一液态原料因故无法引入的备用方案。 保温、 避光措施均为维持所需温度之必要设计。
上述两个方面加有消焰剂, 为煤矿开采所需炸药制备所必需的流程。
第三方面, 所述原料一至少有温度 100〜130t;、 浓度 70%〜95%液态硝酸铵, 或再加上硝 酸钠、 硝酸钙、 高氯酸钠等氧化剂当中的至少一种, 彼此分别输入所述准备工作站; 所述原 料一的存储设施均设置为避阳光和避雨;
所述原料一储运单元为保温运输车或保温存储设施; 或者,
所述原料一储运单元为保温运输车和保温存储设施,所述原料一经所述保温运输车送往所 述保温存储设施, 为水相制备待用; 所述原料一的所述保温运输车或保温存储设施,带有为所述原料一加热的装置和蒸汽清扫 装置。
第四方面, 所述原料一至少有固态硝酸铵, 或再加上硝酸钠、 硝酸钙、 高氯酸钠等氧化剂 当中的至少一种, 彼此分别输入所述准备工作站; 所述原料一的存储设施均设置为避阳光和 避雨; 所述原料一储运单元包含存储设施和破碎设施, 所述固态硝酸铵和其他所述氧化剂破 碎成颗粒后, 为水相制备待用。
上述两个方面, 由于没有消焰剂的加入, 则为非煤矿的矿山开釆所需炸药制备所必需的流 程。 其优点同上。
第五方面, 所述水相制备单元包括如下步骤:
a. 对所述硝酸铵, 或加上其他所述氧化剂, 经计量控制后, 加水、 以热水或蒸汽加热到 预设温度、 搅拌, 伴以浓度调整;
b. 经酸性调节剂或碱性调节剂, 调整混合物 PH值到预设值;
c 对生成的氧化剂盐水溶液多次过滤, 直至其浊度达到预设值; 残液经冲洗、 沉淀、 过 滤、 回收、 循环, 再次用于制作水相, 全程以热水或蒸汽补热到预设温度;
d. 所述氧化剂盐水溶液即为水相, 以热水或蒸汽补热保温、 存储待用, 所述水相的存储 设施设置为避阳光和避雨。
残液回收, 是基于原料节约、节能减排考量, 同时, 当今炸药化工生产行业早已具备回收、 过滤、 循环的技术能力, 只是现有技术工艺中未有人引入这个技术而已。 保温存储, 目的也 在于减少环节, 以便直接进入下一步工艺, 避免了被冷却后又重新加热的环节。 避光、 热水 或蒸汽加温等手段, 目的在于强化对温度的掌控。
第六方面, 所述油相制备单元包括如下步骤:
a. 油份材料经计量控制, 制备油相;
b. 以热水或蒸汽加热到预设值、 过滤;
c 所述油相送入存储器, 以热水或蒸汽保温维持在 55°C~90°C以内, 待用, 所述油相的存 储设施设置为避阳光和避雨。
在一定温度范围内存储, 目的也在于减少环节, 以便直接进入下一步工艺, 避免了被冷却 后又重新加热的环节。
第七方面, 所述基质制备及输送单元包括基质制备单元和基质输送单元, 包括如下步骤: a. 在所述基质制备单元内将所述油相与所述水相, 经保温管道和泵, 经计量控制和预设 的组份配比, 在设定温度和压力下, 在乳化器内进行乳化, 形成乳胶基质; b. 所述乳胶基质输送去向之一:
进入所述基质制备单元内的存储器, 保温, 等待输入带有保温装置的所述基质输送单元, 再经该单元送往所述准备工作站外部的基质配送站; 或, 所述乳胶基质不经所述存储器而直 接输入所述基质输送单元, 经该单元送往所述准备工作站外部的基质配送站;
c 同时, 所述乳胶基质还须输往去向之二:
进入所述基质制备单元内的存储器, 保温, 等待输入所述混装及输送单元; 或, 所述乳胶 基质不经所述存储器而直接输入所述混装及输送单元;
所述基质的存储器、 所述基质输送单元、所述基质制备单元、 所述混装及输送单元, 均设 置为避阳光和避雨。
基质输送单元可以表现为一种保温配送车, 而存储器可表现为一种保温容器, 目的都在于 节约制备和运输过程中所消耗、 所产生的热量尽量少散失, 也在于让呈流体、 或半流体的基 质直接进入下个流程, 比如几公里到几百公里外的爆破现场调制、 炮孔装填时, 无需耗费能 源和工序来改变形态。 其余优点同前述。
第八方面, 所述混装及输送单元接纳的来自所述添加剂单元的所述添加剂为预设比例的、 彼此分开存放的柴袖和敏化剂, 或者, 预设比例的、 彼此分开存放的柴油、 敏化剂和物理密 度调节剂; 所述添加剂的容器均设置为避阳光和避雨。
各类炸药半成品或物料, 如经保温的乳胶基质、 柴油、 敏化剂等, 经计量, 由混装及输送 单元, 比如一种混装车送往所述准备工作站外部, 如几公里到几百公里外的爆破现场, 此时 所运输的物质中, 乳胶基质属于 5.1 级的强氧化剂, 柴油、 敏化剂、 密度调节剂的安全级别 都不高, 属于属于一般化学品, 远比不上任何一种成品炸药, 且都是在车中分开存放在不同 的容器中, 非常适合于运输, 所以安全系数自然会较高。
第九方面, 所述原料二为多孔粒状硝酸铵; 在原料二储运单元中, 多孔粒状硝酸铵从准备 工作站外部输入后, 经存储, 输往混装及输送单元; 原料二的容器、 输送装置均设置为避阳 光和避雨。
这样的设计同样出于温度控制考虑。 另, 原料二为多孔粒状硝酸铵, 作为成品炸药中的氧 化剂。
第十方面, 所述原料一储运单元、 所述水相制备单元、 所述油相制备单元、 所述基质制备 及输送单元、 所述混装及输送单元, 以及其他所述准备工作站全部流程及设备中用于容纳柴 油和敏化剂以外的液体 (流体或半流体) 的部位, 都施以保温、 补热措施, 方法为加热装置 统一或分别对水、 液态原料、 水相、 油相、 基质加热到预设值, 对管道、 泵、 容器、 或阀门 覆盖以热水或蒸汽循环的保温层, 或, 热水或蒸汽循的环夹层 /套。
准备工作站里外都进行保温和补热, 目的都在于减少环节和成本, 以便直接进入下一歩工 艺, 避免了被冷却后又重新加热。
第 ^—方面, 从外部输入的所述液态硝酸铵为 120°C, 浓度 88%〜94%。 这数值来自于反 复试验的最佳范围, 液态硝酸铵从工厂出来运到本准备工作站时经常的温度, 即为 120°C左 右; 浓度也为上述数值, 而这个浓度对水相的制备比较适宜。 如此设计的目的, 均在于最低 成本地维持下一炸药生产的环节所需的温度。
第十二方面, 所述液态硝酸铵、 基质、 柴油、 水相、 油相、 敏化剂这些液态物料的转移是 通过泵送的, 其中所述基质使用的是螺杆泵、 隔膜泵、 或柱塞泵; 所述固态硝酸铵、 物理密 度调节剂、 和多孔粒状硝酸铵是通过螺旋输料机来转移的。 从而省却了人工, 实现自动装填, 提髙了效率。 各个单元之间物料的流转效率提升, 进而提高了炸药的产能和效率。
第十三方面, 整个所述准备工作站, 为移动式, 自身带有动力装置, 以在不同地域之间移 动、 快速进入投产工作状态; 或,
整个所述准备工作站, 为单元拼装式, 自身不带动力装置, 由车辆拖拽, 在不同地域之间 移动后快速拼装、 投产; 或,
整个所述准备工作站为固定物, 建立在不同地域的起爆现场之间, 为起爆现场生产、配送 诸种炸药半成品和 /或原材料。
三种供选择的方式, 为安全和法规考量, 都远离爆破现场。 以及, 根据生产任务的下达而 方便进行频率不等的调动。
第十四方面, 一种生产炸药的准备工作站, 包括原料一储运单元、 水相制备单元、 油相制 备单元、 基质制备及输送单元、 混装及输送单元、 添加剂单元;
