WO2013125388A1 - Anisotropic conductive connection material, connection structure, manufacturing method and connection method for connection structure - Google Patents

Anisotropic conductive connection material, connection structure, manufacturing method and connection method for connection structure Download PDF

Info

Publication number
WO2013125388A1
WO2013125388A1 PCT/JP2013/053210 JP2013053210W WO2013125388A1 WO 2013125388 A1 WO2013125388 A1 WO 2013125388A1 JP 2013053210 W JP2013053210 W JP 2013053210W WO 2013125388 A1 WO2013125388 A1 WO 2013125388A1
Authority
WO
WIPO (PCT)
Prior art keywords
anisotropic conductive
flexible display
connection
electronic component
terminal
Prior art date
Application number
PCT/JP2013/053210
Other languages
French (fr)
Japanese (ja)
Inventor
川津 雅巳
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN201380010151.9A priority Critical patent/CN104106182B/en
Priority to KR1020147016359A priority patent/KR101886909B1/en
Publication of WO2013125388A1 publication Critical patent/WO2013125388A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/7076Coupling devices for connection between PCB and component, e.g. display
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Definitions

  • the present invention relates to a flexible display and an electronic component using an anisotropic conductive connection layer and an anisotropic conductive connection layer used when mounting an electronic component such as a flexible printed wiring board and a semiconductor element on a flexible display.
  • the present invention relates to a connected connection structure, a connection method for connecting a flexible display and an electronic component using an anisotropic conductive connection layer, and a method for manufacturing a connection structure by this connection method.
  • a flip chip mounting method in which the electronic component is mounted on the substrate in a so-called face-down state is widely used.
  • an anisotropic conductive film is interposed between a terminal of an electronic component and a terminal provided on a substrate for the purpose of improving connection reliability and the like. And mechanical connections are made.
  • the anisotropic conductive film is obtained by dispersing conductive particles in an adhesive containing a resin or the like.
  • the conductive particles are, for example, particles obtained by applying nickel or gold plating to resin particles.
  • This mounting method is also used for liquid crystal displays and flexible displays.
  • the liquid crystal display has a Young's modulus as high as 72 GPa and is not easily deformed.
  • the liquid crystal display is easily damaged by external pressure or the like.
  • a flexible display using a flexible plastic as a base material is very thin and has flexibility, so that it can be bent and is not easily damaged, and can be used for electronic paper or a roll-up screen.
  • the transparent electrode (ITO etc.) in the display area extends and is connected to electronic parts such as IC chip and flexible printed wiring board at the end of the base material made of plastic etc. Terminals are provided.
  • the connection terminals are provided directly below or in the vicinity of the display area, and the terminals are miniaturized and the pitch is reduced in order to cope with high-density mounting.
  • the anisotropic conductive film is used for electrical connection between the terminals thus miniaturized and narrowed in pitch and terminals such as electronic parts and plexi- ble printed wiring boards (for example, Patent Document 2).
  • a flexible base material such as polyimide or polyethylene terephthalate
  • a general anisotropic conductive film used for connection with electronic components, and connected by pressure
  • Problems such as cracks in the terminals starting from the conductive particles, cracks in the base material, or destruction may occur.
  • the IC chip etc. are dotted with bumps serving as terminals, Since the pressure applied at the time of connection is also concentrated on the point, cracks are likely to occur.
  • the present invention has been proposed in view of such a conventional situation, and mechanically and electrically connects a terminal provided on a flexible display and a terminal of an electronic component with an anisotropic conductive connection material.
  • anisotropic conductive connection layer and anisotropic conductive connection layer that can suppress cracks in the terminals provided on the flexible display and cracks in the flexible display itself. It is an object of the present invention to provide a connection structure in which components are connected, a connection method in which a flexible display and an electronic component are connected using an anisotropic conductive connection layer, and a method of manufacturing a connection structure by this connection method.
  • the manufacturing method of the connection structure according to the present invention includes a flexible display and an electronic component in which an anisotropic conductive connection layer is interposed between a terminal provided on the flexible display and a terminal of the electronic component.
  • the electronic component is mounted on the flexible display so that the terminal of the electronic component faces the terminal provided on the flexible display through the anisotropic conductive connection layer.
  • Mounting step pressurizing the electronic component against the flexible display, connecting the terminal provided on the flexible display and the terminal of the electronic component with an anisotropic conductive connection layer, and conductive particles in the anisotropic conductive connection layer
  • the conductive particles have a compression hardness of 30 to 400 kgf / mm 2 at 30% compression deformation. It is characterized by that.
  • a connection method that achieves the above-described object is a connection method in which a terminal provided on a flexible display and a terminal of an electronic component are connected by an anisotropic conductive connection layer, through the anisotropic conductive connection layer.
  • Mounting the electronic component on the flexible display so that the terminal of the electronic component faces the terminal provided on the flexible display, and the terminal provided on the flexible display by pressing the electronic component against the flexible display And connecting the terminals of the electronic component with an anisotropic conductive connection layer and conducting the conductive particles through the conductive particles in the anisotropic conductive connection layer.
  • the conductive particles are 30% compressed and deformed.
  • the compression hardness is 150 to 400 kgf / mm 2 .
  • An anisotropic conductive connection material according to the present invention that achieves the above-described object is an anisotropic conductive connection material for connecting a terminal provided on a flexible display and a terminal of an electronic component, and 30% in an adhesive. It is characterized by containing conductive particles having a compression hardness at the time of compressive deformation of 150 to 400 kgf / mm 2 .
  • connection structure according to the present invention that achieves the above-described object connects the flexible display and the electronic component by interposing an anisotropic conductive connection layer between the terminal provided on the flexible display and the terminal of the electronic component.
  • the conductive particles in the anisotropic conductive layer are characterized in that the compression hardness at 30% compression deformation is 150 to 400 Kgf / mm 2 .
  • the conductive particles contained in the insulating adhesive of the anisotropic conductive connecting material have a compressive hardness at the time of 30% compression deformation of 150 to 400 Kgf / mm 2. Even when pressure is applied when connecting electronic components, the conductive particles are deformed, the contact area between the conductive particles and the terminals of the flexible display is increased, and cracks can be prevented from entering the terminals of the flexible display. The display itself can be prevented from cracking or being destroyed.
  • the anisotropic conductive connecting material is interposed between the terminal provided on the flexible display and the terminal of the electronic component, and connects the flexible display and the electronic component to make them conductive.
  • Examples of such an anisotropic conductive connection material include a film-like anisotropic conductive film or a paste-like anisotropic conductive connection paste.
  • the anisotropic conductive film or the anisotropic conductive connection paste is defined as “anisotropic conductive connection material”.
  • an anisotropic conductive film will be described as an example.
  • the film laminate 1 is generally a laminate of an anisotropic conductive film 3 serving as an anisotropic conductive connection layer on a release film 2 serving as a release substrate.
  • the release film 2 is formed by, for example, applying a release agent such as silicone to PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methlpentene-1), PTFE (Polytetrafluoroethylene) or the like. .
  • a release agent such as silicone to PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methlpentene-1), PTFE (Polytetrafluoroethylene) or the like.
  • the anisotropic conductive film 3 is obtained by dispersing conductive particles 5 in an insulating adhesive (binder) 4 containing a film-forming resin, a thermosetting resin, a curing agent, and the like.
  • the anisotropic conductive film 3 is formed on the release film 2 in a film shape.
  • the film forming resin is preferably a resin having an average molecular weight of about 10,000 to 80,000.
  • the film-forming resin include various resins such as an epoxy resin, a modified epoxy resin, a urethane resin, and a phenoxy resin. Among these, phenoxy resin is preferable from the viewpoint of film formation state, connection reliability, and the like. If the content of the film-forming resin is too small, a film will not be formed, and if it is too high, it will be difficult to eliminate the resin for electrical connection.
  • Part by mass preferably 40 to 70 parts by mass.
  • the curing component is not particularly limited as long as it has fluidity at room temperature, and examples thereof include commercially available epoxy resins and acrylic resins.
  • the epoxy resin is not particularly limited and may be appropriately selected depending on the purpose.
  • naphthalene type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, bisphenol type epoxy resin, stilbene type epoxy resin, Phenolmethane type epoxy resin, phenol aralkyl type epoxy resin, naphthol type epoxy resin, dicyclopentadiene type epoxy resin, triphenylmethane type epoxy resin and the like can be mentioned. These may be used alone or in combination of two or more.
  • an acrylic resin there is no restriction
  • thermosetting resin it is preferable to use an epoxy resin or an acrylic resin as the thermosetting resin.
  • Examples of the latent curing agent include various curing agents such as a heat curing type and a UV curing type.
  • the latent curing agent does not normally react, but is activated by various triggers selected according to applications such as heat, light, and pressure, and starts the reaction.
  • the activation method of the thermally activated latent curing agent includes a method of generating active species (cations and anions) by a dissociation reaction by heating, and the like. There are a method of dissolving and dissolving and starting a curing reaction, a method of starting a curing reaction by eluting a molecular sieve encapsulated type curing agent at a high temperature, an elution and curing method using microcapsules, and the like.
  • Thermally active latent curing agents include imidazole series, hydrazide series, boron trifluoride-amine complex, sulfonium salt, amine imide, polyamine salt, dicyandiamide, and modified products thereof.
  • the above mixture may be sufficient.
  • a microcapsule type imidazole-based latent curing agent is preferable.
  • the anisotropic conductive film 3 may contain a silane coupling agent. Although it does not specifically limit as a silane coupling agent, For example, an epoxy type, an amino type, a mercapto sulfide type, a ureido type etc. can be mentioned. By adding the silane coupling agent, connectivity at the interface between the organic material and the inorganic material can be improved.
  • the conductive particles 5 have a compression hardness (K value) at 30% compression deformation of 150 to 400 kgf / mm 2 (1.50 to 4.00 GPa), preferably 150 to 350 kgf / mm 2 (1. 50 to 3.50 GPa).
  • the index of hardness of the conductive particles 5 is calculated from the weight necessary for compressing and deforming 30% of the particle diameter in an unloaded state when one particle is weighted and deformed. Value.
  • the 30% compressive deformation is a state in which when the conductive particles 5 are compressed in one direction, the particle size 2R (mm) of the conductive particles is deformed so as to be 30% shorter than the original particle size. This is a deformation state in which the particle size 2R of the conductive particles is 70% of the original particle size. The smaller the K value, the softer the particles.
  • the compression hardness (K value) at the time of 30% compression deformation of the conductive particles 5 is calculated by the following equation (1).
  • K value is measured by the following measurement method, for example. Specifically, first, conductive particles are dispersed on a steel plate having a smooth surface at room temperature. Next, one conductive particle is selected from the dispersed conductive particles. Then, the conductive end face is pressed by pressing the smooth end face of a diamond cylinder of 50 ⁇ m diameter provided in a micro-compression tester (for example, PCT-200 type: manufactured by Shimadzu Corporation) against one selected conductive particle. Compress the sex particles. At this time, the compression load is electrically detected as an electromagnetic force, and the compression displacement is electrically detected as a displacement by the operating transformer.
  • a micro-compression tester for example, PCT-200 type: manufactured by Shimadzu Corporation
  • the “compression displacement” refers to a value (mm) obtained by subtracting the length of the short diameter of the conductive particles after deformation from the particle diameter of the conductive particles before deformation. Then, another electroconductive particle on a steel plate is selected, and a compressive load and a compressive displacement are measured also about the selected electroconductive particle. For example, compressive deformation is measured for 10 conductive particles with different compressive loads.
  • Compressive displacement-load relationship is expressed as shown in FIG. From the relationship shown in FIG. 2, the load value F (kgf) is calculated from the compression displacement S (mm) when the conductive particles are compressed by 30%. And the compression hardness K value at the time of 30% compression is calculated using Formula (1) from the load value F (kgf) and the compression displacement S (mm).
  • the compression hardness at the time of 30% compression deformation of the conductive particles 5 is 150 to 400 kgf / mm 2 , when the substantially spherical particles are pressed, they are deformed by a load, so that a flexible display as described later can be obtained.
  • the anisotropic conductive film 3 is interposed between the provided terminal and the terminal of the electronic component to connect and conduct the terminals, the terminal is deformed so that it is slightly crushed even if it is compressed. For this reason, the conductive particles 5 come into contact with the terminals of the flexible display without touching at points, reducing the pressure per unit area transmitted to the terminals and dispersing the local pressure applied to the terminals. It is possible to prevent the terminal from being cracked and the flexible display itself from being destroyed.
  • the conduction resistance value of the connecting portion becomes unstable, so that it is 150 Kgf / mm 2 or more.
  • it is possible to prevent the occurrence of cracks in the terminals and the cracks and breakage of the flexible display itself, and the conduction resistance value can be lowered.
  • the conductive particles 5 include particles of various metals and metal alloys such as nickel, iron, copper, aluminum, tin, lead, chromium, cobalt, silver, gold, metal oxide, carbon, graphite, glass, ceramic, plastic, and the like.
  • the surface of the particles may be coated with a metal, or the surface of these particles may be further coated with an insulating thin film.
  • the resin particles include, for example, epoxy resin, phenol resin, acrylic resin, acrylonitrile / styrene (AS) resin, benzoguanamine resin, divinylbenzene resin, styrene resin, etc. Particles can be mentioned.
  • the electroconductive particle 5 consists of these materials, and satisfy
  • the average particle diameter of the conductive particles 5 is preferably 1 to 20 ⁇ m, more preferably 2 to 10 ⁇ m, from the viewpoint of connection reliability. By setting the average particle diameter of the conductive particles 5 in the range of 1 ⁇ m to 20 ⁇ m, electrical connection is possible even when compression deformation is caused by pressurization.
  • the film laminate 1 having such a structure is made of an anisotropic conductive composition in which the above-described insulating adhesive (binder) 4 is dissolved in a solvent such as toluene or ethyl acetate and the conductive particles 5 are dispersed.
  • a solvent such as toluene or ethyl acetate
  • the anisotropic conductive composition Produced by applying this anisotropic conductive composition on the release film 2 having peelability to a desired thickness, drying to remove the solvent, and forming the anisotropic conductive film 3 can do.
  • the film laminated body 1 is not limited to the structure which formed the anisotropic conductive film 3 on such a peeling film 2,
