WO2013125502A1 - 微小径3軸電界センサ及びその製造方法 - Google Patents

微小径3軸電界センサ及びその製造方法 Download PDF

Info

Publication number
WO2013125502A1
WO2013125502A1 PCT/JP2013/053925 JP2013053925W WO2013125502A1 WO 2013125502 A1 WO2013125502 A1 WO 2013125502A1 JP 2013053925 W JP2013053925 W JP 2013053925W WO 2013125502 A1 WO2013125502 A1 WO 2013125502A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection element
electric field
wave plate
prism
field sensor
Prior art date
Application number
PCT/JP2013/053925
Other languages
English (en)
French (fr)
Inventor
義弘 今荘
博志 野口
直樹 三須
Original Assignee
スタック電子株式会社
東洋製罐グループホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スタック電子株式会社, 東洋製罐グループホールディングス株式会社 filed Critical スタック電子株式会社
Publication of WO2013125502A1 publication Critical patent/WO2013125502A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/12Measuring electrostatic fields or voltage-potential
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/241Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using electro-optical modulators, e.g. electro-absorption

Definitions

  • the present invention relates to a micro-diameter three-axis electric field sensor, which has good reproducibility and enables stable production.
  • the direction of the electric field at which the electro-optic effect electric field sensor has the maximum sensitivity is determined by the crystal plane orientation of the electro-optic effect crystal, the crystal optical axis of the quartz plate used as the wavelength plate, and the direction of linearly polarized light incident from the optical fiber. It is possible to design whether to have maximum sensitivity in the traveling direction (z direction) of light incident on the electro-optic effect crystal or maximum sensitivity in two orthogonal directions (x direction, y direction) (see FIG. 11). .
  • the electric field is a vector quantity, if the components in the three axial directions of x, y, and z orthogonal to each other can be measured, the electric field strength at that point can be accurately known by vector synthesis. Moreover, the spatial resolution to measure is never small.
  • the electro-optic effect crystal used for detection belongs to a group III-V compound semiconductor such as GaAs, for example, has a crystal structure called a zinc blende structure, and has a cleavage property on six surfaces orthogonal to each other. Therefore, it is considered that a relatively beautiful surface can be provided to form a cube or a rectangular parallelepiped.
  • ZnTe zinc telluride
  • CdTe cadmium telluride
  • the electric field sensor chip can be assembled in the form shown in FIGS. 9 and 10, a triaxial electric field sensor in which bundled fibers are combined in one direction can be realized.
  • wave plates 3d, 3e, and 3f are optically bonded to three surfaces that are different in direction of the detection element 1 and are orthogonal to each other.
  • the prisms 2e and 2f are optically bonded to the two wave plates 3e and 3f so that the orthogonal surfaces are in the same direction.
  • the optical fiber collimators 4e, 4d, 4f are optically bonded to the orthogonal surfaces of the wave plate 3d and the prisms 2e, 2f.
  • Patent Document 1 discloses the structure of a small-diameter electric field sensor that detects an electric field in a unidirectional direction. Even if this description and FIG. 2 are referred to, the configuration of the optical sensor 5 is detected by the prism proposed in the present invention. The light incident structure from the side surface of the element is not seen, and it is unclear how much improvement has been made for miniaturization.
  • Patent Document 2 was previously published by the applicant of the present patent application and relates to a light modulation degree control circuit for detecting an electro-optic effect electromagnetic field by an optical heterodyne method. A small diameter triaxial electric field sensor is desired.
  • the micro-diameter three-axis electric field sensor includes a detection element, two prisms, a wave plate, three optical fiber collimators, and a holding jig.
  • the detection element is a hexahedron of an optical crystal having an electro-optic effect.
  • one of the orthogonal surfaces is optically bonded to an adjacent surface of the detection element.
  • One surface of the wave plate is optically bonded to an adjacent surface to which the prism of the detection element is bonded, and another orthogonal surface of the prism is optically bonded to the other surface of the wave plate.
  • the holding jig holding the fiber collimator is optically bonded to the surface.
  • an optical crystal having an electro-optic effect for example, a compound semiconductor crystal such as ZnTe crystal, CdTe, and GaAs, LiNiO 3 (lithium niobate), and an organic compound optical crystal called DAST can be employed.
  • a compound semiconductor crystal such as ZnTe crystal, CdTe, and GaAs, LiNiO 3 (lithium niobate), and an organic compound optical crystal called DAST can be employed.
  • the two prisms can be made of, for example, quartz glass, and are optically bonded to the detection element with an adhesive such as an ultraviolet curable resin.
  • the wave plate uses a birefringent crystal such as quartz to generate a phase difference.
  • the shape is, for example, a rectangular plate, and the detection element and the two prisms are optically bonded to one surface with an adhesive such as an ultraviolet curable resin.
  • the holding jig is made of, for example, glass, and is optically bonded to the surface of the wave plate opposite to the surface to which the detection element or the like is bonded while holding the three optical fiber collimators.
