WO2013114765A1 - ハロゲンフリー難燃絶縁電線 - Google Patents

ハロゲンフリー難燃絶縁電線 Download PDF

Info

Publication number
WO2013114765A1
WO2013114765A1 PCT/JP2012/083389 JP2012083389W WO2013114765A1 WO 2013114765 A1 WO2013114765 A1 WO 2013114765A1 JP 2012083389 W JP2012083389 W JP 2012083389W WO 2013114765 A1 WO2013114765 A1 WO 2013114765A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
mass
halogen
free flame
resin
Prior art date
Application number
PCT/JP2012/083389
Other languages
English (en)
French (fr)
Inventor
裕平 真山
西川 信也
石川 雅之
仁宏 戸澤
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP12867411.6A priority Critical patent/EP2811489A4/en
Priority to CN201280026931.8A priority patent/CN103620700B/zh
Priority to KR1020137031934A priority patent/KR20140122998A/ko
Publication of WO2013114765A1 publication Critical patent/WO2013114765A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/28Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances natural or synthetic rubbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/427Polyethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/442Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from aromatic vinyl compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • C08K5/523Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/06Crosslinking by radiation

Definitions

  • the present invention relates to a halogen-free flame-retardant insulated wire that is excellent in wear resistance and heat resistance, and can be suitably used particularly as wiring in an automobile.
  • Insulated wires used for internal wiring of automobiles are exposed to vibration, high temperature, cold, and wind and rain, and thus reliability that can exhibit stable performance under such adverse conditions is required.
  • JASO standard Japanese automobile standard
  • ISO standard which is an international standard
  • acceptance criteria for wear resistance, oil resistance, flame resistance, mechanical properties (tensile elongation, strength), heat resistance, etc. of insulating coatings Is specified in detail.
  • halogen-free insulating materials that do not contain PVC or halogen-based flame retardants are required for the insulating coating to reduce the impact on the environmental load.
  • a coating material for the halogen-free electric wire generally, a material obtained by adding a halogen-free flame retardant such as magnesium hydroxide, aluminum hydroxide, or a nitrogen flame retardant to an insulating resin such as a polyolefin resin is used.
  • halogen-free flame retardants need to be added in a larger amount than halogen-based flame retardants, resulting in reduced flexibility of the insulating coating, and the initial and after heat aging There is a problem that the tensile elongation of the material is reduced.
  • Patent Document 1 discloses a halogen-free flame retardant containing a resin component containing a polyamide resin or a polyester resin, a polyphenylene ether resin and a styrene elastomer resin, and a nitrogen flame retardant.
  • a functional resin composition is disclosed.
  • This flame-retardant resin composition is a polymer alloy having a sea-island structure in which a polyphenylene ether-based resin having a high elastic modulus at room temperature and a hard polyphenylene ether resin is used as an island, and a styrene-based elastomer having a large elongation is used as a sea.
  • Patent Document 2 discloses a flame retardant resin composition containing a phosphorus compound, a nitrogen organic compound, and a polyfunctional monomer as a flame retardant in a base polymer containing a polyphenylene ether resin and a styrene thermoplastic elastomer.
  • This flame-retardant resin composition can achieve both flame retardancy and tensile properties (elongation), and can further obtain a crosslinking effect.
  • Patent Document 3 discloses a halogen-free flame-retardant automobile electric wire having long-term chemical resistance to gasoline.
  • the flame-retardant electric wire described in Patent Document 1 does not satisfy all of the generally required characteristics of coating elongation of 150% or more, and there is no specific evaluation result regarding wear resistance.
  • the flame retardant resin composition of Patent Document 2 has a film elongation of 150% or more, but there is no specific description about wear resistance.
  • the insulated wire of Patent Document 3 has a low initial elongation. If a hard material having a high elastic modulus such as a polyphenylene ether resin is used, the wear resistance is improved. However, since such a material has a small elongation, it is difficult to achieve both the wear resistance and the elongation.
  • the present invention satisfies the required characteristics such as oil resistance and flame retardancy required for an insulated electric wire for automobiles, and is capable of satisfying both wear resistance and flexibility (elongation) of a coating film. It is an issue to provide.
  • the present invention relates to a halogen-free flame-retardant insulated electric wire having a conductor and an insulating layer covering the conductor, the insulating layer comprising 40 to 65 parts by mass of high density polyethylene having a melt flow rate of 0.60 or less, polyphenylene ether 100 parts by mass of a resin component consisting of 25-30 parts by mass of a resin and 10-30 parts by mass of a styrene elastomer in which the polyphenylene ether resin and the styrene elastomer are finely dispersed in the high-density polyethylene.
  • a halogen-free flame-retardant insulated wire comprising a crosslinked product of a resin composition containing 6 to 25 parts by mass of a phosphate ester and 1 to 10 parts by mass of a polyfunctional monomer.
  • a polyphenylene ether resin that is a hard material and a styrene elastomer that is a flexible component are used, and the melt flow rate is 0.60 or less and a relatively high molecular weight.
  • a polymer alloy in which the polyphenylene ether resin and the styrene elastomer are finely dispersed in high-density polyethylene both wear resistance and flexibility can be achieved.
  • Phosphoric ester contributes to the improvement of flame retardancy and also has the effect of plasticizing the polyphenylene ether-based resin, contributing to the improvement of the elongation (flexibility) of the resin composition.
  • an insulating layer an insulated wire excellent in flexibility, wear resistance, and flame retardancy can be obtained.
  • phosphate ester a condensed phosphate ester is preferable, and bisphenol A bis-diphenyl phosphate having excellent heat resistance and hydrolysis resistance is particularly preferable.
  • Bisphenol A bis-diphenyl phosphate is available as CR-741 (trade name) manufactured by Daihachi Chemical Industry Co., Ltd.
  • the melt flow rate of the high density polyethylene is preferably 0.15 or more and 0.30 or less.
  • the smaller the melt flow rate the higher the mechanical strength and the better the wear resistance. However, if the melt flow rate is smaller than 0.15, the extrusion processability is lowered.
  • the melt flow rate is a value (g / 10 min) measured at 230 ° C. ⁇ 2.16 kgf in accordance with JIS K 7210.
  • the resin composition is crosslinked by irradiation with ionizing radiation.
