WO2013125044A1 - 風車制御装置及びその方法並びに風力発電システム - Google Patents

風車制御装置及びその方法並びに風力発電システム Download PDF

Info

Publication number
WO2013125044A1
WO2013125044A1 PCT/JP2012/054654 JP2012054654W WO2013125044A1 WO 2013125044 A1 WO2013125044 A1 WO 2013125044A1 JP 2012054654 W JP2012054654 W JP 2012054654W WO 2013125044 A1 WO2013125044 A1 WO 2013125044A1
Authority
WO
WIPO (PCT)
Prior art keywords
command
output
windmill
command information
setting
Prior art date
Application number
PCT/JP2012/054654
Other languages
English (en)
French (fr)
Inventor
明 八杉
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020127033763A priority Critical patent/KR20130106287A/ko
Priority to CN201280001239.XA priority patent/CN102971528B/zh
Priority to PCT/JP2012/054654 priority patent/WO2013125044A1/ja
Priority to JP2012556731A priority patent/JP5325348B1/ja
Priority to EP12801792.8A priority patent/EP2818699B1/en
Priority to US13/474,036 priority patent/US8610299B2/en
Publication of WO2013125044A1 publication Critical patent/WO2013125044A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0284Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power in relation to the state of the electric grid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/047Automatic control; Regulation by means of an electrical or electronic controller characterised by the controller architecture, e.g. multiple processors or data communications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/048Automatic control; Regulation by means of an electrical or electronic controller controlling wind farms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/337Electrical grid status parameters, e.g. voltage, frequency or power demand
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Definitions