  • the insulating resin which consists only of the insulating adhesives 4 in the anisotropic conductive film 3, for example A layer (NCF: Non Conductive Film layer) may be laminated.
  • the film laminate 1 may have a configuration in which a release film is also provided on the surface opposite to the surface on which the release film 2 of the anisotropic conductive film 3 is laminated.
  • the anisotropic conductive film 3 of the film laminate 1 having the above-described configuration is pressurized when the compression hardness at the time of 30% compression deformation of the conductive particles 5 is 150 to 400 Kgf / mm 2.
  • the almost spherical particles are deformed by the load.
  • connection method for conducting and connecting terminals of a flexible display and terminals of an electronic component using the anisotropic conductive film 3, a connection structure manufactured thereby, and a method for manufacturing the connection structure will be described. .
  • connection structure 10 the flexible printed wiring board 13 is mechanically and electrically connected to the flexible display 11 so as to be electrically connected to the IC chip 12 and the outside as an electronic component for driving the flexible display 11.
  • the connection structure 10 includes a display unit 10a that displays an image and the like, and a mounting unit 10b on which the IC chip 12 and the flexible printed wiring board 13 are mechanically and electrically connected and mounted.
  • the flexible display 11 has two flexible films 14, a front plate and a back plate, and a display medium layer 15 such as a microcapsule layer or a liquid crystal layer is disposed between the two flexible films 14.
  • the periphery of the layer 15 is sealed with a sealing portion 16 made of a sealing material.
  • the flexible film 14 has a Young's modulus of 10 GPa or less, preferably 2 to 10 GPa, more preferably 3 to 5 GPa.
  • the Young's modulus is a constant specific to a substance calculated from a strain per unit (deformation rate) generated when a substance is deformed by applying stress. If this Young's modulus is large, it is difficult to deform against stress, and if it is small, it is likely to deform.
  • This flexible film 14 has a small Young's modulus and is easily deformed with respect to a load as compared with a glass substrate of about 72 GPa.
  • Examples of the flexible film 14 include polyimide or polyethylene terephthalate.
  • the terminals 14 a provided on the flexible film 14 on the back plate and the terminals 12 a of the IC chip 12 and the terminals 13 a of the flexible printed wiring board 13 are electrically connected by conductive particles 5 that are compressed and deformed. Has been.
  • connection structure 10 can be manufactured by using the following connection method.
  • a mounting step of mounting the IC chip 12 and the flexible printed wiring board 13 on the flexible film 14 is performed so that the terminals 12a and the terminals 13a of the flexible printed wiring board 13 face each other.
  • the IC chip 12 and the flexible printed wiring board 13 are pressed against the flexible film 14, and the terminals 14a provided on the flexible film 14 are different from the terminals 12a of the IC chip 12 and the terminals 13a of the flexible printed wiring board 13.
  • the connection process of conducting through the conductive particles 5 in the anisotropic conductive film 3 and the connection with the anisotropic conductive film 3 is performed.
  • connection structure 10 About the manufacturing method of the connection structure 10, the case where the film laminated body 1 provided with the anisotropic conductive film 3 which contained the electroconductive particle 5 in the insulating adhesive 4 which used the thermoplastic resin as a hardening component is used is demonstrated, for example.
  • the anisotropic conductive film 3 of the film laminate 1 is connected to the flexible film 14 at a position where the terminal 14 a of the flexible film 14 is connected to the terminal 12 a of the IC chip 12 and the terminal 13 a of the flexible printed wiring board 13.
  • the release film 2 is peeled off to make only the anisotropic conductive film 3, and then the anisotropic conductive film 3 is attached to the terminal 14a.
  • This pasting is performed by heating at a temperature at which the thermosetting resin component contained in the anisotropic conductive film 3 is not cured, for example, while slightly pressing. Thereby, the anisotropic conductive film 3 is positioned and fixed on the terminal 14 a of the flexible film 14.
  • the IC chip 12 and the flexible printed wiring board 13 are mounted on the anisotropic conductive film 3.
  • the alignment state of the anisotropic conductive film 3 is confirmed, and if there is no misalignment or the like, the terminal 14a of the flexible film 14, the terminal 12a of the IC chip 12, and the flexible printed wiring board 13 are mounted.
  • the IC chip 12 and the flexible printed wiring board 13 are mounted on the flexible film 14 via the anisotropic conductive film 3 so that the terminals 13a face each other.
  • connection process of mechanically and electrically connecting the flexible film 14 of the flexible display 11 to the IC chip 12 and the flexible printed wiring board 13 is performed using a pressing head that can be heated and pressurized with the IC chip 12 and the flexible print.
  • the IC chip 12 and the flexible printed wiring board 13 are heated and pressed against the flexible film 14 from the upper surface of the wiring board 13 to cure the anisotropic conductive film 3, and the terminals 14a of the flexible film 14 and the terminals of the IC chip 12 are cured.
  • 12a and the terminal 13a of the flexible printed wiring board 13 are electrically connected through the conductive particles 5, and the flexible film 14, the IC chip 12 and the flexible printed wiring board 13 are mechanically connected by the insulating adhesive 4.
  • the connection structure 10 IC chip 12 and the flexible printed circuit board 13 is connected to the play 11.
  • the condition of this connection process is that the heating temperature is a temperature equal to or higher than the curing temperature of the thermosetting resin contained in the anisotropic conductive film 3, and the anisotropic conductive film thermally melted from between the terminal 14a and the terminals 12a and 13a. 3 is excluded, and pressurization is performed at a pressure that can sandwich the conductive particles 5.
  • the flexible film 14, the IC chip 12, and the flexible printed wiring board 13 are electrically connected by the conductive particles 5 and mechanically connected by the insulating adhesive (binder) 4.
  • Specific conditions for temperature and pressurization are a temperature of about 120 ° C. to 150 ° C. and a pressure of about 1 MPa to 5 MPa.
  • the IC chip 12 and the flexible printed wiring board 13 are pressed by the pressing head toward the flexible film 14, whereby the conductive particles 5 interposed therebetween are compressed and deformed, and the flexible film
  • the 14 terminals 14a do not come into contact with each other but come into contact with each other, and the contact area with the terminal 14a increases.
  • the pressure per unit area transmitted from the conductive particles 5 to the terminal 14a can be reduced, the local pressure applied to the terminal 14a can be dispersed, and cracks can be prevented from occurring in the terminal 14a.
  • the flexible film 14 can be prevented from cracking or being destroyed.
  • connection structure 10 As described above is applied to the anisotropic conductive film 3 interposed between the terminal 14a of the flexible film 14, the terminal 12a of the IC chip 12, and the terminal 13a of the flexible printed wiring board 13.
  • the conductive particles 5 contained have a compression hardness of 30 to 400 kgf / mm 2 at 30% compression deformation, terminals are particularly scattered when connecting the flexible film 14 and the electronic component.
  • the manufacturing method of the connection structure 10 is such that the mounting portion 10b is narrow when the mounting area for the electronic component exists near the display portion 10a having the display medium layer 15 of the flexible display 11 or immediately below the display portion 10a. Even if it is a simple mounting region, no cracks are generated in the terminals 14a of the flexible film 14, and no cracks are generated or broken in the flexible film 14 itself. Thus, it is possible to prevent the display medium layer 15 from affecting the display of an image or the like.
  • connection structure 10 described above has a configuration in which one IC chip 12 and a flexible printed wiring board 13 are mechanically and electrically connected to the flexible display 11, but the present invention is not limited to this, and as shown in FIG.
  • the connection structure 20 may be sufficient.
  • the connection structure 20 has a configuration in which two IC chips 12 and a flexible printed wiring board 13 are mechanically and electrically connected to the flexible film 14 of the flexible display 11 by the anisotropic conductive film 3.
  • the connection structure 20 includes a display unit 20a that displays an image or the like using a display medium layer (not shown), and a mounting unit 20b that is mounted by mechanically and electrically connecting the IC chip 12 and the flexible printed wiring board 13 to each other. Have. In such a connection structure 20 as well, as in the connection structure 10 described above, the terminal 14a of the flexible film 14 is not cracked, and the flexible film 14 itself is not broken.
  • connection structures 10 and 20 described above do not require reinforcing treatment for preventing cracks on the terminals 14a of the flexible display 11, and the manufacturing cost is the same as the manufacturing process of the conventional flexible display 11. Can be prevented.
  • connection structures 10 and 20 are not limited to the flexible display described above, and may be ones in which an electronic component such as an IC chip 12 or a flexible printed wiring board 13 is connected to a flexible base material such as a flexible film. Good.
  • the electronic component is not limited to the IC chip 12 and the flexible printed wiring board 13, but may be other electronic components.
  • Examples include semiconductor chips other than IC chips such as LSI (Large Scale Integration) chips, semiconductor elements such as chip capacitors, and semiconductor mounting materials (COF: Chip On Film) for driving liquid crystals.
  • LSI Large Scale Integration
  • COF Chip On Film
  • Two or more electronic components may be mounted on the flexible display 11, and the mounting positions of the electronic components are not limited to those shown in FIGS. 4 and 5, and may be mounted directly below the display units 10a and 20a.
  • Example 1 to Example 5 ⁇ Production of anisotropic conductive film> (Example 1 to Example 5)
  • a phenoxy resin (YP50, manufactured by Nippon Steel Chemical Co., Ltd.)
  • imidazole System latent curing agent Novacure 3941HP, manufactured by Asahi Kasei E-Materials
  • 2 parts by mass of silane coupling agent A-187, manufactured by Momentive Performance Materials
  • 10 parts by mass of conductive particles having a predetermined hardness Toluene was added to a solid content of 50% to prepare an anisotropic conductive composition.
  • the anisotropic conductive composition was applied onto a release substrate using a bar coater, and toluene was dried using an oven to prepare an anisotropic conductive film having a thickness of 20 ⁇ m.
  • the conductive particles were produced by forming the core part with resin and applying nickel (Ni) plating or nickel gold (NiAu) plating to the core part.
  • the resin particles in the core part are heated with uniform stirring at high speed by adding benzoisoperoxide as a polymerization initiator to a solution in which the mixing ratio of divinylbenzene, styrene, and butyl methacrylate is adjusted,
  • a fine particle dispersion was obtained by carrying out a polymerization reaction.
  • the fine particle dispersion was filtered and dried under reduced pressure to obtain a block body that was an aggregate of fine particles.
  • this block was pulverized to obtain divinylbenzene resin particles having various hardnesses and an average particle diameter of 3.0 ⁇ m.
  • the divinylbenzene resin particles obtained as described above were subjected to Ni plating or NiAu plating to produce conductive particles obtained by applying Ni plating or NiAu plating to the divinylbenzene resin particles.
  • Conductive particles obtained by applying Ni plating to divinylbenzene resin particles were obtained by supporting palladium catalyst on 5 g of 3 ⁇ m divinylbenzene resin particles by an immersion method.
  • an electroless nickel plating solution prepared from nickel sulfate hexahydrate, sodium hypophosphite, sodium citrate, triethanolamine and thallium nitrate pH 12, plating solution temperature 50 ° C.
  • Electroless nickel plating was performed using nickel, and nickel-coated resin particles having nickel plating layers (metal layers) having various phosphorus contents formed on the surfaces were obtained as conductive particles (resin core Ni plating particles).
  • the average particle diameter of the obtained conductive particles was in the range of 3 to 4 ⁇ m.
  • Conductive particles obtained by applying NiAu plating to divinylbenzene resin particles were prepared by mixing 12 g of divinylbenzene resin particles with a solution of 10 g of sodium chloroaurate dissolved in 1000 mL of ion exchange water to prepare an aqueous suspension. .
  • a gold plating bath was prepared by adding 15 g of ammonium thiosulfate, 80 g of ammonium sulfite, and 40 g of ammonium hydrogen phosphate to the obtained aqueous suspension. After 4 g of hydroxylamine was added to the gold plating bath obtained, the pH of the gold plating bath was adjusted to 9 using ammonia, and the bath temperature was maintained at 60 ° C. for about 15 to 20 minutes. Layer) was obtained as nickel-coated resin particles (resin core NiAu plating particles) formed on the surface. The average particle diameter of the obtained conductive particles was in the range of 3 to 4 ⁇ m.
  • Table 1 shows the compression hardness at the time of 30% compression deformation of the conductive particles.
  • the compressive hardness at 30% compressive deformation of the conductive particles is that the conductive particles are dispersed on a steel plate having a smooth surface at room temperature, and one of the dispersed conductive particles is electrically conductive. Particles were selected. Then, the conductive end face is pressed by pressing the smooth end face of a diamond cylinder of 50 ⁇ m diameter provided in a micro-compression tester (for example, PCT-200 type: manufactured by Shimadzu Corporation) against one selected conductive particle. Sex particles were compressed. And the load value F (kgf) was computed from the compression displacement S (mm) at the time of 30% compression of electroconductive particle from the relationship shown in FIG. Then, the compression hardness K value at the time of 30% compression was calculated using Formula (1) from the calculated load value F (kgf) and compression displacement S (mm).
  • Comparative Examples 1 to 3 were the same as the Examples except that conductive particles were prepared so that the compression hardness at 30% compression of the resin core Ni plated particles was as shown in Table 1. An anisotropic conductive film was produced.
  • PET polyethylene terephthalate
  • the anisotropic conductive film produced is placed on the flexible film on which the wiring is formed, and the IC chip is placed on the anisotropic conductive film so that the terminals of the IC chip and the wiring face each other through the anisotropic conductive film. Arranged above. And it connected by heating and pressurizing on the conditions of temperature 200 degreeC and pressure 600kgf / cm ⁇ 2 > with the press head from the upper surface of the IC chip, and produced the connection structure.
  • the occurrence of wiring cracks was confirmed visually.
  • the rate of occurrence of cracks indicates the ratio of occurrence of cracks in 100 wirings.
  • Table 1 and Table 2 show the crack occurrence rates.
  • ⁇ Test of conduction resistance> In the test of the conduction resistance value, a flexible film and a flexible wiring board were connected as in the crack generation test, a connection structure was produced, and the conduction resistance was measured.
  • the conduction resistance value after being allowed to stand for 125 hours in an 85 ° C./85% RH environment (after aging) was evaluated.
  • the conduction resistance value was measured using a digital multimeter (trade name: Digital Multimeter 7561, manufactured by Yokogawa Electric Corporation) when a current of 1 mA was passed by the four-terminal method. When the conduction resistance value after aging is 10 ⁇ or less, the resistance is low. Tables 1 and 2 show the measurement results of the conduction resistance values.
  • Example 1 the conduction resistance value was lower than that in Comparative Example 1, and the conduction resistance was lowered. Accordingly, from Examples 1 to 5, by causing the compression hardness at the time of 30% compression deformation of the conductive particles in the anisotropic conductive film to be in the range of 150 to 400 Kgf / mm 2 , the generation of wiring cracks It can be seen that the conduction resistance value can be lowered. Among the examples, in Example 2, no cracks were generated in the wiring, and the conduction resistance value was low.
  • Comparative Example 1 has a compressive hardness at 30% compressive deformation of the conductive particles of 100 kgf / mm 2 , and since the hardness is low, cracks in the wiring did not occur. Insufficient encroachment of the conductive particles into the surface occurred, and a low conduction resistance value could not be obtained.
  • Comparative Examples 2 and 3 since the compression hardness at the time of 30% compression deformation of the conductive particles is 500 kgf / mm 2 and 720 kgf / mm 2 , the hardness is high and the conduction resistance is low, but the wiring crack There has occurred. Since Comparative Example 3 was harder than Comparative Example 2, wiring cracks were more likely to occur.