  • cross-linked by irradiation with ionizing radiation heat resistance, oil resistance and mechanical strength are improved.
  • the present invention also provides an insulated wire as described above, wherein the conductor has a cross-sectional area of 0.35 mm 2 or less and the insulating layer has a thickness of 0.25 mm or less. Since the insulated wire of the present invention is excellent in wear resistance, the required characteristics can be satisfied even if the thickness of the insulating layer is 0.25 mm or less.
  • a halogen-free insulated electric wire that satisfies the required characteristics such as oil resistance and flame retardancy required for an insulated electric wire for automobiles and that can achieve both wear resistance and flexibility (elongation) of a coating film. it can.
  • the high density polyethylene is a homopolyethylene or a polyethylene copolymer, and is a polyethylene having a density of 0.942 g / cm 3 or more.
  • the melt flow rate (hereinafter abbreviated as “MFR”; measured in 230 ° C. ⁇ 2.16 kgf according to JIS K 7210, unit g / 10 min) is 0.60 or less, preferably 0.15 or more and 0.30 or less. select.
  • MFR is an index of the average molecular weight of high-density polyethylene. Generally, the higher the average molecular weight, the lower the MFR.
  • the wear resistance of the insulated wire can be improved by selecting a high density polyethylene having an MFR of 0.60 or less in the present invention as the MFR is lower.
  • the high density polyethylene is 40 to 65 parts by mass with 100 parts by mass of the entire resin component.
  • the content of the high-density polyethylene is less than 40 parts by mass, in the three-component polymer alloy of high-density polyethylene, polyphenylene ether resin, and styrene elastomer, the polyphenylene ether resin and styrene elastomer are contained in the high-density polyethylene. A finely dispersed polymer alloy cannot be obtained, and wear resistance is reduced.
  • the content of the high density polyethylene is more than 65 parts by mass, the flame retardancy is lowered.
  • Polyphenylene ether is an engineering plastic obtained by oxidative polymerization of 2,6-xylenol synthesized from methanol and phenol.
  • Various materials are commercially available as modified polyphenylene ether resins (modified PPE) in which polystyrene is blended with polyphenylene ether in order to improve the molding processability of polyphenylene ether.
  • modified PPE modified polyphenylene ether resins
  • any of the above-mentioned polyphenylene ether resin alone and a polyphenylene ether resin obtained by melt blending polystyrene can be used.
  • transduced carboxylic acid, such as maleic anhydride can also be blended suitably and used.
  • polyphenylene ether resin obtained by melt blending polystyrene it is preferable to use a polyphenylene ether resin obtained by melt blending polystyrene as the polyphenylene ether resin, because the workability at the time of melt mixing with high density polyethylene and styrene elastomer is improved. Moreover, since the polyphenylene ether resin obtained by melt blending polystyrene is excellent in compatibility with the styrene elastomer, the extrusion processability is improved.
  • the content of the polyphenylene ether-based resin is 25 to 30 parts by mass with 100 parts by mass of the entire resin component. Since the polyphenylene ether resin is excellent in heat resistance and is a hard material having a high elastic modulus, if it exceeds 30 parts by mass, the flexibility is reduced, and if it is less than 25 parts by mass, the heat resistance and wear resistance are reduced. Moreover, a polyphenylene ether-type resin is resin with high flame retardance, and a flame retardance will fall that it is less than 25 mass parts.
  • styrene elastomers examples include styrene / ethylene butene / styrene copolymers, styrene / ethylene propylene / styrene copolymers, styrene / ethylene / ethylene propylene / styrene copolymers, and styrene / butylene / styrene copolymers.
  • hydrogenated polymers and partially hydrogenated polymers can be exemplified.
  • transduced carboxylic acid such as maleic anhydride, can also be blended suitably and used.
  • SEBS ethylene butene / styrene block copolymer
  • SEBC styrene / ethylene / butylene / ethylene block copolymer having a styrene / ethylene / butylene ratio of 30:70 to 60:40
  • SEEPS styrene / ethylene / ethylene / Propylene-styrene block copolymer
  • the content of the styrene elastomer is 10 to 30 parts by mass with 100 parts by mass of the entire resin component.
  • the content of the styrene-based elastomer is less than 10 parts by mass, the flexibility is lowered. Moreover, when it exceeds 30 mass parts, abrasion resistance will fall.
  • phosphoric acid esters examples include bisphenol A bis-diphenyl phosphate, resorcinol bis-dixylenyl phosphate, resorcinol bisdiphenyl phosphate, triphenyl phosphate, triphenyl phosphate, triphenyl phosphate, trimethyl phosphate, triethyl phosphate, tricresidyl phosphate, trixyl phosphate Silenyl phosphate, cresyl phenyl phosphate, cresyl 2,6-xylenyl phosphate, 2-ethylhexyl diphenyl phosphate, 1,3 phenylene bis (diphenyl phosphate), 1,3 phenylene bis (di 2,6 Xylenyl phosphate), bisphenol A bis (diphenyl phosphate), octyl diphenyl phosphate, diethylene ethyl ester phosphate , Dihydroxypropylene buty
  • ⁇ ⁇ Phosphate works as a flame retardant.
  • Use of a phosphoric acid ester having a high phosphorus content improves flame retardancy.
  • a phosphoric ester having a high molecular weight and a high melting point has high hydrolysis resistance, so that it is hardly decomposed by heat during mixing of the resin composition, and flame retardancy is improved. From these points, condensed phosphate ester is preferable.
  • bisphenol A bis-diphenyl phosphate is preferably used because of its high hydrolysis resistance and high plasticizing effect.
  • the content of the phosphate ester is 6 to 25 parts by mass with respect to 100 parts by mass of the resin component. When the amount is less than 6 parts by mass, the flame retardancy is insufficient. When the amount exceeds 25 parts by mass, the mechanical properties are deteriorated.
  • the multifunctional monomer works as a crosslinking aid.
  • the polyfunctional monomer those having a plurality of carbon-carbon double bonds in the molecule such as trimethylolpropane trimethacrylate, triallyl cyanurate, triallyl isocyanurate and the like can be preferably used.
  • the polyfunctional monomer is preferably liquid at normal temperature. When it is a liquid, it can be easily mixed with a polyphenylene ether resin or a styrene elastomer.
  • trimethylolpropane trimethacrylate has high compatibility with the resin and can be preferably used.
  • the content of the polyfunctional monomer is 1 to 10 parts by mass with respect to 100 parts by mass of the resin component. When the amount is less than 1 part by mass, the crosslinking efficiency is poor and properties such as heat resistance are deteriorated. Moreover, when it exceeds 10 mass parts, a mechanical characteristic will fall.
  • an antioxidant, an antioxidant, a processing stabilizer, a colorant, a heavy metal deactivator, and a foaming agent can be appropriately mixed with the resin composition.