  • the present invention relates to a windmill control device and method, and a wind power generation system.
  • Japanese Patent No. 4782245 discloses system disturbance based on conversion information indicating a preset relationship between a frequency fluctuation amount and an active power command value.
  • a method for controlling the effective power of a wind turbine in a suppressing direction is disclosed.
  • a first aspect of the present invention is a windmill control device that is applied to a wind power generation system in which outputs of a plurality of windmills are supplied to a power system through a common interconnection point, and is provided for each of the windmills.
  • the first setting means for setting the first command information for generating the output command for suppressing the frequency fluctuation at the interconnection point, and the output command for generating the output command for suppressing the frequency fluctuation of the output of the corresponding windmill
  • a second processing means for setting second command information; and when a system disturbance occurs in which the frequency fluctuation at the interconnection point exceeds a predetermined first threshold, the second command information is selected at an initial stage of the system disturbance
  • a wind turbine control device comprising: selection means for selecting the first command information at a later stage of the system disturbance; and command generation means for generating an output command using the command information selected by the selection means.
  • a wind turbine control method applied to a wind power generation system in which outputs of a plurality of wind turbines are supplied to an electric power system through a common interconnection point, the frequency fluctuation at the interconnection point.
  • a first setting process for setting first command information for generating an output command for suppressing the output and a second command information for generating an output command for suppressing the frequency fluctuation of the output of the corresponding wind turbine 2 When the system disturbance in which the frequency fluctuation at the interconnection point exceeds a predetermined first threshold occurs, the second command information is selected at the initial stage of the system disturbance, and the latter stage of the system disturbance. And a command generation process for generating an output command using the command information selected in the selection process.
  • a third aspect of the present invention is a wind power generation system including a plurality of windmills, and an output of each of the windmills is supplied to an electric power system through a common interconnection point, and controls the output at the interconnection point And a plurality of wind turbine control units that are provided corresponding to the wind turbines and control the output of the corresponding wind turbines, and the central control unit outputs an output command that suppresses frequency fluctuations at the interconnection points.
  • First processing means for setting first command information for generating the first command information, and transmitting means for transmitting the first command information of each windmill set by the first processing means to each windmill,
  • the windmill control means suppresses frequency fluctuations in the output of the corresponding windmill, receiving means for receiving the first command information from the central control means, first setting means for setting the received first command information, and
  • a second processing means for setting second command information for generating an output command, and an initial stage of the system disturbance when a system disturbance in which a frequency fluctuation at the interconnection point exceeds a predetermined first threshold value occurs.
  • Selecting means for selecting the second command information, and selecting the first command information at a later stage of the system disturbance; and command generating means for generating an output command using the command information selected by the selection means; Is a wind power generation system.
  • FIG. 1 It is a figure showing the whole wind power system composition concerning one embodiment of the present invention. It is an external view of the windmill shown in FIG. It is the schematic diagram which showed schematically the electric structure of the windmill shown in FIG. It is the figure which showed an example of the hardware constitutions of the central control apparatus shown in FIG. It is the functional block diagram which mainly showed the function regarding frequency suppression control among the functions with which the central control apparatus and the windmill control apparatus which were shown in FIG. It is the figure which showed an example of the conversion information. It is a figure for demonstrating the initial stage and late stage of system disturbance.
  • FIG. 1 is a diagram illustrating an overall configuration of a wind power generation system according to the present embodiment.
  • the wind power generation system 1 includes a plurality of wind turbines 10-1,..., 10-n (hereinafter, when all the wind turbines are indicated, a reference numeral “10” is attached to each wind turbine). In this case, reference numerals “10-1”, “10-n”, etc. are attached.)
  • a central controller 2 that gives a first correction value to each wind turbine 10.
  • all the windmills 10 are variable speed windmills capable of controlling the rotation speed according to the wind speed.
  • the electric power output from each windmill 10 is supplied to the electric power grid
  • the system frequency of the interconnection point A is measured by the frequency detection unit 25 (see FIG. 5) and is output to the central controller 2.
  • the central control device 2 is a control device that controls the output at the interconnection point A.
  • a request notified from a power management room (for example, a power company) that manages the power of the power system 3 An active power command is set for each wind turbine to match the output at the interconnection point A with the frequency and the required power value.
  • the active power command for each wind turbine set by the central controller 2 is transmitted to the wind turbine control device 20 included in each wind turbine 10-1,..., 10-n, and output control based on this active power command is performed for each wind turbine. Done in
  • FIG. 2 is an external view of the windmill 10, and FIG. 3 is a schematic diagram illustrating an electrical configuration of the windmill 10.
  • the wind turbine 10 is provided in the nacelle 7 so as to be rotatable around a substantially horizontal axis line, a tower 6 standing on the foundation 5, a nacelle 7 installed on the upper end of the tower 6, and the like. And a rotor head 8.
  • a plurality of blades 9 are radially attached to the rotor head 8 around its rotational axis.
  • the blade 9 is connected so as to be rotatable with respect to the rotor head 8 according to operating conditions, and the pitch angle can be changed.
  • a speed increaser 22 and a generator 23 are mechanically connected to the rotating shaft 21 of the rotor head 8.
  • the generator 23 may be a synchronous generator or an induction generator. It is also possible to adopt a configuration in which the speed increaser 23 is not provided.
  • the rotor head 8 is rotated around the rotation axis by the force of the wind hitting the blade 9 from the rotation axis direction of the rotor head 8, and the rotation force is increased by the speed increaser 22 and transmitted to the generator 23. Converted to electric power.
  • the electric power generated by the generator 23 is converted into electric power corresponding to the electric power system 3 by the electric power converter 24 and supplied to the electric power system 1 through the transformer 19.
  • the power conversion unit 24 is controlled by the windmill control device 20.
  • the windmill control device 20 has a function of controlling the output of the generator 23 by controlling the power converter 24, a function of controlling the pitch angle of the blade 9, and the like.
  • the central control device 2 and the windmill control device 20 include a computer.
  • a CPU 11 and a ROM (Read Only Memory) 12 for storing a program executed by the CPU 11,
  • a RAM (Random Access Memory) 13 functioning as a work area when executing each program
  • a hard disk drive (HDD) 14 as a mass storage device
  • a communication interface 15 for connecting to a communication network are provided.
  • These units are connected via a bus 18.
  • the central control device 2 may include an access unit to which an external storage device is attached, an input unit including a keyboard and a mouse, a display unit including a liquid crystal display device that displays data, and the like.
  • the storage medium for storing the program executed by the CPU 11 is not limited to the ROM 12.
  • other auxiliary storage devices such as a magnetic disk, a magneto-optical disk, and a semiconductor memory may be used.
  • FIG. 5 is a functional block diagram mainly showing functions related to frequency control that operates when, for example, system disturbance (frequency fluctuation) occurs, among the functions of the central control device 2 and the windmill control device 20.
  • Central controller 2 generates first command information for suppressing frequency fluctuations at interconnection point A for each windmill, and generates the generated first command information for each windmill 10-1,. It transmits to the control apparatus 20.
  • the central controller 2 includes a first processing unit 31 and a transmission unit 32 as shown in FIG.
  • the first processing unit 31 includes a deviation calculating unit 33, a parameter converting unit 34, and a correction value setting unit 35.
  • the deviation calculation unit 33 calculates a system frequency deviation ⁇ f grid that is a deviation between the system frequency detected by the frequency detection unit 25 and the rated frequency notified from the power management room. That is, the system frequency deviation ⁇ f grid is expressed by the following equation (1).
  • f ref is a rated frequency and f grid is a system frequency.
  • the parameter conversion unit 34 has conversion information in which the relationship between the frequency deviation ⁇ f and the power correction value ⁇ P is set, and corresponds to the system frequency deviation ⁇ f grid calculated by the deviation calculation unit 33 using this conversion information.