所述原料一, 从外部运到所述准备工作站, 其中所述原料一输往所述原料一储运单元, 接 着经所述水相制备单元生成水相后, 连同所述油相制备单元所生成的油相一起, 输送往所述 基质制备及输送单元, 生成基质, 基质则一部分送往外部的基质配送站, 另一部分输送往所 述混装及输送单元;
所述混装及输送单元接纳所述基质后, 又接纳来自所述添加剂单元的添加剂, 二者分开存 放、 保温存储, 一同被所述混装及输送单元送往所述准备工作站外部, 如爆破现场, 然后混 装装入炮孔变为炸药。
这个方案, 仅用于生产乳化炸药。 在爆破现场的炮孔装填方面:
为克服间隔器的使用中前述诸多缺陷, 采用现场制作多种密度炸药来装填炮孔的方法, 以 避免使用间隔器, 即:
第一歩,根据爆破环境和预设爆破目的,计算每单位炮孔或每单位爆破区域的炸药消耗量; 第二步, 根据岩石硬度、 岩石节理、 周边含水量等爆破环境、 或爆破目的, 预设不同的炸 药密度, 即所述基质、 所述敏化剂、 所述多孔粒状硝酸铵、 所述柴油、 同所述物理密度调 节剂, 进行多种预设比例的混合;
第三步, 根据第二步所预设的多种炸药密度, 在爆破现场对多种炮孔进行多种密度炸药的 装填, 比如, 可在爆破炮孔中装填预设密度的炸药, 填塞炮孔空间, 取消间隔器, 在炮孔最 外端预留一定长度的封口回填段。
第四步, 对所述炮孔进行回填封口。
就是说, 根据岩石等爆破对象和环境的不同, 对炸药的密度进行了不同的预设, 进而导致 不同的爆速, 再进而导致所需的、 不同的爆破效果。 对炸药密度进行不同的预设, 则体现为 不同密度的各种炸药, 它们在本发明中通称为多密度炸药。
装填多密度炸药时,炸药单耗维持不变,装药长度增加,所以炸药能量可均匀作用于炮孔, 达到提高效率、 工艺简单化、 优化爆破效果、 降低采矿成本的目的。
与传统的工艺相比, 釆用了多密度的炸药, 由于含有物理密度调节剂, 其不参与爆炸化学 反应, 则相当于将现有技术中的间隔段进行了微分, 使其均匀分布于炸药中, 形成连续药柱, 即多密度炸药, 爆轰能量则可均匀作用于炮孔, 爆破效果显然更好。 通过多密度炸药现场混 装车装填, 则装药效率提高, 工艺更简单, 成本更低廉。
采用多密度炸药,则可以即时调整炮孔内炸药的密度,进而调整爆速,实现完全耦合装药; 这还导致炸药能量充分作用于岩石, 减少了穿孔成本。
采用多密度炸药, 还省去了使用间隔器的装药过程, 节省了成本, 提高了效率。 由于间隔 器没有了存在的必要, 则可取缔之, 不仅节省了各种形式的间隔器, 如竹桶、 或 PVC桶、 矿 渣、 气塞、 吊袋, 还杜绝了间隔器在使用中存在的种种弊端。
采用多密度炸药灌装炮孔的工艺,可以设计最低的回填高度。通常炮孔回填的高度是 20-35 倍的炮孔直径, 优选 20-23倍, 就能够在保证爆破效果的同时, 有效克服孔口回填段爆破后 出现大块碎石。
炸药单耗, 是指每立方米岩石或每吨岩石的炸药消耗量, 单位是 kg/ m3或 kg/t。 由于不存 在间隔器, 多密度炸药则均匀充填于炮孔中, 炸药爆轰时冲击波均匀作用于炮孔壁岩石。 由 于是完全耦合装药, 则能更好地破碎岩石。 由于降低了回填的高度, 就能够有效克服孔口大 块碎石的问题, 降低了二次破碎量, 加之通过孔网参数优化等手段, 则更可进一步降低炸药 单耗。
附图说明
图 1为本发明之全图;
图 2为本发明中的基质配送站全图;
图 3为加热 /保温容器可整个卸下、 安放到配送站内转变为存储单元的实施例示意图; 图 4为基质输入单元进入配送站停稳后、 转变为存储单元的实施例示意图; 图 5为所述准备工作站总图;
图 6为原料一储运单元中所述原料一具体化为液态硝酸铵等氧化剂的实施例; 图 7为原料一储运单元中所述原料一具体化为固态硝酸铵等氧化剂的实施例; 图 8为水相制备单元的实施例;
图 9为油相制备单元的实施例;
图 10为原料二储运单元的实施例;
图 11为基质制备及输送单元、 混装及输送单元二者组合的实施例;
图 11-2为基质制备及输送单元中的基质制备单元的另一种实施方式;
图 12为最佳实施例之一;
图 B为本发明只生产乳化炸药的准备工作站总图;
图 14为本发明之炮孔填充方式对比图。
具体实施方式
下面以实例来进一步说明权利要求书和发明内容。
这种生产炸药的工艺流程, 包含现场装填站、 装填准备站、 准备及配送系统; 准备及配送 系统又包含准备工作站和基质配送站, 见图 1, 虛线框内即现场装填站, 亦即炮孔装填炸药 所在的现场。 详细如下: 准备工作站运出的物料, 分别送往装填准备站和基质配送站;
送往基质配送站的物料, 是保持着预设温度的乳化基质, 该基质和敏化剂一起再送往现场 装填站;
送往装填准备站的物料, 为乳化基质、 多孔粒硝酸铵、 柴油、 敏化剂、 物理密度调节剂, 它们可以由外部直接输入, 还可以来自于准备工作站。 在该站中根据爆破设计或根据爆破现 场的具体情况进行炸药生产原料的组份比例的匹配。 经此, 其中乳化基质可以将一部份送往 基质配送站, 一部份随多孔粒硝酸铵、 柴油、 敏化剂、 物理密度调节剂, 通过诸如现场混装 车的运输工具送往现场装填站。
该方案分为如下几个子方案, 进一步详细为:
实施例 1,装填准备站接纳准备工作站输入的物料后,仅给基质维持预设温度, 而敏化剂、 物理密度调节剂、 多孔粒硝酸铵、 柴油则在此站暂存并组份配制, 以匹配不同品种炸药制备 所需。
实施例 2, 以制备乳化炸药为目的时, 现场装填站包含监管单元、 灌注单元、 测试单元; 当基质和敏化剂输入现场装填站后, 经监管单元甄别与记录后, 送往灌注单元, 将基质维 持在预设温度范围内, 和敏化剂一起灌注入炮孔, 混合、 完成敏化反应、 生成乳化炸药, 此 时若存在雷管和起爆弹, 则可引爆。
实施例 3, 灌注单元将基质和敏化剂一起灌注入炮孔前, 可以有一个抽检程序, 即, 提取 基质和敏化剂混合样品检测其密度和爆速, 以预设值为标准进行测试, 合格则继续向炮孔灌 装混合物, 不合格则调节混入敏化液的量或调整敏化剂的浓度, 之后再启动灌注单元的上述 物料的输入。
实施例 4, 以制备多爆速炸药为目的时, 现场装填站包含监管单元、 灌注单元、测试单元; 当基质、 敏化剂、 多孔粒状硝酸铵、 柴油、 物理密度调节剂输入现场装填站后, 经监管单 元甄别与记录后, 送往灌注单元, 将基质维持在预设温度范围内, 和敏化剂、 多孔粒状硝酸 铵、 柴油、 物理密度调节剂一起, 依照装填准备站设定的组份比例, 搅拌成混合物、 灌注入 炮孔、 完成敏化反应、 生成预设密度值的炸药, 此时若存在雷管和起爆弹, 则可引爆。
实施例 5, 灌注单元将基质、 敏化剂、 多孔粒状硝酸铵、 柴油、 物理密度调节剂一起混合 后、 灌注入炮孔前, 可以有一个抽检程序, 即, 提取混合物样品检测其密度和爆速, 以预设 值为标准进行测试, 合格则继续向炮孔灌装混合物, 不合格则调节装填准备站内对基质、 敏 化剂、 多孔粒状硝酸铵、 柴油、 物理密度调节剂的组份比例, 之后再启动往现场装填站输入 上述物料。
