WO2013125618A1 - ダイポールアンテナ - Google Patents

ダイポールアンテナ Download PDF

Info

Publication number
WO2013125618A1
WO2013125618A1 PCT/JP2013/054275 JP2013054275W WO2013125618A1 WO 2013125618 A1 WO2013125618 A1 WO 2013125618A1 JP 2013054275 W JP2013054275 W JP 2013054275W WO 2013125618 A1 WO2013125618 A1 WO 2013125618A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radiating element
short
conductor
circuit
Prior art date
Application number
PCT/JP2013/054275
Other languages
English (en)
French (fr)
Inventor
博育 田山
官 寧
佑一郎 山口
武 戸倉
千葉 洋
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to EP13751788.4A priority Critical patent/EP2819244A4/en
Priority to CN201380010052.0A priority patent/CN104126249B/zh
Publication of WO2013125618A1 publication Critical patent/WO2013125618A1/ja
Priority to US14/463,313 priority patent/US9385431B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/065Microstrip dipole antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • H01Q9/27Spiral antennas

Definitions

  • the present invention relates to a dipole antenna.
  • An antenna has been used for a long time as a device for converting a high-frequency current into an electromagnetic wave or converting an electromagnetic wave into a high-frequency current.
  • the antennas are classified into linear antennas, planar antennas, three-dimensional antennas and the like based on their shapes, and are classified into dipole antennas, monopole antennas, loop antennas and the like based on their structures.
  • the dipole antenna has a simple structure composed of two radiating elements, and is one of the antennas widely used even today.
  • antennas are required to operate in various frequency bands as wireless communication applications are expanded.
  • terrestrial digital broadcasting such as FM / AM broadcasting, DAB (Digital Audio Broadcast), 3G (3rd generation mobile phone), LTE (Long Term Evolution), GPS (Global Positioning System): It is required to operate in a frequency band such as Global Positioning System), VICS (registered trademark) (Vehicle Information and Communication System), ETC (Electronic Toll Collection System), and the like.
  • antennas that operate in different frequency bands are often realized as separate antenna devices.
  • an FM / AM broadcast antenna is realized as a whip antenna placed on a roof top
  • a digital terrestrial broadcast antenna is realized as a film antenna attached to a windshield.
  • the integrated antenna device refers to an antenna device including a plurality of antennas that operate in different frequency bands.
  • Examples of such an integrated antenna device include those described in Patent Documents 1 to 5.
  • the integrated antenna device described in Patent Document 1 includes GPS and ETC antennas.
  • the integrated antenna device described in Patent Document 2 includes antennas for 3G and GPS.
  • the integrated antenna device described in Patent Document 3 includes antennas for ETC, GPS, VICS, telephone main, and telephone sub.
  • the integrated antenna device described in Patent Document 4 includes antennas for GPS, ETC, first phone, and second phone.
  • the integrated antenna device described in Patent Document 5 includes an antenna that operates in a band of 100 kHz to 1 GHz (FM / AM broadcasting, terrestrial digital broadcasting such as DAB, VICS, etc.) and a band of 1 GHz or more (GPS, satellite DAB, etc.) It is equipped with the antenna which operate
  • JP 2007-158957 (released June 21, 2007) Japanese Published Patent Publication “JP 2009-17116” (released January 22, 2009) Japanese Patent Publication “JP 2009-267765 A” (published on November 12, 2009) Japanese Published Patent Publication “JP 2010-81500” (published April 8, 2010) US Pat. No. 6,396,447 (registered on May 28, 2002)
  • the conventional dipole antenna has a problem that it is difficult to reduce the size.
  • the total length of the radiating elements (the sum of the lengths of the two radiating elements) needs to be about ⁇ / 2.
  • the total length of the radiating element needs to be about 75 cm.
  • the conventional integrated antenna device has a problem that it is difficult to reduce the size because the radiating elements constituting each antenna are arranged so as not to overlap each other.
  • the reason why the radiating elements constituting each antenna are arranged so as not to overlap with each other is to prevent the antenna characteristics of each antenna from being impaired by the presence of other antennas.
  • the integrated antenna device described in Patent Document 1 employs a configuration in which an ETC antenna is projected from a central opening of a radiating element that constitutes a GPS antenna. For this reason, it is necessary to enlarge the radiation element of the GPS antenna so that the central opening includes the ETC antenna.
  • the integrated antenna device described in Patent Document 2 is a device in which a 3G antenna and a GPS antenna are attached to the front and back of an antenna board standing on a base so as not to overlap each other. Therefore, it is difficult to reduce the size viewed from the direction orthogonal to the antenna substrate, and it is impossible to meet the demand for a low profile.
  • the integrated antenna described in Patent Document 3 is simply arranged so that five antennas do not overlap each other without considering a space factor.
  • the integrated antenna device described in Patent Document 4 a device for arranging the ETC antenna so as to overlap a part of the GPS antenna can be seen.
  • the portion of the ETC antenna that is superimposed on the GPS antenna is very small, and does not contribute to substantial downsizing.
  • Patent Documents 1 to 4 are all for integrating antennas that operate in the GHz region.
  • An antenna that operates in the MHz region such as for terrestrial digital broadcasting, is an antenna that operates in the GHz region. It is not meant to be integrated.
  • tuners for receiving terrestrial digital broadcasts are integrated into navigation systems.
  • the antenna described in Patent Document 5 is a combination of an antenna that operates in the MHz region and an antenna that operates in the GHz region.
  • the antenna that operates in the GHz region is a three-dimensional module that can be reduced in thickness. Have difficulty.
  • the present invention has been made in view of the above problems, and an object thereof is to realize a dipole antenna that can be easily reduced in size.
  • a dipole antenna that can be mounted on an integrated antenna device together with other antennas and that contributes to the miniaturization of the integrated antenna device is an example of a dipole antenna aimed by the present invention.
  • an antenna according to the present invention is a dipole antenna including a first radiating element and a second radiating element formed in a two-dimensional plane, and the first radiating element is provided. Is linear, and the second radiating element is characterized in that it has a spiral shape swirling around the first radiating element.
  • a dipole antenna that can be easily miniaturized can be realized.
  • (B) is a graph which shows the VSWR characteristic of the antenna shown to (a).
  • (A) is a top view which shows the other structural example of the dipole antenna which concerns on one Embodiment of this invention.
  • (B) is a graph which shows the VSWR characteristic of the antenna shown to (a).
  • (A) is a top view which shows the further another structural example of the dipole antenna which concerns on one Embodiment of this invention.
  • (B) is a graph which shows the VSWR characteristic of the antenna shown to (a). It is a top view of the antenna (inverted F antenna) which functions as a 3G / LTE antenna. It is a graph which shows the VSWR characteristic and gain characteristic of the antenna shown in FIG.
  • 9 is a graph comparing the VSWR characteristics obtained when a branch (matching pattern) is provided in the antenna shown in FIG. 8 and the VSWR characteristics obtained when a branch is omitted.
  • It is a top view of the antenna (loop antenna) which functions as a GPS antenna. It is a graph which shows the input reflection coefficient characteristic of the antenna shown in FIG. It is a graph which shows the radiation pattern of the antenna shown in FIG.
  • (A) shows the radiation pattern regarding horizontal right-handed circularly polarized wave (RHCP) and horizontal left-handed circularly polarized wave (LHCP), and (b) shows vertical right-handed circularly polarized wave (RHCP) and vertical left-handed circularly polarized wave.
  • the radiation pattern with respect to (LHCP) is shown.
  • (A) is a graph which shows the input reflection coefficient characteristic obtained when a parasitic element is omitted in the antenna shown in FIG.
  • (B) is a graph which shows the input reflection coefficient characteristic obtained when a parasitic element and a short circuit part are omitted in the antenna shown in FIG.
  • (A) is a top view which shows the modification of a loop antenna.
  • (B) is an equivalent circuit of a parasitic element group included in the loop antenna. It is a graph which shows the radiation pattern of the loop antenna shown in FIG. It is a graph which shows the VSWR characteristic of the loop antenna shown in FIG. It is a top view which shows the 1st modification of the loop antenna shown in FIG. It is a top view which shows the 2nd modification of the loop antenna shown in FIG.
  • FIG. 13 is a three-view diagram illustrating how the three antennas illustrated in FIGS. 1, 8, and 12 are combined.
  • the dipole antenna according to the present embodiment functions as a DAB (Digital Audio Broadcast) antenna.
  • the DAB antenna refers to an antenna that operates in any frequency band for DAB.
  • the dipole antenna according to the present embodiment operates in a frequency band of 174 MHz to 240 MHz (hereinafter referred to as “required band”).
  • the dipole antenna according to the present embodiment is hereinafter referred to as “antenna 2” with reference numeral 2 attached thereto.
  • FIG. 1 is a plan view of the antenna 2.
  • the dimension of each part of the antenna 2 demonstrated below is an illustration, Comprising: It is not limited to this. That is, the dimensions of each part of the antenna 2 described below can be appropriately changed according to the selection of materials, the design method (configuration method), and the like.
  • the antenna 2 is a dipole antenna including a first radiating element 21 and a second radiating element 22.
  • interposes the conductor foil which comprises these with a pair of dielectric films 25 is employ
  • a polyimide film of 50 mm ⁇ 80 mm is used as the dielectric film 25.
  • Both the first radiating element 21 and the second radiating element 22 are constituted by linear or strip-shaped conductors.
  • a strip-shaped conductor foil for example, copper foil
  • a strip-shaped conductor foil for example, copper foil
  • a strip-shaped conductor foil having a width of 1.0 mm is used as the second radiation element 21.
  • the first radiating element 21 is linear and has a length of 32.5 mm.
  • the outer conductor of the coaxial cable 6 is connected to the right end portion of the first radiating element 21.
  • the point 2P on the first radiating element 21 to which the outer conductor of the coaxial cable 6 is connected is hereinafter referred to as a first feeding point.
  • the second radiating element 22 has a spiral shape that rotates around the first radiating element 21.
  • the inner conductor of the coaxial cable 6 is connected to a location facing the right end of the first radiating element 21 in the innermost circumference of the second radiating element 22.
  • the point 2Q on the second radiating element 22 to which the inner conductor of the coaxial cable 6 is connected is hereinafter referred to as a second feeding point.
  • the shape of the second radiating element 22 is a spiral that turns 9 ⁇ 360 ° counterclockwise in which straight portions and quadrants are alternately connected.
  • the radius of the quadrant gradually increases as the distance from the innermost circumference (approaches the outermost circumference) so that the second radiating element 22 forms a spiral.
  • the outer peripheral radius of the innermost quadrant is 2.5 mm, and the outer radius of the outermost quadrant is 22.5 mm.
  • the total length of the radiating elements 21 to 22 (the sum of the length of the first radiating element 21 and the length of the second radiating element 22) is 75 cm ( ⁇ / 2) is required.
  • the second radiating element 22 has a spiral shape so that the radiating elements 21 to 22 satisfying this requirement are accommodated in a 50 mm ⁇ 80 mm region.
  • the second radiating element 22 is provided with short-circuit portions 22a1 to 22a2 and ground portions 22b1 to 22b2.
  • the short-circuit portions 22a1 to 22a2 and the ground portions 22b1 to 22b2 are configured to prevent a region where the value of the VSWR exceeds a specified value (for example, 2.5) from being formed in the required band.
  • the short-circuit portions 22a1 to 22a2 are planar conductors that short-circuit different points on the second radiating element 22. More specifically, the first short-circuit portion 22a1 is composed of two straight portions (from the inner peripheral side) located below the first radiating element 21 among the straight portions constituting the second radiating element 22. This is a rectangular conductor foil (for example, aluminum foil) that short-circuits the third to fourth straight portions).
  • the second short-circuit portion 22a2 includes five straight portions (4 to 4 counted from the inner peripheral side) located on the right side of the first radiating element 21 among the straight portions constituting the second radiating element 22. It is a rectangular conductor foil (for example, aluminum foil) that short-circuits the eighth straight portion).
  • the grounding portions 22b1 to 22b2 are linear or strip-like conductors that connect points on the outermost periphery of the second radiating element 22 to the ground. More specifically, the first grounding portion 22b1 is located on the quadrant that is located at the upper left of the first radiating element 21 among the quadrants that form the outermost periphery of the second radiating element 22. This is a strip-shaped conductor foil (for example, aluminum foil) connecting the point to the ground.
  • the second grounding portion 22b2 has a point on the quadrant located at the lower left of the first radiating element 21 among the quadrants constituting the outermost periphery of the second radiating element 22 as the ground. It is a strip-shaped conductor foil (for example, aluminum foil) to be connected.
  • the antenna 2 can be used in combination with an antenna 1 (see FIG. 8) and an antenna 3 (see FIG. 12) which will be described later. 3 was obtained in combination with 3. This specific combination will be described later with reference to FIG.
  • FIG. 2 is a graph showing the frequency dependence of VSWR and efficiency (gain). It can be seen from the graph of FIG. 2 that the value of VSWR is suppressed to 2.5 or less in the entire required bandwidth, that is, the return loss is sufficiently suppressed. Further, it can be seen from the graph of FIG. 2 that the gain value is maintained at ⁇ 3.5 dB or more in the entire requested bandwidth. That is, it can be seen from the graph of FIG. 2 that the entire requested bandwidth is the operating bandwidth of the antenna 2.
  • FIG. 3 is a graph showing a radiation pattern at 240 MHz.
  • A shows the radiation pattern in the xy plane
  • (b) shows the radiation pattern in the yz plane
  • (c) shows the radiation pattern in the zx plane. It can be seen from the graph of FIG. 3 that a substantially omnidirectional radiation pattern is realized at least at 240 MHz.
  • FIG. 4 is a graph showing the frequency dependence of VSWR obtained when the short-circuit portions 22a1 to 22a2 and the ground portions 22b1 to 22b2 are omitted.
  • the antenna 2 when the antenna 2 is disposed in parallel with the conductor plate 4 (see FIG. 21), electromagnetic coupling and electrostatic coupling are generated between the antenna 2 and the conductor plate 4.
  • the antenna 2 can be regarded as a patch antenna.
  • the antenna 2 according to the present embodiment can obtain good characteristics even when used alone without being combined with the antenna 1 (see FIG. 8) and the antenna 3 (see FIG. 12) described later.
  • the characteristics when the antenna 2 is used alone will be supplemented with reference to FIGS.
  • FIG. 5A is a plan view showing a configuration example of the antenna 2.
  • the short-circuit portion and the ground portion are omitted.
  • FIG. 5 (b) is a graph showing the VSWR characteristics of the antenna 2 configured as shown in FIG. 5 (a).
  • the VSWR characteristics shown in FIG. 5A are VSWR characteristics when the antenna 2 is used alone (when it is used without being combined with the antenna 1 and the antenna 3).
  • the antenna 2 has a resonance point in the required band (DAB band) as shown in FIG. 5B even if the short circuit part and the grounding part are omitted.
  • DAB band required band
  • the width of the band where the value of VSWR is equal to or less than a threshold value (for example, 4) is narrow.
  • FIG. 6A is a plan view showing another configuration example of the antenna 2.
  • the antenna 2 shown in FIG. 6A has three short-circuit portions 22a1 to 22a3 and two ground portions 22b1 to 22b2.
  • All of the three short-circuit portions 22a1 to 22a3 short-circuit two adjacent sections among the sections constituting the second radiating element 22. More specifically, the first short-circuit portion 22a1 is located below the first radiating element 21 (the end on the inner peripheral side of the second radiating element 22) among the straight portions constituting the second radiating element 22. The two straight portions (the third to fourth straight portions counted from the inner peripheral side) located on the side where the portion is disposed are short-circuited. The second short-circuit portion 22a2 is disposed above the first radiating element 21 (at the end on the inner peripheral side of the second radiating element 22) among the linear portions constituting the second radiating element 22.
  • the two straight portions (the first and second straight portions counted from the inner peripheral side) located on the opposite side) are short-circuited.
  • the third short-circuit portion 22a3 includes two straight portions (1 to 2 counted from the inner peripheral side) positioned above the first radiating element 21 among the straight portions constituting the second radiating element 22. The second straight section).
  • Each of the two grounding portions 22b1 to 22b2 connects the section constituting the outermost periphery of the second radiating element 22 to the ground. More specifically, the first grounding portion 22b1 is located on the quadrant that is located at the upper left of the first radiating element 21 among the quadrants that form the outermost periphery of the second radiating element 22. Connect the point to ground. The second grounding portion 22b2 has a point on the quadrant located at the lower left of the first radiating element 21 among the quadrants constituting the outermost periphery of the second radiating element 22 as the ground. Connecting.
  • FIG. 6B is a graph showing the VSWR characteristics of the antenna 2 configured as shown in FIG.
  • the VSWR characteristic shown in FIG. 6A is a VSWR characteristic when the antenna 2 is used alone (when it is used without being combined with the antenna 1 and the antenna 3).
  • FIG. 7A is a plan view showing still another configuration example of the antenna 2.
  • the antenna 2 shown in FIG. 7A has two short-circuit portions 22a1 to 22a2 and two ground portions 22b1 to 22b2.
  • Each of the two short-circuit portions 22a1 to 22a2 shorts three or more sections adjacent to each other among the sections constituting the second radiating element 22. More specifically, the first short-circuit portion 22a1 is located below the first radiating element 21 (the end on the inner peripheral side of the second radiating element 22) among the straight portions constituting the second radiating element 22. The six straight portions (the first to sixth straight portions counted from the inner peripheral side) located on the side where the portion is disposed are short-circuited. The second short-circuit portion 22a2 is disposed above the first radiating element 21 (at the end on the inner peripheral side of the second radiating element 22) among the linear portions constituting the second radiating element 22. 5 straight portions (4th to 8th straight portions counted from the inner peripheral side) located on the opposite side) are short-circuited.
  • Each of the two grounding portions 22b1 to 22b2 connects the section constituting the outermost periphery of the second radiating element 22 to the ground. More specifically, the first grounding portion 22b1 is located on the quadrant that is located at the upper left of the first radiating element 21 among the quadrants that form the outermost periphery of the second radiating element 22. Connect the point to ground. The second grounding portion 22b2 has a point on the quadrant located at the lower left of the first radiating element 21 among the quadrants constituting the outermost periphery of the second radiating element 22 as the ground. Connecting.
  • the first grounding portion 22b1 is composed of four quadrants (counted from the outer periphery side) located at the upper left of the first radiating element 21 among the quadrants constituting the second radiating element 22. It also serves as a short-circuit part that short-circuits the first to fourth quadrants).
  • FIG. 7 (b) is a graph showing the VSWR characteristics of the antenna 2 configured as shown in FIG. 7 (a).
  • the VSWR characteristic shown in FIG. 7A is a VSWR characteristic when the antenna 2 is used alone (when it is used without being combined with the antenna 1 and the antenna 3).
  • the provision of the short-circuit portions 22a1 to 22a2 and the ground portions 22b1 to 22b2 further expands the width of the band in which the value of VSWR is equal to or less than a threshold value (for example, 4).
  • a threshold value for example, 4
  • the reason why the width of the band is expanded as described above is that the number of sections of the first radiating elements 21 that are short-circuited using the short-circuit portions 22a1 to 22a2 is three or more, so that the current paths formed on the radiating elements 22 The generation or shift of additional resonance points that occur as a result of further variation of
  • Mounting on the integrated antenna device is one of typical examples of the antenna 2 according to the present embodiment.
  • Examples of the antenna mounted on the integrated antenna device together with the antenna 2 according to the present embodiment include a 3G (3rd Generation) / LTE (Long Term Evolution) antenna and a GPS (Global Positioning System) antenna.
  • 3G / LTE antenna, the GPS antenna, and the integrated antenna device will be described in order.