Abstract

Provided is a manufacturing method for a connection structure in which an anisotropic conductive connection layer is interposed between a terminal provided to a flexible display and a terminal of an electronic component, and the flexible display and the electronic component are connected and conductive to each other. The method includes the following: a mounting step for mounting the electronic component on the flexible display, via the anisotropic conductive connection layer, so that the terminal of the electronic component faces the terminal provided to the flexible display; and a connection step in which the electronic component is pressed against the flexible display, and the terminal provided to the flexible display and the terminal of the electronic component are connected by the anisotropic conductive connection layer and made to be conductive to each other via conductive particles in the anisotropic conductive connection layer. The compression hardness of the conductive particles is 150-400 Kgf/mm2 when compression deformation is 30%.

Description

異方性導電接続材料、接続構造体、接続構造体の製造方法及び接続方法Anisotropic conductive connection material, connection structure, manufacturing method of connection structure, and connection method
 本発明は、フレキシブルディスプレイに、例えばフレキシブルプリント配線板や半導体素子等の電子部品を実装する際に使用する異方性導電接続材料、異方性導電接続層を用いてフレキシブルディスプレイと電子部品とを接続した接続構造体、異方性導電接続層を用いてフレキシブルディスプレイと電子部品とを接続する接続方法及びこの接続方法による接続構造体の製造方法に関するものである。 The present invention relates to a flexible display and an electronic component using an anisotropic conductive connection layer and an anisotropic conductive connection layer used when mounting an electronic component such as a flexible printed wiring board and a semiconductor element on a flexible display. The present invention relates to a connected connection structure, a connection method for connecting a flexible display and an electronic component using an anisotropic conductive connection layer, and a method for manufacturing a connection structure by this connection method.
 半導体素子等の電子部品を基板に実装する技術として、例えば電子部品をいわゆるフェースダウン状態で基板上に実装するフリップチップ実装法が広く用いられている。フリップチップ実装法においては、接続信頼性を高めること等を目的に、電子部品の端子と基板に設けられた端子との間に異方性導電フィルムを介在させ、異方性導電フィルムによる電気的及び機械的な接続が行われている。異方性導電フィルムは、樹脂等を含有する接着剤に導電性粒子を分散させたものである。導電性粒子は、例えば樹脂粒子にニッケル、金めっきを施した粒子等である。 As a technique for mounting an electronic component such as a semiconductor element on a substrate, for example, a flip chip mounting method in which the electronic component is mounted on the substrate in a so-called face-down state is widely used. In the flip chip mounting method, an anisotropic conductive film is interposed between a terminal of an electronic component and a terminal provided on a substrate for the purpose of improving connection reliability and the like. And mechanical connections are made. The anisotropic conductive film is obtained by dispersing conductive particles in an adhesive containing a resin or the like. The conductive particles are, for example, particles obtained by applying nickel or gold plating to resin particles.
 このような実装方法において、例えば、特許文献1では、電子部品の端子又は配線基板の端子の表面を平坦な面とし、導電性粒子を均一に潰すことにより、電子部品の端子と配線基板に設けられた端子との電気的接続を良好にしている。 In such a mounting method, for example, in Patent Document 1, the surface of the terminal of the electronic component or the terminal of the wiring board is made flat, and the conductive particles are uniformly crushed to provide the terminals of the electronic component and the wiring board. The electrical connection with the connected terminal is made good.
 また、この実装方法は、液晶ディスプレイやフレキシブルディスプレイにも使用されている。液晶ディスプレイは、ヤング率が72GPaと高く変形しにくいガラス基材が用いられており、外部からの押圧等によって破損しやすいものである。一方、柔軟なプラスチックを基材に用いたフレキシブルディスプレイは、非常に薄く、可撓性を有するため曲げることができ、破損しづらく、電子ペーパやロールアップスクリーンに用いることができる。 This mounting method is also used for liquid crystal displays and flexible displays. The liquid crystal display has a Young's modulus as high as 72 GPa and is not easily deformed. The liquid crystal display is easily damaged by external pressure or the like. On the other hand, a flexible display using a flexible plastic as a base material is very thin and has flexibility, so that it can be bent and is not easily damaged, and can be used for electronic paper or a roll-up screen.
 フレキシブルディスプレイでは、表示領域の透明電極(ITO等)が延在してプラスチック等からなる基材の端部に、ICチップやプレキシブルプリント配線板等の電子部品と電気的に接続される接続用の端子が設けられている。フレキシブルディスプレイでは、この接続用の端子が表示領域の直下又は近傍に設けられ、高密度実装等に対応するため、端子の微細化、狭ピッチ化がなされている。このように微細化、狭ピッチ化がなされた端子と、電子部品やプレキシブルプリント配線板等の端子との電気的な接続には、上述のように異方性導電フィルムが使用される(例えば特許文献2参照)。 In a flexible display, the transparent electrode (ITO etc.) in the display area extends and is connected to electronic parts such as IC chip and flexible printed wiring board at the end of the base material made of plastic etc. Terminals are provided. In the flexible display, the connection terminals are provided directly below or in the vicinity of the display area, and the terminals are miniaturized and the pitch is reduced in order to cope with high-density mounting. As described above, the anisotropic conductive film is used for electrical connection between the terminals thus miniaturized and narrowed in pitch and terminals such as electronic parts and plexi- ble printed wiring boards (for example, Patent Document 2).
 フレキシブルディスプレイでは、ポリイミドやポリエチレンテレフタラート等の柔軟な基材を用いているため、電子部品との接続に用いられている一般的な異方性導電フィルムを使用し、加圧により接続した場合、導電性粒子を起点として端子にクラックが入ったり、基材にもクラックが入ったり又は破壊されてしまう等の不具合が生じることがある。例えば、フレキシブルディスプレイの基材上にICチップ等の電子部品を直接接続する場合、配線幅で接続するフレキシブルプリント配線板の場合と異なり、ICチップ等は端子となるバンプが点在しており、接続時に加わる圧力も点に集中して加わるため、クラックが入りやすくなる。 In a flexible display, since a flexible base material such as polyimide or polyethylene terephthalate is used, when using a general anisotropic conductive film used for connection with electronic components, and connected by pressure, Problems such as cracks in the terminals starting from the conductive particles, cracks in the base material, or destruction may occur. For example, when directly connecting an electronic component such as an IC chip on the substrate of the flexible display, unlike the case of the flexible printed wiring board connected by the wiring width, the IC chip etc. are dotted with bumps serving as terminals, Since the pressure applied at the time of connection is also concentrated on the point, cracks are likely to occur.
 フレキシブルディスプレイでは、表示部の直下又は近傍に電子部品の実装領域が存在することから、上述した特許文献1のような単に配線基板に設けられた端子に電子部品を実装する場合に比べて、狭額の実装領域においてクラックが発生しないように、クラックの発生を特に抑制する必要がある。フレキシブルディスプレイでは、電子部品を接続する際に端子にクラックが入ったり、フレキシブルな基材が破壊されてしまうと、表示部までクラックや破壊等が生じてしまう場合があるため、表示部への影響が大きく、電子部品の接続によるクラックの発生や基材の破壊を抑制することが求められている。 In the flexible display, since a mounting area for electronic components exists directly below or in the vicinity of the display unit, it is narrower than a case where electronic components are simply mounted on terminals provided on the wiring board as described in Patent Document 1 described above. It is necessary to particularly suppress the occurrence of cracks so that cracks do not occur in the forehead mounting region. In a flexible display, if an electronic component is connected, if the terminal is cracked or the flexible substrate is destroyed, the display may be cracked or destroyed. Therefore, it is required to suppress the generation of cracks due to the connection of electronic components and the destruction of the base material.
特開2009-111043号公報JP 2009-111043 A 特開2009-242508号公報JP 2009-242508 A
 本発明は、このような従来の実情に鑑みて提案されたものであり、フレキシブルディスプレイに設けられた端子と、電子部品の端子とを異方性導電接続材料で機械的及び電気的に接続する際に、フレキシブルディスプレイに設けられた端子にクラックやフレキシブルディスプレイ自体にもクラックが入ったり、破壊が生じることを抑制できる異方性導電接続材料、異方性導電接続層を用いてフレキシブルディスプレイと電子部品とを接続した接続構造体、異方性導電接続層を用いてフレキシブルディスプレイと電子部品とを接続する接続方法及びこの接続方法による接続構造体の製造方法を提供することを目的とする。 The present invention has been proposed in view of such a conventional situation, and mechanically and electrically connects a terminal provided on a flexible display and a terminal of an electronic component with an anisotropic conductive connection material. When using the anisotropic conductive connection layer and anisotropic conductive connection layer that can suppress cracks in the terminals provided on the flexible display and cracks in the flexible display itself, It is an object of the present invention to provide a connection structure in which components are connected, a connection method in which a flexible display and an electronic component are connected using an anisotropic conductive connection layer, and a method of manufacturing a connection structure by this connection method.
 上述した目的を達成する本発明に係る接続構造体の製造方法は、フレキシブルディスプレイに設けられた端子と電子部品の端子との間に異方性導電接続層を介在させて、フレキシブルディスプレイと電子部品とを接続及び導通した接続構造体の製造方法であり、異方性導電接続層を介して、電子部品の端子がフレキシブルディスプレイに設けられた端子と対向するように電子部品をフレキシブルディスプレイ上に搭載する搭載工程と、電子部品をフレキシブルディスプレイに対して加圧し、フレキシブルディスプレイに設けられた端子と電子部品の端子とを異方性導電接続層で接続及び異方性導電接続層中の導電性粒子を介して導通する接続工程とを有し、導電性粒子は、30%圧縮変形時の圧縮硬さが150~400Kgf/mmであることを特徴とする。 The manufacturing method of the connection structure according to the present invention that achieves the above-described object includes a flexible display and an electronic component in which an anisotropic conductive connection layer is interposed between a terminal provided on the flexible display and a terminal of the electronic component. The electronic component is mounted on the flexible display so that the terminal of the electronic component faces the terminal provided on the flexible display through the anisotropic conductive connection layer. Mounting step, pressurizing the electronic component against the flexible display, connecting the terminal provided on the flexible display and the terminal of the electronic component with an anisotropic conductive connection layer, and conductive particles in the anisotropic conductive connection layer The conductive particles have a compression hardness of 30 to 400 kgf / mm 2 at 30% compression deformation. It is characterized by that.
 上述した目的を達成する本発明に係る接続方法は、フレキシブルディスプレイに設けられた端子と電子部品の端子とを異方性導電接続層により接続する接続方法であり、異方性導電接続層を介して、電子部品の端子がフレキシブルディスプレイに設けられた端子と対向するように電子部品をフレキシブルディスプレイ上に搭載する搭載工程と、電子部品をフレキシブルディスプレイに対して加圧し、フレキシブルディスプレイに設けられた端子と電子部品の端子とを異方性導電接続層で接続及び異方性導電接続層中の導電性粒子を介して導通する接続工程とを有し、導電性粒子は、30%圧縮変形時の圧縮硬さが150~400Kgf/mmであることを特徴とする。 A connection method according to the present invention that achieves the above-described object is a connection method in which a terminal provided on a flexible display and a terminal of an electronic component are connected by an anisotropic conductive connection layer, through the anisotropic conductive connection layer. Mounting the electronic component on the flexible display so that the terminal of the electronic component faces the terminal provided on the flexible display, and the terminal provided on the flexible display by pressing the electronic component against the flexible display And connecting the terminals of the electronic component with an anisotropic conductive connection layer and conducting the conductive particles through the conductive particles in the anisotropic conductive connection layer. The conductive particles are 30% compressed and deformed. The compression hardness is 150 to 400 kgf / mm 2 .
 上述した目的を達成する本発明に係る異方性導電接続材料は、フレキシブルディスプレイに設けられた端子と電子部品の端子とを接続する異方性導電接続材料であり、接着剤中に、30%圧縮変形時の圧縮硬さが150~400Kgf/mmである導電性粒子を含有することを特徴とする。 An anisotropic conductive connection material according to the present invention that achieves the above-described object is an anisotropic conductive connection material for connecting a terminal provided on a flexible display and a terminal of an electronic component, and 30% in an adhesive. It is characterized by containing conductive particles having a compression hardness at the time of compressive deformation of 150 to 400 kgf / mm 2 .
 上述した目的を達成する本発明に係る接続構造体は、フレキシブルディスプレイに設けられた端子と電子部品の端子との間に異方性導電接続層を介在させて、フレキシブルディスプレイと電子部品とを接続及び導通した接続構造体であり、異方性導電性層中の導電性粒子は、30%圧縮変形時の圧縮硬さが150~400Kgf/mmであることを特徴とする。 The connection structure according to the present invention that achieves the above-described object connects the flexible display and the electronic component by interposing an anisotropic conductive connection layer between the terminal provided on the flexible display and the terminal of the electronic component. The conductive particles in the anisotropic conductive layer are characterized in that the compression hardness at 30% compression deformation is 150 to 400 Kgf / mm 2 .