实施例 6, 以制备乳化炸药为目的时, 灌注单元为灌注单元一, 是一种用于爆破现场的、 带有保温装置的灌注工具, 把乳化基质和敏化剂, 分别通过不同的输料管滴入或挤入炮孔。 它是一种现场混装设备, 具有保温和装填的功能, 可表现为露天矿现场混装设备及专用车、 隧道工程现场混装设备及专用车、 便携式现场混装设备、井下矿现场混装设备及专用车、 或 多爆速现场混装车等的任选一或组合。 这个现场混装设备或混装车, 把乳化基质和敏化剂通 过输药管装入炮孔。
实施例 7, 以制备多爆速炸药为目的时,灌注单元为灌注单元二, 是一种用于爆破现场的、 带有为基质保温装置的灌注工具, 把基质、 敏化剂、 多孔粒状硝酸铵、 柴油、 物理密度调节 剂混合后, 滴入或挤入炮孔。 同上, 它也是一种现场混装设备, 具有保温和装填的功能, 可 表现为露天矿现场混装设备及专用车、隧道工程现场混装设备及专用车、 便携式现场混装设 备、 井下矿现场混装设备及专用车、 或多爆速现场混装车等的任选一或组合。 混装设备或混 装车内搅拌装置启动, 基质、 敏化剂、 多孔粒状硝酸铵、 柴油、 物理密度调节剂依照装填准 备站确定的组份比例进行搅拌, 生成混合物, 送往炮孔。 基质配送方面:
如图 2, 所述配送站包括乳化基质输入单元、 存储单元、 保温单元、 泵送单元、 输出 装填单元、 敏化剂单元; 炸药生产所需的乳化基质由所述输入单元送入所述配送站, 暂 存于所述存储单元, 根据炸药消耗进度决定启动所述泵送单元, 把乳化基质由所述存储 单元送往并装上所述输出装填单元, 连同敏化剂单元产生的敏化剂运往爆破现场实施装 填作业;
由所述保温单元对所述存储单元进行加热或保温。
具体化为七种实施例, 分别为:
实施例一, 乳化基质由输入单元送入配送站的方式有如下三种之任一种- 一、 输入单元进入配送站后, 通过泵接驳到存储单元, 把乳化基质泵入存储单元; 二、 输入单元上有一种加热或保温容器, 乳化基质盛放于其中, 输入单元进入配送站 后, 把加热或保温容器整个卸下、 安放到配送站内, 转变为存储单元, 再以管道接驳到 保温单元和泵送单元。
输入单元表现为一辆槽罐车 1 , 见图 3, 其上有一种加热 /保温容器, 即槽罐 2, 乳化 基质盛放于其中, 输入单元进入配送站后, 把槽罐 2整个卸下、 吊装到配送站内, 如图 3内那个大箭头 3所表现的槽罐挪动方式, 使之转变为存储单元, 再以管道接驳到保温 单元 4和泵送单元 5。
三、 输入单元进入配送站, 停稳后, 转变为存储单元, 以管道接驳到保温单元和泵送 单元。
如图 4, 输入单元, 如槽罐车 1进入配送站, 依大箭头 8所指方向, 停稳后, 转变为 存储单元, 通过管道接驳到保温单元 4和泵送单元 5。
实施例二, 基质输入单元为一种带有加热或保温容器的输送车一, 使其所容纳的乳化 基质维持在预设的温度, 如一辆槽罐车 1, 它上面的槽罐 2与车体可分离, 也可成为一 体; 存储单元至少包含一种带有保温装置的容器。 使其所容纳的乳化基质维持在预设的 温度。
实施例三, 泵送单元 5为螺杆泵、柱塞泵或隔膜泵等适宜的装置, 由空压机、 电动机、 或液压装置提供动力。
实施例四, 保温单元 4含有水加热装置 6、 热交换管道循环系统 7、 和隔热材料, 该 循环系统 7和隔热材料遍布存储单元外围, 给它加热使其内的乳化基质维持在预设温度 范围内。
实施例五, 存储单元、全部泵送装置、循环系统、 隔热材料都设置于同一封闭空间内, 有人员进出口, 非露天即可。
实施例六, 输出装填单元为带有加热或保温容器的输送车二, 可表现为如图 3中的小 车 8, 该输送车二装载着保持着预设温度的乳化基质, 和敏化剂一起, 驶往炸药装填现 场。
实施例七, 整个乳化基质配送站, 为移动式, 自身带有动力装置, 以在不同地域之间 移动; 该乳化基质配送站只包括存储单元、 保温单元、 泵送单元、 敏化剂单元, 其中存 储单元兼任乳化基质输入单元。 乳化基质和敏化剂的输出, 靠来自爆破现场的小车前来 运送 或,
整个乳化基质配送站, 为各单元拼装式, 自身不带动力装置,整体或局部由车辆拖拽, 在不同地域之间移动后快速拼装; 该乳化基质配送站包括乳化基质输入单元、 存储单元、 保温单元、 泵送单元、 输出装填单元、 敏化剂单元之全部。 或,
整个乳化基质配送站, 为地面固定物, 依据法规规定的距离, 建立在不同地域的爆破 现场或基质生产设施之间, 为爆破现场配送诸种炸药所需的基质; 该乳化基质配送站包 括乳化基质输入单元、 存储单元、 保温单元、 泵送单元、 输出装填单元、 敏化剂单元之 全部。
整个基质配送站, 可配置空压机、 建立液压站、 或防爆电机用于提供动力, 配置锅炉 用于热水加热, 建立避雷接地系统, 建立消防系统, 安装信息处理系统对基质的输入与 输出进行信息化控制。 在远离爆破现场的上述准备工作站方面:
见图 5, 总体上设计为远离爆破现场数公里到数百、 数千公里不等, 该准备工作站包括原 料一储运单元 9、 原料二储运单元 13、 水相制备单元 10、 油相制备单元 11、 基质制备及输送 单元 12、 混装及输送单元、 添加剂单元。
原料一和原料二, 从外部运到准备工作站, 其中原料一输往原料一储运单元 9, 接着经水 相制备单元 10生成水相后, 连同油相制备单元 11所生成的油相一起, 输送往基质制备及输 送单元 12, 生成基质, 基质则一部分送往外部的基质配送站, 另一部分输送往混装及输送单 元。
混装及输送单元接纳基质后, 再接纳来自原料二储运单元 13的原料二, 又接纳来自添加 剂单元的添加剂, 三者分开存放、 保温存储, 一同被混装及输送单元送往准备工作站外部。
图 5为本发明生产炸药的准备工作站总图。 生产炸药的原料, 有两种, 一种是硝酸铵、 硝 酸钙、 硝酸钠、 高氯酸钠等氧化物的混合, 另一种经常是多孔粒状硝酸铵。 它们从工厂运进 准备工作站后, 分别进入不同的单元。 当然还有其他原料运入, 由于它们并非本专利的创意 所在, 故不提及。
经过诸多中间流程后, 产生的诸如乳胶基质这种半成品, 和柴油、 敏化剂、 密度调节剂等 一起运往准备工作站外部, 直接运往数百米、 数公里、 数百公里到数千公里外距离不等的爆 破现场。
如此设计, 跟传统技术比, 简化了诸如解开包装、 固态原料破碎、 溶解、 加热、 冷却、 包 装的工艺环节, 节省了能源, 降低了成本。 还由于少了诸多环节, 运出准备工作站的产品并 非炸药成品, 仅为 5.1 级的氧化剂; 运到爆破现场后的敏化加工才开始, 同时也很方便在爆 破现场内的炮孔内装填; 只有在施工爆破现场的炮孔内, 所有工序才完成, 可被雷管和起爆 弹引爆的真正炸药成品才完成。 这样就降低了运输、 储存、 工艺流程中意外燃烧、 爆炸的概 率, 从而极大地提升了本质安全化水平。
根据上述总体设计, 分别如下具体化为若干实施例:
实例之一, 图 6为原料一储运单元 9中原料一具体化为液态硝酸铵等氧化剂的实施例。原 料一至少有温度 100~130Ό、 浓度 70%〜95%液态硝酸铵, 或再加上硝酸钠、 硝酸钙、 高氯酸 钠等氧化剂当中的至少一种, 加消焰剂, 如煤矿许用炸药用消焰剂氯化钠, 彼此分别输入准 备工作站; 原料一的存储设施均设置为避阳光和避雨; 原料一储运单元 9为保温运输车或保温存储设施; 或者,