  • the 3G / LTE antenna refers to an antenna that operates in both the 3G frequency band and the LTE frequency band.
  • the antenna 1 described below has both a frequency band of 761 MHz to 960 MHz (hereinafter referred to as “low frequency side required band”) and a frequency band of 1710 MHz to 2130 MHz (hereinafter referred to as “high frequency side required band”). It shall operate in
  • the antenna 1 is an inverted F-type antenna including a ground plane 11, a radiating element 12, and a short-circuit portion 13.
  • interposes the conductor foil which comprises these with a pair of dielectric films 15 is employ
  • a 5 mm ⁇ 140 mm polyimide film having 4 mm ⁇ 4 mm convex portions is used as the dielectric film 15.
  • the ground plane 11 is composed of a planar conductor.
  • a square conductor foil for example, copper foil
  • the outer conductor of the coaxial cable 5 is connected to the central portion on the ground plane 11.
  • a point on the ground plane 11 to which the outer conductor of the coaxial cable 5 is connected is hereinafter referred to as a first feeding point 1P.
  • the radiating element 12 is composed of a linear or strip-shaped conductor.
  • a strip-shaped conductor foil for example, copper foil
  • the radiating element 12 is linear and is arranged such that its longitudinal axis is parallel to the upper side of the main plate 11.
  • the inner conductor of the coaxial cable 5 is connected to the left end portion of the right wing 12 c (described later) of the radiating element 12.
  • a point on the radiating element 12 to which the inner conductor of the coaxial cable 5 is connected is hereinafter referred to as a second feeding point 1Q.
  • the radiating element 12 is formed with a notch 12a having a width of 3 mm and a depth of 0.5 mm.
  • the notch 12a is dug from the lower edge to the upper edge of the radiating element 12, and the upper end portion of the ground plane 11 is fitted into the notch 12a.
  • the portion of the radiating element 12 that is located on the left side of the notch 12a in FIG. 8 is referred to as the left wing 12b, and the portion that is located on the right side of the notch 12a in FIG. Called 12c.
  • the left wing 12b of the radiating element 12 is formed with a branch 12d having a width of 3 mm and a length of 7 mm.
  • the branch 12d is drawn downward from the left wing 12b of the radiating element 12, and extends in parallel with the short axis (axis perpendicular to the long axis) of the radiating element 12.
  • a new current path is generated in the radiating element 12.
  • the resonance frequency of the antenna 1 is shifted.
  • the length of the right wing 12c of the radiating element 12 is 33 mm, and in order to provide a resonance point in the low frequency side required band, the radiating element 12 is provided.
  • the left wing 12b has a length of 103 mm. Therefore, the total length of the radiating element 12 is 139 mm in combination with the width 3 mm of the notch 12a.
  • the short-circuit part 13 is for short-circuiting the ground plane 11 and the radiation element 12, and is comprised by a linear or strip
  • a strip-shaped conductor foil for example, copper foil
  • a strip-shaped conductor foil composed of four straight portions 13a to 13d is used as the short-circuit portion 13.
  • the first straight portion 13 a is drawn rightward from the lower end of the ground plane 11 and extends in parallel with the longitudinal axis of the radiating element 12.
  • the second straight portion 13 b is drawn upward from the right end of the first straight portion 13 a and extends parallel to the short axis of the radiating element 12.
  • the third straight portion 13 c is drawn leftward from the upper end of the second straight portion 13 b and extends parallel to the longitudinal axis of the radiating element 12.
  • the fourth straight portion 13d is drawn upward from the left end of the third straight portion 13c and extends parallel to the short axis of the radiating element 12.
  • the upper end of the fourth straight portion 13d reaches the left end of the right wing 12c of the radiating element 12.
  • the first point to be noted in the antenna 1 employs a configuration in which the coaxial cable 5 drawn from the ground plane 11 and the branch 12d drawn from the radiating element 12 intersect each other. Is a point.
  • the branch 12 d functions as an inductor interposed between the radiating element 12 and the outer conductor of the coaxial cable 5. If the shape and / or size of the branch 12d is changed, the strength of this electromagnetic coupling changes, and as a result, the input impedance of the antenna 1 changes. That is, the branch 12d can function as a matching pattern.
  • the structure which crosses the one branch 12d with the coaxial cable 5 is employ
  • adopted it is not limited to this. That is, a configuration in which two or more branches configured in the same manner as the branch 12 d intersect with the coaxial cable 5 may be employed.
  • the input impedance of the antenna 1 can be changed by changing the shape and / or size of each branch, or by changing the number of branches. For this reason, it becomes possible to change the input impedance of the antenna 1 over a wider range.
  • the second point to be noted in the antenna 1 is that, as shown in FIG. 8, when a straight line M parallel to the radiating element 12 (the longitudinal axis thereof) passing through the tip of the branch 12d is drawn, the straight line M and the radiation are radiated.
  • the point is that a configuration in which the ground plane 11 is arranged inside the region sandwiched between the elements 12 is adopted. With this configuration, the height of the antenna 1 can be suppressed to the same level as the sum of the width of the radiating element 12 and the length of the branch 12d. That is, the antenna 1 can be lowered.
  • the above configuration can be realized because the size of the main plate 11 is reduced.
  • the size of the ground plane 11 in the short direction of the radiating element 12 is determined by the length of the branch 12d and the depth of the notch 12a. By making it shorter than the sum of the above, the above configuration can be realized. Further, when adopting a configuration in which the upper portion of the ground plane 11 is not inserted into the notch 12a, the size of the ground plane 11 with respect to the short direction of the radiating element 12 is made shorter than the length of the branch 12d. Can be realized.
  • the coaxial cable 5 when reducing the size of the ground plane 11 in this way, it is preferable to lay the coaxial cable 5 along a conductor surface such as a chassis. In this case, it is because the function of the ground plane 11 can be complemented by a conductor surface such as a chassis coupled to the outer conductor of the coaxial cable 5 (electrostatic coupling and / or electromagnetic coupling).
  • the antenna 1 is designed so as to exhibit the expected performance when bent. More specifically, when the antenna 1 is bent along two straight lines L to L ′ extending in the short axis direction of the radiating element 12 so that the end face has a U-shape (U-shape). It is designed to deliver the expected performance.
  • FIG. 9 is a graph showing the frequency dependence of VSWR (Voltage Standing Wave Wave Ratio) and efficiency (gain). It can be seen from the graph of FIG. 9 that the value of VSWR is suppressed to 3 or less in both the low frequency side required band and the high frequency side required band, that is, the return loss is sufficiently suppressed. Further, it can be seen from the graph of FIG. 9 that the gain value is maintained at ⁇ 3.5 dB or more in both the low frequency side required band and the high frequency side required band. That is, it can be seen from the graph of FIG. 9 that both the low frequency side required band and the high frequency side required band are operating bands of the antenna 1.
  • VSWR Voltage Standing Wave Wave Ratio
  • gain value is maintained at ⁇ 3.5 dB or more in both the low frequency side required band and the high frequency side required band. That is, it can be seen from the graph of FIG. 9 that both the low frequency side required band and the high frequency side required band are operating bands of the antenna 1.
  • FIG. 10 is a graph showing a radiation pattern at 787 MHz.
  • A shows the radiation pattern in the xy plane
  • (b) shows the radiation pattern in the yz plane
  • (c) shows the radiation pattern in the zx plane. It can be seen from the graphs in FIG. 10 that a substantially omnidirectional radiation pattern is realized at least at 787 MHz.
  • FIG. 11 is a graph showing the frequency dependence of the VSWR obtained when the branch 12d is provided and the frequency dependence of the VSWR obtained when the branch 12d is omitted.
  • the branching band 12d is provided to increase the bandwidth of the operating band of the antenna 1 to about 1.5 times.
  • GPS antenna The antenna 3 that functions as a GPS antenna will be described below with reference to FIGS.
  • the GPS antenna refers to an antenna that operates at any one of GPS frequencies.
  • the antenna 3 described below is assumed to operate at 1575.42 MHz (hereinafter referred to as “required frequency”).
  • FIG. 12 is a plan view of the antenna 3.
  • the dimension of each part of the antenna 3 demonstrated below is an illustration, Comprising: It is not limited to this. That is, the dimensions of each part of the antenna 3 described below can be appropriately changed according to the selection of materials, the design method (configuration method), and the like.
  • the antenna 3 is a loop antenna including a radiating element 31, two short-circuit portions 32a to 32b, and a parasitic element 33.
  • interposes the conductor foil which comprises these with a pair of dielectric films 35 is employ
  • a polyimide film of 50 mm ⁇ 80 mm is used as the dielectric film 35.
  • the radiating element 31 is composed of a linear or strip-shaped conductor.
  • a strip-shaped conductor foil for example, a copper foil
  • Both ends of the radiating element 31 are located in the 6 o'clock direction as viewed from the center of the ellipse, and the width of the radiating element 31 is minimum in the 0 o'clock direction and 6 o'clock direction as viewed from the center of the ellipse. Maximum in the 9 o'clock direction.
  • a first projecting portion 31a that projects toward the center of the ellipse is formed at the starting end of the radiating element 31 (the end that becomes the starting point when the radiating element 31 is traced clockwise).
  • the 1st protrusion part 31a is L-shaped, and is comprised by the 1st linear part extended upwards from the start end part of the radiation
  • a second projecting portion 31b that projects toward the center of the ellipse is formed at the end portion of the radiating element 31 (the end portion that becomes the end point when the radiating element 31 is traced clockwise).
  • the 2nd protrusion part 31b is L-shaped, and is comprised by the 1st linear part extended upwards from the termination
  • the first projecting portion 31a and the second projecting portion 31b are arranged such that the second straight portion of the first projecting portion 31a enters between the terminal portion of the radiating element 31 and the second straight portion of the second projecting portion 31b. Can be combined.
  • the inner conductor of the coaxial cable 7 is connected to the first protruding portion 31a (more specifically, the second straight portion of the first protruding portion 31a).
  • the point 3P on the first protrusion 31a to which the inner conductor of the coaxial cable 7 is connected will be referred to as a first feeding point.
  • the outer conductor of the coaxial cable 7 is connected to the second protrusion 31b (more specifically, the fourth straight portion).
  • the point 3Q on the second protrusion 31b to which the outer conductor of the coaxial cable 7 is connected is referred to as a second feeding point.
  • the coaxial cable 7 drawn upward from the second feeding point 3Q is led to the back surface of the antenna 3 through a through hole provided in the center of the dielectric film 35, and drawn in the 3 o'clock direction.
  • the two short-circuit portions 32a to 32b are configured to shift the resonance frequency of the antenna 3 to the required frequency and change the input impedance of the antenna 3 in order to achieve impedance matching.
  • 1st short circuit part 32a is comprised by a linear or strip
  • FIG. Specifically, a point on the radiating element 31 (hereinafter referred to as “time 0”) positioned in the 0 o'clock direction as viewed from the center of the ellipse, and a radiating element positioned in the 9 o'clock direction as viewed from the center of the ellipse.
  • a point on 31 (hereinafter referred to as “9 time points”) is short-circuited.
  • a strip-shaped conductor foil (for example, a copper foil) having a first straight portion extending downward from time 0 of the radiating element 31 and a second straight portion extending rightward from time 9 of the radiating element 31. ) Is used as the first short circuit portion 32a.
  • the second short circuit part 32b is composed of a linear or strip conductor, and shorts two different points on the radiation element 31. Specifically, a point on the radiating element 31 located in the 6 o'clock direction as viewed from the center of the ellipse (hereinafter also referred to as “time point 6”) and a radiating element located in the 3 o'clock direction as viewed from the center of the ellipse A point on 31 (hereinafter also referred to as “3 time points”) is short-circuited.
  • a strip-shaped conductor foil for example, a copper foil having a first straight portion extending upward from six points of the radiating element 31 and a second straight portion extending leftward from three points of the radiating element 31. ) Is used as the second short circuit portion 32b.
  • the parasitic element 33 is configured to change the input impedance of the antenna 3 in order to achieve impedance matching.
  • the parasitic element 33 is composed of a planar conductor having an outer edge along the outer periphery of the radiating element 31.
  • a substantially L-shaped conductor foil for example, copper foil
  • the parasitic element 33 is separated from the radiating element 31, and there is no direct current conduction between the parasitic element 33 and the radiating element 31.
  • the loop antenna has a radiation pattern in which the gain is concentrated in the normal direction of the antenna formation surface, and is therefore suitable for receiving GPS waves. This is because, if the antenna forming surface is kept horizontal, GPS waves coming from hygiene located in the zenith direction can be received with high sensitivity at any time. However, if the gain concentration becomes too extreme, reception obstacles may occur when the satellite is located in a direction other than the zenith, or when the antenna forming surface cannot be kept horizontal.
  • the parasitic element 33 described above has a function of relaxing such gain concentration in addition to a function of impedance matching. For this reason, by adding the parasitic element 33 to the loop antenna, there is an effect of reducing the possibility of such a reception failure.
  • the antenna 3 when the antenna 3 is arranged in parallel with the conductor plate 4 (see FIG. 21), electromagnetic coupling and electrostatic coupling are generated between the antenna 3 and the conductor plate 4.
  • the antenna 3 can be regarded as a patch antenna.
  • FIG. 13 is a graph showing the frequency dependence of the magnitude of the input reflection coefficient S1,1 of the antenna 3. It can be seen from the graph of FIG. 13 that the magnitude of the input reflection coefficient S1,1 at the required frequency is suppressed to ⁇ 20 dB or less. That is, it can be seen from the graph of FIG. 13 that the required frequency is included in the operating band of the antenna 3 and the return loss at the required frequency is sufficiently small.
  • FIG. 14 is a graph showing a radiation pattern of the antenna 3 at 1575.42 MHz.
  • A shows the radiation pattern for horizontal right-handed circularly polarized waves (RHCP: Right : Handed Circularly Polarized Wave) and horizontal left-handed circularly polarized waves (LHCP: Left Handed Circularly Polarized Wave).
  • RHCP Right : Handed Circularly Polarized Wave
  • LHCP Left Handed Circularly Polarized Wave
  • the radiation pattern regarding circularly polarized wave and vertical left-handed circularly polarized wave is shown.
  • a gain of ⁇ 10 dBi or more can be obtained for ⁇ ⁇ 60 °.
  • the reason why a relatively high gain can be obtained in such a relatively wide angle range is because the parasitic element 33 has a function of relaxing the gain concentration in the normal direction of the antenna forming surface.
  • FIG. 15 is a graph showing the frequency dependence of the magnitude of the input reflection coefficient S1,1.
  • A shows the result when the parasitic element 33 is omitted
  • B shows the result when the short-circuit portions 32a to 32b and the parasitic element 33 are omitted.
  • the resonance frequency deviates from the required frequency, and the input reflection coefficient S1,1 at the resonance frequency is large. It turns out that becomes large.
  • the second short-circuit portion 32a impedance matching is achieved, and as a result, the return loss at the resonance frequency is reduced.
  • FIG. 16A is a plan view showing the configuration of the loop antenna 50.
  • FIG. 16B is a circuit diagram showing an equivalent circuit of the parasitic elements 54 to 55 provided in the loop antenna 50.
  • the loop antenna 50 includes a radiating element 51, a pair of feeding parts 52a to 52b, a pair of shorting parts 53a to 53b, a first parasitic element 54, and a second parasitic element. And a power feeding element 55.
  • the radiating element 51, the power feeding portions 52a to 52b, and the short-circuit portions 53a to 53b are integrally formed of a single conductor foil (for example, copper foil).
  • the first parasitic element 54 is composed of another conductor foil that is isolated from the conductor foil constituting the radiating element 51 and the like.
  • the second parasitic element 55 is constituted by another conductor foil that is isolated from the conductor foil constituting the radiating element 51 and the conductor foil constituting the first parasitic element 54.
  • the radiating element 51 is composed of a linear or strip conductor arranged on a closed curve.
  • a strip-shaped conductor foil for example, copper foil
  • One end portion 51a of the radiating element 51 faces the other end portion 51b of the radiating element 51 through a straight line extending in the 0 o'clock direction from the center of the ellipse.
  • the power feeding part 52a is a linear or belt-like conductor arranged on a line segment extending from one end 51a of the radiating element 51 to the vicinity of the center of the ellipse.
  • a strip-shaped conductor foil having a width of 1 mm is used as the power feeding portion 52a.
  • a feeding point P to which the outer conductor of the coaxial cable is connected is provided at the tip of the feeding unit 52a. Therefore, one end 51a of the radiating element 51 is connected to the outer conductor of the coaxial cable via the power feeding portion 52a.
  • the power feeding portion 52b is a linear or belt-like conductor disposed on a line segment from the other end 51b of the radiating element 51 to the vicinity of the center of the ellipse.
  • a strip-shaped conductor foil having a width of 1 mm is used as the power feeding portion 52b.
  • a feeding point Q to which the inner conductor of the coaxial cable is connected is provided at the tip of the feeding part 52b. Therefore, the other end 51b of the radiating element 51 is connected to the inner conductor of the coaxial cable via the power feeding portion 52b.
  • the short-circuit portion 53a is configured to short-circuit the point 51c on the radiating element 51 located in the 9 o'clock direction as viewed from the center of the ellipse and the feeding point P.
  • a strip-shaped conductor foil having a width of 1 mm which is disposed on a line segment from the point 51c on the radiating element 51 to the vicinity of the center of the ellipse, is used as the short-circuit portion 53a.
  • the short-circuit portion 53b is configured to short-circuit the point 51d on the radiating element 51 located in the 3 o'clock direction as viewed from the center of the ellipse and the feeding point P.
  • a strip-shaped conductor foil having a width of 1 mm arranged on a straight line extending from the point 51d on the radiating element 51 to the vicinity of the center of the ellipse is used as the short-circuit portion 53b.
  • the protrusion part which protruded in the electric power feeding part 52a side is provided in the front-end
  • tip of the electric power feeding part 52a is bent so that this protrusion part may be followed.
  • the tip of the power feeding part 52a located above the center of the ellipse and the tip of the short-circuiting part 53a located on the left side of the center are connected to a strip-like conductor (width 2 mm) arranged on the quadrant. Are connected to each other.
  • the tip of the power feeding part 52b located above the center of the ellipse and the tip of the short-circuiting part 53b located to the right of the center are connected to a strip-like conductor (width 2 mm) arranged on the quadrant arc. Are connected to each other.
  • a strip-like conductor width 2 mm
  • the first parasitic element 54 includes a main part 54b, a first extension part 54a, and a second extension part 54c.
  • the main portion 54b is a substantially L-shaped planar conductor having an outer edge along the outer periphery of the radiating element 51 from the 6 o'clock direction to the 9 o'clock direction when viewed from the center of the ellipse.
  • the first extension portion 54a is a strip-shaped conductor that extends linearly in the 0 o'clock direction from the end of the main portion 54b located in the 9 o'clock direction when viewed from the center of the ellipse.
  • the second extension portion 54c is a strip-like conductor that linearly extends in the 3 o'clock direction from the end of the main portion 54b located in the 6 o'clock direction when viewed from the center of the ellipse.
  • the second extension 54c of the first parasitic element 54 changes the slope of the direction in which the gain of the right-handed circularly polarized wave is maximum (hereinafter referred to as “maximum gain direction”). It has a function. That is, when the length of the second extension portion 54c is shortened, the inclination of the right-handed circularly polarized wave in the maximum gain direction is reduced, and when the length of the second extension portion 54c is lengthened, the maximum of the right-handed circularly polarized wave is maximum. The slope in the gain direction increases.
  • the second parasitic element 55 includes a main part 55b, a first extension part 55a, and a second extension part 55c.
  • the main portion 55b is a substantially L-shaped planar conductor having an outer edge along the outer periphery of the radiating element 51 from the 0 o'clock direction to the 3 o'clock direction when viewed from the center of the ellipse.