  • the detection element may be one obtained by cutting out a specified plane orientation with respect to a specific orientation of a ZnTe crystal called a crystal face and mirror-polishing six faces. In this way, the detection element can be easily manufactured, and a high quality element can be provided.
  • the optical fiber collimator preferably has a GRIN lens fused to the tip of the polarization maintaining fiber.
  • the polarization maintaining fiber is also called a birefringent fiber, and is designed to intentionally have a large birefringence so that random fluctuations of the birefringence do not significantly change the polarization of light.
  • Bowtie fibers, elliptical jacket fibers, and the like can be used.
  • a GRIN lens Gramded Index lens
  • the holding jig is made of glass and has insertion holes for inserting the three optical fiber collimators in parallel and separately, and the polarization maintaining fiber is aligned with the polarization direction with an optical adhesive. It may be fitted via. If it carries out like this, relative positioning of each polarization-maintaining fiber is easy, and the attachment with respect to a wavelength plate can also be performed easily.
  • the length of each side of the detection element may be 0.5 to 1.5 mm. In this way, the detection element is sufficiently small and the electric field can be easily measured.
  • the area and shape of one surface of the wave plate may be equal to the sum and shape of the bonding areas of the detection element and the two prisms bonded to the one surface. In this way, the sensor can be made sufficiently small and the optical action is good.
  • One prism of the two prisms is a small prism whose orthogonal side length is equal to the length of one side of the detection element, and the other prism has a length of the orthogonal side of the one prism. It may be a large prism that is twice the length of the orthogonal side.
  • the detection element and one prism can be aligned and bonded to the orthogonal plane of the other prism, and light emitted from one of the three optical fiber collimators can pass through the prism without passing through the prism.
  • the light emitted from the other one from the adjacent surface is reflected by the other prism, and the light emitted from the remaining one from the surface adjacent to the adjacent surface of the detection element is reflected by one prism and detected.
  • the light can enter the adjacent surface of the element from the adjacent surface, and accurate measurement can be performed by maintaining the detection element, the wave plate, the two prisms, and the polarization maintaining fiber in a predetermined positional relationship.
  • the portion other than the surface to which the holding jig of the wave plate is bonded Apply a reflective coating to Masking must be performed on the surface not provided with the reflective coating.
  • the detection element and the two prisms are optically bonded to the one surface of the wave plate, masking may be performed only on the opposite surface of the wave plate to which the detection element or the like is bonded. Will be very easy.
  • the reflective coating may be performed after bonding the detection element, the two prisms, and the holding jig to the wave plate.
  • the predetermined positional relationship can be easily formed an electric field sensor maintaining enough can cope with a fine measurement.
  • the detection element can be easily manufactured, and a high quality element can be provided.
  • each polarization maintaining fiber is easy, and attachment to the wave plate is also easy.
  • the detection element is sufficiently small, and the measurement of the electric field is facilitated.
  • the senor can be made sufficiently small and the optical action is also good.
  • the detection element and the one prism can be aligned and bonded to the orthogonal plane of the other prism, and the detection element, the wave plate, the two prisms, and the polarization maintaining fiber are kept in a predetermined positional relationship. This enables accurate measurement.
  • the masking operation of the portion where no coating is applied becomes very simple.
  • FIG. 10 is a perspective view of the sensor in FIG. 9 during assembly. It is explanatory drawing of the detection axis (direction) of the electric field with respect to a detection element.
  • 1 is a detection element
  • 2a is one prism
  • 2b is the other prism
  • 3 is a wave plate
  • 4a, 4b, 4c are optical fiber collimators
  • 5 is a holding jig.
  • the detection element 1 is a hexahedron of zinc telluride (ZnTe) crystal.
  • Detection element 1 is a cube, cutting out the specified plane orientation for a specific orientation of the ZnTe crystal, called crystal plane, creating the six surfaces is mirror polished.
  • the other prism 2b is composed of two orthogonal surfaces 2b1 and 2b2 that are orthogonal to each other, a reflecting surface 21b that is an inclined surface, and two side surfaces that form a triangle, and the orthogonal surfaces 2b1 and 2b2 and the reflecting surface 21b each have an angle of 45 °. It has become.
  • One prism 2a has a shape obtained by dividing the other prism 2b into two in the longitudinal direction.
  • the orthogonal surfaces 2b1 and 2b2 are each 2 mm ⁇ 1 mm
  • the reflecting surface 21b is 2 mm ⁇ about 1.4 mm.
  • the length of the orthogonal side L2 formed by intersecting the orthogonal surfaces 2b1 and 2b2 is 2 mm.
  • one surface 3a of the wave plate 3 is a square with one side of 2 mm, and the detection element 1 and the two prisms 2a and 2b are optically bonded. Therefore, the area and shape of one surface 3a of the wave plate 3 are equal to the sum and shape of the bonding areas of the detection element 1 and the two prisms 2a and 2b bonded to the one surface.