原料一储运单元 9 为保温运输车和保温存储设施, 原料一经保温运输车送往保温存储设 施, 为水相制备待用;
原料一的保温运输车或保温存储设施, 带有为原料一加热的装置和蒸汽清扫装置。
如此设计, 由于阳光直射和风吹雨打, 都容易导致诸多化学反应所需的温度偏离设定值, 进而影响炸药产品的使用效果, 下同。
直接运进热的液态硝酸铵等原料, 则省略了从固体溶解为液体的步骤, 也省却了固态原料 的包装、 解包装、 搬运装卸歩骤。 由于自身带有一定热量, 则为下一歩水相制备所需的温度 提升而省却了相当大一部分能源和材料。
实例之二,如图 7,是原料一储运单元 9中原料一具体化为固态硝酸铵等氧化剂的实施例。 原料一至少有固态硝酸铵, 或再加上硝酸钠、 硝酸钙、 高氯酸钠等氧化剂当中的至少一种, 加消焰剂, 如煤矿许用炸药用消焰剂氯化钠, 彼此分别输入准备工作站; 原料一的存储设施 均设置为避阳光和避雨; 原料一储运单元 9包含存储设施和破碎设施, 固态硝酸铵和其他氧 化剂破碎成颗粒后, 为水相制备待用。
之所以保留一部分固态硝酸铵的引入准备工作站的方式,是考虑到下一步氧化剂盐水溶液 的浓度调整或当液态原料供给中断时的备用方案。
上述两个方面加有消焰剂, 为煤矿开采所需炸药制备所必需的流程。
实例之三, 原料一至少有温度 100~130'C、 浓度 70%~95%液态硝酸铵, 或再加上硝酸钠、 硝酸钙、 高氯酸钠等氧化剂当中的至少一种, 彼此分别输入准备工作站; 原料一的存储设施 均设置为避阳光和避雨;
原料一储运单元 9为保温运输车或保温存储设施; 或者,
原料一储运单元 9 为保温运输车和保温存储设施, 原料一经保温运输车送往保温存储设 施, 为水相制备待用;
原料一的保温运输车或保温存储设施, 带有为原料一加热的装置和蒸汽清扫装置。
实例之四, 原料一至少有固态硝酸铵, 或再加上硝酸钠、 硝酸钙、 高氯酸钠等氧化剂当中 的至少一种, 彼此分别输入准备工作站; 原料一的存储设施均设置为避阳光和避雨; 原料一 储运单元 9包含存储设施和破碎设施, 固态硝酸铵和其他氧化剂破碎成颗粒后, 为水相制备 待用。
上述两个方面, 由于没有消焰剂的加入, 则为非煤矿的矿山开釆所需炸药制备所必需的流 程。 其优点同上。
实例之五, 如图 8为水相制备单元 10的实施例。 水相制备单元 10包括如下步骤: a. 对硝酸铵, 或加上其他氧化剂, 经计量控制后, 加水、 以热水或蒸汽加热到预设温度、 搅拌, 伴以浓度调整;
b. 经酸性调节剂或碱性调节剂, 调整混合物 PH值到预设值;
c 对生成的氧化剂盐水溶液多次过滤, 直至其浊度达到预设值; 残液经冲洗、 沉淀、 过 滤、 回收、 循环, 再次用于制作水相, 全程以热水或蒸汽补热到预设温度;
d. 氧化剂盐水溶液即为水相, 以热水或蒸汽补热保温、 存储待用, 水相的存储设施设置 为避阳光和避雨。
可以采用硅藻土粗滤精滤技术和装置来过滤、清除水相溶液的杂质, 以氧化剂盐水溶液的 调制技术回收废水和清洗掉的硝酸铵, 实现零排放。 残液回收, 是基于原料节约、 节能减排、 遏制环境污染考量, 同时, 当今炸药化工生产行业早已具备回收、 过滤、 循环的技术能力, 只是在现有本技术领域中, 未见有引入而已。 保温存储, 目的也在于减少环节, 以便直接进 入下一步工艺, 不必等冷却后重新加热。
实例之六, 如图 9为油相制备单元 11的实施例, 包括如下步骤- a. 将油份, 如石蜡、 石蜡油、 白油、 微晶蜡、 复合蜡等碳氢类化合物与乳化剂经计量一 同熔化、 加热, 或将经计量的含乳化剂的复合油相熔化、 加热, 制得油相;
b. 计量、 补热至预设温度、 维持融化、 过滤;
c 油相送入存储器, 以热水或蒸汽保温维持在 55 °C〜90'C以内, 待用, 油相的存储设施设 置为避阳光和避雨。
以热水或蒸汽加热、 保温存储, 目的也在于低碳、 低排放地减少环节, 以便直接进入下一 步工艺, 不必再冷却、 重新加热。
实例之七, 如图 11 , 为基质制备及输送单元 12、 混装及输送单元二者组合的实施例。 基 质制备及输送单元 12,如图 11中最大的虚线框所示,包括有基质制备单元 12a和基质输送单 元 12b, 包括如下步骤:
a. 基质制备单元 12a内, 以图 11中第二大的虚线框表示, 油相 (油相材料) 与水相 (氧 化剂盐水溶液), 经保温管道和泵, 经计量控制和预设的组份配比, 在设定温度和压力下, 在 乳化器内进行乳化, 形成乳胶基质;
b. 乳胶基质输送去向之一: 进入基质制备单元 12a内的存储器 14, 以图 11中最小的两个虚线框表示, 保温, 等待输 入带有保温装置的基质输送单元 12b, 可表现为一种基质配送车, 再经该配送车把基质送往 准备工作站外部, 如数十或数百公里外的爆破现场或基质配送站; 或,
乳胶基质不经存储器 14而直接输入基质配送车, 经该配送车送往准备工作站外部, 如数 十或数百公里外的爆破现场或基质配送站;
c 同时, 乳胶基质还须输往去向之二:
进入基质制备单元 12a 内的存储器 14, 保温, 等待输入混装及输送单元, 该单元也可具 体化为一种混装车; 或, 乳胶基质不经存储器 14而直接输入混装车。 基质的存储器 14、 基 质输送单元 12b、 基质制备单元 12a、 混装及输送单元, 均设置为避阳光和避雨。
图 11中最大的虚线框中的内容即为基质制备及输送单元 12, 两个细虚线的小框即为基质 保温存储器 14, 这两个存储器 14的存在与否、 是否被跨越, 都不影响基质制备单元 12a整 体的目的与功能。 当来不及把基质运出基质制备单元 12a时, 这个存储器 14的存在即可缓冲 产量的临时过剩。基质配送车和保温存储器 14之设计, 目的还在于使制备过程中所产生的热 量不散失, 也在于让呈流体、 或半流体状的基质直接运输到后续的流程, 比如几公里到几百 公里外的爆破现场中物料调制、 炮孔装填等流程, 无需再耗费能源和工序来改变上述诸多物 料的形态。
图 11-2为基质制备及输送单元 12中的基质制备单元 12a的另一种实施方式,相对于图 11 的方案, 减少了一个存储器, 其余结构和功能完全相同, 即, 乳胶基质生成后, 向左边通向 基质配送车, 向右边通向混装车, 尤其是这里唯一的基质保温存储器 14也可省略。
实例之八, 如图 11, 混装及输送单元, 可表现为一种混装车, 接纳来自添加剂单元的添 加剂为预设比例的、 彼此分开存放的柴油和敏化剂, 或者, 预设比例的、 彼此分开存放的柴 油、 敏化剂和物理密度调节剂, 添加剂的容器均设置为避阳光和避雨。
这里, 上位混装及输送单元和下位混装车概念, 两者也可以等同为同一物。 也就是说, 混 装及输送单元, 可以表现为带有几个分仓的容器、 螺旋输送装置、 泵送装置及管道及其他必 要部件的统一体外加输送车辆, 也可以表现为几者的合一, 即车厢本身可设计为分几个仓的 容器、 螺旋输送装置、 带泵送装置的能保温的输送车, 以便在漫长的几百乃至几千公里的运 输线上维持物料温度, 同时由于车厢内没有成品炸药, 只有诸如多孔粒状硝酸铵、 基质、 柴 油、 敏化剂、 物理密度调节剂, 而且彼此都分仓盛放, 则运输途中相对安全。 到爆破现场后 直接进入下一个工艺环节, 节约了时间、 提高了效率和品质。
