WO2013122063A1 - 有機光電変換素子組成物、これを含む薄膜、光電池、これに用いられる有機半導体ポリマー、化合物およびポリマーの製造方法 - Google Patents

有機光電変換素子組成物、これを含む薄膜、光電池、これに用いられる有機半導体ポリマー、化合物およびポリマーの製造方法 Download PDF

Info

Publication number
WO2013122063A1
WO2013122063A1 PCT/JP2013/053294 JP2013053294W WO2013122063A1 WO 2013122063 A1 WO2013122063 A1 WO 2013122063A1 JP 2013053294 W JP2013053294 W JP 2013053294W WO 2013122063 A1 WO2013122063 A1 WO 2013122063A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
bonded
bond
group
compound represented
Prior art date
Application number
PCT/JP2013/053294
Other languages
English (en)
French (fr)
Inventor
寛記 杉浦
洋 山田
花木 直幸
中井 義博
竹内 潔
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013122063A1 publication Critical patent/WO2013122063A1/ja
Priority to US14/461,985 priority Critical patent/US9680103B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/22Cyclic ethers having at least one atom other than carbon and hydrogen outside the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/145Side-chains containing sulfur
    • C08G2261/1452Side-chains containing sulfur containing sulfonyl or sulfonate-groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an organic photoelectric conversion element composition, a thin film containing the same, a photovoltaic cell, an organic semiconductor polymer used in the composition, a compound, and a method for producing the polymer.
  • organic semiconductor polymers have been actively studied in the field of organic electronics. For example, it is used for an organic electroluminescence element that emits light when electricity is passed, an organic photoelectric conversion element that generates power by light irradiation, an organic thin film transistor element that controls the amount of current and voltage, and the like.
  • an organic semiconductor material in which a P-type conductive / semiconductor material that is an electron donating material and an N-type conductive / semiconductor material that is an electron accepting material are combined is used as well as the inorganic semiconductor material.
  • fossil energy such as petroleum releases carbon dioxide into the atmosphere
  • demand for solar cells is increasing in order to protect the global environment by suppressing global warming.
  • Known organic solar cells using organic photoelectric conversion elements include wet-type dye-sensitized solar cells (Gretzel cells) and all-solid-state organic thin-film solar cells. Since the latter does not use an electrolytic solution, it is not necessary to consider the evaporation and leakage of the electrolytic solution, and it is possible to provide flexibility, and the structure and production of the solar cell becomes simpler than the former.
  • the photoelectric conversion efficiency is calculated by short circuit current density (Jsc) ⁇ open circuit voltage (Voc) ⁇ curve factor (FF).
  • the short-circuit current density is improved by using an organic semiconductor material (for example, a donor-acceptor type thiophene derivative copolymer) having a wide range of absorption from visible light to near-infrared light and having high carrier mobility.
  • the open-circuit voltage is said to be related to the difference between the HOMO level of the P-type conductivity / semiconductor material and the LUMO level of the N-type conductivity / semiconductor material. Increasing this difference increases the open-circuit voltage.
  • the present inventors have considered a combination of photoelectric conversion efficiency and thermal durability, and in a microphase separation structure, a polymer unit including a molecular structure having electron donating properties and a molecular structure having electron accepting properties. It was found that the connection method and method of the (polymer) unit containing bis are important. That is, by connecting the groups of P-type organic semiconductor and N-type organic semiconductor with chemical bonds, both units can be efficiently placed close together, the P-type / N-type semiconductor interface is large, and efficient charge separation is possible It became. Furthermore, it has been found that by using a donor-acceptor type copolymer for the P-type organic semiconductor, the absorption wave can be lengthened, and high battery characteristics such as photoelectric conversion efficiency can be obtained.
  • the phase separation structure of the P-type organic semiconductor and the N-type organic semiconductor is stable, high durability can be achieved, and high photoelectric It has come to achieve both conversion efficiency and thermal durability.
  • the present invention dramatically improves the stability of the phase separation structure by using a P-type organic semiconductor polymer having long-wave absorption and connecting groups of the P-type organic semiconductor and the N-type organic semiconductor, An organic photoelectric conversion element composition excellent in photoelectric conversion efficiency and thermal durability, a thin film including the same, a photovoltaic cell, an organic semiconductor polymer used in the same, It is an object of the present invention to provide a method for producing a compound and a polymer.
  • An organic photoelectric conversion element composition comprising at least one P-type-N-type linked organic semiconductor polymer represented by any one of the following general formulas (1) to (5).
  • A, A 1 , A 2 , A 3 and A 4 each independently represent a group of a P-type organic semiconductor unit
  • B, B 1 , B 2 and B 3 are each The group of an N-type organic semiconductor unit is shown independently.
  • the general formula (1) ⁇ A and A 1 in (4) shows a different P-type organic semiconductor radical of structure
  • a 4 in the general formula (5) two or more different P-type organic semiconductor radical Consists of.
  • L 1 to L 4 each independently represents a divalent or trivalent linking group that does not include a P-type organic semiconductor unit or an N-type semiconductor unit.
  • At least one bond represented by — * of A and A 1 in the general formulas (1) and (2) is directly or via a divalent linking group in the general formula (1).
  • the bond represented by-* of B, and in the general formula (2) the bond is bonded to at least one bond represented by-* of B 1 and the remaining bonds that are not bonded- * Indicates bonding with a hydrogen atom or a monovalent substituent.
  • at least one bond represented by — * of L 1 and L 2 is represented by (a) in each general formula, directly or via a divalent linking group.
  • a or A 1 is bonded to at least one bond represented by-*, and the remaining unbonded bond-* is bonded to a hydrogen atom or a monovalent substituent.
  • at least one bond represented by — * of L 4 is represented by — * of B 1 in (b) directly or via a divalent linking group.
  • the remaining unbonded bonds-* are bonded to a hydrogen atom or a monovalent substituent.
  • at least one bond represented by-* of A 4 is at least one bond represented by-* of B 3 directly or via a divalent linking group; The remaining unbonded bonds-* which are bonded are bonded to a hydrogen atom or a monovalent substituent.
  • l, n, r, t, u and v each independently represents an integer of 1 to 1000; m and s each independently represent an integer of 1 to 10; and p, q, l ′ and n ′ each independently Represents an integer of 0 to 1000. However, p and q are not 0 at the same time.
  • a hydrogen atom or a monovalent substituent is independently bonded to each bond terminal represented by a bond.
  • a P-type-N-type linked organic semiconductor polymer represented by the general formulas (1) to (5) is synthesized from the corresponding combinations of the following [A] to [E] (1) The organic photoelectric conversion element composition described in 1.
  • [A] is a combination of the compound represented by the general formula (1a) and the compound represented by the general formula (1b), and [B] is a compound represented by the general formula (1a).
  • a compound represented by the general formula (2b) is a combination of a compound represented by the general formula (ab) and a compound represented by the general formula (bb)
  • [ D] is a combination of the compound represented by the general formula (ab) and the compound represented by the general formula (4b)
  • [E] is a compound represented by the general formulas (5a) and (5b). Is a combination.
  • A, A 1 to A 4 , B, B 1 to B 3 , l, l ′, n, n ′, s, u, and v are the corresponding A in the general formulas (1) to (5).
  • a 1 to A 4 , B, B 1 to B 3 , l, l ′, n, n ′, s, u, and v are respectively synonymous.
  • L a to L i each independently represents a single bond or a divalent linking group.
  • Z 1 and Z 2 each independently represent a reactive functional group.
  • Z 1a , Z 1b , Z 2a and Z 2b each independently represent a hydrogen atom or a substituent, but at least one of Z 1a and Z 1b and at least one of Z 2a and Z 2b is a reactive functional group It is a substituent.
  • Y 1 to Y 4 each independently represent a polymerizable group.
  • Z 1 and Z 2 are reactive functional groups necessary for their reaction and linking, the partial structure of Y 1 forms L 1 , the partial structure of Y 2 forms L 2 , The partial structure of Y 3 forms L 3, and the partial structure of Y 4 forms L 4 .
  • Z 1a or Z 1b is a reactive functional group necessary for reacting with Z 2a or Z 2b for linking.
  • [A] is a combination of the compound represented by the general formula (1a) and the compound represented by the general formula (1b), and [B] is a compound represented by the general formula (1a).
  • a compound represented by the general formula (2b) is a combination of a compound represented by the general formula (ab) and a compound represented by the general formula (bb)
  • [ D] is a combination of the compound represented by the general formula (ab) and the compound represented by the general formula (4b)
  • [E] is a compound represented by the general formulas (5a) and (5b). Is a combination.
  • A, A 1 to A 4 , B, B 1 to B 3 , l, l ′, n, n ′, s, u, and v are the corresponding A in the general formulas (1) to (5).
  • a 1 to A 4 , B, B 1 to B 3 , l, l ′, n, n ′, s, u, and v are respectively synonymous.
  • L a to L i each independently represents a single bond or a divalent linking group.
  • Z 1 and Z 2 each independently represent a reactive functional group.
  • Z 1a , Z 1b , Z 2a and Z 2b each independently represent a hydrogen atom or a substituent, but at least one of Z 1a and Z 1b and at least one of Z 2a and Z 2b is a reactive functional group It is a substituent.
  • Y 1 to Y 4 each independently represent a polymerizable group.
  • Z 1 and Z 2 are reactive functional groups necessary for their reaction and linking, the partial structure of Y 1 forms L 1 , the partial structure of Y 2 forms L 2 , The partial structure of Y 3 forms L 3, and the partial structure of Y 4 forms L 4 .
  • Z 1a or Z 1b is a reactive functional group necessary for reacting with Z 2a or Z 2b for linking.
  • A, A 1 to A 4 , l, l ′ and u are the corresponding A, A 1 to A 4 in the general formulas (1) to (5).
  • L, l ′ and u are respectively synonymous.
  • L a , L c , L d , L f and L g each independently represent a single bond or a divalent linking group.
  • Z 1 represents a reactive functional group.
  • Z 1a and Z 1b each independently represent a hydrogen atom or a substituent, and at least one of Z 1a and Z 1b is a substituent that is a reactive functional group.
  • Y 1 and Y 2 each independently represent a polymerizable group.
  • a hydrogen atom or a monovalent substituent is independently bonded to each of the bond ends on both sides.
  • the organic photoelectric conversion element composition according to (4) which contains either the general formula (ab) or (5a).
  • the group of the P-type organic semiconductor unit is a heterocyclic group having at least one of sulfur, nitrogen, oxygen, silicon, boron, selenium, tellurium and phosphorus atoms as a ring constituent atom (1) to ( The organic photoelectric conversion element composition according to any one of 6). (8) The organic photoelectric conversion element composition according to any one of (1) to (7), wherein the group of the P-type organic semiconductor unit is selected from the following heterocyclic groups.
  • a bond represented by * indicates a connecting portion with a polymer main chain / side chain, a single bond or a divalent linking group.
  • a bond when forming a polymer main chain, at least two bonds are used for forming the polymer main chain, and a divalent linking group, a hydrogen atom or a substituent is bonded to the remaining bonds. Further, when a bond is used for forming a polymer main chain, the bond is a position where the polymer main chain is conjugated.
  • a thin film comprising the organic photoelectric conversion element composition according to any one of (1) to (8).
  • a photovoltaic cell comprising a layer made of the organic photoelectric conversion element composition according to any one of (1) to (8) between a first electrode and a second electrode.
  • (11) A P-type-N-type linked organic semiconductor polymer represented by any one of the following general formulas (1) to (5).
  • A, A 1 , A 2 , A 3 and A 4 each independently represent a group of a P-type organic semiconductor unit
  • B, B 1 , B 2 and B 3 are each The group of an N-type organic semiconductor unit is shown independently.
  • the general formula (1) ⁇ A and A 1 in (4) shows a different P-type organic semiconductor radical of structure
  • a 4 in the general formula (5) two or more different P-type organic semiconductor radical Consists of.
  • L 1 to L 4 each independently represents a divalent or trivalent linking group that does not include a P-type organic semiconductor unit or an N-type semiconductor unit.
  • At least one bond represented by — * of A and A 1 in the general formulas (1) and (2) is directly or via a divalent linking group in the general formula (1).
  • the bond represented by-* of B, and in the general formula (2) the bond is bonded to at least one bond represented by-* of B 1 and the remaining bonds that are not bonded- * Indicates bonding with a hydrogen atom or a monovalent substituent.
  • at least one bond represented by — * of L 1 and L 2 is represented by (a) in each general formula, directly or via a divalent linking group.
  • a or A 1 is bonded to at least one bond represented by-*, and the remaining unbonded bond-* is bonded to a hydrogen atom or a monovalent substituent.
  • at least one bond represented by — * of L 4 is represented by — * of B 1 in (b) directly or via a divalent linking group.
  • the remaining unbonded bonds-* are bonded to a hydrogen atom or a monovalent substituent.
  • at least one bond represented by-* of A 4 is at least one bond represented by-* of B 3 directly or via a divalent linking group; The remaining unbonded bonds-* which are bonded are bonded to a hydrogen atom or a monovalent substituent.
  • a P-type-N-type linked organic semiconductor polymer represented by the general formulas (1) to (5) is synthesized by a compound of each corresponding combination of the following [A] to [E] (11) A P-N-linked organic semiconductor polymer described in 1.
  • [A] is a combination of the compound represented by the general formula (1a) and the compound represented by the general formula (1b), and [B] is a compound represented by the general formula (1a).
  • a compound represented by the general formula (2b) is a combination of a compound represented by the general formula (ab) and a compound represented by the general formula (bb)
  • [ D] is a combination of the compound represented by the general formula (ab) and the compound represented by the general formula (4b)
  • [E] is a compound represented by the general formulas (5a) and (5b). Is a combination.
  • A, A 1 to A 4 , B, B 1 to B 3 , l, l ′, n, n ′, s, u, and v are the corresponding A in the general formulas (1) to (5).
  • a 1 to A 4 , B, B 1 to B 3 , l, l ′, n, n ′, s, u, and v are respectively synonymous.
  • L a to L i each independently represents a single bond or a divalent linking group.
  • Z 1 and Z 2 each independently represent a reactive functional group.
  • Z 1a , Z 1b , Z 2a and Z 2b each independently represent a hydrogen atom or a substituent, but at least one of Z 1a and Z 1b and at least one of Z 2a and Z 2b is a reactive functional group It is a substituent.
  • Y 1 to Y 4 each independently represent a polymerizable group.
  • Z 1 and Z 2 are reactive functional groups necessary for their reaction and linking, the partial structure of Y 1 forms L 1 , the partial structure of Y 2 forms L 2 , The partial structure of Y 3 forms L 3, and the partial structure of Y 4 forms L 4 .
  • Z 1a or Z 1b is a reactive functional group necessary for reacting with Z 2a or Z 2b for linking.
  • a hydrogen atom or a monovalent substituent is bonded to each of the bond ends on both sides independently.
  • the group of the N-type organic semiconductor unit is a group having a fullerene structure, a nitrogen-containing heterocyclic group, or an aromatic ring group having an electron-withdrawing group.
  • Type-N type linked organic semiconductor polymer is a heterocyclic group having at least one of sulfur, nitrogen, oxygen, silicon, boron, selenium, tellurium and phosphorus atoms as a ring-constituting atom.
  • a bond represented by * indicates a connecting portion with a polymer main chain / side chain, a single bond or a divalent linking group.
  • a bond when forming a polymer main chain, at least two bonds are used for forming the polymer main chain, and a divalent linking group, a hydrogen atom or a substituent is bonded to the remaining bonds.
  • the bond is a position where the polymer main chain is conjugated.
  • A, A 1 to A 4 , l, l ′ and u are the corresponding A, A 1 to A 4 in the general formulas (1) to (5).
  • L, l ′ and u are respectively synonymous.
  • L a , L c , L d , L f and L g each independently represent a single bond or a divalent linking group.
  • Z 1 represents a reactive functional group.
  • Z 1a and Z 1b each independently represent a hydrogen atom or a substituent, and at least one of Z 1a and Z 1b is a substituent that is a reactive functional group.
  • Y 1 and Y 2 each independently represent a polymerizable group.
  • a hydrogen atom or a monovalent substituent is independently bonded to each of the bond ends on both sides.
  • the group of the P-type organic semiconductor unit is a heterocyclic group having at least one of sulfur, nitrogen, oxygen, silicon, boron, selenium, tellurium and phosphorus atoms as a ring-constituting atom.
  • Compound. (18) The compound according to any one of (16) and (17), wherein the group of the P-type organic semiconductor unit is selected from the following heterocyclic groups.
  • a bond represented by * indicates a connecting portion with a polymer main chain / side chain, a single bond or a divalent linking group.
  • a bond when forming a polymer main chain, at least two bonds are used for forming the polymer main chain, and a divalent linking group, a hydrogen atom or a substituent is bonded to the remaining bonds.
  • the bond is a position where the polymer main chain is conjugated.
  • A, A 1 , A 2 , A 3 and A 4 each independently represent a group of a P-type organic semiconductor unit
  • B, B 1 , B 2 and B 3 are each The group of an N-type organic semiconductor unit is shown independently.
  • the general formula (1) ⁇ A and A 1 in (4) shows a different P-type organic semiconductor radical of structure
  • a 4 in the general formula (5) two or more different P-type organic semiconductor radical Consists of.
  • L 1 to L 4 each independently represents a divalent or trivalent linking group that does not include a P-type organic semiconductor unit or an N-type semiconductor unit.
  • At least one bond represented by — * of A and A 1 in the general formulas (1) and (2) is directly or via a divalent linking group in the general formula (1).
  • the bond represented by-* of B, and in the general formula (2) the bond is bonded to at least one bond represented by-* of B 1 and the remaining bonds that are not bonded- * Indicates bonding with a hydrogen atom or a monovalent substituent.
  • at least one bond represented by — * of L 1 and L 2 is represented by (a) in each general formula, directly or via a divalent linking group.
  • a or A 1 is bonded to at least one bond represented by-*, and the remaining unbonded bond-* is bonded to a hydrogen atom or a monovalent substituent.
  • at least one bond represented by — * of L 4 is represented by — * of B 1 in (b) directly or via a divalent linking group.
  • the remaining unbonded bonds-* are bonded to a hydrogen atom or a monovalent substituent.
  • at least one bond represented by-* of A 4 is at least one bond represented by-* of B 3 directly or via a divalent linking group; The remaining unbonded bonds-* which are bonded are bonded to a hydrogen atom or a monovalent substituent.
  • l, n, r, t, u and v each independently represents an integer of 1 to 1000; m and s each independently represent an integer of 1 to 10; and p, q, l ′ and n ′ each independently Represents an integer of 0 to 1000. However, p and q are not 0 at the same time.
  • a hydrogen atom or a monovalent substituent is independently bonded to each bond terminal represented by a bond.
  • [A] is a combination of the compound represented by the general formula (1a) and the compound represented by the general formula (1b), and [B] is a compound represented by the general formula (1a).
  • a compound represented by the general formula (2b) is a combination of a compound represented by the general formula (ab) and a compound represented by the general formula (bb)
  • [ D] is a combination of the compound represented by the general formula (ab) and the compound represented by the general formula (4b)
  • [E] is a compound represented by the general formulas (5a) and (5b). Is a combination.
  • A, A 1 to A 4 , B, B 1 to B 3 , l, l ′, n, n ′, s, u, and v are the corresponding A in the general formulas (1) to (5).
  • a 1 to A 4 , B, B 1 to B 3 , l, l ′, n, n ′, s, u, and v are respectively synonymous.
  • L a to L i each independently represents a single bond or a divalent linking group.
  • Z 1 and Z 2 each independently represent a reactive functional group.
  • Z 1a , Z 1b , Z 2a and Z 2b each independently represent a hydrogen atom or a substituent, but at least one of Z 1a and Z 1b and at least one of Z 2a and Z 2b is a reactive functional group It is a substituent.
  • Y 1 to Y 4 each independently represent a polymerizable group.
  • Z 1 and Z 2 are reactive functional groups necessary for their reaction and linking, the partial structure of Y 1 forms L 1 , the partial structure of Y 2 forms L 2 , The partial structure of Y 3 forms L 3, and the partial structure of Y 4 forms L 4 .
  • Z 1a or Z 1b is a reactive functional group necessary for reacting with Z 2a or Z 2b for linking.
  • a hydrogen atom or a monovalent substituent is bonded to each of the bond ends on both sides independently.
  • an organic photoelectric conversion element composition excellent in photoelectric conversion efficiency and thermal durability a thin film including the same, a photovoltaic cell, an organic semiconductor polymer, a compound, and a method for producing the polymer used therein are provided. can do.
  • FIG. 1 is a side view schematically showing the configuration of an organic thin-film solar cell which is a preferred embodiment of the photovoltaic cell of the present invention.
  • an organic thin film solar cell among photovoltaic cells is strongly required to improve photoelectric conversion efficiency and durability. Therefore, the present inventors considered connecting a P-type organic semiconductor unit having long wave absorption and an N-type organic semiconductor unit with a chemical bond in order to achieve both photoelectric conversion efficiency and thermal durability.
  • the connection method when incorporating into a polymer molecule, when a P-type organic semiconductor unit and an N-type organic semiconductor unit have a specific connection method, the N-type semiconductor is formed by self-organization when forming a thin film. It has been found that a microphase separation structure composed of a phase and a P-type semiconductor phase is formed, and the stability of the structure is dramatically increased.
  • the thin film formed from the P-type-N-type linked organic semiconductor polymer of the present invention comprises a P-type organic semiconductor phase (electron-donating phase) and an N-type organic semiconductor phase (electron-accepting phase) by self-organization.
  • a micro phase separation structure is formed.
  • the micro phase separation structure means that the domain size of each phase composed of a P-type organic semiconductor phase or an N-type organic semiconductor phase is several nm to several hundred nm (usually 1 to 500 nm). Having a phase separation structure of The present invention will be described in detail below.
  • the organic semiconductor polymer of the present invention is a P-type-N-type linked organic semiconductor polymer represented by any one of the following general formulas (1) to (5).
  • A, A 1 , A 2 , A 3 and A 4 each independently represent a group of a P-type organic semiconductor unit, and B, B 1 , B 2 and B 3 are each The group of an N-type organic semiconductor unit is shown independently.
  • the general formula (1) ⁇ A and A 1 in (4) shows a different P-type organic semiconductor radical of structure
  • a 4 in the general formula (5) two or more different P-type organic semiconductor radical Consists of.
  • a and A 1 may be different in either the ring structure or the substituent that forms the polymer main chain, but the ring structure is preferably different, and both the ring structure and the substituent are different. Is more preferable.
  • the groups of two or more different P-type organic semiconductors in A 4 may have different ring structures or substitutions that form the polymer main chain, but the ring structures are different. Preferably, both the ring structure and the substituent are different.
  • the polymer main chain portion of the P-type organic semiconductor,-(AA 1 ) l-,-(A 2 -A 3 ) l'-, and-(A 4 ) U- is preferably ⁇ -conjugated.
  • L 1 to L 4 each independently represents a divalent or trivalent linking group that does not include a P-type organic semiconductor unit or an N-type semiconductor unit.
  • At least one bond represented by — * of A and A 1 in the general formulas (1) and (2) is directly or via a divalent linking group in the general formula (1).
  • the bond represented by-* of B, and in the general formula (2) the bond is bonded to at least one bond represented by-* of B 1 and the remaining bonds that are not bonded- * Indicates bonding with a hydrogen atom or a monovalent substituent.
  • at least one bond represented by — * of L 1 and L 2 is represented by (a) in each general formula, directly or via a divalent linking group.
  • a or A 1 is bonded to at least one bond represented by-*, and the remaining unbonded bond-* is bonded to a hydrogen atom or a monovalent substituent.
  • at least one bond represented by — * of L 4 is represented by — * of B 1 in (b) directly or via a divalent linking group.
  • the remaining unbonded bonds-* are bonded to a hydrogen atom or a monovalent substituent.
  • at least one bond represented by-* of A 4 is at least one bond represented by-* of B 3 directly or via a divalent linking group; The remaining unbonded bonds-* which are bonded are bonded to a hydrogen atom or a monovalent substituent.
  • l, n, r, t, u and v each independently represents an integer of 1 to 1000; m and s each independently represent an integer of 1 to 10; and p, q, l ′ and n ′ each independently Represents an integer of 0 to 1000. However, p and q are not 0 at the same time.
  • a hydrogen atom or a monovalent substituent is independently bonded to each bond terminal represented by a bond.
  • substituent T is mentioned as a substituent in the above or a monovalent substituent.
  • m is preferably 1, and in the general formula (3), s is preferably 1.
  • the group of the P-type organic semiconductor unit includes a compound known as a conventionally known P-type organic semiconductor compound or a divalent or trivalent group derived from the compound (a group having two or three bonds, More specifically, it is a group obtained by removing two or three hydrogen atoms from the compound, and is generally a ⁇ -electron conjugated compound having a highest occupied orbital (HOMO) level of 4.5 to 6.0 eV. is there.
  • HOMO highest occupied orbital
  • a conjugated chain for example, a double bond, a triple bond is bonded, or a double bond or a triple bond and a single bond are alternately repeated
  • examples include those in which these structural units are linked in an electron conjugated system.
  • two aromatic rings and / or heteroaromatic rings in addition to a single bond or a conjugated bond, a bond that does not conjugate the linked rings at different positions [for example, —O—, —C ( ⁇ O ) —, —S—, —SO 2 —, —SO—, alkylene (eg, —CH 2 —, —C (R a ) 2 —), —C [ ⁇ R a (R a ′ )] —, — N (R a ) — and the like, wherein R a and R a ′ each independently represent a hydrogen atom or a substituent, and examples of the substituent include the substituent T described later.
  • the linking system or the main chain of the P-type organic semiconductor unit portion is such that the conjugated system extends over the entire polymer molecule. Any structural unit may be used.
  • aromatic ring or a ring containing it examples include, for example, a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, tetracene ring, pentacene ring, hexacene ring, heptacene ring, chrysene ring, picene ring, fluorene ring, pyrene ring, and peropyrene ring.
  • Perylene ring Terylene ring, Quotylene ring, Coronene ring, Ovalene ring, Circum anthracene ring, Bisanthene ring, Zesulene ring, Heptazeslen ring, Pyranthrene ring, Bioolanthene ring, Isoviolanthene ring, Circobiphenyl ring, Anthradithiophene ring, etc.
  • Benzene ring, naphthalene ring, anthracene ring, and phenanthrene ring are more preferable.
  • Examples of the alicyclic ring capable of ⁇ -conjugation include cycloalkenes (for example, cyclopentene, cyclohexene, cycloheptene, cyclooctene, etc.) having a single bond or a conjugated chain bonded to the 1,2-position, cycloalkadienes (for example, cyclopentadiene, cyclopenta). Dienone, 1,3-cyclohexadiene, 1,3-dichloroheptadiene, 1,3-cyclooctadiene, etc.).
  • cycloalkenes for example, cyclopentene, cyclohexene, cycloheptene, cyclooctene, etc.
  • cycloalkadienes for example, cyclopentadiene, cyclopenta
  • Heteroaromatic rings or heterocyclic rings that can be ⁇ -conjugated include thiophene rings, oligo (thiophene) rings (eg, dithiophene, trithiophene rings, etc.), silacyclopentadithiophene rings, cyclopentadithiazole rings, benzothiadiazole rings, thiadia Zoloquinoxaline ring, cyclopentadithiophene ring, cyclopentadithiophene ring, benzoisothiazole ring, benzothiazole ring, oxidized thiophene ring, thienothiophene ring, oxidized thienothiophene ring, dithienothiophene ring, oxidized dithienothiophene ring, Tetrahydroisoindole ring, fluorene ring, fluorenone ring, thiazole ring, dithiazole ring
  • an aromatic ring or a ring containing it, an alicyclic ring capable of ⁇ -conjugation, a heteroaromatic ring or a heterocyclic ring capable of ⁇ -conjugation may have a substituent.
  • T an alicyclic ring capable of ⁇ -conjugation, a heteroaromatic ring or a heterocyclic ring capable of ⁇ -conjugation
  • those having at least one heterocyclic structure are preferable in the present invention.
  • the hetero atom sulfur, nitrogen, oxygen, silicon, boron, selenium, tellurium and phosphorus atoms are preferable, and sulfur, nitrogen, oxygen and silicon are more preferable.
  • Specific examples of the heterocyclic group of the preferred P-type semiconductor unit include, but are not limited to, the following groups.
  • a bond represented by * indicates a connecting portion with a polymer main chain / side chain, a single bond or a divalent linking group.
  • the bond when forming the polymer main chain, at least two bonds are used for forming the polymer main chain. Further, when a bond is used for forming a polymer main chain, the bond is a position where the polymer main chain is conjugated. The remaining bonds are bonded directly or through a linking group to B, B 1 , B 2 , B 3, or directly or through a linking group, to a linking group L 1 , L 2 , a hydrogen atom or The substituent is bonded. Examples of the substituent include the substituent T described later. Two or more of these heterocyclic moieties may be condensed, or two or more of these heterocyclic moieties may be bonded via a single bond or a conjugated bond.
  • AA 1 in the general formulas (1) to (4) and A 4 in the general formula (5) include the following groups, but the present invention is not limited thereto. .
  • R 1 to R 3 , R b and R c each independently represents a hydrogen atom or a substituent, and examples of the substituent include the substituent T described later, and R 1 to R 3 are alkyl groups.
  • R 1 to R 3 are alkyl groups.
  • An alkoxy group, an alkoxycarbonyl group, an acyloxy group, an acyl group, an alkylsulfonyl group, a cyano group, and a halogen atom are preferable, and R b and R c are preferably an alkyl group.
  • R 1 to R 3 and R b and R c may be — *. In this case, — * in the above structure is bonded to a hydrogen atom or a substituent, and the substituent will be described later.
  • R a examples include the groups exemplified in the substituent T described later as the corresponding group, and a hydrogen atom and an alkyl group are preferable.
  • X represents a carbon atom or a silicon atom.
  • na represents 0 to 4, nb represents 0 or 1, and nc represents 0 to 2.
  • the-* portion is a portion that is bonded to B or B 1 directly or via a divalent linking group.
  • This is a moiety that binds to L 1 or L 2 directly or via a divalent linking group.
  • a hydrogen atom or a substituent is bonded.
  • substituents examples include the substituent T described later.
  • AA 1 in the general formulas (1) to (4) when not bonded to an N-type organic semiconductor, a hydrogen atom or a substituent is bonded to — *.
  • the substituent T described later can be mentioned, and among them, a hydrogen atom, an alkyl group, an alkoxy group, an alkoxycarbonyl group, an acyloxy group, an acyl group, an alkylsulfonyl group, a cyano group, and a halogen atom are preferable.
  • the group of the P-type organic semiconductor unit includes, in the ⁇ -conjugated main chain, the partial structure of the hydrogen atom or substituent T, A group of structural units may be incorporated.
  • R 1 , R b , R c and na have the same meanings as described above, and preferred ranges are also the same.
  • the group of the unit having the above structure which is not linked to the group of the N-type organic semiconductor unit corresponds to A 2 , A 3 or A 2 -A 3 in the general formulas (3) and (4), 5) in corresponds to a 4.
  • a hydrogen atom or a substituent is bonded to — * in the above structure, and examples of the substituent include the substituent T described later, among which a hydrogen atom, an alkyl group, an alkoxy group, an alkoxycarbonyl group , An acyloxy group, an acyl group, an alkylsulfonyl group, a cyano group, and a halogen atom are preferable.
  • the group of the N-type organic semiconductor unit is a compound known as a conventionally known N-type organic semiconductor compound or a group derived from the compound.
  • B is a monovalent group, and B 1 to B 3 are 2 A trivalent or trivalent group (a group having two or three bonds, more specifically a group in which two or three hydrogen atoms have been removed from the compound), and its lowest unoccupied orbital (LUMO) quasi A ⁇ -electron conjugated compound having a position of 3.5 to 4.5 eV.
  • Aromatic compounds having an attractive substituent for example, aromatic carboxylic acid anhydrides such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, and imides thereof
  • electron-withdrawing groups include groups having Hammett's substituent constant ⁇ p of 0 or more.
  • fullerene or a derivative thereof is preferable.
  • C 60 fullerene, C 70 fullerene, C 76 fullerene, C 78 fullerene, C 84 fullerene, C 240 fullerene, C 540 fullerene, mixed fullerene, fullerene nanotube, and a part of them are hydrogen atoms.
  • Halogen atom substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, cycloalkyl group, silyl group, alkoxy group, aryloxy group, alkylthio group, arylthio group, amino group, alkylamino And a fullerene derivative substituted with a dialkylamino group or the like.
  • Preferred fullerene derivatives are phenyl-C 61 -butyric acid ester, diphenyl-C 62 -bis (butyric acid ester), phenyl-C 71 -butyric acid ester, phenyl-C 85 -butyric acid ester or thienyl-C 61 -butyric acid ester,
  • the preferred number of carbon atoms in the alcohol portion of the butyric acid ester is 1-30, more preferably 1-8, even more preferably 1-4, and most preferably 1.
  • Examples of preferred fullerene derivatives include phenyl-C 61 -butyric acid methyl ester ([60] PCBM), phenyl-C 61 -butyric acid n-butyl ester ([60] PCBnB), phenyl-C 61 -butyric acid isobutyl ester ([60 PCBiB), phenyl-C 61 -butyric acid n-hexyl ester ([60] PCBH), phenyl-C 61 -butyric acid n-octyl ester ([60] PCBO), diphenyl-C 62 -bis (butyric acid methyl ester) ( Bis [60] PCBM), phenyl-C 71 -butyric acid methyl ester ([70] PCBM), phenyl-C 85 -butyric acid methyl ester ([84] PCBM), thienyl-C 61 -butyric acid methyl ester (
  • the group of the N-type organic semiconductor unit is preferably a group having a fullerene structure, a group having a benzobisimidazobenzophenanthroline or a 3,4,9,10-perylenetetracarboxylic acid diimide structure.
  • the group having the 3,4,9,10-perylenetetracarboxylic acid diimide structure is preferably the following group.
  • a bond represented by * indicates a polymer main chain / side chain, a single bond or a linking site with a divalent linking group. Those not bonded to these are bonded to a hydrogen atom or a substituent, and examples of the substituent include the substituent T described later.
  • the content ratio of the group of the P-type organic semiconductor unit and the polymer of the N-type organic semiconductor unit is adjusted so that the photoelectric conversion efficiency is the highest.
  • the weight ratio is selected from the range of 10:90 to 90:10, preferably 20:80 to 80:20, more preferably 30:70 to 70:30.
  • Linking group L 1 , L 2 , L 3 , L 4 , A or A 1 and B or B 1 linking group, L 1 or L 2 and A or A 1 linking group, L 4 and B 1
  • the linking group which binds A 4 and B 3 will be described below.
  • L 1 , L 2 and L 3 each independently represent a divalent or trivalent linking group containing neither a P-type organic semiconductor unit nor an N-type semiconductor unit, and a divalent or trivalent aliphatic group
  • R a represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group.
  • divalent or trivalent aliphatic group examples include a linear, branched or cyclic aliphatic group, and the linking chain constituting the main chain does not have a double bond or a triple bond in the carbon-carbon bond. Those are preferred. Moreover, even if it has these unsaturated bonds, what these are not conjugated is preferable.
  • the aliphatic group may be substituted with a substituent.
  • L 1 , L 2 , L 3 and L 4 are preferably the following linking group group A.
  • R d to R h each independently represents a hydrogen atom or a substituent.
  • substituents include the substituent T described later, and a hydrogen atom, an alkyl group, a halogen atom, and a perfluoroalkyl group are preferable, and a hydrogen atom and an alkyl group are particularly preferable.
  • R f represents a hydrogen atom or a substituent.
  • substituent include the substituent T described later, preferably a hydrogen atom, an alkyl group, a halogen atom, or a perfluoroalkyl group, more preferably a hydrogen atom or a methyl group, and particularly preferably a hydrogen atom.
  • L 3 is more preferably one in which a divalent linking group LL is bonded to the above * moiety.
  • the linking group LL has the same definition as A or A 1 and B or B 1 , L 1 or L 2 and A or A 1 linking group, and L 4 and B 1 linking divalent linking group.
  • the linking group that binds A or A 1 and B or B 1 , L 1 or L 2 and A or A 1 , and the linking group that binds L 4 and B 1 are all connected via a single bond or a divalent linking group.
  • a divalent linking group examples include an alkylene group, an arylene group, —O—, —S—, —SO—, —SO 2 —, —C ( ⁇ O) —, —NR a —, or a combination thereof.
  • R a represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group.
  • the divalent linking group may have a substituent.
  • the divalent linking group that binds A or A 1 and B or B 1 , L 1 or L 2 and A or A 1 is preferably the following.
  • the * part is a part bonded to A or A 1 .
  • R a represents a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group
  • R x represents a phenyl group or a thienyl group
  • R b and R b ′ each independently represents a hydrogen atom or a substituent.
  • ma to md each represents an integer of 1 to 20.
  • the “CH 2 ” portion and the “CH” portion as in CH 2 CH (OH) —CH 2 may have a substituent, and examples of the substituent include the substituent T described later. Is preferably an alkyl group.
  • the following groups are preferred as the divalent linking group that binds L 4 and B 1 and the divalent linking group LL that binds to the * part of the linking group group A in L 3 .
  • the following * part is a part that binds to L 4 and the * part of the linking group A.
  • R a represents a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group
  • R x represents a phenyl group or a thienyl group
  • ma to mc represent an integer of 1 to 20.
  • the “CH 2 ” portion, the “CH ⁇ ” portion as in CH ⁇ CH may have a substituent, and examples of the substituent include the substituent T described later. Is an alkyl group.
  • a 4 and B 3 are bonded through a single bond or a divalent linking group.
  • the divalent linking group include an alkylene group, an alkenylene group, an arylene group, —O—, —S—, —SO—, —SO 2 —, —C ( ⁇ O) —, —NR a — or a combination thereof (for example, —C ( ⁇ O) —O—, —NR a C ( ⁇ O) —, —NR a C ( ⁇ O) —, —NR a SO 2 —) is preferable, and an alkylene group, an alkenylene group, an arylene group, —O—, —C ( ⁇ O) —, —NR a —, or a combination thereof is More preferred.
  • R a represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group.
  • the divalent linking group may have a substituent.
  • substituents include the substituent T described later, and an alkyl group, an aryl group, an alkoxy group, a cycloalkoxy group, an aryloxy group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, and a halogen atom are preferable.
  • More preferable divalent linking groups are the following groups.
  • R 1 and R 2 each independently represent a substituent, and examples of the substituent include the substituent T described later.
  • nd and ne each independently represents an integer of 0 to 4.
  • the P-type / N-type linked organic semiconductor polymer represented by the general formula (5) is more preferably a block copolymer as described below.
  • a 4 , B 3 , u and v are synonymous with those in the general formula (5).
  • L ab represents a single bond or a divalent linking group.
  • x represents an integer of 1 to 1000.
  • the molecular weight of the P-type-N-linked organic semiconductor polymer of the present invention is not particularly limited, but is preferably 5,000 to 500,000 in terms of mass average molecular weight, more preferably 10,000 to 100,000.
  • the molecular weight and the degree of dispersion are values measured using a GPC (gel filtration chromatography) method, and the molecular weight is a weight average molecular weight in terms of polystyrene.
  • the gel packed in the column used in the GPC method is preferably a gel having an aromatic compound as a repeating unit, and examples thereof include a gel made of a styrene-divinylbenzene copolymer. Two to six columns are preferably connected and used.
  • the solvent used include ether solvents such as tetrahydrofuran, halogen solvents such as chloroform, and aromatic solvents such as chlorobenzene and 1,2-dichlorobenzene.
  • the measurement is preferably performed at a solvent flow rate in the range of 0.1 to 2 mL / min, and most preferably in the range of 0.5 to 1.5 mL / min. By performing the measurement within this range, the apparatus is not loaded and the measurement can be performed more efficiently.
  • the measurement temperature can be appropriately changed depending on the solvent used, but is not limited.
  • the column and solvent to be used can be appropriately selected according to the physical properties of the polymer compound to be measured.
  • P-type-N-linked organic semiconductor polymer of the present invention Specific examples of the P-type-N-linked organic semiconductor polymer of the present invention are shown below, but the present invention is not limited thereto.
  • P-N-linked organic semiconductor polymer represented by the general formula (1) represented by the general formula (1)
  • P-type-N-type linked organic semiconductor polymer represented by the general formula (4)
  • the P-type and N-type linked organic semiconductor polymers represented by the general formulas (1) to (5) of the present invention can be produced from the corresponding combinations of the following [A] to [E].
  • the organic semiconductor composition containing [C] and [D] is applied at the element preparation stage, and then heated or irradiated with an electron beam to be represented by the general formula (3) or (4). It is also preferable to form a photoelectric conversion layer of a P-type-N-type linked organic semiconductor polymer.
  • [A] is a combination of the compound represented by the general formula (1a) and the compound represented by the general formula (1b), and [B] is a compound represented by the general formula (1a).
  • a compound represented by the general formula (2b) is a combination of a compound represented by the general formula (ab) and a compound represented by the general formula (bb)
  • [ D] is a combination of the compound represented by the general formula (ab) and the compound represented by the general formula (4b)
  • [E] is a compound represented by the general formulas (5a) and (5b). Is a combination.
  • A, A 1 to A 4 , B, B 1 to B 3 , l, l ′, n, n ′, s, u, and v are the corresponding A in the general formulas (1) to (5).
  • a 1 to A 4 , B, B 1 to B 3 , l, l ′, n, n ′, s, u, and v are respectively synonymous.
  • L a to L i each independently represents a single bond or a divalent linking group.
  • Z 1 and Z 2 each independently represent a reactive functional group.
  • Z 1a , Z 1b , Z 2a and Z 2b each independently represent a hydrogen atom or a substituent, but at least one of Z 1a and Z 1b and at least one of Z 2a and Z 2b is a reactive functional group It is a substituent.
  • Y 1 to Y 4 each independently represent a polymerizable group.
  • Z 1 and Z 2 are reactive functional groups necessary for their reaction and linking, the partial structure of Y 1 forms L 1 , the partial structure of Y 2 forms L 2 , The partial structure of Y 3 forms L 3, and the partial structure of Y 4 forms L 4 .
  • Z 1a or Z 1b is a reactive functional group necessary for reacting with Z 2a or Z 2b for linking.
  • a hydrogen atom or a monovalent substituent is bonded to each of the bond ends on both sides independently.
  • Z 1 in the general formula (1a), formula (1b), represents a Z 2 are reactive functional groups in (2b), these are the Z 1 and Z 2 Any chemical bond may be used as long as it forms a new bond and does not react with the P-type organic semiconductor unit or the N-type organic semiconductor unit itself.
  • a group capable of forming a bond by a nucleophilic reaction or a dehydration reaction is preferable.
  • one of Z 1 and Z 2 is a hydroxyl group, an amino group or a mercapto group, and the other is —C ( ⁇ O) Xa, —N ⁇ C ⁇ O, —CH 2 Xb.
  • Xa represents a hydroxyl group, a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom), an alkoxy group, an aryloxy group, an acyloxy group, an alkanesulfonyloxy group, an arylsulfonyloxy group, and Xb represents a halogen atom.
  • An atom, an alkanesulfonyloxy group, or an arylsulfonyloxy group is represented.
  • the hydroxyl group may be an alcoholic hydroxyl group or a phenolic hydroxyl group.
  • one of Z 1 and Z 2 is a hydroxyl group, an amino group, a mercapto group, an epoxy group or an oxetane group, and the other is an epoxy group or an oxetane group, and chemical bonding by a ring-opening reaction of an epoxy ring or an oxetane ring is also preferable.
  • Synthesis using these reactive functional groups is described in the Chemical Society of Japan, “Fourth Edition Experimental Chemistry Course” (published by Maruzen Co., Ltd.), Vol. 22, pp. 45-47, Vol. 22, Vol. 51, pp. 356 to 358, pp. 20, 187 to 191 and JP-A No. 2004-189840, and can be easily synthesized according to these descriptions. .
  • the compound represented by the general formula (1a) is not particularly limited and can be produced according to various known methods. As shown below, the compound represented by the general formula (1a-a) and the general formula (1a-b) Or a compound represented by the general formula (1a-a ′) and a compound represented by the general formula (1a-b ′) in the presence of a transition metal catalyst such as palladium. .
  • Negishi coupling using a transition metal catalyst, zinc reaction agent, Ueda-Kosugi-Still coupling using tin reactant, Suzuki-Miyaura coupling using boron reactant, Kumada-tama using magnesium reactant It can be synthesized by using cross-coupling such as tail-Coriu coupling, Kashiyama coupling using silicon reagent, Ullmann reaction using copper, Yamamoto polymerization using nickel, and the like.
  • transition metal catalyst metals such as palladium, nickel, copper, cobalt, and iron (described in Journal of the American Chemical Society, 2007, Vol. 129, page 9844) can be used.
  • the metal may have a ligand, such as a phosphorus ligand such as PPh 3 or P (t-Bu) 3 , an N-heterocyclic carbene ligand (Angewandte Chemie International Edition, 2002, 41, page 1290) is preferably used.
  • Metal reactants such as tin reactants and boron reactants as raw materials are Organic Synthesis Collective Volume, 11, 2009, 393, 9, 1998, 553, Tetrahedron, 1997, 53, 1925. Page, Journal of Organic Chemistry, 1993, 58, 904, Japanese Patent Application Laid-Open No. 2005-290001, Japanese Translation of PCT International Publication No. 2010-526853, and the like.
  • the reaction may be performed under microwave irradiation as described in Macromolecular Rapid Communications, 2007, 28, 387.
  • A, A 1 and l have the same meanings as in the general formula (1a), M represents a trialkyltin or boric acid (ester) group, and Xb represents a halogen atom or a trifluoromethanesulfonyloxy group.
  • -L a -Z 1 is bonded to the * part of the general formula (1a-a) or (1a-b) or the * part of the general formula (1a-a ′) or (1a-b ′). In the bond-* which is not bonded, a hydrogen atom or a monovalent substituent is bonded.
  • La represents a single bond or a divalent linking group.
  • the divalent linking group include an alkylene group, an arylene group, —O—, —S—, —SO—, —SO 2 —, —C ( ⁇ O) —, —NR a —, or a combination thereof.
  • R a represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group.
  • R a represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group.
  • ma to md represent integers of 1 to 20.
  • the compound represented by the general formula (2b) is not particularly limited and can be produced according to various known methods.
  • the compound represented by the general formula (2b-a) and the compound represented by the general formula (2b-b) are represented as follows: It can be produced by polymerizing a compound represented by the formula (2b-a ′) and a compound represented by the general formula (2b-b ′) in the presence of a transition metal catalyst such as palladium.
  • B1, B 2 , n and n ′ have the same meanings as in the general formula (2b), M represents a trialkyltin or boric acid (ester) group, and Xb represents a halogen atom or trifluoromethanesulfonyl. Represents an oxy group.
  • -L b -Z 2 is bonded to the * part of the general formula (2b-a) or (2b-a ′).
  • L b in (2b) represents a single bond or a divalent linking group.
  • the divalent linking group include an alkylene group, an arylene group, —O—, —S—, —SO—, —SO 2 —, —C ( ⁇ O) —, —NR a —, or a combination thereof.
  • —C ( ⁇ O) —O—, —NR a C ( ⁇ O) —, —NR a C ( ⁇ O) —, —NR a SO 2 — is preferable, and an alkylene group, —O—, —C ( ⁇ O) —, —NR a —, or a combination thereof is more preferable.
  • R a represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group.
  • R a represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group.
  • L b is preferably the following group.
  • * is a part which couple
  • Ma to mc represent an integer of 1 to 20.
  • the compound represented by the general formula (3) can be synthesized by polymerizing the compound represented by the general formula (ab) and the compound represented by the general formula (bb).
  • the compound represented by the general formula (4) can be synthesized by polymerizing the compound represented by the general formula (ab) and the compound represented by the general formula (4b).
  • the compound represented by the general formula (ab) and the compound represented by the general formula (4b) can be synthesized in the same manner as in the general formula (1a) and (2b). However, when Y 1 , Y 2 and Y 4 are polymerized under the synthesis conditions of the general formulas (ab) and (4b), Y 1 , Y 2 and Y 4 are represented by the general formulas (ab) and (4b).
  • Y 1 to Y 4 each independently represent a polymerizable group, preferably an ethylenically unsaturated group, an epoxy group, or an oxetane group.
  • the ethylenically unsaturated group is preferably a vinyl group, a vinyl ether group, a group derived from (meth) acrylic acid, its ester or amide, and these may have a substituent.
  • a group derived from 2-trifluoromethylacrylic acid or an ester or amide thereof substituted with a halogen atom can be mentioned.
  • L c , L d and Le represent a single bond or a divalent linking group.
  • the divalent linking group include an alkylene group, an arylene group, —O—, —S—, —SO—, —SO 2 —, —C ( ⁇ O) —, —NR a —, or a combination thereof.
  • —C ( ⁇ O) —O—, —NR a C ( ⁇ O) —, —NR a C ( ⁇ O) —, —NR a SO 2 — is preferable, and an alkylene group, —O—, —C ( ⁇ O) —, —NR a —, or a combination thereof is more preferable.
  • R a represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group.
  • R a represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group.
  • L c and L d are preferably the following groups. * Combines with the group of the P-type organic semiconductor unit.
  • R a represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group, and ma, mc, and me represent an integer of 1-20.
  • divalent linking group LL that L 3 includes as a bonding portion with B the following groups are preferable. * Combines with the group of the N-type organic semiconductor unit.
  • R a represents a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group
  • R x represents a phenyl group or a thienyl group
  • ma to mc represent an integer of 1 to 20.
  • Le is preferably the following group. * Combines with the group of the N-type organic semiconductor unit.
  • R a represents a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group
  • R x represents a phenyl group or a thienyl group, where ma and mb represent an integer of 1 to 20.
  • polymerization methods are not particularly limited, and can be carried out by various known methods.
  • an unsaturated bond polymerizable group for example, in the case of having an epoxy and oxetane group, it can be polymerized according to the method described in, for example, Japanese Patent Application Laid-Open No. 2004-189840. .
  • the compound represented by the general formula (5) can be produced according to various known methods.
  • the compound represented by the general formula (5) can be produced by reacting the compound represented by the general formula (5a) with the compound represented by the general formula (5b).
  • Z 1a , Z 1b , Z 2a and Z 2b in the general formulas (5a) and (5b) each independently represent a hydrogen atom or a substituent, but at least one of Z 1a and Z 1b , and Z 2a and Z 2b At least one is a substituent that is a reactive functional group. Examples of the substituent include the substituent T described later.
  • the reactive functional group is preferably a group capable of forming a bond by nucleophilic reaction or dehydration reaction in the reaction of Z 1a with Z 2a or Z 2b , or the reaction of Z 1b with Z 2a or Z 2b .
  • one is a hydroxyl group and the other is —C ( ⁇ O) Xa, —N ⁇ C ⁇ O, —CH 2 Xb.
  • Xa represents a hydroxyl group, a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom), an alkoxy group, an aryloxy group, an acyloxy group, an alkanesulfonyloxy group, an arylsulfonyloxy group, and Xb represents a halogen atom.
  • An atom, an alkanesulfonyloxy group, or an arylsulfonyloxy group is represented.
  • the hydroxyl group may be an alcoholic hydroxyl group or a phenolic hydroxyl group.
  • a chemical bond by a ring-opening reaction of an epoxy ring or an oxetane ring in which one is a hydroxyl group, an amino group, a carboxyl group, a mercapto group, an epoxy group or an oxetane group and the other is an epoxy group or an oxetane group, is also preferable.
  • L f ⁇ L i each represents a single bond or a divalent linking group, the divalent linking group for L f ⁇ L i, an alkylene group, an arylene group, -O -, - S -, - SO-, —SO 2 —, —C ( ⁇ O) —, —NR a — or a combination thereof (for example, —C ( ⁇ O) —O—, —NR a C ( ⁇ O) —, —NR a C ( ⁇ O) —, —NR a SO 2 —) is preferable, and an alkylene group, —O—, —C ( ⁇ O) —, —NR a —, or a combination thereof is more preferable.
  • R a represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group.
  • R a represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group.
  • the divalent linking group for L f ⁇ L i is the following groups are preferred. * The part is a part bonded to the group of the P-type or N-type organic semiconductor unit.
  • Ar represents a divalent aryl group which may have a substituent, and examples of the substituent include the substituent T described later.
  • the precursor of the P-type-N-type linked organic semiconductor polymer of the present invention is preferably a compound represented by the general formula (1a), (ab) or (5a).
  • the compound represented by the general formula (ab) or (5a) or the organic semiconductor polymer is preferable.
  • substituted T In the present specification, the term “compound” or “polymer” (including an organic semiconductor polymer) is used in the sense of including the compound, the polymer itself, its salt, complex, and its ionic state. Moreover, it is the meaning including the derivative modified with the predetermined form in the range with the desired effect.
  • a substituent (including a linking group) for which substitution / non-substitution is not specified means that the group may have an arbitrary substituent. This is also the same for compounds and polymers that do not specify substitution / non-substitution.
  • the substituent in the present invention is also described as a monovalent substituent. Preferred substituents include the following substituent T.
  • substituent T examples include the following.
  • An alkyl group preferably an alkyl group having 1 to 20 carbon atoms such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • alkenyl A group preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl and the like
  • an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl and the like
  • a cycloalkyl group preferably a cycloalkyl group having 3 to 20 carbon atoms, preferably a 3- to 7-membered ring, such as cyclopropyl, cyclopentyl,
  • althio group preferably an althio group having 1 to 20 carbon atoms such as methylthio, ethylthio, isopropylthio, benzylthio, etc.
  • arylthio group preferably an arylthio group having 6 to 26 carbon atoms such as phenylthio, 1-naphthylthio, etc.
  • an alkoxycarbonyl group preferably an alkoxycarbonyl group having 2 to 20 carbon atoms, such as ethoxycarbonyl, 2-ethylhexyloxycarbonyl, etc.
  • an aryloxycarbonyl group Preferably, it is an aryloxycarbonyl group having 6 to 20 carbon atoms, for example, phenoxyoxycarbonyl, naphthyloxycarbonyl, etc.
  • an amino group preferably an amino group having 0 to 20 carbon atoms, an amino group, an alkylamino group Aria Group, for example, amino, N, N-dimethylamino, N, N-diethylamino, N-ethylamino, anilino, etc.
  • a sulfonamide group preferably a sulfonamide group having 0 to 20 carbon atoms, for example, N, N-dimethylsulf
  • An acyloxy group (preferably an acyloxy group having 1 to 20 carbon atoms, such as formyloxy, acetyloxy, pivaloyloxy, acryloyloxy, benzoyloxy, etc.), a sulfonyl group (preferably an alkyl or arylsulfonyl group, an alkylsulfonyl group)
  • a sulfonyl group preferably an alkyl or arylsulfonyl group, an alkylsulfonyl group
  • 6 to 20 carbon atoms are preferable, for example, methanesulfonyl, octanesulfonyl, hexa-cancansulfonyl, benzenesulfonyl, toluenesulfonyl
  • a silyl group (preferably a carbon atom)
  • a halogen atom please add a trialkyltin group or boric acid (ester) group derived from a monomer at the end of the polymer, particularly preferably an alkyl group, an alkenyl group, an aryl group, a heterocyclic ring Group, alkoxy group, alkoxycarbonyl group, acyl group, sulfonyl group, amino group, acylamino group, cyano group or halogen atom.
  • a trialkyltin group or boric acid (ester) group derived from a monomer at the end of the polymer particularly preferably an alkyl group, an alkenyl group, an aryl group, a heterocyclic ring Group, alkoxy group, alkoxycarbonyl group, acyl group, sulfonyl group, amino group, acylamino group, cyano group or halogen atom.
  • the organic photoelectric conversion element composition of the present invention contains at least a P-type-N-type linked organic semiconductor polymer represented by any one of the general formulas (1) to (5).
  • the second embodiment of the present invention contains an organic semiconductor polymer or compound of any combination of the above [A] to [E].
  • the third aspect of the present invention contains a compound or organic semiconductor polymer represented by any one of the general formulas (1a), (ab), or (5a). In this case, among them, the compound represented by the general formula (ab) or (5a) or the organic semiconductor polymer is preferable.
  • the content of the P-type / N-type linked organic semiconductor polymer is not particularly limited, but when the mass of the total composition (preferably, the total solid content) is 100, the polymer (preferably the solid content of the polymer) is 0.00.
  • the content is preferably 01 to 90% by mass, more preferably 0.05 to 50% by mass, and particularly preferably 0.1 to 30% by mass.
  • the composition means that two or more components exist substantially uniformly in a specific composition.
  • substantially uniform means that each component may be unevenly distributed within the range where the effects of the invention are exerted.
  • the composition is not particularly limited as long as the above definition is satisfied, is not limited to a fluid liquid or a paste, and includes a solid or powder composed of a plurality of components. Furthermore, even when there is a sediment, it means that the composition maintains a dispersion state for a predetermined time by stirring.
  • the organic photoelectric conversion element composition of the present invention may be used in combination with a conventional P-type semiconductor polymer or compound, or an N-type semiconductor polymer or compound, if necessary.
  • these semiconductor polymers or compounds include compounds having the groups mentioned in the group of the N-type organic semiconductor unit and group of the P-type organic semiconductor unit of the present invention, and polymers thereof, and preferred ranges are also the same.
  • these semiconductor compounds may be the same as or different from the partial structures of the polymers described in the general formulas (1) to (5) in the present invention.
  • the condensed polycyclic aromatic low molecular compound for example, anthracene, tetracene, pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, Examples include ovalen, circumanthracene, bisanthene, zestrene, heptazethrene, pyranthrene, violanthene, isoviolanthene, cacobiphenyl, anthradithiophene, porphyrin, copper phthalocyanine, and the like.
  • N-type semiconductor compounds in addition to fullerene or derivatives thereof, perfluoro compounds in which hydrogen atoms of P-type organic semiconductor compounds such as octaazaporphyrin are substituted with fluorine atoms (for example, perfluoropentacene or perfluorophthalocyanine).
  • Aromatic compounds such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, and polymer compounds containing the imidized product thereof as a skeleton. Can do.
  • FIG. 1 is a side view schematically showing an example of the photovoltaic cell of the present invention, particularly an organic thin film solar cell.
  • the solar cell 10 of this embodiment includes a photoelectric conversion layer 3 including an organic photoelectric conversion element composition containing a P-type-N-type connected organic semiconductor polymer.
  • the photoelectric conversion layer 3 is composed of a P-type-N-type linked organic semiconductor polymer, and a P-type semiconductor phase (electron donating phase) of the P-type linked organic semiconductor unit.
  • the N-type semiconductor phase (electron-accepting phase) of the P-type connected organic semiconductor unit forms a microphase separation structure.
  • the photoelectric conversion layer 3 is provided between the first electrode 11 and the second electrode 12.
  • the hole transport layer 21 is preferably provided between the first electrode and the photoelectric conversion layer
  • the electron transport layer 22 is preferably provided between the second electrode and the photoelectric conversion layer.
  • the distinction between the upper and lower sides is not particularly important, but if necessary for convenience, the first electrode 11 side is positioned as the “up” or “top” side, and the second electrode 12 side is defined as “ Position it as “bottom” or “bottom”.
  • a microphase separation structure is a structure having a phase separation structure in which the domain size of each phase composed of an electron donating phase or an electron accepting phase is several nm to several hundred nm (usually about 1 to 500 nm). The size can be measured with an electron microscope, a scanning probe microscope, or the like. Further, in the thin film formed from the P-N-linked organic semiconductor polymer of the present invention, the domain size of the microphase separation structure is within 10 times, preferably within 5 times, more preferably within 1 time of the exciton diffusion length. It is preferable that The exciton diffusion length is the distance that excitons diffuse while the amount of excitons generated by light absorption becomes 1 / e. The value can be obtained by measuring the photoluminescent quenching of a polymer or oligomer composed of each unit constituting a P-type-N-type linked organic semiconductor polymer as a function of its film thickness.
  • the measured exciton diffusion length takes different values for the P-type semiconductor phase and the N-type semiconductor phase, but generally takes a value of about several tens of nm.
  • the domain structure of the microphase separation structure formed by the thin film is preferably a continuous layer or a quantum well structure.
  • the domain structure is a continuous layer, for example, the P-type semiconductor phase and the N-type semiconductor in the P-type-N-type linked organic semiconductor polymer as shown in FIG. 2 of WO 03 / 075364A1 pamphlet.
  • One of the domain structures consisting of phases refers to a structure that is continuously connected.
  • the fact that the domain structure is a quantum well structure means that the P-type semiconductor phase or the N-type in the P-type-N-type linked organic semiconductor polymer as shown in FIG. This refers to a state in which each domain structure composed of a semiconductor phase has an alternately laminated structure.
  • the organic photoelectric conversion element composition of the present invention is preferably used as a composition for coating a thin film, particularly a photoelectric conversion layer.
  • a thin film and a photoelectric conversion layer can be formed by, for example, vapor deposition or solvent coating using a solvent, but the coating method is preferred.
  • Solvents include aromatic hydrocarbon solvents such as toluene, xylene and mesitylene, ether solvents such as tetrahydrofuran and 1,4-dioxane, halogen solvents such as chloroform, dichloromethane, dichloroethane and tetrachloroethane, chlorobenzene and o-dichlorobenzene.
  • the organic photoelectric conversion device composition of the present invention may further contain additives such as 1,8-diiodooctane and 1,8-octanedithiol.
  • the content of the P-type-N-type connected organic semiconductor polymer in the solution composition is appropriately changed depending on the polymer, and is not particularly limited. However, when the total mass of the solution composition is 100, the content of the polymer is 0.01 to The content is preferably 50% by mass, more preferably 0.05 to 25% by mass.
  • the phase separation between the P-type organic semiconductor portion and the N-type organic semiconductor portion of the P-type-N-linked organic semiconductor polymer of the present invention is promoted, crystallization of the organic material contained in the photoelectric conversion layer, and electron transport Heat treatment (annealing) may be performed by various methods for the purpose of making the layer transparent.
  • a dry film forming method such as vapor deposition
  • a wet film forming method such as printing or coating
  • heating may be performed at 50 ° C. to 150 ° C. after the subsequent step, for example, the formation of the metal negative electrode is completed.
  • the photoelectric conversion element according to the present invention has at least a first electrode and a second electrode.
  • One of the first electrode and the second electrode is a positive electrode, and the rest is a negative electrode.
  • the tandem configuration can be achieved by using an intermediate electrode.
  • an electrode through which holes mainly flow is referred to as a positive electrode
  • an electrode through which electrons mainly flow is referred to as a negative electrode.
  • an electrode having translucency is referred to as a transparent electrode
  • an electrode having no translucency is referred to as a counter electrode or a metal electrode.
  • the positive electrode is a translucent transparent electrode and the negative electrode is a non-translucent counter electrode or metal electrode, but the negative electrode can be a transparent electrode and the positive electrode can be a counter electrode or a metal electrode. Further, both the first electrode and the second electrode can be transparent electrodes.
  • the first electrode is a positive electrode.
  • the first electrode is preferably a transparent electrode that transmits visible to near-infrared light (380 to 800 nm).
  • transparent conductive metal oxides such as indium tin oxide (ITO), SnO 2 and ZnO, metal nanowires, carbon nanotubes and the like can be used. It is also possible to use a mesh electrode in which a metal such as silver is meshed to ensure light transmission.
  • the positive electrode may be formed using a metal material such as nickel, molybdenum, silver, tungsten, or gold.
  • the transmittance of the positive electrode is the thickness used for the solar cell (eg, 0.2 ⁇ m thickness), and the average light transmittance in the wavelength region of 380 nm to 800 nm is 75% or more. It is preferably 85% or more.
  • the second electrode of the present invention is a negative electrode and a metal negative electrode having a positive standard electrode potential.
  • the negative electrode may be a single layer of a conductive material, but in addition to a conductive material, a resin that holds these may be used in combination.
  • a conductive material for the negative electrode a material having a work function (4 eV or less) metal, alloy, electrically conductive compound and a mixture thereof as an electrode material is used.
  • Electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of these metals and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture, magnesium / Aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the negative electrode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the negative electrode may be a metal (for example, gold, silver, copper, platinum, rhodium, ruthenium, aluminum, magnesium, indium, etc.), carbon nanoparticle, nanowire, or nanostructure. If it is a thing, a transparent highly conductive negative electrode can be formed by the apply
  • a conductive material suitable for the negative electrode such as aluminum and aluminum alloys, silver and silver compounds is formed in a thin film thickness of about 1 to 20 nm, and then the positive electrode is formed.
  • a film of the conductive light transmissive material mentioned in the description a light transmissive negative electrode can be obtained.
  • the negative electrode can be made transparent even if the reverse configuration is ITO / electron transport layer / photoelectric conversion layer / hole transport layer / positive electrode.
  • hole transport layer In the present invention, it is preferable to provide a hole transport layer between the first electrode and the photoelectric conversion layer.
  • the conductive polymer that forms the hole transport layer include polythiophene, polypyrrole, polyaniline, polyphenylene vinylene, polyphenylene, polyacetylene, polyquinoxaline, polyoxadiazole, polybenzothiadiazole, and polymers having a plurality of these conductive skeletons. Can be mentioned. Among these, polythiophene and its derivatives are preferable, and polyethylenedioxythiophene and polythienothiophene are particularly preferable. These polythiophenes are usually partially oxidized in order to obtain conductivity.
  • the electrical conductivity of the conductive polymer can be adjusted by the degree of partial oxidation (doping amount). The larger the doping amount, the higher the electrical conductivity.
  • polythiophene becomes cationic by partial oxidation, a counter anion for neutralizing the charge is required.
  • polythiophenes include polyethylene dioxythiophene (PEDOT-PSS) with polystyrene sulfonic acid as a counter ion and polyethylene dioxythiophene (PEDOT-TsO) with p-toluenesulfonic acid as a counter anion.
  • an electron transport layer is preferably provided between the second electrode and the photoelectric conversion layer, a hole transport layer is provided between the first electrode and the photoelectric conversion layer, and the photoelectric conversion layer and the second It is particularly preferable to provide an electron transport layer between the electrodes.
  • the electron transport material that can be used for the electron transport layer the above-described normal N-type semiconductor compounds and the Chemical Review Vol. 107, pages 953 to 1010 (2007) are described as Electron-Transporting and Hole-Blocking Materials. Are listed.
  • alkali metal compounds such as lithium fluoride, sodium fluoride, and cesium fluoride are preferable.
  • Various metal oxides are preferably used as materials for electron transport layers having high stability.
  • relatively stable aluminum oxide, titanium oxide, and zinc oxide are more preferable.
  • the film thickness of the electron transport layer is 0.1 to 500 nm, preferably 0.5 to 300 nm.
  • the electron transport layer can be suitably formed by any of a wet film formation method by coating or the like, a dry film formation method by PVD method such as vapor deposition or sputtering, a transfer method, or a printing method.
  • the P-type semiconductor compound used in the photoelectric conversion layer in the present invention, an electron transport having a HOMO level deeper than the HOMO level of the P-type-N-type linked organic semiconductor polymer or the P-type organic semiconductor portion of the organic semiconductor polymer.
  • the layer is provided with a hole blocking function having a rectifying effect so that holes generated in the photoelectric conversion layer do not flow to the negative electrode side.
  • an N-type semiconductor compound, in the present invention a material deeper than the HOMO level of the N-type organic semiconductor portion of the P-type-N-type linked organic semiconductor polymer is used as the electron transport layer.
  • Such an electron transport layer is also referred to as a hole block layer, and it is preferable to use an electron transport layer having such a function.
  • Such materials include phenanthrene compounds such as bathocuproine, N-type semiconductor compounds such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, and titanium oxide.
  • N-type inorganic oxides such as zinc oxide and gallium oxide, and alkali metal compounds such as lithium fluoride, sodium fluoride, and cesium fluoride can be used.
  • unit can also be used.
  • the support constituting the photovoltaic cell of the present invention comprises at least a first electrode (positive electrode), a photoelectric conversion layer, a second electrode (metal negative electrode), and in a more preferred embodiment, a first electrode (positive electrode), a hole. It is not particularly limited as long as it can form and hold a transport layer, a photoelectric conversion layer, an electron transport layer, and a second electrode (metal negative electrode). For example, glass, plastic film, etc. You can choose.
  • an easily adhesive layer / undercoat layer, a functional layer, a recombination layer, other semiconductor layers, a protective layer, a gas barrier layer, a UV absorption layer, and the like may be disposed by applying a conventional one.
  • the P-type-N-type linked organic semiconductor polymer or compound of the present invention can be used in devices and systems other than photovoltaic cells.
  • field effect transistors eg, field effect transistors, photodetectors (eg, infrared photodetectors), photovoltaic detectors, imaging devices (eg, RGB imaging devices for cameras or medical imaging systems), light emitting diodes (LEDs) (eg, Organic LEDs, or infrared or near-infrared LEDs), laser elements, conversion layers (eg, layers that convert visible emission to infrared emission), telecommunication amplifiers and radiators (eg, fiber dopants),
  • LEDs light emitting diodes
  • conversion layers eg, layers that convert visible emission to infrared emission
  • telecommunication amplifiers and radiators eg, fiber dopants
  • These polymers can be used in suitable organic semiconductor elements such as storage elements (eg, holographic storage elements), as well as electrochromic elements (eg, electrochromic displays).
  • proton nuclear magnetic resonance is 1 H-NMR
  • size exclusion chromatography is referred to as SEC.
  • 1 H-NMR was measured using tetramethylsilane (TMS) as an internal standard.
  • TMS tetramethylsilane
  • SEC was measured using a polystyrene standard as a standard substance.
  • the ultraviolet visible absorption spectrum was measured with the measurement solvent chloroform.
  • PEDOT-PSS HC Stark CleviosP VP AI4083
  • a hole transport layer was spin-coated (3000 rpm) on a glass-ITO substrate that had been cleaned and UV-ozone-treated, and 140 ° C. Dry for 30 minutes.
  • a mixture of 10 mg of the polymer (1-6) and 15 mg of fullerene (1-8) was dissolved in 1 mL of o-dichlorobenzene and filtered through a 0.45 ⁇ m polytetrafluoroethylene filter. The filtrate was applied onto the PEDOT-PSS layer by spin coating (1500 rpm, 120 seconds) to form a photoelectric conversion layer.
  • Polymer (2-2) was prepared in the same manner as polymer (1-5) in Example 1, except that polymer (1-4) was changed to polymer (2-1). (Yield 91.0%).
  • PEDOT-PSS HC Stark CleviosP VP AI4083
  • a hole transport layer was spin-coated (3000 rpm) on a glass-ITO substrate cleaned and UV-ozone treated at 140 ° C. Dry for 30 minutes.
  • a mixture of 10 mg of the polymer (2-3) and 15 mg of PC 61 BM ([60] PCBM manufactured by Solenne) was dissolved in 1 mL of o-dichlorobenzene and filtered through a 0.45 ⁇ m polytetrafluoroethylene filter.
  • the filtrate was applied onto the PEDOT-PSS layer by spin coating (1500 rpm, 120 seconds) to form a photoelectric conversion layer. After drying, an upper electrode was formed by vapor deposition of aluminum to obtain a 2 mm square element.
  • PEDOT-PSS HC Stark CleviosP VP AI4083
  • HC Stark CleviosP VP AI4083 used as a hole transport layer was spin-coated (3000 rpm) on a glass-ITO substrate cleaned and UV-ozone treated at 140 ° C. Dry for 30 minutes.
  • the filtrate was applied onto the PEDOT-PSS layer by spin coating (1500 rpm, 120 seconds) to form a photoelectric conversion layer.
  • a photoelectric conversion layer of the following polymer (3-5) in which the polymer (3-3) and fullerene (3-4) were crosslinked was formed.
  • An upper electrode was formed on the polymer (3-5) layer by vapor deposition of aluminum to obtain a 2 mm square element.
  • Example 12 1) Device preparation In the device preparation, 10 mg of polymer (1-6), 10 mg of fullerene (1-8) and 5 mg of [60] PCBM (manufactured by Solenne) were used, and the solvent was changed from o-dichlorobenzene to 3 wt% 1, A 1 mm ⁇ cell having a photoelectric conversion layer composed of polymer (1-9) and [60] PCBM was prepared in the same manner as in Example 1 except that 8-diiodooctane-containing o-dichlorobenzene was used. Obtained.
  • PCBM manufactured by Solenne
  • Example 13 1) Device preparation In the device preparation, 5 mg of polymer (1-6), 15 mg of fullerene (1-8) and 5 mg of the following polymer (12) were used, and the solvent was changed from o-dichlorobenzene to 4 wt% 1,8-diiod Except for changing to octane-containing o-chlorobenzene, the same procedure as in the preparation of the device of Example 1 was performed to obtain a 2 mm ⁇ cell having a photoelectric conversion layer composed of polymer (1-9) and polymer (12).
  • Example 2 2) Preparation of device Except that the polymer (14-1) and the polymer (1-6) synthesized in Example 1 were used, the device was prepared in the same manner as in Example 1 except that the polymer (14-1) A 2 mm ⁇ cell having a photoelectric conversion layer composed of the polymer (14-2) crosslinked with the polymer (1-6) was obtained.
  • the P-type-N-type semiconductor polymer of the present invention has a long wave of ⁇ max in the absorption characteristics, is excellent in battery characteristics, particularly power generation efficiency, and remarkably excellent in heat durability. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Light Receiving Elements (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

 下記式(1)~(5)のいずれかで表されるP型-N型連結有機半導体ポリマーを含む有機光電変換素子組成物、薄膜、光電池、有機半導体ポリマー、化合物及びポリマーの製造方法。 式中、A~AはP型有機半導体ユニットの基、B~BはN型有機半導体ユニットの基を示す。L~Lは2価または3価の連結基を表す。ここで、各式のうち、上下に示す-*で表される結合手の少なくとも1つが、式(4)では、Lと(b)が、L又はLが(a)が、直接もしくは連結基を介して結合する。l、n、r、t、u及びvは1~1000の整数、m及びsは1~10の整数、p、q、l'及びn'は0~1000の整数を表す。ただし、pとqが同時に0であることはない。

Description

有機光電変換素子組成物、これを含む薄膜、光電池、これに用いられる有機半導体ポリマー、化合物およびポリマーの製造方法
 本発明は、有機光電変換素子組成物、これを含む薄膜、光電池、これに用いられる有機半導体ポリマー、化合物およびポリマーの製造方法に関する。
 有機半導体ポリマーは、有機エレクトロニクス分野において近年盛んに研究が行われている。例えば、電気を流すと発光する有機エレクトロルミネッセンス素子、光照射で発電する有機光電変換素子、電流量や電圧量を制御する有機薄膜トランジスタ素子等に使用されている。このような素子では、無機半導体材料と同様、電子供与材料であるP型導電性・半導体材料と電子受容材料であるN型導電性・半導体材料を組み合わせた有機半導体材料が使用される。
 近年、石油等の化石エネルギーでは大気中への二酸化炭素を放出することから、温暖化抑制による地球環境保全のため、太陽電池への需要が高まっている。有機光電変換素子を使用する有機太陽電池には、湿式である色素増感太陽電池(グレッツェルセル)と全固形型である有機薄膜太陽電池が知られている。後者は電解液を使用しないため、この電解液の蒸発や液漏れを考慮する必要がなく、柔軟性をもたせることが可能であり、太陽電池の構造や製造が前者より簡便となる。
 しかしながら、有機薄膜太陽電池の光電変換効率および耐久性はいまだ不十分である。光電変換効率は短絡電流密度(Jsc)×開放電圧(Voc)×曲線因子(FF)で算出される。短絡電流密度は、可視光から近赤外光までの広範囲の吸収をもち、高キャリア移動性の有機半導体材料(例えば、ドナー-アクセプター型のチオフェン誘導体コポリマー)を使用することに向上する。開放電圧はP型導電性・半導体材料のHOMO準位とN型導電性・半導体材料のLUMO準位との差分と関係しているといわれており、この差分を大きくすると開放電圧は向上する。すなわち、高い光電変換効率の達成のために、HOMOが深く、バンドギャップのせまいP型ポリマーの開発が望まれている。
 また、光電変換効率を高めるために、P型有機半導体とN型有機半導体の相分離構造を制御することも重要である。現在、P型有機半導体とN型有機半導体の混合溶液を塗布することにより自己組織化により、電子供与性相と電子受容性相からなるミクロ相分離させるバルクヘテロ構造が主流である。この構造では、P型有機半導体とN型有機半導体の界面が大きくなり、効率的な電荷分離が起こる。しかしながら、P型有機半導体とN型有機半導体は、化学結合で連結されていないため、相分離構造の安定性、すなわち、耐久性(熱耐久性)に問題があった。相分離構造安定化のため、重合性基をもつP型有機半導体ポリマーを、光または熱により架橋する方法(特許文献1参照)や、P型有機半導体とN型有機半導体のプロックポリマー化(特許文献2参照)が提案されている。しかしながら、これらの例では、P型有機半導体に、ポリ(アルキルチオフェン)(PAT)やポリフェニレンビニレン(PPV)などのホモポリマーを用いているため、吸収が短波であり、光電変換効率が低かった。すなわち、吸収が長波で、高い耐久性をもつ有機半導体の開発が求められていた。
特開2011-35243号公報 国際公開第03/075364A1号パンフレット
 本発明者等は、上記状況を鑑み、光電変換効率および熱耐久性の両立を考慮した場合、ミクロ相分離構造において、電子供与性を有する分子構造を含むポリマーユニットと電子受容性を有する分子構造を含む(ポリマー)ユニットの連結方式・方法が重要であることがわかった。
 すなわち、P型有機半導体とN型有機半導体の基を化学結合で連結することにより、両ユニットを効率的に近くに配置し、P型/N型半導体界面が大きく、効率的な電荷分離が可能となった。さらに、ドナー-アクセプター型のコポリマーをP型有機半導体に用いることにより、吸収の長波化も可能となり、光電変換効率等の高い電池特性が得られることがわかった。
 また、P型有機半導体とN型有機半導体の基が化学結合で連結されているため、P型有機半導体とN型有機半導体の相分離構造が安定であり、高い耐久性も達成でき、高い光電変換効率と熱耐久性を両立するに至った。
 従って、本発明は、長波の吸収をもつP型有機半導体ポリマーを用い、かつP型有機半導体とN型有機半導体の基を連結することにより、相分離構造の安定性を飛躍的に向上させ、経時での相分離状態の変化を抑制し、従来にも増して、光電変換効率および熱耐久性に優れた有機光電変換素子組成物、これを含む薄膜、光電池、これに用いられる有機半導体ポリマー、化合物およびポリマーの製造方法を提供することを目的とする。
 前記の課題は以下の手段により達成できた。
(1)下記一般式(1)~(5)のいずれかで表されるP型-N型連結有機半導体ポリマーを少なくとも1種含む有機光電変換素子組成物。
Figure JPOXMLDOC01-appb-C000017
 一般式(1)~(5)中、A、A、A、AおよびAは各々独立にP型有機半導体ユニットの基を示し、B、B、BおよびBは各々独立にN型有機半導体ユニットの基を示す。ただし、一般式(1)~(4)におけるAとAは構造の異なるP型有機半導体の基を示し、一般式(5)におけるAは、異なる2種以上のP型有機半導体の基からなる。
 L~Lは各々独立に、P型有機半導体ユニットもしくはN型半導体ユニットを含まない2価または3価の連結基を表す。
 ここで、一般式(1)および(2)におけるAおよびAの-*で表される結合手の少なくとも一つは、直接もしくは2価の連結基を介して、一般式(1)においては、Bの-*で表される結合手と、一般式(2)においては、Bの-*で表される結合手の少なくとも一つと結合しており、結合していない残りの結合手-*は、水素原子または1価の置換基と結合することを示す。一般式(3)および(4)におけるLおよびLの-*で表される結合手の少なくとも一つは、それぞれの一般式において、直接もしくは2価の連結基を介して、(a)のAまたはAの-*で表される結合手の少なくとも一つと結合しており、結合していない残りの結合手-*は、水素原子または1価の置換基と結合することを示す。さらに、一般式(4)においては、Lの-*で表される結合手の少なくとも一つは、直接もしくは2価の連結基を介して、(b)のBの-*で表される結合手の少なくとも一つと結合しており、結合していない残りの結合手-*は、水素原子または1価の置換基と結合することを示す。一般式(5)におけるAの-*で表される結合手の少なくとも一つは、直接もしくは2価の連結基を介して、Bの-*で表される結合手の少なくとも一つと、結合しており、結合していない残りの結合手-*は、水素原子または1価の置換基と結合することを示す。
 l、n、r、t、uおよびvは各々独立に1~1000の整数を表し、mおよびsは各々独立に1~10の整数を表し、p、q、l’およびn’は各々独立に0~1000の整数を表す。ただし、pとqが同時に0であることはない。
 また、一般式(1)~(5)において、結合手-で表される結合末端は、各々独立に水素原子または1価の置換基が結合している。
(2)前記一般式(1)~(5)で表されるP型-N型連結有機半導体ポリマーが下記[A]~[E]の対応する各組合せの化合物により合成されてなる(1)に記載の有機光電変換素子組成物。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 ここで、[A]は、一般式(1a)で表される化合物と一般式(1b)で表される化合物との組合せであり、[B]は、一般式(1a)で表される化合物と一般式(2b)で表される化合物との組合せであり、[C]は、一般式(ab)で表される化合物と一般式(bb)で表される化合物との組合せであり、[D]は、一般式(ab)で表される化合物および一般式(4b)で表される化合物との組み合わせであり、[E]は、一般式(5a)と(5b)で表される化合物との組み合わせである。
 また、[A]および[B]における一般式(1a)で表される化合物は、AおよびAの少なくとも一つの結合手-*が、*-L-Zの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。[B]における一般式(2b)で表される化合物は、n個のBのうちのいずれか一つの結合手-*が、*-L-Zの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。[C]および[D]における一般式(ab)で表される化合物は、AおよびAの少なくとも一つの結合手-*が、*-L-Yの*部分もしくは*-L-Yの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。[D]における一般式(4b)で表される化合物は、n個のBのうちのいずれか一つの結合手-*が、*-L-Yの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。
 一般式中、A、A~A、B、B~B、l、l’、n、n’、s、uおよびvは前記一般式(1)~(5)における対応するA、A~A、B、B~B、l、l’、n、n’、s、uおよびvとそれぞれ同義である。L~Lは各々独立に単結合もしくは2価の連結基を表す。
 ZおよびZは各々独立に反応性官能基を表す。Z1a、Z1b、Z2aおよびZ2bは各々独立に水素原子または置換基を表すが、Z1aとZ1bの少なくとも一方、およびZ2aとZ2bの少なくとも一方は、反応性官能基である置換基である。Y~Yは各々独立に重合性の基を表す。
 ZとZとは、これらが反応して連結するのに必要な反応性官能基であり、Yの部分構造はLを形成し、Yの部分構造はLを形成し、Yの部分構造はLを形成し、Yの部分構造はLを形成する。また、Z1aもしくはZ1bはZ2aもしくはZ2bと反応して連結するのに必要な反応性官能基である。
 また、一般式(1a)、(2b)、(ab)および(4b)において、両側の結合末端は、各々独立に水素原子または1価の置換基が結合している。
(3)下記[A]~[E]のいずれかの化合物の組合せで含有する有機光電変換素子組成物。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 ここで、[A]は、一般式(1a)で表される化合物と一般式(1b)で表される化合物との組合せであり、[B]は、一般式(1a)で表される化合物と一般式(2b)で表される化合物との組合せであり、[C]は、一般式(ab)で表される化合物と一般式(bb)で表される化合物との組合せであり、[D]は、一般式(ab)で表される化合物および一般式(4b)で表される化合物との組み合わせであり、[E]は、一般式(5a)と(5b)で表される化合物との組み合わせである。
 また、[A]および[B]における一般式(1a)で表される化合物は、AおよびAの少なくとも一つの結合手-*が、*-L-Zの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。[B]における一般式(2b)で表される化合物は、n個のBのうちのいずれか一つの結合手-*が、*-L-Zの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。[C]および[D]における一般式(ab)で表される化合物は、AおよびAの少なくとも一つの結合手-*が、*-L-Yの*部分もしくは*-L-Yの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。[D]における一般式(4b)で表される化合物は、n個のBのうちのいずれか一つの結合手-*が、*-L-Yの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。
 一般式中、A、A~A、B、B~B、l、l’、n、n’、s、uおよびvは前記一般式(1)~(5)における対応するA、A~A、B、B~B、l、l’、n、n’、s、uおよびvとそれぞれ同義である。L~Lは各々独立に単結合もしくは2価の連結基を表す。
 ZおよびZは各々独立に反応性官能基を表す。Z1a、Z1b、Z2aおよびZ2bは各々独立に水素原子または置換基を表すが、Z1aとZ1bの少なくとも一方、およびZ2aとZ2bの少なくとも一方は、反応性官能基である置換基である。Y~Yは各々独立に重合性の基を表す。
 ZとZとは、これらが反応して連結するのに必要な反応性官能基であり、Yの部分構造はLを形成し、Yの部分構造はLを形成し、Yの部分構造はLを形成し、Yの部分構造はLを形成する。また、Z1aもしくはZ1bはZ2aもしくはZ2bと反応して連結するのに必要な反応性官能基である。
 また、一般式(1a)、(2b)、(ab)および(4b)において、両側の結合末端は、各々独立に水素原子または1価の置換基が結合している。
(4)下記一般式(1a)、(ab)および(5a)のいずれかで表される化合物を少なくとも1種含有する有機光電変換素子組成物。
Figure JPOXMLDOC01-appb-C000022
 一般式(1a)、(ab)、(5a)中、A、A~A、l、l’およびuは前記一般式(1)~(5)における対応するA、A~A、l、l’およびuとそれぞれ同義である。
 L、L、L、LおよびLは各々独立に単結合もしくは2価の連結基を表す。Zは反応性官能基を表す。Z1aおよびZ1bは各々独立に水素原子または置換基を表すが、Z1aとZ1bの少なくとも一方は、反応性官能基である置換基である。YおよびYは各々独立に重合性の基を表す。
 ここで、一般式(1a)で表される化合物は、AおよびAの少なくとも一つの結合手-*が、*-L-Zの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。一般式(ab)で表される化合物は、AおよびAの少なくとも一つの結合手-*が、*-L-Yの*部分もしくは*-L-Yの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。
 また、一般式(1a)、(ab)において、両側の結合末端は、各々独立に水素原子または1価の置換基が結合している。
(5)前記一般式(ab)または(5a)のいずれかを含有する(4)に記載の有機光電変換素子組成物。
(6)前記N型有機半導体ユニットの基が、フラーレン構造を有する基、含窒素へテロ環基または電子求引性基を有する芳香族環基である(1)~(3)のいずれか1項に記載の有機光電変換素子組成物。
(7)前記P型有機半導体ユニットの基が、硫黄、窒素、酸素、珪素、ホウ素、セレン、テルルおよびリン原子のうち少なくとも一つを環構成原子として有するヘテロ環基である(1)~(6)のいずれか1項に記載の有機光電変換素子組成物。
(8)前記P型有機半導体ユニットの基が、下記ヘテロ環基から選択される(1)~(7)のいずれか1項に記載の有機光電変換素子組成物。
Figure JPOXMLDOC01-appb-C000023
 式中、*で表される結合手は、ポリマー主鎖/側鎖、単結合もしくは2価の連結基との連結箇所を示す。ただし、ポリマー主鎖を形成する場合、少なくとも2つの結合手がポリマー主鎖形成に使用され、残りの結合手は、2価の連結基、水素原子または置換基が結合する。また、結合手がポリマー主鎖形成に使用される場合、その結合手は、ポリマー主鎖が共役する位置である。
(9)前記(1)~(8)のいずれか1項に記載の有機光電変換素子組成物を含有してなる薄膜。
(10)第一電極と第二電極の間に、(1)~(8)のいずれか1項に記載の有機光電変換素子組成物からなる層を含有してなる光電池。
(11)下記一般式(1)~(5)のいずれかで表されるP型-N型連結有機半導体ポリマー。
Figure JPOXMLDOC01-appb-C000024
 一般式(1)~(5)中、A、A、A、AおよびAは各々独立にP型有機半導体ユニットの基を示し、B、B、BおよびBは各々独立にN型有機半導体ユニットの基を示す。ただし、一般式(1)~(4)におけるAとAは構造の異なるP型有機半導体の基を示し、一般式(5)におけるAは、異なる2種以上のP型有機半導体の基からなる。
 L~Lは各々独立に、P型有機半導体ユニットもしくはN型半導体ユニットを含まない2価または3価の連結基を表す。
 ここで、一般式(1)および(2)におけるAおよびAの-*で表される結合手の少なくとも一つは、直接もしくは2価の連結基を介して、一般式(1)においては、Bの-*で表される結合手と、一般式(2)においては、Bの-*で表される結合手の少なくとも一つと結合しており、結合していない残りの結合手-*は、水素原子または1価の置換基と結合することを示す。一般式(3)および(4)におけるLおよびLの-*で表される結合手の少なくとも一つは、それぞれの一般式において、直接もしくは2価の連結基を介して、(a)のAまたはAの-*で表される結合手の少なくとも一つと結合しており、結合していない残りの結合手-*は、水素原子または1価の置換基と結合することを示す。さらに、一般式(4)においては、Lの-*で表される結合手の少なくとも一つは、直接もしくは2価の連結基を介して、(b)のBの-*で表される結合手の少なくとも一つと結合しており、結合していない残りの結合手-*は、水素原子または1価の置換基と結合することを示す。一般式(5)におけるAの-*で表される結合手の少なくとも一つは、直接もしくは2価の連結基を介して、Bの-*で表される結合手の少なくとも一つと、結合しており、結合していない残りの結合手-*は、水素原子または1価の置換基と結合することを示す。
 l、n、r、t、uおよびvは各々独立に1~1000の整数を表し、mおよびsは各々独立に1~10の整数を表し、p、q、l’およびn’は各々独立に0~1000の整数を表す。ただし、pとqが同時に0であることはない。
 また、一般式(1)~(5)において、結合手-で表される結合末端は、各々独立に水素原子または1価の置換基が結合している。
(12)前記一般式(1)~(5)で表されるP型-N型連結有機半導体ポリマーが下記[A]~[E]の対応する各組合せの化合物により合成されてなる(11)に記載のP型-N型連結有機半導体ポリマー。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 ここで、[A]は、一般式(1a)で表される化合物と一般式(1b)で表される化合物との組合せであり、[B]は、一般式(1a)で表される化合物と一般式(2b)で表される化合物との組合せであり、[C]は、一般式(ab)で表される化合物と一般式(bb)で表される化合物との組合せであり、[D]は、一般式(ab)で表される化合物および一般式(4b)で表される化合物との組み合わせであり、[E]は、一般式(5a)と(5b)で表される化合物との組み合わせである。
 また、[A]および[B]における一般式(1a)で表される化合物は、AおよびAの少なくとも一つの結合手-*が、*-L-Zの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。[B]における一般式(2b)で表される化合物は、n個のBのうちのいずれか一つの結合手-*が、*-L-Zの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。[C]および[D]における一般式(ab)で表される化合物は、AおよびAの少なくとも一つの結合手-*が、*-L-Yの*部分もしくは*-L-Yの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。[D]における一般式(4b)で表される化合物は、n個のBのうちのいずれか一つの結合手-*が、*-L-Yの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。
 一般式中、A、A~A、B、B~B、l、l’、n、n’、s、uおよびvは前記一般式(1)~(5)における対応するA、A~A、B、B~B、l、l’、n、n’、s、uおよびvとそれぞれ同義である。L~Lは各々独立に単結合もしくは2価の連結基を表す。
 ZおよびZは各々独立に反応性官能基を表す。Z1a、Z1b、Z2aおよびZ2bは各々独立に水素原子または置換基を表すが、Z1aとZ1bの少なくとも一方、およびZ2aとZ2bの少なくとも一方は、反応性官能基である置換基である。Y~Yは各々独立に重合性の基を表す。
 ZとZとは、これらが反応して連結するのに必要な反応性官能基であり、Yの部分構造はLを形成し、Yの部分構造はLを形成し、Yの部分構造はLを形成し、Yの部分構造はLを形成する。また、Z1aもしくはZ1bはZ2aもしくはZ2bと反応して連結するのに必要な反応性官能基である。
 また、一般式(1a)、(2b)、(ab)および(4b)において、両側の結合末端は、各々独立に水素原子または1価の置換基が結合している。
(13)前記N型有機半導体ユニットの基が、フラーレン構造を有する基、含窒素へテロ環基または電子求引性基を有する芳香族環基である(11)または(12)に記載のP型-N型連結有機半導体ポリマー。
(14)前記P型有機半導体ユニットの基が、硫黄、窒素、酸素、珪素、ホウ素、セレン、テルルおよびリン原子のうち少なくとも一つを環構成原子として有するヘテロ環基である(11)~(13)のいずれか1項に記載のP型-N型連結有機半導体ポリマー。
(15)前記P型有機半導体ユニットの基が、下記ヘテロ環基から選択される(11)~(14)のいずれか1項に記載のP型-N型連結有機半導体ポリマー。
Figure JPOXMLDOC01-appb-C000027
 式中、*で表される結合手は、ポリマー主鎖/側鎖、単結合もしくは2価の連結基との連結箇所を示す。ただし、ポリマー主鎖を形成する場合、少なくとも2つの結合手がポリマー主鎖形成に使用され、残りの結合手は、2価の連結基、水素原子または置換基が結合する。結合手がポリマー主鎖形成に使用される場合、その結合手は、ポリマー主鎖が共役する位置である。
(16)下記一般式(1a)、(ab)または(5a)で表される化合物。
Figure JPOXMLDOC01-appb-C000028
 一般式(1a)、(ab)、(5a)中、A、A~A、l、l’およびuは前記一般式(1)~(5)における対応するA、A~A、l、l’およびuとそれぞれ同義である。
 L、L、L、LおよびLは各々独立に単結合もしくは2価の連結基を表す。Zは反応性官能基を表す。Z1aおよびZ1bは各々独立に水素原子または置換基を表すが、Z1aとZ1bの少なくとも一方は、反応性官能基である置換基である。YおよびYは各々独立に重合性の基を表す。
 ここで、一般式(1a)で表される化合物は、AおよびAの少なくとも一つの結合手-*が、*-L-Zの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。一般式(ab)で表される化合物は、AおよびAの少なくとも一つの結合手-*が、*-L-Yの*部分もしくは*-L-Yの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。
 また、一般式(1a)、(ab)において、両側の結合末端は、各々独立に水素原子または1価の置換基が結合している。
(17)前記P型有機半導体ユニットの基が、硫黄、窒素、酸素、珪素、ホウ素、セレン、テルルおよびリン原子のうち少なくとも一つを環構成原子として有するヘテロ環基である(16)に記載の化合物。
(18)前記P型有機半導体ユニットの基が、下記ヘテロ環基から選択される(16)または(17)のいずれか1項に記載の化合物。
Figure JPOXMLDOC01-appb-C000029
 式中、*で表される結合手は、ポリマー主鎖/側鎖、単結合もしくは2価の連結基との連結箇所を示す。ただし、ポリマー主鎖を形成する場合、少なくとも2つの結合手がポリマー主鎖形成に使用され、残りの結合手は、2価の連結基、水素原子または置換基が結合する。結合手がポリマー主鎖形成に使用される場合、その結合手は、ポリマー主鎖が共役する位置である。
(19)下記[A]~[E]の対応する各組合せの、化合物もしくはポリマーを反応させて、対応する下記一般式(1)~(5)で表されるポリマーを製造するポリマーの製造方法。
Figure JPOXMLDOC01-appb-C000030
 一般式(1)~(5)中、A、A、A、AおよびAは各々独立にP型有機半導体ユニットの基を示し、B、B、BおよびBは各々独立にN型有機半導体ユニットの基を示す。ただし、一般式(1)~(4)におけるAとAは構造の異なるP型有機半導体の基を示し、一般式(5)におけるAは、異なる2種以上のP型有機半導体の基からなる。
 L~Lは各々独立に、P型有機半導体ユニットもしくはN型半導体ユニットを含まない2価または3価の連結基を表す。
 ここで、一般式(1)および(2)におけるAおよびAの-*で表される結合手の少なくとも一つは、直接もしくは2価の連結基を介して、一般式(1)においては、Bの-*で表される結合手と、一般式(2)においては、Bの-*で表される結合手の少なくとも一つと結合しており、結合していない残りの結合手-*は、水素原子または1価の置換基と結合することを示す。一般式(3)および(4)におけるLおよびLの-*で表される結合手の少なくとも一つは、それぞれの一般式において、直接もしくは2価の連結基を介して、(a)のAまたはAの-*で表される結合手の少なくとも一つと結合しており、結合していない残りの結合手-*は、水素原子または1価の置換基と結合することを示す。さらに、一般式(4)においては、Lの-*で表される結合手の少なくとも一つは、直接もしくは2価の連結基を介して、(b)のBの-*で表される結合手の少なくとも一つと結合しており、結合していない残りの結合手-*は、水素原子または1価の置換基と結合することを示す。一般式(5)におけるAの-*で表される結合手の少なくとも一つは、直接もしくは2価の連結基を介して、Bの-*で表される結合手の少なくとも一つと、結合しており、結合していない残りの結合手-*は、水素原子または1価の置換基と結合することを示す。
 l、n、r、t、uおよびvは各々独立に1~1000の整数を表し、mおよびsは各々独立に1~10の整数を表し、p、q、l’およびn’は各々独立に0~1000の整数を表す。ただし、pとqが同時に0であることはない。
 また、一般式(1)~(5)において、結合手-で表される結合末端は、各々独立に水素原子または1価の置換基が結合している。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 ここで、[A]は、一般式(1a)で表される化合物と一般式(1b)で表される化合物との組合せであり、[B]は、一般式(1a)で表される化合物と一般式(2b)で表される化合物との組合せであり、[C]は、一般式(ab)で表される化合物と一般式(bb)で表される化合物との組合せであり、[D]は、一般式(ab)で表される化合物および一般式(4b)で表される化合物との組み合わせであり、[E]は、一般式(5a)と(5b)で表される化合物との組み合わせである。
 また、[A]および[B]における一般式(1a)で表される化合物は、AおよびAの少なくとも一つの結合手-*が、*-L-Zの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。[B]における一般式(2b)で表される化合物は、n個のBのうちのいずれか一つの結合手-*が、*-L-Zの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。[C]および[D]における一般式(ab)で表される化合物は、AおよびAの少なくとも一つの結合手-*が、*-L-Yの*部分もしくは*-L-Yの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。[D]における一般式(4b)で表される化合物は、n個のBのうちのいずれか一つの結合手-*が、*-L-Yの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。
 一般式中、A、A~A、B、B~B、l、l’、n、n’、s、uおよびvは前記一般式(1)~(5)における対応するA、A~A、B、B~B、l、l’、n、n’、s、uおよびvとそれぞれ同義である。L~Lは各々独立に単結合もしくは2価の連結基を表す。
 ZおよびZは各々独立に反応性官能基を表す。Z1a、Z1b、Z2aおよびZ2bは各々独立に水素原子または置換基を表すが、Z1aとZ1bの少なくとも一方、およびZ2aとZ2bの少なくとも一方は、反応性官能基である置換基である。Y~Yは各々独立に重合性の基を表す。
 ZとZとは、これらが反応して連結するのに必要な反応性官能基であり、Yの部分構造はLを形成し、Yの部分構造はLを形成し、Yの部分構造はLを形成し、Yの部分構造はLを形成する。また、Z1aもしくはZ1bはZ2aもしくはZ2bと反応して連結するのに必要な反応性官能基である。
 また、一般式(1a)、(2b)、(ab)および(4b)において、両側の結合末端は、各々独立に水素原子または1価の置換基が結合している。
 本発明により、従来にも増して、光電変換効率および熱耐久性に優れた有機光電変換素子組成物、これを含む薄膜、光電池、これに用いられる有機半導体ポリマー、化合物およびポリマーの製造方法を提供することができる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
図1は、本発明の光電池の好ましい実施形態である有機薄膜太陽電池の構成を模式的に示す側面図である。
 光電変換素子における有機半導体化合物において、特に光電池のなかでも有機薄膜太陽電池は、光電変換効率の向上や耐久性の向上が強く求められている。そこで、本発明者らは、光電変換効率と熱耐久性を両立させるため、長波の吸収をもつP型有機半導体ユニットとN型有機半導体ユニットを化学結合で連結することを考えた。ポリマー分子中に組み込む際の連結方式を種々検討した結果、P型有機半導体ユニットとN型有機半導体ユニットが特定の連結方式である場合、薄膜形成時に、自己組織化して、形成されるN型半導体相とP型半導体相からなるミクロ相分離構造を形成し、その構造の安定性が飛躍的に高まることを見出した。また、両者を連結することにより、P型/N型半導体界面が大きく、電荷分離にも有利であり、さらに長波の吸収をもつP型有機半導体ユニットを用いているため、高い光電変換効率が得られることがわかり、光電変換効率と熱耐久性をともに向上させることが可能となった。本発明者等は、このような研究における知見と着想を基に種々検討した結果、本発明を完成するに至った。
 なお、本発明のP型-N型連結有機半導体ポリマーから形成される薄膜は、自己組織化により、P型有機半導体相(電子供与性相)とN型有機半導体相(電子受容相)からなるミクロ相分離構造を形成するが、ミクロ相分離構造とは、P型有機半導体相もしくはN型有機半導体相からなる各相のドメインサイズが、数nm~数百nm程度(通常は1~500nm)の相分離構造を有するものを言う。
 以下、本発明につい詳細に説明する。
 最初に本発明のP型-N型連結半導体ポリマーを説明する。
<P型-N型連結半導体ポリマー>
 本発明の有機半導体ポリマーは、下記一般式(1)~(5)のいずれかで表されるP型-N型連結有機半導体ポリマーである。
Figure JPOXMLDOC01-appb-C000033
 一般式(1)~(5)中、A、A、A、AおよびAは各々独立にP型有機半導体ユニットの基を示し、B、B、BおよびBは各々独立にN型有機半導体ユニットの基を示す。ただし、一般式(1)~(4)におけるAとAは構造の異なるP型有機半導体の基を示し、一般式(5)におけるAは、異なる2種以上のP型有機半導体の基からなる。AとAは、ポリマー主鎖を形成する環構造あるいは置換基のいずれかが異なっていればよいが、環構造が異なっていることが好ましく、環構造と置換基の両方が異なっていることがより好ましい。また、Aにおける、異なる2種以上のP型有機半導体の基も同様に、ポリマー主鎖を形成する環構造あるいは置換のいずれかが異なっていればよいが、環構造が異なっていることが好ましく、環構造と置換基の両方が異なっていることがより好ましい。また、一般式(1)~(5)における、P型有機半導体のポリマー主鎖部分、-(A-A)l-、-(A-A)l’-、および-(A)u-は、π共役していることが好ましい。
 L~Lは各々独立に、P型有機半導体ユニットもしくはN型半導体ユニットを含まない2価または3価の連結基を表す。
 ここで、一般式(1)および(2)におけるAおよびAの-*で表される結合手の少なくとも一つは、直接もしくは2価の連結基を介して、一般式(1)においては、Bの-*で表される結合手と、一般式(2)においては、Bの-*で表される結合手の少なくとも一つと結合しており、結合していない残りの結合手-*は、水素原子または1価の置換基と結合することを示す。一般式(3)および(4)におけるLおよびLの-*で表される結合手の少なくとも一つは、それぞれの一般式において、直接もしくは2価の連結基を介して、(a)のAまたはAの-*で表される結合手の少なくとも一つと結合しており、結合していない残りの結合手-*は、水素原子または1価の置換基と結合することを示す。さらに、一般式(4)においては、Lの-*で表される結合手の少なくとも一つは、直接もしくは2価の連結基を介して、(b)のBの-*で表される結合手の少なくとも一つと結合しており、結合していない残りの結合手-*は、水素原子または1価の置換基と結合することを示す。一般式(5)におけるAの-*で表される結合手の少なくとも一つは、直接もしくは2価の連結基を介して、Bの-*で表される結合手の少なくとも一つと、結合しており、結合していない残りの結合手-*は、水素原子または1価の置換基と結合することを示す。
 l、n、r、t、uおよびvは各々独立に1~1000の整数を表し、mおよびsは各々独立に1~10の整数を表し、p、q、l’およびn’は各々独立に0~1000の整数を表す。ただし、pとqが同時に0であることはない。
 また、一般式(1)~(5)において、結合手-で表される結合末端は、各々独立に水素原子または1価の置換基が結合している。
 なお、上記における置換基もしくは1価の置換基としては、後述の置換基Tが挙げられる。
 ここで、一般式(1)において、mは好ましくは1であり、また、一般式(3)において、sは好ましくは1である。
(P型有機半導体ユニットの基)
 P型有機半導体ユニットの基としては、従来公知のP型有機半導体化合物として知られている化合物や該化合物から導かれる2価もしくは3価の基(結合手を2個もしくは3個有する基で、より具体的には該化合物の水素原子を2個もしくは3個取り除いた基)であり、一般的に最高被占軌道(HOMO)準位が4.5~6.0eVのπ電子共役系化合物である。
 例えば、芳香環、ヘテロ芳香環、π共役できる脂環、π共役できるヘテロ環、これらの縮合環もしくは縮合多環、の2価もしくは3価の基が挙げられ、これらに加えて、これらの環が単結合で連結したり、これらの環に共役鎖(例えば、二重結合、三重結合が結合、または、二重結合もしくは三重結合と単結合が互いに交互に繰り返す)が結合して、互いにπ電子共役系でこれらの構造単位が連結するものが挙げられる。この場合、2つの芳香環および/またはヘテロ芳香環が単結合もしくは共役結合に加えて、これとは異なった位置において、連結する環同士を共役させない結合〔例えば-O-、-C(=O)-、-S-、-SO-、-SO-、アルキレン(例えば、-CH-、-C(R-)、-C[=R(Ra’)]-、-N(R)-等が挙げられ、ここでRおよびRa’はそれぞれ独立に水素原子または置換基を表し、該置換基としては後述の置換基Tが挙げられる。〕で結合して縮環を形成してもよい。
 ここで、本発明においては、lやl’が2以上の場合、P型有機半導体ユニット部分の連結部分もしくは主鎖は、共役系がポリマー分子全体に広がるものが好ましく、このようなものであればどのような構造単位でも構わない。
 芳香環もしくはこれを含む環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、テトラセン環、ペンタセン環、ヘキサセン環、ヘプタセン環、クリセン環、ピセン環、フルミネン環、ピレン環、ペロピレン環、ペリレン環、テリレン環、クオテリレン環、コロネン環、オバレン環、サーカムアントラセン環、ビスアンテン環、ゼスレン環、ヘプタゼスレン環、ピランスレン環、ビオランテン環、イソビオランテン環、サーコビフェニル環、アントラジチオフェン環等が挙げられるが、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環がより好ましい。
 π共役できる脂環としては、例えば、1,2位に単結合もしくは共役鎖が結合したシクロアルケン(例えば、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン等)、シクロアルカジエン(例えば、シクロペンタジエン、シクロペンタジエノン、1,3-シクロヘキサジエン、1,3-ジクロヘプタジエン、1,3-シクロオクタジエン等)が挙げられる。
 ヘテロ芳香環もしくはπ共役できるヘテロ環としては、チオフェン環、オリゴ(チオフェン)環(例えば、ジチオフェン、トリチオフェン環など)、シラシクロペンタジチオフェン環、シクロペンタジチアゾール環、ベンゾチアジアゾール環、チアジアゾロキノキサリン環、シクロペンタジチオフェン環、酸化シクロペンタジチオフェン環、ベンゾイソチアゾール環、ベンゾチアゾール環、酸化チオフェン環、チエノチオフェン環、酸化チエノチオフェン環、ジチエノチオフェン環、酸化ジチエノチオフェン環、テトラヒドロイソインドール環、フルオレン環、フルオレノン環、チアゾール環、ジチアゾール環、チエノチアゾール環、セレノフェン環、シロール環、チアゾロチアゾール環、ナフトチアジアゾール環、ピラジン環、チエノピラジン環、オキサゾール環、チエノオキサゾール環、ベンゾオキサゾール環、ピロール環、チエノピロール環、チエノピロールジオン環、ベンゾジチオフェン環、ナフトジチオフェン環、ピリダジン環、チエノピリダジン環、ピロールジオン環、ピロールモノオン環、チエノオキサゾール環、イミダゾール環、チエノイミダゾール環、ピリミジン環、チエノピリミジン環、ベンゾオキサゾール環、チエノオキサゾール環、ベンゾイミダゾール環、ジケトピロロピロール環およびシクロペンタジピリジン環、チアジアゾール環、ベンゾチアジアゾール環、トリアゾール環、ベンゾトリアゾール環、オキサジアゾール環、ベンゾオキサジアゾール環等が挙げられる。また、(金属)ポルフィリン環や(金属)フタロシアニン環も挙げられる。
 上記の芳香環もしくはこれを含む環、π共役できる脂環、ヘテロ芳香環もしくはπ共役できるヘテロ環は置換基を有してもよく、該置換基としては、該置換基としては後述の置換基Tが挙げられる。
 本発明においては、上記の各環のうち、本発明においては、少なくとも一つのヘテロ環構造を有するものが好ましい。ヘテロ原子としては、硫黄、窒素、酸素、珪素、ホウ素、セレン、テルルおよびリン原子が好ましく、硫黄、窒素、酸素、珪素がより好ましい。
 好ましいP型半導体ユニットの基の具体的なヘテロ環基しては、例えば、下記の基が挙げられるが、これによって本発明が限定されものではない
Figure JPOXMLDOC01-appb-C000034
 式中、*で表される結合手は、ポリマー主鎖/側鎖、単結合もしくは2価の連結基との連結箇所を示す。ただし、ポリマー主鎖を形成する場合、少なくとも2つの結合手がポリマー主鎖形成に使用される。また、結合手がポリマー主鎖形成に使用される場合、その結合手は、ポリマー主鎖が共役する位置である。残りの結合手は、直接あるいは連結基を介して、B、B、B、Bあるいは、直接あるいは連結基を介して、連結基L、Lと結合しているか、水素原子または置換基が結合する。該置換基としては、後述の置換基Tが挙げられる。
 なお、これらのヘテロ環部分が2個以上、縮環していてもよく、これらのヘテロ環部分が2個以上、単結合もしくは共役結合を介して結合していてもよい。
 一般式(1)~(4)におけるA-Aおよび一般式(5)におけるAの具体例としては、例えば、以下の基が挙げられるが、これによって本発明が限定されるものではない。
Figure JPOXMLDOC01-appb-C000035
 ここで、R~R、RおよびRは各々独立に水素原子または置換基を表し、該置換基としては後述の置換基Tが挙げられるが、R~Rは、アルキル基、アルコキシ基、アルコキシカルボニル基、アシルオキシ基、アシル基、アルキルスルホニル基、シアノ基、ハロゲン原子が好ましく、RおよびRは、アルキル基が好ましい。R~RはおよびR、Rは、-*であってもよく、この場合、上記構造中の-*は、水素原子または置換基が結合しており、該置換基としては後述の置換基Tが挙げられる。
 Rの例としては、対応する基として後述の置換基Tに挙げた基が挙げられるが、水素原子、アルキル基が好ましい。Xは炭素原子またはケイ素原子を表す。naは0~4を表し、nbは0または1を表し、ncは0~2を表す。
 なお、-*部分は、一般式(1)、(2)では、直接もしくは2価の連結基を介してB、Bと結合する部分であり、一般式(3)、(4)では、LまたはLと直接もしくは2価の連結基を介して結合する部分である。また、一般式(5)では、水素原子または置換基が結合する。該置換基としては後述の置換基Tが挙げられる。
 ただし、一般式(1)~(4)のA-Aにおいて、N型有機半導体と結合していない場合は、-*には水素原子または置換基が結合しており、該置換基としては、後述の置換基Tが挙げられるが、その中でも水素原子、アルキル基、アルコキシ基、アルコキシカルボニル基、アシルオキシ基、アシル基、アルキルスルホニル基、シアノ基、ハロゲン原子が好ましい。
 また、一般式(1)~(5)において、P型有機半導体ユニットの基は上記に加え、π共役主鎖中に、上記の-*部分が水素原子または置換基Tの部分構造および下記の構造のユニットの基が組み込まれていてもよい。
Figure JPOXMLDOC01-appb-C000036
 ここで、R、R、R、naは上記のものと同義であり、好ましい範囲も同じである。
 N型有機半導体ユニットの基と連結していない上記の構造のユニットの基は、一般式(3)、(4)においてはA、AまたはA-Aに相当し、一般式(5)ではAに相当する。その場合、上記構造中の-*には水素原子または置換基が結合し、該置換基としては、後述の置換基Tが挙げられるが、その中でも水素原子、アルキル基、アルコキシ基、アルコキシカルボニル基、アシルオキシ基、アシル基、アルキルスルホニル基、シアノ基、ハロゲン原子が好ましい。
 ここで、A-AやA-AにおけるAとAとの結合、AとAにおける結合は、この結合を介してAとAの間、AとAの間がπ共役していることが好ましく、また、A-Aの繰り返し単位、A-Aの繰り返し単位、これらの繰り返し単位が連結した部分、すなわち、P型有機半導体ユニットの基で構成される主鎖、はいずれもπ共役しているものが好ましい。
 同様に、Aにおける繰り返し単位やこの繰り返し単位が結合して構成される主鎖はπ共役していることが好ましい。
(N型有機半導体ユニットの基)
 N型有機半導体ユニットの基としては、従来公知のN型有機半導体化合物として知られている化合物や該化合物から導かれる基であり、Bにおいては1価の基、B~Bにおいては2価もしくは3価の基(結合手を2個もしくは3個有する基で、より具体的には該化合物の水素原子を2個もしくは3個取り除いた基)であり、その最低空軌道(LUMO)準位が3.5~4.5eVであるようなπ電子共役系化合物である。例えば、フラーレンもしくはその誘導体、含窒素ヘテロ環(例えば、オクタアザポルフィリン等、P型有機半導体化合物の水素原子をフッ素原子に置換したパーフルオロ体(例えば、パーフルオロペンタセンやパーフルオロフタロシアニン等)、電子求引性の置換基を有する芳香族化合物(例えば、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物やそのイミド化物等)、およびこれらを骨格として含む高分子化合物等を挙げることができる。ここで、電子吸引性基はHammettの置換基定数σpが0以上の基が挙げられる。
 これらのN型有機半導体化合物のうち、フラーレンもしくはその誘導体が好ましい。
 フラーレンやその誘導体としては、C60フラーレン、C70フラーレン、C76フラーレン、C78フラーレン、C84フラーレン、C240フラーレン、C540フラーレン、ミックスドフラーレン、フラーレンナノチューブ、およびこれらの一部が水素原子、ハロゲン原子、置換または無置換のアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アミノ基、アルキルアミノ基、ジアルキルアミノ基等によって置換されたフラーレン誘導体を挙げることができる。
 フラーレン誘導体としては、フェニル-C61-酪酸エステル、ジフェニル-C62-ビス(酪酸エステル)、フェニル-C71-酪酸エステル、フェニル-C85-酪酸エステルまたはチエニル-C61-酪酸エステルが好ましく、上記の酪酸エステルのアルコール部分の好ましい炭素数は1~30、より好ましくは1~8、さらに好ましくは1~4、最も好ましくは1である。
 好ましいフラーレン誘導体を例示すると、フェニル-C61-酪酸メチルエステル([60]PCBM)、フェニル-C61-酪酸n-ブチルエステル([60]PCBnB)、フェニル-C61-酪酸イソブチルエステル([60]PCBiB)、フェニル-C61-酪酸n-ヘキシルエステル([60]PCBH)、フェニル-C61-酪酸n-オクチルエステル([60]PCBO)、ジフェニル-C62-ビス(酪酸メチルエステル)(ビス[60]PCBM)、フェニル-C71-酪酸メチルエステル([70]PCBM)、フェニル-C85-酪酸メチルエステル([84]PCBM)、チエニル-C61-酪酸メチルエステル([60]ThCBM)、C60ピロリジントリス酸、C60ピロリジントリス酸エチルエステル、N-メチルフラロピロリジン(MP-C60)、(1,2-メタノフラーレンC60)-61-カルボン酸、(1,2-メタノフラーレンC60)-61-カルボン酸t-ブチルエステル、特開2008-130889号公報等のメタロセン化フラーレン、米国特許第7,329,709号明細書等の環状エーテル基を有するフラーレンが挙げられる。
 これらの中でも、N型有機半導体ユニットの基は、フラーレン構造を有する基、ベンゾビスイミダゾベンゾフェナントロリンや3,4,9,10-ペリレンテトラカルボン酸ジイミド構造を有する基が好ましい。
 ここで、3,4,9,10-ペリレンテトラカルボン酸ジイミド構造を有する基は、下記の基が好ましい。
Figure JPOXMLDOC01-appb-C000037
 *で表される結合手は、ポリマー主鎖/側鎖、単結合もしくは2価の連結基との連結箇所を示す。これらと結合しないものは水素原子または置換基と結合しており、該置換基としては後述の置換基Tが挙げられる。
 本発明のP型-N型連結有機半導体ポリマーにおいて、P型有機半導体ユニットの基とN型有機半導体ユニットのポリマー中の含有比は光電変換効率が最も高くなるように調整されるが、通常は、質量比で、10:90~90:10、好ましくは20:80~80:20、より好ましくは30:70~70:30の範囲から選ばれる。
(連結基)
 L、L、L、L、AもしくはAとBもしくはBを結合する連結基、LもしくはLとAもしくはAを結合する連結基、LとBを結合する連結基、およびAとBを結合する連結基について以下に説明する。
 L、LおよびLは、各々独立に、P型有機半導体ユニットとN型半導体ユニットのいずれをも含まない2価または3価の連結基を表し、2価もしくは3価の脂肪族基が好ましく、該脂肪族基は、-O-、-S-、-SO-、-SO-、-C(=O)-、-NR-もしくは、これらを組み合わせた基(例えば、-C(=O)-O-、-NRC(=O)-、-NRSO-)で脂肪族基中の脂肪族部分に挿入されていてもよい。ここで、Rは水素原子、アルキル基、アリール基またはヘテロ環基を表す。
 2価もしくは3価の脂肪族基は、直鎖、分岐または環状の脂肪族基が挙げられ、主鎖を構成する連結鎖には、炭素-炭素結合において二重結合や三重結合を有さないものが好ましい。また、これらの不飽和結合を有していても、これらが共役していないものが好ましい。なお、該脂肪族基は置換基で置換されてもよい。
 L、L、LおよびLは、好ましくは、下記の連結基群Aである。
Figure JPOXMLDOC01-appb-C000038
 ここで、R~Rは、それぞれ独立に水素原子または置換基を表す。該置換基としては後述の置換基Tが挙げられるが、水素原子、アルキル基、ハロゲン原子、パーフルオロアルキル基が好ましく、水素原子、アルキル基が特に好ましい。Rは、水素原子または置換基を表す。該置換基としては後述の置換基Tが挙げられるが、水素原子、アルキル基、ハロゲン原子、パーフルオロアルキル基が好ましく、水素原子、メチル基がより好ましく、水素原子が特に好ましい。これらは、(メタ)アクリル酸、そのエステルもしくはアミド、エポキシ環化合物、オキセタン環化合物から誘導されたものが好ましい。
 Lはさらに好ましくは、上記の*部分に、2価の連結基LLが結合したものが好ましい。連結基LLはAもしくはAとBもしくはB、LもしくはLとAもしくはAを結合する連結基、およびLとBを結合する2価の連結基と同義である。
 AもしくはAとBもしくはB、LもしくはLとAもしくはAを結合する連結基、およびLとBを結合する連結基はいずれも単結合または2価の連結基を介して結合するが、2価の連結基を介する方が好ましい。2価の連結基としては、アルキレン基、アリーレン基、-O-、-S-、-SO-、-SO-、-C(=O)-、-NR-もしくは、これらを組み合わせた基(例えば、-C(=O)-O-、-NRC(=O)-、-NRC(=O)-、-NRSO-)が好ましく、アルキレン基、-O-、-C(=O)-、-NR-もしくは、これらを組み合わせた基がより好ましい。ここで、Rは水素原子、アルキル基、アリール基またはヘテロ環基を表す。2価の連結基は置換基を有してもよい。該置換基としては、後述の置換基Tが挙げられ、アルキル基、アリール基、ヘテロ芳香環基、ヘテロ環基、水酸基が好ましく、アルキル基、アリール基がより好ましい。
 これらの中でも、AもしくはAとBもしくはB、LもしくはLとAもしくはAを結合する2価の連結基は下記のものが好ましい。ここで、*部分がAもしくはAと結合する部分である。
*-C(=O)O(CH)ma-OC(=O)-(CH)mb-C(R)<
*-(CH)mc-OC(=O)-(CH)mb-C(R)<
*-S(=O)(CH)ma-OC(=O)-(CH)mb-C(R)<
*-SONR(CH)ma-OC(=O)-(CH)mb-C(R)<
*-C(=O)NR(CH)ma-OC(=O)-(CH)mb-C(R)<
*-C(=O)O(CHCHO)ma-OC(=O)-(CH)mb-C(R)<
*-O(CH)ma-OC(=O)-(CH)mb-C(R)<
*-O(CHCHO)ma-CHCHOC(=O)-(CH)mb-C(R)<
*-C(=O)O(CH)ma-
*-SO(CH)ma-
*-C(=O)NR(CH)ma-
*-(CH)ma-
*-O(CH)ma-
-C(=O)O(CH)ma-OC(=O)-R-*-C(=O)O(CH)ma-OC(=O)-(CH)mc-CH=CHC<
*-C(=O)O(CH)ma-OC(=O)-R
*-C(=O)O(CH)ma-OC(=O)-(CH)mc-CH=CHC<
*-C(=O)O(CH)ma-OC(=O)-(CH)md-
*-SO(CH)ma-OC(=O)-(CH)md-
*-(CH)mc-N(R)-CHCH(OH)-CHO-(CH)md-
*-(CH)mc-N(R)-CHC(R)(R’)-CH(OH)-CHO-(CH)md-*-(CH)mc-OC(=O)-(CH)mb-
*-(CH)mc-N(R)-CHC(R)(R’)-CH(OH)-CHO-(CH)md-
*-(CH)mc-OC(=O)-(CH)mb-
*-C(=O)O(CH)ma-OC(=O)-
*-(CH)mc-OC(=O)-
*-(CH)mc-C(=O)O-
*-C(=O)O(CH)ma-OCH
*-SO(CH)ma-OCH
*-C(=O)NR(CH)ma-OCH
*-C(=O)O(CH)ma-OC(=O)-
*-SO(CH)ma-OC(=O)-
*-C(=O)NR(CH)ma-OC(=O)-
 ここで、Rは、水素原子、アルキル基、アリール基またはヘテロ環基を表し、Rはフェニル基、チエニル基を表し、RおよびR’は各々独立に、水素原子または置換基を表す。ma~mdは1~20の整数を表す。また、上記において、「CH」部分、CHCH(OH)-CHにおけるような「CH」部分は置換基を有してもよく、該置換基としては後述の置換基Tが挙げられるが、好ましくはアルキル基である。
 LとBを結合する2価の連結基、およびLにおける、上記連結基群Aの*部分に結合する2価の連結基LLとしては、以下の基が好ましい。下記の*部分が、L、上記連結基群Aの*部分と結合する部分である。
*-C(=O)O(CH)ma-OC(=O)-(CH)mb-C(R)<
*-C(=O)NRa(CH)ma-OC(=O)-(CH)mb-C(R)<
*-C(=O)O(CH)ma-OC(=O)-(CH)mc-CH=CHC<
*-CHO-(CH)ma-OC(=O)-(CH)mb-C(R)<
*-C(=O)O(CH)ma-O-(CH)mc-
*-OC(=O)-(CH)mb-C(R)<
*-C(=O)O(CH)ma-
*-C(=O)NRa(CH)ma-
*-C(=O)O(CH)ma-R
*-C(=O)NRa(CH)ma-R
 ここで、Rは、水素原子、アルキル基、アリール基またはヘテロ環基を表し、Rはフェニル基、チエニル基を表し、ma~mcは1~20の整数を表す。また、上記において、「CH」部分、CH=CHにおけるような「CH=」部分は置換基を有してもよく、該置換基としては後述の置換基Tが挙げられるが、このましくはアルキル基である。
 AとBは単結合または2価の連結基を介して結合するが、2価の連結基としては、アルキレン基、アルケニレン基、アリーレン基、-O-、-S-、-SO-、-SO-、-C(=O)-、-NR-もしくは、これらを組み合わせた基(例えば、-C(=O)-O-、-NRC(=O)-、-NRC(=O)-、-NRSO-)が好ましく、アルキレン基、アルケニレン基、アリーレン基、-O-、-C(=O)-、-NR-もしくは、これらを組み合わせた基がより好ましい。ここで、Rは水素原子、アルキル基、アリール基またはヘテロ環基を表す。2価の連結基は置換基を有してもよい。該置換基としては、後述の置換基Tが挙げられるが、アルキル基、アリール基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、ハロゲン原子が好ましい。
 より好ましい2価の連結基は、以下の基である。
Figure JPOXMLDOC01-appb-C000039
 ここで、RおよびRは各々独立に置換基を表し、該置換基としては後述の置換基Tが挙げられる。ndおよびneは各々独立に0~4の整数を表す。
 一般式(5)で表されるP型-N型連結有機半導体ポリマーは、下記のようなブロック共重合体がより好ましい。
Figure JPOXMLDOC01-appb-C000040
 ここで、A、B、uおよびvは一般式(5)におけるものと同義である。Labは単結合または2価の連結基を表す。xは1~1000の整数を表す。
 本発明のP型-N型連結有機半導体ポリマーの分子量は特に限定されないが、質量平均分子量で5,000~500,000が好ましく、10,000~100,000がより好ましい。
 分子量及び分散度は特に断らない限りGPC(ゲルろ過クロマトグラフィー)法を用いて測定した値とし、分子量はポリスチレン換算の質量平均分子量とする。GPC法に用いるカラムに充填されているゲルは芳香族化合物を繰り返し単位に持つゲルが好ましく、例えばスチレン-ジビニルベンゼン共重合体からなるゲルが挙げられる。カラムは2~6本連結させて用いることが好ましい。用いる溶媒は、テトラヒドロフラン等のエーテル系溶媒、クロロホルム等のハロゲン系溶媒、クロロベンゼン、1,2-ジクロロベンゼン等の芳香族系溶媒が挙げられる。測定は、溶媒の流速が0.1~2mL/minの範囲で行うことが好ましく、0.5~1.5mL/minの範囲で行うことが最も好ましい。この範囲内で測定を行うことで、装置に負荷がかからず、さらに効率的に測定ができる。測定温度は用いる溶媒によって適宜変更されるので限定できないが、10~200℃で行うことが好ましい。使用するカラム及び溶媒は測定対象となる高分子化合物の物性に応じて適宜選定することができる。
 以下に本発明のP型-N型連結有機半導体ポリマーの具体例を示すが、本発明はこれらに限定されるものではない。
 一般式(1)で表されるP型-N型連結有機半導体ポリマー
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
 一般式(2)で表されるP型-N型連結有機半導体ポリマー
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
一般式(3)で表されるP型-N型連結有機半導体ポリマー
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
一般式(4)で表されるP型-N型連結有機半導体ポリマー
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
一般式(5)で表されるP型-N型連結有機半導体ポリマー
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
<P型-N型連結有機半導体ポリマーの製造方法>
 本発明の一般式(1)~(5)で表されるP型-N型連結有機半導体ポリマーの製造方法を以下に説明する。
 本発明の一般式(1)~(5)で表されるP型-N型連結有機半導体ポリマーは、下記[A]~[E]の対応する各組合せの化合物により製造することができる。
 なお、本発明では、素子作成段階で、[C]および[D]を含有する有機半導体組成物を塗布後、加熱もしくは電子線照射して、一般式(3)もしくは(4)で表されるP型-N型連結有機半導体ポリマーの光電変換層を形成することも好ましい。
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
 ここで、[A]は、一般式(1a)で表される化合物と一般式(1b)で表される化合物との組合せであり、[B]は、一般式(1a)で表される化合物と一般式(2b)で表される化合物との組合せであり、[C]は、一般式(ab)で表される化合物と一般式(bb)で表される化合物との組合せであり、[D]は、一般式(ab)で表される化合物および一般式(4b)で表される化合物との組み合わせであり、[E]は、一般式(5a)と(5b)で表される化合物との組み合わせである。
 また、[A]および[B]における一般式(1a)で表される化合物は、AおよびAの少なくとも一つの結合手-*が、*-L-Zの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。[B]における一般式(2b)で表される化合物は、n個のBのうちのいずれか一つの結合手-*が、*-L-Zの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。[C]および[D]における一般式(ab)で表される化合物は、AおよびAの少なくとも一つの結合手-*が、*-L-Yの*部分もしくは*-L-Yの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。[D]における一般式(4b)で表される化合物は、n個のBのうちのいずれか一つの結合手-*が、*-L-Yの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。
 一般式中、A、A~A、B、B~B、l、l’、n、n’、s、uおよびvは前記一般式(1)~(5)における対応するA、A~A、B、B~B、l、l’、n、n’、s、uおよびvとそれぞれ同義である。L~Lは各々独立に単結合もしくは2価の連結基を表す。
 ZおよびZは各々独立に反応性官能基を表す。Z1a、Z1b、Z2aおよびZ2bは各々独立に水素原子または置換基を表すが、Z1aとZ1bの少なくとも一方、およびZ2aとZ2bの少なくとも一方は、反応性官能基である置換基である。Y~Yは各々独立に重合性の基を表す。
 ZとZとは、これらが反応して連結するのに必要な反応性官能基であり、Yの部分構造はLを形成し、Yの部分構造はLを形成し、Yの部分構造はLを形成し、Yの部分構造はLを形成する。また、Z1aもしくはZ1bはZ2aもしくはZ2bと反応して連結するのに必要な反応性官能基である。
 また、一般式(1a)、(2b)、(ab)および(4b)において、両側の結合末端は、各々独立に水素原子または1価の置換基が結合している。
 [A]、[B]の組合せにおいて、一般式(1a)におけるZ、一般式(1b)、(2b)におけるZは反応性官能基を表すが、これらは、ZとZが化学反応して新たな結合を形成するものであり、P型有機半導体ユニットやN型有機半導体ユニットそのものと反応しないものであればどのようなものでも構わない。
 好ましくは、求核反応、脱水反応で結合が形成できる基が好ましく、例えば、Z、Zの一方が水酸基、あるいはアミノ基、メルカプト基で、他方が-C(=O)Xa、-N=C=O、-CHXbが挙げられる。ここで、Xaは水酸基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アルコキシ基、アリールオキシ基、アシルオキシ基、アルカンスルホニルオキシ基、アリールスルホニルオキシ基を表し、Xbはハロゲン原子、あるいはアルカンスルホニルオキシ基、アリールスルホニルオキシ基を表す。水酸基はアルコール性の水酸基でもフェノール性の水酸基でも構わない。
 また、Z、Zの一方が水酸基、アミノ基、メルカプト基、エポキシ基またはオキセタン基で、他方がエポキシ基またはオキセタン基で、エポキシ環やオキセタン環の開環反応による化学結合も好ましい。
 これらの反応性官能基を使用する合成は、日本化学会編,「第4版実験化学講座」(丸善(株)発行),第22巻,45~47頁、同,第22巻,50~51頁、同,第20巻356~358頁、同,第20巻,187~191頁、特開2004-189840号公報に記載されており、これらの記載に準じて容易に合成することができる。
 一般式(1a)で表される化合物は、特に限定されず種々の公知の方法に従って製造でき、下記のように、一般式(1a-a)で表される化合物と一般式(1a-b)で表される化合物を、または一般式(1a-a’)で表される化合物と一般式(1a-b’)で表される化合物をパラジウム等の遷移金属触媒存在下重合させることによって製造できる。
 ここで、カップリング反応としては、例えばChemical Reviews,2002年,102巻,1358頁等に記載の方法を用いて合成することができる。すなわち、遷移金属触媒を使用した、亜鉛反応剤を用いる根岸カップリング、スズ反応剤を用いる右田-小杉-Stilleカップリング、ホウ素反応剤を用いる鈴木-宮浦カップリング、マグネシウム反応剤を用いる熊田-玉尾-Corriuカップリング、ケイ素反応剤を用いる檜山カップリングなどのクロスカップリングや、銅を使用したUllmann反応、ニッケルを使用した山本重合などを利用して合成することができる。遷移金属触媒としては、パラジウム、ニッケル、銅、コバルト、鉄(Journal of the American Chemical Society,2007年,129巻,9844頁記載)等の金属を使用することができる。また金属は配位子を有していても良く、PPh、P(t-Bu)などのリン配位子や、N-ヘテロサイクリックカルベン配位子(Angewandte Chemie International Edition,2002年,41巻,1290頁記載)等が好ましく用いられる。
 原料となるスズ反応剤やホウ素反応剤などの金属反応剤は、Organic Synthesis Collective Volume,11巻,2009年,393頁、同 9巻,1998年,553頁、Tetrahedron,1997年,53巻,1925頁、Journal of Organic Chemistry,1993年,58巻,904頁、特開2005-290001号公報、特表2010-526853号公報等の記載を参考にして合成することができる。反応はMacromolecular Rapid Communications,2007年,28巻,387頁に記載されているようにマイクロウェーブ照射下で行なってもよい。
Figure JPOXMLDOC01-appb-C000059
 ここで、A、Aおよびlは一般式(1a)の場合と同義であり、Mはトリアルキルスズ、ホウ酸(エステル)の基を表し、Xbはハロゲン原子、またはトリフルオロメタンスルホニルオキシ基を表す。一般式(1a-a)もしくは(1a-b)の*部分、または一般式(1a-a’)もしくは(1a-b’)の*部分には、いずれかに-L-Zが結合しており、結合していない結合手-*は水素原子または1価の置換基が結合している。
 Zが上記の重合反応に悪影響を及ぼす場合、この重合反応の前にZを保護し、重合反応後に脱保護することで製造できる。
 Lは単結合または2価の連結基を表す。2価の連結基としては、アルキレン基、アリーレン基、-O-、-S-、-SO-、-SO-、-C(=O)-、-NR-もしくは、これらを組み合わせた基(例えば、-C(=O)-O-、-NRC(=O)-、-NRC(=O)-、-NRSO-)が好ましく、アルキレン基、-O-、-C(=O)-、-NR-もしくは、これらを組み合わせた基がより好ましい。ここで、Rは水素原子、アルキル基、アリール基またはヘテロ環基を表す。2価の該脂肪族基は、-O-、-S-、-SO-、-SO-、-C(=O)-、-NR-もしくは、これらを組み合わせた基(例えば、-C(=O)-O-、-NRC(=O)-、-NRC(=O)-、-NRSO-)で脂肪族基中の脂肪族部分に挿入されていてもよい。ここで、Rは水素原子、アルキル基、アリール基またはヘテロ環基を表す。
 Lは、以下の基が好ましい。ここで、*はP型有機半導体ユニットの基と結合する部分である。
*-C(=O)O(CH)ma-
*-SO(CH)ma-
*-C(=O)NR(CH)ma-
*-C(=O)-
*-(CH)mc-
*-(CH)mc-OCH
*-O(CH)mc-
*-(CH)mc-C(=O)-
 ここで、ma~mdは1~20の整数を表す。
 一般式(2b)で表される化合物は、特に限定されず種々の公知の方法に従って製造できる。例えば、一般式(1a)で表される化合物と同様に、下記のように、一般式(2b-a)で表される化合物と一般式(2b-b)で表される化合物を、または一般式(2b-a’)で表される化合物と一般式(2b-b’)で表される化合物をパラジウム等の遷移金属触媒存在下重合させることによって製造できる。
Figure JPOXMLDOC01-appb-C000060
 ここで、B1、B、nおよびn’は一般式(2b)の場合と同義であり、Mはトリアルキルスズ、ホウ酸(エステル)の基を表し、Xbはハロゲン原子、またはトリフルオロメタンスルホニルオキシ基を表す。一般式(2b-a)または(2b-a’)の*部分には、-L-Zが結合している。
 Zが上記の重合反応に悪影響を及ぼす場合、この重合反応の前にZを保護し、重合反応後に脱保護することで製造できる。
 一般式(1b)、(2b)におけるLは単結合または2価の連結基を表す。2価の連結基としては、アルキレン基、アリーレン基、-O-、-S-、-SO-、-SO-、-C(=O)-、-NR-もしくは、これらを組み合わせた基(例えば、-C(=O)-O-、-NRC(=O)-、-NRC(=O)-、-NRSO-)が好ましく、アルキレン基、-O-、-C(=O)-、-NR-もしくは、これらを組み合わせた基がより好ましい。ここで、Rは水素原子、アルキル基、アリール基またはヘテロ環基を表す。2価の該脂肪族基は、-O-、-S-、-SO-、-SO-、-C(=O)-、-NR-もしくは、これらを組み合わせた基(例えば、-C(=O)-O-、-NRC(=O)-、-NRC(=O)-、-NRSO-)で脂肪族基中の脂肪族部分に挿入されていてもよい。ここで、Rは水素原子、アルキル基、アリール基またはヘテロ環基を表す。
 Lは、以下の基が好ましい。ここで、*はN型有機半導体ユニットの基と結合する部分である。
*-C-(CH)ma-
*-C-C(=O)-
*-(CH)mc-
*-(CH)mc-OCH
*-(CH)mc-C(=O)-
 ma~mcは1~20の整数を表す。
 以下に、一般式(1a)で表される化合物の具体例を示すが、これによって本発明が限定されるものではない。
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
 以下に一般式(1b)で表される化合物の具体例を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
 以下に一般式(2b)で表される化合物の具体例を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000068
 一般式(3)で表される化合物は、一般式(ab)で表される化合物と一般式(bb)で表される化合物を重合することで合成できる。また一般式(4)で表される化合物は、一般式(ab)で表される化合物と一般式(4b)で表される化合物を重合することで合成できる。
 一般式(ab)で表される化合物や一般式(4b)で表される化合物は、前記一般式(1a)や(2b)と同様にして合成することができる。ただし、Y、Y が一般式(ab)および(4b)の合成条件において、重合してしまう場合、Y、Y は、一般式(ab)および(4b)のポリマー主鎖形成後に導入することが好ましい。
 ここで、Y~Yは各々独立に重合性の基を表し、エチレン性不飽和基やエポキシ基、オキセタン基が好ましい。エチレン性不飽和基としては、ビニル基、ビニルエーテル基、(メタ)アクリル酸やそのエステルやアミドから誘導される基が好ましく、これらは置換基を有してもよい。例えば、ハロゲン原子が置換した、2-トリフルオロメチルアクリル酸やそのエステルやアミドから誘導される基が挙げられる。
 L、LおよびLは単結合もしくは2価の連結基を表す。2価の連結基としては、アルキレン基、アリーレン基、-O-、-S-、-SO-、-SO-、-C(=O)-、-NR-もしくは、これらを組み合わせた基(例えば、-C(=O)-O-、-NRC(=O)-、-NRC(=O)-、-NRSO-)が好ましく、アルキレン基、-O-、-C(=O)-、-NR-もしくは、これらを組み合わせた基がより好ましい。ここで、Rは水素原子、アルキル基、アリール基またはヘテロ環基を表す。2価の該脂肪族基は、-O-、-S-、-SO-、-SO-、-C(=O)-、-NR-もしくは、これらを組み合わせた基(例えば、-C(=O)-O-、-NRC(=O)-、-NRC(=O)-、-NRSO-)で脂肪族基中の脂肪族部分に挿入されていてもよい。ここで、Rは水素原子、アルキル基、アリール基またはヘテロ環基を表す。
 LおよびLは、好ましくは下記の基である。*部分とP型有機半導体ユニットの基と結合する。
*-C(=O)O(CH)ma-OC(=O)-
*-(CH)ma-NRC(=O)-
*-O(CH)ma-OC(=O)-
*-SO(CH)ma-OC(=O)-
*-C(=O)NR(CH)ma-OC(=O)-
*-(CH)mc-OC(=O)-
*-C(=O)O(CH)ma-OCH
*-C(=O)O(CHCHO)me-CHCHOC(=O)-
 ここで、Rは、水素原子、アルキル基、アリール基またはヘテロ環基を表し、ma、mcおよびmeは1~20の整数を表す。
 また、Lが、Bとの結合部分として含む前述の2価の連結基LLとしては、好ましくは下記の基である。*部分とN型有機半導体ユニットの基と結合する。
*>C(R)-(CH)mb-C(=O)O(CH)ma-OC(=O)-
*-(CH)mb-OC(=O)-
*-R-(CH)mb-OC(=O)-
*>CH-CH=CH-(CH)mc-C(=O)O(CH)ma-OC(=O)-
*-(CH)mb-NRC(=O)-
*-R-(CH)mb-OC(=O)-
 ここで、Rは、水素原子、アルキル基、アリール基またはヘテロ環基を表し、Rはフェニル基、チエニル基を表し、ma~mcは1~20の整数を表す。
 Lは、好ましくは下記の基である。*部分とN型有機半導体ユニットの基と結合する。
*-(CH)mb-OC(=O)-
*-(CH)mb-NRC(=O)-
*-(CH)ma-O-CH
*-(R)ma-(CH)mb-
*-(R)ma-(CH)mb-O-CH
 ここで、Rは、水素原子、アルキル基、アリール基またはヘテロ環基を表し、Rはフェニル基、チエニル基を表し、ここで、ma、mbは1~20の整数を表す。
 これらの重合方法は、特に限定されず、種々の公知の方法にしてしたがって行うことができる。不飽和結合性重合性基を有する場合は、例えば、特開2002-69331号公報、エポキシおよびオキセタン基を有する場合は、例えば、特開2004-189840号公報に記載の方法に従って重合させることができる。
 以下に、一般式(ab)で表される化合物の具体例を例示するが、これによって本発明が限定されるものではない。
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
 一般式(bb)で表される化合物の具体例を例示するが、これによって本発明が限定されるものではない。
Figure JPOXMLDOC01-appb-C000074
 一般式(4b)で表される化合物の具体例を例示するが、これによって本発明が限定されるものではない。
Figure JPOXMLDOC01-appb-C000075
 一般式(5)で表される化合物は、種々公知の方法に従って製造できる。例えば、一般式(5)で表される化合物は、一般式(5a)で表される化合物と一般式(5b)で表される化合物を反応させることにより製造できる。
 一般式(5a)、(5b)におけるZ1a、Z1b、Z2aおよびZ2bは各々独立に水素原子または置換基を表すが、Z1aとZ1bの少なくとも一方、およびZ2aとZ2bの少なくとも一方は、反応性官能基である置換基である。置換基としては後述の置換基Tが挙げられる。
 反応性官能基としては、Z1aとZ2aもしくはZ2bとの反応、Z1bとZ2aもしくはZ2bとの反応において、好ましくは、求核反応、脱水反応で結合が形成できる基が好ましく、例えば、一方が水酸基で、他方が-C(=O)Xa、-N=C=O、-CHXbが挙げられる。ここで、Xaは水酸基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アルコキシ基、アリールオキシ基、アシルオキシ基、アルカンスルホニルオキシ基、アリールスルホニルオキシ基を表し、Xbはハロゲン原子、アルカンスルホニルオキシ基、アリールスルホニルオキシ基を表す。水酸基はアルコール性の水酸基でもフェノール性の水酸基でも構わない。
 また、一方が水酸基、アミノ基、カルボキシル基、メルカプト基、エポキシ基またはオキセタン基で、他方がエポキシ基またはオキセタン基で、エポキシ環やオキセタン環の開環反応による化学結合も好ましい。
 さらに、一方が、ビニル基またはエチニル基で、他方がハロアレーン基(-Ar-Xb;Arはアリーレン基を表し、Xbはハロゲン原子、またはとフルオロメタンスルホニルオキシ基を表す)による炭素炭素結合形成反応が挙げられる。
 L~Lは単結合または2価の連結基を表すが、L~Lにおける2価の連結基としては、アルキレン基、アリーレン基、-O-、-S-、-SO-、-SO-、-C(=O)-、-NR-もしくは、これらを組み合わせた基(例えば、-C(=O)-O-、-NRC(=O)-、-NRC(=O)-、-NRSO-)が好ましく、アルキレン基、-O-、-C(=O)-、-NR-もしくは、これらを組み合わせた基がより好ましい。ここで、Rは水素原子、アルキル基、アリール基またはヘテロ環基を表す。2価の該脂肪族基は、-O-、-S-、-SO-、-SO-、-C(=O)-、-NR-もしくは、これらを組み合わせた基(例えば、-C(=O)-O-、-NRC(=O)-、-NRC(=O)-、-NRSO-)で脂肪族基中の脂肪族部分に挿入されていてもよい。ここで、Rは水素原子、アルキル基、アリール基またはヘテロ環基を表す。
 ここで、L~Lにおける2価の連結基は、下記の基が好ましい。*部分がP型もしくはN型有機半導体ユニットの基と結合する部分である。
*-CH=CH-
*-C(=O)O-
*-C(=O)-
*-C
*-CH-Ar-CH
*-CH-Ar-CHO-Ar-
 ここで、Arは置換基を有していてもよい、2価のアリール基を表し、該置換基としては後述の置換基Tが挙げられる。
 これらの反応性官能基を使用する合成は、日本化学会編,「第4版実験化学講座」(丸善(株)発行),第22巻,45~47頁、同,第22巻,50~51頁、同,第20巻356~358頁、同,第20巻,187~191頁、同,第4巻,124~129頁、同,第5巻,298~300頁、特開2004-189840号公報に記載されており、これらの記載に準じて合成することができる。
 一般式(5a)で表される化合物の具体例を例示するが、これによって本発明が限定されるものではない。
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
 一般式(5b)で表される化合物の具体例を例示するが、これによって本発明が限定されるものではない。
Figure JPOXMLDOC01-appb-C000078
 本発明のP型-N型連結有機半導体ポリマーの前駆体としては、前記一般式(1a)、(ab)または(5a)で表される化合物が好ましい。
 これらのなかでも、前記一般式(ab)または(5a)で表される化合物もしくは有機半導体ポリマーが好ましい
(置換基T)
 本明細書において化合物やポリマー(重合体)〔有機半導体ポリマーを含む〕については、当該化合物やポリマーそのもののほか、その塩、錯体、そのイオンの状態にあるものを含む意味に用いる。また、所望の効果を奏する範囲で、所定の形態で修飾された誘導体を含む意味である。また、本明細書において置換・無置換を明記していない置換基(連結基を含む)については、その基に任意の置換基を有していてもよい意味である。これは置換・無置換を明記していない化合物やポリマーについても同義である。
 また、本発明における置換基は、1価の置換基とも記載される。
 好ましい置換基としては、下記置換基Tが挙げられる。
 置換基Tとしては、下記のものが挙げられる。
 アルキル基(好ましくは炭素原子数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素原子数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素原子数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素原子数3~20のシクロアルキル基で、3~7員環が好ましく、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等)、アリール基(好ましくは炭素原子数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは、環構成原子として、少なくとも1つの酸素原子、窒素原子、硫黄原子、ケイ素原子を含み、炭素原子数2~20のヘテロ環基で、さらに好ましくは5または6員環で他の環と縮環していてもよく、例えば、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル等)、アルコキシ基(好ましくは炭素原子数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素原子数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、
アルチオ基(好ましくは炭素原子数1~20のアルチオ基、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、アリールチオ基(好ましくは炭素原子数6~26のアリールチオ基、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、アルコキシカルボニル基(好ましくは炭素原子数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アリールオキシカルボニル基(好ましくは炭素原子数6~20のアリールオキシカルボニル基で、例えば、フェノルオキシカルボニル、ナフチルオキシカルボニル等)、アミノ基(好ましくは炭素原子数0~20のアミノ基で、アミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルホンアミド基(好ましくは炭素原子数0~20のスルホンアミド基、例えば、N,N-ジメチルスルホンアミド、N-フェニルスルホンアミド等)、アシルオキシ基(好ましくは炭素原子数1~20のアシルオキシ基、例えば、アセチルオキシ、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素原子数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素原子数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、アシル基(好ましくは炭素原子数1~20のアシル基で、例えば、ホルミル、アセチル、ピバロイル、ステアロイル、アクリロイル、メタクリロイル、ベンゾイル等)、
アシルオキシ基(好ましくは炭素原子数1~20のアシルオキシ基、例えば、ホルミルオキシ、アセチルオキシ、ピバロイルオキシ、アクリロイルオキシ、ベンゾイルオキシ等)、スルホニル基(好ましくはアルキルもしくはアリールスルホニル基で、アルキルスルホニル基の場合、炭素原子数1~20、アリールスルホニル基の場合、炭素原子数6~20が好ましく、例えば、メタンスルホニル、オクタンスルホニル、ヘキサでカンスルホニル、ベンゼンスルホニル、トルエンスルホニル)、シリル基(好ましくは炭素原子数1~20のシリル基で、例えば、テトラメチルシリル、ジメチルフェニルシリル、トリメトキシシリル等)、シアノ基、水酸基、カルボキシル基、スルホ基またはハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)であり、より好ましくはアルキル基、アルケニル基、アリール基、ヘテロ環基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アシル基、スルホニル基、アミノ基、アシルアミノ基、シアノ基またはハロゲン原子(ポリマー末端にモノマー由来のトリアルキルスズ基やホウ酸(エステル)基が残存する可能性があるので加えて下さい)であり、特に好ましくはアルキル基、アルケニル基、アリール基、ヘテロ環基、アルコキシ基、アルコキシカルボニル基、アシル基、スルホニル基、アミノ基、アシルアミノ基、シアノ基またはハロゲン原子が挙げられる。
<有機光電変換素子組成物>
 本発明の有機光電変換素子組成物に関して説明する。
 本発明の第一の態様は、本発明の有機光電変換素子組成物は、少なくとも前記一般式(1)~(5)のいずれかで表されるP型-N型連結有機半導体ポリマーを含有する。
 本発明の第二の態様は、前記[A]~[E]のいずれかの組合せの有機半導体ポリマーもしくは化合物を含有する。
 本発明の第三の態様は、前記一般式(1a)、(ab)または(5a)のいずれかで表される化合物もしくは有機半導体ポリマーを含有する。この場合、なかでも前記一般式(ab)または(5a)で表される化合物もしくは有機半導体ポリマーが好ましい。
 P型-N型連結有機半導体ポリマーの含有量は特に限定されないが、組成物全量の質量(好ましくは全固形分質量)を100としたとき、ポリマー(好ましくはポリマーの固形分質量)を0.01~90質量%含有させることが好ましく、0.05~50質量%含有させることがより好ましく、0.1~30質量%含有させることが特に好ましい。
 なお、本発明において組成物とは、2以上の成分が特定の組成で実質的に均一に存在していることを言う。ここで実質的に均一とは発明の作用効果を奏する範囲で各成分が偏在していていもよいことを意味する。また、組成物とは上記の定義を満たす限り形態は特に限定されず、流動性の液体やペーストに限定されず、複数の成分からなる固体や粉末等も含む意味である。さらに、沈降物があるような場合でも、攪拌により所定時間分散状態を保つようなものも組成物に含む意味である。
 本発明の有機光電変換素子組成物は、上記の本発明の有機半導体ポリマーもしくは化合物に加えて、必要によっては、従来のP型半導体ポリマーもしくは化合物やN型半導体ポリマーもしくは化合物を併用してもよい。
 これらの半導体ポリマーもしくは化合物は、本発明のN型有機半導体ユニットの基、P型有機半導体ユニットの基で挙げた基を有する化合物およびそのポリマーが挙げられ、好ましい範囲も同じである。ここで、これらの半導体化合物は、本発明における一般式(1)~(5)に記載のポリマーの部分構造と同一であっても異なっていてもよい。
 従来のP型半導体化合物としては、縮合多環芳香族低分子化合物としては、例えば、アントラセン、テトラセン、ペンタセン、ヘキサセン、ヘプタセン、クリセン、ピセン、フルミネン、ピレン、ペロピレン、ペリレン、テリレン、クオテリレン、コロネン、オバレン、サーカムアントラセン、ビスアンテン、ゼスレン、ヘプタゼスレン、ピランスレン、ビオランテン、イソビオランテン、サーコビフェニル、アントラジチオフェン等の化合物、ポルフィリンや銅フタロシアニン等が挙げられる。
 従来のN型半導体化合物としては、フラーレンもしくはその誘導体に加え、例えば、オクタアザポルフィリン等、P型有機半導体化合物の水素原子をフッ素原子に置換したパーフルオロ体(例えば、パーフルオロペンタセンやパーフルオロフタロシアニン)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物やそのイミド化物を骨格として含む高分子化合物等を挙げることができる。
<光電池>
 本発明のP型-N型連結有機半導体ポリマーもしくは化合物、有機光電変換素子組成物およびこれを含有してなる薄膜は、光電池、特に有機薄膜太陽電池として有用である。
 図1は、本発明の光電池、特に有機薄膜太陽電池の一例を模式的に示した側面図である。本実施形態の太陽電池10は、P型-N型連結有機半導体ポリマーを含有する有機光電変換素子組成物を含む光電変換層3を具備する。
 本実施形態の特に好ましい有機薄膜太陽電池においては、光電変換層3は、P型-N型連結有機半導体ポリマーで構成され、P型連結有機半導体ユニットのP型半導体相(電子供与性相)と、P型連結有機半導体ユニットのN型半導体相(電子受容性相)がミクロ相分離構造を形成している。この光電変換層3は、第一の電極11と第二の電極12の間に設けられる。本発明においては、第一の電極と光電変換層の間にホール輸送層21を設けるのが好ましく、また第二の電極と光電変換層の間に電子輸送層22を設けることが好ましい。これらのホール輸送層や電子輸送層を設けることにより、光電変換層で発生した電荷をより効率的に取り出すことが可能となる。なお、本実施形態の太陽電池においてその上下の区別は特に重要ではないが、便宜的に必要により、第1電極11側を「上」もしくは「天」側と位置づけ、第2電極12側を「下」もしくは「底」側と位置づける。
 ミクロ相分離構造は、電子供与性相あるいは電子受容性相からなる各相のドメインサイズが、数nm~数百nm程度(通常1~500nm程度)の相分離構造を有するものを言うが、ドメインサイズは、電子顕微鏡や、走査型プローブ顕微鏡等により測定することができる。さらには、本発明のP型-N型連結有機半導体ポリマーから形成される薄膜では、ミクロ相分離構造のドメインサイズがエキシトン拡散長の10倍以内、好ましくは5倍以内、さらに好ましくは1倍以内であることが好ましい。なお、エキシトン拡散長とは、光吸収により生成したエキシトンの量が1/eになる間に、エキシトンが拡散する距離のことである。その値は、P型-N型連結有機半導体ポリマーを構成する各ユニットからなるポリマーもしくはオリゴマーのフォトルミネッセント消光を、その膜厚の関数として測定することで得ることができる。
 測定されたエキシトン拡散長は、P型半導体相とN型半導体相で異なる値を取るが、一般には数10nm程度の値を取る。さらには、本発明のブロック共重合体から形成される薄膜では、当該薄膜が形成するミクロ相分離構造のドメイン構造が連続層あるいは量子井戸構造であることが好ましい。ここで、ドメイン構造が連続層であるということは例えば、国際公開第03/075364A1号パンフレットの図2のように、P型-N型連結有機半導体ポリマー中の、P型半導体相とN型半導体相からなる各々のドメイン構造のどちらかが、連続的につながっている構造を言う。また、ドメイン構造が量子井戸構造であるということは、例えば、国際公開第03/075364A1号パンフレットの図3のように、P型-N型連結有機半導体ポリマー中の、P型半導体相もしくはN型半導体相からなる各々のドメイン構造が交互積層構造になっている状態を言う。
(薄膜および光電変換層)
 本発明の有機光電変換素子組成物は、薄膜の形成、特に光電変換層の塗工用組成物として好ましく使用される。このような薄膜の形成、や光電変換層の形成方法は、例えば、蒸着法や溶媒を用いて溶剤塗布することによって作製することができるが、塗布法が好ましい。溶媒としては、トルエン、キシレン、メシチレン等の芳香族炭化水素系溶媒、テトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒、クロロホルム、ジクロロメタン、ジクロロエタン、テトラクロロエタン等のハロゲン溶媒、クロロベンゼン、o-ジクロロベンゼン等の芳香族ハロゲン溶媒等が挙げられるが、芳香族ハロゲン溶媒が好ましい。本発明の有機光電変換素子組成物は、さらに1,8-ジヨードオクタンや、1,8-オクタンジチオールなどの添加剤を含んでいてもよい。溶液組成物中のP型-N型連結有機半導体ポリマーの含有量は、ポリマーによって適宜変更されるため、特に限定されないが、溶液組成物全量の質量を100としたとき、ポリマーを0.01~50質量%含有させることが好ましく、0.05~25質量%含有させることがより好ましい。
 ここで、光電変換層における本発明のP型-N型連結有機半導体ポリマーのP型有機半導体部分とN型有機半導体部分の相分離促進、光電変換層に含まれる有機材料の結晶化、電子輸送層の透明化などを目的として、種々の方法で加熱処理(アニール)してもよい。蒸着等の乾式製膜法の場合は、例えば、製膜中の基板温度を50℃~150℃に加熱する方法がある。印刷や塗布等の湿式製膜法の場合は、塗布後の乾燥温度を50℃~150℃とする方法などがある。また、後の工程、例えば、金属負極の形成が終了した後に50℃~150℃に加熱してもよい。相分離が促進されることで、キャリア移動度が向上し、高い光電変換効率を得ることができることがある。
(電極)
 本発明に関わる光電変換素子においては、少なくとも第一の電極と第二の電極を有する。第一の電極と第二の電極は、いずれか一方が正極で、残りが負極となる。また、タンデム構成をとる場合には中間電極を用いることでタンデム構成を達成することができる。なお、本発明においては主に正孔(ホール)が流れる電極を正極と称し、主に電子が流れる電極を負極と称す。また透光性があるかどうかといった機能面から、透光性のある電極を透明電極と称し、透光性のない電極を対電極または金属電極と称す。通常、正極は透光性のある透明電極であり、負極は透光性のない対電極または金属電極であるが、負極を透明電極とし、正極を対電極または金属電極とすることもできる。また、第一の電極と第二の電極の両方を透明電極とすることもできる。
(第一の電極)
 第一の電極は、正極であり、太陽電池の場合、好ましくは可視光から近赤外光(380~800nm)の光を透過する透明電極である。材料としては、例えば、インジウムチンオキシド(ITO)、SnO、ZnO等の透明導電性金属酸化物、金属ナノワイヤー、カーボンナノチューブ等を用いることができる。銀等の金属をメッシュ状にして、光の透過性を確保したメッシュ電極を用いることもできる。また、ポリピロール、ポリアニリン、ポリチオフェン、ポリチエニレンビニレン、ポリアズレン、ポリイソチアナフテン、ポリカルバゾール、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリフェニルアセチレン、ポリジアセチレンおよびポリナフタレンの各誘導体からなる群より選ばれる導電性ポリマー等も用いることができる。また、これらの導電性化合物を複数組み合わせて正極とすることもできる。なお、光透過性が要求されない場合は、ニッケル、モリブデン、銀、タングステン、金等の金属材料によって正極を形成してもよい。透明な太陽電池とする場合は、正極の透過率は、太陽電池に使用する厚さ(例えば、0.2μmの厚さ)で、波長380nm~800nm領域における平均光透過率が75%以上であることが好ましく85%以上であることがより好ましい。
(第二の電極)
 本発明の第二の電極は負極であり、標準電極電位が正値である金属負極である。
 負極は導電材単独層であってもよいが、導電性を有する材料に加えて、これらを保持する樹脂を併用してもよい。負極の導電材としては、仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物およびこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子の取り出し性能及び酸化等に対する耐久性の点から、これら金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。負極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。
 負極の導電材として金属材料を用いれば負極側に到達した光は第一の電極側に反射され、この光が再利用可能となり、光電変換層で再度吸収され、より光電変換効率が向上し好ましい。また、負極は、金属(例えば金、銀、銅、白金、ロジウム、ルテニウム、アルミニウム、マグネシウム、インジウム等)、炭素からなるナノ粒子、ナノワイヤー、ナノ構造体であってもよく、ナノワイヤーの分散物であれば、透明で導電性の高い負極を塗布法により形成でき好ましい。
 また、負極側を光透過性とする場合は、例えば、アルミニウムおよびアルミニウム合金、銀および銀化合物等の負極に適した導電性材料を薄く1~20nm程度の膜厚で作製した後、上記正極の説明で挙げた導電性光透過性材料の膜を設けることで、光透過性負極とすることができる。また、ITO/電子輸送層/光電変換層/ホール輸送層/正極のような逆構成にしても負極を透明にすることができる。
(ホール輸送層)
 本発明においては、第一の電極と光電変換層の間にホール輸送層を設けるのが好ましい。
 ホール輸送層を形成する導電性ポリマーとしては、例えば、ポリチオフェン、ポリピロール、ポリアニリン、ポリフェニレンビニレン、ポリフェニレン、ポリアセチレン、ポリキノキサリン、ポリオキサジアゾール、ポリベンゾチアジアゾール等や、これら導電骨格を複数有するポリマー等が挙げられる。
 これらのなかではポリチオフェンおよびその誘導体が好ましく、ポリエチレンジオキシチオフェン、ポリチエノチオフェンが特に好ましい。これらのポリチオフェンは導電性を得るために、通常、部分酸化されている。導電性ポリマーの電気伝導率は部分酸化の程度(ドープ量)で調節することができ、ドープ量が多いほど電気伝導率が高くなる。部分酸化によりポリチオフェンはカチオン性となるので、電荷を中和するための対アニオンを要する。そのようなポリチオフェンの例としては、ポリスチレンスルホン酸を対イオンとするポリエチレンジオキシチオフェン(PEDOT-PSS)やp-トルエンスルホン酸を対アニオンとするポリエチレンジオキシチオフェン(PEDOT-TsO)が挙げられる。
(電子輸送層)
 本発明においては、第二の電極と光電変換層の間に電子輸送層を設けることが好ましく、第一の電極と光電変換層の間にホール輸送層を設け、かつ光電変換層と第二の電極の間に電子輸送層を設けるのが特に好ましい。
 電子輸送層に用いることのできる電子輸送材料としては、上述の通常のN型半導体化合物および、ケミカルレビュー第107巻,953~1010頁(2007年)にElectron-Transporting and Hole-Blocking Materialsとして記載されているものが挙げられる。本発明においては、無機塩や無機酸化物を使用することが好ましい。無機塩としては、フッ化リチウム、フッ化ナトリウム、フッ化セシウム等のアルカリ金属化合物等が好ましい。各種金属酸化物は安定性が高い電子輸送層の材料として好ましく利用され、例えば、酸化リチウム、酸化マグネシウム、酸化アルミニウム、酸化カルシウム、酸化チタン、酸化亜鉛、酸化ストロンチウム、酸化ニオブ、酸化ルテニウム、酸化インジウム、酸化亜鉛、酸化バリウムが挙げられる。これらのうち比較的に安定な酸化アルミニウム、酸化チタン、酸化亜鉛がより好ましい。電子輸送層の膜厚は0.1~500nmであり、好ましくは0.5~300nmである。電子輸送層は、塗布などによる湿式製膜法、蒸着やスパッタ等のPVD法による乾式製膜法、転写法、印刷法など、いずれによっても好適に形成することができる。
 なお、光電変換層に用いられるP型半導体化合物、本発明においてはP型-N型連結有機半導体ポリマーもしくは有機半導体ポリマーのP型有機半導体部分のHOMO準位よりも深いHOMO準位を有する電子輸送層には、光電変換層で生成した正孔(ホール)を負極側には流さないような整流効果を有する、正孔(ホール)ブロック機能が付与される。より好ましくは、N型半導体化合物、本発明においてはP型-N型連結有機半導体ポリマーのN型有機半導体部分のHOMO準位よりも深い材料を電子輸送層として用いることである。また、電子を輸送する特性から、電子移動度の高い化合物を用いることが好ましい。このような電子輸送層は、正孔(ホール)ブロック層とも称し、このような機能を有する電子輸送層を使用するほうが好ましい。このような材料としては、バソキュプロイン等のフェナントレン系化合物、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等のN型半導体化合物、および酸化チタン、酸化亜鉛、酸化ガリウム等のN型無機酸化物及びフッ化リチウム、フッ化ナトリウム、フッ化セシウム等のアルカリ金属化合物等を用いることができる。また、通常の上述のN型半導体化合物単体からなる層を用いることもできる。
(支持体)
 本発明の光電池を構成する支持体は、その上に少なくとも第一の電極(正極)、光電変換層、第二の電極(金属負極)、より好ましい態様では、第一の電極(正極)、ホール輸送層、光電変換層、電子輸送層、第二の電極(金属負極)を形成して保持することができるものであれば特に限定されず、例えば、ガラス、プラスチックフィルムなど、目的に応じて適宜選択しうる。
 その他、常用のものを適用して、易接着層/下塗り層、機能性層、再結合層、その他の半導体層、保護層、ガスバリア層、UV吸収層等を配設してもよい。
<光電池以外の用途>
 本発明のP型-N型連結有機半導体ポリマーもしくは化合物は、光電池以外の素子やシステムに使用することができる。例えば、電界効果トランジスタ、光検出器(例えば、赤外光検出器)、光起電力検出器、撮像素子(例えば、カメラまたは医用画像撮影システムのRGB撮像素子)、発光ダイオード(LED)(例えば、有機LED、または赤外もしくは近赤外LED)、レーザー素子、変換層(例えば、可視発光を赤外発光に変換する層)、電気通信用の増幅器兼放射器(例えば、ファイバ用ドープ剤)、記憶素子(例えば、ホログラフィック記憶素子)、並びにエレクトロクロミック素子(例えば、エレクトロクロミックディスプレイ)のような好適な有機半導体素子に、これらのポリマーを使用することができる。
 以下に本発明を具体的に説明する実施例を示すが、本発明はこれらによって限定されるものではない。
 ここでは、プロトン核磁気共鳴法はH-NMR、サイズ排除クロマトグラフィー(Size Exclusion Chromatography)をSECと記す。H-NMRではテトラメチルシラン(TMS)を内部標準として用いて測定を行った。SECは、ポリスチレンスタンダードを標準物質として用いて測定を行った。また、紫外可視吸収スペクトルは測定溶媒クロロホルムにより測定した。
[実施例1]
P型-N型連結有機半導体ポリマー(1-9)の合成
 以下の反応スキームで有機半導体ポリマー(1-6)およびフラーレン(1-8)を合成した。
Figure JPOXMLDOC01-appb-C000079
1)ポリマー(1-4)の合成
 化合物(1-1)105mg(0.139mmol)、化合物(1-2)65.5mg(0.139mmol)、化合物(1-3)214mg(0.277mmol)およびテトラキス(トリフェニルホスフィン)パラジウム13.9mgを、冷却管を備えた25mLフラスコにとり、アルゴン置換した。トルエン(脱水)4.5mLおよびN,N-ジメチルホルムアミド(脱水)1.1mLを加え、120℃で12時間反応させた。放冷後、反応液をメタノール500mLに注ぎ、30分攪拌した。固体を濾取し、減圧下乾燥させた後、クロロホルム20mLに溶解させセライト濾過した。濾液を濃縮し、クロロホルム20mLに溶解後、メタノール500mLに加えて晶析した。濾取後、減圧下乾燥することにより、ポリマー(1-4)を200mg(収率81.6%)得た。
 SEC(溶媒テトラヒドロフラン)により、得られたポリマー(1-4)のMwは8.1×10、Mnは4.5×10であった。
ポリマー(1-4):H-NMR(CDCl);δ[ppm]=0.80-2.20(96H)、3.60-4.70(14H)、7.20-7.90(14H)。λmax=670nm、Tg>300℃(分解)
2)ポリマー(1-5)の合成
 ポリマー(1-4)450mgを3口フラスコにとり、テトラヒドロフラン(脱水)200mLに溶解させた。氷冷後、酢酸6.10g(102mmol)および1mol/Lテトラブチルアンモニウムフルオリド(テトラヒドロフラン溶液)51mL(51mmol)を加え、室温で20時間攪拌した。反応液を水1.5Lにあけ、30分攪拌後、濾取した。濾取物をメタノールで洗浄後、減圧乾燥した。得られた固体を、シリカゲルカラムクロマトグラフィーにより精製後、クロロホルム-メタノールで晶析することにより、ポリマー(1-5)を380mg(収率97.4%)得た。
 得られたポリマー(1-5)のMwは7.8×10、Mnは4.2×10であった。
ポリマー(1-5):H-NMR(CDCl);δ[ppm]=0.80-2.20(87H)、3.60-4.70(14H)、7.20-7.90(4H)。λmax=670nm、Tg>300℃(分解)
3)ポリマー(1-6)の合成
 ポリマー(1-5)50mgを3口フラスコにとり、ジクロロメタン10mLに溶解させた。ニトロベンゼン10mg、トリエチルアミン496mg(4.91mmol)を加えた。氷冷下、アクリル酸クロリド296mg(3.27mmol)を加え、室温で8時間攪拌した。反応液を、アセトニトリル500mLにあけ、30分攪拌後、濾取した。得られた固体を、シリカゲルカラムクロマトグラフィーにより精製後、クロロホルム-メタノールで晶析することにより、ポリマー(1-6)を30mg(収率58.0%)得た。
 得られたポリマー(1-6)のMwは7.9×10、Mnは4.3×10であった。
ポリマー(1-6):H-NMR(CDCl);δ[ppm]=0.80-2.20(87H)、3.60-4.70(14H)、5.75-5.90(1H)、6.05-6.30(1H)、6.30-6.52(1H)、7.20-7.90(4H)。λmax=670nm、Tg>300℃(分解)
4)フラーレン(1-8)の合成
 Adv.Mater.,20,2211(2008)に記載の方法に従って合成したフラーレン(1-7)100mg(0.109mmol)をガラス製反応容器にとり、ピリジン10mLに溶解させた。氷冷下、4-ヒドロキシブチルアクリレート150mg(1.04mmol)を加え、室温で12時間攪拌した。反応溶液をアセトニトリル500mLにあけ、30分攪拌後、濾取した。得られた固体を、シリカゲルカラムクロマトグラフィーにより精製することにより、(1-8)を83mg(0.0811mmol、収率74.4%)得た。
5)素子の作成
 洗浄およびUV-オゾン処理したガラス-ITO基板上に、ホール輸送層として使用するPEDOT-PSS(H.C.Stark社CleviosP VP AI4083)をスピンコート(3000rpm)し、140℃で30分間乾燥した。ポリマー(1-6)10mgとフラーレン(1-8)15mgの混合物を1mLのo-ジクロロベンゼンに溶解させ、0.45μmのポリテトラフルオロエチレン製フィルターで濾過した。濾液を、PEDOT-PSS層上にスピンコート(1500rpm、120秒)で塗布して光電変換層を作成した。乾燥後、100Kgyの電子線を照射(超小型電子線照射装置Min-EB ウシオ電機製)し、ポリマー(1-6)とフラーレン(1-8)が架橋したポリマー(1-9)の光電変換層を形成させた。ポリマー(1-9)の層上にアルミニウムの蒸着により、上部電極を形成させ、2mm□素子を得た。
Figure JPOXMLDOC01-appb-C000080
[実施例2]
P型-N型連結有機半導体ポリマーポリマー(2-3)の合成
 下記反応スキームで合成した。
Figure JPOXMLDOC01-appb-C000081
1)ポリマー(2-1)の合成
 化合物(1-1)、(1-2)、(1-3)をモル比1:2:3にしたこと以外は、実施例1のポリマー(1-4)の合成と同様に行い、ポリマー(2-1)を得た(収率90.1%)。
ポリマー(2-1):Mw=7.1×10、Mn=3.5×10H-NMR(CDCl);δ[ppm]=0.80-2.20(96H)、3.60-4.70(14H)、7.22-7.95(14H)。λmax=670nm、Tg>300℃(分解)
2)ポリマー(2-2)の合成
 ポリマー(1-4)をポリマー(2-1)に変えたこと以外は、実施例1のポリマー(1-5)と同様に行い、ポリマー(2-2)を得た(収率91.0%)。
ポリマー(2-2):Mw=7.0×10、Mn=3.5×10H-NMR(CDCl);δ[ppm]=0.80-2.20(87H)、3.60-4.70(14H)、7.22-7.95(4H)。λmax=670nm、Tg>300℃(分解)
3)ポリマー(2-3)の合成
 アクリル酸クロリドを、ポリマー(2-2)の水酸基に対して1.1モル当量のフラーレン(1-7)に変えたこと以外は、実施例1のポリマー(1-6)の合成と同様に行い、ポリマー(2-3)を得た(収率80.1%)。
ポリマー(2-3):Mw=7.2×10、Mn=3.6×10H-NMR(CDCl);δ[ppm]=0.79-2.29(91H)、3.62-4.70(14H)、7.15-7.90(9H)。λmax=671nm、Tg>300℃(分解)
4)素子の作成
 洗浄およびUV-オゾン処理したガラス-ITO基板上に、ホール輸送層として使用するPEDOT-PSS(H.C.Stark社CleviosP VP AI4083)をスピンコート(3000rpm)し、140℃で30分間乾燥した。ポリマー(2-3)10mgとPC61BM(Solenne社製[60]PCBM)15mgの混合物を1mLのo-ジクロロベンゼンに溶解させ、0.45μmのポリテトラフルオロエチレン製フィルターで濾過した。濾液を、PEDOT-PSS層上にスピンコート(1500rpm、120秒)で塗布して光電変換層を作成した。乾燥後、アルミニウムの蒸着により、上部電極を形成させ、2mm□素子を得た。
[実施例3]
P型-N型連結有機半導体ポリマー(3-5)の合成
 下記の反応スキームで半導体ポリマー(3-3)を合成した。
Figure JPOXMLDOC01-appb-C000082
1)ポリマー(3-3)の合成
 モル比を1:1で化合物(3-1)と(3-2)を用いて、実施例1のポリマー(1-4)と同様に行い、ポリマー(3-3)を得た(収率87.3%)。
ポリマー(3-3):Mw=6.0×10、Mn=2.5×10H-NMR(CDCl);δ[ppm]=0.74-2.21(46H)、3.57-4.77(9H)、7.24-7.82(2H)。λmax==665nm、Tg>300℃(分解)
2)素子の作成
 洗浄およびUV-オゾン処理したガラス-ITO基板上に、ホール輸送層として使用するPEDOT-PSS(H.C.Stark社CleviosP VP AI4083)をスピンコート(3000rpm)し、140℃で30分間乾燥した。ポリマー(3-3)10mgと、Journal of Materials Chemistry,15,5158-5163(2005)に記載の方法によって合成したフラーレン(3-4)15mgの混合物を1mLのo-ジクロロベンゼンに溶解させ、少量の4-メチル-1,2,3,6-テトラヒドロ無水フタル酸を添加後、0.45μmのポリテトラフルオロエチレン製フィルターで濾過した。濾液を、PEDOT-PSS層上にスピンコート(1500rpm、120秒)で塗布して光電変換層を作成した。140℃で10分間加熱することにより、ポリマー(3-3)とフラーレン(3-4)が架橋した下記ポリマー(3-5)の光電変換層を形成させた。ポリマー(3-5)の層上にアルミニウムの蒸着により、上部電極を形成させ、2mm□素子を得た。
Figure JPOXMLDOC01-appb-C000083
[実施例4]
P型-N型連結有機半導体ポリマー(4-7)の合成
 下記反応スキームで半導体ポリマー(4-5)およびフラーレン(4-6)合成した。
Figure JPOXMLDOC01-appb-C000084
1)ポリマー(4-3)の合成
 化合物(4-1)と化合物(4-2)を用いて(モル比1:1)、実施例1のポリマー(1-4)と同様にしてポリマー(4-3)を合成した(収率86.5%)。
ポリマー(4-3):Mw=4.1×10、Mn=1.9×10H-NMR(CDCl);δ[ppm]=0.75-2.14(57H)、3.79-3.93(2H)、7.20-7.90(16H)。λmax=618nm、Tg>300℃(分解)
2)ポリマー(4-4)の合成
 ポリマー(1-4)をポリマー(4-3)にかえたこと以外は、実施例1のポリマー(1-5)の合成方法と同様にして、ポリマー(4-4)を得た(収率87.9%)。
ポリマー(4-4):Mw=4.0×10、Mn=1.8×10H-NMR(CDCl);δ[ppm]=0.75-2.14(57H)、3.79-3.93(2H)、7.20-7.90(6H)。λmax=618nm、Tg>300℃(分解)
3)ポリマー(4-5)の合成
 ポリマー(1-5)をポリマー(4-4)にかえ、アクリル酸クロリドをメタアクリル酸クロリドにかえたこと以外は、実施例1のポリマー(1-6)の合成方法と同様に行い、ポリマー(4-5)を得た(収率62.3%)。
ポリマー(4-5):Mw=4.2×10、Mn=2.0×10H-NMR(CDCl);δ[ppm]=0.75-2.14(60H)、3.79-3.93(2H)、5.76-5.92(1H)、6.03-6.28(1H)、7.20-7.90(16H)。λmax=618nm、Tg>300℃(分解)
4)フラーレン(4-6)の合成
 アクリル酸クロリドをメタアクリル酸クロリドにかえたこと以外は、実施例1のフラーレン(1-8)の合成と同様に行い、フラーレン(4-6)を得た(収率72.3%)。
5)素子の作成
 ポリマー(1-6)をポリマー(4-5)にかえ、フラーレン(1-8)をフラーレン(4-6)にかえたこと以外は、実施例1の素子作成と同様に行い、ポリマー(4-5)とフラーレン(4-6)が架橋したポリマー(4-7)の光電変換層を有する2mm□素子を得た。
Figure JPOXMLDOC01-appb-C000085
[実施例5]
P型-N型連結有機半導体ポリマー(5-8)の合成
 下記反応スキームで合成した。
Figure JPOXMLDOC01-appb-C000086
1)ポリマー(5-2)の合成
 米国特許第6,805,922号明細書に記載の方法に従って、化合物(5-1)を重合させ、ポリマー(5-2)を得た(収率80.8%)。
ポリマー(5-2):Mw=2.1×10、Mn=9.8×10H-NMR(CDCl);δ[ppm]=0.80-2.18(36H)、3.13-4.67(6H)、7.24-8.80(16H)、λmax=543nm、Tg>300℃(分解)
2)ポリマー(5-3)の合成
 ポリマー(1-4)をポリマー(5-2)にかえたこと以外は、実施例1のポリマー(1-5)の合成と同様に行い、ポリマー(5-3)を得た(収率89.9%)。
ポリマー(5-3):Mw=2.0×10、Mn=9.8×10H-NMR(CDCl);δ[ppm]=0.80-2.18(27H)、3.13-4.67(6H)、7.24-8.80(6H)、λmax=543nm、Tg>300℃(分解)
3)ポリマー(5-6)の合成
 化合物(5-4)と化合物(5-6)を用いて(モル比1:1)、実施例1のポリマー(1-4)と同様にしてポリマー(5-6)を合成した(収率87.9%)。
ポリマー(5-6):Mw=5.2×10、Mn=1.7×10H-NMR(CDCl);δ[ppm]=0.80-2.35(75H)、3.16-3.89(2H)、7.31-7.80(2H)。λmax=703nm、Tg>300℃(分解)
4)ポリマー(5-7)の合成
 ポリマー(5-6)100mgをジクロロメタンに100mL溶解させ、氷冷した。トリフルオロメタンスルホン酸10mLを加え、室温で3時間攪拌した。溶媒を減圧下留去後、濃縮物を、ヘキサンに懸濁させて濾取することにより、ポリマー(5-7)を得た(収率88.3%)。
ポリマー(5-7):Mw=5.0×10、Mn=1.3×10H-NMR(CDCl);δ[ppm]=0.80-2.35(66H)、3.16-3.89(2H)、7.31-7.80(2H)。λmax=703nm、Tg>300℃(分解)。
5)ポリマー(5-8)の合成
 ポリマー(5-3)80mgおよびポリマー(5-7)86mgをガラス製反応容器にとり、容器内を窒素置換した。クロロベンゼン50mLに溶解させ、N,N-ジシクロヘキシルカルボジイミド262mg(1.27mmol)およびN,N-ジメチルアミノピリジン4.6mg(0.038mmol)を加え、室温で24時間反応させた。減圧下溶媒を留去し、濃縮物をシリカゲルカラムクロマトグラフィーで精製することにより、ポリマー(5-8)を(収率61.6%)得た。
ポリマー(5-8):Mw=9.4×10、Mn=2.2×10H-NMR(CDCl);δ[ppm]=0.80-2.35(95H)、3.14-3.90(8H)、7.25-8.80(8H)。λmax=703nm、Tg>300℃(分解)。
ポリマー(5-8)の合成
6)素子の作成
 ポリマー(2-3)をポリマー(5-8)にかえたこと以外は、実施例2と同様に行い、2mm□素子を得た。
[実施例6]
P型-N型連結有機半導体ポリマー(6-11)の合成
 下記反応スキームで半導体ポリマー(6-5)および化合物(6-10)を合成した。
Figure JPOXMLDOC01-appb-C000087
1)ポリマー(6-5)の合成
 化合物(6-1)と化合物(6-2)から(モル比1.05:1)、実施例1のポリマー(1-4)~(1-6)と同様にしてポリマー(6-5)を合成した(収率39.8%)。
ポリマー(6-5):Mw=4.7×10、Mn=2.3×10H-NMR(CDCl);δ[ppm]=0.77-2.22(46H)、3.60-4.70(4H)、5.73-5.87(1H)、6.06-6.29(1H)、6.31-6.50(1H)、7.32-7.81(2H)。λmax=660nm、Tg>300℃(分解)
3)化合物(6-8)の合成
 化合物(6-6)5mmol、n-オクチルアミン5mmolをガラス製反応容器にとり、容器内をアルゴン置換した。N,N-ジメチルホルムアミド(DMF)30mLおよび酢酸45mmolを加え、18時間加熱還流した。さらに化合物(6-7)を5mmol加え、18時間加熱還流後、溶媒を減圧下留去した。濃縮物を酢酸エチルに溶解させ、7.5wt%重曹水、25wt%食塩水で順次洗浄した。有機層を無水硫酸ナトリウムで乾燥後、溶媒を減圧下留去した。濃縮物をシリカゲルカラムクロマトグラフィーで精製することにより、化合物(6-8)を得た(収率47.1%)得た。
3)化合物(6-10)の合成
 化合物(6-8)を用いて、実施例1のポリマー(1-5)~(1-6)の合成と同様に行い、化合物(6-10)を得た(収率72.7%)。
4)素子の作成
 ポリマー(1-6)をポリマー(6-5)にかえ、フラーレン(1-8)を化合物(6-10)にかえ、溶媒をo-ジクロロベンゼンからクロロベンゼンにかえたこと以外は、実施例1の素子作成と同様に行い、ポリマー(6-5)と化合物(6-10)が架橋したポリマー(6-11)の光電変換層を有する2mm□素子を得た。
Figure JPOXMLDOC01-appb-C000088
[実施例7]
P型-N型連結有機半導体ポリマー(7-15)の合成
 下記反応スキームで化合物(7-10)を合成した。
Figure JPOXMLDOC01-appb-C000089
1)化合物(7-3)の合成
 化合物(7-1)5.00mmolと(7-2)2.50mmolをガラス製反応容器にとり、テトラキス(トリフェニルホルフィン)パラジウム2.5mmolを入れて容器内をアルゴン置換した。トルエン16mLおよびN,N-ジメチルホルムアミド(DMF)4mLを加え、120℃で12時間反応させた。反応液をトルエン-水で分液後、有機層を25wt%食塩水で洗浄し、無水硫酸ナトリウムで乾燥させた。濾過後、減圧下溶媒を留去し、濃縮物をシリカゲルカラムクロマトグラフィーで精製することにより、化合物(7-3)を2.25mmol(収率90.0%)得た。
2)化合物(7-4)の合成
 化合物(7-2)を20.0mmolにしたこと以外は、化合物(7-3)の合成と同様に行い、化合物(7-4)を3.50mmol(収率70.0%)得た。
3)化合物(7-5)の合成
 化合物(7-3)2.00mmolをガラス製反応容器にとり、N,N-ジメチルホルムアミド(DMF)10mLに溶解させ、氷冷した。N,N-ジメチルホルムアミド(DMF)10mLに溶解させたN-ブロモスクシンイミド4.20mmolを内温10℃以下で滴下し、滴下後室温で2時間攪拌した。冷却後、水60mLを加え、有機物をジクロロメタンで抽出した。有機層を無水硫酸ナトリウムで乾燥後、濾過・減圧下溶媒を留去した。濃縮物をシリカゲルカラムクロマトグラフィーで精製することにより、化合物(7-5)を1.96mmol(収率97.9%)得た。
4)化合物(7-6)の合成
 化合物(7-5)1.50mmolをガラス製反応容器にとり、容器内を窒素置換後、テトラヒドロフラン50mLに溶解させ、-78℃に冷却した。n-ブチルリチウム3.60mmolを加え、-78℃で1時間攪拌した。トリメチルスズクロリド4.20mmolを加え、室温で3時間攪拌した。反応溶液をヘキサン-水にあけ、分液した。有機層を7.5wt%重曹水、25wt%食塩水で順次洗浄し、有機層を無水硫酸ナトリウムで乾燥させた。濾過後、溶媒を減圧下留去し、化合物(7-6)を1.44mmol(収率96.2%)得た。
5)化合物(7-7)の合成
 化合物(7-6)1.40mmolと化合物(7-4)2.80mmolを用いて、化合物(7-3)と同様に行い、化合物(7-7)を1.17mmol(収率83.2%)得た。
6)化合物(7-8)の合成
 化合物(7-3)を化合物(7-7)にかえたこと以外は、化合物(7-5)の合成と同様に行い、化合物(7-8)を(収率94.8%)得た。
7)化合物(7-9)の合成
 化合物(7-5)を化合物(7-8)にかえ、トリメチルスルクロリドをN,N-ジメチルホルムアミド(DMF)にかえたこと以外は、化合物(7-6)の合成と同様に行い、シリカゲルカラムクロマトグラフィーで精製することにより、化合物(7-9)を(収率66.7%)得た。
8)化合物(7-10)の合成
 ラヒドロフラン10mLに溶解させた。t-ブトキシカリウム3.3mmolを加え、室温で1時間攪拌した。反応溶液を-78℃に冷却後、化合物(7-9)1.0mmolとテトラヒドロフラン10mLの混合物を滴下し、-78℃で1時間、室温2時間攪拌した。水でクエンチ後、トルエンで抽出し、有機層を25wt%食塩水で洗浄した。有機層を無水硫酸ナトリウムで乾燥後、溶媒を減圧下留去した。濃縮物をシリカゲルカラムクロマトグラフィーで精製することにより、化合物(7-10)を(収率78.2%)得た。
 下記反応スキームで化合物(7-14)を合成した。
Figure JPOXMLDOC01-appb-C000090
9)化合物(7-12)の合成
 化合物(7-11)2mmol、p-フェニレンジアミン40mmolをガラス製反応容器にとり、容器内をアルゴン置換した。N,N-ジメチルホルムアミド(DMF)200mLおよび酢酸350mmolを加え、18時間加熱還流した。溶媒を減圧下留去後、酢酸エチルに溶解させ、7.5wt%重曹水、25wt%食塩水で順次洗浄した。有機層を無水硫酸ナトリウムで乾燥後、溶媒を減圧下留去した。濃縮物をシリカゲルカラムクロマトグラフィーで精製することにより、化合物(7-12)を0.86mmol(収率42.8%)得た。
9)化合物(7-13)の合成
 化合物(7-11)10.0mmolと化合物(7-12)1.00mmolを用いて、化合物(7-12)の合成と同様に行い、化合物(7-13)を0.64mmol(収率63.7%)得た。
10)化合物(7-14)の合成
 化合物(7-13)1.00mmolとp-ブロモアニリン4.00mmolを用いて、化合物(7-12)の合成と同様に行い、化合物(7-14)を0.78mmol(収率77.9%)得た。
11)ポリマー(7-15)の合成
 化合物(7-10)0.250mmolと化合物(7-14)0.250mmol、酢酸パラジウム(II)0.015mmol、o-トリルホスフィン0.057mmolを加え、容器内をアルゴン置換した。N,N-ジメチルホルムアミド(DMF)8mL、トルエン16mL、およびトリエチルアミン6mLを加えた。90℃で24時間反応後、反応溶液をメタノール500mLにあけて晶析した。固体を濾取後、クロロホルムに溶解させ、セライト濾過後、減圧下溶媒を留去した。濃縮物をシリカゲルカラムクロマトグラフィーにより精製し、ソックスレー抽出(アセトン、10時間)後、減圧下乾燥することによりポリマー(7-15)を(収率63.3%)得た。
ポリマー(7-15):Mw=3.8×10、Mn=1.1×10H-NMR(CDCl);δ[ppm]=0.79-2.61(238H)、7.22-8.89(76H)。λmax=578nm、Tg>300℃(分解)
Figure JPOXMLDOC01-appb-C000091
12)素子の作成
 ポリマー(2-3)をポリマー(7-15)にかえ、溶媒をo-ジクロロベンゼンからクロロベンゼンにかえたこと以外は、実施例2と同様に行い、2mm□素子を得た。
[実施例8]
P型-N型連結有機半導体ポリマー(8-7)の合成
 下記反応スキームで合成した。
Figure JPOXMLDOC01-appb-C000092
1)ポリマー(8-5)の合成
 化合物(8-1)と化合物(8-2)から(モル比1:1)、実施例1のポリマー(1-4)~(1-6)と同様にしてポリマー(8-5)を合成した。
ポリマー(8-5):Mw=5.9×10、Mn=2.7×10H-NMR(CDCl);δ[ppm]=0.77-2.32(46H)、3.60-4.64(4H)、5.73-5.91(1H)、6.00-6.27(1H)、6.29-6.46(1H)、7.24-7.93(2H)。λmax=680nm、Tg>300℃(分解)
Figure JPOXMLDOC01-appb-C000093
2)素子の作成
 ポリマー(1-6)をポリマー(8-5)にかえ、フラーレン(1-8)をフラーレン(8-6)にかえ、溶媒をo-ジクロロベンゼンからクロロベンゼンにかえたこと以外は、実施例1の素子作成と同様に行い、ポリマー(8-5)と化合物(8-6)が架橋したポリマー(8-7)の光電変換層を有する2mm□素子を得た。
[実施例9]
P型-N型連結有機半導体ポリマー(9-7)の合成
 下記反応スキームで合成した。
Figure JPOXMLDOC01-appb-C000094
1)ポリマー(9-3)の合成
 化合物(9-1)と化合物(5-1)から(モル比1:1)、実施例5のポリマー(5-2)~(5-3)と同様にしてポリマー(9-3)を合成した(収率69.9%)。
ポリマー(9-3):Mw=3.9×10、Mn=1.3×10H-NMR(CDCl);δ[ppm]=0.80-2.18(57H)、3.13-4.67(10H)、7.24-8.80(12H)、λmax=541nm、Tg>300℃(分解)
2)ポリマー(9-6)の合成
 化合物(5-4)、化合物(9-4)、化合物(5-5)から(モル比1:1:2)、実施例5のポリマー(5-6)~(5-7)と同様にしてポリマー(9-6)を合成した(収率75.3%)。
ポリマー(9-6):Mw=6.9×10、Mn=2.6×10H-NMR(CDCl);δ[ppm]=0.84-2.41(135H)、3.14-3.90(4H)、7.31-7.80(4H)。λmax=703nm、Tg>300℃(分解)
3)ポリマー(9-7)の合成
 ポリマー(9-3)とポリマー(9-6)を用いて(質量比1.03:1)、実施例5のポリマー(5-8)の合成と同様に行い、ポリマー(9-7)を得た(収率68.3%)。
ポリマー(9-7):Mw=8.2×10、Mn=2.6×10H-NMR(CDCl);δ[ppm]=0.80-2.18(194H)、3.13-4.67(12H)、7.24-8.80(16H)、λmax=627nm、Tg>300℃(分解)
4)素子の作成
 ポリマー(2-3)をポリマー(9-7)にかえ、溶媒をo-ジクロロベンゼンからクロロベンゼンにかえたこと以外は、実施例2と同様に行い、2mm□素子を得た。
[実施例10]
P型-N型連結有機半導体ポリマー(10-7)の合成
 下記反応スキームで半導体ポリマー(10-5)合成した。
Figure JPOXMLDOC01-appb-C000095
1)ポリマー(10-5)の合成
 化合物(10-1)と化合物(10-2)から(モル比1:1)、実施例1のポリマー(1-4)~(1-6)と同様にしてポリマー(10-5)を合成した。
ポリマー(10-5):Mw=7.2×10、Mn=2.8×10H-NMR(CDCl);δ[ppm]=0.83-2.21(46H)、3.62-4.64(4H)、5.81-5.90(1H)、6.02-6.29(1H)、6.29-6.51(1H)、7.25-7.85(2H)。λmax=700nm、Tg>300℃(分解)。
2)素子の作成
 ポリマー(1-6)をポリマー(10-5)にかえ、フラーレン(1-8)をフラーレン(10-6)にかえ、溶媒をo-ジクロロベンゼンからクロロベンゼンにかえたこと以外は、実施例1の素子作成と同様に行い、ポリマー(10-5)と化合物(10-6)が架橋したポリマー(10-7)の光電変換層を有する2mm□素子を得た。
Figure JPOXMLDOC01-appb-C000096
[実施例11]
P型-N型連結有機半導体ポリマー(11-6)の合成
 下記反応スキームで合成した。
Figure JPOXMLDOC01-appb-C000097
1)化合物(11-4)の合成
 化合物(7-6)を、実施例7の方法と同様にして合成した化合物(11-1)0.100mmolにかえ、化合物(7-4)を化合物(11-2)0.200mmolにかえたこと以外は、実施例7の化合物(7-7)の合成と同様にして、化合物(11-3)を合成した。化合物(11-3)150mg、炭酸カリウム50mg、トルエン300mL、およびメタノール100mLの混合物を6時間加熱還流させた。氷冷後、1N塩酸を200mL加え、分液した。有機層を25wt%食塩水で洗浄し、有機層を無水硫酸ナトリウムで乾燥した。濾過後、溶媒を減圧下留去し、濃縮物をシリカゲルカラムクロマトグラフィーで精製することにより、化合物(11-4)を得た(収率69.8%)。
2)ポリマー(11-6)の合成
 Macromolecules,43,6033-6044(2010)に記載の方法に従って合成した化合物(11-5)50mgと、化合物(11-4)50mgを同じくMacromolecules,43,6033-6044(2010)に記載の方法に従って反応させ、ポリマー(11-6)を47mg得た。
ポリマー(11-6):Mw=9.1×10、Mn=2.7×10H-NMR(CDCl);δ[ppm]=0.80-2.81(123H)、3.63-5.01(22H)、7.20-7.90(16H)。λmax=654nm、Tg>300℃(分解)。
3)素子の作成
 ポリマー(2-3)をポリマー(11-6)にかえたこと以外は、実施例2と同様に行い、2mm□素子を得た。
[実施例12]
1)素子の作成
 素子作成において、ポリマー(1-6)10mgとフラーレン(1-8)10mgと[60]PCBM(Solenne社製)5mgを用い、溶媒をo-ジクロロベンゼンから3wt%の1,8-ジヨードオクタン含有o-ジクロロベンゼンにかえたこと以外は、実施例1の素子作成と同様に行い、ポリマー(1-9)と[60]PCBMからなる光電変換層を有する1mm□セルを得た。
Figure JPOXMLDOC01-appb-C000098
[実施例13]
1)素子の作成
 素子作成において、ポリマー(1-6)5mgとフラーレン(1-8)15mgと下記ポリマー(12)5mgを用い、溶媒をo-ジクロロベンゼンから4wt%の1,8-ジヨードオクタン含有o-クロロベンゼンにかえたこと以外は、実施例1の素子作成と同様に行い、ポリマー(1-9)とポリマー(12)からなる光電変換層を有する2mm□セルを得た。
Figure JPOXMLDOC01-appb-C000099
[実施例14]
P型-N型連結有機半導体ポリマー(14-2)の合成
1)ポリマー(14-1)の合成
 実施例1のポリマー(1-6)の合成と同様に行い、ポリマー(9-3)からポリマー(14-1)を139mg(収率66.4%)得た。
ポリマー(14-1):Mw=4.0×10、Mn=1.2×10H-NMR(CDCl);δ[ppm]=0.83-2.18(57H)、3.13-4.68(10H)、5.71-5.93(1H)、6.00-6.28(1H)、6.32-6.45(1H)、7.24-8.80(12H)、λmax=544nm、Tg>300℃(分解)
Figure JPOXMLDOC01-appb-C000100
2)素子の作成
 ポリマー(14-1)と実施例1にて合成したポリマー(1-6)を用いたこと以外は、実施例1の素子作成と同様に行い、ポリマー(14-1)とポリマー(1-6)が架橋したポリマー(14-2)からなる光電変換層を有する2mm□セルを得た。
Figure JPOXMLDOC01-appb-C000101
[比較例1]
1)素子の作成
 洗浄およびUV-オゾン処理したガラス-ITO基板上に、ホール輸送層として使用するPEDOT-PSS(H.C.Stark社CleviosP VP AI4083)をスピンコート(3000rpm)し、140℃で30分間乾燥した。国際公開第03/075364A1号パンフレットに従って合成したポリマー(1’-1)10mgを1mLのo-ジクロロベンゼンに溶解させ、0.45μmのポリテトラフルオロエチレン製フィルターで濾過した。濾液を、PEDOT-PSS層上にスピンコート(1500rpm、120秒)で塗布して光電変換層を作成した。乾燥後、光電変換層上にアルミニウムの蒸着により、上部電極を形成させ、2mm□素子を得た。
Figure JPOXMLDOC01-appb-C000102
 (光電池の評価)
1)素子の電流密度-電圧(J-V)特性
 実施例1~13および比較例1で作製したそれぞれの2mm□素子を以下のようにして性能評価した。
 得られた素子を窒素雰囲気下(酸素濃度1ppm以下、水分濃度1ppm以下)で、ケースレー社(Keithley)製SMU2400型I-V測定装置を用いて、素子の電流密度-電圧(J-V)特性を評価した。オリエル(Oriel)社製太陽光シミュレータからの濾波キセノン灯光を使用して、100mW/cmのAM1.5Gスペクトルに近づけた。上記装置にて、出力された短絡電流密度(Jsc)、開放電圧(Voc)、曲線因子(FF)(フィルファクターとも称される)および発電効率(η)を下記表1に記載した。
2)加熱条件での発電効率の保持率
 上記で得られた2mm□素子を、窒素雰囲気下(酸素濃度1ppm以下、水分濃度1ppm以下)で、150℃で10時間加熱し、その後、上記1)と同様にして素子の電流密度-電圧(J-V)特性を評価した。
 これらの結果を、半導体ポリマーの吸収特性のλmaxとともに、下記表1にまとめて示した。
Figure JPOXMLDOC01-appb-T000103
 上記表1から明らかなように、本発明のP型-N型半導体ポリマーは吸収特性におけるλmaxが長波であり、電池特性、特に発電効率に優れ、しかも熱耐久性に著しく優れていることがわかる。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものでなく、添付の請求項の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2012年2月17日に日本で特許出願された特願2012-033425に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
7 透明支持体
10 バルクへテロ接合型有機薄膜太陽電池
11 透明電極(第1電極)
12 対極(第2電極)
21 ホール輸送層
22 電子輸送層
3 光電変換層
L 光
P 電動モータ(旋風機)

Claims (19)

  1.  下記一般式(1)~(5)のいずれかで表されるP型-N型連結有機半導体ポリマーを少なくとも1種含む有機光電変換素子組成物。
    Figure JPOXMLDOC01-appb-C000001
     一般式(1)~(5)中、A、A、A、AおよびAは各々独立にP型有機半導体ユニットの基を示し、B、B、BおよびBは各々独立にN型有機半導体ユニットの基を示す。ただし、一般式(1)~(4)におけるAとAは構造の異なるP型有機半導体の基を示し、一般式(5)におけるAは、異なる2種以上のP型有機半導体の基からなる。
     L~Lは各々独立に、P型有機半導体ユニットもしくはN型半導体ユニットを含まない2価または3価の連結基を表す。
     ここで、一般式(1)および(2)におけるAおよびAの-*で表される結合手の少なくとも一つは、直接もしくは2価の連結基を介して、一般式(1)においては、Bの-*で表される結合手と、一般式(2)においては、Bの-*で表される結合手の少なくとも一つと結合しており、結合していない残りの結合手-*は、水素原子または1価の置換基と結合することを示す。一般式(3)および(4)におけるLおよびLの-*で表される結合手の少なくとも一つは、それぞれの一般式において、直接もしくは2価の連結基を介して、(a)のAまたはAの-*で表される結合手の少なくとも一つと結合しており、結合していない残りの結合手-*は、水素原子または1価の置換基と結合することを示す。さらに、一般式(4)においては、Lの-*で表される結合手の少なくとも一つは、直接もしくは2価の連結基を介して、(b)のBの-*で表される結合手の少なくとも一つと結合しており、結合していない残りの結合手-*は、水素原子または1価の置換基と結合することを示す。一般式(5)におけるAの-*で表される結合手の少なくとも一つは、直接もしくは2価の連結基を介して、Bの-*で表される結合手の少なくとも一つと、結合しており、結合していない残りの結合手-*は、水素原子または1価の置換基と結合することを示す。
     l、n、r、t、uおよびvは各々独立に1~1000の整数を表し、mおよびsは各々独立に1~10の整数を表し、p、q、l’およびn’は各々独立に0~1000の整数を表す。ただし、pとqが同時に0であることはない。
     また、一般式(1)~(5)において、結合手-で表される結合末端は、各々独立に水素原子または1価の置換基が結合している。
  2.  前記一般式(1)~(5)で表されるP型-N型連結有機半導体ポリマーが下記[A]~[E]の対応する各組合せの化合物により合成されてなる請求項1に記載の有機光電変換素子組成物。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
     ここで、[A]は、一般式(1a)で表される化合物と一般式(1b)で表される化合物との組合せであり、[B]は、一般式(1a)で表される化合物と一般式(2b)で表される化合物との組合せであり、[C]は、一般式(ab)で表される化合物と一般式(bb)で表される化合物との組合せであり、[D]は、一般式(ab)で表される化合物および一般式(4b)で表される化合物との組み合わせであり、[E]は、一般式(5a)と(5b)で表される化合物との組み合わせである。
     また、[A]および[B]における一般式(1a)で表される化合物は、AおよびAの少なくとも一つの結合手-*が、*-L-Zの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。[B]における一般式(2b)で表される化合物は、n個のBのうちのいずれか一つの結合手-*が、*-L-Zの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。[C]および[D]における一般式(ab)で表される化合物は、AおよびAの少なくとも一つの結合手-*が、*-L-Yの*部分もしくは*-L-Yの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。[D]における一般式(4b)で表される化合物は、n個のBのうちのいずれか一つの結合手-*が、*-L-Yの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。
     一般式中、A、A~A、B、B~B、l、l’、n、n’、s、uおよびvは前記一般式(1)~(5)における対応するA、A~A、B、B~B、l、l’、n、n’、s、uおよびvとそれぞれ同義である。L~Lは各々独立に単結合もしくは2価の連結基を表す。
     ZおよびZは各々独立に反応性官能基を表す。Z1a、Z1b、Z2aおよびZ2bは各々独立に水素原子または置換基を表すが、Z1aとZ1bの少なくとも一方、およびZ2aとZ2bの少なくとも一方は、反応性官能基である置換基である。Y~Yは各々独立に重合性の基を表す。
     ZとZとは、これらが反応して連結するのに必要な反応性官能基であり、Yの部分構造はLを形成し、Yの部分構造はLを形成し、Yの部分構造はLを形成し、Yの部分構造はLを形成する。また、Z1aもしくはZ1bはZ2aもしくはZ2bと反応して連結するのに必要な反応性官能基である。
     また、一般式(1a)、(2b)、(ab)および(4b)において、両側の結合末端は、各々独立に水素原子または1価の置換基が結合している。
  3.  下記[A]~[E]のいずれかの化合物の組合せで含有する有機光電変換素子組成物。
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
     ここで、[A]は、一般式(1a)で表される化合物と一般式(1b)で表される化合物との組合せであり、[B]は、一般式(1a)で表される化合物と一般式(2b)で表される化合物との組合せであり、[C]は、一般式(ab)で表される化合物と一般式(bb)で表される化合物との組合せであり、[D]は、一般式(ab)で表される化合物および一般式(4b)で表される化合物との組み合わせであり、[E]は、一般式(5a)と(5b)で表される化合物との組み合わせである。
     また、[A]および[B]における一般式(1a)で表される化合物は、AおよびAの少なくとも一つの結合手-*が、*-L-Zの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。[B]における一般式(2b)で表される化合物は、n個のBのうちのいずれか一つの結合手-*が、*-L-Zの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。[C]および[D]における一般式(ab)で表される化合物は、AおよびAの少なくとも一つの結合手-*が、*-L-Yの*部分もしくは*-L-Yの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。[D]における一般式(4b)で表される化合物は、n個のBのうちのいずれか一つの結合手-*が、*-L-Yの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。
     一般式中、A、A~A、B、B~B、l、l’、n、n’、s、uおよびvは前記一般式(1)~(5)における対応するA、A~A、B、B~B、l、l’、n、n’、s、uおよびvとそれぞれ同義である。L~Lは各々独立に単結合もしくは2価の連結基を表す。
     ZおよびZは各々独立に反応性官能基を表す。Z1a、Z1b、Z2aおよびZ2bは各々独立に水素原子または置換基を表すが、Z1aとZ1bの少なくとも一方、およびZ2aとZ2bの少なくとも一方は、反応性官能基である置換基である。Y~Yは各々独立に重合性の基を表す。
     ZとZとは、これらが反応して連結するのに必要な反応性官能基であり、Yの部分構造はLを形成し、Yの部分構造はLを形成し、Yの部分構造はLを形成し、Yの部分構造はLを形成する。また、Z1aもしくはZ1bはZ2aもしくはZ2bと反応して連結するのに必要な反応性官能基である。
     また、一般式(1a)、(2b)、(ab)および(4b)において、両側の結合末端は、各々独立に水素原子または1価の置換基が結合している。
  4.  下記一般式(1a)、(ab)および(5a)のいずれかで表される化合物を少なくとも1種含有する有機光電変換素子組成物。
    Figure JPOXMLDOC01-appb-C000006
     一般式(1a)、(ab)、(5a)中、A、A~A、l、l’およびuは前記一般式(1)~(5)における対応するA、A~A、l、l’およびuとそれぞれ同義である。
     L、L、L、LおよびLは各々独立に単結合もしくは2価の連結基を表す。Zは反応性官能基を表す。Z1aおよびZ1bは各々独立に水素原子または置換基を表すが、Z1aとZ1bの少なくとも一方は、反応性官能基である置換基である。YおよびYは各々独立に重合性の基を表す。
     ここで、一般式(1a)で表される化合物は、AおよびAの少なくとも一つの結合手-*が、*-L-Zの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。一般式(ab)で表される化合物は、AおよびAの少なくとも一つの結合手-*が、*-L-Yの*部分もしくは*-L-Yの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。
     また、一般式(1a)、(ab)において、両側の結合末端は、各々独立に水素原子または1価の置換基が結合している。
  5.  前記一般式(ab)または(5a)のいずれかを含有する請求項4に記載の有機光電変換素子組成物。
  6.  前記N型有機半導体ユニットの基が、フラーレン構造を有する基、含窒素へテロ環基または電子求引性基を有する芳香族環基である請求項1~3のいずれか1項に記載の有機光電変換素子組成物。
  7.  前記P型有機半導体ユニットの基が、硫黄、窒素、酸素、珪素、ホウ素、セレン、テルルおよびリン原子のうち少なくとも一つを環構成原子として有するヘテロ環基である請求項1~6のいずれか1項に記載の有機光電変換素子組成物。
  8.  前記P型有機半導体ユニットの基が、下記ヘテロ環基から選択される請求項1~7のいずれか1項に記載の有機光電変換素子組成物。
    Figure JPOXMLDOC01-appb-C000007
     式中、*で表される結合手は、ポリマー主鎖/側鎖、単結合もしくは2価の連結基との連結箇所を示す。ただし、ポリマー主鎖を形成する場合、少なくとも2つの結合手がポリマー主鎖形成に使用され、残りの結合手は、2価の連結基、水素原子または置換基が結合する。また、結合手がポリマー主鎖形成に使用される場合、その結合手は、ポリマー主鎖が共役する位置である。
  9.  請求項1~8のいずれか1項に記載の有機光電変換素子組成物を含有してなる薄膜。
  10.  第一電極と第二電極の間に、請求項1~8のいずれか1項に記載の有機光電変換素子組成物からなる層を含有してなる光電池。
  11.  下記一般式(1)~(5)のいずれかで表されるP型-N型連結有機半導体ポリマー。
    Figure JPOXMLDOC01-appb-C000008
     一般式(1)~(5)中、A、A、A、AおよびAは各々独立にP型有機半導体ユニットの基を示し、B、B、BおよびBは各々独立にN型有機半導体ユニットの基を示す。ただし、一般式(1)~(4)におけるAとAは構造の異なるP型有機半導体の基を示し、一般式(5)におけるAは、異なる2種以上のP型有機半導体の基からなる。
     L~Lは各々独立に、P型有機半導体ユニットもしくはN型半導体ユニットを含まない2価または3価の連結基を表す。
     ここで、一般式(1)および(2)におけるAおよびAの-*で表される結合手の少なくとも一つは、直接もしくは2価の連結基を介して、一般式(1)においては、Bの-*で表される結合手と、一般式(2)においては、Bの-*で表される結合手の少なくとも一つと結合しており、結合していない残りの結合手-*は、水素原子または1価の置換基と結合することを示す。一般式(3)および(4)におけるLおよびLの-*で表される結合手の少なくとも一つは、それぞれの一般式において、直接もしくは2価の連結基を介して、(a)のAまたはAの-*で表される結合手の少なくとも一つと結合しており、結合していない残りの結合手-*は、水素原子または1価の置換基と結合することを示す。さらに、一般式(4)においては、Lの-*で表される結合手の少なくとも一つは、直接もしくは2価の連結基を介して、(b)のBの-*で表される結合手の少なくとも一つと結合しており、結合していない残りの結合手-*は、水素原子または1価の置換基と結合することを示す。一般式(5)におけるAの-*で表される結合手の少なくとも一つは、直接もしくは2価の連結基を介して、Bの-*で表される結合手の少なくとも一つと、結合しており、結合していない残りの結合手-*は、水素原子または1価の置換基と結合することを示す。
     l、n、r、t、uおよびvは各々独立に1~1000の整数を表し、mおよびsは各々独立に1~10の整数を表し、p、q、l’およびn’は各々独立に0~1000の整数を表す。ただし、pとqが同時に0であることはない。
     また、一般式(1)~(5)において、結合手-で表される結合末端は、各々独立に水素原子または1価の置換基が結合している。
  12.  前記一般式(1)~(5)で表されるP型-N型連結有機半導体ポリマーが下記[A]~[E]の対応する各組合せの化合物により合成されてなる請求項11に記載のP型-N型連結有機半導体ポリマー。
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
     ここで、[A]は、一般式(1a)で表される化合物と一般式(1b)で表される化合物との組合せであり、[B]は、一般式(1a)で表される化合物と一般式(2b)で表される化合物との組合せであり、[C]は、一般式(ab)で表される化合物と一般式(bb)で表される化合物との組合せであり、[D]は、一般式(ab)で表される化合物および一般式(4b)で表される化合物との組み合わせであり、[E]は、一般式(5a)と(5b)で表される化合物との組み合わせである。
     また、[A]および[B]における一般式(1a)で表される化合物は、AおよびAの少なくとも一つの結合手-*が、*-L-Zの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。[B]における一般式(2b)で表される化合物は、n個のBのうちのいずれか一つの結合手-*が、*-L-Zの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。[C]および[D]における一般式(ab)で表される化合物は、AおよびAの少なくとも一つの結合手-*が、*-L-Yの*部分もしくは*-L-Yの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。[D]における一般式(4b)で表される化合物は、n個のBのうちのいずれか一つの結合手-*が、*-L-Yの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。
     一般式中、A、A~A、B、B~B、l、l’、n、n’、s、uおよびvは前記一般式(1)~(5)における対応するA、A~A、B、B~B、l、l’、n、n’、s、uおよびvとそれぞれ同義である。L~Lは各々独立に単結合もしくは2価の連結基を表す。
     ZおよびZは各々独立に反応性官能基を表す。Z1a、Z1b、Z2aおよびZ2bは各々独立に水素原子または置換基を表すが、Z1aとZ1bの少なくとも一方、およびZ2aとZ2bの少なくとも一方は、反応性官能基である置換基である。Y~Yは各々独立に重合性の基を表す。
     ZとZとは、これらが反応して連結するのに必要な反応性官能基であり、Yの部分構造はLを形成し、Yの部分構造はLを形成し、Yの部分構造はLを形成し、Yの部分構造はLを形成する。また、Z1aもしくはZ1bはZ2aもしくはZ2bと反応して連結するのに必要な反応性官能基である。
     また、一般式(1a)、(2b)、(ab)および(4b)において、両側の結合末端は、各々独立に水素原子または1価の置換基が結合している。
  13.  前記N型有機半導体ユニットの基が、フラーレン構造を有する基、含窒素へテロ環基または電子求引性基を有する芳香族環基である請求項11または12に記載のP型-N型連結有機半導体ポリマー。
  14.  前記P型有機半導体ユニットの基が、硫黄、窒素、酸素、珪素、ホウ素、セレン、テルルおよびリン原子のうち少なくとも一つを環構成原子として有するヘテロ環基である請求項11~13のいずれか1項に記載のP型-N型連結有機半導体ポリマー。
  15.  前記P型有機半導体ユニットの基が、下記ヘテロ環基から選択される請求項11~14のいずれか1項に記載のP型-N型連結有機半導体ポリマー。
    Figure JPOXMLDOC01-appb-C000011
     式中、*で表される結合手は、ポリマー主鎖/側鎖、単結合もしくは2価の連結基との連結箇所を示す。ただし、ポリマー主鎖を形成する場合、少なくとも2つの結合手がポリマー主鎖形成に使用され、残りの結合手は、2価の連結基、水素原子または置換基が結合する。結合手がポリマー主鎖形成に使用される場合、その結合手は、ポリマー主鎖が共役する位置である。
  16.  下記一般式(1a)、(ab)または(5a)で表される化合物。
    Figure JPOXMLDOC01-appb-C000012
     一般式(1a)、(ab)、(5a)中、A、A~A、l、l’およびuは前記一般式(1)~(5)における対応するA、A~A、l、l’およびuとそれぞれ同義である。
     L、L、L、LおよびLは各々独立に単結合もしくは2価の連結基を表す。Zは反応性官能基を表す。Z1aおよびZ1bは各々独立に水素原子または置換基を表すが、Z1aとZ1bの少なくとも一方は、反応性官能基である置換基である。YおよびYは各々独立に重合性の基を表す。
     ここで、一般式(1a)で表される化合物は、AおよびAの少なくとも一つの結合手-*が、*-L-Zの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。一般式(ab)で表される化合物は、AおよびAの少なくとも一つの結合手-*が、*-L-Yの*部分もしくは*-L-Yの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。
     また、一般式(1a)、(ab)において、両側の結合末端は、各々独立に水素原子または1価の置換基が結合している。
  17.  前記P型有機半導体ユニットの基が、硫黄、窒素、酸素、珪素、ホウ素、セレン、テルルおよびリン原子のうち少なくとも一つを環構成原子として有するヘテロ環基である請求項16に記載の化合物。
  18.  前記P型有機半導体ユニットの基が、下記ヘテロ環基から選択される請求項16または17に記載の化合物。
    Figure JPOXMLDOC01-appb-C000013
     式中、*で表される結合手は、ポリマー主鎖/側鎖、単結合もしくは2価の連結基との連結箇所を示す。ただし、ポリマー主鎖を形成する場合、少なくとも2つの結合手がポリマー主鎖形成に使用され、残りの結合手は、2価の連結基、水素原子または置換基が結合する。結合手がポリマー主鎖形成に使用される場合、その結合手は、ポリマー主鎖が共役する位置である。
  19.  下記[A]~[E]の対応する各組合せの、化合物もしくはポリマーを反応させて、対応する下記一般式(1)~(5)で表されるポリマーを製造するポリマーの製造方法。
    Figure JPOXMLDOC01-appb-C000014
     一般式(1)~(5)中、A、A、A、AおよびAは各々独立にP型有機半導体ユニットの基を示し、B、B、BおよびBは各々独立にN型有機半導体ユニットの基を示す。ただし、一般式(1)~(4)におけるAとAは構造の異なるP型有機半導体の基を示し、一般式(5)におけるAは、異なる2種以上のP型有機半導体の基からなる。
     L~Lは各々独立に、P型有機半導体ユニットもしくはN型半導体ユニットを含まない2価または3価の連結基を表す。
     ここで、一般式(1)および(2)におけるAおよびAの-*で表される結合手の少なくとも一つは、直接もしくは2価の連結基を介して、一般式(1)においては、Bの-*で表される結合手と、一般式(2)においては、Bの-*で表される結合手の少なくとも一つと結合しており、結合していない残りの結合手-*は、水素原子または1価の置換基と結合することを示す。一般式(3)および(4)におけるLおよびLの-*で表される結合手の少なくとも一つは、それぞれの一般式において、直接もしくは2価の連結基を介して、(a)のAまたはAの-*で表される結合手の少なくとも一つと結合しており、結合していない残りの結合手-*は、水素原子または1価の置換基と結合することを示す。さらに、一般式(4)においては、Lの-*で表される結合手の少なくとも一つは、直接もしくは2価の連結基を介して、(b)のBの-*で表される結合手の少なくとも一つと結合しており、結合していない残りの結合手-*は、水素原子または1価の置換基と結合することを示す。一般式(5)におけるAの-*で表される結合手の少なくとも一つは、直接もしくは2価の連結基を介して、Bの-*で表される結合手の少なくとも一つと、結合しており、結合していない残りの結合手-*は、水素原子または1価の置換基と結合することを示す。
     l、n、r、t、uおよびvは各々独立に1~1000の整数を表し、mおよびsは各々独立に1~10の整数を表し、p、q、l’およびn’は各々独立に0~1000の整数を表す。ただし、pとqが同時に0であることはない。
     また、一般式(1)~(5)において、結合手-で表される結合末端は、各々独立に水素原子または1価の置換基が結合している。
    Figure JPOXMLDOC01-appb-C000015
    Figure JPOXMLDOC01-appb-C000016
     ここで、[A]は、一般式(1a)で表される化合物と一般式(1b)で表される化合物との組合せであり、[B]は、一般式(1a)で表される化合物と一般式(2b)で表される化合物との組合せであり、[C]は、一般式(ab)で表される化合物と一般式(bb)で表される化合物との組合せであり、[D]は、一般式(ab)で表される化合物および一般式(4b)で表される化合物との組み合わせであり、[E]は、一般式(5a)と(5b)で表される化合物との組み合わせである。
     また、[A]および[B]における一般式(1a)で表される化合物は、AおよびAの少なくとも一つの結合手-*が、*-L-Zの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。[B]における一般式(2b)で表される化合物は、n個のBのうちのいずれか一つの結合手-*が、*-L-Zの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。[C]および[D]における一般式(ab)で表される化合物は、AおよびAの少なくとも一つの結合手-*が、*-L-Yの*部分もしくは*-L-Yの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。[D]における一般式(4b)で表される化合物は、n個のBのうちのいずれか一つの結合手-*が、*-L-Yの*部分と結合しており、結合していない場合は、水素原子または1価の置換基と結合することを示す。
     一般式中、A、A~A、B、B~B、l、l’、n、n’、s、uおよびvは前記一般式(1)~(5)における対応するA、A~A、B、B~B、l、l’、n、n’、s、uおよびvとそれぞれ同義である。L~Lは各々独立に単結合もしくは2価の連結基を表す。
     ZおよびZは各々独立に反応性官能基を表す。Z1a、Z1b、Z2aおよびZ2bは各々独立に水素原子または置換基を表すが、Z1aとZ1bの少なくとも一方、およびZ2aとZ2bの少なくとも一方は、反応性官能基である置換基である。Y~Yは各々独立に重合性の基を表す。
     ZとZとは、これらが反応して連結するのに必要な反応性官能基であり、Yの部分構造はLを形成し、Yの部分構造はLを形成し、Yの部分構造はLを形成し、Yの部分構造はLを形成する。また、Z1aもしくはZ1bはZ2aもしくはZ2bと反応して連結するのに必要な反応性官能基である。
     また、一般式(1a)、(2b)、(ab)および(4b)において、両側の結合末端は、各々独立に水素原子または1価の置換基が結合している。
PCT/JP2013/053294 2012-02-17 2013-02-12 有機光電変換素子組成物、これを含む薄膜、光電池、これに用いられる有機半導体ポリマー、化合物およびポリマーの製造方法 WO2013122063A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/461,985 US9680103B2 (en) 2012-02-17 2014-08-18 Organic photoelectric conversion element composition, thin film and photovoltaic cell each containing the same, organic semiconductor polymer and compound each for use in these, and method of producing the polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012033425A JP5859872B2 (ja) 2012-02-17 2012-02-17 有機光電変換素子組成物、これを含む薄膜、光電池、これに用いられる有機半導体ポリマー、化合物およびポリマーの製造方法
JP2012-033425 2012-02-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/461,985 Continuation US9680103B2 (en) 2012-02-17 2014-08-18 Organic photoelectric conversion element composition, thin film and photovoltaic cell each containing the same, organic semiconductor polymer and compound each for use in these, and method of producing the polymer

Publications (1)

Publication Number Publication Date
WO2013122063A1 true WO2013122063A1 (ja) 2013-08-22

Family

ID=48984173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053294 WO2013122063A1 (ja) 2012-02-17 2013-02-12 有機光電変換素子組成物、これを含む薄膜、光電池、これに用いられる有機半導体ポリマー、化合物およびポリマーの製造方法

Country Status (3)

Country Link
US (1) US9680103B2 (ja)
JP (1) JP5859872B2 (ja)
WO (1) WO2013122063A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160293874A1 (en) * 2015-03-30 2016-10-06 Kabushiki Kaisha Toshiba Photoelectric conversion device and method of manufacturing the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5987544B2 (ja) * 2012-08-08 2016-09-07 三菱商事株式会社 酸解離型重合性フラーレン誘導体及びその製造方法
US10199587B2 (en) 2012-08-09 2019-02-05 Sony Corporation Photoelectric conversion element, imaging device, and optical sensor
JP6145602B2 (ja) * 2012-09-13 2017-06-14 住友化学株式会社 組成物および光電変換素子
JP2015103735A (ja) * 2013-11-27 2015-06-04 ソニー株式会社 固体撮像素子および電子機器
KR101677841B1 (ko) * 2014-04-21 2016-11-18 주식회사 엘지화학 헤테로환 화합물 및 이를 포함하는 유기 태양 전지
US10418556B2 (en) * 2016-05-13 2019-09-17 Phillips 66 Company Conjugated polymer blends for high efficiency organic solar cells
KR102605375B1 (ko) * 2016-06-29 2023-11-22 삼성전자주식회사 유기 광전 소자 및 이미지 센서
US20180247770A1 (en) * 2017-02-27 2018-08-30 Luminescence Technology Corporation Heterocyclic compound for organic electronic device and using the same
JP7090400B2 (ja) * 2017-03-08 2022-06-24 浜松ホトニクス株式会社 半導体光検出素子
US11145822B2 (en) 2017-10-20 2021-10-12 Samsung Electronics Co., Ltd. Compound and photoelectric device, image sensor, and electronic device including the same
KR102300998B1 (ko) * 2019-12-27 2021-09-09 광운대학교 산학협력단 플루오린 원자가 포함된 신규 싸이아졸 단량체의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003075364A1 (fr) * 2002-03-07 2003-09-12 Nippon Oil Corporation Dispositif de conversion photoelectrique
WO2009098250A1 (en) * 2008-02-05 2009-08-13 Basf Se Perylene-imide semiconductor polymers
JP2010254587A (ja) * 2009-04-22 2010-11-11 Sumitomo Chemical Co Ltd フラーレン誘導体、組成物及び有機光電変換素子
US20110028644A1 (en) * 2009-06-30 2011-02-03 Plextronics, Inc. Novel compositions, methods and polymers
JP2011035243A (ja) * 2009-08-04 2011-02-17 Konica Minolta Holdings Inc 有機光電変換素子及び有機光電変換素子の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2509972B1 (en) * 2009-12-11 2015-07-08 Imec Polymers comprising 3-substituted thiophene moieties as active layers for solar cells
US20130085249A1 (en) * 2010-06-09 2013-04-04 Ocean's King Lighting Science &Technology Co., Ltd Conjugated polymer based on perylene tetracarboxylic acid diimide and dibenzothiophene and the preparation method and application thereof
US8598302B2 (en) * 2010-09-10 2013-12-03 Ocean's King Lighting Science & Technology Co., Ltd. Perylenetetracarboxylic diimide organic semiconductor material and the preparation method and application thereof
WO2012099000A1 (ja) * 2011-01-18 2012-07-26 コニカミノルタホールディングス株式会社 有機光電変換素子および太陽電池
US8735536B2 (en) * 2011-03-07 2014-05-27 Polyera Corporation Naphthobisthiadiazole polymers for use in organic semiconductor devices
JP5605299B2 (ja) * 2011-04-28 2014-10-15 三菱化学株式会社 新規コポリマー、有機半導体材料、及びこれを用いた有機電子デバイス並びに太陽電池モジュール
JP2013057007A (ja) * 2011-09-08 2013-03-28 Sumitomo Chemical Co Ltd 高分子化合物、該高分子化合物を含む薄膜及び組成物
JP6015672B2 (ja) * 2011-12-22 2016-10-26 コニカミノルタ株式会社 有機光電変換素子
EP2809706A4 (en) * 2012-02-03 2016-01-13 Univ Chicago SEMICONDUCTOR POLYMERS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003075364A1 (fr) * 2002-03-07 2003-09-12 Nippon Oil Corporation Dispositif de conversion photoelectrique
WO2009098250A1 (en) * 2008-02-05 2009-08-13 Basf Se Perylene-imide semiconductor polymers
JP2010254587A (ja) * 2009-04-22 2010-11-11 Sumitomo Chemical Co Ltd フラーレン誘導体、組成物及び有機光電変換素子
US20110028644A1 (en) * 2009-06-30 2011-02-03 Plextronics, Inc. Novel compositions, methods and polymers
JP2011035243A (ja) * 2009-08-04 2011-02-17 Konica Minolta Holdings Inc 有機光電変換素子及び有機光電変換素子の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JOHANNES FRISCH ET AL.: "Full electronic structure across a polymer heterojunction solar cell", JOURNAL OF MATERIALS CHEMISTRY, vol. 22, no. ISSUE, 3 January 2012 (2012-01-03), pages 4418 - 4424 *
MICHAEL SOMMER ET AL.: "Donor-Acceptor block copolymer for photovoltaic applications", JOURNAL OF MATERIALS CHEMISTRY, vol. 20, no. ISSUE, 2 September 2010 (2010-09-02), pages 10788 - 10797 *
ZHEN FANG ET AL.: "Low-Bandgap Donor-Acceptor Conjugated Polymer Sensitizers for Dye-Sensitized Solar Cells", JOURANAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 133, no. ISSUE, 9 March 2011 (2011-03-09), pages 3063 - 3069 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160293874A1 (en) * 2015-03-30 2016-10-06 Kabushiki Kaisha Toshiba Photoelectric conversion device and method of manufacturing the same
US10468616B2 (en) 2015-03-30 2019-11-05 Kabushiki Kaisha Toshiba Photoelectric conversion device and method of manufacturing the same

Also Published As

Publication number Publication date
JP2013170187A (ja) 2013-09-02
JP5859872B2 (ja) 2016-02-16
US20140360585A1 (en) 2014-12-11
US9680103B2 (en) 2017-06-13

Similar Documents

Publication Publication Date Title
JP5859872B2 (ja) 有機光電変換素子組成物、これを含む薄膜、光電池、これに用いられる有機半導体ポリマー、化合物およびポリマーの製造方法
Sun et al. Recent progress on non-fullerene acceptors for organic photovoltaics
JP5738984B2 (ja) ジチエノピロール−キノキサリンを含む共役重合体及びその製造方法並びにポリマー太陽電池デバイス
JP5848280B2 (ja) 有機薄膜太陽電池、これに用いられる組成物および単量体、ならびに膜の製造方法
JP5746226B2 (ja) シクロペンタジエンジチオフェン−キノキサリン共重合体、及びその製造方法、並びその応用
JP5869420B2 (ja) 有機薄膜太陽電池、これに用いられる組成物、単量体および半導体膜の製造方法
US9153785B2 (en) Semiconducting polymers
JP5501526B2 (ja) 縮合環チオフェン単位を含むキノキサリン共役重合体、該共役重合体の製造方法及びその応用
JP2011168747A (ja) 共役系高分子、該共役系高分子を用いた有機薄膜太陽電池
JP5425338B2 (ja) アントラセンとピアセレノール類とを含有する共重合体、その製造方法及びその応用
KR102291239B1 (ko) N-형 유기 반도체 화합물, 이의 제조방법 및 이를 함유하는 유기 태양전지
JP5859911B2 (ja) 有機薄膜太陽電池、これに用いられる組成物および半導体膜の製造方法
JP6088954B2 (ja) 有機光電変換素子、有機薄膜太陽電池、これに用いる組成物、塗布膜およびこれに有用な化合物
CN104169332A (zh) 半导体聚合物
JP5662916B2 (ja) 有機薄膜太陽電池、これに用いられる有機半導体ポリマーおよび有機半導体材料用組成物
JP5667693B2 (ja) キノキサリン単位含有ポルフィリン共重合体及びその製造方法、並びにその応用
CN110536917B (zh) 聚合物和包含其的有机太阳能电池
JP5643735B2 (ja) 有機薄膜太陽電池、これに用いられる有機半導体ポリマーおよび有機半導体材料用組成物
JP2014229799A (ja) 有機光電変換素子、有機薄膜太陽電池、これに用いる組成物、塗布膜、これに有用な化合物および化合物の製造方法
KR101439275B1 (ko) 신규한 화합물, 이를 포함하는 고분자 화합물 및 이를 함유하는 유기태양전지
KR101439272B1 (ko) 신규한 화합물, 이를 포함하는 고분자 화합물 및 이를 함유하는 유기태양전지
WO2014098094A1 (ja) 有機光電変換素子、有機薄膜太陽電池、これらに用いる組成物、塗布膜、ポリマーおよび化合物
JP2013070000A (ja) 有機光電変換素子及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13749446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13749446

Country of ref document: EP

Kind code of ref document: A1