  • the grid power correction value ⁇ P grid to be acquired is acquired.
  • Fig. 6 shows an example of conversion information.
  • the horizontal axis indicates the frequency deviation ⁇ f
  • the vertical axis indicates the power correction value ⁇ P.
  • the conversion characteristics shown in FIG. 6 can be arbitrarily set according to the design of the wind turbine, and here, the slope is defined as a positive linear function.
  • the grid power correction value ⁇ P grid acquired by the parameter conversion unit 34 is output to the correction value setting unit 35.
  • the correction value setting unit 35 divides the grid power correction value ⁇ P grid by the number n of wind turbines in operation to equally distribute the grid power correction value ⁇ P grid to each wind turbine, and the first power corresponding to each wind turbine.
  • Correction values ⁇ P id — n ,..., ⁇ P id — n are set.
  • a weighting coefficient is set in advance for each wind turbine 10-1,..., 10-n, and the distribution of the grid power correction value ⁇ P grid to each wind turbine during operation is determined using this weighting coefficient. It is good to do.
  • the first power correction values ⁇ P id — 1,..., ⁇ P id — n of the wind turbines set in this way are transmitted to the wind turbine controller 20 of each wind turbine as the first command information.
  • Each windmill control device 20 includes a reception unit 40, a first setting unit 41, a second processing unit 42, a selection unit 43, a state determination unit 44, and an active power command generation unit 45. Since the configuration of the windmill control device 20 included in each of the windmills 10-1,..., 10-n is the same, the configuration of the windmill control device 20 of the windmill 10-1 is a representative example below for convenience of explanation. Will be described.
  • the receiving unit 40 receives the first power correction value ⁇ P id — 1 transmitted from the central control device 2 and outputs it to the first setting unit 41.
  • the first setting unit 41 sets the first power correction value ⁇ P id — 1 received by the receiving unit 40.
  • the first power correction value ⁇ P id — 1 set by the first setting unit 41 is a power correction value for suppressing fluctuations in the system frequency.
  • the second processing unit 42 sets second command information for generating an output command for suppressing the frequency fluctuation of the output of the corresponding wind turbine 10-1.
  • the second processing unit 42 includes a deviation calculating unit 46 and a parameter converting unit 47.
  • the deviation calculation unit 46 receives the output frequency of the windmill 10-1 detected by the frequency detection unit 26 (hereinafter referred to as “windmill frequency”).
  • the deviation calculating unit 46 calculates a wind turbine frequency deviation ⁇ f wd_1 between the input wind turbine frequency and the rated frequency. That is, the wind turbine frequency deviation ⁇ f wd — 1 is expressed by the following equation (2).
  • f ref is the rated frequency
  • f wd_1 is the wind turbine frequency of the wind turbine 10-1.
  • the parameter conversion unit 47 has, for example, the conversion information shown in FIG. 6 and uses the conversion information to obtain the wind turbine power correction value ⁇ P wd_1 corresponding to the wind turbine frequency deviation ⁇ f wd_1 calculated by the deviation calculation unit 46. It is acquired and set as a second power correction value (second command information).
  • the selection unit 43 receives the first power correction value set by the first setting unit 41 and the second power correction value set by the second processing unit 42. When the system disturbance occurs, the selection unit 43 selects the second power correction value at the initial stage of the system disturbance, selects the first power correction value at the later stage of the system disturbance, and generates an active power command. To the unit 45. The occurrence of the system disturbance, the initial stage of the system disturbance, and the later stage of the system disturbance are determined by an input signal from the state determination unit 44.
  • the state determination unit 44 detects the occurrence of system disturbance when the frequency fluctuation at the interconnection point A exceeds a predetermined first threshold value, and outputs a High signal to the selection unit 43. In addition, after the occurrence of the disturbance, when the state in which the fluctuation range of the system frequency is less than the second threshold set to a value equal to or less than the first threshold is maintained for a predetermined period or longer, the transition from the initial stage to the later stage is performed. Determination is made and the output signal is switched from the high signal to the low signal.
  • the selection unit 43 selects the second power correction value ⁇ P wd_1 during the period in which the High signal is input from the state determination unit 44. In addition, the selection unit 43 selects the first power correction value ⁇ P id_1 during the period when the Low signal is input from the state determination unit 44, and outputs the first power correction value ⁇ P id_1 to the active power command generation unit 45.
  • the active power command generation unit 45 has a reference active power command as a reference, and adds the first power correction value or the second power correction value input from the selection unit 43 to the reference active power command.
  • an active power command is generated.
  • a control signal Pdem for controlling the power conversion unit 24 is generated based on the active power command, and is output to the power conversion unit 24.
  • the reference active power command may be a fixed value, or a predetermined calculation is performed using the current output of the generator 23, the rotational speed of the rotor head 8, the pitch angle of the blade 9, and the wind speed. May be a value that is sequentially calculated by.
  • the central control device 2 sets the first power correction value such that the system frequency becomes the rated frequency at a predetermined time interval, and the first power correction value is the wind turbine of each wind turbine. It is transmitted to the control device 20.
  • the reception unit 40 receives the first power correction value from the central control device 2, and the first setting unit 41 sets the first power correction value. Further, the second processing unit 42 sets a second power correction value with the output frequency of the corresponding windmill as the rated frequency.
  • the state determination unit 44 outputs a High signal when it is detected that a system disturbance has occurred at time T ⁇ b> 0, and then, when time passes, at time T ⁇ b> 1 in FIG. 7.
  • the state where the frequency fluctuation at the interconnection point A is less than the second threshold is maintained for a predetermined period, it is detected that the state has shifted to the later stage of the system disturbance, and the output signal is changed from the High signal to Low. Switch to signal.
  • the second power correction value is selected in the initial stage from the occurrence of the system disturbance (period T0 to T1 in FIG. 7), and after the transition from the initial stage of the system disturbance to the later stage In (after time T1 in FIG. 7), the first power correction value is selected. Therefore, in the initial stage of system disturbance occurrence, an active power command using the second power correction value that suppresses fluctuations in the wind turbine frequency is generated by the active power command generator 45, and the output of the wind turbine is generated based on this active power command. Is controlled. Further, in the later stage of the system disturbance, the active power command using the first power correction value that suppresses the fluctuation of the system frequency is generated by the active power command generation unit 45, and the output of the windmill is generated based on the active power command. Be controlled.
  • the wind turbine control device 20 and the method thereof and the wind power generation system 1 according to the present embodiment when a system disturbance occurs, the frequency fluctuations of individual outputs of the wind turbine in the initial stage of the system disturbance. Output control is performed in each wind turbine, and in the later stage of the system disturbance, output control is performed in each wind turbine to suppress the system frequency at the connection point A.
  • the control that suppresses the output frequency for each wind turbine is more responsive than the control that suppresses the system frequency. Therefore, it is possible to effectively suppress the frequency fluctuation at the interconnection point A by selecting the control that suppresses the output frequency fluctuation for each wind turbine in the initial stage of the system disturbance.
  • the state determination unit 44 may have these two conditions, and may determine that the system has shifted to the later stage of the system disturbance when one of the two conditions is satisfied.
  • the occurrence of the system disturbance and the transition from the initial stage to the late stage are determined based on the system frequency, but instead, the output frequency of each windmill is used to generate the system disturbance and the initial stage.
  • the transition from the stage to the later stage may be determined.
  • the first command information and the second command information respectively set by the first setting unit and the second processing unit are the power correction values. Instead, the first power correction value is reflected.
  • the second active power command in which the first active power command and the second power correction value are reflected may be set as the first command information and the second command information.
  • an active power command generation unit 45 may be provided between the first setting unit 41 and the selection unit 43 and between the parameter conversion unit 47 and the selection unit 43. Further, in this case, the central control device 2 generates a first active power command that suppresses frequency fluctuations at the interconnection point A for each wind turbine, and the generated first active power command is sent to each wind turbine 10. It is good also as transmitting. In this case, the first active power command received from the central control device 2 is set by the first setting unit 41.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Wind Motors (AREA)

Abstract

 系統擾乱が発生した場合に、発生初期の段階から周波数変動を抑制することを目的とする。系統擾乱が発生した場合に、系統擾乱の初期段階においては、風車の出力の周波数変動を抑制するように各風車の出力制御を行い、系統擾乱の後期段階においては、系統周波数を抑制するように各風車の出力制御を行う。

Description

風車制御装置及びその方法並びに風力発電システム
 本発明は、風車制御装置及びその方法並びに風力発電システムに関するものである。
 例えば、発電機のトリップや系統故障などにより電力供給能力が低下した場合、系統擾乱(周波数の変動等)が発生することが知られている。このような系統擾乱時における風車の制御方法として、例えば、日本特許第4782245号公報には、周波数変動量と有効電力指令値との予め設定された関係を示す変換情報に基づいて、系統擾乱を抑制する方向に風車の有効電力を制御する方法が開示されている。
日本特許第4782245号公報
 近年、風力発電の発電規模は拡大しており、系統擾乱が発生した場合には、初期から擾乱を抑制することが有効となる。
 本発明は、系統擾乱が発生した場合に、発生初期の段階から周波数変動を抑制することのできる風車制御装置及びその方法並びに風力発電システムを提供することを目的とする。
 本発明の第1態様は、複数の風車の出力が共通の連系点を通じて電力系統に供給される風力発電システムに適用され、各前記風車に対応してそれぞれ設けられた風車制御装置であって、前記連系点における周波数変動を抑制する出力指令を生成するための第1指令情報を設定する第1設定手段と、対応する前記風車の出力の周波数変動を抑制する出力指令を生成するための第2指令情報を設定する第2処理手段と、前記連系点における周波数変動が所定の第1閾値を超える系統擾乱が発生した場合に、該系統擾乱の初期段階に前記第2指令情報を選択し、当該系統擾乱の後期段階に前記第1指令情報を選択する選択手段と、前記選択手段によって選択された指令情報を用いて出力指令を生成する指令生成手段とを具備する風車制御装置である。
 本発明の第2態様は、複数の風車の出力が共通の連系点を通じて電力系統に供給される風力発電システムに適用される各前記風車の制御方法であって、前記連系点における周波数変動を抑制する出力指令を生成するための第1指令情報を設定する第1設定過程と、対応する前記風車の出力の周波数変動を抑制する出力指令を生成するための第2指令情報を設定する第2処理過程と、前記連系点における周波数変動が所定の第1閾値を超える系統擾乱が発生した場合に、該系統擾乱の初期段階に前記第2指令情報を選択し、当該系統擾乱の後期段階に前記第1指令情報を選択する選択過程と、前記選択過程によって選択された指令情報を用いて出力指令を生成する指令生成過程とを含む風車の制御方法である。
 本発明の第3態様は、複数の風車を備え、各前記風車の出力が共通の連系点を通じて電力系統に供給される風力発電システムであって、前記連系点における出力を制御する中央制御手段と、各前記風車に対応してそれぞれ設けられ、対応する前記風車の出力を制御する複数の風車制御手段とを備え、前記中央制御手段は、前記連系点における周波数変動を抑制する出力指令を生成するための第1指令情報を設定する第1処理手段と、前記第1処理手段によって設定された各前記風車の第1指令情報をそれぞれの前記風車に送信する送信手段とを備え、各前記風車制御手段は、前記中央制御手段から前記第1指令情報を受信する受信手段と、受信した前記第1指令情報を設定する第1設定手段と、対応する前記風車の出力の周波数変動を抑制する出力指令を生成するための第2指令情報を設定する第2処理手段と、前記連系点における周波数変動が所定の第1閾値を超える系統擾乱が発生した場合に、該系統擾乱の初期段階に前記第2指令情報を選択し、当該系統擾乱の後期段階に前記第1指令情報を選択する選択手段と、前記選択手段によって選択された指令情報を用いて出力指令を生成する指令生成手段とを具備する風力発電システムである。
 本発明によれば、系統擾乱が発生した場合に、発生初期の段階から周波数変動を抑制することができるという効果を奏する。
本発明の一実施形態に係る風力発電システムの全体構成を示す図である。 図1に示した風車の外観図である。 図1に示した風車の電気的構成を概略的に示した模式図である。 図1に示した中央制御装置のハードウェア構成の一例を示した図である。 図1に示した中央制御装置及び風車制御装置が備える機能のうち、周波数抑制制御に関する機能を主に示した機能ブロック図である。 変換情報の一例を示した図である。 系統擾乱の初期段階及び後期段階について説明するための図である。
 以下、本発明の一実施形態に係る風車制御装置及びその方法並びに風力発電システムについて図面を参照して説明する。
 図1は、本実施形態に係る風力発電システムの全体構成を示す図である。図1に示されるように、風力発電システム1は、複数の風車10-1,・・・,10-n(以下、全ての風車を示すときは単に符号「10」を付し、各風車を示すときは符号「10-1」、「10-n」等を付す。)と、各風車10に対して第1補正値を与える中央制御装置2とを備えている。
 本実施形態において、全ての風車10は、風速に応じて回転速度を制御可能な可変速風車とされている。各風車10から出力された電力は、各電力線により共通の連系点Aを経由して電力系統3に供給される。
 連系点Aの系統周波数は、周波数検出部25(図5参照)によって計測され、中央制御装置2に出力される。
 中央制御装置2は、連系点Aにおける出力を制御する制御装置であり、平常時においては、例えば、電力系統3の電力を管理する電力管理室(例えば、電力会社等)から通知される要求周波数や要求電力値に、連系点Aにおける出力を一致させるような有効電力指令を各風車に対して設定する。中央制御装置2によって設定された各風車の有効電力指令は、各風車10-1,・・・,10-nが備える風車制御装置20に送信され、この有効電力指令に基づく出力制御が各風車において行われる。
 図2は、風車10の外観図、図3は風車10の電気的構成を示した模式図である。
 図2に示すように、風車10は、基礎5上に立設されるタワー6と、タワー6の上端に設置されるナセル7と、略水平な軸線周りに回転可能にしてナセル7に設けられるロータヘッド8とを有している。
 ロータヘッド8には、その回転軸線周りに複数のブレード9が放射状に取り付けられている。ブレード9は、運転条件に応じてロータヘッド8に対して回動可能なように連結されており、ピッチ角が変化可能とされている。
 図3に示すように、ロータヘッド8の回転軸21には、増速機22および発電機23が機械的に連結されている。発電機23は、同期発電機であってもよいし、誘導発電機であってもよい。増速機23が設けられていない構成とすることも可能である。
 ロータヘッド8の回転軸線方向からブレード9に当たった風の力によってロータヘッド8が回転軸周りに回転させられ、その回転力が増速機22により増速されて、発電機23に伝達され、電力に変換される。発電機23の発電電力は、電力変換部24により電力系統3に応じた電力に変換され、変圧器19を介して電力系統1へ供給される。
 電力変換部24は、風車制御装置20によって制御される。風車制御装置20は、電力変換部24を制御することにより発電機23の出力を制御する機能、ブレード9のピッチ角を制御する機能等を備えている。
 上記中央制御装置2及び風車制御装置20は、コンピュータを備えており、例えば、図4に示すように、CPU11と、CPU11が実行するプログラム等を記憶するためのROM(Read Only Memory)12と、各プログラム実行時のワーク領域として機能するRAM(Random Access Memory)13と、大容量記憶装置としてのハードディスクドライブ(HDD)14と、通信ネットワークに接続するための通信インターフェース15とをそれぞれ備えている。これら各部は、バス18を介して接続されている。
 また、中央制御装置2は、外部記憶装置が装着されるアクセス部、キーボードやマウス等からなる入力部、およびデータを表示する液晶表示装置等からなる表示部などを備えていてもよい。
 上記CPU11が実行するプログラム等を記憶するための記憶媒体は、ROM12に限られない。例えば、磁気ディスク、光磁気ディスク、半導体メモリ等の他の補助記憶装置であってもよい。
 図5は、中央制御装置2及び風車制御装置20が備える機能のうち、例えば、系統擾乱(周波数変動)が発生した場合に作動する周波数制御に関する機能を主に示した機能ブロック図である。
 中央制御装置2は、連系点Aにおける周波数変動を抑制するための第1指令情報を風車毎に生成し、生成した第1指令情報を各風車10-1、・・・10-nの風車制御装置20に送信する。
 例えば、中央制御装置2は、図5に示すように、第1処理部31と、送信部32とを備えている。
 第1処理部31は、偏差算出部33と、パラメータ変換部34と、補正値設定部35とを備えている。
 偏差算出部33は、周波数検出部25によって検出された系統周波数と電力管理室から通知される定格周波数との偏差である系統周波数偏差Δfgridを算出する。すなわち、系統周波数偏差Δfgridは、以下の(1)式で表わされる。
 Δf=fref-fgrid   (1)
 上記(1)式においてfrefは定格周波数、fgridは系統周波数である。
 パラメータ変換部34は、周波数偏差Δfと電力補正値ΔPとの関係が設定された変換情報を有しており、この変換情報を用いて偏差算出部33によって算出された系統周波数偏差Δfgridに対応する系統電力補正値ΔPgridを取得する。
 図6に変換情報の一例を示す。図6において横軸は周波数偏差Δf、縦軸は電力補正値ΔPを示している。図6に示された変換特性は、風車の設計に応じて任意に設定できるものであり、ここでは、傾きが正の一次関数として定義されている。
 パラメータ変換部34で取得された系統電力補正値ΔPgridは、補正値設定部35に出力される。補正値設定部35は、系統電力補正値ΔPgridを運転中の風車の台数nで除算することにより、系統電力補正値ΔPgridを均等に各風車に按分し、各風車に対応する第1電力補正値ΔPid_n,・・・,ΔPid_nを設定する。
 なお、各風車10-1,・・・10-nに対して重み付け係数を予め設定しておき、この重み付け係数を利用して、系統電力補正値ΔPgridの運転中の各風車に対する配分を決定することとしてもよい。
 このようにして設定された各風車の第1電力補正値ΔPid_1,・・・,ΔPid_nは、第1指令情報として各風車の風車制御装置20に送信される。
 各風車制御装置20は、受信部40と、第1設定部41と、第2処理部42と、選択部43と、状態判定部44と、有効電力指令生成部45とを備えている。なお、各風車10-1,・・・,10-nが備える風車制御装置20の構成は同様であることから、以下、説明の便宜上、風車10-1の風車制御装置20の構成を代表例に挙げて説明する。
 受信部40は、中央制御装置2から送信された第1電力補正値ΔPid_1を受信し、第1設定部41に出力する。第1設定部41は、受信部40によって受信された第1電力補正値ΔPid_1を設定する。このように、第1設定部41によって設定される第1電力補正値ΔPid_1は、系統周波数の変動を抑制するための電力補正値とされる。
 第2処理部42は、対応する風車10-1の出力の周波数変動を抑制する出力指令を生成するための第2指令情報を設定する。具体的には、第2処理部42は、偏差算出部46と、パラメータ変換部47とを備えている。
 偏差算出部46には、周波数検出部26によって検出された風車10-1の出力の周波数(以下「風車周波数」という。)が入力される。偏差算出部46は、入力された風車周波数と上記定格周波数との風車周波数偏差Δfwd_1を算出する。すなわち、風車周波数偏差Δfwd_1は、以下の(2)式で表わされる。
 Δfwd_1=fref-fwd_1   (2)
 上記(2)式においてfrefは定格周波数、fwd_1は風車10-1の風車周波数である。
 パラメータ変換部47は、例えば、図6に示した変換情報を有しており、この変換情報を用いて偏差算出部46によって算出された風車周波数偏差Δfwd_1に対応する風車電力補正値ΔPwd_1を取得し、これを第2電力補正値(第2指令情報)として設定する。
 選択部43には、第1設定部41によって設定された第1電力補正値と、第2処理部42によって設定された第2電力補正値とが入力される。選択部43は、系統擾乱が発生した場合に、当該系統擾乱の初期段階に第2電力補正値を選択し、当該系統擾乱の後期段階に第1電力補正値を選択して、有効電力指令生成部45に出力する。系統擾乱が発生したこと、系統擾乱の初期段階であること、系統擾乱の後期段階であることは、状態判定部44からの入力信号によって判別される。
 状態判定部44は、連系点Aにおける周波数変動が所定の第1閾値を超えた場合に系統擾乱の発生を検知し、High信号を選択部43に出力する。また、擾乱発生後において、系統周波数の変動幅が第1閾値以下の値に設定された第2閾値未満である状態が所定の期間以上維持された場合に、初期段階から後期段階に移行したと判定して、出力信号をHigh信号からLow信号に切り替える。
 選択部43は、状態判定部44からHigh信号が入力されている期間において、第2電力補正値ΔPwd_1を選択する。また、選択部43は、状態判定部44からLow信号が入力されている期間において、第1電力補正値ΔPid_1を選択して、有効電力指令生成部45に出力する。
 有効電力指令生成部45は、例えば、基準となる基準有効電力指令を保有しており、この基準有効電力指令に選択部43から入力された第1電力補正値または第2電力補正値を加算することで、有効電力指令を生成する。更に、この有効電力指令に基づいて電力変換部24を制御するための制御信号Pdemを生成し、電力変換部24に出力する。
 なお、上記基準有効電力指令は固定値であってもよいし、現在の発電機23の出力、ロータヘッド8の回転数、ブレード9のピッチ角、及び風速等を用いて所定の演算を行うことにより逐次演算される値であってもよい。
 上記構成を備える風力発電システムにおいては、中央制御装置2により、系統周波数が定格周波数となるような第1電力補正値が所定の時間間隔で設定され、この第1電力補正値が各風車の風車制御装置20に送信される。
 風車制御装置20では、受信部40により中央制御装置2からの第1電力補正値が受信されて、第1設定部41により第1電力補正値が設定される。更に、第2処理部42により、対応する風車の出力周波数を定格周波数とする第2電力補正値が設定される。
 状態判定部44では、例えば、図7に示すように、時刻T0において系統擾乱が発生したことが検知されるとHigh信号が出力され、その後、時間が経過することにより、図7の時刻T1において、連系点Aにおける周波数変動が第2閾値未満である状態が所定の期間維持されたことが検知されると、系統擾乱の後期段階に移行したことが検知されて出力信号がHigh信号からLow信号に切り替えられる。
 これにより、選択部43においては、系統擾乱発生から初期段階においては(図7の時刻T0からT1の期間)、第2電力補正値が選択され、系統擾乱の初期段階から後期段階に移行した後においては(図7の時刻T1以降)、第1電力補正値が選択される。従って、系統擾乱発生の初期段階においては、風車周波数の変動を抑制する第2電力補正値を用いた有効電力指令が有効電力指令生成部45によって生成され、この有効電力指令に基づいて風車の出力が制御される。また、系統擾乱の後期段階においては、系統周波数の変動を抑制する第1電力補正値を用いた有効電力指令が有効電力指令生成部45によって生成され、この有効電力指令に基づいて風車の出力が制御される。
 以上説明したように、本実施形態に係る風車制御装置20及びその方法並びに風力発電システム1によれば、系統擾乱が発生した場合に、系統擾乱の初期段階においては風車の個々の出力の周波数変動を抑制する出力制御各風車において行われ、系統擾乱の後期段階においては連系点Aにおける系統周波数を抑制する出力制御が各風車において行われる。
 風車毎の出力周波数を抑制する制御は、系統周波数を抑制する制御よりも応答性が高い。従って、系統擾乱の初期段階においては風車毎の出力周波数変動を抑制する制御を選択することにより、連系点Aにおける周波数変動を効果的に抑制することが可能となる。
 本実施形態においては、連系点Aにおける周波数変動が第2閾値未満である状態が所定の期間維持された場合に、系統擾乱の後期段階に移行したと判定していたが、この条件に代えて、例えば、連系点Aにおける周波数変動の周期が予め設定されている第3閾値を超えた場合に、系統擾乱の後期段階に移行したと判断することとしてもよい。更に、状態判定部44がこれら2つの条件を保有しており、いずれか一方の条件を満たした場合に、系統擾乱の後期段階に移行したと判断することとしてもよい。
 本実施形態では、系統周波数に基づいて系統擾乱の発生、初期段階から後期段階への移行を判定していたが、これに代えて、各風車の出力周波数を用いて、系統擾乱の発生、初期段階から後期段階への移行を判定することとしてもよい。
 本実施形態では、第1設定部、第2処理部によってそれぞれ設定される第1指令情報、第2指令情報を電力補正値としていたが、これに代えて、第1電力補正値が反映された第1有効電力指令、第2電力補正値が反映された第2有効電力指令を第1指令情報、第2指令情報として設定することとしてもよい。
 この場合には、例えば、第1設定部41と選択部43との間、及び、パラメータ変換部47と選択部43との間に、有効電力指令生成部45を設ければよい。更に、この場合においては、中央制御装置2が風車毎に連系点Aにおける周波数変動を抑制するような第1有効電力指令を生成し、生成した第1有効電力指令を各風車10に対して送信することとしてもよい。この場合、中央制御装置2から受信した第1有効電力指令が第1設定部41によって設定されることとなる。
1 風力発電システム
2 中央制御装置
3 電力系統
10-1、10-n 風車
20 風車制御装置
25、26 周波数検出部
31 第1処理部
32 送信部
33 偏差算出部
34 パラメータ変換部
35 補正値設定部
40 受信部
41 第1設定部
42 第2処理部
43 選択部
44 状態判定部
45 有効電力指令生成部
46 偏差算出部
47 パラメータ変換部
A 連系点

Claims (7)

  1.  複数の風車の出力が共通の連系点を通じて電力系統に供給される風力発電システムに適用され、各前記風車に対応してそれぞれ設けられた風車制御装置であって、
     前記連系点における周波数変動を抑制する出力指令を生成するための第1指令情報を設定する第1設定手段と、
     対応する前記風車の出力の周波数変動を抑制する出力指令を生成するための第2指令情報を設定する第2処理手段と、
     前記連系点における周波数変動が所定の第1閾値を超える系統擾乱が発生した場合に、該系統擾乱の初期段階に前記第2指令情報を選択し、当該系統擾乱の後期段階に前記第1指令情報を選択する選択手段と、
     前記選択手段によって選択された指令情報を用いて出力指令を生成する指令生成手段と
    を具備する風車制御装置。
  2.  前記第1処理手段は、周波数変動と第1指令情報との関係が予め設定されている変換情報を用いて、前記連系点における周波数変動に対応する第1指令情報を取得して設定する請求項1に記載の風車制御装置。
  3.  前記第2処理手段は、周波数変動と第2指令情報との関係が予め設定されている変換情報を用いて、前記風車の出力の周波数変動に対応する第2指令情報を取得して設定する請求項1または請求項2に記載の風車制御装置。
  4.  周波数変動が前記第1閾値以下の値に設定された第2閾値未満である状態が所定の期間維持された場合、または、該周波数の変動周期が所定の第3閾値を越えた場合に、前記初期段階から前記後期段階に移行したと判定する状態判定手段を備え、
     前記選択手段は、前記状態判定手段の判定結果に基づいて選択を行う請求項1から請求項3のいずれかに記載の風車制御装置。
  5.  前記第1設定手段は、前記連系点における出力を制御する中央制御手段から前記第1指令情報を受信し、受信した前記第1指令情報を設定する請求項1から請求項4のいずれかに記載の風車制御装置。
  6.  複数の風車の出力が共通の連系点を通じて電力系統に供給される風力発電システムに適用される各前記風車の制御方法であって、
     前記連系点における周波数変動を抑制する出力指令を生成するための第1指令情報を設定する第1設定過程と、
     対応する前記風車の出力の周波数変動を抑制する出力指令を生成するための第2指令情報を設定する第2処理過程と、
     前記連系点における周波数変動が所定の第1閾値を超える系統擾乱が発生した場合に、該系統擾乱の初期段階に前記第2指令情報を選択し、当該系統擾乱の後期段階に前記第1指令情報を選択する選択過程と、
     前記選択過程によって選択された指令情報を用いて出力指令を生成する指令生成過程と
    を含む風車の制御方法。
  7.  複数の風車を備え、各前記風車の出力が共通の連系点を通じて電力系統に供給される風力発電システムであって、
     前記連系点における出力を制御する中央制御手段と、
     各前記風車に対応してそれぞれ設けられ、対応する前記風車の出力を制御する複数の風車制御手段と
    を備え、
     前記中央制御手段は、
     前記連系点における周波数変動を抑制する出力指令を生成するための第1指令情報を設定する第1処理手段と、
     前記第1処理手段によって設定された各前記風車の第1指令情報をそれぞれの前記風車に送信する送信手段と
    を備え、
     各前記風車制御手段は、
     前記中央制御手段から前記第1指令情報を受信する受信手段と、
     受信した前記第1指令情報を設定する第1設定手段と、
     対応する前記風車の出力の周波数変動を抑制する出力指令を生成するための第2指令情報を設定する第2処理手段と、
     前記連系点における周波数変動が所定の第1閾値を超える系統擾乱が発生した場合に、該系統擾乱の初期段階に前記第2指令情報を選択し、当該系統擾乱の後期段階に前記第1指令情報を選択する選択手段と、
     前記選択手段によって選択された指令情報を用いて出力指令を生成する指令生成手段と
    を具備する風力発電システム。
PCT/JP2012/054654 2012-02-24 2012-02-24 風車制御装置及びその方法並びに風力発電システム WO2013125044A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020127033763A KR20130106287A (ko) 2012-02-24 2012-02-24 풍차 제어 장치 및 그 방법 및 풍력 발전 시스템
CN201280001239.XA CN102971528B (zh) 2012-02-24 2012-02-24 风车控制装置及其方法和风力发电系统
PCT/JP2012/054654 WO2013125044A1 (ja) 2012-02-24 2012-02-24 風車制御装置及びその方法並びに風力発電システム
JP2012556731A JP5325348B1 (ja) 2012-02-24 2012-02-24 風車制御装置及びその方法並びに風力発電システム
EP12801792.8A EP2818699B1 (en) 2012-02-24 2012-02-24 Wind turbine control device and method, and wind power generation system
US13/474,036 US8610299B2 (en) 2012-02-24 2012-05-17 Wind turbine control device and method for reducing fluctuation of grid frequency when grid disturbance occurs, and wind turbine generator system thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/054654 WO2013125044A1 (ja) 2012-02-24 2012-02-24 風車制御装置及びその方法並びに風力発電システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/474,036 Continuation US8610299B2 (en) 2012-02-24 2012-05-17 Wind turbine control device and method for reducing fluctuation of grid frequency when grid disturbance occurs, and wind turbine generator system thereof

Publications (1)

Publication Number Publication Date
WO2013125044A1 true WO2013125044A1 (ja) 2013-08-29