  • the light propagating in the different optical fiber collimators 4a, 4b, 4c is appropriately polarized by the wave plate 3, and one of the lights 4c is incident on the adjacent surface 1c of the detection element 1 as it is, One piece 4b enters the adjacent surface 1b of the detection element 1 through the other prism 2b, and the remaining one piece 4a enters the adjacent surface 1a of the detection element 1 through one prism 2a. That is, since the light propagating through the different optical fiber collimators 4a, 4b, and 4c has different directions and is incident on three orthogonal surfaces, it is possible to simultaneously measure three-axis electric fields.
  • the detection element 1 is cut out in a specified plane orientation with respect to a specific orientation of a ZnTe crystal called a crystal plane, and six surfaces are mirror-polished. In this case, the detection element 1 can be easily manufactured and a high-quality one can be provided.
  • the optical fiber collimator is obtained by peeling off the outer coating 44 and the inner coating 43 at the tip of the polarization maintaining fiber 41 and fusing the GRIN lens 42 to the fiber end surface.
  • the outer diameter of the fiber and GRIN lens is 125 ⁇ m.
  • a cylindrical glass capillary 52 is attached and fixed to the portion where the coating of the polarization maintaining fiber 41 is removed for reinforcement.
  • a square glass capillary 51 is mounted thereon and fixed with an adhesive 6.
  • the glass capillary 51 is a component of the holder 5, has a square cross section with one side of 0.5 to 1.5 mm, and has an insertion hole with a diameter of 360 ⁇ m in the longitudinal direction.
  • the holding jig 5 has four holes. Of these, only three optical fiber collimators 4a, 4b, and 4c are inserted, so three insertion holes for the holding jig are formed. It only has to be. Three optical fiber collimators 4a, 4b, and 4c are respectively fixed to the three insertion holes 5a, 5b, and 5c of the holding jig 5 by optical bonding with their polarization directions aligned in advance. As shown in FIGS. 5 and 6, the holding jig 5 is optically bonded to the other surface 3 b of the wave plate 3.
  • the relative positioning of the optical fiber collimators 4a, 4b, and 4c is easy, and the optical fiber collimators 4a, 4b, and 4c can be easily attached to the wave plate 3, and the detection element 1, the two prisms 2a and 2b, the wave plate 3, and the optical fiber collimator.
  • 4a, 4b, 4c can be configured in a predetermined positional relationship, and accurate measurement is possible.
  • the length of each side of the detection element 1 is 0.5 to 1.5 mm. In this case, the detection element 1 can be made small, and the electric field can be easily measured.
  • the area and shape of one surface 3a of the wave plate 3 are equal to the sum and shape of the bonding area of the detection element 1 bonded to the one surface 3a and the two prisms 2a and 2b. In this case, the sensor can be made small and the optical action is also good.
  • one prism 2a is a small prism whose orthogonal side length L1 is equal to the length L1 of one side of the detection element 1, and the other prism 2b is the length L2 of the orthogonal side.
  • the detection element 1 and the small prism 2b can be aligned and bonded to the orthogonal surface 2b1 of the other prism 2b. In this way, the light guided to the optical fiber collimator 4c is reflected as it is from the adjacent surface 1c of the detection element 1 and the light guided to the optical fiber collimator 4b is reflected by the other prism 2b.
  • the optical fiber collimator 4a is reflected from one of the prisms 2a from the adjacent surface 1b and enters the detecting device 1 from the adjacent surface 1a of the detecting device 1, so that the detecting device, the wave plate, the two prisms, the light
  • the fiber collimator can be configured in a predetermined positional relationship, and accurate measurement is possible.
  • a reflective coating C is applied to the surface in contact with the space of the detection element 1 and the reflective surfaces 21a and 21b of the two prisms 2a and 2b. As shown in FIG. 3, after the detection element 1 and the two prisms 2a and 2b are bonded to one surface 3a of the wave plate 3, a reflective coating C can be applied. In this case, by applying the reflective coating C, a large amount of light returns from the detection element 1 to the optical fiber collimator, and measurement can be performed accurately and stably.
  • a reflective coating C is applied to a portion other than the other surface 3b to which the holding jig 5 of the wave plate 3 is bonded.
  • the reflection coating C may be applied to the surface in contact with the space of the detection element 1 and the reflection surfaces 21a and 21b of the two prisms, but all the portions other than the portion to which the holding jig 5 of the wave plate 3 is bonded. It may be coated on the part. Therefore, it is sufficient to perform masking only on the other surface 3b to which the holding jig 5 of the wave plate 3 is bonded, and the masking operation becomes extremely easy.
  • the reflective coating can be applied after the assembly of the tip of the sensor is completed. In this case, coating can be performed with little masking.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本発明は微小径3軸電界センサに関し、再現性がよく、安定して生産を行えるようにしたものである。検出素子(1)、2個のプリズム(2a)(2b)、波長板(3)、3本の光ファイバコリメータ(4a)(4b)(4c)及び保持治具(5)を包含し、該検出素子(1)は電気光学効果結晶の6面体で、該2個のプリズム(2a)(2b)の各々は、それぞれの直交面のうちの1面が該検出素子(1)の隣り合う面に光学接着され、該波長板(3)の一面には、該検出素子(1)の該プリズム(2a)(2b)が接着された隣り合う面と隣り合う面が光学接着されていると共に、該プリズム(2a)(2b)の他の直交面が光学接着され、該波長板(3)の他面には、該光ファイバコリメータ(4a)(4b)(4c)を保持した該保持治具(5)が光学接着されていることを特徴とする微小径3軸電界センサ。

