WO2013120675A2 - Réseau de distribution d'énergie électrique - Google Patents

Réseau de distribution d'énergie électrique Download PDF

Info

Publication number
WO2013120675A2
WO2013120675A2 PCT/EP2013/051268 EP2013051268W WO2013120675A2 WO 2013120675 A2 WO2013120675 A2 WO 2013120675A2 EP 2013051268 W EP2013051268 W EP 2013051268W WO 2013120675 A2 WO2013120675 A2 WO 2013120675A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrical energy
distribution network
capacitor
network according
submodules
Prior art date
Application number
PCT/EP2013/051268
Other languages
German (de)
English (en)
Other versions
WO2013120675A3 (fr
Inventor
Jürgen MOSER
Hans-Joachim Knaak
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2013120675A2 publication Critical patent/WO2013120675A2/fr
Publication of WO2013120675A3 publication Critical patent/WO2013120675A3/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J4/00Circuit arrangements for mains or distribution networks not specified as ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building

Definitions

  • Distribution network for electrical energy Classical energy distribution systems are predominantly based on alternating current distribution networks. Such networks have the disadvantage of relatively high line losses, resulting from the effective resistance of the cables or cables and inductive and capacitive resistances.
  • the invention has for its object to propose a distribution network for electrical energy, which allows a cost-effective and a wide distribution of electrical energy.
  • the invention in a Ver ⁇ distribution network connected to electrical energy with a Stromübertra ⁇ transmission link to the power transmission path via a modular multi-level converter arrangement at least one electrical energy consumer and / or electric power generators in such a way that at the condenser of at least one submodule of the modular multi-level converter arrangement is connected to the at least one electrical load or electrical energy generator via in each case one inverter with a downstream transformer.
  • a single consumer or power generator via a single submodule or to zelne or all capacitors with electrical energy consumers or energy generators Beschallten.
  • capacitors of individual submodules can deliberately remain unconnected in order to achieve a required DC voltage.
  • 2008/002226 AI a distribution network for electrical energy, in which electrical loads are connected via a respective pulse inverter of a series circuit of pulse inverters to a direct current transmission path; An energy transport can therefore only take place in one direction, namely to the consumers.
  • Directions allows, which means it can be used electric Anla ⁇ gen both in the form of electric energy consumers as well as electrical power generators.
  • Another advantage is that submodules that have been introduced and mass-produced with modular multi-level inverters can be used.
  • an electrical energy store is additionally connected to the capacitor of the at least one submodule via a DC chopper, so that in the distribution network according to the invention, if appropriate, a plurality of energy stores can be set up in a relatively simple manner. can be loaded; It is also possible to connect all submodules with energy storage devices. In itself, it is known from international patent application WO 2011/060823 AI to use a submodule for charging and discharging an energy storage device.
  • the distribution network according to the invention in spatially widely distributed electrical consumers.
  • consumers can be se beispielswei- involve ships in a harbor, which are each supplied over land ⁇ connections with electrical power.
  • these land connections are spatially distributed over a relatively large area, and a submodule of the modular multi-level converter arrangement is then placed adjacent to these land connections.
  • a use in example formed by high-rise consumers also offers with advantage.
  • the submodules can be embodied advantageously in the spatially distributed modular multi-level converter arrangement as so-called full-bridge submodules.
  • full-bridge submodules are relatively expensive because they require relatively many controlled rectifiers and consume relatively much electrical power, but can be achieved with them a better dynamic;
  • they allow, at least in part, a connection of power generators even in cases where the distribution network according to the invention is fed via an uncontrolled diode converter (see below).
  • the sub-modules of the modular multilevel converter arrangement of half-bridge submodules exist, as shown for example in Figure 4 of the above essay.
  • the power consumption and circuit scale ⁇ such submodules are Güns ⁇ tig.
  • the submodules on an operable by an error detection device short-circuiter.
  • This short circuiter does not switch operationally, but only after an error and then only ON and not OFF; the Lö ⁇ rule of an arc when switching off is not necessary, so that the short-circuiting device is relatively inexpensive executable.
  • a voltage measuring device is connected to the capacitor of each submodule, which is followed by a control device for the submodule, the high frequency each at low voltage across the capacitor charging of the capacitor and each at high voltage on the capacitor ⁇ a bypass line of the direct current causes the capacitor.
  • the Stromübertragungstre ⁇ bridge is a DC transmission link and to the
  • the Stromübertra ⁇ tion link is an AC transmission link, and the phase conductors of the AC transmission link via phase modules of the modular multi-level inverter arrangement, the electrical energy consumers and / or the electrical energy generator connected in such a way
  • An electrical energy consumer or an electrical energy generator is connected to the capacitor of each submodule of the phase modules of the modular multi-level converter arrangement via in each case one inverter with a downstream transformer.
  • FIG 1 shows an embodiment of the invention
  • Figure 2 shows another embodiment with connection to an AC voltage network via a
  • Figure 3 illustrates an embodiment with connecting electrical ⁇ rule energy consumers and energy producers through a single modular multi-level inverter device to an AC power supply system shown.
  • the DC transmission line 6 leads to a modular multi-level converter arrangement 9, which consists of individual submodules 10, 11 and 12 as well as 13, 14 and 15.
  • This Submodu ⁇ le 10 to 15 are each formed consistently in known manner as a half-bridge submodules by each ⁇ wells comprise an electronic power switch 16 in parallel with a diode 17 and a further electronic power switch 18 in parallel with a further diode 19 , On the output side, each of the submodules 10 to 15 has a capacitor 20.
  • An inverter 27 is connected to the capacitor 20 of each of the submodules 10 to 15, forming an extended submodule 21, 22, 23, 24, 25 and 26, respectively.
  • These inverters 27 can be implemented in the simplest way as a 2-level inverter; they are attached Schlos ⁇ sen at their outputs respectively to a three-phase alternating voltage network 28th With the respective alternating voltage network 28 connected transformers 29 are used for voltage adjustment and galvanic separation to see, and are each connected via an AC switch ⁇ 30 with, for example, each having a Landungsan- circuit 31 of a harbor facility not shown.
  • the extended sub-modules 21 to 26 can ⁇ example, be also connected to terminals of houses in a housing development.
  • each submodule 10 to 15 is assigned a short-circuiter 32, which is not shown in FIG Way is actuated when an error detection device signals an error in the submodules or the respective downstream consumer.
  • the individual submodules 10 to 15 are circuitally arranged, as is the case with the known modular multi-level converter. However, they are spatially separated in the present case arranged so that they each of the
  • the submodules 10 to 15 are arranged structurally and spatially very differently, as is the case with the known modular multi-level converter, in which the individual submodules are in a close spatial relationship with one another, for example housed in a common housing.
  • FIG. 2 The embodiment of Figure 2 is in terms of mo ⁇ dularen multilevel converter arrangement identical to the darg Robinsonen in Figure 1 embodiment, so that it can be dispensed with the description of this portion of the illustrated distribution network ⁇ here.
  • a three-phase alternating voltage network is in the embodiment according to figure 2 here 40 via a transformer assembly 41 having a modular multi- ti-level inverter 42, which in known manner by inductances 43, 44 and 45 With regard to its positive-side converter part as well as further inductances 46, 47 and 48, it is connected to the transformer arrangement 41 with regard to its negative converter part.
  • a further description of the modular multi-level converter 42 is unnecessary because it corresponds to a known inverter design with half-bridge submodules.
  • submodules 50 and 51 in addition to further submodules, not shown, form a phase branch 52 of a modular multi-level converter device, as is known per se from the abovementioned state of the art Technique is known.
  • Each submodule 50 or 51 is so out ⁇ leads, as it has already been set out in the description of FIG. 1 above.
  • Connected to the capacitor 53 of the submodule 50 is an inverter 54 to which a transformer 55 is arranged downstream, as has been described in detail above in connection with FIG.
  • a non-illustrated energy consumer or - producer can be connected via a switch 56.
  • a DC voltage controller 57 Connected to the capacitor 53 is also a DC voltage controller 57, to which an energy supply 58 is arranged downstream.
  • This can be formed for example by ei ⁇ nem accumulator.
  • the circuit comprising the submodule 50, the inverter 54, the transformer 55, the DC voltage controller 57 and the energy store 58 forms a circuit unit 59.
  • supplemental circuit units 68 and 69 are formed with submodules 66 and 67 and further submodules, not shown, which together represent a further circuit unit branch 70.
  • the illustrated distribution network includes further pairs of circuit unit branches 72 and 73 which are circuit units 74 and 75 and 76 and 77, respectively, corresponding to circuit units 59 and 60 and 68 and 69, respectively; these circuit unit branches 72 and 73 are connected to another phase conductor 78 of the AC transmission path 64 via further throttles 79 and 80.
  • the third phase conductor 81 is the AC transmission path 64 connected thereto by means of complementary reactors 82 and 83 the circuit unit branches 61 and 72 and 70 and 73 corresponding circuit unit branches 84 and 85 are connected.
  • FIG. 3 also shows that the lower circuit unit branches 70, 73 and 85 in the figure are at a uniform negative potential.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

L'invention concerne un réseau de distribution d'énergie électrique comportant une voie de transmission de courant (6) et des installations électriques disposées à distance les unes des autres. L'invention vise à mettre en oeuvre un tel réseau permettant une distribution à grande distance à coûts réduits. A cet effet, au moins un consommateur d'énergie électrique et/ou un générateur d'énergie électrique est connecté à la voie de transmission de courant (6) au moyen d'un dispositif convertisseur multi-niveaux (9) de telle manière que le au moins un consommateur électrique ou générateur électrique est connecté au condensateur (20) d'au moins un sous-module (10, 11, 12, 13, 14, 15) du dispositif convertisseur multi-niveaux (9) au moyen de respectivement un onduleur (27) comprenant un transformateur (29) monté en aval.
PCT/EP2013/051268 2012-02-14 2013-01-24 Réseau de distribution d'énergie électrique WO2013120675A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012202187.6A DE102012202187B4 (de) 2012-02-14 2012-02-14 Verteilungsnetz für elektrische Energie
DE102012202187.6 2012-02-14

Publications (2)

Publication Number Publication Date
WO2013120675A2 true WO2013120675A2 (fr) 2013-08-22
WO2013120675A3 WO2013120675A3 (fr) 2014-05-30

Family

ID=47714027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/051268 WO2013120675A2 (fr) 2012-02-14 2013-01-24 Réseau de distribution d'énergie électrique

Country Status (2)

Country Link
DE (1) DE102012202187B4 (fr)
WO (1) WO2013120675A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108695842A (zh) * 2018-06-15 2018-10-23 西安交通大学 一种适用于直流配网的光伏系统柔性汇集拓扑及其控制方法
EP3719986A1 (fr) * 2019-04-02 2020-10-07 Siemens Aktiengesellschaft Convertisseur, dispositif doté d'un convertisseur et son procédé de fonctionnement

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
CN109586327B (zh) * 2018-11-07 2021-10-26 詹长江 一种能量消耗装置及其控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008002226A1 (fr) 2006-06-28 2008-01-03 Abb Technology Ltd. Convertisseur ccht modulaire
WO2011060823A1 (fr) 2009-11-19 2011-05-26 Siemens Aktiengesellschaft Convertisseur et sous-module d'un convertisseur destiné à charger ou décharger un réservoir d'énergie

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4033603A1 (de) * 1990-10-23 1992-04-30 Abb Patent Gmbh Verfahren zum schutz der abschaltbaren leistungshalbleiter eines wechselrichters bei ausgangskurzschluessen
JP3352182B2 (ja) * 1993-11-09 2002-12-03 三菱電機株式会社 インバータ装置
US6487096B1 (en) * 1997-09-08 2002-11-26 Capstone Turbine Corporation Power controller
JP2003333857A (ja) * 2002-05-13 2003-11-21 Nitta Ind Corp 屋内配電システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008002226A1 (fr) 2006-06-28 2008-01-03 Abb Technology Ltd. Convertisseur ccht modulaire
WO2011060823A1 (fr) 2009-11-19 2011-05-26 Siemens Aktiengesellschaft Convertisseur et sous-module d'un convertisseur destiné à charger ou décharger un réservoir d'énergie

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R. MARQUARDT; A. LESNICAR, NEW CONCEPT FOR HIGH VOLTAGE-MODULAR MULTILEVEL CONVERTER PESC, 2004

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108695842A (zh) * 2018-06-15 2018-10-23 西安交通大学 一种适用于直流配网的光伏系统柔性汇集拓扑及其控制方法
EP3719986A1 (fr) * 2019-04-02 2020-10-07 Siemens Aktiengesellschaft Convertisseur, dispositif doté d'un convertisseur et son procédé de fonctionnement
WO2020200760A1 (fr) * 2019-04-02 2020-10-08 Siemens Aktiengesellschaft Onduleur, ensemble comprenant un onduleur et procédé pour les faire fonctionner
US11424618B2 (en) 2019-04-02 2022-08-23 Siemens Aktiengesellschaft Converter, arrangement comprising a converter and method for operating same

Also Published As

Publication number Publication date
WO2013120675A3 (fr) 2014-05-30
DE102012202187A1 (de) 2013-08-14
DE102012202187B4 (de) 2016-06-09

Similar Documents

Publication Publication Date Title
EP2100364B1 (fr) Commande d'un convertisseur modulaire avec des accumulateurs d'énergie répartis
WO2008110129A1 (fr) Procédé pour limiter les dommages à un redresseur présentant un semi-conducteur de puissance dans le cas d'un court-circuit dans un circuit intermédiaire à tension continue
EP2107672A1 (fr) Onduleur triphasé sans connexion entre le conducteur de neutre du réseau et le point milieu du circuit intermédiaire
EP2898595A1 (fr) Convertisseur continu-continu multi-niveaux modulaire pour applications ccht
EP3005543A1 (fr) Transducteur dc/dc multi-niveaux modulaire pour applications hvdc
WO2013120675A2 (fr) Réseau de distribution d'énergie électrique
DE102013214693A1 (de) Anordnung zur Kompensation von Blindleistung und Wirkleistung in einem Hochspannungsnetz
WO2013189526A9 (fr) Injection et découplage d'une puissance dans une dérivation d'un nœud d'un réseau de courant continu avec une source de tension longitudinale
DE102011075576A1 (de) Umrichteranordnung
EP2845303A1 (fr) Convertisseur et procédés de conversion de tension
WO2020007464A1 (fr) Convertisseur multipoint modulaire doté d'unités d'accumulation modulaires
EP3622621A1 (fr) Onduleur à plusieurs niveaux
WO2014076138A1 (fr) Convertisseur
EP3639352B1 (fr) Ensemble convertisseur de puissance présentant une capacité de coupure d'un courant de fuite et procédé pour la coupure d'un courant de fuite pour ledit ensemble convertisseur de puissance
EP3331118B1 (fr) Installation de transfert d'énergie électrique
WO2016055106A1 (fr) Ensemble convertisseur muni d'une unité de court-circuit ainsi que procédé de coupure d'une ligne à tension alternative
WO2014086428A1 (fr) Onduleur à plusieurs étages muni d'un module auxiliaire
DE102014100257A1 (de) Modularer Umrichter und Energieübertragungseinrichtung
DE102012210423A1 (de) Einspeisung von Solarenergie in ein Energieversorgungsnetz mittels Solarwechselrichter
EP3844853A1 (fr) Système pour stabiliser un réseau de tension alternative
WO2014127829A1 (fr) Prélèvement en série avec unité de précharge
EP3218980B1 (fr) Procédé de transmission à courant continu
DE102011115728B4 (de) Verfahren zum Betreiben eines Wechselrichters und Wechselrichterschaltung
WO2012065881A1 (fr) Système redresseur de courant et système convertisseur comportant un système redresseur de ce type
DE102011075658A1 (de) Verfahren zum Erzeugen von Energie mittels einer Photovoltaikanlage und Photovoltaikanlage

Legal Events

Date Code Title Description
122 Ep: pct application non-entry in european phase

Ref document number: 13704017

Country of ref document: EP

Kind code of ref document: A2