  • the first extension portion 55a is a strip-like conductor that extends linearly in the 9 o'clock direction from the end of the main portion 55b located in the 0 o'clock direction when viewed from the center of the ellipse.
  • the second extension portion 55c is a belt-like conductor that linearly extends in the 6 o'clock direction from the end of the main portion 55b located in the 3 o'clock direction when viewed from the center of the ellipse.
  • the second extension 55c of the second parasitic element 55 has a function of changing the resonance frequency. That is, when the length of the second extension portion 55c is shortened, the resonance frequency is shifted to the high frequency side, and when the length of the second extension portion 55c is lengthened, the resonance frequency is shifted to the low frequency side. Further, when the length of the second extension 55c is changed, the phase angle of the loop antenna 50 is changed.
  • the tip of the first extension 54a of the first parasitic element 54 and the tip of the first extension 55a of the second parasitic element 55 are capacitively coupled. That is, the gap 56 between the tip of the first extension 54a of the first parasitic element 54 and the tip of the first extension 55a of the second parasitic element 55 has a capacitance. .
  • the parasitic element group including the first parasitic element 54 and the second parasitic element 55 is equivalent to the LC circuit shown in FIG.
  • L1 represents the self-inductance of the first parasitic element 54
  • L2 represents the self-inductance of the second parasitic element 55
  • C1 represents the capacitance between the first parasitic element 54 and the ground plane
  • C2 represents the capacitance between the second parasitic element 55 and the ground plane
  • C3 represents the capacitance of the gap 56 described above.
  • the parasitic element group including the first parasitic element 54 and the second parasitic element 55 has a resonance frequency as the LC circuit shown in FIG.
  • the electromagnetic wave radiated from the loop antenna 50 is a superposition of the electromagnetic wave radiated from the radiating element 51 and the electromagnetic wave radiated from the parasitic element group.
  • the intensity of the electromagnetic wave radiated from the loop antenna 50 at the resonance frequency is changed to the radiating element at the same frequency. It can be made stronger than the intensity of electromagnetic waves radiated by 51 (single unit).
  • the VSWR value of the loop antenna 50 in the band including the resonance frequency is radiated in the same band. It can be made smaller than the VSWR value of the element 51 (single unit).
  • the second extension 54c of the first parasitic element 54 has a function of changing the maximum gain direction of the right-handed circularly polarized wave. This point will be described with reference to FIG.
  • FIG. 17 is a graph showing the radiation pattern of the loop antenna 50.
  • (A) shows the radiation pattern when the extension part 54c is not added, and (b) shows the radiation pattern when the extension part 54c is added.
  • RHCP represents a radiation pattern of right-handed circular polarization
  • LHCP represents a radiation pattern of left-handed circular polarization.
  • the maximum gain direction of the right-handed circularly polarized wave is a direction (z plane in FIG. 16) orthogonal to the antenna forming plane (xy plane in FIG. 16). Axial direction).
  • the maximum gain direction of the right-handed circularly polarized wave is inclined by about 30 degrees as shown in FIG.
  • the inclination in the maximum gain direction is changed by changing the length of the extension 54c. Specifically, when the length of the extension portion 54c is shortened, the gradient in the maximum gain direction is reduced, and when the length of the extension portion 54c is increased, the gradient in the maximum gain direction is increased. Therefore, by including the step of adjusting the length of the extension 54c while measuring the maximum gain direction of right-handed circularly polarized wave, the loop antenna 50 in which the slope of the maximum gain direction of right-handed circularly polarized wave becomes a desired value. Can be manufactured.
  • the VSWR value can be lowered by appropriately adjusting the gap 56 between the first parasitic element 54 and the second parasitic element 55. it can. This point will be described with reference to FIG.
  • FIG. 18 is a graph showing the VSWR characteristics of the loop antenna 50 near 1.575 GHz.
  • VSWR0 represents the VSWR characteristics when both the first parasitic element 54 and the second parasitic element 55 are removed
  • VSWR1 represents the first parasitic element 54 and the second parasitic element.
  • the VSWR characteristic after adding both of the elements 55 is shown, and VSWR1 adds both the first parasitic element 54 and the second parasitic element 55, and further minimizes the VSWR value of 1.575 GHz.
  • the VSWR characteristic after adjusting the gap interval of the gap 56 is shown.
  • the VSWR value is lowered in a band of 1.5 GHz or less, and the gap interval of the gap 56 is further reduced.
  • the VSWR value at 1.575 GHz decreases.
  • the VSWR value at a desired frequency can be changed. Therefore, by including the step of adjusting the gap interval of the gap 56 while measuring the VSWR value at the desired frequency, the loop antenna 50 having a low VSWR value at the desired frequency can be manufactured.
  • the radiating element 51 is arranged on the circumference of the ellipse, but is not limited thereto.
  • the radiating element 51 may be meandered as shown in FIG. 19, or may be arranged on a rectangular circumference as shown in FIG.
  • the short-circuit portions 53a to 53b may be omitted as shown in FIG.
  • FIG. 21 is a trihedral view showing how these three antennas 1 to 3 are combined.
  • These three antennas 1 to 3 are designed to be used in the vicinity of the conductor plate 4 in a combined state as shown in FIG. 21 (in FIG. 21, the conductor plate 4 is a front face). It is shown only in the drawings and the side view, and is not shown in the plan view).
  • the metal base 101 included in the integrated antenna device 100 and / or the roof of the automobile on which the integrated antenna device 100 is placed corresponds to the conductor plate 4. .
  • the antenna 1 is arranged so that its main surface is perpendicular to the main surface of the conductor plate 4 as shown in FIG. Further, as shown in the plan view, the antenna 1 is bent so that its end face has a U-shape.
  • the antenna 2 is arranged so that its main surface is parallel to the main surface of the conductor plate 4 as shown in FIG. At this time, as shown in the plan view, the main surface of the antenna 2 is surrounded by the end surface of the antenna 1 from three directions. Further, as shown in the front view and the side view, the end surface of the antenna 2 overlaps with the upper end (the end opposite to the conductor plate 4 side) of the main surface of the antenna 1.
  • the antenna 3 is arranged so that its main surface is parallel to the main surface of the conductor plate 4 as shown in FIG. At this time, as shown in the plan view, the main surface of the antenna 3 is surrounded by the end surface of the antenna 1 and overlaps the main surface of the antenna 2. Further, as shown in the front view and the side view, the end surface of the antenna 3 is arranged to be located above the upper end of the main surface of the antenna 1.
  • the first point to be noted regarding the combination shown in FIG. 21 is that the main surface of the conductor plate 4 is used as a reference surface, the antenna 1 is arranged so that the main surface is perpendicular to the reference surface, and the antenna 2 is The configuration is such that the main surface is arranged in parallel with the reference surface and the end surface thereof is overlapped with the upper end of the main surface of the antenna 1. With this configuration, the antenna 2 can be combined with the antenna 1 with almost no additional space for the arrangement in the direction perpendicular to the reference plane.
  • FIG. 21 a configuration is employed in which the end surface of the antenna 2 overlaps with the upper end of the main surface of the antenna 1 when viewed from the side, but is not limited thereto. That is, even when the end surface of the antenna 2 is located below the upper end of the main surface of the antenna 1 and above the lower end of the main surface of the antenna 1 as viewed from the side, the configuration shown in FIG. The same effect can be obtained. In short, as long as the end surface of the antenna 2 overlaps with the main surface of the antenna 1 when viewed from the side, the same effect as the configuration shown in FIG. 21 can be obtained.
  • the end surface of the antenna 2 is the main surface of the antenna 1 when viewed from the side as shown in FIG.
  • the configuration that overlaps the top of the is best. This is because, when the end surface of the antenna 2 is located below the upper end of the main surface of the antenna 1 when viewed from the side, electromagnetic waves coming from the side are shielded by the antenna 1.
  • the second point to be noted regarding the combination shown in FIG. 21 is that the antenna 1 is bent so that the end surface of the antenna 1 is along the outer edge of the main surface of the antenna 2 when viewed from above. With this configuration, the antenna 1 can be combined with the antenna 2 with almost no additional space for the arrangement in the direction parallel to the reference plane.
  • the structure which bends the antenna 1 in two places is employ
  • the third point to be noted in the configuration shown in FIG. 21 is that the antenna 3 is arranged such that its main surface is parallel to the reference surface.
  • the increase in space can be reduced.
  • the configuration in which the antenna 2 that receives DAB waves is arranged closer to the reference plane than the antenna 3 that receives GPS waves is an advantageous configuration in the following two senses.
  • the standard electric field strength of GPS waves is weaker than the standard electric field strength of DAB waves, and is about -130 to -140 dBm. Therefore, if attenuation due to the shielding action of another planar antenna arranged in a higher layer occurs, there is a high possibility that a reception failure will result.
  • the standard electric field strength of DAB waves is stronger than the standard electric field strength of GPS waves and is about -60 dBm. Therefore, even if attenuation due to the shielding action of another planar antenna arranged in a higher layer occurs, there is a low possibility of causing reception interference.
  • the antenna 3 that receives a GPS wave with a low standard electric field strength is placed above the antenna 2 that receives a DAB wave with a high standard electric field strength (see the above reference). It is preferable to arrange it on the side far from the center.
  • the design guideline of placing the planar antenna that receives electromagnetic waves with weaker standard electric field strength in the upper layer than the planar antenna that receives electromagnetic waves with stronger standard electric field strength depends on the number of planar antennas to be stacked. It is effective.
  • GPS waves are electromagnetic waves that arrive from the zenith direction. Therefore, if attenuation due to the shielding action of another planar antenna arranged in a higher layer occurs, there is a high possibility that a reception failure will result.
  • DAB waves are electromagnetic waves coming from the horizontal direction. Therefore, even if attenuation due to the shielding action of another planar antenna arranged in a higher layer occurs, there is a low possibility of causing reception interference. For this reason, in order to minimize the possibility of reception failure, the antenna 3 that receives GPS waves arriving from the zenith direction is placed above the antenna 2 that receives DAB waves arriving from the horizontal direction (see the above reference). It is preferable to arrange it on the side farther from.
  • the design guideline of laminating a planar antenna that receives electromagnetic waves coming from the zenith direction on the uppermost layer is effective regardless of the number of planar antennas to be laminated.
  • the front view of FIG. 22A the front view of FIG. As shown, the configuration in which the antenna 1 is arranged in an intermediate layer between the antenna 2 and the antenna 3 is more advantageous. However, when the latter configuration is adopted, as described below, the antenna 1 cannot exhibit the expected performance.
  • FIG. 23 shows a VSWR characteristic (shown by a gray line) of the antenna 1 obtained when the former configuration is adopted and a VSWR characteristic (shown by a black line) of the antenna 1 obtained when the latter configuration is adopted. It is a graph which shows. As described above, the antenna 1 is required to operate in both the low frequency side request band (761 MHz to 960 MHz or less) and the high frequency side request (1710 MHz to 2130 MHz or less). However, when the latter configuration is adopted, it can be seen from the graph of FIG. 23 that the value of VSWR exceeds -3 dB in a part of the high frequency side required band. From this, it can be seen that the configuration in which the antenna 1 is disposed below the antenna 2 is the best configuration that achieves both efficient use of space and the VSWR characteristics of the antenna 1.
  • FIG. 24 is an exploded perspective view of the integrated antenna device 100.
  • the integrated antenna device 100 is a vehicle-mounted antenna device suitable for mounting on the roof of an automobile. As shown in FIG. 24, in addition to the three antennas 1 to 3, a metal base 101, a circuit board 102, and a rubber base. 103, a spacer 104, and a radome 105.
  • the metal base 101 is a rounded rectangular plate-shaped member made of aluminum.
  • Four spacers 101 a are provided on the upper surface of the metal base 101. These four spacers 101 a are interposed between the lower surface of the antenna 2 and separate the antenna 2 from the metal base 101.
  • the height of the spacer 101a is set to 5 mm. Thereby, the antenna 2 is separated from the metal base 101 by 5 mm.
  • the circuit board 102 is a rectangular plate-like member, and is sandwiched between the metal base 101 described above and a rubber base 103 described later. Two amplifier circuits are formed on the circuit board 102. One amplifier circuit is for amplifying the electrical signal generated by the DAB antenna 2, and the other amplifier circuit is for amplifying the electrical signal generated by the GPS antenna 3. Is.
  • the rubber base 103 is a plate-like member having substantially the same shape as the metal base 11, and the material thereof is rubber. A skirt portion protruding downward is provided on the outer edge of the rubber base 103, and the metal base 101 described above is fitted into a space below the rubber base 103 surrounded by the skirt.
  • the rubber base 103 is provided with a through hole for allowing the spacer 101 a provided on the upper surface of the metal base 101 to pass therethrough. Thereby, when the metal base 101 is fitted into the space below the resin base 103, the spacer 101 a provided on the upper surface of the metal base 101 is exposed above the rubber base 103.
  • the spacer 104 is a plate-like member interposed between the antenna 2 and the antenna 3, and the material thereof is molded resin.
  • the spacer 104 separates the antenna 2 and the antenna 3 according to the thickness thereof.
  • the thickness of the spacer 104 is set to 5 mm. Thereby, the antenna 2 is separated from the antenna 3 by 5 mm.
  • the radome 105 is a ship-bottomed dome-shaped member, and its outer edge is fitted to a rubber base. As a result, a space for accommodating the antennas 1 to 3 sealed by the rubber base 103 and the radome 105 is formed. As long as this hermeticity is maintained, there is no possibility that the antennas 1 to 3 are exposed to rainwater in the outdoor environment.
  • the radome 105 is made of resin. For this reason, there is no possibility that the electric field intensity of the electromagnetic wave arriving at the antenna device 100 is attenuated by the radome 105.
  • the integrated antenna device 100 is equipped with three antennas 1 to 3.
  • the configuration of these three antennas 1 to 3 and the combination of these three antennas 1 to 3 are as described above.
  • the present specification includes an inverted F antenna including a ground plane, a radiating element, and a short-circuit formed in a two-dimensional plane, wherein the radiating element is linear, and the radiating element includes: A branch intersecting with the coaxial cable drawn from the ground plane is provided, and the ground plane is formed in a region between the radiation element and a straight line passing through a tip of the branch and parallel to the radiation element.
  • the antenna is characterized by that.
  • the branch by providing the branch, a new current path is generated in the radiating element, and the resonance frequency of the inverted F antenna is changed. Further, when the branch is crossed with the coaxial cable, electromagnetic coupling occurs between the radiating element and the outer conductor of the coaxial cable, and the input impedance of the inverted F antenna changes. That is, according to the above configuration, by appropriately changing the shape, size, number, etc. of the branches, the inverted F antenna that operates in the required frequency band and has a small return loss in the required frequency band. Can be realized.
  • the size of the inverted F antenna in the direction orthogonal to the radiating element in the two-dimensional plane is suppressed to the same level as the sum of the width of the radiating element and the length of the branch. Can do. Therefore, when the inverted F antenna is mounted on the integrated antenna device, the size of the integrated antenna in the direction orthogonal to the pedestal can be reduced by arranging the inverted F antenna so as to be perpendicular to the pedestal of the integrated antenna device. it can.
  • a dipole antenna including a first radiating element and a second radiating element formed in a two-dimensional plane, wherein the first radiating element is linear,
  • the antenna is characterized in that the second radiating element has a spiral shape that swirls around the first radiating element.
  • the first radiating element and the second radiating element can be arranged in a region having a required size. Therefore, when the dipole antenna is mounted on the integrated antenna device, the size of the integrated antenna in the direction parallel to the pedestal can be reduced by arranging the dipole antenna so as to be parallel to the pedestal of the integrated antenna device.
  • the dipole antenna further includes a short-circuit portion that short-circuits different points on the second radiating element, and a grounding portion that connects a point on the outermost periphery of the second radiating element to the ground. It is preferable.
  • a loop antenna having a radiating element passing over an ellipse which is a short-circuit portion arranged inside the ellipse, and short-circuited between two points on the radiating element.
  • An antenna characterized by comprising: is described.
  • the short-circuit portion by providing the short-circuit portion, a new current path is generated in the radiating element, and the resonance frequency of the loop antenna is changed.
  • the provision of the short-circuit portion changes the input impedance of the loop antenna. That is, according to the above configuration, by appropriately changing the shape and / or size of the short-circuit portion, a loop antenna that operates in the required frequency band and has a small return loss in the required frequency band is realized. be able to.
  • the short-circuit portion is arranged inside the ellipse through which the radiating element passes, so that the size of the loop antenna does not increase with the provision of the short-circuit portion. Therefore, when the loop antenna is mounted on the integrated antenna device, the size of the integrated antenna in the direction parallel to the pedestal can be reduced by arranging the loop antenna so as to be parallel to the pedestal of the integrated antenna device.
  • ellipse means not an ellipse in a narrow sense that does not include a circle, but an ellipse in a broad sense that includes a circle.
  • the loop antenna preferably further includes a parasitic element having an outer edge along the outer periphery of the radiating element.
  • the input reflection count in the required frequency band can be reduced without changing the resonance frequency. That is, it is possible to realize an antenna with a smaller return loss in the required frequency band.
  • the radiating element includes a loop portion passing over the ellipse and a pair of power feeding portions extending from both ends of the loop portion located in the 0 o'clock direction as viewed from the center of the ellipse toward the vicinity of the center of the ellipse.
  • the short-circuit portion is configured by a pair of short-circuit portions extending from the tips of the pair of power feeding portions toward the 9 o'clock direction and the 3 o'clock direction, and the parasitic element is a center of the ellipse.
  • a planar conductor having an outer edge along the outer periphery of the loop portion from the 6 o'clock direction to the 9 o'clock direction as viewed from the main portion, and an end portion of the main portion located in the 9 o'clock direction as viewed from the center of the ellipse
  • a first parasitic element having an extension extending from 0 to 0 o'clock and a planar conductor having an outer edge along the outer periphery of the radiating element from 0 o'clock to 3 o'clock as seen from the center of the ellipse.
  • a second parasitic element having an extension extending from the end of the main part in the 9 o'clock direction, and the tip of the extension of the first parasitic element and the second parasitic element It is preferable that the tip of the extension portion of the element is capacitively coupled.
  • the present invention can be widely applied to dipole antennas in general.
  • it can be suitably used as an antenna device mounted on a mobile body or a mobile terminal, or as an antenna mounted on such an antenna device.
  • the moving body include an automobile, a railway vehicle, and a ship.
  • the mobile terminal include a mobile phone terminal, a PDA (Personal Digital Assistance), a tablet PC (Personal Computer), and the like.
  • Antenna for 3G / LTE, inverted F antenna
  • DESCRIPTION OF SYMBOLS 11 Ground plane 12
  • Antenna for DAB, dipole antenna
  • 21 radiating element 22
  • antenna for GPS, loop antenna
  • 31 Radiation element 32a Short-circuit part
  • 32b Short-circuit part
  • Parasitic element 100
  • Metal base 102
  • Spacer 105 Radome for 3G / LTE, inverted F antenna

Landscapes

  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Abstract

 本発明に係るダイポールアンテナ(2)は、2次元面内に形成された第1の放射素子(21)と第2の放射素子(22)とを備えている。第1の放射素子(21)は、直線状であり、第2の放射素子(22)は、第1の放射素子(21)の周りを旋回する螺旋状である。

Description

ダイポールアンテナ
 本発明は、ダイポールアンテナに関する。
 高周波電流を電磁波に変換したり、電磁波を高周波電流に変換したりするための装置として、古くからアンテナが用いられている。アンテナは、その形状から線状アンテナ、面状アンテナ、立体アンテナ等に分類されており、又、その構造からダイポールアンテナ、モノポールアンテナ、ループアンテナ等に分類されている。なかでも、ダイポールアンテナは、2本の放射素子からなる簡単な構造を有しており、現在でも広く利用されているアンテナのひとつである。
 これらのアンテナにおいては、無線通信の用途拡大に伴い、種々の周波数帯域で動作することが求められている。例えば、車載用アンテナにおいては、FM/AM放送、DAB(Digital Audio Broadcast)等の地上デジタル放送、3G(3rd Generation:第3世代携帯電話)、LTE(Long Term Evolution)、GPS(Global Positioning System:全地球測位システム)、VICS(登録商標)(Vehicle Information and Communication System:道路交通情報通信システム)、ETC(Electronic Toll Collection:電子料金徴収システム)等の周波数帯域で動作することが求められている。
 従来、相異なる周波数帯域で動作するアンテナは、別体のアンテナ装置として実現されることが多かった。例えば、FM/AM放送用のアンテナは、ルーフトップに載せ置くホイップアンテナとして実現され、地上デジタル放送用のアンテナは、フロントガラスに貼り付けるフィルムアンテナとして実現されるといった具合である。
 しかし、自動車においてアンテナ装置を取り付け可能な部位は限られている。また、取り付けるアンテナ装置の個数が増えると、意匠が損なわれたり、取り付けコストが増大したりするといった問題を生じる。このような問題を回避するためには、統合アンテナ装置の使用が効果的である。ここで、統合アンテナ装置とは、相異なる周波数帯域で動作する複数のアンテナを備えたアンテナ装置のことを指す。
 このような統合アンテナ装置としては、例えば、特許文献1~5に記載のものなどが挙げられる。特許文献1に記載の統合アンテナ装置は、GPS用及びETC用の各アンテナを備えたものである。特許文献2に記載の統合アンテナ装置は、3G用及びGPS用の各アンテナを備えたものである。特許文献3に記載の統合アンテナ装置は、ETC用、GPS用、VICS用、電話用メイン、及び電話用サブの各アンテナを備えたものである。特許文献4に記載の統合アンテナ装置は、GPS用、ETC用、第1電話用、及び第2電話用の各アンテナを備えたものである。特許文献5に記載の統合アンテナ装置は、100kHz以上1GHz以下の帯域(FM/AM放送、DAB等の地上デジタル放送、VICS等)で動作するアンテナと、1GHz以上の帯域(GPS、衛星DAB等)で動作するアンテナとを備えたものである。
日本国公開特許公報「特開2007-158957号」(2007年 6月21日公開) 日本国公開特許公報「特開2009- 17116号」(2009年 1月22日公開) 日本国公開特許公報「特開2009-267765号」(2009年11月12日公開) 日本国公開特許公報「特開2010- 81500号」(2010年 4月 8日公開) 米国特許6、396、447号明細書(2002年 5月28日登録)
 しかしながら、従来のダイポールアンテナにおいては、小型化が困難であるという問題があった。実際、ダイポールアンテナを用いて波長λの電磁波を送受信するためには、放射素子の全長(2本の放射素子の長さの和)をλ/2程度にする必要がある。例えば、ダイポールアンテナを用いてDAB波(174MHZ以上240MHz以下)を送受信するためには、放射素子の全長を75cm程度にする必要がある。
 また、統合アンテナ装置への搭載に適したダイポールアンテナを実現するためには、従来の統合アンテナ装置が抱える以下のような問題も考慮に入れる必要がある。
 すなわち、従来の統合アンテナ装置においては、各アンテナを構成する放射素子が互いに重なり合わないように配置されており、小型化が困難であるという問題があった。各アンテナを構成する放射素子を互いに重なり合わないように配置するのは、各アンテナのアンテナ特性が他のアンテナの存在によって損なわれないようにするためである。
 例えば、特許文献1に記載の統合アンテナ装置においては、GPS用アンテナを構成する放射素子の中央開口部からETC用アンテナを臨出させる構成を採用している。このため、中央開口部がETCアンテナを包含するように、GPS用アンテナの放射素子を大型化する必要がある。
 また、特許文献2に記載の統合アンテナ装置は、ベースに立設されたアンテナ基板の表裏に、互いに重なり合わないように3G用アンテナとGPS用アンテナとを貼り付けたものである。したがって、アンテナ基板に直交する方向から見たサイズを小さくすることが困難であり、低背化の要求に応えることができない。
 また、特許文献3に記載の統合アンテナは、スペースファクタを考慮することなく、5つのアンテナを互いに重なり合わないように配置しただけのものである。これに対し、特許文献4に記載の統合アンテナ装置においては、ETCアンテナをGPSアンテナの一部に重ね合わせて配置する工夫が見られる。しかしながら、ETCアンテナにおいてGPSアンテナと重ね合わせられる部分は僅かであり、本質的な小型化に資するものではない。
 また、特許文献1~4に記載の技術は、何れもGHz領域で動作するアンテナ同士を統合するためのものであり、地上デジタル放送用などMHz領域で動作するアンテナをGHz領域で動作するアンテナと統合するためのものではない。地上デジタル放送を受信するためのチューナがナビゲーションシステムに統合されている昨今、MHz領域で動作するアンテナとGHz領域で動作するアンテナとの統合に対するニーズが高まっているが、特許文献1~4に記載の技術では、このニーズに応えることができないという副次的な問題がある。
 特許文献5に記載のアンテナは、MHz領域で動作するアンテナとGHz領域で動作するアンテナとを組み合わせたものであるが、GHz領域で動作するアンテナが立体的なモジュールとなっており、薄型化が困難である。
 従来の統合アンテナが抱えるこれらの問題の解決に資するダイポールアンテナを実現するためには、小型化が容易であることに加えて、他のアンテナと重なり合った状態で所期の性能を発揮することが重要になる。また、ダイポールアンテナを自動車のルーフトップに載置する統合アンテナ装置に搭載する場合、自動車のルーフや統合アンテナ装置の金属ベースなどの導体面と平行に配置した状態で所期の性能を発揮することも重要である。
 本発明は、上記の問題に鑑みてなされたものであり、その目的は、小型化が容易なダイポールアンテナを実現することにある。例えば、他のアンテナと共に統合アンテナ装置に搭載し得るダイポールアンテナであって、統合アンテナ装置の小型化に資するダイポールアンテナは、本発明が目指すダイポールアンテナの一例である。
 上記課題を解決するために、本発明に係るアンテナは、2次元面内に形成された第1の放射素子と第2の放射素子とを備えたダイポールアンテナであって、上記第1の放射素子は、直線状であり、上記第2の放射素子は、上記第1の放射素子の周りを旋回する螺旋状である、ことを特徴とする。
 本発明によれば、小型化が容易なダイポールアンテナを実現することができる。一例として、他のアンテナと共に統合アンテナ装置に搭載し得るダイポールアンテナであって、統合アンテナ装置の小型化に資するダイポールアンテナを実現することができる。
本発明の一実施形態に係るダイポールアンテナ(DAB用アンテナとして機能するアンテナ)の平面図である。 図1に示すアンテナのVSWR特性及びゲイン特性を示すグラフである。 図1に示すアンテナの放射パターンを示すグラフである。(a)は、xy面における放射パターンを示し、(b)は、yz面における放射パターンを示し、(c)は、zx面における放射パターンを示す。 図1に示すアンテナにおいて、短絡部と接地部とを省いた場合に得られるVSWR特性を示したグラフである。 (a)は、本発明の一実施形態に係るダイポールアンテナの一構成例を示す平面図である。(b)は、(a)に示すアンテナのVSWR特性を示すグラフである。 (a)は、本発明の一実施形態に係るダイポールアンテナの他の構成例を示す平面図である。(b)は、(a)に示すアンテナのVSWR特性を示すグラフである。 (a)は、本発明の一実施形態に係るダイポールアンテナの更に他の構成例を示す平面図である。(b)は、(a)に示すアンテナのVSWR特性を示すグラフである。 3G/LTE用アンテナとして機能するアンテナ(逆Fアンテナ)の平面図である。 図8に示すアンテナのVSWR特性及びゲイン特性を示すグラフである。 図8に示すアンテナの放射パターンを示すグラフである。(a)は、xy面における放射パターンを示し、(b)は、yz面における放射パターンを示し、(c)は、zx面における放射パターンを示す。 図8に示すアンテナにおいて、分枝(整合パターン)を設けた場合に得られるVSWR特性と、分枝を省いた場合に得られるVSWR特性とを比較したグラフである。 GPS用アンテナとして機能するアンテナ(ループアンテナ)の平面図である。 図12に示すアンテナの入力反射係数特性を示すグラフである。 図12に示すアンテナの放射パターンを示すグラフである。(a)は、水平右旋円偏波(RHCP)と水平左旋円偏波(LHCP)とに関する放射パターンを示し、(b)は、垂直右旋円偏波(RHCP)と垂直左旋円偏波(LHCP)とに関する放射パターンを示す。 (a)は、図12に示すアンテナにおいて、無給電素子を省いた場合に得られる入力反射係数特性を示すグラフである。(b)は、図12に示すアンテナにおいて、無給電素子と短絡部とを省いた場合に得られる入力反射係数特性を示すグラフである。 (a)は、ループアンテナの変形例を示す平面図である。(b)は、そのループアンテナが備える無給電素子群の等価回路である。 図16に示すループアンテナの放射パターンを示すグラフである。 図16に示すループアンテナのVSWR特性を示すグラフである。 図16に示すループアンテナの第1の変形例を示す平面図である。 図16に示すループアンテナの第2の変形例を示す平面図である。 図1、図8、及び図12に示す3つのアンテナの組み合わせ方を示す三面図である。 (a)図8に示すアンテナを図1に示すアンテナの下層に配置する組み合わせ方を示す正面図である。(b)は、図8に示すアンテナを図1に示すアンテナと図12に示すアンテナとの中間層に配置する組み合わせ方を示す正面図である。 図8に示すアンテナを図1に示すアンテナの下層に配置する組み合わせ方を用いた場合に得られる図8に示すアンテナのVSWR特性と、図8に示すアンテナを図1に示すアンテナと図12に示すアンテナとの中間層に配置する組み合わせ方を用いた場合に得られる図8に示すアンテナのVSWR特性とを比較したグラフである。 図8、図1、及び図12に示す3つのアンテナを搭載したアンテナ装置の構成を示す分解斜視図である。
 〔ダイポールアンテナ〕
 本発明の一実施形態に係るダイポールアンテナについて、図1~図7を参照して説明する。なお、本実施形態に係るダイポールアンテナは、DAB(Digital Audio Broadcast)用アンテナとして機能する。ここで、DAB用アンテナとは、DAB向け周波数帯域の何れかにおいて動作するアンテナのことを指す。本実施形態に係るダイポールアンテナは、174MHZ以上240MHz以下の周波数帯域(以下「要求帯域」と記載)において動作するものとする。本実施形態に係るダイポールアンテナのことを、以下、符号2を付して「アンテナ2」と記載する。
 《アンテナの構成》
 本実施形態に係るアンテナ2の構成について、図1を参照して説明する。図1は、アンテナ2の平面図である。なお、以下に説明するアンテナ2の各部の寸法は、例示であって、これに限定されるものではない。すなわち、以下に説明するアンテナ2の各部の寸法は、材料の選択や設計方法(構成方法)などに応じて適宜変更し得るものである。
 アンテナ2は、第1の放射素子21と、第2の放射素子22とを備えたダイポールアンテナである。本実施形態においては、これらを構成する導体箔を1対の誘電体フィルム25で挟み込む構成を採用している。なお、本実施形態においては、50mm×80mmのポリイミドフィルムを誘電体フィルム25として用いる。
 第1の放射素子21及び第2の放射素子22は、何れも、線状又は帯状の導体により構成される。本実施形態においては、幅3.5mmの帯状の導体箔(例えば、銅箔)を第1の放射素子21として用い、幅1.0mmの帯状の導体箔(例えば、銅箔)を第2の放射素子22として用いる。
 第1の放射素子21は、直線状であり、その長さは、32.5mmである。同軸ケーブル6の外側導体は、第1の放射素子21の右端部に接続される。同軸ケーブル6の外側導体が接続される第1の放射素子21上の点2Pを、以下、第1の給電点と呼ぶ。
 第2の放射素子22は、第1の放射素子21の周りを旋回する螺旋状である。同軸ケーブル6の内側導体は、第2の放射素子22の最内周において、第1の放射素子21の右端部に対向する箇所に接続される。同軸ケーブル6の内側導体が接続される第2の放射素子22上の点2Qを、以下、第2の給電点と呼ぶ。
 本実施形態においては、第2の放射素子22の形状を、直線部と四分円部とを交互に連ねた、反時計周りに9×360°旋回する螺旋状としている。ここで、内周側の端部から数えて4k+1番目(k=0、1、…、8)の直線部は、第1の放射素子21の下方において第1の放射素子21の長手軸と平行に延在し、その長さは、31.5mm(k=0)又は33mm(k=1、2、…、8)である。また、内周側の端部から数えて4k+2番目(k=0、1、…、8)の直線部は、第1の放射素子21の右方において第1の放射素子21の短手軸と平行に延在し、その長さは、3.5mmである。また、内周側の端部から数えて4k+3番目(k=0、1、…、8)の直線部は、第1の放射素子21の上方において第1の放射素子21の長手軸と平行に延在し、その長さは、33mmである。また、内周側の端部から数えて4k+4番目(k=0、1、…、8)の直線部は、第1の放射素子21の左方において第1の放射素子21の短手軸と平行に延在し、その長さは、6mmである。一方、四分円部の半径は、第2の放射素子22が螺旋を成すよう、最内周から遠ざかる(最外周に近づく)に従って次第に大きくなっている。なお、最内周の四分円部の外周半径は、2.5mmであり、最外周の四分円部の外周半径は、22.5mmである。
 アンテナ2においては、要求帯域内に共振点を持たせるために、放射素子21~22の全長(第1の放射素子21の長さと第2の放射素子22の長さとの和)を75cm(λ/2)程度にすることが求められる。前述したように第2の放射素子22の形状を螺旋状としているのは、この要求を満たす放射素子21~22を50mm×80mmの領域内に収めるためである。
 第2の放射素子22には、短絡部22a1~22a2と接地部22b1~22b2とが設けられている。短絡部22a1~22a2及び接地部22b1~22b2は、VSWRの値が規定値(例えば、2.5)を超える領域が要求帯域内に形成されることを防止するための構成である。
 短絡部22a1~22a2は、第2の放射素子22上の相異なる点同士を短絡する面状の導体である。より具体的に言うと、第1の短絡部22a1は、第2の放射素子22を構成する直線部のうち、第1の放射素子21の下方に位置する2本の直線部(内周側から数えて3~4番目の直線部)を短絡する長方形状の導体箔(例えばアルミ箔)である。また、第2の短絡部22a2は、第2の放射素子22を構成する直線部のうち、第1の放射素子21の右方に位置する5本の直線部(内周側から数えて4~8番目の直線部)を短絡する長方形状の導体箔(例えばアルミ箔)である。
 接地部22b1~22b2は、第2の放射素子22の最外周上の点をグランドに接続する線状又は帯状の導体である。より具体的に言うと、第1の接地部22b1は、第2の放射素子22の最外周を構成する四分円部のうち、第1の放射素子21の左上に位置する四分円部上の点をグランドに接続する帯状の導体箔(例えばアルミ箔)である。また、第2の接地部22b2は、第2の放射素子22の最外周を構成する四分円部のうち、第1の放射素子21の左下に位置する四分円部上の点をグランドに接続する帯状の導体箔(例えばアルミ箔)である。
 《アンテナの特性、並びに、短絡部及び接地部の効果》
 次に、本実施形態に係るアンテナ2の特性について、図2~図3を参照して説明する。なお、アンテナ2は、後述するアンテナ1(図8参照)及びアンテナ3(図12参照)と組み合わせて使用することが可能なものであり、以下に示す特性は、特定の組み合わせ方でアンテナ1,3と組み合わせた状態で得られたものである。この特定の組み合わせ方については、図21を参照して後述する。
 図2は、VSWR及び効率(ゲイン)の周波数依存性を表すグラフである。要求帯域全域において、VSWRの値が2.5以下に抑えられていること、つまり、リターンロスが十分に小さく抑えられていることが、図2のグラフから見て取れる。また、要求帯域全域において、ゲインの値が-3.5dB以上に保たれていることが、図2のグラフから見て取れる。すなわち、要求帯域全域がアンテナ2の動作帯域となっていることが、図2のグラフから見て取れる。