Description

微小径3軸電界センサ及びその製造方法
 本発明は微小径3軸電界センサに関し、再現性がよく、安定して生産を行えるようにしたものである。
 電気光学効果電界センサーが最大感度を持つ電界の方向は、電気光学効果結晶の結晶面方位と、波長板として用いる水晶板の結晶光学軸、さらに光ファイバから入射する直線偏光の方向によって決まるので、電気光学効果結晶に入射する光の進行方向(z方向)に最大感度を有するか、直交する2方向(x方向、y方向)に最大感度を有するかを設計することができる(図11参照)。
 これを用いると、1つの結晶チップでx、y、zの3方向の電界強度を計測することができる。電界は、ベクトル量であるので互いに直交するx、y、zの3つの軸方向の成分を計測することが出来れば、ベクトル合成によってその点の電界強度を正確に知ることができる。また、計測する空間分解能は小さいことに越したことはない。
 検出に用いる電気光学効果結晶は、例えばGaAsなどIII-V族化合物半導体に属するものは、閃亜鉛鉱構造と呼ばれる結晶構造を有しているものであり、互いに直交する6面にへき開性を有しており、比較的綺麗な面を出して立方体、若しくは直方体の形状にすることができると考えられる。ZnTe(テルル化亜鉛),CdTe(テルル化カドミウム)などII-VI族化合物半導体でも同様である。
 図9,10に示すような形態で電界センサチップを組み立てることができれば、束ねたファイバが1方向にまとめられた3軸電界センサが実現できる。この微小径3軸電界センサは、検出素子1の方向が異なり直交する3つの面に波長板3d,3e,3fを光学接着している。このうちの2つの波長板3e,3fにプリズム2e,2fを直交面が同じ向きになるように光学接着する。そして、波長板3d及びプリズム2e,2fの直交面に光ファイバコリメータ4e,4d,4fが光学接着される。光ファイバコリメータ4d内を伝播してきた光は、波長板3dを経て検出素子1の上面に入射する。光ファイバコリメータ4e内を伝播してきた光は、プリズム2e及び波長板3eを経て検出素子1の側面に入射する。光ファイバコリメータ4f内を伝播してきた光は、プリズム2f及び波長板3fを経て検出素子1の側面に入射する。すなわち、各別の光ファイバコリメータ4d,4e,4f内を伝播してきた光はそれぞれ方向が異なり、直交する3つの面に入射するので、3軸の電界を同時に計測することが可能となる。
ただし、この場合の微小径3軸電界センサは部品点数が多く接着個所も多いので、製作が非常に困難である。
特開2007-57324号公報 特開2011-238863号公報
 この特許文献1に記載された発明には、段落0022に次の記載がみられる。
 光学センサー5は、偏波保持ファイバー4を所定位置に案内するフェルール51と、フェルール51に案内された偏波保持ファイバー4から出射する光を平行光に整形するコリメータレンズ52と、コリメータレンズ52を通過した光を旋光させるファラデー回転子53と、被測定電界により光の偏光状態を変化させる電気光学結晶であって、ファラデー回転子53を出射した光を入射させ、反対側の誘電体反射膜541で反射させ、ファラデー回転子53へ出射させる電気光学結晶54を備える。電気光学結晶54は、旋光性を有しないものであり、そのファラデー回転子53側には誘電体反射膜542が形成されている。
 特許文献1は、単方向の電界を検出する微小径電界センサーの構造を開示したものであり、この記載や、図2を参照しても、光学センサー5の構成に本件発明提案のプリズムによる検出素子側面からの光入射構造は見られず、小型化にどの程度の工夫がなされているのか詳細は不明である。
 特許文献2は本件出願人が先に特許出願をして公開されたもので、光ヘテロダイン法による電気光学効果電磁界検出用の光変調度制御回路に関するものであるが、この回路に適用できる微小径3軸電界センサが望まれている。
 本発明に係る微小径3軸電界センサは、検出素子、2個のプリズム、波長板、3本の光ファイバコリメータ及び保持治具を包含している。該検出素子は電気光学効果を有する光学結晶の6面体である。該2個のプリズムの各々は、それぞれの直交面のうちの1面が該検出素子の隣り合う面に光学接着されている。該波長板の一面には、該検出素子の該プリズムが接着された隣り合う面と隣り合う面が光学接着されていると共に、該プリズムの他の直交面が光学接着され、該波長板の他面には、該ファイバコリメータを保持した該保持治具が光学接着されている。
 電気光学効果を有する光学結晶としては、例えばZnTe結晶、CdTe,GaAsなどの化合物半導体結晶、LiNi03(ニオブ酸リチウム)、その他、DASTと呼ばれる有機化合物光学結晶などが採用できる。
 該2個のプリズムは、例えば石英ガラス製とすることができ、該検出素子に、例えば紫外線硬化樹脂などの接着剤で光学接着される。該波長板は水晶のような複屈折結晶を利用して位相差を生じさせるものである。形状は例えば方形の板とし、その一面に該検出素子と該2個のプリズムが、例えば紫外線硬化樹脂などの接着剤で光学接着される。
 該保持治具は例えばガラス製とし、3本の該光ファイバコリメータを保持した状態で該波長板の、該検出素子等が接着されている面の反対面に光学接着される。
 3本の該光ファイバコリメータ内を伝播してきた光は、それぞれ該波長板を透過し、該検出素子内に入射するが、各別の光が異なる方向の直交する3つの面から入射し、対向面で反射して光ファイバコリメータに戻るので、直交する3軸における電界強度を計測することができる。すなわち、各別の該光ファイバコリメータを伝播してきた光は該波長板を透過し、そのうちの1本は該検出素子の隣り合う一面(波長板が接着されている面)に直接入射し、残る2本はプリズムで屈折して検出素子の直交するそれぞれの隣り合う面に入射する。
 3本の光ファイバコリメータは並列し、束ねることができるので、センサ自体が大変小型になる。