图 12为本发明最佳实施例之一。 以液态硝酸铵为例, 综合了本发明所有具体实例、 具体 物料、具体方式等相对下位的且效果最佳的表现形式。 图 12中虚线框表示乳胶基质保温在存 储器 14这个过程, 可以省略, 即乳化器内产生基质后, 可跨越它直接送入基质保温配送车或 混装车。
图 12中虛线框 9即为原料一储运单元 9; 虛线框 10即为水相制备单元 10; 虛线框 11即 为油相制备单元 11 ; 虚线框 12即为基质制备及输送单元 12; 虚线框 13即为原料二储运单元 13; 虚线框 14即为乳胶基质保温存储器 14。 所以, 图 12其实是图 5的具体化, 大致也是图 6、 图 7、 图 8、 图 9、 图 10、 和图 11的总和。
实例之九, 图 10为原料二储运单元 13的实施例, 此时原料二为多孔粒状硝酸铵, 用于调 节炸药中的氧平衡。在原料二储运单元 13中, 多孔粒状硝酸铵从准备工作站外部输入后, 经 存储, 输往混装及输送单元。 原料二的容器、 输送装置均设置为避阳光和避雨。
实例之十, 原料一储运单元 9、 水相制备单元 10、 油相制备单元 11、 基质制备及输送单 元 12、 混装及输送单元, 以及其他准备工作站全部流程及设备中用于容纳柴油和敏化剂以外 的液体的部位, 如涉及液态硝酸铵、 水相制备、 油相制备及存储, 基质制备、 基质输送及存 储, 管道、 单元之间输送, 都施以保温、 补热措施, 方法为加热装置统一或分别加热水、 液 态原料、 水相、 油相、 基质, 对管道、 泵、 存储设施或阀门覆盖以热水或蒸汽循环的保温层, 或, 热水或蒸汽循环夹层 /套。 对基质存储、 运输、 现场混装施以保温。 保温和补热, 目的都 在于减少环节, 以便直接进入下一步工艺, 避免了被冷却后又重新加热。
实例之 ^—, 从外部输入的液态硝酸铵为 120°C , 浓度 88%〜94%。 这数值来自于反复试 验的最佳范围, 液态硝酸铵从工厂出来运到本准备工作站时经常的温度, 即为 120°C左右; 浓度也为上述数值, 而这个浓度对水相的制备刚好合适。 如此设计的目的, 均在于最低成本 地维持下一炸药生产的环节所需的温度。
上述数据都是经验总结, 为最佳范围。 对于硝酸铵工厂而言, 也是最容易实现的温度和浓 度范围, 制造成本相对低, 皆为节能、 节省环节、 安全目的所设。
实例之十二, 液态硝酸铵、 基质、 柴袖、 水相、 袖相、 敏化剂这些液态物料的转移是通过 泵送的, 其中基质使用的是螺杆泵、 隔膜泵、 或柱塞泵; 固态硝酸铵、 物理密度调节剂、 和 多孔粒状硝酸铵是通过螺旋输料机来转移的。 从而省却了人工, 实现自动装填, 提高了效率。 各个单元之间物料的流转效率提升, 进而提高了炸药的产能和效率。
其中物理密度调节剂可以是聚苯乙烯或聚乙烯颗粒, 为适当的热塑性聚合物泡沫颗粒状, 或, 干燥的植物体颗粒、 膨胀珍珠岩颗粒。 这些物质作为密度调节剂效果都很好。 物理密度 调节剂最好是颗粒中带孔的材料, 包括膨胀高分子材料, 如: 聚苯乙烯、 聚乙烯; 膨胀的矿 产品, 如珍珠岩, 优选聚苯乙烯颗粒, 这种物质作为密度调节剂能够达到实现多品种炸药不 同密度的需求。
实例之十三, 整个准备工作站, 为移动式, 自身带有动力装置, 以在不同地域之间移动、 快速进入投产工作状态; 或,
整个准备工作站, 为单元拼装式, 自身不带动力装置, 由车辆拖拽, 在不同地域之间移动 后快速拼装、 投产; 或,
整个准备工作站为固定物, 建立在不同地域的起爆现场之间, 为起爆现场生产、配送诸种 炸药半成品和 /或原材料。
三种供选择的方式, 为安全和法规考量, 都远离爆破现场。 以及, 根据生产任务的下达而 进行频率不等的调动。
上述全部方案用于重乳化炸药、密度可调的重乳化炸药、 低密度乳化炸药、超低密度乳化 炸药、 重铵油炸药、 密度可调的重铵油炸药、 多孔粒状铵油炸药、 密度可调的多孔粒状铵油 炸药、 纯乳化炸药这九种产品之任一的制造。
实例之十四, 如图 13, 为一种生产炸药的准备工作站, 与前述全部技术方案不同的是, 它仅用于生产乳化炸药。该方案包括原料一储运单元 9、水相制备单元 10、油相制备单元 11、 基质制备及输送单元 12、 混装及输送单元、 添加剂单元;
原料一, 如硝酸铵等诸多氧化剂, 从外部运到准备工作站, 其中硝酸铵等氧化剂输往原料 一储运单元 9, 接着经水相制备单元 10生成水相后, 连同油相制备单元 11所生成的油相一 起, 输送往基质制备及输送单元 12, 生成基质, 基质则一部分送往外部的基质配送站, 另一 部分输送往混装及输送单元;
混装及输送单元, 如一种混装车, 接纳基质后, 又接纳来自添加剂单元的添加剂, 如敏化 剂, 二者分开存放、 保温存储, 一同被该混装车送往准备工作站外部, 如爆破现场, 然后一 起装入炮孔, 混合后成为乳化炸药。 在爆破现场的炮孔装填方面:
第一步,根据爆破环境和预设爆破目的,计算每单位炮孔或每单位爆破区域的炸药消耗量; 第二步, 根据岩石硬度、 岩石节理、 炮孔周边含水量等爆破环境, 或爆破目的如爆破后石 块直径的大小, 来预设各种不同的炸药密度, 如基质、 敏化剂、 多孔粒状硝酸铵、 柴油、 同物理密度调节剂, 进行多种预设比例的混合; 第三步, 根据第二步所预设的多种炸药密度, 在爆破现场对上述多种炮孔进行多种密度炸 药的装填。 比如, 在爆破炮孔中装填以预设密度的炸药, 填塞炮孔空间, 取消间隔器 17, 在 炮孔最外端预留一定长度的封口回填段 15。
第四歩, 对所述炮孔进行回填封口。
图 14的左图是现有技术中炮孔底部设置间隔器 17, 中图是现有技术中炮孔顶部设置间隔 器 17, 二者均使用间隔器。 也有中部设置间隔器的做法, 将炸药分段, 图中未标出。 现有技 术中所用的是固定密度炸药 16, 如图 14的左图和中图。
图 14的右图是在保证炸药单耗不变的情况下,装填多密度炸药 19,则不再使用间隔器 17。 这是由于炸药中含有物理密度调节剂, 可以在达到连续装药的同时, 提高效率、 成本不增加、 工艺简单、 爆破效果好。
综上, 在炮孔不使用间隔器 17, 通过填充多密度炸药 19, 将现有技术中使用间隔器 17的 空间通过多密度炸药 19的填塞。 亦即通过装药密度的提升或降低, 调整所占据的炮孔空间。 多密度炸药 19中所添加的物理密度调节剂, 不参与爆炸化学反应, 其状态为一种固体颗粒。 这种固体颗粒填充炮孔, 相当于将现有技术的间隔段 18的部份, 通过这种颗粒状物质混合于 炸药中, 使炸药密度降低, 将一个大体积的间隔段 18的部份微分成无数的固体颗粒所占据的 微小空间, 分布于炸药中, 因而炸药密度降低, 则无需间隔器的空间间隔, 同样也可以达到 改善爆破效果, 降低炸药单耗的目的。

Claims

权 利 要 求 书
1 . 一种生产炸药的工艺流程, 其特征在于:
所述工艺流程包含准备及配送系统、 装填准备站、现场装填站; 所述准备及配送系统又包 含准备工作站和基质配送站:
所述准备工作站运出的物料, 分别送往所述装填准备站和所述基质配送站;
送往所述基质配送站的物料, 是保持着预设温度的乳化基质, 该基质和敏化剂一起再 送往所述现场装填站;
送往所述装填准备站的物料, 为乳化基质、 多孔粒硝酸铵、 柴油、 敏化剂、 物理密度 调节剂, 根据爆破现场的岩石水文等参数进行炸药生产原料组份比例的匹配, 其中乳化基质 一部份可送往所述基质配送站, 一部份随多孔粒硝酸铵、 柴油、 敏化剂、 物理密度调节 剂送往所述现场装填站。
2. 根据权利要求 1所述的生产炸药的工艺流程, 其特征在于:
所述装填准备站接纳所述准备工作站输入的物料后, 仅给基质维持预设温度, 而敏化 剂、 物理密度调节剂、 多孔粒硝酸铵、 柴油则在此站暂存并组份配制, 以匹配不同品种 炸药制备所需。
3. 根据权利要求 1或 2所述的生产炸药的工艺流程, 其特征在于- 以制备乳化炸药为目的时, 所述现场装填站包含监管单元、 灌注单元、 测试单元; 当基质和敏化剂输入所述现场装填站后, 经所述监管单元甄别与记录后, 送往所述灌 注单元, 将基质维持在预设温度范围内, 和敏化剂一起灌注入炮孔, 混合、 完成敏化反 应、 生成乳化炸药, 则可引爆。
4. 根据权利要求 3所述的生产炸药的工艺流程, 其特征在于:
所述灌注单元将基质和敏化剂一起灌注入炮孔前, 可以有一个抽检程序, 即, 提取基 质和敏化剂混合样品检测其密度和爆速, 以预设值为标准进行测试, 合格则继续向炮孔 灌装混合物, 不合格则调节混入敏化液的量或调整敏化剂的浓度, 之后再启动所述灌注 单元的上述物料的输入。
5. 根据权利要求 1或 2所述的生产炸药的工艺流程, 其特征在于:
以制备多爆速炸药为目的时, 所述现场装填站包含监管单元、 灌注单元、 測试单元; 当基质、 敏化剂、 多孔粒状硝酸铵、 柴油、 物理密度调节剂输入所述现场装填站后, 经所述监管单元甄别与记录后, 送往所述灌注单元, 将基质维持在预设温度范围内, 和 敏化剂、 多孔粒状硝酸铵、 柴油、 物理密度调节剂一起, 依照所述装填准备站设定的组 份比例, 搅拌成混合物、 灌注入炮孔、 完成敏化反应、 生成预设密度值的炸药, 则可引 爆。
6. 根据权利要求 5所述的生产炸药的工艺流程, 其特征在于:
所述灌注单元将基质、敏化剂、多孔粒状硝酸铵、柴油、物理密度调节剂一起混合后、 灌注入炮孔前, 可以有一个抽检程序, 即, 提取混合物样品检测其密度和爆速, 以预设 值为标准进行测试, 合格则继续向炮孔灌装混合物, 不合格则调节所述装填准备站内对 基质、 敏化剂、 多孔粒状硝酸铵、 柴油、 物理密度调节剂的组份比例, 之后再启动往所 述现场装填站输入上述物料。
7. 根据权利要求 1、 2、 或 6所述的生产炸药的工艺流程, 其特征在于:
所述灌注单元为灌注单元二, 是一种用于爆破现场的、 带有为基质保温装置的灌注工 具, 把基质、 敏化剂、 多孔粒状硝酸铵、 柴油、 物理密度调节剂混合后, 装填入炮孔。
8. 根据权利要求 1所述的生产炸药的工艺流程, 其特征在于- 所述基质配送站包含乳化基质输入单元、 存储单元、 保温单元、 泵送单元、 输出装填 单元、 敏化剂单元; 炸药生产所需的乳化基质由所述输入单元送入所述配送站, 暂存于 所述存储单元, 根据炸药消耗进度决定启动所述泵送单元, 把乳化基质由所述存储单元 送往并装上所述输出装填单元, 连同敏化剂单元产生的敏化剂运往爆破现场实施装填作 业;
由所述保温单元对所述存储单元进行加热或保温。
9. 根据权利要求 8所述的生产炸药的工艺流程, 其特征在于:
所述乳化基质由所述输入单元送入所述配送站的方式有如下三种之任一种: 所述输入单元进入所述配送站后, 通过泵接驳到所述存储单元, 把所述乳化基质泵入 所述存储单元;
所述输入单元上有一种加热或保温容器, 所述乳化基质盛放于其中, 所述输入单元进 入所述配送站后, 把所述加热或保温容器整个卸下、 安放到所述配送站内, 转变为所述 存储单元, 再以管道接驳到所述保温单元和所述泵送单元;
所述输入单元进入所述配送站, 停稳后, 转变为所述存储单元, 以管道接驳到所述保 温单元和所述泵送单元。
10. 根据权利要求 8或 9所述的生产炸药的工艺流程, 其特征在于: 所述基质输入单元为一种带有加热或保温容器的输送车一,使其所容纳的乳化基质维 持在预设的温度; 所述存储单元至少包含一种带有保温装置的容器, 使其所容纳的乳化 基质维持在预设的温度。
1 1 . 根据权利要求 10所述的生产炸药的工艺流程, 其特征在于:
所述保温单元含有加热装置、 热交换管道循环系统、 和隔热材料, 该循环系统和隔热 材料遍布所述存储单元外围, 使其内的乳化基质维持在预设温度范围内。
12. 根据权利要求 8、 9、 或 11所述的生产炸药的工艺流程, 其特征在于:
所述输出装填单元为带有加热或保温容器的输送车二,该输送车二装载着保持着预设 温度的所述乳化基质、 和敏化剂一起, 驶往炸药装填现场。
13 . 根据权利要求 12所述的生产炸药的工艺流程, 其特征在于:
整个所述乳化基质配送站, 为移动式, 自身带有动力装置, 以在不同地域之间移动; 该乳化基质配送站只包括所述存储单元、 所述保温单元、 所述泵送单元、 所述敏化剂单 元, 其中所述存储单元兼任乳化基质输入单元; 或,
整个所述乳化基质配送站, 为各单元拼装式, 自身不带动力装置, 整体或局部由车辆 拖拽, 在不同地域之间移动后快速拼装; 该乳化基质配送站包括所述乳化基质输入单元、 所述存储单元、 所述保温单元、 所述泵送单元、 所述输出装填单元、 所述敏化剂单元之 全部; 或,
整个所述乳化基质配送站, 为地面固定物, 依据法规规定的距离, 建立在不同地域的 爆破现场或基质生产设施之间, 为爆破现场配送诸种炸药所需的基质; 该乳化基质配送 站包括所述乳化基质输入单元、 所述存储单元、 所述保温单元、 所述泵送单元、 所述输 出装填单元、 所述敏化剂单元之全部。
14. 根据权利要求 1所述的生产炸药的工艺流程, 其特征在于:
所述准备工作站包含原料一储运单元、原料二储运单元、 水相制备单元、袖相制备单元、 基质制备及输送单元、 混装及输送单元、 添加剂单元;
所述原料一和原料二, 从外部运到所述准备工作站, 其中所述原料一输往所述原料一储运 单元, 接着经所述水相制备单元生成水相后, 连同所述油相制备单元所生成的油相一起, 输 送往所述基质制备及输送单元, 生成基质, 基质则一部分送往外部的基质配送站, 另一部分 输送往所述混装及输送单元;
所述混装及输送单元接纳所述基质后, 再接纳来自所述原料二储运单元的原料二, 又接纳 来自所述添加剂单元的添加剂, 三者分开存放、 保温存储, 一同被所述混装及输送单元送往 所述准备工作站外部。
15. 根据权利要求 14所述的生产炸药的工艺流程, 其特征在于:
所述原料一至少有温度 10(T13(TC、 浓度 70%~95%液态硝酸铵, 或再加上硝酸钠、硝酸钙、 高氯酸钠等氧化剂当中的至少一种, 加消焰剂, 彼此分别输入所述准备工作站; 所述原料一 的存储设施均设置为避阳光和避雨;
所述原料一储运单元为保温运输车或保温存储设施; 或者,
所述原料一储运单元为保温运输车和保温存储设施,所述原料一经所述保温运输车送往所 述保温存储设施, 为水相制备待用;
所述原料一的所述保温运输车或保温存储设施,带有为所述原料一加热的装置和蒸汽清扫 装置。
16. 根据权利要求 14所述的生产炸药的工艺流程, 其特征在于:
所述原料一至少有固态硝酸铵, 或再加上硝酸钠、硝酸钙、 高氯酸钠等氧化剂当中的至少 一种, 加消焰剂, 彼此分别输入所述准备工作站; 所述原料一的存储设施均设置为避阳光和 避雨; 所述原料一储运单元包含存储设施和破碎设施, 所述固态硝酸铵和其他所述氧化剂破 碎成颗粒后, 为水相制备待用。
17. 根据权利要求 14所述的生产炸药的工艺流程, 其特征在于:
所述原料一至少有温度 10(Tl3(rC、 浓度 70%~95%液态硝酸铵, 或再加上硝酸钠、硝酸钙、 高氯酸钠等氧化剂当中的至少一种, 彼此分别输入所述准备工作站; 所述原料一的存储设施 均设置为避阳光和避雨;
所述原料一储运单元为保温运输车或保温存储设施: 或者,
所述原料一储运单元为保温运输车和保温存储设施,所述原料一经所述保温运输车送往所 述保温存储设施, 为水相制备待用;
所述原料一的所述保温运输车或保温存储设施,带有为所述原料一加热的装置和蒸汽清扫 装置。
18. 根据权利要求 14所述的生产炸药的工艺流程, 其特征在于:
所述原料一至少有固态硝酸铵, 或再加上硝酸钠、硝酸钙、 高氯酸钠等氧化剂当中的至少 一种, 彼此分别输入所述准备工作站; 所述原料一的存储设施均设置为避阳光和避雨; 所述 原料一储运单元包含存储设施和破碎设施,所述固态硝酸铵和其他所述氧化剂破碎成颗粒后, 为水相制备待用。
19. 根据权利要求 14、 15、 16、 17、 或 18所述的生产炸药的工艺流程, 其特征在于: 所述水相制备单元包括如下歩骤:
a. 对所述硝酸铵, 或加上其他所述氧化剂, 经计量控制后, 加水、 以热水或蒸汽加热到 预设温度、 搅拌, 伴以浓度调整;
b. 经酸性调节剂或碱性调节剂, 调整混合物 PH值到预设值;
c 对生成的氧化剂盐水溶液多次过滤, 直至其浊度达到预设值; 残液经冲洗、 沉淀、 过 滤、 回收、 循环, 再次用于制作水相, 全程以热水或蒸汽补热到预设温度;
d. 所述氧化剂盐水溶液即为水相, 以热水或蒸汽补热保温、 存储待用, 所述水相的存储 设施设置为避阳光和避雨。
20. 根据权利要求 14、 15、 16、 17、 或 18所述的生产炸药的工艺流程, 其特征在于: 所述 基质制备及输送单元包括基质制备单元和基质输送单元, 包括如下步骤:
a. 在所述基质制备单元内将所述油相与所述水相, 经保温管道和泵, 经计量控制和预设 的组份配比, 在设定温度和压力下, 在乳化器内进行乳化, 形成乳胶基质;
b. 所述乳胶基质输送去向之一- 进入所述基质制备单元内的存储器, 保温, 等待输入带有保温装置的所述基质输送单元, 再经该单元送往所述准备工作站外部的基质配送站; 或, 所述乳胶基质不经所述存储器而直 接输入所述基质输送单元, 经该单元送往所述准备工作站外部的基质配送站;
c 同时, 所述乳胶基质还须输往去向之二:
进入所述基质制备单元内的存储器, 保温, 等待输入所述混装及输送单元; 或, 所述乳胶 基质不经所述存储器而直接输入所述混装及输送单元;
所述基质的存储器、 所述基质输送单元、 所述基质制备单元、 所述混装及输送单元, 均设 置为避阳光和避雨。
21. 根据权利要求 20所述的生产炸药的工艺流程, 其特征在于:
所述混装及输送单元接纳的来自所述添加剂单元的所述添加剂为预设比例的、彼此分开存 放的柴油和敏化剂, 或者, 预设比例的、 彼此分开存放的柴油、 敏化剂和物理密度调节剂; 所述添加剂的容器均设置为避阳光和避雨。
22. 根据权利要求 14、 15、 17、 或 21所述的生产炸药的工艺流程, 其特征在于:
所述原料一储运单元、所述水相制备单元、所述油相制备单元、所述基质制备及输送单元、 所述混装及输送单元, 以及其他所述准备工作站全部流程及设备中用于容纳柴油和敏化剂以 外的液体的部位, 都施以保温、 补热措施, 方法为加热装置统一或分别对水、 液态原料、 水 相、 油相、 基质加热到预设值, 对管道、 泵、 容器、 或阀门覆盖以热水或蒸汽循环的保温层, 或, 热水或蒸汽循的环夹层 Z套。
23. 根据权利要求 22所述的生产炸药的工艺流程, 其特征在于:
整个所述准备工作站, 为移动式, 自身带有动力装置, 以在不同地域之间移动、 快速进入 投产工作状态; 或,
整个所述准备工作站, 为单元拼装式, 自身不带动力装置, 由车辆拖拽, 在不同地域之间 移动后快速拼装、 投产; 或,
整个所述准备工作站为固定物, 建立在不同地域的起爆现场之间, 为爆破现场生产、配送 诸种炸药半成品和 /或原材料。
24. 根据权利要求 1所述的生产炸药的工艺流程, 其特征在于- 所述准备工作站包括原料一储运单元、 水相制备单元、油相制备单元、基质制备及输送单 元、 混装及输送单元、 添加剂单元;
所述原料一, 从外部运到所述准备工作站, 其中所述原料一输往所述原料一储运单元, 接 着经所述水相制备单元生成水相后, 连同所述油相制备单元所生成的油相一起, 输送往所述 基质制备及输送单元, 生成基质, 基质则一部分送往外部的基质配送站, 另一部分输送往所 述混装及输送单元;
所述混装及输送单元接纳所述基质后, 又接纳来自所述添加剂单元的添加剂, 二者分开存 放、 保温存储, 一同被所述混装及输送单元送往所述准备工作站外部。
25. 根据权利要求 7所述的生产炸药的工艺流程, 其特征在于- 所述装填入炮孔的方法为:
第一步,根据爆破环境和预设爆破目的,计算每单位炮孔或每单位爆破区域的炸药消耗量; 第二步, 根据岩石硬度、 岩石节理、 周边含水量等爆破环境、 或爆破目的, 预设不同的炸 药密度, 即所述基质、 所述敏化剂、 所述多孔粒状硝酸铵、 所述柴油、 同所述物理密度调 节剂, 进行多种预设比例的混合;
第三歩, 根据第二步所预设的多种炸药密度, 在爆破现场对多种炮孔进行多种密度炸药的 装填;
第四步, 对所述炮孔进行回填封口。
26. 根据权利要求 25所述的生产炸药的工艺流程, 其特征在于:
所述第三步, 在所述炮孔中装填以预设密度的炸药, 填塞炮孔空间, 无间隔器, 在炮孔最 外端预留一定长度的封口回填段。
PCT/CN2012/087543 2012-02-28 2012-12-26 生产炸药的工艺流程 WO2013127241A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EA201491594A EA029243B1 (ru) 2012-02-28 2012-12-26 Способ изготовления взрывчатых веществ