 本発明によれば、異方性導電接続材料の絶縁性接着剤に含有されている導電性粒子の30%圧縮変形時の圧縮硬さが150~400Kgf/mmとすることによって、フレキシブルディスプレイと電子部品とを接続する際に加圧しても、導電性粒子が変形し、導電性粒子とフレキシブルディスプレイの端子との接触面積が広くなり、フレキシブルディスプレイの端子にクラックが入ることを防止でき、フレキシブルディスプレイ自体にもクラックが入ったり、破壊されることを抑制できる。 According to the present invention, the conductive particles contained in the insulating adhesive of the anisotropic conductive connecting material have a compressive hardness at the time of 30% compression deformation of 150 to 400 Kgf / mm 2. Even when pressure is applied when connecting electronic components, the conductive particles are deformed, the contact area between the conductive particles and the terminals of the flexible display is increased, and cracks can be prevented from entering the terminals of the flexible display. The display itself can be prevented from cracking or being destroyed.
本発明を適用したフィルム積層体の断面図である。It is sectional drawing of the film laminated body to which this invention is applied. 導電性粒子の30%圧縮変形時の圧縮硬さの算出における圧縮変位-荷重の関係を示す図である。It is a figure which shows the relationship of the compression displacement-load in calculation of the compression hardness at the time of 30% compressive deformation of electroconductive particle. フレキシブルディスプレイと電子部品とを異方性導電フィルムで接続した接続構造体を示す図であり、(A)は接続構造体の上面図であり、(B)は接続構造体の断面図である。It is a figure which shows the connection structure which connected the flexible display and the electronic component with the anisotropic conductive film, (A) is a top view of a connection structure, (B) is sectional drawing of a connection structure. フレキシブルフィルムの端子と、電子部品の端子との接続部分を示す断面図である。It is sectional drawing which shows the connection part of the terminal of a flexible film, and the terminal of an electronic component. フレキシブルディスプレイに、2つのICチップ及びフレキシブルプリント配線基板を異方性導電フィルムで接続した接続構造体の上面図である。It is a top view of the connection structure which connected two IC chips and the flexible printed wiring board to the flexible display with the anisotropic conductive film.
 以下、本発明が適用された異方性導電接続材料、接続構造体、接続構造体の製造方法及び接続方法について、図面を参照して詳細に説明する。なお、本発明は、特に限定がない限り、以下の詳細な説明に限定されるものではない。本発明に係る実施の形態の説明は、以下の順序で行う。
1.異方性導電接続材料
2.接続構造体・接続構造体の接続方法・接続方法
Hereinafter, an anisotropic conductive connection material to which the present invention is applied, a connection structure, a method for manufacturing the connection structure, and a connection method will be described in detail with reference to the drawings. Note that the present invention is not limited to the following detailed description unless otherwise specified. The embodiment according to the present invention will be described in the following order.
1. 1. Anisotropic conductive connecting material Connection structure / Connection structure connection method / Connection method
 <異方性導電接続材料>
 異方性導電接続材料は、フレキシブルディスプレイに設けられた端子と電子部品の端子との間に介在し、フレキシブルディスプレイと電子部品とを接続して導通させるものである。このような異方性導電接続材料としては、フィルム状の異方性導電フィルム又はペースト状の異方性導電接続ペーストを挙げることができる。本願では、異方性導電フィルム又は異方性導電接続ペーストを「異方性導電接続材料」と定義する。以下では、異方性導電フィルムを例に挙げて説明する。
<Anisotropic conductive connection material>
The anisotropic conductive connecting material is interposed between the terminal provided on the flexible display and the terminal of the electronic component, and connects the flexible display and the electronic component to make them conductive. Examples of such an anisotropic conductive connection material include a film-like anisotropic conductive film or a paste-like anisotropic conductive connection paste. In the present application, the anisotropic conductive film or the anisotropic conductive connection paste is defined as “anisotropic conductive connection material”. Hereinafter, an anisotropic conductive film will be described as an example.
 フィルム積層体1は、図1に示すように、通常、剥離基材となる剥離フィルム2上に異方性導電接続層となる異方性導電フィルム3が積層されたものである。 As shown in FIG. 1, the film laminate 1 is generally a laminate of an anisotropic conductive film 3 serving as an anisotropic conductive connection layer on a release film 2 serving as a release substrate.
 剥離フィルム2は、例えば、PET(Poly Ethylene Terephthalate)、OPP(Oriented Polypropylene)、PMP(Poly-4-methlpentene-1)、PTFE(Polytetrafluoroethylene)等にシリコーン等の剥離剤を塗布してなるものである。 The release film 2 is formed by, for example, applying a release agent such as silicone to PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methlpentene-1), PTFE (Polytetrafluoroethylene) or the like. .
 異方性導電フィルム3は、膜形成樹脂、熱硬化性樹脂及び硬化剤等を含有する絶縁性接着剤(バインダ)4に導電性粒子5が分散されたものである。この異方性導電フィルム3は、剥離フィルム2上にフィルム状に形成されている。 The anisotropic conductive film 3 is obtained by dispersing conductive particles 5 in an insulating adhesive (binder) 4 containing a film-forming resin, a thermosetting resin, a curing agent, and the like. The anisotropic conductive film 3 is formed on the release film 2 in a film shape.
 膜形成樹脂としては、平均分子量が10000~80000程度の樹脂が好ましい。膜形成樹脂としては、特にエポキシ樹脂、変形エポキシ樹脂、ウレタン樹脂、フェノキシ樹脂等の各種の樹脂が挙げられる。中でも、膜形成状態、接続信頼性等の観点からフェノキシ樹脂が好ましい。膜形成樹脂の含有量は、少なすぎるとフィルムを形成せず、多すぎると電気接続のための樹脂の排除がしにくくなるので、100質量部の絶縁性接着剤4に対して、20~80質量部、好ましくは40~70質量部である。 The film forming resin is preferably a resin having an average molecular weight of about 10,000 to 80,000. Examples of the film-forming resin include various resins such as an epoxy resin, a modified epoxy resin, a urethane resin, and a phenoxy resin. Among these, phenoxy resin is preferable from the viewpoint of film formation state, connection reliability, and the like. If the content of the film-forming resin is too small, a film will not be formed, and if it is too high, it will be difficult to eliminate the resin for electrical connection. Part by mass, preferably 40 to 70 parts by mass.
 硬化成分としては、常温で流動性を有していれば特に限定されず、市販のエポキシ樹脂、アクリル樹脂が挙げられる。 The curing component is not particularly limited as long as it has fluidity at room temperature, and examples thereof include commercially available epoxy resins and acrylic resins.
 エポキシ樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂等が挙げられる。これらは単独でも、2種以上の組み合わせであってもよい。 The epoxy resin is not particularly limited and may be appropriately selected depending on the purpose. For example, naphthalene type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, bisphenol type epoxy resin, stilbene type epoxy resin, Phenolmethane type epoxy resin, phenol aralkyl type epoxy resin, naphthol type epoxy resin, dicyclopentadiene type epoxy resin, triphenylmethane type epoxy resin and the like can be mentioned. These may be used alone or in combination of two or more.
 アクリル樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えばアクリル化合物、液状アクリレート等が挙げられる。具体的には、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エポキシアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ジメチロールトリシクロデカンジアクリレート、テトラメチレングリコールテトラアクリレート、2-ヒドロキシ-1,3-ジアクリロキシプロパン、2,2-ビス[4-(アクリロキシメトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ウレタンアクリレート、エポキシアクリレート等が挙げられる。これらは単独でも、2種以上の組み合わせであってもよい。 There is no restriction | limiting in particular as an acrylic resin, According to the objective, it can select suitably, For example, an acrylic compound, liquid acrylate, etc. are mentioned. Specifically, methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, epoxy acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, trimethylolpropane triacrylate, dimethylol tricyclodecane diacrylate, tetramethylene glycol tetraacrylate, 2 -Hydroxy-1,3-diaacryloxypropane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane, 2,2-bis [4- (acryloxyethoxy) phenyl] propane, dicyclopentenyl acrylate , Tricyclodecanyl acrylate, tris (acryloxyethyl) isocyanurate, urethane acrylate, epoxy acrylate and the like. These may be used alone or in combination of two or more.
 熱硬化性樹脂としては、エポキシ樹脂又はアクリル樹脂を用いることが好ましい。 It is preferable to use an epoxy resin or an acrylic resin as the thermosetting resin.
 潜在性硬化剤としては、加熱硬化型、UV硬化型等の各種硬化剤が挙げられる。潜在性硬化剤は、通常では反応せず、熱、光、加圧等の用途に応じて選択される各種のトリガにより活性化し、反応を開始する。熱活性型潜在性硬化剤の活性化方法には、加熱による解離反応などで活性種(カチオンやアニオン)を生成する方法、室温付近ではエポキシ樹脂中に安定に分散しており高温でエポキシ樹脂と相溶・溶解し、硬化反応を開始する方法、モレキュラーシーブ封入タイプの硬化剤を高温で溶出して硬化反応を開始する方法、マイクロカプセルによる溶出・硬化方法等が存在する。熱活性型潜在性硬化剤としては、イミダゾール系、ヒドラジド系、三フッ化ホウ素-アミン錯体、スルホニウム塩、アミンイミド、ポリアミン塩、ジシアンジアミド等や、これらの変性物があり、これらは単独でも、2種以上の混合体であってもよい。中でも、マイクロカプセル型イミダゾール系潜在性硬化剤が好適である。 Examples of the latent curing agent include various curing agents such as a heat curing type and a UV curing type. The latent curing agent does not normally react, but is activated by various triggers selected according to applications such as heat, light, and pressure, and starts the reaction. The activation method of the thermally activated latent curing agent includes a method of generating active species (cations and anions) by a dissociation reaction by heating, and the like. There are a method of dissolving and dissolving and starting a curing reaction, a method of starting a curing reaction by eluting a molecular sieve encapsulated type curing agent at a high temperature, an elution and curing method using microcapsules, and the like. Thermally active latent curing agents include imidazole series, hydrazide series, boron trifluoride-amine complex, sulfonium salt, amine imide, polyamine salt, dicyandiamide, and modified products thereof. The above mixture may be sufficient. Among these, a microcapsule type imidazole-based latent curing agent is preferable.
 なお、異方性導電フィルム3には、シランカップリング剤を含有させてもよい。シランカップリング剤としては、特に限定されないが、例えば、エポキシ系、アミノ系、メルカプト・スルフィド系、ウレイド系等を挙げることができる。シランカップリング剤を添加することにより、有機材料と無機材料との界面における接続性を向上させることができる。 The anisotropic conductive film 3 may contain a silane coupling agent. Although it does not specifically limit as a silane coupling agent, For example, an epoxy type, an amino type, a mercapto sulfide type, a ureido type etc. can be mentioned. By adding the silane coupling agent, connectivity at the interface between the organic material and the inorganic material can be improved.
 導電性粒子5としては、30%圧縮変形時の圧縮硬さ(K値)が150~400Kgf/mm(1.50~4.00GPa)であり、好ましくは150~350Kgf/mm(1.50~3.50GPa)である。この導電性粒子5の硬さの指標は、1つの粒子に加重をかけて粒子を変形させる際に、無負荷状態の粒子径に対して30%圧縮変形させるために必要な加重から算出したK値である。30%圧縮変形とは、導電性粒子5を一方向に圧縮した際に、導電性粒子の粒径2R(mm)が元の粒径に比べて30%短くなるように変形する状態、すなわち導電性粒子の粒径2Rが元の粒径の70%となる変形状態をいう。K値が小さいほど軟らかい粒子となる。 The conductive particles 5 have a compression hardness (K value) at 30% compression deformation of 150 to 400 kgf / mm 2 (1.50 to 4.00 GPa), preferably 150 to 350 kgf / mm 2 (1. 50 to 3.50 GPa). The index of hardness of the conductive particles 5 is calculated from the weight necessary for compressing and deforming 30% of the particle diameter in an unloaded state when one particle is weighted and deformed. Value. The 30% compressive deformation is a state in which when the conductive particles 5 are compressed in one direction, the particle size 2R (mm) of the conductive particles is deformed so as to be 30% shorter than the original particle size. This is a deformation state in which the particle size 2R of the conductive particles is 70% of the original particle size. The smaller the K value, the softer the particles.
 この導電性粒子5の30%圧縮変形時の圧縮硬さ(K値)は、下記の式(1)によって算出される。 The compression hardness (K value) at the time of 30% compression deformation of the conductive particles 5 is calculated by the following equation (1).
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
 K値は、例えば以下の測定方法によって測定される。具体的には、先ず、室温において平滑表面を有する鋼板の上に導電性粒子を散布する。次に、散布した導電性粒子の中から1個の導電性粒子を選択する。そして、微小圧縮試験機(例えば、PCT-200型:株式会社島津製作所製)が備えるダイアモンド製の直径50μmの円柱の平滑な端面を、選択した1個の導電性粒子に押し当てることによりこの導電性粒子を圧縮する。この際、圧縮荷重は、電磁力として電気的に検出され、圧縮変位は、作動トランスによる変位として電気的に検出される。ここで、「圧縮変位」とは、変形前の導電性粒子の粒径から変形後の導電性粒子の短径の長さを引いた値(mm)をいう。その後、鋼板上の別の導電性粒子を選択し、選択した導電性粒子についても圧縮荷重及び圧縮変位を測定する。例えば10個の導電性粒子について、異なる圧縮荷重に対する圧縮変形の測定を行う。 K value is measured by the following measurement method, for example. Specifically, first, conductive particles are dispersed on a steel plate having a smooth surface at room temperature. Next, one conductive particle is selected from the dispersed conductive particles. Then, the conductive end face is pressed by pressing the smooth end face of a diamond cylinder of 50 μm diameter provided in a micro-compression tester (for example, PCT-200 type: manufactured by Shimadzu Corporation) against one selected conductive particle. Compress the sex particles. At this time, the compression load is electrically detected as an electromagnetic force, and the compression displacement is electrically detected as a displacement by the operating transformer. Here, the “compression displacement” refers to a value (mm) obtained by subtracting the length of the short diameter of the conductive particles after deformation from the particle diameter of the conductive particles before deformation. Then, another electroconductive particle on a steel plate is selected, and a compressive load and a compressive displacement are measured also about the selected electroconductive particle. For example, compressive deformation is measured for 10 conductive particles with different compressive loads.
 圧縮変位-荷重の関係は、図2のように表わされる。この図2に示す関係から、導電性粒子の30%圧縮時における圧縮変位S(mm)から荷重値F(kgf)を算出する。そして、荷重値F(kgf)及び圧縮変位S(mm)により、式(1)を用いて30%圧縮時の圧縮硬さK値を算出する。 Compressive displacement-load relationship is expressed as shown in FIG. From the relationship shown in FIG. 2, the load value F (kgf) is calculated from the compression displacement S (mm) when the conductive particles are compressed by 30%. And the compression hardness K value at the time of 30% compression is calculated using Formula (1) from the load value F (kgf) and the compression displacement S (mm).
 導電性粒子5の30%圧縮変形時の圧縮硬さが150~400Kgf/mmであることによって、ほぼ球状の粒子が加圧されると荷重により変形することによって、後述するようなフレキシブルディスプレイに設けられた端子と、電子部品の端子との間に異方性導電フィルム3を介在させて端子同士を接続及び導通させる際に、圧縮されても少し潰れるように変形する。このため、導電性粒子5は、フレキシブルディスプレイの端子に対して点で接触せず面で接触するようになり、端子に伝わる単位面積あたりの圧力が軽減し、端子にかかる局所的な圧力を分散でき、端子にクラックが入ったり、フレキシブルディスプレイ自体が破壊されることを防止できる。導電性粒子5のK値が小さく、柔らか過ぎると、接続部の導通抵抗値が不安定になるため、150Kgf/mm以上とする。150~400Kgf/mmとすることによって、端子のクラック発生及びフレキシブルディスプレイ自体へのクラック発生や破壊を防止できると共に、導通抵抗値も低くすることができる。 Since the compression hardness at the time of 30% compression deformation of the conductive particles 5 is 150 to 400 kgf / mm 2 , when the substantially spherical particles are pressed, they are deformed by a load, so that a flexible display as described later can be obtained. When the anisotropic conductive film 3 is interposed between the provided terminal and the terminal of the electronic component to connect and conduct the terminals, the terminal is deformed so that it is slightly crushed even if it is compressed. For this reason, the conductive particles 5 come into contact with the terminals of the flexible display without touching at points, reducing the pressure per unit area transmitted to the terminals and dispersing the local pressure applied to the terminals. It is possible to prevent the terminal from being cracked and the flexible display itself from being destroyed. If the K value of the conductive particles 5 is small and too soft, the conduction resistance value of the connecting portion becomes unstable, so that it is 150 Kgf / mm 2 or more. By setting it to 150 to 400 Kgf / mm 2 , it is possible to prevent the occurrence of cracks in the terminals and the cracks and breakage of the flexible display itself, and the conduction resistance value can be lowered.
 導電性粒子5としては、ニッケル、鉄、銅、アルミニウム、錫、鉛、クロム、コバルト、銀、金等の各種金属や金属合金の粒子、金属酸化物、カーボン、グラファイト、ガラス、セラミック、プラスチック等の粒子の表面に金属をコートしたもの、或いはこれらの粒子の表面に更に絶縁薄膜をコートしたもの等を使用することができる。樹脂粒子の表面に金属をコートしたものを用いる場合、樹脂粒子としては、例えばエポキシ樹脂、フェノール樹脂、アクリル樹脂、アクリロニトリル・スチレン(AS)樹脂、ベンゾグアナミン樹脂、ジビニルベンゼン系樹脂、スチレン系樹脂等の粒子を挙げることができる。導電性粒子5は、これらの材料からなり上記K値を満たすものである。 Examples of the conductive particles 5 include particles of various metals and metal alloys such as nickel, iron, copper, aluminum, tin, lead, chromium, cobalt, silver, gold, metal oxide, carbon, graphite, glass, ceramic, plastic, and the like. The surface of the particles may be coated with a metal, or the surface of these particles may be further coated with an insulating thin film. When using a resin particle surface coated with metal, the resin particles include, for example, epoxy resin, phenol resin, acrylic resin, acrylonitrile / styrene (AS) resin, benzoguanamine resin, divinylbenzene resin, styrene resin, etc. Particles can be mentioned. The electroconductive particle 5 consists of these materials, and satisfy | fills the said K value.
 導電性粒子5の平均粒径は、接続信頼性の観点から、好ましくは1~20μm、より好ましくは2~10μmである。導電性粒子5の平均粒径を1μm~20μmの範囲とすることによって、加圧により圧縮変形しても電気的接続が可能である。 The average particle diameter of the conductive particles 5 is preferably 1 to 20 μm, more preferably 2 to 10 μm, from the viewpoint of connection reliability. By setting the average particle diameter of the conductive particles 5 in the range of 1 μm to 20 μm, electrical connection is possible even when compression deformation is caused by pressurization.
 また、絶縁性接着剤4中の導電性粒子5の平均粒子密度は、接続信頼性及び絶縁信頼性の観点から、好ましくは1000~50000個/mm、より好ましくは3000~30000個/mmである。 The average particle density of the conductive particles 5 in 4 insulating adhesive, the connection in terms of reliability and insulation reliability, preferably 1000 to 50000 / mm 2, more preferably from 3,000 to 30,000 pieces / mm 2 It is.
 このような構成からなるフィルム積層体1は、トルエンや酢酸エチル等の溶媒に、上述した絶縁性接着剤(バインダー)4を溶解させ、導電性粒子5を分散させた異方性導電組成物を作製し、この異方性導電組成物を剥離性を有する剥離フィルム2上に所望の厚さとなるように塗布し、乾燥して溶媒を除去し、異方性導電フィルム3を形成することによって製造することができる。 The film laminate 1 having such a structure is made of an anisotropic conductive composition in which the above-described insulating adhesive (binder) 4 is dissolved in a solvent such as toluene or ethyl acetate and the conductive particles 5 are dispersed. Produced by applying this anisotropic conductive composition on the release film 2 having peelability to a desired thickness, drying to remove the solvent, and forming the anisotropic conductive film 3 can do.
 なお、フィルム積層体1は、このような剥離フィルム2上に異方性導電フィルム3を形成した構成に限定されず、異方性導電フィルム3に例えば絶縁性接着剤4のみからなる絶縁性樹脂層(NCF:Non Conductive Film層)を積層するようにしてもよい。 In addition, the film laminated body 1 is not limited to the structure which formed the anisotropic conductive film 3 on such a peeling film 2, The insulating resin which consists only of the insulating adhesives 4 in the anisotropic conductive film 3, for example A layer (NCF: Non Conductive Film layer) may be laminated.
 また、フィルム積層体1は、異方性導電フィルム3の剥離フィルム2が積層された面とは反対の面側にも剥離フィルムを設ける構成としてもよい。 Further, the film laminate 1 may have a configuration in which a release film is also provided on the surface opposite to the surface on which the release film 2 of the anisotropic conductive film 3 is laminated.
 以上のような構成からなるフィルム積層体1の異方性導電フィルム3は、導電性粒子5の30%圧縮変形時の圧縮硬さが150~400Kgf/mmであることによって、加圧されるとほぼ球状の粒子が荷重により変形することになる。このため、この異方性導電フィルム3では、可撓性のフレキシブルディスプレイに設けられた端子と、電子部品の端子との間を接続及び導通させる際に、圧縮されてやや潰れるように変形するため、フレキシブルディスプレイの端子に対して点ではなく面で接触するようになり、接触面積が増えるため、端子にかかる圧力が分散され、端子にクラックが入ったり、フレキシブルディスプレイ自体へのクラック発生や破壊を抑制できる。 The anisotropic conductive film 3 of the film laminate 1 having the above-described configuration is pressurized when the compression hardness at the time of 30% compression deformation of the conductive particles 5 is 150 to 400 Kgf / mm 2. The almost spherical particles are deformed by the load. For this reason, in this anisotropic conductive film 3, when it connects between the terminal provided in the flexible flexible display, and the terminal of an electronic component, and it connects, it deform | transforms so that it may be compressed and may be a little crushed. Because it comes in contact with the terminals of the flexible display by points instead of points, the contact area increases, so the pressure applied to the terminals is dispersed, cracks occur in the terminals, and cracks and damage to the flexible display itself Can be suppressed.
 <接続構造体・接続構造体の製造方法・接続方法>
 次に、この異方性導電フィルム3を用いてフレキシブルディスプレイの端子と電子部品の端子とを導通して接続する接続方法及びこれにより製造される接続構造体、接続構造体の製造方法について説明する。
<Connecting structure / manufacturing method / connecting method of connecting structure>
Next, a connection method for conducting and connecting terminals of a flexible display and terminals of an electronic component using the anisotropic conductive film 3, a connection structure manufactured thereby, and a method for manufacturing the connection structure will be described. .
 図3に示す接続構造体10は、フレキシブルディスプレイ11に、このフレキシブルディスプレイ11を駆動させるための電子部品としてICチップ12や外部と電気的に接続するためにフレキシブルプリント配線板13が機械的及び電気的に接続固定されているものである。接続構造体10は、画像等を表示する表示部10aと、ICチップ12やフレキシブルプリント配線板13が機械的及び電気的に接続され実装される実装部10bとを有する。 In the connection structure 10 shown in FIG. 3, the flexible printed wiring board 13 is mechanically and electrically connected to the flexible display 11 so as to be electrically connected to the IC chip 12 and the outside as an electronic component for driving the flexible display 11. Are fixedly connected. The connection structure 10 includes a display unit 10a that displays an image and the like, and a mounting unit 10b on which the IC chip 12 and the flexible printed wiring board 13 are mechanically and electrically connected and mounted.
 フレキシブルディスプレイ11は、前面板と背面板の2枚のフレキシブルフィルム14を有し、この2枚のフレキシブルフィルム14の間にマイクロカプセル層又は液晶層等の表示媒体層15を配置し、この表示媒体層15の周囲が封止材による封止部16で封止されている。フレキシブルフィルム14は、ヤング率が10GPa以下であり、2~10GPaが好ましく、3~5GPaが更に好ましい。ヤング率は、物質に応力を印加して変形させた場合に発生する単位あたりの歪み(変形率)から算出する物質固有に定数である。
このヤング率が大きいと応力に対して変形しにくく、ヤング率が小さいと変形しやすい。
このフレキシブルフィルム14は、ヤング率が小さく、72GPa程度のガラス基材に比べて荷重に対して変形しやすいものである。このフレキシブルフィルム14は、例えばポリイミド又はポリエチレンテレフタラートが挙げられる。図4に示すように、背面板のフレキシブルフィルム14に設けられた端子14aと、ICチップ12の端子12aやフレキシブルプリント配線板13の端子13aとが圧縮変形した導電性粒子5によって電気的に接続されている。
The flexible display 11 has two flexible films 14, a front plate and a back plate, and a display medium layer 15 such as a microcapsule layer or a liquid crystal layer is disposed between the two flexible films 14. The periphery of the layer 15 is sealed with a sealing portion 16 made of a sealing material. The flexible film 14 has a Young's modulus of 10 GPa or less, preferably 2 to 10 GPa, more preferably 3 to 5 GPa. The Young's modulus is a constant specific to a substance calculated from a strain per unit (deformation rate) generated when a substance is deformed by applying stress.
If this Young's modulus is large, it is difficult to deform against stress, and if it is small, it is likely to deform.
This flexible film 14 has a small Young's modulus and is easily deformed with respect to a load as compared with a glass substrate of about 72 GPa. Examples of the flexible film 14 include polyimide or polyethylene terephthalate. As shown in FIG. 4, the terminals 14 a provided on the flexible film 14 on the back plate and the terminals 12 a of the IC chip 12 and the terminals 13 a of the flexible printed wiring board 13 are electrically connected by conductive particles 5 that are compressed and deformed. Has been.
 この接続構造体10は、次のような接続方法を利用して製造することができる。先ず、フレキシブルフィルム14の端子14aとICチップ12の端子12a及びフレキシブルプリント配線板13の端子13aとの間に、異方性導電フィルム3を介在させ、フレキシブルフィルム14の端子14aとICチップ12の端子12a及びフレキシブルプリント配線板13の端子13aとが対向するように、フレキシブルフィルム14上にICチップ12及びフレキシブルプリント配線板13に搭載する搭載工程を行う。次に、ICチップ12及びフレキシブルプリント配線板13をフレキシブルフィルム14に対して加圧し、フレキシブルフィルム14に設けられた端子14aとICチップ12の端子12a及びフレキシブルプリント配線板13の端子13aとを異方性導電フィルム3で接続及び異方性導電フィルム3中の導電性粒子5を介して導通する接続工程とを行う。 The connection structure 10 can be manufactured by using the following connection method. First, the anisotropic conductive film 3 is interposed between the terminal 14a of the flexible film 14, the terminal 12a of the IC chip 12 and the terminal 13a of the flexible printed wiring board 13, and the terminals 14a of the flexible film 14 and the IC chip 12 are connected. A mounting step of mounting the IC chip 12 and the flexible printed wiring board 13 on the flexible film 14 is performed so that the terminals 12a and the terminals 13a of the flexible printed wiring board 13 face each other. Next, the IC chip 12 and the flexible printed wiring board 13 are pressed against the flexible film 14, and the terminals 14a provided on the flexible film 14 are different from the terminals 12a of the IC chip 12 and the terminals 13a of the flexible printed wiring board 13. The connection process of conducting through the conductive particles 5 in the anisotropic conductive film 3 and the connection with the anisotropic conductive film 3 is performed.