Family

ID=47800629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054654 WO2013125044A1 (ja) 2012-02-24 2012-02-24 風車制御装置及びその方法並びに風力発電システム

Country Status (6)

Country Link
US (1) US8610299B2 (ja)
EP (1) EP2818699B1 (ja)
JP (1) JP5325348B1 (ja)
KR (1) KR20130106287A (ja)
CN (1) CN102971528B (ja)
WO (1) WO2013125044A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2640715T3 (es) 2012-05-11 2017-11-06 Vestas Wind Systems A/S Control de frecuencia de central eólica
DE102013204600A1 (de) * 2013-03-15 2014-09-18 Senvion Se Windkraftanlage mit Frequenzmessung
DK178820B1 (en) * 2014-11-04 2017-02-27 Kk Wind Solutions As Monitoring unit for a power converter
WO2017101941A1 (en) * 2015-12-17 2017-06-22 Vestas Wind Systems A/S Modulating wind power plant output using different frequency modulation components for damping grid oscillations
CN105811407B (zh) * 2016-04-18 2018-07-06 清华大学 一种基于分布式牛顿法的微电网一次调频控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234845A (ja) * 2000-02-22 2001-08-31 Okinawa Electric Power Co Ltd 風力発電装置の複数台運転における出力制御方法
JP2008283747A (ja) * 2007-05-09 2008-11-20 Hitachi Ltd 風力発電システムおよびその制御方法
JP2009303355A (ja) * 2008-06-12 2009-12-24 Hitachi Ltd 風力発電装置および風力発電装置群
WO2011016278A1 (ja) * 2009-08-06 2011-02-10 三菱重工業株式会社 風力発電装置、風力発電装置の制御方法、風力発電システム及び風力発電システムの制御方法
WO2011158351A1 (ja) * 2010-06-16 2011-12-22 三菱重工業株式会社 風力発電装置の制御装置及び制御方法
JP4848478B1 (ja) * 2011-04-14 2011-12-28 三菱重工業株式会社 風力発電設備の出力平準化方法及び風力発電設備の出力平準化装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2338396B1 (es) * 2007-12-27 2011-04-08 GAMESA INNOVATION & TECHONOLOGY S.L. Instalacion de energia eolica y procedimiento para su funcionamiento.
US7679208B1 (en) * 2008-09-18 2010-03-16 Samsung Heavy Ind. Co., Ltd. Apparatus and system for pitch angle control of wind turbine
CN101793227B (zh) * 2008-12-12 2013-11-06 维斯塔斯风力系统有限公司 风力涡轮机运行控制方法及风力涡轮机
DE102009017939A1 (de) * 2009-04-17 2010-11-11 Nordex Energy Gmbh Windpark mit mehreren Windenergieanlagen sowie Verfahren zur Regelung der Einspeisung von einem Windpark
DE102009030725A1 (de) * 2009-06-26 2010-12-30 Repower Systems Ag Windpark und Verfahren zum Regeln eines Windparks
EP2634420B1 (en) * 2010-10-29 2016-05-25 Mitsubishi Heavy Industries, Ltd. Control device for wind-powered electricity-generating device, wind farm, and control method for wind-powered electricity generating device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234845A (ja) * 2000-02-22 2001-08-31 Okinawa Electric Power Co Ltd 風力発電装置の複数台運転における出力制御方法
JP2008283747A (ja) * 2007-05-09 2008-11-20 Hitachi Ltd 風力発電システムおよびその制御方法
JP2009303355A (ja) * 2008-06-12 2009-12-24 Hitachi Ltd 風力発電装置および風力発電装置群
WO2011016278A1 (ja) * 2009-08-06 2011-02-10 三菱重工業株式会社 風力発電装置、風力発電装置の制御方法、風力発電システム及び風力発電システムの制御方法
WO2011158351A1 (ja) * 2010-06-16 2011-12-22 三菱重工業株式会社 風力発電装置の制御装置及び制御方法
JP4848478B1 (ja) * 2011-04-14 2011-12-28 三菱重工業株式会社 風力発電設備の出力平準化方法及び風力発電設備の出力平準化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2818699A4 *

Also Published As

Publication number Publication date
EP2818699A4 (en) 2015-10-14
EP2818699A1 (en) 2014-12-31
CN102971528A (zh) 2013-03-13
EP2818699B1 (en) 2016-07-27
US20130221669A1 (en) 2013-08-29
JPWO2013125044A1 (ja) 2015-07-30
KR20130106287A (ko) 2013-09-27
JP5325348B1 (ja) 2013-10-23
CN102971528B (zh) 2014-06-11
US8610299B2 (en) 2013-12-17

Similar Documents

Publication Publication Date Title
JP5237454B2 (ja) 風力発電装置およびその制御方法
JP5167365B2 (ja) 監視制御装置及び方法並びにそれを備えたウィンドファーム
US7987067B2 (en) Method and apparatus for optimizing wind turbine operation
US9328718B2 (en) Method of calculating an electrical output of a wind power plant
JP5485368B2 (ja) 風力発電システム及びその制御方法
KR20120025499A (ko) 풍력 발전 장치, 풍력 발전 장치의 제어 방법, 풍력 발전 시스템 및 풍력 발전 시스템의 제어 방법
JP5325348B1 (ja) 風車制御装置及びその方法並びに風力発電システム
JP5272113B1 (ja) 風力発電システム、その制御装置、及びその制御方法
EP2955370B1 (en) Method and system for managing loads on a wind turbine
CN111936740B (zh) 用于功率系统的无功电流裕度调节器
JP5245017B1 (ja) 風力発電システム及びその制御方法
JP5272112B1 (ja) 風力発電システム、その制御装置、及びその制御方法
JP2013181440A (ja) 風力発電システム、その制御装置、及びその制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001239.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012556731

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20127033763

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012801792

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012801792

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12801792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE