WO2013118222A1 - 電力変換装置 - Google Patents
電力変換装置 Download PDFInfo
- Publication number
- WO2013118222A1 WO2013118222A1 PCT/JP2012/007878 JP2012007878W WO2013118222A1 WO 2013118222 A1 WO2013118222 A1 WO 2013118222A1 JP 2012007878 W JP2012007878 W JP 2012007878W WO 2013118222 A1 WO2013118222 A1 WO 2013118222A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat transfer
- heat
- support plate
- board
- conversion device
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/16—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
- H01L25/162—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits the devices being mounted on two or more different substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/40—Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
- H01L23/4006—Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
- H01L23/473—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present invention relates to a power conversion apparatus that supports a mounting substrate on which a circuit component including a heat generating circuit component for driving the semiconductor switching element is mounted on a semiconductor power module including a semiconductor switching element for power conversion.
- a vehicle inverter device described in Patent Document 1 As this type of power conversion device, a vehicle inverter device described in Patent Document 1 is known.
- a control board is connected to a support post fixed on a cooling plate via a fixture.
- the GND pattern of the control board is connected to the support via the fixing bracket.
- the support column and the fixture are made of aluminum and have good thermal conductivity, and the GND pattern is also made of aluminum or copper and has good thermal conductivity.
- the heat generated from the control components on the control board is conducted from the GND pattern to the cooling plate via the fixing bracket and the support.
- the vehicle inverter device efficiently conducts heat generated on the control board to the cooling plate and dissipates heat to the outside.
- the control board on which the control component is mounted and the GND pattern are connected to the cooling plate via the fixing bracket and the support column. Heat generated from the components can be conducted to the cooling plate and radiated to the outside.
- the connection between the control board and the GND pattern and the support is performed through a fixing bracket. For this reason, the thermal resistance between a control board and a GND pattern and a support
- An object of the present invention is to provide a power conversion device capable of transferring heat to the inside.
- a first aspect of a power conversion device includes a semiconductor power module in which one surface is joined to a cooling body and a circuit component including a heat generating circuit component that drives the semiconductor power module. And a heat transfer support plate that supports the mounting substrate and transfers heat of the mounting substrate to the cooling body. And the said heat-transfer support plate has a junction part which joins the said mounting substrate directly to the said heat-transfer support plate.
- heat from the heat generating circuit component and the board pattern mounted on the mounting board is transferred to the heat transfer support plate through the joint, and the heat transfer path having a large plate-like cross-sectional area from the heat transfer support plate.
- Heat can be efficiently radiated to the cooling body via the forming member, and heat generated by the heat generating circuit components on the mounting board can be radiated to the cooling body without going through the housing that covers the semiconductor power module or the mounting board.
- substrate support part is integrally formed in the heat-transfer support plate, the thermal resistance between both can be made small and heat transfer efficiency can be improved.
- a semiconductor power module in which a semiconductor switching element for power conversion is built in a case body and a cooling member is formed on one surface of the case body, and the semiconductor power
- the semiconductor power A mounting board on which circuit parts including a heat generating circuit part for driving the semiconductor switching element mounted on the other surface side of the module case body are mounted, a cooling body for cooling a cooling member of the semiconductor power module, and the mounting board And a plate-shaped heat transfer path forming member that forms a direct heat transfer path disposed between the heat transfer support plate and the cooling body.
- the heat transfer support plate integrally forms a heat transfer substrate support portion that supports the mounting substrate.
- the heat of the heat generating circuit components and the substrate pattern mounted on the mounting board is transferred to the heat transfer support plate via the heat transfer substrate support, and the plate-like cross-sectional area is large from the heat transfer support plate.
- Heat can be efficiently radiated to the cooling body via the heat transfer path forming member, and the heat generated by the heat generating circuit components on the mounting board can be radiated to the cooling body without going through the housing covering the semiconductor power module or the mounting board. .
- substrate support part is integrally formed in the heat-transfer support plate, the thermal resistance between both can be made small and heat transfer efficiency can be improved.
- the heat transfer board support portion is formed by forming a gap in which a circuit component mounted on the mounting board is not in contact with the heat transfer support plate. Supports the substrate. According to this configuration, a gap is formed between the mounting board and the heat transfer support plate so that the circuit components mounted on the mounting board are not in contact with the heat transfer support plate, so that cold air can enter the gap. The cooling effect can be improved.
- the 4th aspect of the power converter device which concerns on this invention has arrange
- the heat transfer board support portion is a circuit component in which at least one of a heat generation amount and a heat generation density is relatively large among circuit components mounted on the mounting board. It is formed in the vicinity. According to this configuration, since the heat transfer board support portion is disposed in the vicinity of the circuit component in which at least one of the heat generation amount and the heat generation density is relatively large among the circuit components mounted on the mounting substrate, the heat generation of the heat generation circuit component. Can be efficiently transferred to the heat transfer support plate.
- substrate support part is formed in multiple numbers on the said heat-transfer support plate. According to this configuration, since a plurality of heat transfer substrate support portions are formed on the heat transfer support plate, it is possible to prevent bending of the mounting substrate to be supported and to form a plurality of heat transfer paths, Heat transfer efficiency can be further improved.
- the said heat-transfer support plate is formed with the metal material with favorable heat conductivity.
- the heat transfer support plate is formed of a metal material having a good thermal conductivity such as aluminum, an aluminum alloy, or copper, so that the heat transfer efficiency can be further improved.
- route formation member is formed with the plate-shaped metal material with favorable heat conductivity.
- the heat transfer path forming member is formed of a metal material having a good thermal conductivity such as aluminum, an aluminum alloy, or copper, so that the heat transfer efficiency can be further improved.
- a ninth aspect of the power conversion device includes a plurality of sets of the mounting substrate, the heat transfer support plate, and the heat transfer path forming member, and the height of the heat transfer path member for each set.
- the heat transfer path forming member is connected to the cooling body through different side surfaces of the semiconductor power module. According to this configuration, when there are a plurality of sets of the mounting substrate and the heat transfer support plate, different heat dissipation paths can be formed for each mounting substrate, and heat transfer efficiency can be improved.
- route formation members are connected via the connection board part which contacts the said cooling body. According to this configuration, since the plurality of heat transfer path forming members are connected via the connecting plate portion that comes into contact with the cooling body, the contact area between the heat transfer path forming member and the cooling body can be widened and mounted. Heat generated by the heat generating circuit component mounted on the circuit board can be radiated more efficiently.
- the heat transfer support plate and the heat transfer path forming member are integrally formed. According to this configuration, since the heat transfer support plate and the heat transfer path forming member are integrally formed, it is possible to reduce the thermal resistance by omitting the connecting portion between the two, and to reduce the heat generation of the mounting board. Heat can be radiated to the cooling body more efficiently.
- the mounting substrate on which the heat generating circuit component is mounted is supported by the heat transfer substrate support portion as a joint integrally formed on the heat transfer support plate, so that the heat transfer support plate and the heat transfer substrate support portion are The heat resistance between them can be reduced, and the heat generated by the heat generating circuit components can be efficiently transferred to the heat transfer support plate.
- a plate-shaped heat transfer path forming member that directly forms a heat transfer path between the heat transfer support plate and the cooling body is disposed, a heat transfer path with a wide cross-sectional area can be formed, The heat transferred to the heat transfer support plate can be efficiently radiated to the cooling body.
- the housing since the heat transfer path is formed separately from the housing covering the semiconductor power module and the mounting substrate, the housing itself does not need to be made of a material having good thermal conductivity, and is made of an inexpensive synthetic resin material. Is possible.
- FIG. 1 is a cross-sectional view showing the overall configuration of a power converter according to the present invention.
- reference numeral 1 denotes a power converter
- the power converter 1 is housed in a housing 2.
- the casing 2 is formed by molding a synthetic resin material, and includes a lower casing 2A and an upper casing 2B that are divided vertically with a cooling body 3 having a water-cooling jacket structure interposed therebetween.
- the lower housing 2A is a bottomed rectangular tube.
- the lower casing 2A has an open upper portion covered with a cooling body 3, and a smoothing film capacitor 4 is accommodated therein.
- the upper housing 2B includes a rectangular tube 2a having an open upper end and a lower end, and a lid 2b that closes the upper end of the rectangular tube 2a.
- the lower end of the rectangular tube 2a is closed by the cooling body 3.
- a sealing material such as application of a liquid sealant or sandwiching rubber packing is interposed between the lower end of the rectangular tube 2a and the cooling body 3.
- the cooling body 3 has a cooling water supply port 3 a and a drain port 3 b opened to the outside of the housing 2.
- the water supply port 3a and the drainage port 3b are connected to a cooling water supply source (not shown) via, for example, a flexible hose.
- the cooling body 3 is formed, for example, by die casting or casting aluminum or aluminum alloy having high thermal conductivity. And as for the cooling body 3, the lower surface is made into a flat surface, and the upper surface is formed with the square-frame-shaped peripheral groove 3d leaving the center part 3c. Further, the cooling body 3 is formed with an insertion hole 3e through which the positive and negative electrodes 4a covered with insulation of the film capacitor 4 held by the lower housing 2A are inserted vertically.
- the power conversion device 1 includes a semiconductor power module 11 including, for example, an insulated gate bipolar transistor (IGBT) as a semiconductor switching element that constitutes, for example, an inverter circuit for power conversion.
- the semiconductor power module 11 includes an IGBT in a flat rectangular parallelepiped insulating case body 12, and a metal cooling member 13 is formed on the lower surface of the case body 12.
- the case body 12 and the cooling member 13 are formed with insertion holes 15 through which the fixing screws 14 as the fixing members are inserted at the four corners when viewed from the plane.
- substrate fixing portions 16 having a predetermined height are formed to protrude at four locations inside the insertion hole 15.
- a drive circuit board 21 on which a drive circuit for driving an IGBT built in the semiconductor power module 11 is mounted is fixed to the upper end of the board fixing portion 16.
- a control circuit board 22 as a mounting board for controlling the IGBT built in the semiconductor power module 11 is fixed above the drive circuit board 21 at a predetermined distance from the drive circuit board 21.
- a control circuit including a heat generating circuit component having a relatively large heat generation amount or a high heat generation density is mounted on the control circuit board 22.
- a power supply circuit board 23 is fixed above the control circuit board 22 as a mounting board for supplying power to the IGBT built in the semiconductor power module 11 with a predetermined distance from the control circuit board 22.
- a power supply circuit including a heat generation circuit component having a relatively large heat generation amount or a high heat generation density is mounted.
- the drive circuit board 21 is inserted into the insertion hole 21 a formed at a position facing the board fixing part 16, and the male screw part 24 a of the joint screw 24 is inserted, and the male screw part 24 a is formed on the upper surface of the board fixing part 16. It is fixed by screwing into the part 16a.
- the control circuit board 22 inserts the male screw portion 25a of the joint screw 25 into the insertion hole 22a formed at a position facing the female screw portion 24b formed at the upper end of the joint screw 24, and this male screw portion 25a is inserted into the joint screw 24. It is fixed by being screwed into the female screw portion 24b.
- the power supply circuit board 23 inserts a fixing screw 26 into an insertion hole 23 a formed at a position opposite to the female screw portion 25 b formed at the upper end of the joint screw 25, and the fixing screw 26 is inserted into the female screw portion 25 b of the joint screw 25. It is fixed by being screwed onto.
- the control circuit board 22 and the power circuit board 23 are supported by heat transfer support plates 32 and 33. These heat transfer support plates 32 and 33 are made of a metal having a high thermal conductivity (for example, 100 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or more) such as aluminum or aluminum alloy, and have substantially the same outer shape as the control circuit board 22 and the power supply circuit board 23. Is formed.
- heat transfer substrate support portions 34 and 35 are integrally formed as four hollow joint portions at four corner positions. These heat transfer substrate support portions 34 and 35 are formed by subjecting the heat transfer support plates 32 and 33 to burring or drawing. Further, female threads 36 are formed on the inner peripheral surfaces of the heat transfer substrate support portions 34 and 35, respectively.
- the heat transfer board support portions 34 and 35 are arranged on the lower surfaces of the insulating sheet 40a, the control circuit board 22 and the power supply circuit board 23 attached to the upper surfaces of the heat transfer support boards 32 and 33. The height is selected so that a necessary insulation distance can be secured between the bottom surface of the mounted circuit components.
- the control circuit board 22 and the power supply circuit board 23 are fixedly supported on the upper ends of the heat transfer board support portions 34 and 35.
- the control circuit board 22 and the power supply circuit board 23 are fixed by first placing the control circuit board 22 and the power supply circuit board 23 on the upper ends of the heat transfer board support portions 34 and 35.
- the fixing screw 38 is screwed and tightened to the female screw 36 of the control circuit board 22 and the power supply circuit board 23 through the screw insertion holes 37 formed in the control circuit board 22 and the power supply circuit board 23.
- the control circuit board 22 and the power supply circuit board 23 are fixed on the heat transfer board support portions 34 and 35.
- the heat transfer substrate support portions 34 and 35 formed on the heat transfer support plates 32 and 33 are heat generation with a relatively large heat generation amount or a large heat generation density mounted on the control circuit substrate 22 and the power supply circuit substrate 23. It is arranged in the vicinity of the circuit component 39. Furthermore, insulating sheets 40a and 40b made of an insulating material are disposed on the upper and lower surfaces of the heat transfer support plates 32 and 33, respectively. The insulating sheet 40a on the upper surface side of the heat transfer support plates 32 and 33 insulates the circuit components mounted on the lower surface side of the control circuit board 22 and the power supply circuit board 23 from the heat transfer support plates 32 and 33. Further, the insulating sheet 40b on the lower surface side of the heat transfer support plates 32 and 33 is designed to insulate the circuit components mounted on the upper surface of the drive circuit board 21 and the control circuit board 22 facing the lower surface side.
- a plate-shaped heat transfer path forming member 42 that directly forms a heat transfer path through the right end side of the semiconductor power module 11 is disposed between the heat transfer support plate 32 and the cooling body 3. Further, a plate-shaped heat transfer path forming member 43 that directly forms a heat transfer path through the left end side of the semiconductor power module 11 is also disposed between the heat transfer support plate 33 and the cooling body 3.
- These heat transfer path forming members 42 and 43 are made of a metal having a high thermal conductivity (for example, 100 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or more) such as aluminum or an aluminum alloy.
- Both the heat transfer path forming members 42 and 43 are disposed in a circumferential groove 3d facing the outer peripheral edge of the semiconductor power module 11 on the upper surface of the cooling body 3 and have a rectangular frame-shaped common bottom plate portion serving as a cooling body contact plate portion. 44. Therefore, the heat transfer path forming members 42 and 43 are integrally connected by the bottom plate portion 44.
- the heat transfer path forming members 42 and 43 and the bottom plate portion 44 have a black surface.
- the surface may be coated with a black resin or painted with a black paint.
- the heat emissivity becomes larger than the metal material color, and the amount of radiant heat transfer can be increased. For this reason, the heat dissipation to the circumference
- the surface of only the heat transfer path forming members 42 and 43 may be black except for the bottom plate portion 44.
- the heat transfer path forming member 42 is integrally connected to the outer peripheral edge on the long side of the common bottom plate portion 44 disposed in the circumferential groove 3 d of the cooling body 3 and extends upward.
- the side plate portion 42a and the upper plate portion 42b extending leftward from the upper end of the connecting side plate portion 42a are formed in an inverted L-shaped cross section.
- the connection side plate portion 42 a extends upward through the right side surface on the long side of the semiconductor power module 11.
- connection part with the bottom board part 44 and the upper board part 42b of the connection side board part 42a is formed in the curved surfaces 42c and 42d which are a part of cylindrical surface, for example.
- the vibration resistance against vertical vibration and roll can be improved. . That is, it is possible to alleviate the stress concentration that occurs in the connection portion between the connection side plate portion 42a, the bottom plate portion 44, and the upper plate portion 42b when vertical vibration or roll is transmitted to the power conversion device 1.
- connection part of the connection side board part 42a, the bottom board part 44, and the upper board part 42b is made by making the connection part of the connection side board part 42a, the bottom board part 44, and the upper board part 42b into the cylindrical curved surfaces 42c and 42d.
- the heat conduction path can be shortened as compared with the case of forming a right-angle L-shape. For this reason, the heat transfer path from the heat transfer support plate 32 to the cooling body 3 can be shortened to enable efficient heat cooling.
- the heat transfer path forming member 43 is integrally connected to the outer peripheral edge on the long side of the common bottom plate portion 44 disposed in the circumferential groove 3d of the cooling body 3 so as to move upward.
- the connecting side plate portion 43a extending and the upper plate portion 43b extending rightward from the upper end of the connecting side plate portion 43a are formed in an inverted L-shaped cross section.
- the connection side plate portion 43 a extends upward through the left side surface on the long side of the semiconductor power module 11.
- connection part with the bottom board part 44 and the upper board part 43b of the connection side board part 43a is formed in the curved surfaces 43c and 43d which are a part of cylindrical surface, for example.
- the vibration resistance against vertical vibration and roll can be improved. . That is, it is possible to alleviate the stress concentration that occurs at the connection portion between the connection side plate portion 43a, the bottom plate portion 44, and the upper plate portion 43b when the vertical vibration or roll is transmitted to the power conversion device 1.
- connection part of the connection side board part 43a, the bottom board part 44, and the upper board part 43b is made by making the connection part of the connection side board part 43a, the bottom board part 44, and the upper board part 43b into the cylindrical curved surfaces 43c and 43d.
- the heat conduction path can be shortened as compared with the case of forming a right-angle L-shape. For this reason, the heat transfer path from the heat transfer support plate 33 to the cooling body 3 is shortened to enable efficient heat cooling.
- the heat transfer support plate 32 and the heat transfer path forming member 42 serve as the upper plate of the heat transfer path forming member 42, with the mounting end 32 a protruding to the right of the heat transfer support plate 32.
- the fixing screws 45 are brought into close contact with and connected to each other.
- the heat transfer support plate 33 and the heat transfer path forming member 43 have the mounting end 33 a protruding leftward of the heat transfer support plate 33 on the heat transfer path forming member 43. In a state of being superimposed on the upper surface of the plate portion 43b, it is brought into close contact with and connected by a fixing screw 46.
- the common bottom plate portion 44 of the heat transfer path forming members 42 and 43 has a fixing member at a position facing the insertion hole 15 through which the fixing screw 14 of the semiconductor power module 11 is inserted, as shown in FIGS.
- An insertion hole 44a is formed.
- a plate-like elastic member 47 is interposed between the upper surface of the bottom plate portion 44 and the lower surface of the cooling member 13 formed in the semiconductor power module 11. Then, the fixing screw 14 is inserted into the insertion hole 15 of the semiconductor power module 11 and the cooling member 13 and the fixing member insertion hole 44 a of the bottom plate portion 44, and the fixing screw 14 is screwed into the female screw portion 3 f formed in the cooling body 3. By doing so, the semiconductor power module 11 and the bottom plate portion 44 are fastened together and fixed to the cooling body 3.
- the insulating sheets 40a and 40b are attached to the upper and lower surfaces of the heat transfer support plates 32 and 33, respectively.
- the power supply circuit board 23 and the heat transfer board support portion 35 of the heat transfer support plate 33 are fixed by the fixing screw 38. Is fixed to form the power circuit unit U3.
- the semiconductor power module 11 and the common bottom plate portion 44 of the heat transfer path forming members 42 and 43 can be simultaneously fixed to the cooling body 3, the number of assembling steps can be reduced. Further, when the bottom plate portion 44 is fixed to the cooling body 3, the plate-like elastic member 47 is interposed between the bottom plate portion 44 and the cooling member 13 of the semiconductor power module 11. Is pressed against the bottom of the circumferential groove 3d of the cooling body 3, and the bottom plate portion 44 is reliably brought into contact with the cooling body 3, thereby ensuring a wide contact area.
- the drive circuit board 21 is mounted on the board fixing part 16 formed on the upper surface of the semiconductor power module 11 before or after fixing to the cooling body 3. Then, the drive circuit board 21 is fixed to the board fixing portion 16 by four joint screws 24 from above. Then, the control circuit board 22 of the control circuit unit U ⁇ b> 2 is placed on the upper surface of the joint screw 24 and is fixed by the four joint screws 25. Further, the power supply circuit board 23 of the power supply circuit unit U 3 is placed on the upper surface of the joint screw 25 and fixed by the four fixing screws 26. Then, the heat transfer support plates 32 and 33 are connected to the heat transfer path forming members 42 and 43 by fixing screws 45 and 46.
- a bus bar 50 is connected to the positive and negative DC input terminals 11a of the semiconductor power module 11, and the positive and negative electrodes 4a of the film capacitor 4 penetrating the cooling body 3 are connected to the other end of the bus bar 50.
- a fixing screw 51 Connects with the fixing screw 51.
- a bus bar 55 is connected to the three-phase AC output terminal 11 b of the semiconductor power module 11 with a fixing screw 56, and a current sensor 57 is disposed in the middle of the bus bar 55. Then, a crimp terminal 59 fixed to the tip of a motor connection cable 58 connected to an external three-phase electric motor (not shown) is fixed to the other end of the bus bar 55 with a fixing screw 60. Thereafter, the lower housing 2A and the upper housing 2B are fixed to the lower surface and the upper surface of the cooling body 3 via a sealing material, and the assembly of the power conversion device 1 is completed.
- DC power is supplied from an external converter (not shown), and the power supply circuit mounted on the power supply circuit board 23 and the control circuit mounted on the control circuit board 22 are set in an operating state.
- a gate signal that is a pulse width modulation signal is supplied to the semiconductor power module 11 via a drive circuit mounted on the drive circuit board 21.
- the IGBT built in the semiconductor power module 11 is controlled to convert DC power into AC power.
- the converted AC power is supplied from the three-phase AC output terminal 11b to the motor connection cable 58 via the bus bar 55 to drive and control a three-phase electric motor (not shown).
- the IGBT built in the semiconductor power module 11 generates heat.
- the generated heat is cooled by the cooling water supplied to the cooling body 3 because the cooling member 13 formed in the semiconductor power module 11 is in direct contact with the central portion 3 c of the cooling body 3.
- control circuit and the power supply circuit mounted on the control circuit board 22 and the power supply circuit board 23 include a heat generating circuit component 39, and the heat generating circuit component 39 generates heat.
- heat transfer board support portions 34 and 35 formed integrally with the heat transfer support plates 32 and 33 are disposed in the vicinity of the heat generating circuit component 39. Therefore, heat generated by the heat generating circuit component 39 is transferred to the heat transfer support plates 32 and 33 through the heat transfer substrate support portions 34 and 35.
- the thermal resistance between the heat transfer substrate support portions 34 and 35 and the heat transfer support plates 32 and 33 Can be reduced, and good heat conduction can be performed.
- the heat transfer path forming members 42 and 43 are connected to the heat transfer support plates 32 and 33, the heat transferred to the heat transfer support plates 32 and 33 passes through the heat transfer path forming members 42 and 43. The heat is transferred to the common bottom plate portion 44 through. Since the bottom plate portion 44 is in direct contact with the circumferential groove 3 d of the cooling body 3, the heat transmitted to the bottom plate portion 44 is radiated to the cooling body 3. Further, the heat transferred to the bottom plate portion 44 is transmitted from the upper surface side to the cooling member 13 of the semiconductor power module 11 via the plate-like elastic member 47, and the central portion of the cooling body 3 via this cooling member 13. It is transmitted to 3c and radiated.
- the heat transfer board support portions 34 and 35 are integrally formed on the heat transfer support plates 32 and 33 that support the control circuit board 22 and the power supply circuit board 23 as the mounting boards. ing. For this reason, the heat resistance between the heat transfer substrate support portions 34 and 35 and the heat transfer support plates 32 and 33 is fixed, and the heat transfer substrate support portions 34 and 35 are separated from the heat transfer support plates 32 and 33 and fixed screws. It can be made much smaller compared to the case of joining by, for example.
- control circuit board 22 and the power supply circuit board 23 and the heat transfer support plates 32 and 33 are connected by cylindrical heat transfer board support parts 34 and 35.
- the heat transfer distance is much shorter than the conventional example described above. For this reason, the heat transport amount Q by the heat transfer board
- the heat transport amount Q can be expressed by the following formula (1).
- Q ⁇ ⁇ (A / L) ⁇ T (1)
- ⁇ is the thermal conductivity [W / m ° C.]
- T is the temperature difference [° C.] substrate temperature T 1 -cooling body temperature T 2
- A is the minimum heat transfer cross section [m 2 ]
- L is the heat transfer length [m ].
- the heat transfer amount Q increases as the heat transfer length L is shorter, and the heat transfer substrate support portions 34 and 35 in this embodiment.
- the heat transport amount Q can be increased as compared with the conventional example.
- heat generated by the heat generating circuit components 39 mounted on the control circuit board 22 and the power supply circuit board 23 can be efficiently transferred to the heat transfer support plates 32 and 33, and the heat transfer path from the heat transfer support plates 32 and 33. Heat can be efficiently radiated to the cooling body 3 through the forming members 42 and 43.
- the heat transfer board support portions 34 and 35 are disposed in the vicinity of the heat generating circuit component 39 mounted on the control circuit board 22 and the power supply circuit board 23. For this reason, the heat transfer distance between the heat generating circuit component 39 and the heat transfer board support portions 34 and 35 can be shortened, and the heat radiation to the cooling body 3 can be performed more efficiently.
- the heat generated by the heat generating circuit component 39 transferred to the heat transfer support plates 32 and 33 is radiated to the cooling body 3 through the heat transfer path forming members 42 and 43.
- the heat transfer path forming members 42 and 43 are provided along the long sides of the semiconductor power module 11, respectively. For this reason, a wide heat transfer cross-sectional area can be taken, and a wide heat dissipation path can be secured.
- the bent portions of the heat transfer path forming members 42 and 43 are cylindrical curved portions, the heat transfer distance to the cooling body 3 is shortened as compared with the case where the bent portions are L-shaped. Can do.
- the housing 2 is not included in the heat dissipation path from the control circuit board 22 and the power circuit board 23 on which the heat generating circuit component 39 is mounted to the cooling body 3, the housing 2 is required to have heat conductivity. Absent. Therefore, it is not necessary to use a metal having a high thermal conductivity such as aluminum as a constituent material of the casing 2, and the casing 2 can be configured with a synthetic resin material, so that weight reduction and cost reduction can be achieved. .
- the heat dissipation path can be formed by the power conversion device 1 alone without the heat dissipation path being dependent on the housing 2, the semiconductor power module 11, the drive circuit board 21, the control circuit board 22, and the power supply circuit board 23. Can be applied to the housing 2 and the cooling body 3 in various different forms. The degree of freedom in housing design can be improved.
- control circuit board 22 and the power supply circuit board 23 are supported by the metal heat transfer support plates 32 and 33, the rigidity of the control circuit board 22 and the power supply circuit board 23 can be increased. For this reason, even when the power converter 1 is applied as a motor drive circuit for driving a motor for driving a vehicle, even when the vertical vibration or roll shown in FIG.
- the rigidity can be increased by the plates 32 and 33 and the heat transfer path forming members 42 and 43. Therefore, it is possible to provide the power conversion device 1 that is less affected by vertical vibrations and rolls.
- the present invention is not limited to the above configuration, and one or both of the insulating sheets 40a and 40b can be omitted as long as a sufficient insulating distance is secured.
- the exposed surface can absorb the heat generated around the control circuit board 22 and the power circuit board 23, and the heat dissipation effect of the control circuit board 22 and the power circuit board 23 can be further improved.
- the present invention is not limited to the above-described configuration, and the heat transfer support plates 32 and 33 have a larger outer shape than the control circuit board 22 and the power supply circuit board 23, so that the heat transfer effect on the heat transfer support plates 32 and 33 is further increased. You may make it improve.
- the present invention is not limited to the above-described configuration.
- the configuration as shown in FIG. May be. That is, the heat transfer path forming member 42 ⁇ / b> L may be provided on the left side of the heat transfer support plate 32 so that the heat dissipation path is formed on both sides of the heat transfer support plate 32.
- the heat radiation path is formed on both sides of the heat transfer support plate 32, so that the heat radiation effect of the control circuit board 22 can be further improved, and the rigidity against vertical vibration and left-right vibration is further increased. Can be high.
- the upper plate portions 42b and 43b of the heat transfer path forming members 42 and 43 are formed in a plurality of stages so as to face the circuit units U2 and U3, and a plurality of heat transfer support plates are formed. 32 and 33 may be supported. Also in this case, the heat dissipation effect of the control circuit board 22 can be further improved, and the rigidity against the vertical vibration and the left-right vibration can be further increased.
- the cooling member 13 of the semiconductor power module 11 was made to contact the upper surface of the cooling body 3 was demonstrated.
- the present invention is not limited to the above configuration, and the cooling member 13 can also be configured as shown in FIGS. That is, in the present embodiment, the cooling member 13 formed in the semiconductor power module 11 includes the cooling fins 61 that directly contact the cooling water flowing in the cooling body 3. Correspondingly, a dipping portion 62 is formed in which the cooling fins 61 opened in the central portion of the cooling body 3 are dipped in the cooling water passage.
- a sealing member 66 such as an O-ring is disposed between the peripheral wall 63 surrounding the immersion part 62 and the cooling member 13.
- Other configurations have the same configurations as those of the first embodiment described above, and the same reference numerals are given to corresponding portions to those in FIGS. 1 and 2, and the detailed description thereof will be omitted.
- the cooling fins 61 are formed in the cooling member 13 of the semiconductor power module 11, and the cooling fins 61 are directly immersed in the cooling water at the immersion part 62, so that the semiconductor power module 11 is cooled more efficiently. be able to.
- route formation members 42 and 43 were comprised separately was demonstrated.
- the present invention is not limited to the above configuration, and the heat transfer support plate 33 and the heat transfer path forming member 43 may be configured integrally as shown in FIG. Similarly, the heat transfer support plate 32 and the heat transfer path forming member 42 may be configured integrally. In these cases, a seam is not formed between the heat transfer support plates 32 and 33 and the heat transfer path forming members 42 and 43, so that the heat resistance is reduced and more efficient heat dissipation is performed. be able to.
- the said embodiment demonstrated the case where the film capacitor 4 was applied as a smoothing capacitor, it is not limited to this, You may make it apply a cylindrical electrolytic capacitor.
- the case where the power converter device by this invention was applied to an electric vehicle was demonstrated, it is not limited to this, It can apply this invention also to the rail vehicle which drive
- the power conversion device is not limited to an electrically driven vehicle, and the power conversion device of the present invention can be applied when driving an actuator such as an electric motor in other industrial equipment.
- the mounting substrate on which the heat generating circuit component is mounted is supported by the heat transfer substrate support portion as a joint portion integrally formed on the heat transfer support plate, so that the mounting substrate is supported with a small thermal resistance and heat generation is performed. It is possible to provide a power conversion device that can efficiently transfer heat generated by circuit components to a cooling body.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
回路部品を実装した実装基板を小さな熱抵抗で支持すると共に、発熱回路部品の発熱を効率よく冷却体に伝熱することができる電力変換装置を提供する。電力変換装置は、一面を冷却体に接合する半導体パワーモジュール(11)と、前記半導体パワーモジュールを駆動する発熱回路部品を含む回路部品を実装した実装基板(22),(23)と、前記実装基板を支持すると共に前記実装基板の熱を前記冷却体に伝熱させる伝熱支持板(32),(33)とを備え、前記伝熱支持板は、前記実装基板を当該伝熱支持板に直接接合する接合部(34),(35)を有している。
Description
本発明は、電力変換用の半導体スイッチング素子を内蔵した半導体パワーモジュール上に、上記半導体スイッチング素子を駆動する発熱回路部品を含む回路部品を実装した実装基板を支持するようにした電力変換装置に関する。
この種の電力変換装置としては、特許文献1に記載された車両用インバータ装置が知られている。この車両用インバータ装置は、制御基板が固定金具を介して冷却板上に固定された支柱に接続されている。また、制御基板のGNDパターンも同様に、前記固定金具を介して前記支柱に接続されている。ここで、支柱と固定金具は、アルミ製で熱電導性が良好であり、GNDパターンもアルミもしくは銅であり熱電導性が良好である。そして、制御基板上の制御部品から発生する熱は、GNDパターンから固定金具と支柱を介して冷却板へ伝導される。これにより、車両用インバータ装置は、制御基板上で発生する熱を冷却板へ効率よく伝導させ、外部へ放熱する。
ところで、上記特許文献1に記載された従来例にあっては、制御部品を実装した制御基板及びGNDパターンを固定金具及び支柱を介して冷却板接続するようにしているので、制御基板上の制御部品から発生する熱を冷却板へ伝導させ、外部へ放熱することができる。しかしながら、上記特許文献1に記載された従来例では、制御基板及びGNDパターンと支柱との接続を、固定金具を介して行うようにしている。このため、制御基板及びGNDパターンと支柱との間の熱抵抗が大きく、制御基板上の制御部品から発生する熱を冷却板へ効率よく伝導することができないという未解決の課題がある。
しかも、上記特許文献1に記載された従来例では、制御基板と冷却板との間の伝熱を支柱で行うので、広い断面積の伝熱経路を確保することができないとともに、伝熱長さも長いので、熱輸送量が少なくなり、制御基板と冷却板との間の伝熱効率を向上させることができないという未解決の課題がある。
そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、回路部品を実装した実装基板を小さな熱抵抗で支持すると共に、発熱回路部品の発熱を効率よく冷却体に伝熱することができる電力変換装置を提供することを目的としている。
そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、回路部品を実装した実装基板を小さな熱抵抗で支持すると共に、発熱回路部品の発熱を効率よく冷却体に伝熱することができる電力変換装置を提供することを目的としている。
上記目的を達成するために、本発明に係る電力変換装置の第1の態様は、一面を冷却体に接合する半導体パワーモジュールと、前記半導体パワーモジュールを駆動する発熱回路部品を含む回路部品を実装した実装基板と、前記実装基板を支持すると共に前記実装基板の熱を前記冷却体に伝熱させる伝熱支持板とを備えている。そして、前記伝熱支持板は、前記実装基板を前記伝熱支持板に直接接合する接合部を有している。
この構成によると、実装基板に実装されている発熱回路部品や基板パターンの熱を、接合部を介して伝熱支持板に伝熱し、伝熱支持板から板状の断面積の大きな伝熱経路形成部材を介して冷却体に効率良く放熱することができ、実装基板の発熱回路部品の発熱を半導体パワーモジュールや実装基板を覆う筐体を介することなく冷却体に放熱することができる。また、伝熱支持板に伝熱基板支持部が一体形成されているので、両者間の熱抵抗を小さくすることができ、伝熱効率を向上させることができる。
また、本発明に係る電力変換装置の第2の態様は、電力変換用の半導体スイッチング素子をケース体に内蔵し、当該ケース体の一面に冷却部材が形成された半導体パワーモジュールと、前記半導体パワーモジュールのケース体の他面側に装着される前記半導体スイッチング素子を駆動する発熱回路部品を含む回路部品を実装した実装基板と、前記半導体パワーモジュールの冷却部材を冷却する冷却体と、前記実装基板を支持する伝熱支持板と、該伝熱支持板と前記冷却体との間に配設された直接伝熱経路を形成する板状の伝熱経路形成部材とを備えている。そして、前記伝熱支持板は、前記実装基板を支持する伝熱基板支持部を一体形成している。
この構成によると、実装基板に実装されている発熱回路部品や基板パターンの熱を、伝熱基板支持部を介して伝熱支持板に伝熱し、伝熱支持板から板状の断面積の大きな伝熱経路形成部材を介して冷却体に効率良く放熱することができ、実装基板の発熱回路部品の発熱を半導体パワーモジュールや実装基板を覆う筐体を介することなく冷却体に放熱することができる。また、伝熱支持板に伝熱基板支持部が一体形成されているので、両者間の熱抵抗を小さくすることができ、伝熱効率を向上させることができる。
また、本発明に係る電力変換装置の第3の態様は、前記伝熱基板支持部は、前記実装基板に実装した回路部品が当該伝熱支持板に非接触となる間隙を形成して前記実装基板を支持している。
この構成によると、実装基板と伝熱支持板との間に実装基板に実装した回路部品が伝熱支持板に非接触となる間隙が形成されているので、間隙内に冷気の侵入が可能となり、冷却効果を向上させることができる。
この構成によると、実装基板と伝熱支持板との間に実装基板に実装した回路部品が伝熱支持板に非接触となる間隙が形成されているので、間隙内に冷気の侵入が可能となり、冷却効果を向上させることができる。
また、本発明に係る電力変換装置の第4の態様は、前記実装基板と前記伝熱支持板との間隙に絶縁部材を配設している。
この構成によると、実装基板と伝熱支持板との間隙に絶縁部材を配設したので、実装基板と伝熱支持板との距離を短くすることができ、伝熱基板支持部の高さを短くして伝熱距離を短くし、伝熱効果を向上させることができる。
この構成によると、実装基板と伝熱支持板との間隙に絶縁部材を配設したので、実装基板と伝熱支持板との距離を短くすることができ、伝熱基板支持部の高さを短くして伝熱距離を短くし、伝熱効果を向上させることができる。
また、本発明に係る電力変換装置の第5の態様は、前記伝熱基板支持部が、前記実装基板に実装された回路部品のうち発熱量及び発熱密度の少なくとも一方が相対的に大きい回路部品の近傍に形成されている。
この構成によると、伝熱基板支持部が実装基板に実装された回路部品のうち発熱量及び発熱密度の少なくとも一方が相対的に大きい回路部品の近傍に配置されているので、発熱回路部品の発熱を効率良く伝熱支持板に伝熱することができる。
この構成によると、伝熱基板支持部が実装基板に実装された回路部品のうち発熱量及び発熱密度の少なくとも一方が相対的に大きい回路部品の近傍に配置されているので、発熱回路部品の発熱を効率良く伝熱支持板に伝熱することができる。
また、本発明に係る電力変換装置の第6の態様は、前記伝熱基板支持部が、前記伝熱支持板上に複数形成されている。
この構成によると、伝熱支持板上に伝熱基板支持部が複数形成されているので、支持する実装基板の撓みを防止することができると共に、複数の伝熱経路を形成することができ、伝熱効率をより向上させることができる。
この構成によると、伝熱支持板上に伝熱基板支持部が複数形成されているので、支持する実装基板の撓みを防止することができると共に、複数の伝熱経路を形成することができ、伝熱効率をより向上させることができる。
また、本発明に係る電力変換装置の第7の態様は、前記伝熱支持板が、熱伝導率の良い金属材料で形成されている。
この構成によると、伝熱支持板をアルミニウム、アルミニウム合金、銅等の熱伝導率の良い金属材料で形成するので、伝熱効率をより向上させることができる。
この構成によると、伝熱支持板をアルミニウム、アルミニウム合金、銅等の熱伝導率の良い金属材料で形成するので、伝熱効率をより向上させることができる。
また、本発明に係る電力変換装置の第8の態様は、前記伝熱経路形成部材が、熱伝導率の良い板状金属材料で形成されている。
この構成によると、伝熱経路形成部材をアルミニウム、アルミニウム合金、銅等の熱伝導率の良い金属材料で形成するので、伝熱効率をより向上させることができる。
この構成によると、伝熱経路形成部材をアルミニウム、アルミニウム合金、銅等の熱伝導率の良い金属材料で形成するので、伝熱効率をより向上させることができる。
また、本発明に係る電力変換装置の第9の態様は、前記実装基板及び伝熱支持板と前記伝熱経路形成部材との組を複数組備え、前記組毎に前記伝熱経路部材の高さを異ならせるとともに、当該伝熱経路形成部材が前記半導体パワーモジュールの異なる側面を通って前記冷却体に接続されている。
この構成によると、実装基板と伝熱支持板部との組が複数存在する場合に、実装基板毎に異なる放熱経路を形成することができ、伝熱効率を向上させることができる。
この構成によると、実装基板と伝熱支持板部との組が複数存在する場合に、実装基板毎に異なる放熱経路を形成することができ、伝熱効率を向上させることができる。
また、本発明に係る電力変換装置の第10の態様は、前記複数の伝熱経路形成部材が、前記冷却体と接触する連結板部を介して連結されている。
この構成によると、複数の伝熱経路形成部材が冷却体と接触する連結板部を介して連結されているので、伝熱経路形成部材と冷却体との接触面積を広くすることができ、実装回路基板に実装された発熱回路部品の発熱をより効率良く放熱することができる。
この構成によると、複数の伝熱経路形成部材が冷却体と接触する連結板部を介して連結されているので、伝熱経路形成部材と冷却体との接触面積を広くすることができ、実装回路基板に実装された発熱回路部品の発熱をより効率良く放熱することができる。
また、本発明に係る電力変換装置の第11の態様は、前記伝熱支持板と前記伝熱経路形成部材とが一体に形成されている。
この構成によると、伝熱支持板と伝熱経路形成部材とが一体に形成されているので、両者間の連結部を省略して熱抵抗をより小さくすることが可能となり、実装基板の発熱をより効率よく冷却体に放熱することができる。
この構成によると、伝熱支持板と伝熱経路形成部材とが一体に形成されているので、両者間の連結部を省略して熱抵抗をより小さくすることが可能となり、実装基板の発熱をより効率よく冷却体に放熱することができる。
本発明によれば、発熱回路部品を実装した実装基板を伝熱支持板上に一体形成した接合部としての伝熱基板支持部で支持するので、伝熱支持板と伝熱基板支持部との間の熱抵抗を小さくすることができ、発熱回路部品等の発熱を効率よく伝熱支持板に伝熱することができる。
また、伝熱支持板と冷却体との間に直接伝熱経路を形成する板状の伝熱経路形成部材が配設されているので、広い断面積の伝熱経路を形成することができ、伝熱支持板に伝熱された熱を効率よく冷却体に放熱することができる。このとき、伝熱経路が半導体パワーモジュールや実装基板を覆う筐体とは別に形成されるので、筐体自体を熱伝導率の良い材料とする必要がなく、安価な合成樹脂材で構成することが可能となる。
また、伝熱支持板と冷却体との間に直接伝熱経路を形成する板状の伝熱経路形成部材が配設されているので、広い断面積の伝熱経路を形成することができ、伝熱支持板に伝熱された熱を効率よく冷却体に放熱することができる。このとき、伝熱経路が半導体パワーモジュールや実装基板を覆う筐体とは別に形成されるので、筐体自体を熱伝導率の良い材料とする必要がなく、安価な合成樹脂材で構成することが可能となる。
以下、本発明の実施の形態を図面について説明する。
図1は本発明に係る電力変換装置の全体構成を示す断面図である。
図中、1は電力変換装置であって、この電力変換装置1は筐体2内に収納されている。筐体2は、合成樹脂材を成形したものであり、水冷ジャケットの構成を有する冷却体3を挟んで上下に分割された下部筐体2A及び上部筐体2Bで構成されている。
図1は本発明に係る電力変換装置の全体構成を示す断面図である。
図中、1は電力変換装置であって、この電力変換装置1は筐体2内に収納されている。筐体2は、合成樹脂材を成形したものであり、水冷ジャケットの構成を有する冷却体3を挟んで上下に分割された下部筐体2A及び上部筐体2Bで構成されている。
下部筐体2Aは有底角筒体で構成されている。この下部筐体2Aは開放上部が冷却体3で覆われ、内部に平滑用のフィルムコンデンサ4が収納されている。
上部筐体2Bは、上端及び下端を開放した角筒体2aと、この角筒体2aの上端を閉塞する蓋体2bとを備えている。そして、角筒体2aの下端が冷却体3で閉塞されている。この角筒体2aの下端と冷却体3との間には、図示しないが、液状シール剤の塗布やゴム製パッキンの挟み込みなどのシール材が介在されている。
上部筐体2Bは、上端及び下端を開放した角筒体2aと、この角筒体2aの上端を閉塞する蓋体2bとを備えている。そして、角筒体2aの下端が冷却体3で閉塞されている。この角筒体2aの下端と冷却体3との間には、図示しないが、液状シール剤の塗布やゴム製パッキンの挟み込みなどのシール材が介在されている。
冷却体3は、冷却水の給水口3a及び排水口3bが筐体2の外方に開口されている。これら給水口3a及び排水口3bは例えばフレキシブルホースを介して図示しない冷却水供給源に接続されている。この冷却体3は例えば熱伝導率の高いアルミニウム、アルミニウム合金をダイキャスト成形や鋳造することによって形成されている。そして、冷却体3は、下面が平坦面とされ、上面が中央部3cを残して角枠状の周溝3dが形成されている。また、冷却体3には、下部筐体2Aに保持されたフィルムコンデンサ4の絶縁被覆された正負の電極4aを上下に挿通する挿通孔3eが形成されている。
電力変換装置1は、図2と共に参照して明らかなように、電力変換用の例えばインバータ回路を構成する半導体スイッチング素子として例えば絶縁ゲートバイポーラトランジスタ(IGBT)を内蔵した半導体パワーモジュール11を備えている。この半導体パワーモジュール11は、扁平な直方体状の絶縁性のケース体12内にIGBTを内蔵しており、ケース体12の下面に金属製の冷却部材13が形成されている。
ケース体12及び冷却部材13には平面からみて四隅に固定部材としての固定ねじ14を挿通する挿通孔15が形成されている。また、ケース体12の上面には、挿通孔15の内側における4箇所に所定高さの基板固定部16が突出形成されている。
この基板固定部16の上端には、半導体パワーモジュール11に内蔵されたIGBTを駆動する駆動回路等が実装された駆動回路基板21が固定されている。
この基板固定部16の上端には、半導体パワーモジュール11に内蔵されたIGBTを駆動する駆動回路等が実装された駆動回路基板21が固定されている。
また、駆動回路基板21の上方には、駆動回路基板21と所定間隔を保って半導体パワーモジュール11に内蔵されたIGBTを制御する実装基板としての制御回路基板22が固定されている。この制御回路基板22には、相対的に発熱量の大きい、又は発熱密度の大きい発熱回路部品を含む制御回路等が実装されている。
さらに、制御回路基板22の上方には、制御回路基板22と所定間隔を保って半導体パワーモジュール11に内蔵されたIGBTに電源を供給する実装基板としての電源回路基板23が固定されている。この電源回路基板23には、相対的に発熱量の大きい、又は発熱密度の大きい発熱回路部品を含む電源回路等が実装されている。
さらに、制御回路基板22の上方には、制御回路基板22と所定間隔を保って半導体パワーモジュール11に内蔵されたIGBTに電源を供給する実装基板としての電源回路基板23が固定されている。この電源回路基板23には、相対的に発熱量の大きい、又は発熱密度の大きい発熱回路部品を含む電源回路等が実装されている。
そして、駆動回路基板21は、基板固定部16に対向する位置に形成した挿通孔21a内に継ぎねじ24の雄ねじ部24aを挿通し、この雄ねじ部24aを基板固定部16の上面に形成した雌ねじ部16aに螺合することにより固定されている。
また、制御回路基板22は、継ぎねじ24の上端に形成した雌ねじ部24bに対向する位置に形成した挿通孔22a内に継ぎねじ25の雄ねじ部25aを挿通し、この雄ねじ部25aを継ぎねじ24の雌ねじ部24bに螺合することにより固定されている。
また、制御回路基板22は、継ぎねじ24の上端に形成した雌ねじ部24bに対向する位置に形成した挿通孔22a内に継ぎねじ25の雄ねじ部25aを挿通し、この雄ねじ部25aを継ぎねじ24の雌ねじ部24bに螺合することにより固定されている。
さらに、電源回路基板23は、継ぎねじ25の上端に形成した雌ねじ部25bに対向する位置に形成した挿通孔23a内に固定ねじ26を挿通し、この固定ねじ26を継ぎねじ25の雌ねじ部25bに螺合することにより固定されている。
また、制御回路基板22及び電源回路基板23は、伝熱支持板32及び33によって支持されている。これら伝熱支持板32及び33は、例えばアルミニウム、アルミニウム合金等の熱伝導率が高い(例えば100W・m-1・K-1以上)金属で制御回路基板22及び電源回路基板23と略同一外形に形成されている。
また、制御回路基板22及び電源回路基板23は、伝熱支持板32及び33によって支持されている。これら伝熱支持板32及び33は、例えばアルミニウム、アルミニウム合金等の熱伝導率が高い(例えば100W・m-1・K-1以上)金属で制御回路基板22及び電源回路基板23と略同一外形に形成されている。
伝熱支持板32及び33の上面には、例えば四隅位置に4本の中空の接合部として伝熱基板支持部34及び35が一体に突出形成されている。これら伝熱基板支持部34及び35は、伝熱支持板32及び33に対してバーリング加工や絞り加工を施すことにより形成されている。また、伝熱基板支持部34及び35の内周面には雌ねじ36がそれぞれ形成されている。
ここで、伝熱基板支持部34及び35の高さは、後述するように、伝熱支持板32及び33の上面に貼着した絶縁シート40aと制御回路基板22及び電源回路基板23の下面に実装した回路部品の底面との間に必要な絶縁距離を確保できる高さに選定されている。
ここで、伝熱基板支持部34及び35の高さは、後述するように、伝熱支持板32及び33の上面に貼着した絶縁シート40aと制御回路基板22及び電源回路基板23の下面に実装した回路部品の底面との間に必要な絶縁距離を確保できる高さに選定されている。
そして、伝熱基板支持部34及び35の上端には、制御回路基板22及び電源回路基板23が固定支持されている。これら制御回路基板22及び電源回路基板23の固定は、先ず、伝熱基板支持部34及び35の上端に、制御回路基板22及び電源回路基板23を載置する。この状態で、固定ねじ38を、制御回路基板22及び電源回路基板23に形成したねじ挿通孔37を通じて制御回路基板22及び電源回路基板23の雌ねじ36に螺合させて締め付ける。これにより、制御回路基板22及び電源回路基板23が伝熱基板支持部34及び35上に固定される。
また、伝熱支持板32及び33に形成された伝熱基板支持部34及び35は、制御回路基板22及び電源回路基板23に実装された相対的に発熱量の大きい、又は発熱密度の大きい発熱回路部品39の近傍に配置されている。
さらに、伝熱支持板32及び33の上下面には、それぞれ絶縁材料で形成された絶縁シート40a及び40bが配設されている。伝熱支持板32及び33の上面側の絶縁シート40aによって、制御回路基板22及び電源回路基板23の下面側に実装された回路部品と伝熱支持板32及び33との間の絶縁を行う。また、伝熱支持板32及び33の下面側の絶縁シート40bによって、下面側に対向する駆動回路基板21及び制御回路基板22の上面に実装された回路部品との絶縁を図るようにしている。
さらに、伝熱支持板32及び33の上下面には、それぞれ絶縁材料で形成された絶縁シート40a及び40bが配設されている。伝熱支持板32及び33の上面側の絶縁シート40aによって、制御回路基板22及び電源回路基板23の下面側に実装された回路部品と伝熱支持板32及び33との間の絶縁を行う。また、伝熱支持板32及び33の下面側の絶縁シート40bによって、下面側に対向する駆動回路基板21及び制御回路基板22の上面に実装された回路部品との絶縁を図るようにしている。
このため、駆動回路基板21及び制御回路基板22間と、制御回路基板22及び電源回路基板23間との絶縁距離を短くすることができ、半導体パワーモジュール11と電源回路基板23との間の高さを低くして小型化を図ることができる。
そして、伝熱支持板32と冷却体3との間には、半導体パワーモジュール11の右端側を通って直接伝熱経路を形成する板状の伝熱経路形成部材42が配設されている。また、伝熱支持板33と冷却体3との間にも、半導体パワーモジュール11の左端側を通って直接伝熱経路を形成する板状の伝熱経路形成部材43が配設されている。これら伝熱経路形成部材42及び43は、例えばアルミニウム、アルミニウム合金等の熱伝導率が高い(例えば100W・m-1・K-1以上)金属で形成されている。
そして、伝熱支持板32と冷却体3との間には、半導体パワーモジュール11の右端側を通って直接伝熱経路を形成する板状の伝熱経路形成部材42が配設されている。また、伝熱支持板33と冷却体3との間にも、半導体パワーモジュール11の左端側を通って直接伝熱経路を形成する板状の伝熱経路形成部材43が配設されている。これら伝熱経路形成部材42及び43は、例えばアルミニウム、アルミニウム合金等の熱伝導率が高い(例えば100W・m-1・K-1以上)金属で形成されている。
両伝熱経路形成部材42及び43は、冷却体3の上面における半導体パワーモジュール11の外周縁に対向する周溝3d内に配置されて冷却体接触板部となる角枠状の共通の底板部44を有する。したがって、伝熱経路形成部材42及び43は底板部44によって一体に連結されている。
そして、伝熱経路形成部材42及び43と底板部44とは黒色の表面を有する。これら伝熱経路形成部材42及び43と底板部44との表面を黒色化にするには、表面に黒色樹脂をコーティングしたり、黒色塗料で塗装したりすればよい。このように、伝熱経路形成部材42及び43と底板部44との表面を黒色とすることにより、金属の素材色と比較し熱放射率が大きくなり、放射伝熱量を増やすことができる。このため、伝熱経路形成部材42及び43と底板部44との周囲への放熱が活発化され、制御回路基板22及び電源回路基板23の熱冷却を効率良く行うことができる。なお、底板部44を除いて伝熱経路形成部材42及び43のみの表面を黒色にするようにしてもよい。
伝熱経路形成部材42は、図2に示すように、冷却体3の周溝3d内に配置される共通の底板部44の長辺側の外周縁に一体に連結されて上方に延長する連結側板部42aと、この連結側板部42aの上端から左方に延長する上板部42bとで断面逆L字状に形成されている。連結側板部42aは、半導体パワーモジュール11の長辺側の右側面を通って上方に延長している。
そして、連結側板部42aの底板部44及び上板部42bとの連結部を例えば円筒面の一部でなる湾曲面42c及び42dに形成している。
このように連結側板部42aと底板部44及び上板部42bとの連結部を円筒状の湾曲面42c及び42dとすることにより、上下振動や横揺れ等に対する耐振動性を向上することができる。すなわち、電力変換装置1に上下振動や横揺れが伝達されたときに連結側板部42aと底板部44及び上板部42bとの連結部に生じる応力集中を緩和することが可能となる。
このように連結側板部42aと底板部44及び上板部42bとの連結部を円筒状の湾曲面42c及び42dとすることにより、上下振動や横揺れ等に対する耐振動性を向上することができる。すなわち、電力変換装置1に上下振動や横揺れが伝達されたときに連結側板部42aと底板部44及び上板部42bとの連結部に生じる応力集中を緩和することが可能となる。
さらに、連結側板部42aと底板部44及び上板部42bとの連結部を円筒状の湾曲面42c及び42dとすることにより、連結側板部42aと底板部44及び上板部42bとの連結部を直角のL字形状とする場合に比較して熱伝導経路を短くすることができる。このため、伝熱支持板32から冷却体3までの伝熱経路を短くして、効率的な熱冷却が可能となる。
伝熱経路形成部材43は、図2及び図3に示すように、冷却体3の周溝3d内に配置される共通の底板部44の長辺側の外周縁に一体に連結されて上方に延長する連結側板部43aと、この連結側板部43aの上端から右方に延長する上板部43bとで断面逆L字状に形成されている。連結側板部43aは、半導体パワーモジュール11の長辺側の左側面を通って上方に延長している。
そして、連結側板部43aの底板部44及び上板部43bとの連結部を例えば円筒面の一部でなる湾曲面43c及び43dに形成している。
このように連結側板部43aと底板部44及び上板部43bとの連結部を円筒状の湾曲面43c及び43dとすることにより、上下振動や横揺れ等に対する耐振動性を向上することができる。すなわち、電力変換装置1に上下振動や横揺れが伝達されたときに連結側板部43aと底板部44及び上板部43bとの連結部に生じる応力集中を緩和することが可能となる。
このように連結側板部43aと底板部44及び上板部43bとの連結部を円筒状の湾曲面43c及び43dとすることにより、上下振動や横揺れ等に対する耐振動性を向上することができる。すなわち、電力変換装置1に上下振動や横揺れが伝達されたときに連結側板部43aと底板部44及び上板部43bとの連結部に生じる応力集中を緩和することが可能となる。
さらに、連結側板部43aと底板部44及び上板部43bとの連結部を円筒状の湾曲面43c及び43dとすることにより、連結側板部43aと底板部44及び上板部43bとの連結部を直角のL字形状とする場合に比較して熱伝導経路を短くすることができる。このため、伝熱支持板33から冷却体3までの伝熱経路を短くして、効率的な熱冷却が可能となる。
そして、伝熱支持板32と伝熱経路形成部材42とが、図2に示すように、伝熱支持板32の右方に突出した取付端部32aを、伝熱経路形成部材42の上板部42bの上面に重ね合わせた状態で固定ねじ45によって密着されて連結されている。同様に、伝熱支持板33と伝熱経路形成部材43とが、図2に示すように、伝熱支持板33の左方に突出した取付端部33aを、伝熱経路形成部材43の上板部43bの上面に重ね合わせた状態で固定ねじ46によって密着されて連結されている。
また、伝熱経路形成部材42及び43の共通の底板部44には、図2及び図3に示すように、半導体パワーモジュール11の固定ねじ14を挿通する挿通孔15に対向する位置に固定部材挿通孔44aが形成されている。さらに、底板部44の上面と半導体パワーモジュール11に形成された冷却部材13の下面との間に板状弾性部材47が介在されている。
そして、半導体パワーモジュール11及び冷却部材13の挿通孔15及び底板部44の固定部材挿通孔44aに固定ねじ14を挿通し、この固定ねじ14を冷却体3に形成された雌ねじ部3fに螺合させることにより、半導体パワーモジュール11と底板部44とが冷却体3に共締めされて固定されている。
そして、半導体パワーモジュール11及び冷却部材13の挿通孔15及び底板部44の固定部材挿通孔44aに固定ねじ14を挿通し、この固定ねじ14を冷却体3に形成された雌ねじ部3fに螺合させることにより、半導体パワーモジュール11と底板部44とが冷却体3に共締めされて固定されている。
次に、上記第1の実施形態の電力変換装置1の組立方法を説明する。
先ず、前述したように、伝熱支持板32及び33の上下面に絶縁シート40a及び40bを貼着する。
次いで、電源回路基板23を伝熱支持板33の伝熱基板支持部35の上端に載置した状態で、固定ねじ38によって電源回路基板23と伝熱支持板33の伝熱基板支持部35とを固定して、電源回路ユニットU3を形成しておく。
先ず、前述したように、伝熱支持板32及び33の上下面に絶縁シート40a及び40bを貼着する。
次いで、電源回路基板23を伝熱支持板33の伝熱基板支持部35の上端に載置した状態で、固定ねじ38によって電源回路基板23と伝熱支持板33の伝熱基板支持部35とを固定して、電源回路ユニットU3を形成しておく。
次いで、制御回路基板22を伝熱支持板32の伝熱基板支持部35の状態に載置した状態で、固定ねじ38によって、制御回路基板22と伝熱支持板32の伝熱基板支持部34とを固定して、制御回路ユニットU2を形成しておく。
一方、冷却体3の周溝3d内に、伝熱経路形成部材42及び43に共通の底板部44を、その上面と半導体パワーモジュール11に形成した冷却部材13の下面との間に板状弾性部材47を介在させた状態で、半導体パワーモジュール11とともに固定ねじ14で固定する。
一方、冷却体3の周溝3d内に、伝熱経路形成部材42及び43に共通の底板部44を、その上面と半導体パワーモジュール11に形成した冷却部材13の下面との間に板状弾性部材47を介在させた状態で、半導体パワーモジュール11とともに固定ねじ14で固定する。
このように、半導体パワーモジュール11と伝熱経路形成部材42及び43の共通の底板部44とを同時に冷却体3に固定することができるので、組立工数を減少させることができる。また、底板部44を冷却体3に固定する際に板状弾性部材47を底板部44と半導体パワーモジュール11の冷却部材13との間に介在させるので、この板状弾性部材47によって底板部44が冷却体3の周溝3dの底部に押し付けられて、底板部44が冷却体3に確実に接触されて、広い接触面積を確保することができる。
また、半導体パワーモジュール11には、冷却体3に固定する前又は固定した後に、その上面に形成された基板固定部16に駆動回路基板21を載置する。そして、この駆動回路基板21をその上方から4本の継ぎねじ24によって基板固定部16に固定する。
そして、継ぎねじ24の上面に制御回路ユニットU2の制御回路基板22を載置し、4本の継ぎねじ25によって固定する。さらに、継ぎねじ25の上面に電源回路ユニットU3の電源回路基板23を載置し、4本の固定ねじ26によって固定する。そして、伝熱支持板32及び33を伝熱経路形成部材42及び43に固定ねじ45及び46によって連結する。
そして、継ぎねじ24の上面に制御回路ユニットU2の制御回路基板22を載置し、4本の継ぎねじ25によって固定する。さらに、継ぎねじ25の上面に電源回路ユニットU3の電源回路基板23を載置し、4本の固定ねじ26によって固定する。そして、伝熱支持板32及び33を伝熱経路形成部材42及び43に固定ねじ45及び46によって連結する。
その後、図1に示すように、半導体パワーモジュール11の正負の直流入力端子11aに、ブスバー50を接続し、このブスバー50の他端に冷却体3を貫通するフィルムコンデンサ4の正負の電極4aを固定ねじ51で連結する。さらに、半導体パワーモジュール11の直流入力端子11aに外部のコンバータ(図示せず)に接続する接続コード52の先端に固定された圧着端子53を固定する。
さらに、半導体パワーモジュール11の3相交流出力端子11bにブスバー55を固定ねじ56で接続し、このブスバー55の途中に電流センサ57を配置する。そして、ブスバー55の他端に外部の3相電動モータ(図示せず)に接続したモータ接続ケーブル58の先端に固定した圧着端子59を固定ねじ60で固定して接続する。
その後、冷却体3の下面及び上面に、下部筐体2A及び上部筐体2Bを、シール材を介して固定して電力変換装置1の組立を完了する。
その後、冷却体3の下面及び上面に、下部筐体2A及び上部筐体2Bを、シール材を介して固定して電力変換装置1の組立を完了する。
この状態で、外部のコンバータ(図示せず)から直流電力を供給するとともに、電源回路基板23に実装された電源回路、制御回路基板22に実装された制御回路を動作状態とし、制御回路から例えばパルス幅変調信号でなるゲート信号を駆動回路基板21に実装された駆動回路を介して半導体パワーモジュール11に供給する。これによって、半導体パワーモジュール11に内蔵されたIGBTが制御されて、直流電力を交流電力に変換する。変換した交流電力は3相交流出力端子11bからブスバー55を介してモータ接続ケーブル58に供給し、3相電動モータ(図示せず)を駆動制御する。
このとき、半導体パワーモジュール11に内蔵されたIGBTで発熱する。この発熱は半導体パワーモジュール11に形成された冷却部材13が冷却体3の中央部3cに直接接触されているので、冷却体3に供給されている冷却水によって冷却される。
一方、制御回路基板22及び電源回路基板23に実装されている制御回路及び電源回路には発熱回路部品39が含まれており、これら発熱回路部品39で発熱を生じる。このとき、発熱回路部品39の近傍には伝熱支持板32及び33に一体に形成された伝熱基板支持部34及び35が配置されている。このため、発熱回路部品39の発熱は伝熱基板支持部34及び35を通じて伝熱支持板32及び33に伝熱される。このとき、伝熱基板支持部34及び35が伝熱支持板32及び33に一体に形成されているので、伝熱基板支持部34及び35の伝熱支持板32及び33との間の熱抵抗を低くすることができ、良好な熱伝導を行うことができる。
そして、伝熱支持板32及び33には、伝熱経路形成部材42及び43が連結されているので、伝熱支持板32及び33に伝達された熱は、伝熱経路形成部材42及び43を通って共通の底板部44に伝熱される。この底板部44は、冷却体3の周溝3d内に直接接触されているので、底板部44に伝達された熱は冷却体3に放熱される。
さらに、底板部44に伝熱された熱は、その上面側から板状弾性部材47を介して半導体パワーモジュール11の冷却部材13に伝達され、この冷却部材13を介して冷却体3の中央部3cに伝達されて放熱される。
さらに、底板部44に伝熱された熱は、その上面側から板状弾性部材47を介して半導体パワーモジュール11の冷却部材13に伝達され、この冷却部材13を介して冷却体3の中央部3cに伝達されて放熱される。
このように、上記第1の実施形態によると、実装基板としての制御回路基板22及び電源回路基板23を支持する伝熱支持板32及び33に伝熱基板支持部34及び35を一体に形成している。このため、伝熱基板支持部34及び35と伝熱支持板32及び33との間の熱抵抗を、伝熱基板支持部34及び35を伝熱支持板32及び33とは別部材として固定ねじ等で接合する場合に比較して遥かに小さくすることができる。
しかも、制御回路基板22及び電源回路基板23と伝熱支持板32及び33との間が円筒状の伝熱基板支持部34及び35で連結されているが、伝熱基板支持部34及び35での伝熱距離は前述した従来例に比較して格段に短い。このため、伝熱基板支持部34及び35による熱輸送量Qを増加させることができる。
すなわち、熱輸送量Qは、下記(1)式で表すことができる。
Q=λ×(A/L)×T …………(1)
ただし、λは熱伝導率[W/m℃]、Tは温度差[℃]基板温度T1-冷却体温度T2、Aは伝熱最小断面積[m2]、Lは伝熱長さ[m]である。
上記(1)式から伝熱最小断面積Aが同じであるとしたときには、伝熱長さLが短い方が熱輸送量Qは多くなり、本実施形態における伝熱基板支持部34及び35による熱輸送量Qを従来例に比較して増加させることができる。
Q=λ×(A/L)×T …………(1)
ただし、λは熱伝導率[W/m℃]、Tは温度差[℃]基板温度T1-冷却体温度T2、Aは伝熱最小断面積[m2]、Lは伝熱長さ[m]である。
上記(1)式から伝熱最小断面積Aが同じであるとしたときには、伝熱長さLが短い方が熱輸送量Qは多くなり、本実施形態における伝熱基板支持部34及び35による熱輸送量Qを従来例に比較して増加させることができる。
したがって、制御回路基板22及び電源回路基板23に実装された発熱回路部品39の発熱を伝熱支持板32及び33に効率良く伝熱することができ、伝熱支持板32及び33から伝熱経路形成部材42及び43を介して冷却体3に効率良く放熱することができる。
しかも、伝熱基板支持部34及び35を制御回路基板22及び電源回路基板23に実装された発熱回路部品39の近傍に配置している。このため、発熱回路部品39と伝熱基板支持部34及び35との間の伝熱距離を短くすることができ、冷却体3への放熱をより効率的に行うことができる。
しかも、伝熱基板支持部34及び35を制御回路基板22及び電源回路基板23に実装された発熱回路部品39の近傍に配置している。このため、発熱回路部品39と伝熱基板支持部34及び35との間の伝熱距離を短くすることができ、冷却体3への放熱をより効率的に行うことができる。
また、伝熱支持板32及び33に伝熱された発熱回路部品39の発熱は、伝熱経路形成部材42及び43を介して冷却体3に放熱される。このとき、伝熱経路形成部材42及び43がそれぞれ半導体パワーモジュール11の長辺に沿って設けられている。
このため、伝熱断面積を広くとることができ、広い放熱経路を確保することができる。しかも、伝熱経路形成部材42及び43は折れ曲がり部が円筒状の湾曲部とされているので、折れ曲がり部をL字状にする場合に比較して冷却体3までの伝熱距離を短くすることができる。このため、前述した(1)式から明らかなように、伝熱経路形成部材42及び43の伝熱長さLが短くなると、伝熱経路形成部材42及び43による熱輸送量Qは増加することになり、良好な冷却効果を発揮することができる。
このため、伝熱断面積を広くとることができ、広い放熱経路を確保することができる。しかも、伝熱経路形成部材42及び43は折れ曲がり部が円筒状の湾曲部とされているので、折れ曲がり部をL字状にする場合に比較して冷却体3までの伝熱距離を短くすることができる。このため、前述した(1)式から明らかなように、伝熱経路形成部材42及び43の伝熱長さLが短くなると、伝熱経路形成部材42及び43による熱輸送量Qは増加することになり、良好な冷却効果を発揮することができる。
また、伝熱経路形成部材42及び43が共通の底板部44で一体化されているので、伝熱経路形成部材42及び43と底板部44との間に部品同士の継ぎ目がなく、熱抵抗を抑制することができ、より効率の良い放熱経路を形成することができる。
さらに、発熱回路部品39が実装された制御回路基板22及び電源回路基板23から冷却体3までの放熱経路に筐体2が含まれていないので、筐体2に伝熱性が要求されることがない。したがって、筐体2の構成材料としてアルミニウム等の高熱伝導率の金属を使用する必要がなく、合成樹脂材で筐体2を構成することが可能となり、軽量化及び低コスト化を図ることができる。
さらに、発熱回路部品39が実装された制御回路基板22及び電源回路基板23から冷却体3までの放熱経路に筐体2が含まれていないので、筐体2に伝熱性が要求されることがない。したがって、筐体2の構成材料としてアルミニウム等の高熱伝導率の金属を使用する必要がなく、合成樹脂材で筐体2を構成することが可能となり、軽量化及び低コスト化を図ることができる。
また、放熱経路が筐体2に依存することなく、電力変換装置1単独で放熱経路を形成することができるので、半導体パワーモジュール11と、駆動回路基板21、制御回路基板22及び電源回路基板23とで構成される電力変換装置1を種々の異なる形態の筐体2や冷却体3に適用することができる。筐体設計の自由度を向上させることができる。
また、制御回路基板22及び電源回路基板23を金属製の伝熱支持板32及び33で支持しているので、制御回路基板22及び電源回路基板23の剛性を高めることができる。このため、電力変換装置1を車両の走行用モータを駆動するモータ駆動回路として適用する場合のように、電力変換装置1に図5に示す上下振動や横揺れが作用する場合でも、伝熱支持板32及び33と伝熱経路形成部材42及び43とで剛性を高めることができる。したがって、上下振動や横揺れ等の影響が少ない電力変換装置1を提供することができる。
なお、上記第1の実施形態においては、伝熱支持板32及び33の上下面に絶縁シート40a及び40bを貼着した場合について説明した。しかしながら、本発明は、上記構成に限定されるものではなく、十分な絶縁距離が確保されていれば絶縁シート40a及び40bの一方又は双方を省略することもできる。
このように、絶縁シート40a及び40bの少なくとも一方を省略した場合には、伝熱支持板32及び33の上面及び下面の少なくとも一方の面が露出されることになる。この露出面で制御回路基板22及び電源回路基板23の周囲の発熱を吸熱することができ、制御回路基板22及び電源回路基板23の放熱効果をより向上させることができる。
このように、絶縁シート40a及び40bの少なくとも一方を省略した場合には、伝熱支持板32及び33の上面及び下面の少なくとも一方の面が露出されることになる。この露出面で制御回路基板22及び電源回路基板23の周囲の発熱を吸熱することができ、制御回路基板22及び電源回路基板23の放熱効果をより向上させることができる。
また、上記実施形態においては、制御回路ユニットU2及び電源回路ユニットU3で、伝熱支持板32及び33を制御回路基板22及び電源回路基板23と同じ外形とした場合について説明した。しかしながら、本発明は上記構成に限定されるものではなく、伝熱支持板32及び33を制御回路基板22及び電源回路基板23より大きな外形として、伝熱支持板32及び33での吸熱効果をより向上させるようにしてもよい。
また、上記実施形態においては、発熱回路部品39を実装した基板が2種類存在する場合について説明した。しかしながら、本発明は上記構成に限定されるものではなく、発熱回路部品39を実装した基板が例えば制御回路基板22の一枚だけである場合には、図6(a)に示すように構成してもよい。すなわち、伝熱支持板32の左側にも伝熱経路形成部材42Lを設けて、伝熱支持板32の両側に放熱経路を形成するようにしてもよい。このように構成することにより、伝熱支持板32の両側に放熱経路が形成されることにより、制御回路基板22の放熱効果をより向上させることができると共に、上下振動及び左右振動に対する剛性をより高くすることができる。
さらには、図6(b)に示すように伝熱経路形成部材42及び43の上板部42b及び43bを各回路ユニットU2及びU3に対向させて複数段形成して、複数の伝熱支持板32及び33を支持するようにしてもよい。この場合にも、制御回路基板22の放熱効果をより向上させることができると共に、上下振動及び左右振動に対する剛性をより高くすることができる。
また、上記実施形態においては、半導体パワーモジュール11の冷却部材13を冷却体3の上面に接触させた場合について説明した。しかしながら、本発明は上記構成に限らず、冷却部材13を、図7及び図8に示すように構成することもできる。
すなわち、本実施形態では、半導体パワーモジュール11に形成されている冷却部材13が冷却体3に流れる冷却水に直接接触する冷却フィン61を備えた構成とされている。これに応じて、冷却体3の中央部に開口する冷却フィン61を冷却水の通路に浸漬させる浸漬部62を形成している。
すなわち、本実施形態では、半導体パワーモジュール11に形成されている冷却部材13が冷却体3に流れる冷却水に直接接触する冷却フィン61を備えた構成とされている。これに応じて、冷却体3の中央部に開口する冷却フィン61を冷却水の通路に浸漬させる浸漬部62を形成している。
そして、浸漬部62を囲む周壁63と冷却部材13との間にOリング等のシール部材66が配設されている。
その他の構成については前述した第1の実施形態と同様の構成を有し、図1及び図2との対応部分には同一符号を付しその詳細説明はこれを省略する。
この構成によると、半導体パワーモジュール11の冷却部材13に冷却フィン61が形成され、この冷却フィン61が冷却水に浸漬部62で直接浸漬されているので、半導体パワーモジュール11をより効率良く冷却することができる。
その他の構成については前述した第1の実施形態と同様の構成を有し、図1及び図2との対応部分には同一符号を付しその詳細説明はこれを省略する。
この構成によると、半導体パワーモジュール11の冷却部材13に冷却フィン61が形成され、この冷却フィン61が冷却水に浸漬部62で直接浸漬されているので、半導体パワーモジュール11をより効率良く冷却することができる。
また、上記実施形態においては、伝熱支持板32及び33と伝熱経路形成部材42及び43とを別体で構成する場合について説明した。しかしながら、本発明は、上記構成に限定されるものでなく、図9に示すように、伝熱支持板33と伝熱経路形成部材43とを一体に構成するようにしてもよい。同様に、伝熱支持板32と伝熱経路形成部材42とを一体に構成するようにしてもよい。これらの場合には、伝熱支持板32及び33と伝熱経路形成部材42及び43との間に継ぎ目が形成されることがなくなるので、熱抵抗をより小さくしてより効率の良い放熱を行うことができる。
さらに、上記実施形態では、平滑用のコンデンサとしてフィルムコンデンサ4を適用した場合について説明したが、これに限定されるものではなく、円柱状の電解コンデンサを適用するようにしてもよい。
また、上記実施形態においては、本発明による電力変換装置を電気自動車に適用する場合について説明したが、これに限定されるものではなく、軌条を走行する鉄道車両にも本発明を適用することができ、任意の電気駆動車両に適用することができる。さらに電力変換装置としては電気駆動車両に限らず、他の産業機器における電動モータ等のアクチュエータを駆動する場合に本発明の電力変換装置を適用することができる。
また、上記実施形態においては、本発明による電力変換装置を電気自動車に適用する場合について説明したが、これに限定されるものではなく、軌条を走行する鉄道車両にも本発明を適用することができ、任意の電気駆動車両に適用することができる。さらに電力変換装置としては電気駆動車両に限らず、他の産業機器における電動モータ等のアクチュエータを駆動する場合に本発明の電力変換装置を適用することができる。
本発明によれば、伝熱支持板上に一体形成した接合部としての伝熱基板支持部で発熱回路部品を実装した実装基板を支持するので、実装基板を小さな熱抵抗で支持すると共に、発熱回路部品の発熱を効率よく冷却体に伝熱することができる電力変換装置を提供することができる。
1…電力変換装置、2…筐体、3…冷却体、4…フィルムコンデンサ、5…蓄電池収納部、11…半導体パワーモジュール、12…ケース体、13…冷却部材、21…駆動回路基板、22…制御回路基板、23…電源回路基板、24,25…継ぎねじ、32,33…伝熱支持板、34,35…伝熱基板支持部、40a,40b…絶縁シート、42,43…伝熱経路形成部材、61…冷却フィン
Claims (11)
- 一面を冷却体に接合する半導体パワーモジュールと、
前記半導体パワーモジュールを駆動する発熱回路部品を含む回路部品を実装した実装基板と、
前記実装基板を支持すると共に前記実装基板の熱を前記冷却体に伝熱させる伝熱支持板とを備え、
前記伝熱支持板は、前記実装基板を前記伝熱支持板に直接接合する接合部を有する
ことを特徴とする電力変換装置。 - 電力変換用の半導体スイッチング素子をケース体に内蔵し、当該ケース体の一面に冷却部材が形成された半導体パワーモジュールと、
前記半導体パワーモジュールのケース体の他面側に装着される前記半導体スイッチング素子を駆動する発熱回路部品を含む回路部品を実装した実装基板と、
前記半導体パワーモジュールの冷却部材を冷却する冷却体と、
前記実装基板を支持する伝熱支持板と、
該伝熱支持板と前記冷却体との間に配設された直接伝熱経路を形成する板状の伝熱経路形成部材とを備え、
前記伝熱支持板は、前記実装基板を支持する伝熱基板支持部を一体形成した
ことを特徴とする電力変換装置。 - 前記伝熱基板支持部は、前記実装基板に実装した回路部品が当該伝熱支持板に非接触となる間隙を形成して前記実装基板を支持することを特徴とする請求項2に記載の電力変換装置。
- 前記実装基板と前記伝熱支持板との間隙に絶縁部材を配設したことを特徴とする請求項3に記載の電力変換装置。
- 前記伝熱基板支持部は、前記実装基板に実装された回路部品のうち発熱量及び発熱密度の少なくとも一方が相対的に大きい回路部品の近傍に形成されていることを特徴とする請求項2乃至4の何れか1項に記載の電力変換装置。
- 前記伝熱基板支持部は、前記伝熱支持板上に複数形成されていることを特徴とする請求項2乃至4の何れか1項に記載の電力変換装置。
- 前記伝熱支持板は、熱伝導率の良い金属材料で形成されていることを特徴とする請求項2乃至4の何れか1項に記載の電力変換装置。
- 前記伝熱経路形成部材は、熱伝導率の良い板状金属材料で形成されていることを特徴とする請求項2乃至4の何れか1項に記載の電力変換装置。
- 前記実装基板及び伝熱支持板と前記伝熱経路形成部材との組を複数組備え、前記組毎に前記伝熱経路部材の高さを異ならせるとともに、当該伝熱経路形成部材が前記半導体パワーモジュールの異なる側面を通って前記冷却体に接続されていることを特徴とする請求項2乃至4の何れか1項に記載の電力変換装置。
- 前記複数の伝熱経路形成部材は、前記冷却体と接触する連結板部を介して連結されていることを特徴とする請求項9記載の電力変換装置。
- 前記伝熱支持板と前記伝熱経路形成部材とが一体に形成されていることを特徴とする請求項2乃至4の何れか1項に記載の電力変換装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013557254A JP5768902B2 (ja) | 2012-02-07 | 2012-12-10 | 電力変換装置 |
CN201280061290.XA CN104011988A (zh) | 2012-02-07 | 2012-12-10 | 功率转换装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-024317 | 2012-02-07 | ||
JP2012024317 | 2012-02-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013118222A1 true WO2013118222A1 (ja) | 2013-08-15 |
Family
ID=48947031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/007878 WO2013118222A1 (ja) | 2012-02-07 | 2012-12-10 | 電力変換装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5768902B2 (ja) |
CN (1) | CN104011988A (ja) |
WO (1) | WO2013118222A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020507294A (ja) * | 2016-11-17 | 2020-03-05 | エルジー イノテック カンパニー リミテッド | 直流−直流コンバータ |
US10867980B2 (en) | 2018-10-15 | 2020-12-15 | Fuji Electric Co., Ltd. | Semiconductor equipment |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6884241B1 (ja) * | 2020-01-29 | 2021-06-09 | 三菱電機株式会社 | 半導体装置 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0955459A (ja) * | 1995-06-06 | 1997-02-25 | Seiko Epson Corp | 半導体装置 |
JPH1126660A (ja) * | 1997-06-30 | 1999-01-29 | Pfu Ltd | 高発熱素子の放熱構造 |
JP2001211663A (ja) * | 2000-01-28 | 2001-08-03 | Sanden Corp | モータ駆動用インバータ装置 |
JP2004072959A (ja) * | 2002-08-09 | 2004-03-04 | Hitachi Ltd | 電力変換装置 |
JP2005036753A (ja) * | 2003-07-17 | 2005-02-10 | Denso Corp | 電動圧縮機 |
JP2006121861A (ja) * | 2004-10-25 | 2006-05-11 | Fuji Electric Fa Components & Systems Co Ltd | 電力変換装置 |
JP2007159204A (ja) * | 2005-12-01 | 2007-06-21 | Ishikawajima Harima Heavy Ind Co Ltd | インバータ装置 |
JP2007266527A (ja) * | 2006-03-30 | 2007-10-11 | Toyota Motor Corp | 車両用インバータ装置 |
JP2008125240A (ja) * | 2006-11-13 | 2008-05-29 | Hitachi Ltd | 電力変換装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4687066B2 (ja) * | 2004-10-25 | 2011-05-25 | 株式会社デンソー | パワーic |
-
2012
- 2012-12-10 CN CN201280061290.XA patent/CN104011988A/zh active Pending
- 2012-12-10 WO PCT/JP2012/007878 patent/WO2013118222A1/ja active Application Filing
- 2012-12-10 JP JP2013557254A patent/JP5768902B2/ja not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0955459A (ja) * | 1995-06-06 | 1997-02-25 | Seiko Epson Corp | 半導体装置 |
JPH1126660A (ja) * | 1997-06-30 | 1999-01-29 | Pfu Ltd | 高発熱素子の放熱構造 |
JP2001211663A (ja) * | 2000-01-28 | 2001-08-03 | Sanden Corp | モータ駆動用インバータ装置 |
JP2004072959A (ja) * | 2002-08-09 | 2004-03-04 | Hitachi Ltd | 電力変換装置 |
JP2005036753A (ja) * | 2003-07-17 | 2005-02-10 | Denso Corp | 電動圧縮機 |
JP2006121861A (ja) * | 2004-10-25 | 2006-05-11 | Fuji Electric Fa Components & Systems Co Ltd | 電力変換装置 |
JP2007159204A (ja) * | 2005-12-01 | 2007-06-21 | Ishikawajima Harima Heavy Ind Co Ltd | インバータ装置 |
JP2007266527A (ja) * | 2006-03-30 | 2007-10-11 | Toyota Motor Corp | 車両用インバータ装置 |
JP2008125240A (ja) * | 2006-11-13 | 2008-05-29 | Hitachi Ltd | 電力変換装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020507294A (ja) * | 2016-11-17 | 2020-03-05 | エルジー イノテック カンパニー リミテッド | 直流−直流コンバータ |
JP7055800B2 (ja) | 2016-11-17 | 2022-04-18 | エルジー イノテック カンパニー リミテッド | 直流-直流コンバータ |
US10867980B2 (en) | 2018-10-15 | 2020-12-15 | Fuji Electric Co., Ltd. | Semiconductor equipment |
Also Published As
Publication number | Publication date |
---|---|
CN104011988A (zh) | 2014-08-27 |
JP5768902B2 (ja) | 2015-08-26 |
JPWO2013118222A1 (ja) | 2015-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5794306B2 (ja) | 電力変換装置 | |
WO2014061178A1 (ja) | 冷却構造体及び発熱体 | |
WO2014057622A1 (ja) | 電力変換装置 | |
US11056864B2 (en) | Electrical junction box | |
WO2014020806A1 (ja) | 冷却構造体及び電力変換装置 | |
WO2013111234A1 (ja) | 電力変換装置 | |
WO2013145508A1 (ja) | 電力変換装置 | |
WO2014125548A1 (ja) | 冷却構造体及び電力変換装置 | |
WO2013105166A1 (ja) | 電力変換装置 | |
JP5768902B2 (ja) | 電力変換装置 | |
WO2013084416A1 (ja) | 電力変換装置 | |
JP5682713B2 (ja) | 電力変換装置 | |
WO2013080442A1 (ja) | 電力変換装置 | |
WO2013080440A1 (ja) | 電力変換装置 | |
WO2013084417A1 (ja) | 電力変換装置 | |
WO2014024361A1 (ja) | 冷却構造体及び電力変換装置 | |
WO2013080441A1 (ja) | 電力変換装置 | |
WO2014020808A1 (ja) | 冷却構造体及び電力変換装置 | |
JP6187582B2 (ja) | 電力変換装置 | |
WO2013118223A1 (ja) | 電力変換装置 | |
WO2014020807A1 (ja) | 冷却構造体及び電力変換装置 | |
JP2017060292A (ja) | 電力変換装置 | |
WO2013140703A1 (ja) | 電力変換装置 | |
JP2010238936A (ja) | 電気装置及びスイッチング電源装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12867892 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013557254 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12867892 Country of ref document: EP Kind code of ref document: A1 |