 図3は、240MHzにおける放射パターンを表すグラフである。(a)は、xy面における放射パターンを示し、(b)は、yz面における放射パターンを示し、(c)は、zx面における放射パターンを示す。少なくとも240MHzにおいて、略無指向な放射パターンが実現されていることが、図3のグラフから見て取れる。
 次に、短絡部22a1~22a2及び接地部22b1~22b2の効果を、図4を参照して確認する。図4は、短絡部22a1~22a2及び接地部22b1~22b2を省略した場合に得られるVSWRの周波数依存性を表すグラフである。
 短絡部22a1~22a2及び接地部22b1~22b2を省略した場合、要求帯域内にVSWR値が規定値(例えば、2.5)を超える領域が現れることが、図4から見て取れる。短絡部22a1~22a2及び接地部22b1~22b2を設けた場合、このような領域が現れないことは、図2に示した通りである。すなわち、短絡部22a1~22a2及び接地部22b1~22b2を設けることによって、要求帯域全域に亘ってVSWRの値を2.5以下に抑え得ることが、図2のグラフと図4のグラフとを比較することによって確認できる。
 なお、アンテナ2は、後述するように、導体板4(図21参照)と平行に配置された場合、導体板4との間に電磁結合及び静電結合を生じる。この場合、アンテナ2は、パッチアンテと見做すこともできる。
 《アンテナの特性に関する補足》
 なお、本実施形態に係るアンテナ2は、後述するアンテナ1(図8参照)及びアンテナ3(図12参照)と組み合わせることなく、単体で利用しても良好な特性が得られるものである。以下、アンテナ2を単体で用いた場合の特性について、図5~図7に基づいて補足する。
 図5(a)は、アンテナ2の構成例を示す平面図である。図5(a)に示すアンテナ2においては、短絡部及び接地部が省略されている。
 図5(b)は、図5(a)に示すように構成されたアンテナ2のVSWR特性を示すグラフである。図5(a)に示すVSWR特性は、アンテナ2を単体で利用した場合(アンテナ1及びアンテナ3と組み合わせずに使用した場合)のVSWR特性である。
 アンテナ2は、短絡部及び接地部を省略したとしても、図5(b)に示すように、要求帯域(DAB帯域)内に共振点を有する。ただし、短絡部及び接地部を省略した場合、図5(b)に示すように、VSWRの値が閾値(例えば4)以下になる帯域の幅は狭い。
 図6(a)は、アンテナ2の他の構成例を示す平面図である。図6(a)に示すアンテナ2は、3つの短絡部22a1~22a3と2つの接地部22b1~22b2とを有している。
 3つの短絡部22a1~22a3は、何れも、第2の放射素子22を構成する区間のうち、互いに隣接する2つの区間を短絡するものである。より具体的に言うと、第1の短絡部22a1は、第2の放射素子22を構成する直線部のうち、第1の放射素子21の下方(第2の放射素子22の内周側の端部が配置される側)に位置する2本の直線部(内周側から数えて3~4番目の直線部)を短絡する。また、第2の短絡部22a2は、第2の放射素子22を構成する直線部のうち、第1の放射素子21の上方(第2の放射素子22の内周側の端部が配置される側と反対側)に位置する2本の直線部(内周側から数えて1~2番目の直線部)を短絡する。また、第3の短絡部22a3は、第2の放射素子22を構成する直線部のうち、第1の放射素子21の上方に位置する2本の直線部(内周側から数えて1~2番目の直線部)を短絡する。
 2つの接地部22b1~22b2は、何れも、第2の放射素子22の最外周を構成する区間をグランドに接続するものである。より具体的に言うと、第1の接地部22b1は、第2の放射素子22の最外周を構成する四分円部のうち、第1の放射素子21の左上に位置する四分円部上の点をグランドに接続する。また、第2の接地部22b2は、第2の放射素子22の最外周を構成する四分円部のうち、第1の放射素子21の左下に位置する四分円部上の点をグランドに接続する。
 図6(b)は、図6(a)に示すように構成されたアンテナ2のVSWR特性を示すグラフである。図6(a)に示すVSWR特性は、アンテナ2を単体で利用した場合(アンテナ1及びアンテナ3と組み合わせずに使用した場合)のVSWR特性である。
 短絡部22a1~22a3及び接地部22b1~22b2を設けたことによって、VSWRの値が閾値(例えば4)以下になる帯域の幅が拡がることが、図6(b)から確かめられる。このように帯域の幅が拡がる要因としては、短絡部22a1~22a3を設けたことによって、放射素子22上に形成される電流路のバリエーションが増大した結果生じる、共振点の生成又はシフトが挙げられる。
 図7(a)は、アンテナ2の更に他の構成例を示す平面図である。図7(a)に示すアンテナ2は、2つの短絡部22a1~22a2と2つの接地部22b1~22b2とを有している。
 2つの短絡部22a1~22a2は、何れも、第2の放射素子22を構成する区間のうち、互いに隣接する3つ以上の区間を短絡するものである。より具体的に言うと、第1の短絡部22a1は、第2の放射素子22を構成する直線部のうち、第1の放射素子21の下方(第2の放射素子22の内周側の端部が配置される側)に位置する6本の直線部(内周側から数えて1~6番目の直線部)を短絡する。また、第2の短絡部22a2は、第2の放射素子22を構成する直線部のうち、第1の放射素子21の上方(第2の放射素子22の内周側の端部が配置される側と反対側)に位置する5本の直線部(内周側から数えて4~8番目の直線部)を短絡する。
 2つの接地部22b1~22b2は、何れも、第2の放射素子22の最外周を構成する区間をグランドに接続するものである。より具体的に言うと、第1の接地部22b1は、第2の放射素子22の最外周を構成する四分円部のうち、第1の放射素子21の左上に位置する四分円部上の点をグランドに接続する。また、第2の接地部22b2は、第2の放射素子22の最外周を構成する四分円部のうち、第1の放射素子21の左下に位置する四分円部上の点をグランドに接続する。なお、第1の接地部22b1は、第2の放射素子22を構成する四分円部のうち、第1の放射素子21の左上に位置する4本の四分円部(外周側から数えて1~4番目の四分円部)を短絡する短絡部を兼ねている。
 図7(b)は、図7(a)に示すように構成されたアンテナ2のVSWR特性を示すグラフである。図7(a)に示すVSWR特性は、アンテナ2を単体で利用した場合(アンテナ1及びアンテナ3と組み合わせずに使用した場合)のVSWR特性である。
 短絡部22a1~22a2及び接地部22b1~22b2を設けたことによって、VSWRの値が閾値(例えば4)以下になる帯域の幅が更に拡がることが、図7(b)から確かめられる。このように帯域の幅が拡がる要因としては、短絡部22a1~22a2を用いて短絡する第1の放射素子21の区間の数を3以上としたことによって、放射素子22上に形成される電流路のバリエーションが更に増大した結果生じる、更なる共振点の生成又はシフトが挙げられる。
 〔統合アンテナ装置への搭載〕
 統合アンテナ装置への搭載は、本実施形態に係るアンテナ2の典型的な実施例のひとつである。本実施形態に係るアンテナ2と共に統合アンテナ装置に搭載されるアンテナとしては、3G(3rd Generation)/LTE(Long Term Evolution)用アンテナやGPS(Global Positioning System)用アンテナなどが挙げられる。以下、3G/LTE用アンテナ、GPS用アンテナ、及び、統合アンテナ装置について順に説明する。
 〔3G/LTE用アンテナ〕
 3G/LTE用アンテナとして機能するアンテナ1について、図8~図11を参照して説明する。
 なお、3G/LTE用アンテナとは、3G向け周波数帯域の何れかと、LTE向け周波数帯域の何れかとの両方において動作するアンテナのことを指す。以下に説明するアンテナ1は、761MHz以上960MHz以下の周波数帯域(以下「低周波側要求帯域」と記載)と、1710MHz以上2130MHz以下の周波数帯域(以下「高周波側要求帯域」と記載)との両方において動作するものとする。
 《3G/LTE用アンテナの構成》
 まず、3G/LTE用アンテナとして機能するアンテナ1の構成について、図8を参照して説明する。なお、以下に説明するアンテナ1の各部の寸法は、例示であって、これに限定されるものではない。すなわち、以下に説明するアンテナ1の各部の寸法は、材料の選択や設計方法(構成方法)などに応じて適宜変更し得るものである。
 アンテナ1は、地板11と放射素子12と短絡部13とを備えた逆F型アンテナである。本実施形態においては、これらを構成する導体箔を1対の誘電体フィルム15で挟み込む構成を採用している。なお、本実施形態においては、4mm×4mmの凸部を有する5mm×140mmのポリイミドフィルムを誘電体フィルム15として用いる。
 地板11は、面状の導体により構成される。本実施形態においては、2.0mm×2.0mmの正方形状の導体箔(例えば、銅箔)を地板11として用いる。同軸ケーブル5の外側導体は、地板11上の中央部に接続される。同軸ケーブル5の外側導体が接続される地板11上の点を、以下、第1の給電点1Pと呼ぶ。
 放射素子12は、線状又は帯状の導体により構成される。本実施形態においては、幅1.5mmの帯状の導体箔(例えば、銅箔)を放射素子12として用いる。放射素子12は、直線状であり、その長手軸が地板11の上辺と平行になるように配置される。同軸ケーブル5の内側導体は、放射素子12の右翼12c(後述)の左端部に接続される。同軸ケーブル5の内側導体が接続される放射素子12上の点を、以下、第2の給電点1Qと呼ぶ。
 放射素子12には、幅3mm、深さ0.5mmの切欠12aが形成されている。切欠12aは、放射素子12の下縁から上縁に向かって掘り込まれており、地板11の上端部が、切欠12aに嵌入する。なお、本明細書においては、放射素子12のうち、図8において切欠12aよりも左側に位置している部分を左翼12bと呼び、図8において切欠12aよりも右側に位置している部分を右翼12cと呼ぶ。
 放射素子12の左翼12bには、幅3mm、長さ7mmの分枝12dが形成されている。分枝12dは、放射素子12の左翼12bから下方へ引き出され、放射素子12の短手軸(長手軸と直交する軸)と平行に延在する。分枝12dを設けることによって、放射素子12に新たな電流路が生じる。その結果、アンテナ1の共振周波数がシフトする。
 なお、アンテナ1においては、高周波側要求帯域内に共振点を設けるために、放射素子12の右翼12cの長さを33mmとし、低周波側要求帯域内に共振点を設けるために、放射素子12の左翼12bの長さを103mmとしている。したがって、放射素子12の全長は、切欠12aの幅3mmと合わせて139mmとなる。
 短絡部13は、地板11と放射素子12とを短絡するためのものであり、線状又は帯状の導体により構成される。本実施形態においては、幅0.5mmの帯状の導体箔(例えば、銅箔)を短絡部13として用いる。
 本実施形態においては、4つの直線部13a~13dからなる帯状の導体箔を短絡部13として用いる。ここで、第1の直線部13aは、地板11の下端から右方へ引き出され、放射素子12の長手軸と平行に延在する。また、第2の直線部13bは、第1の直線部13aの右端から上方へ引き出され、放射素子12の短手軸と平行に延在する。また、第3の直線部13cは、第2の直線部13bの上端から左方へ引き出され、放射素子12の長手軸と平行に延在する。また、第4の直線部13dは、第3の直線部13cの左端から上方へ引き出され、放射素子12の短手軸と平行に延在する。そして、第4の直線部13dの上端は、放射素子12の右翼12cの左端に至る。
 アンテナ1において注目すべき第1の点は、図8に示すように、地板11から引き出された同軸ケーブル5と放射素子12から引き出された分枝12dとを互いに交差させる構成を採用している点である。この構成により、放射素子12と同軸ケーブル5の外側導体との間に電磁結合が生じる。換言すれば、分枝12dが放射素子12と同軸ケーブル5の外側導体との間に介在するインダクタとして機能する。分枝12dの形状及び/又はサイズを変更すれば、この電磁結合の強さが変化し、その結果、アンテナ1の入力インピーダンスが変化する。すなわち、分枝12dを整合パターンとして機能させることができる。
 なお、本実施形態においては、1本の分枝12dを同軸ケーブル5と交差させる構成を採用しているが、これに限定されるものはない。すなわち、分枝12dと同様に構成された2本以上の分枝を同軸ケーブル5と交差させる構成を採用してもよい。この場合、各分枝の形状及び/又はサイズを変更することによっても、分枝の本数を変更することによっても、アンテナ1の入力インピーダンスを変化させることができる。このため、アンテナ1の入力インピーダンスをより広範囲に亘って変化させることが可能になる。
 アンテナ1において注目すべき第2の点は、図8に示すように、分枝12dの先端を通る放射素子12(の長手軸)と平行な直線Mを引いたときに、この直線Mと放射素子12とに挟まれる領域の内部に、地板11を配置する構成を採用している点である。この構成により、アンテナ1の高さを、放射素子12の幅と分枝12dの長さとの和と同程度に抑えることができる。すなわち、アンテナ1の低姿勢化を図ることができる。
 なお、上記の構成を実現し得るのは、地板11のサイズを小型化しているからである。図8に示すように、地板11の上部を切欠12aに嵌入させる構成を採用する場合には、放射素子12の短手方向に関する地板11のサイズを、分枝12dの長さと切欠12aの深さとの和よりも短くすることによって、上記の構成を実現することができる。また、地板11の上部を切欠12aに嵌入させない構成を採用する場合には、放射素子12の短手方向に関する地板11のサイズを、分枝12dの長さよりも短くすることによって、上記の構成を実現することができる。なお、このように地板11のサイズを小型化する場合、同軸ケーブル5をシャーシ等の導体面に沿って敷設することが好ましい。この場合、同軸ケーブル5の外側導体と結合(静電結合及び/又は電磁結合)したシャーシ等の導体面によって、地板11の機能を補完できるからである。
 なお、アンテナ1は、折り曲げたときに所期の性能を発揮するように設計されたものである。より具体的に言うと、その端面がコの字(Uの字)形をなすよう、放射素子12の短手軸方向に延在する2本の直線L~L’でアンテナ1を折り曲げたときに所期の性能を発揮するように設計されている。
 《3G/LTE用アンテナの特性、及び、分枝の効果》
 3G/LTE用アンテナとして機能するアンテナ1の特性について、図9~図10を参照して説明する。なお、アンテナ1は、上述したアンテナ2(図1参照)及び後述するアンテナ3(図12参照)と組み合わせて使用することを想定して設計されたものであり、以下に示す特性は、特定の組み合わせ方でアンテナ2~3と組み合わせた状態で得られたものである。この特定の組み合わせ方については、図21を参照して後述する。
 図9は、VSWR(Voltage Standing Wave Ratio)及び効率(ゲイン)の周波数依存性を表すグラフである。低周波側要求帯域と高周波側要求帯域との両方において、VSWRの値が3以下に抑えられていること、つまり、リターンロスが十分に小さく抑えられていることが、図9のグラフから見て取れる。また、低周波側要求帯域と高周波側要求帯域との両方において、ゲインの値が-3.5dB以上に保たれていることが、図9のグラフから見て取れる。すなわち、低周波側要求帯域と高周波側要求帯域との両方がアンテナ1の動作帯域となっていることが、図9のグラフから見て取れる。
 図10は、787MHzにおける放射パターンを示すグラフである。(a)は、xy面における放射パターンを示し、(b)は、yz面における放射パターンを示し、(c)は、zx面における放射パターンを示す。少なくとも787MHzにおいて、略無指向な放射パターンが実現されていることが、図10の各グラフから見て取れる。
 次に、分枝12dの効果を、図11を参照して確認する。図11は、分枝12dを設けた場合に得られるVSWRの周波数依存性と、分枝12dを省いた場合に得られるVSWRの周波数依存性とを表すグラフである。
 分枝12dを設けることによって、共振周波数が高周波側にシフトすると共に、インピーダンス整合が図られ、動作帯域の帯域幅が拡大することが、図11から見て取れる。例えば、VSWRが3以下となる周波数帯域をアンテナ1の動作帯域と見做した場合、分枝12dを設けることによって、アンテナ1の動作帯域の帯域幅が約1.5倍に拡大する。
 〔GPS用アンテナ〕
 GPS用アンテナとして機能するアンテナ3について、以下、図12~図14を参照して説明する。なお、GPS用アンテナとは、GPS向け周波数の何れかにおいて動作するアンテナのことを指す。以下に説明するアンテナ3は、1575.42MHz(以下、「要求周波数」と記載)において動作するものとする。
 《GPS用アンテナの構成》
 GPS用アンテナとして機能するアンテナ3の構成について、図12を参照して説明する。図12は、アンテナ3の平面図である。なお、以下に説明するアンテナ3の各部の寸法は、例示であって、これに限定されるものではない。すなわち、以下に説明するアンテナ3の各部の寸法は、材料の選択や設計方法(構成方法)などに応じて適宜変更し得るものである。
 アンテナ3は、図12に示すように、放射素子31と、2つの短絡部32a~32bと、無給電素子33とを備えたループアンテナである。本実施形態においては、これらを構成する導体箔を1対の誘電体フィルム35で挟み込む構成を採用している。なお、本実施形態においては、50mm×80mmのポリイミドフィルムを誘電体フィルム35として用いる。
 放射素子31は、線状又は帯状の導体により構成される。本実施形態においては、短軸42mm、長軸70mmの楕円上を通る、最小幅2mm、最大幅5mmの帯状の導体箔(例えば、銅箔)を放射素子31として用いる。放射素子31の両端は、上記楕円の中心から見て6時方向に位置し、放射素子31の幅は、上記楕円の中心から見て0時方向及び6時方向において最小となり、3時方向及び9時方向において最大となる。
 放射素子31の始端部(放射素子31を時計回りに辿ったときに始点となる端部)には、上記楕円の中心に向かって突出する第1突出部31aが形成されている。第1突出部31aは、L字状であり、放射素子31の始端部から上方に延伸する第1直線部と、この第1直線部の上端から右方に延伸する第2直線部とにより構成される。また、放射素子31の終端部(放射素子31を時計回りに辿ったときに終点となる端部)には、上記楕円の中心に向かって突出する第2突出部31bが形成されている。第2突出部31bは、L字状であり、放射素子31の終端部から上方に延伸する第1直線部と、この第1直線部の上端から左方に延伸する第2直線部とにより構成される。第1突出部31aと第2突出部31bとは、第1突出部31aの第2直線部が、放射素子31の終端部と第2突出部31bの第2直線部との間に入り込むように組み合わせられる。
 同軸ケーブル7の内側導体は、第1突出部31a(より具体的には、第1突出部31aの第2直線部)に接続される。同軸ケーブル7の内側導体が接続される第1突出部31a上の点3Pを、以下、第1の給電点と呼ぶ。一方、同軸ケーブル7の外側導体は、第2突出部31b(より具体的には上記第4の直線部)に接続される。同軸ケーブル7の外側導体が接続される第2突出部31b上の点3Qを、以下、第2の給電点と呼ぶ。第2の給電点3Qから上方に向かって引き出された同軸ケーブル7は、誘電体フィルム35の中央に設けられた貫通穴を通ってアンテナ3の裏面へと導かれ、3時方向に引き出される。
 2つの短絡部32a~32bは、アンテナ3の共振周波数を要求周波数にシフトさせると共に、インピーダンス整合を図るべく、アンテナ3の入力インピーダンスを変化させるための構成である。
 第1短絡部32aは、線状又は帯状の導体により構成され、放射素子31上の相異なる2点を短絡する。具体的には、上記楕円の中心から見て0時方向に位置する放射素子31上の点(以下「0時点」と記載)と、上記楕円の中心から見て9時方向に位置する放射素子31上の点(以下「9時点」と記載)とを短絡する。本実施形態においては、放射素子31の0時点から下方に延伸する第1直線部と、放射素子31の9時点から右方に延伸する第2直線部とを有する帯状の導体箔(例えば銅箔)を第1短絡部32aとして用いる。
 第2短絡部32bは、線状又は帯状の導体により構成され、放射素子31上の相異なる2点を短絡する。具体的には、上記楕円の中心から見て6時方向に位置する放射素子31上の点(以下「6時点」とも記載)と、上記楕円の中心から見て3時方向に位置する放射素子31上の点(以下「3時点」とも記載)とを短絡する。本実施形態においては、放射素子31の6時点から上方に延伸する第1直線部と、放射素子31の3時点から左方に延伸する第2直線部とを有する帯状の導体箔(例えば銅箔)を第2短絡部32bとして用いる。
 無給電素子33は、インピーダンス整合を図るべく、アンテナ3の入力インピーダンスを変化させるための構成である。
 無給電素子33は、放射素子31の外周に沿う外縁を有する面状の導体により構成される。本実施形態においては、放射素子31の外周に沿う外縁の他に、誘電体フィルム35の外周に沿う外縁を有する略L字形の導体箔(例えば、銅箔)を無給電素子33として用いる。なお、無給電素子33は、放射素子31から離隔されており、無給電素子33と放射素子31との間には、直流的な導通がない。
 なお、ループアンテナは、ゲインがアンテナ形成面の法線方向に集中した放射パターンを有しているため、GPS波の受信に適している。何故なら、アンテナ形成面を水平に保っておけば、天頂方向に位置する衛生から到来するGPS波を何時でも感度良く受信できるからである。しかしながら、このようなゲインの集中が極端になり過ぎると、衛星が天頂以外の方向に位置する場合や、アンテナ形成面を水平に保てなかった場合に、受信障害を生じる可能性がある。前述した無給電素子33は、インピーダンス整合を図る機能の他に、このようなゲインの集中を緩和する機能を有する。このため、無給電素子33をループアンテナに付加することによって、このような受信障害が生じる可能性を低減するという効果を奏する。
 なお、アンテナ3は、後述するように、導体板4(図21参照)と平行に配置された場合、導体板4との間に電磁結合及び静電結合を生じる。この場合、アンテナ3は、パッチアンテと見做すこともできる。
 《GPS用アンテナの特性、並びに、短絡部及び無給電素子の効果》
 次に、GPS用アンテナとして機能するアンテナ3の特性について、図13~図14を参照して説明する。なお、アンテナ3は、前述したアンテナ1(図8参照)及びアンテナ2(図1参照)と組み合わせて使用することを想定して設計されたものであり、以下に示す特性は、特定の組み合わせ方でアンテナ1~2と組み合わせた状態で得られたものである。この特定の組み合わせ方については、図21を参照して後述する。
 図13は、アンテナ3の入力反射係数S1,1の大きさの周波数依存性を表すグラフである。要求周波数における入力反射係数S1,1の大きさが-20dB以下に抑えられていることが、図13のグラフから見て取れる。すなわち、要求周波数がアンテナ3の動作帯域に含まれており、また、要求周波数におけるリターンロスが十分に小さく抑えられていることが、図13のグラフから見て取れる。
 図14は、1575.42MHzにおけるアンテナ3の放射パターンを示すグラフである。(a)は、水平右旋円偏波(RHCP:Right Handed Circularly Polarized Wave)と水平左旋円偏波(LHCP:Left Handed Circularly Polarized Wave)とに関する放射パターンを示し、(b)は、垂直右旋円偏波と垂直左旋円偏波とに関する放射パターンを示す。θ=0°に関して0dBi以上のゲインが得られることが、図14に示すグラフから見て取れる。また、図14からは、θ≦60°に関し-10dBi以上のゲインが得られることが見て取れる。このように比較的広い角度域に関して比較的高いゲインが得られるのは、アンテナ形成面の法線方向へのゲインの集中を緩和する機能を無給電素子33が有しているからに他ならない。
 次に、短絡部32a~32b及び無給電素子33の効果を、図15を参照して確認する。図15は、入力反射係数S1,1の大きさの周波数依存性を表すグラフである。(a)は、無給電素子33を省いた場合の結果を示し、(b)は、短絡部32a~32b及び無給電素子33を省いた場合の結果を示す。
 図15(a)のグラフを図13のグラフと比較すると、無給電素子33を省くことによって、要求周波数における入力反射係数S1,1の大きさが大きくなることが分かる。これは、無給電素子33を設けることによって、インピーダンス整合が図られ、その結果、要求周波数におけるリターンロスが低下することを意味する。
 また、図15(b)のグラフを図15(a)のグラフと比較すると、短絡部32a~32bを省くことによって、共振周波数が要求周波数からずれ、共振周波数における入力反射係数S1,1の大きさが大きくなることが分かる。これは、第1短絡部32aを設けることによって、放射素子31に新たな電流路が生じ、その結果、共振周波数がシフトすることを意味する。また、第2短絡部32aを設けることによって、インピーダンス整合が図られ、その結果、共振周波数におけるリターンロスが低下することを意味する。
 〔ループアンテナの変形例〕
 上述したループアンテナの変形例について、図16~図20を参照して説明する。
 《ループアンテナの構成》
 まず、本変形例に係るループアンテナ50の構成について、図16を参照して説明する。図16(a)は、ループアンテナ50の構成を示す平面図である。図16(b)は、ループアンテナ50が備えている無給電素子54~55の等価回路を示す回路図である。
 ループアンテナ50は、図16に示すように、放射素子51と、1対の給電部52a~52bと、1対の短絡部53a~53bと、第1の無給電素子54と、第2の無給電素子55とを備えている。本変形例において、放射素子51、給電部52a~52b、及び短絡部53a~53bは、1枚の導体箔(例えば、銅箔)により一体成形されている。また、第1の無給電素子54は、放射素子51等を構成する導体箔から孤立した他の導体箔により構成されている。また、第2の無給電素子55は、放射素子51等を構成する導体箔からも第1の無給電素子54を構成する導体箔からも孤立した更に他の導体箔により構成されている。
 放射素子51は、閉曲線上に配置された線状又は帯状導体により構成される。本変形例においては、短軸45mm、長軸52mmの楕円上に配置された幅1mmの帯状の導体箔(例えば、銅箔)を放射素子51として用いる。放射素子51の一方の端部51aは、上記楕円の中心から0時方向に伸びる直線を介して、放射素子51の他方の端部51bと対向している。
 給電部52aは、放射素子51の一方の端部51aから上記楕円の中心付近に至る線分上に配置された線状又は帯状導体である。本変形例においては、幅1mmの帯状の導体箔を給電部52aとして用いる。給電部52aの先端には、同軸ケーブルの外側導体が接続される給電点Pが設けられる。したがって、放射素子51の一方の端部51aは、この給電部52aを介して同軸ケーブルの外側導体と接続されることになる。
 給電部52bは、放射素子51の他方の端部51bから上記楕円の中心付近に至る線分上に配置された線状又は帯状導体である。本変形例においては、幅1mmの帯状の導体箔を給電部52bとして用いる。給電部52bの先端には、同軸ケーブルの内側導体が接続される給電点Qが設けられる。したがって、放射素子51の他方の端部51bは、この給電部52bを介して同軸ケーブルの内側導体と接続されることになる。
 短絡部53aは、上記楕円の中心から見て9時方向に位置する放射素子51上の点51cと、給電点Pとを短絡するための構成である。本変形例においては、放射素子51上の点51cから上記楕円の中心付近に至る線分上に配置された、幅1mmの帯状の導体箔を短絡部53aとして用いる。
 短絡部53bは、上記楕円の中心から見て3時方向に位置する放射素子51上の点51dと、給電点Pとを短絡するための構成である。本変形例においては、放射素子51上の点51dから上記楕円の中心付近に至る直線上に配置された、幅1mmの帯状の導体箔を短絡部53bとして用いる。
 なお、給電部52bの先端には、給電部52a側に突出した突出部が設けられている。そして、給電部52aの先端は、この突出部に沿うように屈曲している。また、上記楕円の中心の上方に位置する給電部52aの先端と、該中心の左方に位置する短絡部53aの先端とは、四分円弧上に配置された帯状導体(幅2mm)を介して互いに接続されている。そして、上記楕円の中心の上方に位置する給電部52bの先端と、該中心の右方に位置する短絡部53bの先端とは、四分円弧上に配置された帯状導体(幅2mm)を介して互いに接続されている。本変形例においては、このような構成を採用することによって、上記楕円の中心から0時方向に伸びる直線上に給電点P及び給電点Qの双方を配置することを可能ならしてめている。これにより、給電点P及び給電点Qから同直線に沿って引き出された同軸ケーブルに掛かるストレスが軽減される。
 第1の無給電素子54は、主要部54bと、第1の延長部54aと、第2の延長部54cとにより構成されている。主要部54bは、上記楕円の中心から見て6時方向から9時方向に亘って放射素子51の外周に沿う外縁を有する略L字型の面状導体である。第1の延長部54aは、上記楕円の中心から見て9時方向に位置する主要部54bの端部から0時方向に直線的に伸びる帯状導体である。第2の延長部54cは、上記楕円の中心から見て6時方向に位置する主要部54bの端部から3時方向に直線的に伸びる帯状導体である。
 ループアンテナ50において、第1の無給電素子54の第2の延長部54cは、右旋円偏波の利得が最大となる方向(以下、「最大利得方向」と記載)の傾きを変化させるという機能を有する。すなわち、第2の延長部54cの長さを短くすると、右旋円偏波の最大利得方向の傾きが小さくなり、第2の延長部54cの長さを長くすると、右旋円偏波の最大利得方向の傾きが大きくなる。
 第2の無給電素子55は、主要部55bと、第1の延長部55aと、第2の延長部55cとにより構成されている。主要部55bは、上記楕円の中心から見て0時方向から3時方向に亘って放射素子51の外周に沿う外縁を有する略L字型の面状導体である。第1の延長部55aは、上記楕円の中心から見て0時方向に位置する主要部55bの端部から9時方向に直線的に伸びる帯状導体である。第2の延長部55cは、上記楕円の中心から見て3時方向に位置する主要部55bの端部から6時方向に直線的に伸びる帯状導体である。
 ループアンテナ50において、第2の無給電素子55の第2の延長部55cは、共振周波数を変化させるという機能を有する。すなわち、第2の延長部55cの長さを短くすると、共振周波数が高周波側にシフトし、第2の延長部55cの長さを長くすると、共振周波数が低周波側にシフトする。また、第2の延長部55cの長さを変化させると、ループアンテナ50の位相角が変化する。
 第1の無給電素子54の第1の延長部54aの先端と、第2の無給電素子55の第1の延長部55aの先端とは、容量結合している。すなわち、第1の無給電素子54の第1の延長部54aの先端と、第2の無給電素子55の第1の延長部55aの先端との間のギャップ56は、キャパシタンスを有している。
 第1の無給電素子54と第2の無給電素子55とからなる無給電素子群は、図16(b)に示すLC回路と等価である。図16(b)に示すLC回路において、L1は、第1の無給電素子54の自己インダクタンスを表し、L2は、第2の無給電素子55の自己インダクタンスを表す。また、C1は、第1の無給電素子54とグランド面との間のキャパシタンスを表し、C2は、第2の無給電素子55とグランド面との間のキャパシタンスを表す。また、C3は、上述したギャップ56のキャパシタンスを表す。第1の無給電素子54と第2の無給電素子55とからなる無給電素子群は、図16(b)に示すLC回路としての共振周波数を有している。
 放射素子51に電流が流れると、無給電素子群にも誘導電流が流れる。従って、ループアンテナ50の放射する電磁波は、放射素子51から放射される電磁波と無給電素子群から放射される電磁波とを重ね合わせたものとなる。ギャップ56の間隔を適宜変更し、無給電素子群の共振周波数を放射素子51の共振周波数と一致させることによって、当該共振周波数においてループアンテナ50から放射される電磁波の強度を、同周波数において放射素子51(単体)が放射する電磁波の強度よりも強くすることができる。すなわち、ギャップ56の間隔を適宜変更し、無給電素子群の共振周波数を放射素子51の共振周波数と一致させることによって、当該共振周波数を含む帯域におけるループアンテナ50のVSWR値を、同帯域における放射素子51(単体)のVSWR値よりも小さくすることができる。
 上述したように、ループアンテナ50において、第1の無給電素子54の第2の延長部54cは、右旋円偏波の最大利得方向を変化させるという機能を有する。この点について、図17を参照して説明する。
 図17は、ループアンテナ50の放射パターンを示すグラフである。(a)は、延長部54cが付加されていない場合の放射パターンを示し、(b)は、延長部54cが付加されている場合の放射パターンを示す。各グラフにおいて、RHCPは、右旋円偏波の放射パターンを表し、LHCPは、左旋円偏波の放射パターンを表す。
 延長部54cが付加されていない場合、図17(a)に示すように、右旋円偏波の最大利得方向は、アンテナ形成面(図16におけるxy面)と直交する方向(図16におけるz軸方向)である。これに対して、延長部54cを付加した場合、図17(b)に示すように、右旋円偏波の最大利得方向が約30度傾く。
 この最大利得方向の傾きは、延長部54cの長さを変化させることによって変化する。具体的には、延長部54cの長さを短くすると、最大利得方向の傾きが小さくなり、延長部54cの長さを長くすると、最大利得方向の傾きが大きくなる。したがって、右旋円偏波の最大利得方向を測定しながら延長部54cの長さを調整する工程を含めることによって、右旋円偏波の最大利得方向の傾きが所望の値となるループアンテナ50を製造することが可能になる。
 上述したように、ループアンテナ50においては、第1の無給電素子54と第2の無給電素子55との間のギャップ56について、その間隔を適宜調整することによって、VSWR値を低下させることができる。この点について、図18を参照して説明する。
 図18は、1.575GHz近傍におけるループアンテナ50のVSWR特性を示すグラフである。図18において、VSWR0は、第1の無給電素子54及び第2の無給電素子55の双方を取り去った場合のVSWR特性を表し、VSWR1は、第1の無給電素子54及び第2の無給電素子55の双方を付加した後のVSWR特性を表し、VSWR1は、第1の無給電素子54及び第2の無給電素子55の双方を付加し、更に、1.575GHzのVSWR値を最小化するようギャップ56のギャップ間隔を調整した後のVSWR特性を示す。
 図18に示すように、第1の無給電素子54及び第2の無給電素子55の双方を付加することによって、1.5GHz以下の帯域においてVSWR値が低下し、更に、ギャップ56のギャップ間隔を調整することによって、1.575GHzにおけるVSWR値が低下する。
 このように、ギャップ56のギャップ間隔を調整することによって、所望の周波数におけるVSWR値を変化させることができる。したがって、所望の周波数におけるVSWR値を測定しながらギャップ56のギャップ間隔を調整する工程を含めることによって、所望の周波数において低いVSWR値を有するループアンテナ50を製造することが可能になる。
 ループアンテナ50において、放射素子51は楕円の周上に配置されるものとしたが、これに限定されるものではない。例えば、放射素子51は、図19に示すようにメアンダ化されていてもよいし、図20に示すように長方形の周上に配置されていてもよい。また、ループアンテナ50において、短絡部53a~53bは、図20に示すように省略してもよい。
 〔アンテナの組み合わせ方〕
 前述した3つのアンテナ1~3の組み合わせ方について、図21を参照して説明する。図21は、これら3つのアンテナ1~3の組み合わせ方を示す三面図である。これら3つのアンテナ1~3は、図21に示すように組み合わせた状態で、導体板4の近傍において使用することを想定して設計されてものである(図21において、導体板4は、正面図及び側面図においてのみ図示し、平面図においては図示を省略している)。なお、実施例として後述する統合アンテナ装置100(図24参照)においては、統合アンテナ装置100が備える金属ベース101及び/又は統合アンテナ装置100が載置される自動車のルーフが導体板4に該当する。
 アンテナ1は、図21に示すように、その主面が導体板4の主面と垂直になるように配置される。また、アンテナ1は、平面図に示すように、その端面がコの字型をなすように折り曲げられている。
 アンテナ2は、図21に示すように、その主面が導体板4の主面と平行になるように配置される。この際、平面図に示すように、アンテナ2の主面は、三方からアンテナ1の端面に取り囲まれる。また、正面図及び側面図に示すように、アンテナ2の端面は、アンテナ1の主面の上端(導体板4側と反対側の端)と重なる。
 アンテナ3は、図21に示すように、その主面が導体板4の主面と平行になるように配置される。この際、平面図に示すように、アンテナ3の主面は、アンテナ1の端面に取り囲まれ、アンテナ2の主面と重なる。また、正面図及び側面図に示すように、アンテナ3の端面は、アンテナ1の主面の上端よりも上方に位置するように配置される。
 図21に示す組み合わせに関して注目すべき第1の点は、導体板4の主面を基準面として、アンテナ1を、その主面が上記基準面と垂直になるように配置し、アンテナ2を、その主面が上記基準面と平行になるように、かつ、その端面がアンテナ1の主面の上端と重なるように配置する構成を採用している点である。この構成により、上記基準面と垂直な方向に関して、配置に要するスペースを殆ど追加することなく、アンテナ1にアンテナ2を組み合わせることができる。
 なお、図21においては、側方から見てアンテナ2の端面がアンテナ1の主面の上端と重なる構成を採用しているが、これに限定されるものではない。すなわち、側方から見てアンテナ2の端面が、アンテナ1の主面の上端よりも下方、かつ、アンテナ1の主面の下端よりも上方に位置する構成であっても、図21に示す構成と同様の効果を得ることができる。要するに、側方から見てアンテナ2の端面がアンテナ1の主面と重なる構成であれば、図21に示す構成と同様の効果を得ることができる。
 ただし、アンテナ2が、DAB用アンテナのように地上送信局から送信される電磁波を受信するものである場合、図21に示すように、側方から見てアンテナ2の端面がアンテナ1の主面の上端と重なる構成が最良である。何故なら、側方から見てアンテナ2の端面がアンテナ1の主面の上端よりも下方に位置する場合、側方から到来する電磁波がアンテナ1によって遮蔽されてしまうからである。
 図21に示す組み合わせに関して注目すべき第2の点は、上方から見てアンテナ1の端面がアンテナ2の主面の外縁に沿うように、アンテナ1を折り曲げている点である。この構成により、上記基準面と平行な方向に関して、配置に要するスペースを殆ど追加することなく、アンテナ2にアンテナ1を組み合わせることができる。
 なお、図21においては、上方から見てアンテナ1の端面がアンテナ2の主面の3辺に沿うように、アンテナ1を2箇所で折り曲げる構成を採用しているが、これに限定されるものではない。すなわち、上方から見てアンテナ1の端面がアンテナ2の主面の2辺に沿うように、アンテナ1を1箇所で折り曲げる構成、又は、上方から見てアンテナ1の端面がアンテナ2の主面の4辺に沿うように、アンテナ1を4箇所で折り曲げる構成であっても、図21に示す構成と同様の効果が得られる。
 図21に示す構成において注目すべき第3の点は、アンテナ3を、その主面が上記基準面と平行になるように配置する構成を採用している点である。これにより、アンテナ3を、その主面が上記基準面と垂直になるように配置する構成を採用する場合と比べて、アンテナ3をアンテナ1~2に組み合わせる際に生じる上記基準面と垂直な方向に関するスペースの増加を小さくすることができる。
 DAB波を受信するアンテナ2をGPS波を受信するアンテナ3よりも上記基準面に近い側に配置する構成は、以下の2つの意味で有利な構成である。
 まず、GPS波の標準電界強度は、DAB波の標準電界強度よりも弱く、-130~-140dBm程度である。したがって、より上層に配置された他の平面アンテナの遮蔽作用による減衰が生じると、受信障害を帰結する可能性が高い。一方、DAB波の標準電界強度は、GPS波の標準電界強度よりも強く、ー60dBm程度である。したがって、より上層に配置された他の平面アンテナの遮蔽作用による減衰が生じても、受信障害を帰結する可能性が低い。このため、受信障害が生じる可能性を最小化するためには、標準電界強度の弱いGPS波を受信するアンテナ3を、標準電界強度の強いDAB波を受信するアンテナ2よりも上層に(上記基準から遠い側に)配置することが好ましい。
 なお、より標準電界強度の弱い電磁波を受信する平面アンテナをより標準電界強度の強い電磁波を受信する平面アンテナよりも上層に配置するという設計指針は、言うまでもなく、積層する平面アンテナの枚数に拠らず有効である。
 また、GPS波は、天頂方向から到来する電磁波である。したがって、より上層に配置された他の平面アンテナの遮蔽作用による減衰が生じると、受信障害を帰結する可能性が高い。一方、DAB波は、水平方向から到来する電磁波である。したがって、より上層に配置された他の平面アンテナの遮蔽作用による減衰が生じても、受信障害を帰結する可能性が低い。このため、受信障害が生じる可能性を最小化するためには、天頂方向から到来するGPS波を受信するアンテナ3を、水平方向から到来するDAB波を受信するアンテナ2よりも上層に(上記基準から遠い側に)配置することが好ましい。
 なお、天頂方向から到来する電磁波を受信する平面アンテナを最上層に積層するという設計指針は、言うまでもなく、積層する平面アンテナの枚数に拠らず有効である。
 なお、空間の効率的利用という観点からすれば、図22(a)の正面図に示すように、アンテナ1をアンテナ2よりも下層に配置する構成よりも、図22(b)の正面図に示すように、アンテナ1をアンテナ2とアンテナ3との中間層に配置する構成の方が有利である。しかしながら、後者の構成を採用した場合、以下に説明するように、アンテナ1が所期の性能を発揮することができない。
 図23は、前者の構成を採用した場合に得られるアンテナ1のVSWR特性(灰色の線で示す)と、後者の構成を採用した場合に得られるアンテナ1のVSWR特性(黒の線で示す)とを示すグラフである。アンテナ1には、前述したように、低周波側要求帯域(761MHz以上960MHz以下)と高周波側要求(1710MHz以上2130MHz以下)との両方において動作することが求められる。しかしながら、後者の構成を採用した場合、高周波側要求帯域の一部でVSWRの値が-3dBを超えてしまうことが、図23のグラフから見て取れる。このことから、アンテナ1をアンテナ2よりも下層に配置する構成が、空間の効率的利用とアンテナ1のVSWR特性とを両立した最良の構成であることが分かる。
 〔統合アンテナ〕
 次に、3つのアンテナ1~3を組み合わせた統合アンテナ装置100について、図24を参照して説明する。図24は、統合アンテナ装置100の分解斜視図である。
 統合アンテナ装置100は、自動車のルーフへの搭載に適した車載用アンテナ装置であり、図24に示すように、3つのアンテナ1~3に加え、金属ベース101と、回路基板102と、ゴムベース103と、スペーサ104と、レドーム105とを備えている。
 金属ベース101は、角丸矩形の板状部材であり、その材質はアルミニウムである。金属ベース101の上面には、4つのスペーサ101aが設けられている。これら4つのスペーサ101aは、アンテナ2の下面との間に介在し、アンテナ2を金属ベース101から離隔させるためのものである。本実施形態において、スペーサ101aの高さは、5mmに設定される。これにより、アンテナ2は、金属ベース101から5mm離隔される。
 回路基板102は、長方形の板状部材であり、前述した金属ベース101と後述するゴムベース103との間に挟み込まれる。回路基板102には、2つの増幅回路が形成されている。一方の増幅回路は、DAB用のアンテナ2にて生成された電気信号を増幅するためのものであり、他方の増幅回路は、GPS用のアンテナ3にて生成された電気信号を増幅するためのものである。
 ゴムベース103は、金属ベース11と略同一形状の板状部材であり、その材質はゴムである。ゴムベース103の外縁には、下方に迫り出したスカート部が設けられており、前述した金属ベース101は、このスカートに囲まれたゴムベース103の下側の空間に嵌め込まれる。また、ゴムベース103には、金属ベース101の上面に設けられたスペーサ101aを貫通させるための貫通孔が設けられている。これにより、金属ベース101を樹脂ベース103の下側の空間に嵌め込んだとき、金属ベース101の上面に設けられたスペーサ101aがゴムベース103の上側に露出する。
 スペーサ104は、アンテナ2とアンテナ3との間に介在する板状部材であり、その材質はモールド成形された樹脂である。スペーサ104は、その厚みにより、アンテナ2とアンテナ3とを離隔させる。本実施形態において、スペーサ104の厚みは、5mmに設定される。これにより、アンテナ2は、アンテナ3から5mm離隔される。
 レドーム105は、船底形のドーム状部材であり、その外縁がゴムベースに嵌合する。これにより、ゴムベース103とレドーム105とによって密閉された、アンテナ1~3を収容するための空間ができる。この密閉が保たれている限り、屋外環境においてアンテナ1~3が雨水に晒される虞はない。また、レドーム105の材質は、樹脂である。このため、アンテナ装置100に到来した電磁波の電界強度がレドーム105によって減衰する虞はない。
 統合アンテナ装置100には、3つのアンテナ1~3が搭載される。これら3つのアンテナ1~3の構成、及び、これらの3つのアンテナ1~3の組み合わせ方は、前述したとおりである。
 〔まとめ〕
 本明細書には、少なくとも以下の発明が記載されている。
 すなわち、本明細書には、2次元面内に形成された地板と放射素子と短絡部とを備えた逆Fアンテナであって、上記放射素子は、直線状であり、上記放射素子には、上記地板から引き出された同軸ケーブルと交差する分枝が設けられており、上記地板は、上記分枝の先端を通り上記放射素子に平行な直線と上記放射素子との間の領域に形成されている、ことを特徴とするアンテナが記載されている。
 上記の構成によれば、上記分枝を設けたことによって、上記放射素子に新たな電流路が生じ、当該逆Fアンテナの共振周波数が変化する。また、上記分枝を上記同軸ケーブルと交差させたことによって、上記放射素子と上記同軸ケーブルの外側導体の間に電磁結合が生じ、当該逆Fアンテナの入力インピーダンスが変化する。すなわち、上記の構成によれば、分枝の形状、サイズ、本数等を適宜変更することによって、要求される周波数帯域において動作し、かつ、要求される周波数帯域におけるリターンロスの小さい逆Fアンテナを実現することができる。
 しかも、上記の構成によれば、上記2次元面において上記放射素子と直交する方向に関する当該逆Fアンテナのサイズを、上記放射素子の幅と上記分枝の長さとの和と同程度に抑えることができる。したがって、当該逆Fアンテナを統合アンテナ装置に搭載する場合、当該逆Fアンテナを統合アンテナ装置の台座に垂直になるように配置すれば、台座と直交する方向に関する統合アンテナのサイズを小さく抑えることができる。
 また、本明細書には、2次元面内に形成された第1の放射素子と第2の放射素子とを備えたダイポールアンテナであって、上記第1の放射素子は、直線状であり、上記第2の放射素子は、上記第1の放射素子の周りを旋回する螺旋状である、ことを特徴とするアンテナが記載されている。
 上記の構成によれば、上記第1の放射素子の長さと上記第2の放射素子の長さとの和を、要求される周波数帯域において当該ダイポールアンテナを動作させるために必要な長さとしながらも、上記第1の放射素子と上記第2の放射素子とを、要求されるサイズを有する領域の中に配置することができる。したがって、当該ダイポールアンテナを統合アンテナ装置に搭載する場合、当該ダイポールアンテナを統合アンテナ装置の台座と平行になるように配置すれば、台座と平行な方向に関する統合アンテナのサイズを小さく抑えることができる。
 上記ダイポールアンテナは、上記第2の放射素子上の異なる点同士を短絡する短絡部と、上記第2の放射素子の最外周上の点をグランドに接続する接地部と、を更に備えている、ことが好ましい。
 上記の構成によれば、VSWRの値が規定値を超える領域が要求される周波数帯域に現れることのないダイポールアンテナを実現することができる。
 また、本明細書には、楕円上を通る放射素子を備えたループアンテナであって、上記楕円の内部に配置された短絡部であって、上記放射素子上の2点間を短絡する短絡部を備えている、ことを特徴とするアンテナが記載されている。
 上記の構成によれば、上記短絡部を設けたことによって、上記放射素子に新たな電流路が生じ、当該ループアンテナの共振周波数が変化する。また、上記短絡部を設けたことによって、当該ループアンテナの入力インピーダンスが変化する。すなわち、上記の構成によれば、短絡部の形状及び/又はサイズを適宜変更することによって、要求される周波数帯域において動作し、かつ、要求される周波数帯域におけるリターンロスの小さいループアンテナを実現することができる。
 しかも、上記の構成によれば、上記短絡部を上記放射素子が通る楕円の内部に配置しているので、上記短絡部を設けたことに伴って上記ループアンテナのサイズが大きくなることがない。したがって、当該ループアンテナを統合アンテナ装置に搭載する場合、当該ループアンテナを統合アンテナ装置の台座と平行になるように配置すれば、台座と平行な方向に関する統合アンテナのサイズを小さく抑えることができる。
 なお、上記「楕円」は、円を含まない狭義の楕円ではなく、円を含む広義の楕円を意味する。
 上記ループアンテナは、上記放射素子の外周に沿う外縁を有する無給電素子を更に備えている、ことが好ましい。
 上記の構成によれば、無給電素子を設けたことによって、共振周波数を変化させることなく、要求される周波数帯域における入力反射計数を小さくすることができる。すなわち、要求される周波数帯域におけるリターンロスが更に小さいアンテナを実現することができる。
 上記放射素子は、上記楕円上を通るループ部と、上記楕円の中心から見て0時方向に位置する上記ループ部の両端から上記楕円の中心付近に向かって伸びる1対の給電部とにより構成されており、上記短絡部は、上記1対の給電部の先端から9時方向及び3時方向に向かって伸びる1対の短絡部により構成されており、上記無給電素子は、上記楕円の中心から見て6時方向から9時方向に亘って上記ループ部の外周に沿う外縁を有する面状導体を主要部とし、上記楕円の中心から見て9時方向に位置する該主要部の端部から0時方向に伸びる延長部を有する第1の無給電素子と、上記楕円の中心から見て0時方向から3時方向に亘って上記放射素子の外周に沿う外縁を有する面状導体を主要部とし、上記楕円の中心から見て0時方向に位置する該主要部の端部から9時方向に伸びる延長部を有する第2の無給電素子とにより構成されており、上記第1の無給電素子の上記延長部の先端と上記第2の無給電素子の上記延長部の先端とが容量結合している、ことが好ましい。
 〔付記事項〕
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、ダイポールアンテナ一般に広く適用することができる。例えば、移動体又は移動端末に搭載するアンテナ装置として、あるいは、そのようなアンテナ装置に搭載するアンテナとして、好適に利用することができる。移動体の例としては、自動車、鉄道車両、船舶などが挙げられる。移動端末の例としては、携帯電話端末、PDA(Personal Digital Assistance)、タブレット型PC(Personal Computer)などが挙げられる。
 1     アンテナ(3G/LTE用、逆Fアンテナ)
 11    地板
 12    放射素子
 12d   分枝
 13    短絡部
 2     アンテナ(DAB用、ダイポールアンテナ)
 21    放射素子
 22    放射素子
 22a1  短絡部
 22a2  短絡部
 22b1  接地部
 22b2  接地部
 3     アンテナ(GPS用、ループアンテナ)
 31    放射素子
 32a   短絡部
 32b   短絡部
 33    無給電素子
 100   アンテナ装置(車載用)
 101   金属ベース
 102   回路基板
 103   ゴムベース
 104   スペーサ
 105   レドーム