 接続構造体10の製造方法について、例えば硬化成分として熱可塑性樹脂を用いた絶縁性接着剤4に導電性粒子5を含有した異方性導電フィルム3を備えるフィルム積層体1を用いた場合について説明する。先ず、搭載工程では、フレキシブルフィルム14の端子14aと、ICチップ12の端子12a及びフレキシブルプリント配線板13の端子13aとを接続する位置にフィルム積層体1の異方性導電フィルム3がフレキシブルフィルム14の端子14a側となるように置き、剥離フィルム2を剥がし取り、異方性導電フィルム3のみとした後、端子14aに異方性導電フィルム3を貼付ける。この貼付けは、例えば僅かに加圧しながら、異方性導電フィルム3に含まれる熱硬化性樹脂成分が硬化しない温度で加熱して行う。これにより、異方性導電フィルム3がフレキシブルフィルム14の端子14a上に位置決め固定される。 About the manufacturing method of the connection structure 10, the case where the film laminated body 1 provided with the anisotropic conductive film 3 which contained the electroconductive particle 5 in the insulating adhesive 4 which used the thermoplastic resin as a hardening component is used is demonstrated, for example. To do. First, in the mounting process, the anisotropic conductive film 3 of the film laminate 1 is connected to the flexible film 14 at a position where the terminal 14 a of the flexible film 14 is connected to the terminal 12 a of the IC chip 12 and the terminal 13 a of the flexible printed wiring board 13. Then, the release film 2 is peeled off to make only the anisotropic conductive film 3, and then the anisotropic conductive film 3 is attached to the terminal 14a. This pasting is performed by heating at a temperature at which the thermosetting resin component contained in the anisotropic conductive film 3 is not cured, for example, while slightly pressing. Thereby, the anisotropic conductive film 3 is positioned and fixed on the terminal 14 a of the flexible film 14.
 次に、異方性導電フィルム3上にICチップ12及びフレキシブルプリント配線板13を搭載する。電子部品の搭載は、異方性導電フィルム3の位置合わせ状態を確認し、位置ずれ等が生じていない場合には、フレキシブルフィルム14の端子14aとICチップ12の端子12a及びフレキシブルプリント配線板13の端子13aが対向するように、ICチップ12及びフレキシブルプリント配線板13を異方性導電フィルム3を介してフレキシブルフィルム14上に搭載する。 Next, the IC chip 12 and the flexible printed wiring board 13 are mounted on the anisotropic conductive film 3. When the electronic component is mounted, the alignment state of the anisotropic conductive film 3 is confirmed, and if there is no misalignment or the like, the terminal 14a of the flexible film 14, the terminal 12a of the IC chip 12, and the flexible printed wiring board 13 are mounted. The IC chip 12 and the flexible printed wiring board 13 are mounted on the flexible film 14 via the anisotropic conductive film 3 so that the terminals 13a face each other.
 次に、フレキシブルディスプレイ11のフレキシブルフィルム14と、ICチップ12及びフレキシブルプリント配線板13とを機械的及び電気的に接続する接続工程は、加熱及び加圧可能な押圧ヘッドでICチップ12及びフレキシブルプリント配線板13の上面からICチップ12及びフレキシブルプリント配線板13をフレキシブルフィルム14に対して加熱しながら加圧し、異方性導電フィルム3を硬化させ、フレキシブルフィルム14の端子14aとICチップ12の端子12a及びフレキシブルプリント配線板13の端子13aとを導電性粒子5を介して電気に接続し、フレキシブルフィルム14とICチップ12及びフレキシブルプリント配線板13とを絶縁性接着剤4で機械的に接続することによって、フレキシブルディスプレイ11にICチップ12及びフレキシブルプリント配線板13が接続された接続構造体10を得ることができる。 Next, the connection process of mechanically and electrically connecting the flexible film 14 of the flexible display 11 to the IC chip 12 and the flexible printed wiring board 13 is performed using a pressing head that can be heated and pressurized with the IC chip 12 and the flexible print. The IC chip 12 and the flexible printed wiring board 13 are heated and pressed against the flexible film 14 from the upper surface of the wiring board 13 to cure the anisotropic conductive film 3, and the terminals 14a of the flexible film 14 and the terminals of the IC chip 12 are cured. 12a and the terminal 13a of the flexible printed wiring board 13 are electrically connected through the conductive particles 5, and the flexible film 14, the IC chip 12 and the flexible printed wiring board 13 are mechanically connected by the insulating adhesive 4. Depending on the It is possible to obtain the connection structure 10 IC chip 12 and the flexible printed circuit board 13 is connected to the play 11.
 この接続工程の条件は、加熱温度が異方性導電フィルム3に含まれる熱硬化性樹脂の硬化温度以上の温度であり、端子14aと端子12a、13aと間から熱溶融した異方性導電フィルム3が排除され、導電性粒子5を挟持し得る圧力で加圧する。これにより、フレキシブルフィルム14とICチップ12及びフレキシブルプリント配線板13とが導電性粒子5により電気的に接続され、絶縁性接着剤(バインダー)4により機械的に接続される。温度及び加圧の具体的な条件としては、温度120℃~150℃程度、圧力1MPa~5MPa程度である。 The condition of this connection process is that the heating temperature is a temperature equal to or higher than the curing temperature of the thermosetting resin contained in the anisotropic conductive film 3, and the anisotropic conductive film thermally melted from between the terminal 14a and the terminals 12a and 13a. 3 is excluded, and pressurization is performed at a pressure that can sandwich the conductive particles 5. Thereby, the flexible film 14, the IC chip 12, and the flexible printed wiring board 13 are electrically connected by the conductive particles 5 and mechanically connected by the insulating adhesive (binder) 4. Specific conditions for temperature and pressurization are a temperature of about 120 ° C. to 150 ° C. and a pressure of about 1 MPa to 5 MPa.
 接続工程では、ICチップ12及びフレキシブルプリント配線板13がフレキシブルフィルム14側に向って押圧ヘッドで加圧されることによって、これらの間に介在している導電性粒子5が圧縮変形し、フレキシブルフィルム14の端子14aに対して点で接触せず、面で接触するようになり、端子14aとの接触面積が増える。これにより、接続工程では、導電性粒子5から端子14aに伝わる単位面積あたりの圧力が軽減し、端子14aにかかる局所的な圧力を分散でき、端子14aにクラックが発生することを防止でき、またフレキシブルフィルム14までクラックが入ったり、破壊されることを防止できる。 In the connecting step, the IC chip 12 and the flexible printed wiring board 13 are pressed by the pressing head toward the flexible film 14, whereby the conductive particles 5 interposed therebetween are compressed and deformed, and the flexible film The 14 terminals 14a do not come into contact with each other but come into contact with each other, and the contact area with the terminal 14a increases. Thereby, in the connection process, the pressure per unit area transmitted from the conductive particles 5 to the terminal 14a can be reduced, the local pressure applied to the terminal 14a can be dispersed, and cracks can be prevented from occurring in the terminal 14a. The flexible film 14 can be prevented from cracking or being destroyed.
 以上のような接続構造体10の製造方法は、フレキシブルフィルム14の端子14aと、ICチップ12の端子12a及びフレキシブルプリント配線板13の端子13aとの間に介在させた異方性導電フィルム3に含有されている導電性粒子5の30%圧縮変形時の圧縮硬さが150~400Kgf/mmであることによって、フレキシブルフィルム14と電子部品とを接続する際、特に端子が点在しているICチップ12と接続する際に、フレキシブルフィルム14の端子14aにクラックが生じること及びフレキシブルフィルム14自体にクラックが入ったり、破壊されることを防止できる。したがって、この接続構造体10の製造方法では、フレキシブルフィルム14の端子14aにクラックを発生させず、またフレキシブルフィルム14自体にもクラックが生じず、また破壊することなく、フレキシブルフィルム14上に電子部品を実装することが可能である。 The manufacturing method of the connection structure 10 as described above is applied to the anisotropic conductive film 3 interposed between the terminal 14a of the flexible film 14, the terminal 12a of the IC chip 12, and the terminal 13a of the flexible printed wiring board 13. When the conductive particles 5 contained have a compression hardness of 30 to 400 kgf / mm 2 at 30% compression deformation, terminals are particularly scattered when connecting the flexible film 14 and the electronic component. When connecting to the IC chip 12, it is possible to prevent cracks from occurring in the terminals 14 a of the flexible film 14 and cracks or breakage of the flexible film 14 itself. Therefore, in the manufacturing method of the connection structure 10, no crack is generated in the terminal 14 a of the flexible film 14, the crack is not generated in the flexible film 14 itself, and the electronic component is formed on the flexible film 14 without being broken. Can be implemented.
 したがって、接続構造体10の製造方法は、フレキシブルディスプレイ11の表示媒体層15を有する表示部10aに近接又は表示部10aの直下に電子部品の実装領域が存在する場合において、実装部10bが狭額な実装領域であってもフレキシブルフィルム14の端子14aにクラックを発生させることなく、またフレキシブルフィルム14自体にもクラックを発生させることなく、または破壊しないため、表示部10aまでクラックや破壊が伝わらず、表示媒体層15による画像等の表示に影響が及ぶことを防止できる。 Therefore, the manufacturing method of the connection structure 10 is such that the mounting portion 10b is narrow when the mounting area for the electronic component exists near the display portion 10a having the display medium layer 15 of the flexible display 11 or immediately below the display portion 10a. Even if it is a simple mounting region, no cracks are generated in the terminals 14a of the flexible film 14, and no cracks are generated or broken in the flexible film 14 itself. Thus, it is possible to prevent the display medium layer 15 from affecting the display of an image or the like.
 上述した接続構造体10は、フレキシブルディスプレイ11に1つのICチップ12及びフレキシブルプリント配線板13を機械的及び電気的に接続した構成であるが、このことに限定されず、図5に示すような接続構造体20であってもよい。接続構造体20は、フレキシブルディスプレイ11のフレキシブルフィルム14に2つのICチップ12及びフレキシブルプリント配線板13を異方性導電フィルム3で機械的及び電気的に接続した構成である。この接続構造体20は、図示しない表示媒体層による画像等を表示する表示部20aと、ICチップ12やフレキシブルプリント配線板13が機械的及び電気的に接続され、実装された実装部20bとを有する。このような接続構造体20においても、上述した接続構造体10と同様に、フレキシブルフィルム14の端子14aにクラックが発生せず、またフレキシブルフィルム14自体を破壊されることがない。 The connection structure 10 described above has a configuration in which one IC chip 12 and a flexible printed wiring board 13 are mechanically and electrically connected to the flexible display 11, but the present invention is not limited to this, and as shown in FIG. The connection structure 20 may be sufficient. The connection structure 20 has a configuration in which two IC chips 12 and a flexible printed wiring board 13 are mechanically and electrically connected to the flexible film 14 of the flexible display 11 by the anisotropic conductive film 3. The connection structure 20 includes a display unit 20a that displays an image or the like using a display medium layer (not shown), and a mounting unit 20b that is mounted by mechanically and electrically connecting the IC chip 12 and the flexible printed wiring board 13 to each other. Have. In such a connection structure 20 as well, as in the connection structure 10 described above, the terminal 14a of the flexible film 14 is not cracked, and the flexible film 14 itself is not broken.
 また、上述した接続構造体10、20は、フレキシブルディスプレイ11の端子14aにクラック防止のための補強処理をする必要がなく、従来のフレキシブルディスプレイ11の製造工程と変わらず、製造コストが高くなることを防止できる。 In addition, the connection structures 10 and 20 described above do not require reinforcing treatment for preventing cracks on the terminals 14a of the flexible display 11, and the manufacturing cost is the same as the manufacturing process of the conventional flexible display 11. Can be prevented.
 接続構造体10、20としては、上述したフレキシブルディスプレイに限定されず、フレキシブルフィルム等のフレキシブル基材に対して、ICチップ12やフレキシブルプリント配線板13等の電子部品を接続したものであってもよい。 The connection structures 10 and 20 are not limited to the flexible display described above, and may be ones in which an electronic component such as an IC chip 12 or a flexible printed wiring board 13 is connected to a flexible base material such as a flexible film. Good.
 また、電子部品としては、ICチップ12やフレキシブルプリント配線板13に限らず、他の電子部品であってもよい。例えば、LSI(Large Scale Integration)チップ等のICチップ以外の半導体チップやチップコンデンサ等の半導体素子、液晶駆動用半導体実装材料(COF:Chip On Film)等を挙げることができる。また、電子部品は、フレキシブルディスプレイ11に2以上実装してもよく、電子部品の実装位置も図4及び図5に限られず、表示部10a、20aの直下に実装してもよい。 Further, the electronic component is not limited to the IC chip 12 and the flexible printed wiring board 13, but may be other electronic components. Examples include semiconductor chips other than IC chips such as LSI (Large Scale Integration) chips, semiconductor elements such as chip capacitors, and semiconductor mounting materials (COF: Chip On Film) for driving liquid crystals. Two or more electronic components may be mounted on the flexible display 11, and the mounting positions of the electronic components are not limited to those shown in FIGS. 4 and 5, and may be mounted directly below the display units 10a and 20a.
 以上、本実施の形態について説明したが、本発明が前述の実施の形態に限定されるものでないことはいうまでもなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 As mentioned above, although this Embodiment was demonstrated, it cannot be overemphasized that this invention is not what is limited to the above-mentioned embodiment, A various change is possible in the range which does not deviate from the summary of this invention.
 次に、本発明の具体的な実施例について、実際に行った実験結果に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。 Next, specific examples of the present invention will be described based on experimental results actually performed, but the present invention is not limited to these examples.
 <異方性導電フィルムの作製>
 (実施例1~実施例5)
 実施例1~実施例5では、膜形成樹脂としてフェノキシ樹脂(YP50、新日鐵化学社製)を30質量部と、液状エポキシ樹脂(EP-828、三菱化学社製)20質量部と、イミダゾール系潜在性硬化剤(ノバキュア3941HP、旭化成イーマテリアルズ社製)、シランカップリング剤(A-187、モメンティブ・パフォーマンスマテリアルズ社製)2質量部、所定の硬度を有する導電性粒子10質量部、トルエンを固形分50%となるように加え、異方性導電組成物を調整した。続いて、前記異方性導電組成物を剥離基材上にバーコーターを用いて塗布し、オーブンを用いてトルエンを乾燥させ、膜厚20μmの異方性導電フィルムを作製した。
<Production of anisotropic conductive film>
(Example 1 to Example 5)
In Examples 1 to 5, 30 parts by mass of a phenoxy resin (YP50, manufactured by Nippon Steel Chemical Co., Ltd.), 20 parts by mass of a liquid epoxy resin (EP-828, manufactured by Mitsubishi Chemical Corporation) as a film-forming resin, and imidazole System latent curing agent (Novacure 3941HP, manufactured by Asahi Kasei E-Materials), 2 parts by mass of silane coupling agent (A-187, manufactured by Momentive Performance Materials), 10 parts by mass of conductive particles having a predetermined hardness, Toluene was added to a solid content of 50% to prepare an anisotropic conductive composition. Subsequently, the anisotropic conductive composition was applied onto a release substrate using a bar coater, and toluene was dried using an oven to prepare an anisotropic conductive film having a thickness of 20 μm.
 導電性粒子は、コア部を樹脂で形成し、そのコア部にニッケル(Ni)メッキ又はニッケル金(NiAu)メッキを施して作製した。具体的には、コア部の樹脂粒子は、ジビニルベンゼン、スチレン、ブチルメタクリレートの混合比を調整した溶液に、重合開始剤としてベンゾイソパーオキサイドを投入して高速で均一撹拌しながら加熱を行い、重合反応を行うことにより微粒子分散液を得た。そして、この微粒子分散液をろ過し減圧乾燥することにより微粒子の凝集体であるブロック体を得た。更に、このブロック体を粉砕することにより、種々の硬度を有する平均粒子径3.0μmのジビニルベンゼン系樹脂粒子を得た。 The conductive particles were produced by forming the core part with resin and applying nickel (Ni) plating or nickel gold (NiAu) plating to the core part. Specifically, the resin particles in the core part are heated with uniform stirring at high speed by adding benzoisoperoxide as a polymerization initiator to a solution in which the mixing ratio of divinylbenzene, styrene, and butyl methacrylate is adjusted, A fine particle dispersion was obtained by carrying out a polymerization reaction. The fine particle dispersion was filtered and dried under reduced pressure to obtain a block body that was an aggregate of fine particles. Furthermore, this block was pulverized to obtain divinylbenzene resin particles having various hardnesses and an average particle diameter of 3.0 μm.
 そして、以上のようにして得たジビニルベンゼン系樹脂粒子に対して、Niメッキ又はNiAuメッキを施して、ジビニルベンゼン系樹脂粒子にNiメッキ又はNiAuメッキを施した導電性粒子を作製した。 Then, the divinylbenzene resin particles obtained as described above were subjected to Ni plating or NiAu plating to produce conductive particles obtained by applying Ni plating or NiAu plating to the divinylbenzene resin particles.
 ジビニルベンゼン系樹脂粒子にNiメッキを施した導電性粒子は、3μmのジビニルベンゼン系樹脂粒子5gに、パラジウム触媒を浸漬法により担持させた。次に、この樹脂粒子に対し、硫酸ニッケル六水和物、次亜リン酸ナトリウム、クエン酸ナトリウム、トリエタノールアミン及び硝酸タリウムから調整された無電解ニッケルメッキ液(pH12、メッキ液温50℃)を用いて無電解ニッケルメッキを行い、種々のリン含有量を有するニッケルメッキ層(金属層)が表面に形成されたニッケル被膜樹脂粒子を導電粒子(樹脂コアNiメッキ粒子)として得た。得られた導電性粒子の平均粒子径は、3~4μmの範囲内であった。 Conductive particles obtained by applying Ni plating to divinylbenzene resin particles were obtained by supporting palladium catalyst on 5 g of 3 μm divinylbenzene resin particles by an immersion method. Next, an electroless nickel plating solution prepared from nickel sulfate hexahydrate, sodium hypophosphite, sodium citrate, triethanolamine and thallium nitrate (pH 12, plating solution temperature 50 ° C.) Electroless nickel plating was performed using nickel, and nickel-coated resin particles having nickel plating layers (metal layers) having various phosphorus contents formed on the surfaces were obtained as conductive particles (resin core Ni plating particles). The average particle diameter of the obtained conductive particles was in the range of 3 to 4 μm.
 ジビニルベンゼン系樹脂粒子にNiAuメッキを施した導電性粒子は、塩化金酸ナトリウム10gをイオン交換水1000mLに溶解させた溶液に、ジビニルベンゼン系樹脂粒子12gを混合して水性懸濁液を調整した。得られた水性懸濁液に、チオ硫酸アンモニウム15g、亜硫酸アンモニウム80g、及びリン酸水素アンモニウム40gを投入することにより金メッキ浴を調整した。得られた金メッキ浴にヒドロキシルアミン4gを投入後、アンモニアを用いて金メッキ浴のpHを9に調整し、その浴温を60℃に15~20分程度維持することにより、金ニッケルメッキ層(金属層)が表面に形成されたニッケル被膜樹脂粒子(樹脂コアNiAuメッキ粒子)として得た。得られた導電性粒子の平均粒子径は、3~4μmの範囲内であった。 Conductive particles obtained by applying NiAu plating to divinylbenzene resin particles were prepared by mixing 12 g of divinylbenzene resin particles with a solution of 10 g of sodium chloroaurate dissolved in 1000 mL of ion exchange water to prepare an aqueous suspension. . A gold plating bath was prepared by adding 15 g of ammonium thiosulfate, 80 g of ammonium sulfite, and 40 g of ammonium hydrogen phosphate to the obtained aqueous suspension. After 4 g of hydroxylamine was added to the gold plating bath obtained, the pH of the gold plating bath was adjusted to 9 using ammonia, and the bath temperature was maintained at 60 ° C. for about 15 to 20 minutes. Layer) was obtained as nickel-coated resin particles (resin core NiAu plating particles) formed on the surface. The average particle diameter of the obtained conductive particles was in the range of 3 to 4 μm.
 導電性粒子の30%圧縮変形時の圧縮硬さは、それぞれ表1に示すようになった。導電性粒子の30%圧縮変形時の圧縮硬さは、上述したように、室温において平滑表面を有する鋼板の上に導電性粒子を散布し、散布した導電性粒子の中から1個の導電性粒子を選択した。そして、微小圧縮試験機(例えば、PCT-200型:株式会社島津製作所製)が備えるダイアモンド製の直径50μmの円柱の平滑な端面を、選択した1個の導電性粒子に押し当てることによりこの導電性粒子を圧縮した。そして、図2に示す関係から、導電性粒子の30%圧縮時における圧縮変位S(mm)から荷重値F(kgf)を算出した。
続いて、算出した荷重値F(kgf)及び圧縮変位S(mm)により、式(1)を用いて30%圧縮時の圧縮硬さK値を算出した。
Table 1 shows the compression hardness at the time of 30% compression deformation of the conductive particles. As described above, the compressive hardness at 30% compressive deformation of the conductive particles is that the conductive particles are dispersed on a steel plate having a smooth surface at room temperature, and one of the dispersed conductive particles is electrically conductive. Particles were selected. Then, the conductive end face is pressed by pressing the smooth end face of a diamond cylinder of 50 μm diameter provided in a micro-compression tester (for example, PCT-200 type: manufactured by Shimadzu Corporation) against one selected conductive particle. Sex particles were compressed. And the load value F (kgf) was computed from the compression displacement S (mm) at the time of 30% compression of electroconductive particle from the relationship shown in FIG.
Then, the compression hardness K value at the time of 30% compression was calculated using Formula (1) from the calculated load value F (kgf) and compression displacement S (mm).
 (比較例1~比較例3)
 比較例1~比較例3については、樹脂コアNiメッキ粒子の30%圧縮時の圧縮硬さが表1に示すようになるように導電性粒子を作製したこと以外は、実施例と同様にして異方性導電フィルムを作製した。
(Comparative Examples 1 to 3)
Comparative Examples 1 to 3 were the same as the Examples except that conductive particles were prepared so that the compression hardness at 30% compression of the resin core Ni plated particles was as shown in Table 1. An anisotropic conductive film was produced.
 <クラックの発生試験>
 クラックの発生試験には、表1に示すヤング率を有するポリイミド又はポリエチレンテレフタラート(PET)のフレキシブルフィルムを用いた。このフレキシブルフィルム上に、サイズが20mm×40mm×総厚み50.6μmであって、PI/Al/ITO=50μm/0.5μm/0.1μm、ピッチ50μmで配線を形成した。
<Crack generation test>
For the crack generation test, a flexible film of polyimide or polyethylene terephthalate (PET) having Young's modulus shown in Table 1 was used. On this flexible film, wiring was formed with a size of 20 mm × 40 mm × total thickness of 50.6 μm, PI / Al / ITO = 50 μm / 0.5 μm / 0.1 μm, and a pitch of 50 μm.
 次に、配線を形成したフレキシブルフィルム上に作製した異方性導電フィルムを載せ、異方性導電フィルムを介してICチップの端子と配線とが対向するように、ICチップを異方性導電フィルム上に裁置した。そして、ICチップの上面から押圧ヘッドで温度200℃、圧力600kgf/cmの条件で加熱、加圧して接続し、接続構造体を作製した。 Next, the anisotropic conductive film produced is placed on the flexible film on which the wiring is formed, and the IC chip is placed on the anisotropic conductive film so that the terminals of the IC chip and the wiring face each other through the anisotropic conductive film. Arranged above. And it connected by heating and pressurizing on the conditions of temperature 200 degreeC and pressure 600kgf / cm < 2 > with the press head from the upper surface of the IC chip, and produced the connection structure.
 そして、配線のクラックの発生は、目視により確認した。クラックの発生率は、100個の配線のうち、クラックが発生した割合を示す。クラック発生率を表1及び表2に示す。 The occurrence of wiring cracks was confirmed visually. The rate of occurrence of cracks indicates the ratio of occurrence of cracks in 100 wirings. Table 1 and Table 2 show the crack occurrence rates.
 <導通抵抗値の試験>
 導通抵抗値の試験は、クラックの発生試験と同様にフレキシブルフィルムとフレキシブル配線基板を接続し、接続構造体を作製し、導通抵抗を測定した。フレキシブル配線基板には、サイズが20mm×40mm×50.5μmであり、PI/Al/ITO=50μm/0.5μm/0.1μm、ピッチ50μmで導通測定用配線を形成した測定用の特性評価用素子を使用した。85℃/85%RH環境下に125時間放置後(エージング後)の導通抵抗値を評価した。導通抵抗値は、デジタルマルチメーター(商品名:デジタルマルチメーター7561、横河電機社製)を用いて、4端子法にて電流1mAを流したときの導通抵抗値を測定した。エージング後の導通抵抗値が10Ω以下である場合には、抵抗が低いものとする。導通抵抗値の測定結果を表1及び表2に示す。
<Test of conduction resistance>
In the test of the conduction resistance value, a flexible film and a flexible wiring board were connected as in the crack generation test, a connection structure was produced, and the conduction resistance was measured. The flexible wiring board has a size of 20 mm × 40 mm × 50.5 μm, PI / Al / ITO = 50 μm / 0.5 μm / 0.1 μm, and a conductive measurement wiring formed with a pitch of 50 μm for characteristic evaluation for measurement The element was used. The conduction resistance value after being allowed to stand for 125 hours in an 85 ° C./85% RH environment (after aging) was evaluated. The conduction resistance value was measured using a digital multimeter (trade name: Digital Multimeter 7561, manufactured by Yokogawa Electric Corporation) when a current of 1 mA was passed by the four-terminal method. When the conduction resistance value after aging is 10Ω or less, the resistance is low. Tables 1 and 2 show the measurement results of the conduction resistance values.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1及び2に示す結果から、実施例1~5では、配線にクラックが発生しなかったり、クラックが発生しても発生率は比較例2及び3に比べて低くなり、クラックの発生が抑制されていることがわかる。したがって、実施例1~5から、異方性導電フィルム中の導電粒子の30%圧縮変形時の圧縮硬さを150~400Kgf/mmの範囲内となるようにすることで、配線のクラック発生を抑制できることがわかる。 From the results shown in Tables 1 and 2, in Examples 1 to 5, cracks did not occur in the wiring, or even if cracks occurred, the rate of occurrence was lower than in Comparative Examples 2 and 3, and cracks were suppressed. You can see that Accordingly, from Examples 1 to 5, by causing the compression hardness at the time of 30% compression deformation of the conductive particles in the anisotropic conductive film to be in the range of 150 to 400 Kgf / mm 2 , the generation of wiring cracks It can be seen that this can be suppressed.
 また、実施例1~5では、導通抵抗値が比較例1と比べて低くなり、導通抵抗が低くなった。したがって、実施例1~5から、異方性導電フィルム中の導電粒子の30%圧縮変形時の圧縮硬さを150~400Kgf/mmの範囲内となるようにすることで、配線のクラック発生を抑制できると共に、導通抵抗値を低くできることがわかる。実施例の中でも、実施例2は、配線のクラックが発生せず、かつ導通抵抗値が低くなった。 In Examples 1 to 5, the conduction resistance value was lower than that in Comparative Example 1, and the conduction resistance was lowered. Accordingly, from Examples 1 to 5, by causing the compression hardness at the time of 30% compression deformation of the conductive particles in the anisotropic conductive film to be in the range of 150 to 400 Kgf / mm 2 , the generation of wiring cracks It can be seen that the conduction resistance value can be lowered. Among the examples, in Example 2, no cracks were generated in the wiring, and the conduction resistance value was low.
 これらの実施例に対して、比較例1は、導電性粒子の30%圧縮変形時の圧縮硬さが100Kgf/mmであり、硬度が低いため、配線のクラックが発生しなかったが、配線への導電性粒子の食い込み不足が生じ、低い導通抵抗値を得ることができなかった。 In contrast to these examples, Comparative Example 1 has a compressive hardness at 30% compressive deformation of the conductive particles of 100 kgf / mm 2 , and since the hardness is low, cracks in the wiring did not occur. Insufficient encroachment of the conductive particles into the surface occurred, and a low conduction resistance value could not be obtained.
 比較例2及び3は、導電性粒子の30%圧縮変形時の圧縮硬さが500Kgf/mm、720Kgf/mmであるため、硬度が高く硬いため、導電抵抗は低くなったが、配線クラックが発生した。比較例3は、比較例2よりも硬いため、配線のクラックがより生じやすくなった。 In Comparative Examples 2 and 3, since the compression hardness at the time of 30% compression deformation of the conductive particles is 500 kgf / mm 2 and 720 kgf / mm 2 , the hardness is high and the conduction resistance is low, but the wiring crack There has occurred. Since Comparative Example 3 was harder than Comparative Example 2, wiring cracks were more likely to occur.
 1 フィルム積層体、2 剥離フィルム、3 異方性導電フィルム、4 絶縁性接着剤、5 導電性粒子、10 接続構造体、10a 表示部、10b 実装部、11 フレキシブルディスプレイ、12 ICチップ、12a 端子、13 フレキシブルプリント配線板、13a 端子、14 フレキシブルフィルム、14a 端子、15 表示媒体層、16 封止部 20 接続構造体、20a 表示部、20b 実装部
 