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201210047375.4 2012-02-28
CN2012100473754A CN102584508A (zh) 2012-02-28 2012-02-28 生产炸药的准备工作站
CN201210144397.2 2012-05-11
CN201210144397.2A CN102643151B (zh) 2012-05-11 2012-05-11 乳化基质配送站
CN201210175526.4 2012-05-24
CN201210175526.4A CN102675012B (zh) 2012-05-24 2012-05-24 生产炸药的工艺流程
CN2012102589736A CN102749001A (zh) 2012-07-14 2012-07-14 装填炮孔的方法
CN201210258973.6 2012-07-14

Publications (1)

Publication Number Publication Date
WO2013127241A1 true WO2013127241A1 (zh) 2013-09-06

Family

ID=49081590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087543 WO2013127241A1 (zh) 2012-02-28 2012-12-26 生产炸药的工艺流程

Country Status (2)

Country Link
EA (1) EA029243B1 (zh)
WO (1) WO2013127241A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2745222C1 (ru) * 2020-01-20 2021-03-22 Михаил Николаевич Оверченко Матричная эмульсия для приготовления эмульсионного взрывчатого состава

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200978259Y (zh) * 2006-12-13 2007-11-21 长沙矿冶研究院 一种用于制造乳化炸药基质的移动式地面制备站
CN101602637A (zh) * 2009-07-10 2009-12-16 葛洲坝易普力股份有限公司 乳化炸药的化学敏化方法
CN201746483U (zh) * 2010-07-27 2011-02-16 张建春 乳化炸药装药机
EP2360133A2 (en) * 2010-02-11 2011-08-24 African Explosives Limited Emulsion explosives
CN202390344U (zh) * 2012-01-05 2012-08-22 薛世忠 一种多功能重铵油炸药混装车
CN202415397U (zh) * 2012-01-05 2012-09-05 薛世忠 一种多功能乳化铵油炸药现场混装车
CN102675012A (zh) * 2012-05-24 2012-09-19 薛世忠 生产炸药的工艺流程
CN202465555U (zh) * 2012-03-20 2012-10-03 薛世忠 一种多功能炸药混装车

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200978259Y (zh) * 2006-12-13 2007-11-21 长沙矿冶研究院 一种用于制造乳化炸药基质的移动式地面制备站
CN101602637A (zh) * 2009-07-10 2009-12-16 葛洲坝易普力股份有限公司 乳化炸药的化学敏化方法
EP2360133A2 (en) * 2010-02-11 2011-08-24 African Explosives Limited Emulsion explosives
CN201746483U (zh) * 2010-07-27 2011-02-16 张建春 乳化炸药装药机
CN202390344U (zh) * 2012-01-05 2012-08-22 薛世忠 一种多功能重铵油炸药混装车
CN202415397U (zh) * 2012-01-05 2012-09-05 薛世忠 一种多功能乳化铵油炸药现场混装车
CN202465555U (zh) * 2012-03-20 2012-10-03 薛世忠 一种多功能炸药混装车
CN102675012A (zh) * 2012-05-24 2012-09-19 薛世忠 生产炸药的工艺流程

Also Published As

Publication number Publication date
EA029243B1 (ru) 2018-02-28
EA201491594A1 (ru) 2015-04-30

Similar Documents

Publication Publication Date Title
CN103193563B (zh) 一种多功能乳化铵油炸药现场混装车
CN102001901B (zh) 一种煤矿许用乳化炸药的制造方法
CN101968334A (zh) 井下现场混装乳化炸药车
CN104109058B (zh) 一种现场混装乳化炸药的制造方法
CN201746483U (zh) 乳化炸药装药机
CN102997767B (zh) 适用于地下工程的乳化炸药现场混拌装药系统及装药方法
CN107540490A (zh) 一种乳化粒状铵油炸药的安全生产工艺
CN108895936A (zh) 用于上向炮孔的装填现场混装乳化炸药的装置及方法
CN202390344U (zh) 一种多功能重铵油炸药混装车
CN202415397U (zh) 一种多功能乳化铵油炸药现场混装车
CN103196337B (zh) 一种多功能重铵油炸药混装车
CN103319288B (zh) 一种多功能炸药混装车
CN202465555U (zh) 一种多功能炸药混装车
WO2013127241A1 (zh) 生产炸药的工艺流程
CN103449941A (zh) 地面及井下粘稠多孔粒状铵油炸药现场混装方法及混装车
CN203602524U (zh) 地面及井下粘稠多孔粒状铵油炸药现场混装车
CN105417173A (zh) 一种水力输送煤粉/矿物质粉末的方法
CN104016819A (zh) 散装大包多孔粒状铵油炸药制药、装药一体机
CN206127162U (zh) 多孔粒状粘性安全炸药连续生产设备
RU166670U1 (ru) Смесительно-зарядная установка производства взрывчатых веществ и заряжания скважин
CN212924396U (zh) 乳胶基质垂直输送装置
CN202116464U (zh) 露天矿散装乳化基质装填设备
CN213050610U (zh) 一种改性沥青卷材配料装置
CN111637805B (zh) 铵油炸药输送方法及铵油炸药现场混装方法
CN203904240U (zh) 一种散装大包多孔粒状铵油炸药制药、装药一体机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201491594

Country of ref document: EA

122 Ep: pct application non-entry in european phase

Ref document number: 12869648

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 04/11/2014)