Claims (3)

  1.  2次元面内に形成された第1の放射素子と第2の放射素子とを備えたダイポールアンテナであって、
     上記第1の放射素子は、直線状であり、
     上記第2の放射素子は、上記第1の放射素子の周りを旋回する螺旋状である、
    ことを特徴とするダイポールアンテナ。
  2.  上記第2の放射素子上の異なる点同士を短絡する短絡部と、上記第2の放射素子の最外周上の点をグランドに接続する接地部と、を更に備えている、
    ことを特徴とする請求項1に記載のダイポールアンテナ。
  3.  上記短絡部は、上記第2の放射素子を構成する区間のうち、互いに隣接する3つ以上の区間の短絡する、
    ことを特徴とする請求項2に記載のダイポールアンテナ。
PCT/JP2013/054275 2012-02-21 2013-02-21 ダイポールアンテナ WO2013125618A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13751788.4A EP2819244A4 (en) 2012-02-21 2013-02-21 DOUBLET ANTENNA
CN201380010052.0A CN104126249B (zh) 2012-02-21 2013-02-21 偶极天线
US14/463,313 US9385431B2 (en) 2012-02-21 2014-08-19 Dipole antenna

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012035618 2012-02-21
JP2012-035618 2012-02-21
JP2012-147988 2012-06-29
JP2012147988 2012-06-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/463,313 Continuation US9385431B2 (en) 2012-02-21 2014-08-19 Dipole antenna

Publications (1)

Publication Number Publication Date
WO2013125618A1 true WO2013125618A1 (ja) 2013-08-29

Family

ID=49005797

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/054276 WO2013125619A1 (ja) 2012-02-21 2013-02-21 ループアンテナ
PCT/JP2013/054275 WO2013125618A1 (ja) 2012-02-21 2013-02-21 ダイポールアンテナ

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054276 WO2013125619A1 (ja) 2012-02-21 2013-02-21 ループアンテナ

Country Status (5)

Country Link
US (2) US9385431B2 (ja)
EP (2) EP2819244A4 (ja)
JP (2) JP5576522B2 (ja)
CN (2) CN104137336B (ja)
WO (2) WO2013125619A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10027030B2 (en) 2013-12-11 2018-07-17 Nuvotronics, Inc Dielectric-free metal-only dipole-coupled broadband radiating array aperture with wide field of view
US10431896B2 (en) 2015-12-16 2019-10-01 Cubic Corporation Multiband antenna with phase-center co-allocated feed
US11196184B2 (en) 2017-06-20 2021-12-07 Cubic Corporation Broadband antenna array
US11342683B2 (en) 2018-04-25 2022-05-24 Cubic Corporation Microwave/millimeter-wave waveguide to circuit board connector
JP7031986B2 (ja) * 2018-05-30 2022-03-08 矢崎総業株式会社 アンテナユニット
US11088455B2 (en) 2018-06-28 2021-08-10 Taoglas Group Holdings Limited Spiral wideband low frequency antenna
US11404786B2 (en) * 2019-07-03 2022-08-02 City University Of Hong Kong Planar complementary antenna and related antenna array
US11367948B2 (en) 2019-09-09 2022-06-21 Cubic Corporation Multi-element antenna conformed to a conical surface
TWI727856B (zh) * 2020-07-20 2021-05-11 啓碁科技股份有限公司 天線結構
US11588225B2 (en) 2020-10-14 2023-02-21 Bae Systems Information And Electronic Systems Integration Inc. Low profile antenna

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6396447B1 (en) 1999-09-27 2002-05-28 Volvo Personvagnar Ab Antenna unit
JP2007158957A (ja) 2005-12-07 2007-06-21 Alps Electric Co Ltd 統合アンテナ装置
JP2009017116A (ja) 2007-07-03 2009-01-22 Nippon Antenna Co Ltd アンテナ装置
JP2009267765A (ja) 2008-04-25 2009-11-12 Denso Corp 車載統合アンテナの製造方法
JP2010081500A (ja) 2008-09-29 2010-04-08 Nippon Antenna Co Ltd 統合アンテナ
US20100328162A1 (en) * 2008-02-20 2010-12-30 Lintec Corporation Antenna circuit
JP2011211420A (ja) * 2010-03-29 2011-10-20 Toshiba Corp スパイラルアンテナ
JP2012175349A (ja) * 2011-02-21 2012-09-10 Nec Corp スパイラルアンテナ、およびその製造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2324462A (en) * 1941-11-15 1943-07-13 Gen Electric High frequency antenna system
IT1041016B (it) * 1975-07-24 1980-01-10 Siv Soc Italiana Vetro Antenna radioricevente multiband supportata su lastra per finestratura
US4595928A (en) * 1978-12-28 1986-06-17 Wingard Jefferson C Bi-directional antenna array
JPH066585Y2 (ja) * 1990-05-30 1994-02-16 岩崎通信機株式会社 小型アンテナ
GB2263360B (en) * 1992-01-06 1996-02-07 C & K Systems Inc Improvements in or relating to antennas
US5621422A (en) * 1994-08-22 1997-04-15 Wang-Tripp Corporation Spiral-mode microstrip (SMM) antennas and associated methods for exciting, extracting and multiplexing the various spiral modes
JP3431045B2 (ja) * 1995-01-18 2003-07-28 久松 中野 円偏波ループアンテナ
US6342862B1 (en) * 2000-08-11 2002-01-29 Philip A. Schoenthal UHF indoor TV antenna
TW529205B (en) * 2001-05-24 2003-04-21 Rfwaves Ltd A method for designing a small antenna matched to an input impedance, and small antennas designed according to the method
US6597318B1 (en) * 2002-06-27 2003-07-22 Harris Corporation Loop antenna and feed coupler for reduced interaction with tuning adjustments
JP4114446B2 (ja) * 2002-09-13 2008-07-09 ソニー株式会社 アンテナ装置及びこれを用いた読み出し書き込み装置、情報処理装置、通信方法並びにアンテナ装置の製造方法
JP4198090B2 (ja) * 2004-05-31 2008-12-17 マスプロ電工株式会社 アンテナ装置
JP4749219B2 (ja) * 2005-11-28 2011-08-17 富士通テン株式会社 ループアンテナ、ループアンテナの車両への取付方法、及びループアンテナを備える車両のリヤガラス
KR100954379B1 (ko) * 2006-10-26 2010-04-26 한국전자통신연구원 루프 안테나
JP4858971B2 (ja) * 2006-12-14 2012-01-18 株式会社ヨコオ 広帯域化ループアンテナ
US20100164816A1 (en) * 2007-03-27 2010-07-01 Honda Motor Co., Ltd. Antenna structure of rectangular loop antenna
US8260201B2 (en) * 2007-07-30 2012-09-04 Bae Systems Information And Electronic Systems Integration Inc. Dispersive antenna for RFID tags
CN201117820Y (zh) * 2007-09-28 2008-09-17 杨天锐 高增益定向天线
TWI352454B (en) * 2009-08-14 2011-11-11 Htc Corp Planar antenna with isotropic radiation pattern
CN101656347A (zh) * 2009-09-22 2010-02-24 深圳先进技术研究院 集成天线的电子系统
CN201601219U (zh) * 2009-12-29 2010-10-06 中兴通讯股份有限公司 发卡器及其内置天线
TWI425710B (zh) * 2010-03-26 2014-02-01 Wistron Neweb Corp 天線結構
CN101997165B (zh) * 2010-10-27 2014-07-30 惠州Tcl移动通信有限公司 一种封闭型多频段天线及其无线通讯装置
JP5079106B2 (ja) * 2011-01-13 2012-11-21 富士通テン株式会社 無指向性アンテナ
TWI491110B (zh) * 2011-07-29 2015-07-01 Wistron Neweb Corp 非對稱偶極天線

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6396447B1 (en) 1999-09-27 2002-05-28 Volvo Personvagnar Ab Antenna unit
JP2007158957A (ja) 2005-12-07 2007-06-21 Alps Electric Co Ltd 統合アンテナ装置
JP2009017116A (ja) 2007-07-03 2009-01-22 Nippon Antenna Co Ltd アンテナ装置
US20100328162A1 (en) * 2008-02-20 2010-12-30 Lintec Corporation Antenna circuit
JP2009267765A (ja) 2008-04-25 2009-11-12 Denso Corp 車載統合アンテナの製造方法
JP2010081500A (ja) 2008-09-29 2010-04-08 Nippon Antenna Co Ltd 統合アンテナ
JP2011211420A (ja) * 2010-03-29 2011-10-20 Toshiba Corp スパイラルアンテナ
JP2012175349A (ja) * 2011-02-21 2012-09-10 Nec Corp スパイラルアンテナ、およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2819244A4

Also Published As

Publication number Publication date
EP2819243A4 (en) 2015-03-25
WO2013125619A1 (ja) 2013-08-29
CN104126249A (zh) 2014-10-29
JP2014030169A (ja) 2014-02-13
EP2819243A1 (en) 2014-12-31
CN104137336A (zh) 2014-11-05
EP2819244A1 (en) 2014-12-31
US20140354509A1 (en) 2014-12-04
JP2014168300A (ja) 2014-09-11
JP5576522B2 (ja) 2014-08-20
EP2819243B1 (en) 2019-03-27
EP2819244A4 (en) 2015-01-14
JP5628453B2 (ja) 2014-11-19
CN104137336B (zh) 2016-03-02
US9490541B2 (en) 2016-11-08
US20140354500A1 (en) 2014-12-04
CN104126249B (zh) 2016-04-27
US9385431B2 (en) 2016-07-05

Similar Documents

Publication Publication Date Title
JP5628453B2 (ja) アンテナ
US6424300B1 (en) Notch antennas and wireless communicators incorporating same
US20190131710A1 (en) Wideband circularly polarized antenna
WO2004004068A1 (ja) アンテナ装置
TWI473346B (zh) 雙頻圓極化天線
JP6723470B2 (ja) アンテナ装置
EP1032076A2 (en) Antenna apparatus and radio device using antenna apparatus
JP5767578B2 (ja) アンテナ装置
JP6181498B2 (ja) アンテナ装置
JP2005101761A (ja) 薄型アンテナ
JP2013219757A (ja) アンテナ装置
CN102931476A (zh) 双频圆极化天线
WO2023189641A1 (ja) 複合アンテナ装置
EP3376594B1 (en) Automotive antenna
WO2013125655A1 (ja) アンテナ装置
JP2014011692A (ja) 統合アンテナ装置
JP5663117B2 (ja) 逆f型アンテナ
CN101232121B (zh) 圆形极化天线
JP5774641B2 (ja) ループアンテナ
TWM329255U (en) Broadband antenna and an electric device thereof
JP2013225768A (ja) 統合アンテナ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380010052.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013751788

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013751788

Country of ref document: EP