 該検出素子は結晶面と呼ばれるZnTe結晶の特定の方位に対して指定の面方位で切り出し、6面を鏡面研磨したものであってもよい。
 こうすると、検出素子の製作が容易で、高品質のものを提供できる。
 該光ファイバコリメータは、偏波保持ファイバの先端部にGRINレンズを融着したものが好ましい。該偏波保持ファイバは、複屈折ファイバとも呼ばれ、複屈折のランダムな揺らぎが光の偏光を大きく変えないように、意図的に大きな複屈折を持つように設計されたものであり、PANDAファイバ、ボウタイファイバ、楕円ジャケットファイバなどを用いることができる。
 GRINレンズ(Graded Indexレンズ)は、中心から半径方向にかけて屈折率分布を有することでレンズとして作用する光学素子であり、屈折率分布は二乗分布又は二乗分布に近い分布が望ましい。
該保持治具はガラス製で3本の該光ファイバコリメータを平行にかつ各別に挿入する挿入孔を備えており、該偏波保存ファイバは偏波方向を合わせて該挿入孔に光学的接着材を介して嵌着されていてもよい。
 こうすると、各偏波保持ファイバの相対的な位置決めが容易で、波長板に対する取り付けも容易にできる。
 該検出素子の各辺の長さは0.5~1.5mmであってもよい。
 こうすると、検出素子が十分に小さく、電界の測定が容易となる。
 該波長板の一面の面積と形状は、該一面に接着される該検出素子と該2個のプリズムの接着面積の総和と形状に等しくなっていてもよい。
 こうすると、センサを十分小さくでき、光学的な作用も良好である。
 該2個のプリズムの一方のプリズムは、その直交辺の長さが該検出素子の1辺の長さに等しい小プリズムで、他方のプリズムは、その直交辺の長さが該一方のプリズムの直交辺の長さの2倍の大プリズムであってもよい。
 こうすることで、他方のプリズムの直交面に検出素子と一方のプリズムを並べて接着することができ、3本の光ファイバコリメータのうちの1本から出射した光はプリズムを通ることなく検出素子の隣り合う面から、他の1本から出射した光は他方のプリズムで反射されて検出素子の該隣り合う面に隣り合う面から、残る1本から出射した光は一方のプリズムで反射されて検出素子の該隣り合う面に隣り合う面から入射することができ、検出素子、波長板、2個のプリズム及び偏波保持ファイバを所定の位置関係に保つことで正確な計測が可能となる。
 該検出素子の空間に接する面及び該2個のプリズムの各反射面に反射コーティングが施されていてもよい。
 こうすると、反射コーティングを施すことで、検出素子から多くの光が光ファイバコリメータに戻り、計測を正確に、かつ、安定して行うことができる。
 本発明に係る微小径3軸電界センサの製造方法は、波長板の一面に、検出素子及び2個のプリズムを光学接着した後、該波長板の該保持治具が接着される面以外の部分に反射コーティングを施す。
 反射コーティングを施さない面にはマスキングをしなければならないが、微小な光学部品の場合、マスキング作業が非常に困難でコストアップになってしまう。該波長板の該一面に該検出素子及び該2個のプリズムを光学接着した後であれば、マスキングは該波長板の該検出素子等が接着されている面の反対面のみでよいので、作業が非常に簡単になる。
 また、反射コーティングは、該波長板に該検出素子、該2個のプリズム及び該保持治具の全てを接着した後に行ってもよい。
(請求項1)本発明の微小径3軸電界センサによれば、所定の位置関係を保った電界センサを容易に形成でき、微細な計測にも十分対応できる。
 請求項2によれば、検出素子の製作が容易で、高品質のものを提供できる。
 請求項3によれば、各偏波保持ファイバの相対的な位置決めが容易で、波長板に対する取付も容易にできる。
 請求項4によれば、検出素子が十分に小さく、電界の測定も容易となる。
 請求項5によれば、センサを十分小さくでき、光学的な作用も良好である。
 請求項6によれば、他方のプリズムの直交面に検出素子と一方のプリズムを並べて接着することができ、検出素子、波長板、2個のプリズム及び偏波保持ファイバを所定の位置関係に保つことで正確な測定が可能となる。
 請求項7によれば、反射コーティングを施すことで、検出素子から多くの光が光ファイバコリメータに戻り、計測を正確に、かつ、安定して行うことができる。
 請求項8の本発明の微小径3軸電界センサの製造方法によれば、コーティングを施さない部分のマスキング作業が非常に簡単になる。
本発明にかかる微小径3軸電界センサの具体例を分解した状態で示す斜面図である。 検出素子、2個のプリズムを光学接着した状態の斜面図である。 検出素子、2個のプリズム及び波長板を光学接着した状態の斜視図である。 光ファイバコリメータを保持した保持治具の斜視図である。 微小径3軸電界センサ具体例の一部切欠側面図である。 微小径3軸電界センサ具体例の先端部斜視図である。 光ファイバコリメータの側面図である。 光ファイバコリメータにガラスキャピラリを装着した状態の一部切欠側面図である。 比較例の微小径3軸電界センサの別の具体例を分解した状態で示す斜視図である。 図9のセンサの組み立て途上の斜視図である。 検出素子に対する電界の検出軸(方向)の説明図である。
 図1~6で、1は検出素子、2aは一方のプリズム、2bは他方のプリズム、3は波長板、4a、4b、4cは光ファイバコリメータ、5は保持治具である。検出素子1はテルル化亜鉛(ZnTe)の結晶の6面体である。
 検出素子1は立方体で、結晶面と呼ばれるZnTe結晶の特定の方位に対して指定の面方位で切り出し、6面を鏡面研磨して作成した。
 他方のプリズム2bは、互いに直交する2つの直交面2b1,2b2と、斜面である反射面21b及び三角形をなす2つの側面によって構成され、直交面2b1,2b2と反射面21bはそれぞれ45°の角度になっている。一方のプリズム2aは他方のプリズム2bを長手方向で2分した形状となっており、検出素子1の一辺が1mmの場合、直交面2b1,2b2は各2mm×1mm、反射面21bは2mm×約1.4mmである。直交面2b1と2b2が交差して形成される直交辺L2の長さは2mmである。
 前記と同様に検出素子の一辺が1mmの場合、波長板3の一面3aは1辺が2mmの正方形で、検出素子1と2個のプリズム2a,2bが光学接着される。したがって、波長板3の一面3aの面積と形状は、該一面に接着される検出素子1と2個のプリズム2a,2bの接着面積の総和と形状に等しくなっている。
 各別の光ファイバコリメータ4a,4b,4c内を伝播してきた光は、波長板3で適宜偏光され、そのうちの1本4cの光はそのまま検出素子1の隣り合う面1cに入射し、他の1本4bは他方のプリズム2bを経て検出素子1の隣り合う面1bに入射し、残りの1本4aは一方のプリズム2aを経て検出素子1の隣り合う面1aに入射する。
 すなわち、各別の光ファイバコリメータ4a,4b,4c内を伝播してきた光はそれぞれ方向が異なり、直交する3つの面に入射するので、3軸の電界を同時に計測することが可能となる。
 検出素子1は結晶面と呼ばれるZnTe結晶の特定の方位に対して指定の面方位で切り出し、6面を鏡面研磨したものとなっている。
 この場合、検出素子1の製作が容易で、高品質のものを提供できる。
 光ファイバコリメータは、図7に示すように、偏波保持ファイバ41の先端部の外被覆44、内被覆43を剥がし、ファイバ端面にGRINレンズ42を融着したものである。ファイバ及びGRINレンズの外径は125μmである。
 図8に示すように、偏波保持ファイバ41の被覆を剥がした部分には、補強のため円筒状のガラスキャピラリ52を装着固定している。さらに、その上に角形のガラスキャピラリ51を装着し、接着剤6で固定する。ガラスキャピラリ51は、後述するように、保持具5の構成要素であり、1辺が0.5~1.5mmの正方形断面を有し、長手方向に直径360μmの挿入孔が形成されている。
 次に図4に示すように、4本のガラスキャピラリ51を纏めて接着し、保持治具5を形成している。保持治具5には4つの孔が形成されているが、このうち、光ファイバコリメータ4a,4b,4cが挿入されるのは3個であるから、保持治具の挿入孔は3個形成されていればよい。保持治具5の3個の挿入孔5a,5b,5cに3本の光ファイバコリメータ4a,4b,4cが各別に、あらかじめ偏波方向を合わせて、光学接着により固定される。そして、図5,6に示すように、保持治具5は波長板3の他面3bに光学接着される。
 この場合、各光ファイバコリメータ4a,4b,4cの相対的な位置決めが容易で、波長板3に対する取付けも容易にでき、検出素子1、2個のプリズム2a,2b、波長板3、光ファイバコリメータ4a,4b,4cを所定の位置関係に保って構成でき、正確な測定が可能となる。
 検出素子1の各辺の長さは0.5~1.5mmとなっている。
 この場合、検出素子1を小さくでき、電界の測定も容易となる。
 波長板3の一面3aの面積と形状は、この一面3aに接着される検出素子1と、2個のプリズム2a,2bの接着面積の総和と形状に等しくなっている。
 この場合、センサを小さくでき、光学的な作用も良好である。
 2個のプリズムのうち、一方のプリズム2aは、その直交辺の長さL1が検出素子1の1辺の長さL1に等しい小プリズムで、他方のプリズム2bは、その直交辺の長さL2が一方のプリズム2aの直交辺の長さL1の2倍の大プリズムとなっている。
 この場合、他方のプリズム2bの直交面2b1に検出素子1と小プリズム2bを並べて接着することができる。このようにすることで、光ファイバコリメータ4cに導かれた光はそのまま検出素子1の隣り合う面1cから、光ファイバコリメータ4bに導かれた光は他方のプリズム2bで反射され、検出素子1の隣り合う面1bから、また光ファイバコリメータ4aは一方のプリズム2aで反射され、検出素子1の隣り合う面1aから検出素子1に入射することなり、検出素子、波長板、2個のプリズム、光ファイバコリメータを所定の位置関係に保って構成でき、正確な測定が可能となる。
 検出素子1の空間に接する面及び2個のプリズム2a、2bの各反射面21a、21bに反射コーティングCが施されている。図3に示すように、波長板3の一面3aに、検出素子1及び2個のプリズム2a,2bを接着した後、反射コーティングCを施すことができる。
 この場合、反射コーティングCを施すことで、検出素子1から多くの光が光ファイバコリメータに戻り、計測を正確に、かつ、安定して行うことができる。
 波長板3の一面3aに、検出素子1及び2個のプリズム2a,2bを光学接着した後、波長板3の保持治具5が接着される他面3b以外の部分に反射コーティングCが施されている。反射コーティングCは、検出素子1の空間に接する面、及び2個のプリズムの反射面21a,21bに施せばよいのであるが、波長板3の保持治具5が接着される部分以外の全ての部分にコーティングされても差し支えない。
 したがって、マスキングは波長板3の保持治具5が接着される他面3bのみに行えばよく、マスキング作業がきわめて容易になる。
 また、図6に示すように、センサの先端部の組み立てが終了した後に反射コーティングを行うこともできる。この場合、マスキングをほとんど行うことなくコーティングすることも可能となる。
 1   検出素子
 2a  一方のプリズム
 21a 反射面
 2a1 直交面
 2a2 直交面
 2b  他方のプリズム
 21b 反射面
 2b1 直交面
 2b2 直交面
 2e  プリズム
 2f  プリズム
 3   波長板
 3d  波長板
 3e  波長板
 3f  波長板
 4   光ファイバコリメータ
 4a  光ファイバコリメータ
 4b  光ファイバコリメータ
 4c  光ファイバコリメータ
 4d  光ファイバコリメータ
 4e  光ファイバコリメータ
 4f  光ファイバコリメータ
 41  偏波保持ファイバ
 42  GRINレンズ
 43  内被覆
 44  外被覆
 5   保持治具
 51  ガラスキャピラリ
 52  ガラスキャピラリ
 6   接着剤
 7   直線偏光
 

 

Claims (8)

  1.  検出素子、2個のプリズム、波長板、3本の光ファイバコリメータ及び保持治具を包含し、
     該検出素子は電気光学効果結晶の6面体で、
     該2個のプリズムの各々は、それぞれの直交面のうちの1面が該検出素子の隣り合う面に光学接着され、
     該波長板の一面には、該検出素子の該プリズムが接着された隣り合う面と隣り合う面が光学接着されていると共に、該プリズムの他の直交面が光学接着され、
    該波長板の他面には、該光ファイバコリメータを保持した該保持治具が光学接着されている
    ことを特徴とする微小径3軸電界センサ。
  2.  該検出素子は結晶面と呼ばれるZnTe結晶の特定の方位に対して指定の面方位で切り出し、6面を鏡面研磨したものである請求項1に記載の微小径3軸電界センサ。
  3.  該光ファイバコリメータは偏波保持ファイバの先端部にGRINレンズを融着したもので、
     該保持治具はガラス製で3本の該光ファイバコリメータを平行にかつ各別に挿入する挿入孔を備えており、該偏波保持ファイバは偏波方向を合わせて該挿入孔に光学的接着材を介して嵌着されている請求項1又は2に記載の微小径3軸電界センサ。
  4.  該検出素子の各辺の長さは約0.5~1.5mmである請求項1~3のいずれか一つの項に記載の微小径3軸電界センサ。
  5.  該波長板の該一面の面積と形状は、該一面に接着される該検出素子と該2個のプリズムの接着面積の総和と形状に等しくなっている請求項1~4のいずれか一つの項に記載の微小径3軸電界センサ。
  6.  該2個のプリズムの一方のプリズムは、その直交辺の長さが該検出素子の1辺の長さに等しい小プリズムで、他方のプリズムは、その直交辺の長さが該一方のプリズムの直交辺の長さの2倍の大プリズムである請求項1~5のいずれか一つの項に記載の微小径3軸電界センサ。
  7.  該検出素子の空間に接する面、及び該2個のプリズムの反射面に反射コーティングが施されている請求項1~6のいずれか一つの項に記載の微小径3軸電界センサ。
  8.  該波長板の一面に、該検出素子及び該2個のプリズムを光学接着した後、該波長板の該保持治具が接着される面以外の部分に反射コーティングを施すことを特徴とする請求項7に記載の微小径3軸電界センサの製造方法。
PCT/JP2013/053925 2012-02-24 2013-02-19 微小径3軸電界センサ及びその製造方法 WO2013125502A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012038152 2012-02-24
JP2012-038152 2012-02-24
JP2013-022114 2013-02-07
JP2013022114A JP2013200300A (ja) 2012-02-24 2013-02-07 微小径3軸電界センサ及びその製造方法

Publications (1)

Publication Number Publication Date
WO2013125502A1 true WO2013125502A1 (ja) 2013-08-29

Family

ID=49005687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053925 WO2013125502A1 (ja) 2012-02-24 2013-02-19 微小径3軸電界センサ及びその製造方法

Country Status (2)

Country Link
JP (1) JP2013200300A (ja)
WO (1) WO2013125502A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159695A1 (ja) * 2014-04-16 2015-10-22 シャープ株式会社 位置入力装置およびタッチパネル
CN109839546A (zh) * 2019-03-19 2019-06-04 浙江大学 一种反射式微型光学电场传感器中探头结构的固定装置
JPWO2020091071A1 (ja) * 2018-11-01 2021-09-24 シンクランド株式会社 電磁波計測用プローブ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264603A (ja) * 1992-03-04 1993-10-12 Tdk Corp 光磁界測定装置及び方法
US5272433A (en) * 1990-05-25 1993-12-21 Pirelli Cavy S.P.A. Polarmetric electric field sensor with electro-optical crystal cut disposed to measure electric field direction
JP2007315894A (ja) * 2006-05-25 2007-12-06 Ntt Docomo Inc 電界測定装置
JP2009047993A (ja) * 2007-08-21 2009-03-05 Toyo Glass Co Ltd 光ファイバコリメータ、光ファイバコリメータアレイ及びこれらの製造方法
JP2011112498A (ja) * 2009-11-26 2011-06-09 Nec Corp 電磁界測定装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272433A (en) * 1990-05-25 1993-12-21 Pirelli Cavy S.P.A. Polarmetric electric field sensor with electro-optical crystal cut disposed to measure electric field direction
JPH05264603A (ja) * 1992-03-04 1993-10-12 Tdk Corp 光磁界測定装置及び方法
JP2007315894A (ja) * 2006-05-25 2007-12-06 Ntt Docomo Inc 電界測定装置
JP2009047993A (ja) * 2007-08-21 2009-03-05 Toyo Glass Co Ltd 光ファイバコリメータ、光ファイバコリメータアレイ及びこれらの製造方法
JP2011112498A (ja) * 2009-11-26 2011-06-09 Nec Corp 電磁界測定装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159695A1 (ja) * 2014-04-16 2015-10-22 シャープ株式会社 位置入力装置およびタッチパネル
JP2015204081A (ja) * 2014-04-16 2015-11-16 シャープ株式会社 位置入力装置およびタッチパネル
CN106164831A (zh) * 2014-04-16 2016-11-23 夏普株式会社 位置输入装置及触摸面板
US10152174B2 (en) 2014-04-16 2018-12-11 Sharp Kabushiki Kaisha Position input device and touch panel
CN106164831B (zh) * 2014-04-16 2019-04-19 夏普株式会社 位置输入装置及触摸面板
JPWO2020091071A1 (ja) * 2018-11-01 2021-09-24 シンクランド株式会社 電磁波計測用プローブ
EP3913378A1 (en) * 2018-11-01 2021-11-24 National University Corporation Tokai National Higher Education and Research System Electromagnetic wave measurement probe
EP3875972A4 (en) * 2018-11-01 2022-01-19 National University Corporation Tokai National Higher Education and Research System ELECTROMAGNETIC WAVE MEASUREMENT PROBE, ELECTROMAGNETIC WAVE AND OPTICAL FIBER BEAM MEASUREMENT SYSTEM
JP7098849B2 (ja) 2018-11-01 2022-07-12 シンクランド株式会社 電磁波計測用プローブ
CN109839546A (zh) * 2019-03-19 2019-06-04 浙江大学 一种反射式微型光学电场传感器中探头结构的固定装置

Also Published As

Publication number Publication date
JP2013200300A (ja) 2013-10-03

Similar Documents

Publication Publication Date Title
US7746476B2 (en) Fiber optic gyroscope
JP4502323B2 (ja) 光学装置
EP0310535B1 (en) Mounting of optical fibers to integrated optical chips
US7228013B1 (en) Polymer phase modulator
US20110255147A1 (en) Optical modulator
JP2002214460A (ja) 光導波路デバイスおよびその製造方法
JP2013213915A (ja) 光結合構造および光結合方法
CN214097865U (zh) 偏振无关光隔离器芯及光纤隔离器、半导体激光器组件
CA2963128C (en) Optical assembly and method for coupling a waveguide array to a photonic-integrated circuit
WO2013125502A1 (ja) 微小径3軸電界センサ及びその製造方法
CN106932860B (zh) 2×2保偏光纤分束偏振器
JP3229142B2 (ja) 光学装置
WO2022107431A1 (ja) 磁界センサヘッド及びその製造方法
US7239765B1 (en) Polymer phase modulator
JP3587302B2 (ja) フォトニック結晶作製方法およびフォトニック結晶を用いた光デバイス
JPH10221014A (ja) 光導波路型変位センサ
JP4812342B2 (ja) 光コネクタ
JP4227558B2 (ja) インライン型光部品及びその製造方法
JP2007271676A (ja) ファイバ型光線路、ファイバ型部品及び光モジュール
JP2006276506A (ja) ファラデー回転ミラー
JP2006234858A (ja) 光部品並びにその調芯方法及び製造方法
JP2002148467A (ja) 光ファイバアレイおよびその製造方法
WO2020255379A1 (ja) 光接続構造
JP2023165969A (ja) 集積型grinレンズ
JP2004233593A (ja) ファラデ回転ミラー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13751319

Country of ref document: EP

Kind code of ref document: A1