DESCRIPTION OF SYMBOLS 1 Film laminated body, 2 Release film, 3 Anisotropic conductive film, 4 Insulating adhesive, 5 Conductive particle, 10 Connection structure, 10a Display part, 10b Mounting part, 11 Flexible display, 12 IC chip, 12a terminal , 13 Flexible printed wiring board, 13a terminal, 14 Flexible film, 14a terminal, 15 Display medium layer, 16 Sealing part 20 Connection structure, 20a Display part, 20b Mounting part

Claims (13)

  1.  フレキシブルディスプレイに設けられた端子と電子部品の端子との間に異方性導電接続層を介在させて、上記フレキシブルディスプレイと上記電子部品とを接続及び導通した接続構造体の製造方法において、
     上記異方性導電接続層を介して、上記電子部品の端子が上記フレキシブルディスプレイに設けられた端子と対向するように上記電子部品を上記フレキシブルディスプレイ上に搭載する搭載工程と、
     上記電子部品を上記フレキシブルディスプレイに対して加圧し、上記フレキシブルディスプレイに設けられた端子と上記電子部品の端子とを上記異方性導電接続層で接続及び上記異方性導電接続層中の導電性粒子を介して導通する接続工程とを有し、
     上記導電性粒子は、30%圧縮変形時の圧縮硬さが150~400Kgf/mmであることを特徴とする接続構造体の製造方法。
    In a method for manufacturing a connection structure in which an anisotropic conductive connection layer is interposed between a terminal provided on a flexible display and a terminal of an electronic component, and the flexible display and the electronic component are connected and conducted.
    A mounting step of mounting the electronic component on the flexible display so that the terminal of the electronic component faces the terminal provided on the flexible display via the anisotropic conductive connection layer;
    The electronic component is pressurized against the flexible display, and the terminal provided on the flexible display and the terminal of the electronic component are connected by the anisotropic conductive connection layer and the conductivity in the anisotropic conductive connection layer. A connection step of conducting through the particles,
    The method for producing a connection structure according to claim 1, wherein the conductive particles have a compression hardness of 150 to 400 kgf / mm 2 at 30% compression deformation.
  2.  上記フレキシブルディスプレイの基材に使用されるフレキシブルフィルムは、ヤング率が2~10GPaであることを特徴とする請求項1記載の接続構造体の製造方法。 The method for producing a connection structure according to claim 1, wherein the flexible film used for the substrate of the flexible display has a Young's modulus of 2 to 10 GPa.
  3.  上記導電性粒子の30%圧縮変形時の圧縮硬さが150~350Kgf/mmであることを特徴とする請求項1又は請求項2記載の接続構造体の製造方法。 The method for producing a connection structure according to claim 1 or 2 , wherein the conductive particles have a compression hardness of 150 to 350 kgf / mm 2 when 30% compression deformation occurs.
  4.  上記フレキシブルディスプレイの基材に使用されるフレキシブルフィルムは、ポリイミド又はポリエチレンテレフタラートであることを特徴とする請求項1乃至請求項3のいずれか1項記載の接続構造体の製造方法。 The method for manufacturing a connection structure according to any one of claims 1 to 3, wherein the flexible film used for the substrate of the flexible display is polyimide or polyethylene terephthalate.
  5.  フレキシブルディスプレイに設けられた端子と電子部品の端子とを異方性導電接続層により接続する接続方法において、
     上記異方性導電接続層を介して、上記電子部品の端子が上記フレキシブルディスプレイに設けられた端子と対向するように上記電子部品を上記フレキシブルディスプレイ上に搭載する搭載工程と、
     上記電子部品を上記フレキシブルディスプレイに対して加圧し、上記フレキシブルディスプレイに設けられた端子と上記電子部品の端子とを上記異方性導電接続層で接続及び上記異方性導電接続層中の導電性粒子を介して導通する接続工程とを有し、
     上記導電性粒子は、30%圧縮変形時の圧縮硬さが150~400Kgf/mmであることを特徴とする接続方法。
    In the connection method of connecting the terminal provided on the flexible display and the terminal of the electronic component by the anisotropic conductive connection layer,
    A mounting step of mounting the electronic component on the flexible display so that the terminal of the electronic component faces the terminal provided on the flexible display via the anisotropic conductive connection layer;
    The electronic component is pressurized against the flexible display, and the terminal provided on the flexible display and the terminal of the electronic component are connected by the anisotropic conductive connection layer and the conductivity in the anisotropic conductive connection layer. A connection step of conducting through the particles,
    The connection method according to claim 1, wherein the conductive particles have a compression hardness of 150 to 400 kgf / mm 2 at 30% compression deformation.
  6.  上記フレキシブルディスプレイの基材に使用されるフレキシブルフィルムは、ヤング率が2~10GPaであることを特徴とする請求項5記載の接続方法。 6. The connection method according to claim 5, wherein the flexible film used for the substrate of the flexible display has a Young's modulus of 2 to 10 GPa.
  7.  上記導電性粒子の30%圧縮変形時の圧縮硬さが150~350Kgf/mmであることを特徴とする請求項5又は請求項6記載の接続方法。 The connection method according to claim 5 or 6, wherein the conductive particles have a compression hardness of 150 to 350 Kgf / mm 2 when 30% compression deformation occurs.
  8.  上記フレキシブルディスプレイに使用されるフレキシブルフィルムは、ポリイミド又はポリエチレンテレフタラートであることを特徴とする請求項5乃至請求項7のいずれか1項記載の接続方法。 The connection method according to any one of claims 5 to 7, wherein the flexible film used for the flexible display is polyimide or polyethylene terephthalate.
  9.  フレキシブルディスプレイに設けられた端子と電子部品の端子とを接続する異方性導電接続材料において、
     絶縁性接着剤中に、30%圧縮変形時の圧縮硬さが150~400Kgf/mmである導電性粒子を含有することを特徴とする異方性導電接続材料。
    In the anisotropic conductive connection material that connects the terminal provided on the flexible display and the terminal of the electronic component,
    An anisotropic conductive connecting material comprising conductive particles having a compression hardness of 150 to 400 kgf / mm 2 at 30% compression deformation in an insulating adhesive.
  10.  上記導電性粒子の30%圧縮変形時の圧縮硬さが150~350Kgf/mmであることを特徴とする請求項9記載の異方性導電接続材料。 The anisotropic conductive connecting material according to claim 9, wherein the conductive particles have a compression hardness of 150 to 350 kgf / mm 2 when 30% compression deformation occurs.
  11.  上記導電性粒子が樹脂に金属メッキを施した粒子であることを特徴とする請求項9又は請求項10記載の異方性導電接続材料。 The anisotropic conductive connecting material according to claim 9 or 10, wherein the conductive particles are particles obtained by performing metal plating on a resin.
  12.  剥離基材上にフィルム状に形成されていることを特徴とする請求項9乃至請求項11のいずれか1項記載の異方性導電接続材料。 The anisotropic conductive connection material according to any one of claims 9 to 11, wherein the anisotropic conductive connection material is formed in a film shape on a release substrate.
  13.  フレキシブルディスプレイに設けられた端子と電子部品の端子との間に異方性導電接続層を介在させて、上記フレキシブルディスプレイと上記電子部品とを接続及び導通した接続構造体であって、
     上記異方性導電性層中の導電性粒子は、30%圧縮変形時の圧縮硬さが150~400Kgf/mmであることを特徴とする接続構造体。
     
    A connection structure in which an anisotropic conductive connection layer is interposed between a terminal provided on a flexible display and a terminal of an electronic component, and the flexible display and the electronic component are connected and conducted,
    The connection structure according to claim 1, wherein the conductive particles in the anisotropic conductive layer have a compression hardness of 150 to 400 kgf / mm 2 at 30% compression deformation.
PCT/JP2013/053210 2012-02-20 2013-02-12 Anisotropic conductive connection material, connection structure, manufacturing method and connection method for connection structure WO2013125388A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380010151.9A CN104106182B (en) 2012-02-20 2013-02-12 Anisotropic conductive connecting material, connection structural bodies, the manufacturing method of connection structural bodies and connection method
KR1020147016359A KR101886909B1 (en) 2012-02-20 2013-02-12 Anisotropic conductive connection material, connection structure, manufacturing method and connection method for connection structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-033850 2012-02-20
JP2012033850A JP6209313B2 (en) 2012-02-20 2012-02-20 Anisotropic conductive film, connection structure, method for manufacturing connection structure, and connection method

Publications (1)

Publication Number Publication Date
WO2013125388A1 true WO2013125388A1 (en) 2013-08-29

Family

ID=49005576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053210 WO2013125388A1 (en) 2012-02-20 2013-02-12 Anisotropic conductive connection material, connection structure, manufacturing method and connection method for connection structure

Country Status (5)

Country Link
JP (1) JP6209313B2 (en)
KR (1) KR101886909B1 (en)
CN (1) CN104106182B (en)
TW (2) TWI647886B (en)
WO (1) WO2013125388A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI721150B (en) * 2016-05-09 2021-03-11 日商昭和電工材料股份有限公司 Manufacturing method of semiconductor device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016068127A1 (en) * 2014-10-28 2016-05-06 デクセリアルズ株式会社 Anisotropic conductive film and connecting structure
KR101702718B1 (en) * 2014-11-20 2017-02-06 삼성에스디아이 주식회사 Anisotropic conductive film, the composition thereof and the semiconductor device using thereof
WO2016190424A1 (en) * 2015-05-27 2016-12-01 デクセリアルズ株式会社 Anisotropic conductive film and connection structure
CN105070351A (en) * 2015-06-30 2015-11-18 苏州纳微科技有限公司 Flexible conductive microballoon and applications thereof
JP6734159B2 (en) * 2015-09-30 2020-08-05 積水化学工業株式会社 Conductive particles, conductive material and connection structure
JP7039883B2 (en) 2016-12-01 2022-03-23 デクセリアルズ株式会社 Anisotropic conductive film
KR20190015652A (en) * 2017-08-03 2019-02-14 (주)트러스 Conductive adhesive tape using compressible conductive powder and manufacturing method thereof
KR101969879B1 (en) 2018-11-15 2019-04-17 전인하 Apparatus for Continuous Supplying by Uniform Quantity

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008521963A (en) * 2004-12-16 2008-06-26 チェイル インダストリーズ インコーポレイテッド Polymer resin fine particles, conductive fine particles, and anisotropic conductive connecting material containing the same
WO2009154138A1 (en) * 2008-06-18 2009-12-23 株式会社ブリヂストン Adhesive composition and method for manufacturing display panel using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1173817A (en) * 1997-08-28 1999-03-16 Ricoh Co Ltd Conductive particle, anisotropic conductive adhesive material, and liquid crystal display
KR20040052126A (en) * 2002-12-13 2004-06-19 엘지전선 주식회사 Anisotropic-electroconductive adhesive, circuit connection using the same, and circuit connection structure
JP5622137B2 (en) 2007-10-29 2014-11-12 デクセリアルズ株式会社 Electrical connection body and manufacturing method thereof
JP2009242508A (en) 2008-03-31 2009-10-22 Asahi Kasei E-Materials Corp Adhesive and bonded body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008521963A (en) * 2004-12-16 2008-06-26 チェイル インダストリーズ インコーポレイテッド Polymer resin fine particles, conductive fine particles, and anisotropic conductive connecting material containing the same
WO2009154138A1 (en) * 2008-06-18 2009-12-23 株式会社ブリヂストン Adhesive composition and method for manufacturing display panel using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI721150B (en) * 2016-05-09 2021-03-11 日商昭和電工材料股份有限公司 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
CN104106182A (en) 2014-10-15
CN104106182B (en) 2019-06-14
KR101886909B1 (en) 2018-08-08
TWI647886B (en) 2019-01-11
JP2013171656A (en) 2013-09-02
JP6209313B2 (en) 2017-10-04
TW201345091A (en) 2013-11-01
TW201832415A (en) 2018-09-01
KR20140128294A (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP6209313B2 (en) Anisotropic conductive film, connection structure, method for manufacturing connection structure, and connection method
KR20110034606A (en) Conductive particle, anisotropic conductive film, joined body, and connecting method
WO2012137754A1 (en) Anisotropic conductive film, method for producing connected body, and connected body
KR102386367B1 (en) Connection body, connection body production method, connection method, anisotropic conductive adhesive
WO2013129437A1 (en) Method for manufacturing connection element, and anisotropic electroconductive adhesive
CN116144286A (en) Adhesive composition
JP3624818B2 (en) Anisotropic conductive connection material, connection body, and manufacturing method thereof
JP6324746B2 (en) Connection body, method for manufacturing connection body, electronic device
JP5608426B2 (en) Method for manufacturing anisotropic conductive film
JP6057521B2 (en) Connection method using anisotropic conductive material and anisotropic conductive joined body
JP2010251336A (en) Anisotropic conductive film and method for manufacturing connection structure using the same
JP5816456B2 (en) Anisotropic conductive connection material, film laminate, connection method and connection structure
JP5798848B2 (en) Connection method and method for manufacturing connection structure
JP4918908B2 (en) Anisotropic conductive film
JP6257303B2 (en) Manufacturing method of connecting body, connecting method, and connecting body
KR20110131018A (en) Conductive particle for anisotropic conductive film and anisotropic conductive film including the conductive particle
JP2015195178A (en) Conductive particle, conductive adhesive, method for producing connection body, method for connecting electronic component, and connection body
CN105430901B (en) Electronic component and connection method thereof, connection body and manufacturing method thereof, and buffer material
JP2011211245A (en) Method of manufacturing connection structure, connection structure, and connection method
JP5890614B2 (en) Connection method, connection structure, and manufacturing method of connection structure
JP6434210B2 (en) Electronic component, connecting body, manufacturing method of connecting body, and connecting method of electronic component
JP2012015544A (en) Method of manufacturing connecting structure, and connecting structure and connecting method
CN110246767B (en) Electronic component, connector, method for manufacturing connector, and method for connecting electronic component
JP2016058718A (en) Electronic component, connection body, method of manufacturing connection body, method of manufacturing electronic component, and buffer material
JP2019140413A (en) Connection body, manufacturing method of the same, and connection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13752489

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20147016359

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13752489

Country of ref document: EP

Kind code of ref document: A1