  • These materials are mixed using a known melt mixer such as a single-screw kneading extruder, a twin-screw kneading extruder, a pressure kneader, or a Banbury mixer to prepare a resin composition.
  • a melt mixer such as a single-screw kneading extruder, a twin-screw kneading extruder, a pressure kneader, or a Banbury mixer to prepare a resin composition.
  • finely dispersed means that the domains are uniformly dispersed in a submicron size with respect to the matrix.
  • the insulated electric wire has an insulating layer made of the above resin composition, and the insulating layer is formed on the conductor directly or via another layer.
  • a known extruder such as a melt extruder can be used.
  • the insulating layer is preferably cross-linked by irradiating with ionizing radiation.
  • a conductor As a conductor, a copper wire, an aluminum wire, etc. which are excellent in electroconductivity can be used.
  • the diameter of the conductor can be appropriately selected depending on the intended use, but it is preferable to select a conductor having a cross-sectional area of 0.35 mm 2 or less in order to enable wiring in a narrow space.
  • the conductor may be a single wire or may be a strand of a plurality of strands.
  • the thickness of the insulating layer can be appropriately selected according to the conductor diameter. However, when the thickness of the insulating layer is 0.24 mm or less, wiring in a narrow portion is possible and handling is easy. Since the insulating layer of the insulated wire of the present invention is excellent in wear resistance, even a thin insulating layer can satisfy the characteristics required for an automobile wire.
  • the insulating layer is crosslinked by irradiation with ionizing radiation because the mechanical strength is improved.
  • ionizing radiation sources include accelerated electron beams, gamma rays, X-rays, ⁇ rays, ultraviolet rays, and the like. Accelerated electron beams are used from the viewpoint of industrial use, such as ease of use of the radiation source, transmission thickness of ionizing radiation, and speed of crosslinking treatment. Is most preferably used.
  • Heating-resistant A long-time heating, a short-time heating, and an overload heating test were performed based on ISO6722. Heating for a long time: After leaving the insulated wire at a temperature of 125 ° C. for 3000 hours, it was wound around a mandrel having a diameter of 1.5 mm at room temperature three times to confirm that there were no appearance defects such as cracks. Further, a withstand voltage test of AC 1 kV ⁇ 1 minute was performed. Those having no appearance defects such as cracks after the withstand voltage test were regarded as acceptable. Heating for a short time: After leaving the insulated wire at a temperature of 150 ° C.
  • a tape wear test and a scrape wear test were performed based on ISO6722.
  • 150 J garnet sandpaper was used, and the load was 0.1 kg.
  • a tape moving distance of 250 mm or longer until the conductor was exposed was regarded as acceptable.
  • the scrape wear test a blade having a diameter of 0.45 mm was used, the frequency was 50 to 60 Hz, and the load was 7N. Those with a cycle number of 200 or more were considered acceptable.
  • Heat shrinkage Based on ISO6722, a 100 mm wire sample was placed in a thermostatic bath at 150 ° C. for 15 minutes, and after taking out, the insulation coating was examined for shrinkage.
  • Oil resistance test Based on ISO6722, it is immersed in oil such as gasoline, light oil, engine oil, ethanol, PSF, ATF, LLC for 20 hours at 23 ° C or 50 ° C, and the outer diameter change rate is calculated. The change rate is 15% The following were accepted. Further, for a sample that passed, it was wound around a ⁇ 5D mandrel at room temperature three times and a voltage of AC 1 kV was applied for 1 minute to examine whether or not dielectric breakdown occurred.
  • oil such as gasoline, light oil, engine oil, ethanol, PSF, ATF, LLC
  • Battery fluid resistance test The battery liquid was dropped on the wire sample based on ISO6722 and left in a constant temperature bath at 90 ° C. for 8 hours, then dropped again and left for 16 hours. And those with no dielectric breakdown were accepted.
  • Modified PPE Zylon (registered trademark) X9102 manufactured by Asahi Kasei Corporation SEBS: Tough Tech (registered trademark) H1041 manufactured by Asahi Kasei Corporation SEBC: Dynaron (registered trademark) 4600P manufactured by JSR Corporation SEEPS: Kuraray Co., Ltd.
  • Resorcinol bisdiphenyl phosphate manufactured by Daihachi Chemical Co., Ltd.
  • CR733S TMPTMA Trimethylolpropane trimethacrylate
  • Insulated wires in Examples 1 to 7 all use bisphenol A bis-diphenyl phosphate as a phosphate ester. It satisfies the evaluation items such as heat resistance, wear resistance, hot water resistance, flame retardancy and the like, and all the tensile elongation is 150% or more, the tensile strength is 10.3 MPa or more, and the flexibility is sufficient.
  • the insulated wire of Example 8 uses resorcinol bis-dixylenyl phosphate as a phosphate ester.
  • the abrasion resistance is acceptable in both the tape abrasion test and the scrape abrasion test, but the tensile elongation is slightly small at 70%, and the flexibility is slightly inferior compared with the insulated wires of Examples 1-7. Moreover, heat resistance is also insufficient.
  • the insulated wire of Example 9 uses resorxinol bisdiphenyl phosphate as a phosphate ester. The wear resistance and flexibility satisfy the required characteristics, but the heat resistance overload test failed, and the hot water resistance also failed, and it was heat resistant compared to the insulated wires of Examples 1-7. Slightly inferior.
  • Comparative Examples 1 to 4 use low density polyethylene, medium density polyethylene or high density polyethylene having a melt flow rate greater than 0.6 as polyethylene. In any case, the wear resistance does not satisfy the required characteristics, and the wear resistance is improved by using a high-density polyethylene having a melt flow rate of 0.6 or less.
  • Comparative Example 5 uses medium density polyethylene as polyethylene and also uses nitrogen flame retardant in combination with phosphorus flame retardant. In addition to the tape wear test not satisfying the required properties, the elongation is 140% and the flexibility is slightly inferior.
  • Comparative Example 6 has a high-density polyethylene content of 30 parts by mass with respect to 100 parts by mass of the resin, and the flexibility, heat resistance, and wear resistance do not satisfy the required characteristics. This is presumed to be due to the fact that the phase structure of the resin composition is reversed since the high-density polyethylene content is low.
  • Comparative Example 7 has a phosphate ester content of 5 parts by mass with respect to 100 parts by mass of the resin component.
  • the flame retardancy does not satisfy the required characteristics, and the tensile elongation is 130%, which is slightly lower than the target value. From this, it can be seen that the phosphate ester, particularly bisphenol A bis-diphenyl phosphate used in Comparative Example 7, not only contributes to the flame retardancy but also contributes to the improvement of flexibility by the plasticizing effect of the resin. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Abstract

自動車用絶縁電線に求められる耐油性、難燃性等の要求特性を満たすと共に、耐摩耗性と被膜の柔軟性(伸び)を両立可能なハロゲンフリー絶縁電線を提供する。 導体及び該導体を被覆する絶縁層を有するハロゲンフリー難燃絶縁電線であって、前記絶縁層は、メルトフローレートが0.60以下の高密度ポリエチレン40~65質量部、ポリフェニレンエーテル系樹脂25~30質量部、及びスチレン系エラストマー10~30質量部からなり前記高密度ポリエチレン中に前記ポリフェニレンエーテル系樹脂と前記スチレン系エラストマーとが微分散したポリマーアロイである樹脂成分100質量部に対してリン酸エステルを6~25質量部及び多官能性モノマーを1~10質量部含有する樹脂組成物の架橋体からなる。

Description

ハロゲンフリー難燃絶縁電線
 本発明は耐摩耗性及び耐熱性に優れ、特に自動車内の配線として好適に使用できるハロゲンフリー難燃絶縁電線に関する。
 自動車の内部配線に使用される絶縁電線は振動や高温、寒冷、風雨に晒されるため、そのような悪条件下でも安定な性能を発揮できる信頼性が求められる。具体的には、日本自動車規格(JASO規格)や国際規格であるISO規格において、耐摩耗性、耐油性、難燃性、絶縁被膜の機械特性(引張伸び、強度)や耐熱性等について合格基準が詳細に規定されている。
 また近年環境負荷への影響を低減するため、絶縁被膜にはPVCやハロゲン系難燃剤を含まない、いわゆるハロゲンフリーの絶縁材料が求められている。ハロゲンフリー電線の被覆材料としては、一般に、ポリオレフィン樹脂等の絶縁性樹脂に水酸化マグネシウム、水酸化アルミニウム、窒素系難燃剤等のハロゲンフリー系難燃剤を添加したものが使用される。しかし、難燃性の要求特性を満たすためにはハロゲンフリー系難燃剤はハロゲン系難燃剤と比べて多量に添加する必要があり、得られる絶縁被膜の柔軟性が低下し、初期及び耐熱老化後の引張伸びが低下するという問題がある。
 このような課題を解決するため、特許文献1には、ポリアミド樹脂又はポリエステル樹脂、ポリフェニレンエーテル系樹脂及びスチレン系エラストマー樹脂を含有する樹脂成分と、窒素系難燃剤とを含有するハロゲンフリー系難燃性樹脂組成分が開示されている。この難燃性樹脂組成物は、常温において弾性率が高く硬いポリフェニレンエーテル系樹脂を島に、伸びが大きく柔らかいスチレン系エラストマーを海とする海島構造を持つポリマーアロイであり、さらに結晶性樹脂でありガラス転移温度以上の温度であっても適度な弾性率を保ち柔軟性、伸長性を保持することができるポリアミド樹脂又はポリエステル樹脂をスチレン系エラストマー中に均一に分散させていることで、PVCと同等の難燃性、柔軟性を得ることができる。
 特許文献2には、ポリフェニレンエーテル系樹脂及びスチレン系熱可塑性エラストマーを含有するベースポリマーに、難燃剤としてリン系化合物、窒素系有機化合物、および多官能性モノマーを含有する難燃性樹脂組成物が記載されている。この難燃性樹脂組成物は難燃性と引張特性(伸び)とを両立させることができ、さらに架橋効果を得ることができる。さらに特許文献3には、ガソリンに対する長期化学耐性を有するハロゲンフリー系難燃自動車用電線が開示されている。
特開2008-169234号公報 特開2009-249552号公報 特表2010-502479号公報
 最近の軽量化、省スペース化へのニーズの高まりによって、自動車用電線に求められる特性は非常に高くなっている。特に着目されている特性としては、被膜の耐摩耗性と柔軟性であり、上記の難燃電線では要求される特性を全て満足することはできない。
 例えば特許文献1に記載の難燃電線では、一般的に要求される被膜伸び150%以上という特性を全て満足しておらず、また耐摩耗性についても具体的な評価結果が無い。特許文献2の難燃性樹脂組成物は被膜伸びは全て150%以上であるが耐摩耗性について具体的な記載が無い。さらに特許文献3の絶縁電線は初期伸びが低い。ポリフェニレンエーテル系樹脂のように弾性率が高く硬い材料を使用すれば、耐摩耗性の向上に繋がるが、こうした材料は伸びが小さいため、耐摩耗性と伸びを両立することが困難である。
 これらの事情に鑑み、本発明は、自動車用絶縁電線に求められる耐油性、難燃性等の要求特性を満たすと共に、耐摩耗性と被膜の柔軟性(伸び)を両立可能なハロゲンフリー絶縁電線を提供することを課題とする。
 本発明は、導体及び該導体を被覆する絶縁層を有するハロゲンフリー難燃絶縁電線であって、前記絶縁層は、メルトフローレートが0.60以下の高密度ポリエチレン40~65質量部、ポリフェニレンエーテル系樹脂25~30質量部、及びスチレン系エラストマー10~30質量部からなり前記高密度ポリエチレン中に前記ポリフェニレンエーテル系樹脂と前記スチレン系エラストマーとが微分散したポリマーアロイである樹脂成分100質量部に対してリン酸エステルを6~25質量部及び多官能性モノマーを1~10質量部含有する樹脂組成物の架橋体からなるハロゲンフリー難燃絶縁電線である。
 ISO規格で要求される耐摩耗性を満たすため、硬質材料であるポリフェニレンエーテル系樹脂を用いると共に柔軟成分であるスチレン系エラストマーを使用し、さらにメルトフローレートが0.60以下と比較的分子量の高い高密度ポリエチレン中に上記のポリフェニレンエーテル系樹脂とスチレン系エラストマーとが微分散したポリマーアロイとすることで耐摩耗性と柔軟性とを両立可能である。またリン酸エステルは難燃性向上に寄与すると共に、ポリフェニレンエーテル系樹脂の可塑化効果があり、樹脂組成物の伸び(柔軟性)向上に寄与している。このような絶縁層を有することで、柔軟性、耐摩耗性、及び難燃性に優れた絶縁電線を得ることができる。
 前記リン酸エステルとしては縮合型リン酸エステルが好ましく、特に耐熱性及び耐加水分解性に優れるビスフェノールAビス-ジフェニルホスフェートが好ましい。ビスフェノールAビス-ジフェニルホスフェートは大八化学工業(株)製のCR-741(商品名)として入手できる。
 前記高密度ポリエチレンのメルトフローレートは0.15以上0.30以下が好ましい。メルトフローレートが小さいほど機械強度が高くなり、耐摩耗性が良好となる。しかしメルトフローレートが0.15よりも小さいと押出加工性が低下する。なおメルトフローレートはJIS K 7210に従って、230℃×2.16kgfで測定した値(g/10min)である。
 樹脂組成物は電離放射線の照射により架橋されていると好ましい。電離放射線の照射により架橋されていると、耐熱性や耐油性、機械的強度が向上する。
 また本発明は、上記の絶縁電線であって、導体の断面積が0.35mm以下であり、前記絶縁層の厚みが0.25mm以下である絶縁電線を提供する。本発明の絶縁電線は耐摩耗性に優れるため、絶縁層の厚みが0.25mm以下の薄膜であっても要求特性を満たすことができる。
 本発明によれば、自動車用絶縁電線に求められる耐油性、難燃性等の要求特性を満たすと共に、耐摩耗性と被膜の柔軟性(伸び)を両立可能なハロゲンフリー絶縁電線を得ることができる。
 まず絶縁層を構成する樹脂組成物に使用する各種材料について説明する。高密度ポリエチレンはホモポリエチレン又はポリエチレンコポリマーであり、密度0.942g/cm以上のポリエチレンである。またメルトフローレート(以下「MFR」と略記;JIS K 7210に従って、230℃×2.16kgfで測定、単位g/10min)が0.60以下、好ましくは0.15以上0.30以下のものを選択する。MFRは高密度ポリエチレンの平均分子量の指標となり、一般に平均分子量が高ければMFRは低くなる。またMFRが低いほど比較的耐摩耗性も向上する傾向にあり、本発明では、MFRが0.60以下の高密度ポリエチレンを選択することで絶縁電線の耐摩耗性を向上できる。
 高密度ポリエチレンは、樹脂成分全体を100質量部として40~65質量部とする。高密度ポリエチレンの含有量が40質量部よりも少ない場合は、高密度ポリエチレン、ポリフェニレンエーテル系樹脂、スチレン系エラストマーの3成分のポリマーアロイにおいて、高密度ポリエチレン中にポリフェニレンエーテル系樹脂とスチレン系エラストマーが微分散したポリマーアロイとすることができず耐摩耗性が低下する。また高密度ポリエチレンの含有量が65質量部よりも多すぎると難燃性が低下する。
 ポリフェニレンエーテル(PPE)はメタノールとフェノールを原料として合成される2,6-キシレノールを酸化重合させて得られるエンジニアリングプラスチックである。またポリフェニレンエーテルの成形加工性を向上させるためポリフェニレンエーテルにポリスチレンを溶融ブレンドした材料が変性ポリフェニレンエーテル樹脂(変性PPE)として各種市販されている。本発明に用いるポリフェニレンエーテル系樹脂としては、上記のポリフェニレンエーテル樹脂単体、及びポリスチレンを溶融ブレンドしたポリフェニレンエーテル樹脂のいずれも使用することができる。また無水マレイン酸等のカルボン酸を導入したものを適宜ブレンドして使用することもできる。
 ポリフェニレンエーテル系樹脂としてポリスチレンを溶融ブレンドしたポリフェニレンエーテル樹脂を使用すると高密度ポリエチレン及びスチレン系エラストマーとの溶融混合時の作業性が向上し好ましい。またポリスチレンを溶融ブレンドしたポリフェニレンエーテル樹脂はスチレン系エラストマーとの相溶性に優れるため、押出加工性が向上する。
 ポリフェニレンエーテル系樹脂の含有量は樹脂成分全体を100質量部として25~30質量部とする。ポリフェニレンエーテル系樹脂は耐熱性に優れると共に弾性率が高く硬い材料であるため、30質量部を超えると柔軟性が低下し、25質量部未満であると耐熱性や耐摩耗性が低下する。またポリフェニレンエーテル系樹脂は難燃性の高い樹脂であり、25質量部未満であると難燃性が低下する。
 スチレン系エラストマーとしては、スチレン・エチレンブテン・スチレン共重合体、スチレン・エチレンプロピレン・スチレン共重合体、スチレン・エチレン・エチレンプロピレン・スチレン共重合体、スチレン・ブチレン・スチレン共重合体等が挙げられ、これらの水素添加ポリマーや部分水素添加ポリマーを例示できる。また無水マレイン酸等のカルボン酸を導入したものを適宜ブレンドして使用することもできる。
 これらの中でもスチレンとゴム成分のブロック共重合エラストマーを使用すると、押出加工性が向上することに加え、引張破断伸びが向上し柔軟性が向上する。スチレン/エチレン・ブチレン比が30:70~60:40のスチレン-エチレンブテン-スチレンブロック共重合体(SEBS)、スチレン-エチレン・ブチレン-エチレンブロック共重合体(SEBC)、スチレン-エチレン・エチレン・プロピレン-スチレンブロック共重合体(SEEPS)等がスチレン系エラストマーとして好ましく使用できる。
 スチレン系エラストマーの含有量は樹脂成分全体を100質量部として10~30質量部とする。スチレン系エラストマーの含有量が10質量部よりも少ないと柔軟性が低下する。また30質量部を超えると耐摩耗性が低下する。
 リン酸エステルとしては、ビスフェノールAビス-ジフェニルホスフェート、レゾルシノールビスジキシレニルフォスフェート、レゾルシノールビスジフェニルホスフェート、トリフェニルホスフェート、トリフェニルフォスフェート、トリメチルフォスフェート、トリエチルフォスフェート、トリクレシジルフォスフェート、トリキシレニルフォスフェート、クレジルフェニルフォスフェート、クレジル2,6-キシレニルフォスフェート、2-エチルヘキシルジフェニルフォスフェート、1,3フェニレンビス(ジフェニルフォスフェート)、1,3フェニレンビス(ジ2,6キシレニルフォスフェート)、ビスフェノールAビス(ジフェニルフォスフェート)、オクチルジフェニルフォスフェート、ジエチレンエチルエステルフォスフェート、ジヒドロキシプロピレンブチルエステルフォスフェート、エチレンジナトリウムエステルフォスフェート、t-ブチルフェニルジフェニルホスフェート、ビス-(t-ブチルフェニル)フェニルホスフェート、トリス-(t-ブチルフェニル)ホスフェート、イソプロピルフェニルジフェニルホスフェート、ビス-(イソプロピルフェニル)ジフェニルホスフェート、トリス-(イソプロピルフェニル)ホスフェート、トリス(2-エチルヘキシル)ホスフェート、トリス(ブトキシエチル)ホスフェート、トリスイソブチルホスフェート等を使用することができる。
 リン酸エステルは難燃剤として働く。リン含有量が高いリン酸エステルを使用すると難燃性が向上する。また分子量が大きく融点の高いリン酸エステルは、耐加水分解性が高いため、樹脂組成物の混合時の熱による分解が少なく難燃性が向上する。これらの点から縮合リン酸エステルが好ましい。特にビスフェノールAビス-ジフェニルホスフェートは耐加水分解性が高いとともに可塑化効果が高いため、好ましく使用できる。リン酸エステルの含有量が、樹脂成分100質量部に対して6~25質量部とする。6質量部より少ない場合は難燃性が不十分であり、25質量部を超えると機械的特性が低下する。
 多官能性モノマーは架橋助剤として働く。多官能性モノマーとしてはトリメチロールプロパントリメタクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート等の分子内に複数の炭素-炭素二重結合を持つものが好ましく使用できる。また多官能性モノマーは常温で液体であることが好ましい。液体であるとポリフェニレンエーテル系樹脂やスチレン系エラストマーとの混合が容易である。特にトリメチロールプロパントリメタクリレートは樹脂への相溶性が高く好ましく使用できる。多官能性モノマーの含有量は樹脂成分100質量部に対して1~10質量部とする。1質量部より少ない場合は架橋効率が悪く耐熱性等の特性が低下する。また10質量部を超えると機械的特性が低下する。
 樹脂組成物には上記の必須成分以外に、酸化防止剤、老化防止剤、加工安定剤、着色剤、重金属不活性化剤、発泡剤を適宜混合することができる。これらの材料を単軸混練押出機、二軸混練押出機、加圧ニーダー、バンバリーミキサー等の既知の溶融混合機を用いて混合して樹脂組成物を作成する。上記の必須成分を規定の割合で混合することで、高密度ポリエチレン中にポリフェニレンエーテル系樹脂とスチレン系エラストマーとが微分散したポリマーアロイとなる。尚、微分散しているとは、マトリクスに対し、ドメインがサブミクロンサイズで均一に分散している状態をいう。均一分散を得るには、高剪断型二軸混練押出機で混合することが好ましい。
 絶縁電線は、上記の樹脂組成物からなる絶縁層を有するものであり、導体上に絶縁層が直接又は他の層を介して形成される。絶縁層の形成には溶融押出機など既知の押出成形機を用いることができる。また絶縁層に電離放射線を照射して架橋することが好ましい。
 導体としては、導電性に優れる銅線、アルミ線などが使用できる。導体の径は使用用途に応じて適宜選択できるが、狭いスペースへの配線を可能とするためには断面積が0.35mm以下のものを選択することが好ましい。導体は単線であっても良いし、複数の素線を撚り線したものでも良い。
 絶縁層の厚みは、導体径に応じて適宜選択することができるが、絶縁層の厚みを0.24mm以下とすると狭い部分での配線が可能となり取扱いが容易である。本発明の絶縁電線の絶縁層は耐摩耗性に優れるため、このように薄膜の絶縁層であっても自動車用電線に求められる特性を満たすことができる。
 絶縁層が電離放射線の照射により架橋されていると、機械的強度が向上して好ましい。電離放射線源としては、加速電子線やガンマ線、X線、α線、紫外線等が例示でき、線源利用の簡便さや電離放射線の透過厚み、架橋処理の速度など工業的利用の観点から加速電子線が最も好ましく利用できる。
 次に、本発明を実施例に基づいてさらに詳細に説明する。なお実施例は本発明の範囲を限定するものではない。
 (実施例1~9、比較例1~7)
 (樹脂組成物ペレットの作成)
 表1及び表2に示す配合処方(単位:質量部)で各成分を混合した。二軸混合機(45mmφ、L/D=42)を使用し、シリンダー温度240℃、スクリュー回転数200rpmで溶融混合し、ストランド状に溶融押出し、次いで、溶融ストランドを冷却切断してペレットを作製した。
 (絶縁電線の作製)
 単軸押出機(30mmφ、L/D=24)を用いて、断面積0.35mmの導体(0.16mmφの軟銅線19本撚り)上に肉厚が0.25mmになるように絶縁層を押出被覆し、加速電圧2MeVの電子線を180~360kGy照射して絶縁電線を作成した。
 (絶縁層の評価:引張特性)
 作製した電線から導体を抜き取り、絶縁層の引張試験を行った。試験条件は引張速度=500mm/分、標線間距離=25mm、温度=23℃とし、引張強さ、及び引張伸び(破断伸び)を各3点の試料で測定し、それらの平均値を求めた。引張強さが10.3MPa以上かつ引張伸び150%以上であると好ましい。
 (耐熱性)
 ISO6722に基づいて長時間加熱、短時間加熱、及び過負荷加熱試験を行った。長時間加熱:絶縁電線を温度125℃で3000時間放置した後、室温で直径1.5mmのマンドレルに3回巻き付けてクラックなどの外観不良がないことを確認した。さらにAC1kV×1分の耐電圧試験を行った。耐電圧試験後にクラックなどの外観不良がないものを合格とした。短時間加熱:絶縁電線を温度150℃で240時間放置した後、-25℃で直径5mmのマンドレルに3回巻き付けてクラックなどの外観不良がないことを確認した。さらにAC1kV×1分の耐電圧試験を行った。耐電圧試験後にクラックなどの外観不良がないものを合格とした。過負荷試験:絶縁電線を温度175℃で6時間放置した後、室温で直径1.5mmのマンドレルに3回巻き付けてクラックなどの外観不良がないことを確認した。さらにAC1kV×1分の耐電圧試験を行った。耐電圧試験後にクラックなどの外観不良がないものを合格とした。
 (摩耗試験)
 ISO6722に基づいてテープ摩耗試験及びスクレープ摩耗試験を行った。テープ摩耗試験では150Jのガーネットサンドペーパーを使用し、荷重は0.1kgとした。導体露出までのテープ移動距離が250mm以上のものを合格とした。スクレープ摩耗試験では直径0.45mmのブレードを使用し、周波数50~60Hz、荷重7Nとした。サイクル数が200以上のものを合格とした。
 (耐温水試験)
 絶縁電線を直径5mmのマンドレルに3回巻き付けた状態で温度85℃、濃度10g/lの塩水中に浸漬してDC48Vを印加し、7日毎に絶縁抵抗を5サイクル測定した。さらにAC1kV×1分の耐電圧試験を行った。耐電圧試験後にクラックなどの外観不良がないものを合格とした。
 (難燃性試験)
 絶縁電線を45°に傾斜させ、15秒接炎させた後、炎が消えるまでの時間(秒)を測定した。70秒以内に炎が自然と消えた場合は合格、70秒を超えた場合は不合格とした。
 (耐電圧試験)
 ISO6722に基づいて水中にてAC1kVを30分間印加し、その後3kVまで電圧をかけ、絶縁破壊しないか調べ、絶縁破壊の無いものを合格とした。
 (低温巻き付け試験)
 ISO6722に基づいて-40℃の恒温槽に4時間放置した後、φ5D(電線外径の5倍の直径)のマンドレルに3回巻き付け、AC1kVを1分間印加し、絶縁破壊しないか調べ、絶縁破壊の無いものを合格とした。
 (加熱収縮)
 ISO6722に基づいて100mmの電線サンプルを150℃の恒温槽に15分間投入し、取り出し後絶縁被覆の収縮がないか調べ、収縮が2mm以内のものを合格とした。
 (耐油性試験)
 ISO6722に基づいて、ガソリン、軽油、エンジンオイル、エタノール、PSF,ATF,LLCなどの各オイルに23℃あるいは50℃の温度条件で20時間浸漬し、外径変化率を算出、変化率は15%以下のものを合格とした。更に、合格したサンプルについては常温でφ5Dのマンドレルに3回巻き付けAC1kVの電圧を1分印加し、絶縁破壊しないか調べ、絶縁破壊の無いものを合格とした。
 (耐バッテリー液試験)
 ISO6722に基づいてバッテリー液を電線サンプル上に滴下し90℃の恒温槽に8時間放置した後、再度滴下し16時間放置するというサイクルを計2回繰り返し、常温で30分放置した後、巻き付け試験を行い絶縁破壊のないものを合格とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 (脚注)
 変性PPE:旭化成(株)製ザイロン(登録商標)X9102
 SEBS:旭化成(株)製タフテック(登録商標)H1041
 SEBC:JSR(株)製ダイナロン(登録商標)4600P
 SEEPS:クラレ(株)製セプトン(登録商標)4044
 PE(*1):MFR=0.25、密度0.961g/cm、硬度68Dの高密度ポリエチレン(プライムポリマー(株)製、ハイゼックス520MB)
 PE(*2):MFR=0.55、密度0.959g/cm、硬度70Dの高密度ポリエチレン(日本ポリエチレン(株)製、ノバテックHY530)
 PE(*3):MFR=0.4、密度0.956g/cm、硬度69Dの高密度ポリエチレン(日本ポリエチレン(株)製、ノバテックHY420)
 PE(*4):MFR=0.3、密度0.95g/cm、硬度69Dの高密度ポリエチレン(日本ポリエチレン(株)製、ノバテックHD320)
 PE(*5):MFR=0.55、密度0.94g/cm、硬度61Dの高密度ポリエチレン(ダウケミカルUS(株)製、Dowlex2388)
 PE(*6):MFR=0.38、密度0.953g/cm、硬度62Dの高密度ポリエチレン(ダウケミカル日本(株)製、MDMJ-6200NT)
 PE(*7):MFR=0.6、密度0.92g/cmの低密度ポリエチレン(ダウケミカル日本(株)製、DFDJ-7540)
 PE(*8):MFR=0.75、密度0.945g/cmの高密度ポリエチレン(ダウケミカル日本(株)製、DGDN-3364)
 PE(*9):MFR=0.8、密度0.951g/cm、硬度62Dの高密度ポリエチレン(プライムポリマー(株)製、ハイゼックス5305E)
 PE(*10):MFR=0.8、密度0.938g/cmの中密度ポリエチレン(日本ポリエチレン(株)製SD911)
 ビスフェノールAビス-ジフェニルホスフェート:大八化学(株)製、CR741
 レゾルシノールビスジキシレニルホスフェート:大八化学(株)製、PX-200
 レゾルシノールビスジフェニルホスフェート:大八化学(株)製、CR733S
 TMPTMA:トリメチロールプロパントリメタクリレート
 窒素系難燃剤(メラミンシアヌレート):日産化学(株)製MC6000
 実施例1~7の絶縁電線は全てリン酸エステルとしてビスフェノールAビス-ジフェニルホスフェートを使用している。耐熱性、耐摩耗性、耐温水製、難燃性等の評価項目を満足しているとともに引張伸びは全て150%以上、引張強さは10.3MPa以上であり柔軟性も充分である。実施例8の絶縁電線はリン酸エステルとしてレゾルシノールビスジキシレニルホスフェートを使用している。耐摩耗性はテープ摩耗試験、スクレープ摩耗試験共に合格レベルであるが引張伸びが70%とやや小さく、実施例1~7の絶縁電線と比較すると柔軟性がやや悪い。また耐熱性も不十分である。実施例9の絶縁電線はリン酸エステルとしてレゾルキシノールビスジフェニルホスフェートを使用している。耐摩耗性及び柔軟性は要求特性を満足しているが、耐熱性の過負荷試験が不合格であり、また耐温水性も不合格であり、実施例1~7の絶縁電線と比べると耐熱性が若干劣っている。
 比較例1~4はポリエチレンとして低密度ポリエチレン、中密度ポリエチレンやメルトフローレートが0.6より大きい高密度ポリエチレンを使用している。いずれも耐摩耗性が要求特性を満たしておらず、メルトフローレートが0.6以下の高密度ポリエチレンを使用することで耐摩耗性が向上することを示している。
 比較例5はポリエチレンとして中密度ポリエチレンを使用すると共に、リン系難燃剤と併用して窒素系難燃剤を使用している。テープ摩耗試験が要求特性を満たしていないことに加え、伸びが140%であり柔軟性がやや劣っている。
 比較例6は高密度ポリエチレンの含有量が、樹脂100質量部に対して30質量部と少なく柔軟性、耐熱性、及び耐摩耗性が要求特性を満たしていない。高密度ポリエチレン含有量が少ないため、樹脂組成物の相構造が逆転しているのがこの原因と推測される。
 比較例7はリン酸エステルの含有量を、樹脂成分100質量部に対して5質量部としている。難燃性が要求特性を満たしていないと共に引張伸びも130%であり目標値よりやや低くなっている。このことからリン酸エステル、特に比較例7で使用しているビスフェノールAビス-ジフェニルホスフェートは難燃性に寄与するだけでなく樹脂の可塑化効果により柔軟性向上にも寄与していることがわかる。

Claims (5)

  1.  導体及び該導体を被覆する絶縁層を有するハロゲンフリー難燃絶縁電線であって、
    前記絶縁層は、メルトフローレートが0.60以下の高密度ポリエチレン40~65質量部、ポリフェニレンエーテル系樹脂25~30質量部、及びスチレン系エラストマー10~30質量部からなり前記高密度ポリエチレン中に前記ポリフェニレンエーテル系樹脂と前記スチレン系エラストマーとが微分散したポリマーアロイである樹脂成分100質量部に対してリン酸エステルを6~25質量部及び多官能性モノマーを1~10質量部含有する樹脂組成物の架橋体からなるハロゲンフリー難燃絶縁電線。
  2.  前記リン酸エステルが、ビスフェノールAビス-ジフェニルホスフェートである、請求項1に記載のハロゲンフリー難燃絶縁電線。
  3.  前記高密度ポリエチレンのメルトフローレートが0.15以上0.30以下である、請求項1又は2に記載のハロゲンフリー難燃絶縁電線。
  4.  電離放射線の照射により樹脂組成物が架橋されている、請求項1~3のいずれか1項に記載のハロゲンフリー難燃絶縁電線。
  5.  前記導体の断面積が0.35mm以下であり、前記絶縁層の厚みが0.25mm以下である、請求項1~4のいずれか1項に記載のハロゲンフリー難燃絶縁電線。
PCT/JP2012/083389 2012-02-03 2012-12-25 ハロゲンフリー難燃絶縁電線 WO2013114765A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12867411.6A EP2811489A4 (en) 2012-02-03 2012-12-25 HALOGEN-FREE, FIRE-RESISTANT AND ISOLATED ELECTRO-WIRE
CN201280026931.8A CN103620700B (zh) 2012-02-03 2012-12-25 无卤阻燃绝缘电线
KR1020137031934A KR20140122998A (ko) 2012-02-03 2012-12-25 무-할로젠 난연 절연 전선

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-021401 2012-02-03
JP2012021401A JP5494688B2 (ja) 2012-02-03 2012-02-03 ハロゲンフリー難燃絶縁電線

Publications (1)

Publication Number Publication Date
WO2013114765A1 true WO2013114765A1 (ja) 2013-08-08

Family

ID=48904822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083389 WO2013114765A1 (ja) 2012-02-03 2012-12-25 ハロゲンフリー難燃絶縁電線

Country Status (6)

Country Link
EP (1) EP2811489A4 (ja)
JP (1) JP5494688B2 (ja)
KR (1) KR20140122998A (ja)
CN (1) CN103620700B (ja)
MY (1) MY162774A (ja)
WO (1) WO2013114765A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104813417A (zh) * 2013-08-27 2015-07-29 住友电气工业株式会社 无卤阻燃绝缘电线
JP2015189785A (ja) * 2014-03-27 2015-11-02 出光ライオンコンポジット株式会社 難燃性軟質樹脂組成物
CN106046651A (zh) * 2016-07-12 2016-10-26 四川大学 一种耐高温的高分子复合材料及其制备方法与应用

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150102715A (ko) 2014-02-28 2015-09-07 주식회사 엘지화학 난연성 열가소성 수지 조성물 및 이를 포함하는 전선
JP2015195316A (ja) * 2014-03-31 2015-11-05 大日本印刷株式会社 裏面保護シート、及びそれを用いた太陽電池モジュール
DE112016006663T5 (de) 2016-04-01 2018-12-13 Hitachi Metals, Ltd. Isolierter draht, magnetspule und motor für kraftfahrzeuge
EP3441425B9 (en) 2016-12-05 2021-07-21 Furukawa Electric Co., Ltd. Cellulose aluminum dispersed polyethylene resin composite, pellet and molded body using same, and method for manufacturing same
EP3357963A1 (en) 2017-02-06 2018-08-08 Armacell Enterprise GmbH & Co. KG Crosslinked thermoplastic elastomeric insulation
WO2019038869A1 (ja) 2017-08-23 2019-02-28 古河電気工業株式会社 セルロース繊維分散ポリエチレン樹脂複合材、これを用いた成形体及びペレット、これらの製造方法、並びにセルロース繊維付着ポリエチレン薄膜片のリサイクル方法
US11667763B2 (en) 2017-08-23 2023-06-06 Furukawa Electric Co., Ltd. Cellulose-fiber dispersion polyethylene resin composite material, formed body and pellet using same, production method therefor, and recycling method for cellulose-fiber adhesion polyethylene thin film piece
WO2019039571A1 (ja) 2017-08-23 2019-02-28 古河電気工業株式会社 セルロース繊維分散ポリオレフィン樹脂複合材
KR20200044003A (ko) 2017-08-23 2020-04-28 후루카와 덴키 고교 가부시키가이샤 셀룰로오스 섬유 분산 폴리올레핀 수지 복합재, 이를 이용한 펠릿 및 성형체, 그리고 셀룰로오스 섬유 분산 폴리올레핀 수지 복합재의 제조 방법
JP6936268B2 (ja) * 2019-03-20 2021-09-15 矢崎総業株式会社 樹脂組成物、被覆電線及びワイヤーハーネス

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169234A (ja) 2007-01-09 2008-07-24 Sumitomo Electric Ind Ltd ノンハロゲン難燃性樹脂組成物およびそれを用いた電線・ケーブル
JP2009026666A (ja) * 2007-07-20 2009-02-05 Furukawa Electric Co Ltd:The 多層絶縁電線
WO2009125623A1 (ja) * 2008-04-09 2009-10-15 住友電気工業株式会社 難燃性チューブ及びこれを用いた熱収縮チューブ
JP2009249552A (ja) 2008-04-09 2009-10-29 Sumitomo Electric Ind Ltd 難燃性樹脂組成物並びにこれを用いた絶縁電線及びフラットケーブル
JP2009301766A (ja) * 2008-06-11 2009-12-24 Autonetworks Technologies Ltd 絶縁電線およびワイヤーハーネス
JP2010502479A (ja) 2006-08-28 2010-01-28 サビック・イノベーティブ・プラスチックス・アイピー・ベスローテン・フェンノートシャップ 熱可塑性組成物、被覆導体、並びにこれを製造及び試験する方法
WO2011129129A1 (ja) * 2010-04-16 2011-10-20 住友電気工業株式会社 ノンハロゲン難燃性樹脂組成物およびそれを用いた電線・ケーブル

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100509938C (zh) * 2006-12-08 2009-07-08 潍坊乾元塑胶有限公司 无卤阻燃树脂组合物及其制备方法
JP5387944B2 (ja) * 2008-11-12 2014-01-15 住友電気工業株式会社 ハロゲンフリー難燃絶縁電線

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010502479A (ja) 2006-08-28 2010-01-28 サビック・イノベーティブ・プラスチックス・アイピー・ベスローテン・フェンノートシャップ 熱可塑性組成物、被覆導体、並びにこれを製造及び試験する方法
JP2008169234A (ja) 2007-01-09 2008-07-24 Sumitomo Electric Ind Ltd ノンハロゲン難燃性樹脂組成物およびそれを用いた電線・ケーブル
JP2009026666A (ja) * 2007-07-20 2009-02-05 Furukawa Electric Co Ltd:The 多層絶縁電線
WO2009125623A1 (ja) * 2008-04-09 2009-10-15 住友電気工業株式会社 難燃性チューブ及びこれを用いた熱収縮チューブ
JP2009249552A (ja) 2008-04-09 2009-10-29 Sumitomo Electric Ind Ltd 難燃性樹脂組成物並びにこれを用いた絶縁電線及びフラットケーブル
JP2009301766A (ja) * 2008-06-11 2009-12-24 Autonetworks Technologies Ltd 絶縁電線およびワイヤーハーネス
WO2011129129A1 (ja) * 2010-04-16 2011-10-20 住友電気工業株式会社 ノンハロゲン難燃性樹脂組成物およびそれを用いた電線・ケーブル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2811489A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104813417A (zh) * 2013-08-27 2015-07-29 住友电气工业株式会社 无卤阻燃绝缘电线
JP2015189785A (ja) * 2014-03-27 2015-11-02 出光ライオンコンポジット株式会社 難燃性軟質樹脂組成物
CN106046651A (zh) * 2016-07-12 2016-10-26 四川大学 一种耐高温的高分子复合材料及其制备方法与应用
CN106046651B (zh) * 2016-07-12 2019-06-25 四川大学 一种耐高温的高分子复合材料及其制备方法与应用

Also Published As

Publication number Publication date
JP2013161590A (ja) 2013-08-19
CN103620700B (zh) 2016-06-29
EP2811489A4 (en) 2015-10-14
CN103620700A (zh) 2014-03-05
KR20140122998A (ko) 2014-10-21
JP5494688B2 (ja) 2014-05-21
MY162774A (en) 2017-07-14
EP2811489A1 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
JP5494688B2 (ja) ハロゲンフリー難燃絶縁電線
JP5556183B2 (ja) 難燃性樹脂組成物及びそれを用いた絶縁電線、フラットケーブル、成形品
JP5569363B2 (ja) 絶縁電線およびその製造方法
JP5387944B2 (ja) ハロゲンフリー難燃絶縁電線
EP1829054B1 (en) Abrasion resistant electrical wire
JP5481770B2 (ja) ノンハロゲン難燃性樹脂組成物およびそれを用いた電線・ケーブル
JP5549675B2 (ja) ノンハロゲン難燃性樹脂組成物およびそれを用いた電線・ケーブル
KR101601286B1 (ko) 고난연 전자 기기 전선용 고분자 조성물과 이를 이용한 전선
US20060134416A1 (en) Flame retardant electrical wire
JP4255368B2 (ja) 架橋型難燃性樹脂組成物ならびにこれを用いた絶縁電線およびワイヤーハーネス
JP5182580B2 (ja) ハロゲンフリー難燃絶縁電線
WO2012124589A1 (ja) ノンハロゲン難燃性樹脂組成物並びにこれを用いた絶縁電線及びチューブ
KR101276480B1 (ko) 내열성 전선용 수지 조성물 및 내열성 전선
WO2015029621A1 (ja) ハロゲンフリー難燃絶縁電線
JP2002146120A (ja) 難燃性樹脂組成物及びこれを被覆材として用いた難燃性絶縁電線
JP2017160328A (ja) ハロゲンフリー難燃性樹脂組成物及びハロゲンフリー難燃絶縁電線
JP2013232310A (ja) 電線保護材用組成物、電線保護材及びワイヤーハーネス
JP2007197619A (ja) ノンハロゲン難燃性樹脂組成物およびそれを用いた電線・ケーブル
KR20140049606A (ko) 비할로젠 난연성 수지 조성물 및 그것을 이용한 전선·케이블
JP2013149425A (ja) ハロゲンフリー難燃絶縁電線
TW201504339A (zh) 無鹵素阻燃絕緣電線
JP6860833B2 (ja) 難燃性絶縁電線および難燃性ケーブル
JP2008198399A (ja) 絶縁電線被覆材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867411

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012867411

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137031934

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE