WO2013114714A1 - 手袋およびその製造方法 - Google Patents

手袋およびその製造方法 Download PDF

Info

Publication number
WO2013114714A1
WO2013114714A1 PCT/JP2012/080726 JP2012080726W WO2013114714A1 WO 2013114714 A1 WO2013114714 A1 WO 2013114714A1 JP 2012080726 W JP2012080726 W JP 2012080726W WO 2013114714 A1 WO2013114714 A1 WO 2013114714A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous layer
glove
thickness
rubber
latex composition
Prior art date
Application number
PCT/JP2012/080726
Other languages
English (en)
French (fr)
Inventor
高井 淳
芳明 宮本
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Publication of WO2013114714A1 publication Critical patent/WO2013114714A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • A41D19/0055Plastic or rubber gloves
    • A41D19/0058Three-dimensional gloves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0064Producing wearing apparel
    • B29D99/0067Gloves

Definitions

  • the present invention relates to a glove having a laminated structure comprising at least one porous layer and at least one non-porous layer of rubber or resin, and a method of manufacturing the same.
  • gloves integrally formed by a film of rubber or resin, in particular, are widely used for protection. Gloves of this type are generally manufactured by the so-called immersion method.
  • the rubber latex is first mixed with various additives such as a vulcanizing agent to form a liquid latex composition in an unvulcanized or prevulcanized state.
  • a vulcanizing agent such as calcium sulfate aqueous solution.
  • a coagulant mainly calcium sulfate aqueous solution.
  • the latex composition is attached to the surface of the mold by immersing the mold in the latex composition for a certain period of time and then pulling it up.
  • a glove integrally formed of a resin film as a whole is a latex composition prepared by blending various additives into an emulsion of resin instead of the latex composition containing rubber latex (strictly speaking, in the case of latex) Although it is not, for convenience, it can be manufactured in the same manner as described above except that it is described in this way according to the one including rubber latex.
  • the gloves are required to have excellent workability. It can be said that it is an important performance of gloves made of rubber and resin films that thin wall, excellent in flexibility, and suitable for fine work of a fingertip, that is, excellent in workability. Moreover, it may be calculated
  • flexibility, workability, and heat insulation are contradictory characteristics, and as the thickness of the film is increased in order to improve the heat insulation, the flexibility is lowered and the feeling of the fingertip is dulled, resulting in workability. There is a problem of falling.
  • the glove into a porous structure made of rubber or resin and including a large number of cell cells in the layer.
  • the layer having a porous structure that is, the porous layer is formed by stirring or blowing air into a latex composition containing a rubber or a resin, as described in, for example, Patent Document 1
  • the foamed latex composition can be formed by using a dipping method in place of the conventional non-foamed latex composition.
  • the porous layer is made of rubber or resin, it is excellent in heat insulation and flexibility as compared with the non-porous layer which does not contain the cell.
  • the porous layer since the porous layer has low strength, it does not form a glove alone, but is laminated with a layer (support layer) for maintaining the strength of the glove, such as the fiber glove base described in Patent Document 1, for example. It is common to use a laminated structure.
  • An object of the present invention is to provide a novel glove having high flexibility, good workability, and high thermal insulation, and a method for producing the same.
  • the inventor laminated a porous layer made of rubber or resin with a thin non-porous layer not containing a foam cell, which is also made of rubber or resin and is formed by an immersion method or the like. Then, it was studied to make the non-porous layer function as a support layer for maintaining the strength. As a result, the range of the total thickness of the laminate of the porous layer and the nonporous layer, the ratio of the thickness of the porous layer in the total thickness, and the bubble content of the porous layer are respectively high flexibility, It turned out that it is an important factor to achieve good workability as well as high thermal insulation simultaneously.
  • the total thickness of the laminate is 0.4 mm or more and 0.6 mm or less, and the ratio of the thickness of the porous layer in the total thickness is 30% or more and 60% or less.
  • the present invention is a glove comprising a laminate of at least one porous layer and at least one porous layer made of rubber or resin and the total thickness of the laminate is 0.4 mm or more and 0.6 mm or less
  • the ratio of the thickness of the porous layer in the total thickness is 30% or more and 60% or less, and the cell content of the porous layer is 20% or more and 60% or less It is.
  • the ratio of the thickness of the porous layer to the total thickness of the laminate is preferably 50% or more even in the above range.
  • the present invention is a manufacturing method for manufacturing a glove, wherein a porous layer is formed by a dipping method using a latex composition having a viscosity of 150 mPa ⁇ s or more and 700 mPa ⁇ s or less. It is characterized by According to the present invention, by setting the viscosity of the foamed latex composition to 150 mPa ⁇ s or more, the stability of the air bubble can be secured. Therefore, the air bubble content of the porous layer can be increased even within the above range to further improve the heat insulation of the glove. On the other hand, by setting the viscosity to 700 mPa ⁇ s or less, good fluidity of the foamed latex composition can be secured. Therefore, while maintaining the cell content of the porous layer within the above range, the total thickness of the laminate of the porous layer and the non-porous layer can be reduced within the above range to further improve the workability. It becomes possible.
  • the glove of the present invention is entirely formed of a laminate of at least one porous layer and non-porous layer each made of rubber or resin.
  • the specific layer configuration of the laminate is not particularly limited except that it includes at least one porous layer and at least one non-porous layer, and can be arbitrarily configured.
  • the laminate has a two-layer structure in which one porous layer and one non-porous layer are laminated, or a multilayer structure of three or more layers including at least one of the porous layer and the non-porous layer. It can be done.
  • the stacking order of the porous layer and the non-porous layer can be set arbitrarily.
  • the porous layer may be inside or outside of the glove.
  • the total thickness of the laminate is 0.4 mm or more and 0.6 mm or less, and the proportion of the thickness of the porous layer in the total thickness is 30% or more and 60% While being the following, it is necessary for the bubble content rate of the porous layer to be 20% or more and 60% or less.
  • the reason why the total thickness of the laminate is limited to 0.4 mm or more and 0.6 mm or less is as follows.
  • the laminate is too thin, so that the thickness and the bubble content of the porous layer must be reduced in order to provide the glove made of the laminate with sufficient strength. As a result, the thermal insulation of the glove is reduced, and the workability at high temperatures is also reduced accordingly.
  • the laminate is too thick, and the flexibility and the workability of the glove made of the laminate are lowered.
  • the ratio of the thickness of the porous layer occupying in the total thickness is limited to 30% or more, if the ratio is less than the above range, the effect described above by providing the porous layer can not be obtained. It is because heat insulation and workability fall.
  • the ratio of the thickness of the porous layer is limited to 60% or less even in the above range.
  • the thickness of the porous layer is the thickness of the porous layer of one layer when the laminate includes only one porous layer, and the thickness of the porous layer is two when the laminate includes two or more porous layers. It is the total thickness of the porous layer or more layers. If the cell content of the porous layer is limited to 20% or more, the heat insulating property and flexibility of the porous layer itself are insufficient if the content is less than the above range, so the effect described above by the porous layer is It is because it can not be obtained and the heat insulation and the workability of the glove are reduced.
  • the bubble content of the porous layer is set within the above range, it is possible to provide the glove with high flexibility, good workability, and high heat insulation.
  • the laminate includes two or more porous layers
  • the bubble content of all the porous layers should be within the above range.
  • the air bubble content rate is too high, the air bubble cells contained in the porous layer are easily crushed by an external force or the like, and it becomes difficult to stably maintain the porous layer. Sex is reduced. Therefore, the bubble content rate is limited to 60% or less even in the above range.
  • the total thickness of the laminate, the ratio of the thickness of the porous layer to the total thickness, and the cell content of the porous layer are respectively represented by values measured by the following methods. All measurements shall be performed under an environment of 23 ⁇ 1 ° C. ⁇ Thickness>
  • the test specimen is cut from a glove containing a porous membrane, and a cross-sectional micrograph is taken using a digital microscope. And the thickness of the porous layer and the non-porous layer is measured from the photomicrograph taken, and the total thickness of the porous layer and the non-porous layer is the total thickness of the laminate forming the glove (mm Ask as). From the total thickness and the thickness of the porous layer, the ratio (%) of the thickness of the porous layer in the total thickness is determined.
  • Bubble content rate A specimen of a given area is cut from a glove containing a porous membrane, and a cross-sectional micrograph is taken using a digital microscope. And the thickness of a porous layer and a non-porous layer is measured from the photomicrograph taken, and the volume of a porous layer and a non-porous layer is calculated
  • the mass of the test piece is measured using an electronic balance, and the mass of the non-porous layer determined above is subtracted from the mass to determine the mass of the porous layer. Then, the apparent specific gravity of the porous layer is calculated from the volume and the mass, and the bubble content (%) of the porous layer is calculated from the apparent specific gravity and the true specific gravity of the material forming the porous layer. .
  • the glove of the present invention is preferably formed by the immersion method as in the prior art.
  • a mold corresponding to the three-dimensional shape of a glove is prepared, and the surface of the mold is treated with a coagulant as usual, and then each latex composition to be the basis of the nonporous layer and the porous layer.
  • Each latex composition is adhered to the surface of the mold in a laminated state by sequentially immersing inward for a fixed time and then pulling up. At this time, it is preferable to dry the deposited latex composition after each immersion. Thereby, while maintaining good adhesion and integrity between each layer, it is prevented that the latex composition which constitutes each layer mixes together, and in particular the internal structure of the porous layer and the non-porous layer is clarified. It is possible to separate the functions of each layer individually and well.
  • the whole mold is heated to cure the rubber contained in each layer, or the resin is cured and reacted, and then the mold is demolded to produce the glove of the present invention, which is entirely made of a laminate.
  • the order and number of immersions may be set according to the layer configuration of the laminate described above.
  • a latex composition which becomes a basis of the porous layer which constitutes a layered product after preparing a latex composition containing an emulsion of rubber latex or resin as before, stirring the latex composition concerned, air, or air It is preferable to use one which is made by bubbling air or using both in combination.
  • the viscosity of the foamed latex composition is set to 150 mPa ⁇ s or more and 700 Pa ⁇ s or less. According to the present invention, by setting the viscosity of the foamed latex composition to 150 mPa ⁇ s or more, the stability of the air bubble can be secured. Therefore, the air bubble content of the porous layer can be increased even within the above range to further improve the heat insulation of the glove.
  • the viscosity is preferably 200 mPa ⁇ s or more, particularly preferably 360 mPa ⁇ s or more, and 600 mPa ⁇ s or less, particularly 450 mPa ⁇ s or less. preferable.
  • the viscosity of the foamed latex composition from which the porous layer is formed is represented by a value measured using a B (Brookfield) viscometer under an environment of 23 ⁇ 1 ° C. I assume.
  • the method of foaming the latex composition which becomes the basis of the porous layer for example, while blowing a fixed amount of air into the latex composition accommodated in a raw material tank provided with an air blowing port, the latex composition is The method of stirring and containing air bubbles, and the method of including air bubbles by gas-liquid interface contact etc. by stirring a latex composition at high speed etc. are mentioned.
  • the viscosity after foaming can be adjusted to be within the above-mentioned range by arbitrarily and individually setting the foaming conditions or the composition and viscosity of the latex composition before foaming or the like.
  • the latex composition prior to foaming containing rubber is prepared by blending various additives such as a vulcanizing agent with the rubber latex as in the prior art.
  • any of various natural rubbers and synthetic rubbers which can be latex-ized can be used.
  • rubbers for example, natural rubber, deproteinized natural rubber, acrylonitrile-butadiene rubber (NBR), One or more of styrene-butadiene rubber (SBR), chloroprene rubber (CR) and the like can be mentioned.
  • SBR styrene-butadiene rubber
  • CR chloroprene rubber
  • a vulcanizing agent for vulcanizing the rubber sulfur, organic sulfur-containing compounds and the like can be mentioned. Sulfur is particularly preferred.
  • the compounding ratio of the vulcanizing agent is preferably 0.5 parts by mass or more and 3 parts by mass or less per 100 parts by mass of the rubber component (solid content) in the rubber latex.
  • a vulcanization accelerator In a latex composition containing rubber and a vulcanizing agent, a vulcanization accelerator, a heat stabilizer, a vulcanization acceleration aid, an antiaging agent, a filler, a surfactant, a thickener, a foaming agent, a plasticizer And various additives such as coloring agents may be blended.
  • a vulcanization accelerator for example, PX (zinc-ethyl-N-phenyldithiocarbamate), PZ (zinc dimethyldithiocarbamate), EZ (zinc diethyldithiocarbamate), BZ (zinc dibutyldithiocarbamate), MZ (zinc)
  • PX zinc-ethyl-N-phenyldithiocarbamate
  • PZ zinc dimethyldithiocarbamate
  • EZ zinc diethyldithiocarbamate
  • BZ zinc dibutyldithiocarbamate
  • MZ zinc
  • One or more kinds of zinc salts of 2-mercaptobenzothiazole), TT (tetramethylthiuram disulfide) and the like can be mentioned.
  • the compounding ratio of the vulcanization accelerator is preferably 0.5 parts by mass or more and 3 parts by mass or less per 100 parts by mass of the rubber component in the rubber latex.
  • the vulcanization acceleration auxiliary include zinc flower (zinc oxide) and / or stearic acid.
  • the compounding ratio of the vulcanization accelerating auxiliary is preferably 0.5 parts by mass or more and 3 parts by mass or less per 100 parts by mass of the rubber component in the rubber latex.
  • non-staining phenols are preferably used as the antiaging agent, but amines may be used.
  • the blending ratio of the anti-aging agent is preferably 0.5 parts by mass or more and 3 parts by mass or less per 100 parts by mass of the rubber component in the rubber latex.
  • a filler 1 type (s) or 2 or more types, such as a kaolin clay, hard clay, a calcium carbonate, a titanium oxide, etc. are mentioned, for example.
  • the blending ratio of the filler is preferably 1 part by mass or more and 10 parts by mass or less per 100 parts by mass of the rubber component in the rubber latex.
  • the surfactant is blended to well disperse various additives in the rubber latex, and as the surfactant, for example, one or more species such as an anionic surfactant can be mentioned. .
  • the blending ratio of the surfactant is preferably 0.3 parts by mass or more and 1 part by mass or less per 100 parts by mass of the rubber component in the rubber latex.
  • the thickener is for raising the viscosity of the latex composition to aid foaming when foaming the latex composition, and as the thickener, for example, a water-soluble polymer such as polyacrylic acid Can be mentioned.
  • the thickener may be omitted, but in the case of blending, the blending ratio may be appropriately set according to the viscosity etc. after foaming required for the latex composition.
  • the latex composition before foaming which contains a resin
  • resin 1 type, or 2 or more types of thermosetting resin which can be emulsified, such as a urethane type resin and curable acrylic resin, is mentioned.
  • the latex composition containing a resin may further contain various additives such as a heat stabilizer, an antiaging agent, a filler, a surfactant, a thickener, a foaming agent, a plasticizer, a colorant and the like.
  • the blending ratio of the antioxidant is preferably 0.5 parts by mass or more and 3 parts by mass or less per 100 parts by mass of the resin component (solid content) in the resin emulsion.
  • the filler include one or more of the above-described fillers.
  • the blending ratio of the filler is preferably 1 part by mass or more and 10 parts by mass or less per 100 parts by mass of the resin component in the resin emulsion.
  • the blending ratio of the surfactant is preferably 0.3 parts by mass or more and 1 part by mass or less per 100 parts by mass of the resin component in the resin emulsion.
  • the thickening agent various thickening agents having a function of assisting foaming of the latex composition, such as a water-soluble polymer, can be used.
  • the thickener may be omitted, but in the case of blending, the blending ratio may be appropriately set according to the viscosity etc. after foaming required for the latex composition.
  • a crosslinking agent, a curing agent and the like for causing a curing reaction of a urethane resin and the like may be blended in an appropriate ratio.
  • a latex composition which becomes a basis of the non-porous layer which comprises a laminated body with a porous layer the usual latex composition which contains each component demonstrated previously and is not made to foam can be used.
  • the rubber or resin forming the porous layer and the non-porous layer it is preferable to use rubber or resin of the same type or having compatibility with each other in order to enhance the adhesion between both layers.
  • the respective layers are dipped It is possible to change the immersion conditions at the time of formation, to change the viscosity of the foamed latex composition that forms the basis of the porous layer as described above, or to form the basis of the non-porous layer.
  • the viscosity of the unfoamed latex composition may be changed. Generally, the higher the viscosity of the latex composition, the larger the thickness of the non-foamed layer and the foamed layer.
  • the non-porous layer may be replaced by a dipping method to prepare a coating solution containing rubber or resin that is the basis of the non-porous layer, and the coating solution may be prepared by using any coating method such as a spray method. After coating on the surface, it may be heated and dried, and may be formed by curing the rubber or curing the resin.
  • Example 1 Preparation of Latex Composition A for Nonporous Layer
  • Each component shown in Table 1 below is blended with natural rubber latex and aged for 2 days, soft water is added to adjust the solid content concentration, and non-foamed latex composition A for non-porous layer was prepared.
  • surface was made into the mass part per 100 mass parts of rubber components (solid content) in natural rubber latex.
  • Latex Composition B for Porous Layer Each component shown in Table 1 was compounded in natural rubber latex and aged for 2 days, and then a polyacrylic acid-based thickener was added. Next, this mixture is accommodated in a container equipped with a disk turbine type stirring blade, and after blowing in a fixed amount of air, it is made to foam by stirring using a disk turbine type stirring blade, and latex for porous layer Composition B was prepared. It was 420 mPa * s when the viscosity of the latex composition B was measured using a Brookfield viscometer under 23 +/- 1 degreeC environment as demonstrated previously.
  • the mold is immersed in a latex composition B for a porous layer maintained at a liquid temperature of 25 ° C. at a constant speed, held for 5 seconds, and then pulled up at a constant speed to form a latex composition on the surface of the mold. B was allowed to adhere. Then, the pulled mold is placed in an oven heated to 100 ° C. and dried for 50 minutes while being dried to crosslink the natural rubber, then taken out from the oven and cooled, and then demolded to obtain a porous layer and non-porous layer. A glove consisting of a two-layer laminated body of a texture layer was produced.
  • Examples 2 to 4 and Comparative Examples 1 to 6 While adjusting the foaming condition etc. of the latex composition B, and making the viscosity into the values shown in Tables 2 and 3, the conditions of immersion of the mold in the latex compositions A and B, drying, vulcanization conditions etc. A glove was manufactured in the same manner as in Example 1 except that the adjustment was made.
  • the test piece was cut out from the glove manufactured by each Example and the comparative example, and the microscope picture of the cross section was image
  • the test piece of a predetermined area was cut out from the glove manufactured by each example and a comparative example, and the microscope picture of the section was taken using the digital microscope. And the thickness of the porous layer and the non-porous layer was measured from the photomicrograph taken, and the volume of the porous layer and the non-porous layer was determined from the thickness and the area of the test piece. The mass of the non-porous layer was determined from the volume of the non-porous layer and the true specific gravity of the material forming the non-porous layer.
  • the mass of the test piece was measured using an electronic balance, and the mass of the non-porous layer determined above was subtracted from the mass to determine the mass of the porous layer.
  • the apparent specific gravity of the porous layer was calculated from the volume and the mass, and the bubble content (%) of the porous layer was calculated from the apparent specific gravity and the true specific gravity of the material forming the porous layer. .
  • ⁇ Sensory test> After 10 subjects were asked to wear the gloves cleaned in each example and comparative example and wash the 100 ml beaker with warm water at 50 ° C for 1 minute, the gloves were thermally insulating and flexible Sex and workability were evaluated in the following three stages. And at the stage with the largest number of people, the evaluation of the thermal insulation, flexibility and workability of the gloves was made.
  • the ratio of the thickness of the porous layer is 50% or more, and the viscosity of the foamed latex composition that is the basis of the porous layer is 150 mPa ⁇ s or more and 700 mPa ⁇ s or less. It has also been found that it is preferable to further improve the heat insulation, flexibility and workability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Gloves (AREA)

Abstract

 高い柔軟性、良好な作業性、ならびに高い断熱性を兼ね備えた新規な手袋と、その製造方法とを提供する。 手袋は、ゴムまたは樹脂からなる少なくとも1層ずつの多孔質層と非多孔質層との積層体によって一体に形成するとともに、積層体の総厚みを0.4mm以上、0.6mm以下、多孔質層の厚みの、総厚み中に占める割合を30%以上、60%以下で、かつ多孔質層の気泡含有率を20%以上、60%以下とした。製造方法は、多孔質層を、粘度150mPa・s以上、700mPa・s以下の起泡させたラテックス組成物を用いて、浸漬法によって形成する。

Description

手袋およびその製造方法
 本発明は、ゴムまたは樹脂からなる少なくとも1層ずつの多孔質層と非多孔質層とを備えた、積層構造を有する手袋と、その製造方法に関するものである。
 一般家庭や工場、あるいは医療現場といった様々な場面において人の手肌を保護したり、食中毒や感染症等を防止したり、あるいは取り扱う対象物(半導体や精密機器等)を手肌の皮脂等から保護したりするために、特に全体がゴムまたは樹脂の皮膜によって一体に形成された手袋が広く用いられる。
 この種の手袋は、いわゆる浸漬法によって製造するのが一般的である。
 例えば全体がゴムの皮膜によって一体に形成された手袋を製造する場合は、まずゴムのラテックスに加硫剤等の各種添加剤を配合して未加硫もしくは前加硫状態の、液状のラテックス組成物を調製する。また、手袋の立体形状に対応した例えば陶器製の型を用意し、その表面を凝固剤(主に硫酸カルシウム水溶液)で処理する。
 次いで、ラテックス組成物中に型を一定時間に亘って浸漬したのち引き上げることで、当該型の表面にラテックス組成物を付着させる。
 そして引き上げた型ごと加熱してラテックス組成物を乾燥させるとともにゴムを加硫させるか、あるいは一旦乾燥させた後に型ごと加熱してゴムを加硫させたのち脱型させることにより、全体がゴムの皮膜によって一体に形成された手袋が製造される。
 また、全体が樹脂の皮膜によって一体に形成された手袋は、ゴムのラテックスを含むラテックス組成物に代えて、樹脂のエマルションに各種添加剤を配合して調製したラテックス組成物(厳密にはラテックスではないが、便宜上、ゴムのラテックスを含むものに合わせてこのように記載する)を用いること以外は前記と同様にして製造することができる。
 手袋には、作業性に優れることが求められる。薄肉で柔軟性に優れ、指先の細かい作業等にも適すること、すなわち作業性に優れることは、ゴムや樹脂の皮膜からなる手袋の重要な性能であるといえる。
 また手袋には、断熱性に優れることが求められる場合がある。しかし柔軟性、作業性と、断熱性とは相反する特性であって、断熱性を高めるために皮膜の厚みを増加させるほど、柔軟性が低下したり指先の感覚が鈍ったりして作業性が低下するという問題がある。
 こうした問題を解決するための1つの手段として、手袋を、ゴムまたは樹脂からなり、層中に多数の気泡セルを内包する多孔質構造に形成することが考えられる。
 多孔質構造を有する層、すなわち多孔質層は、例えば特許文献1等に記載されているように、ゴムまたは樹脂を含むラテックス組成物を攪拌したり空気を吹き込んだりして起泡させ、当該起泡させたラテックス組成物を、通常の起泡させていないラテックス組成物に代えて浸漬法を用いることによって形成できる。
 多孔質層は、ゴムまたは樹脂からなるものの、気泡セルを内包しない非多孔質層に比べて、断熱性、柔軟性に優れている。
 ただし多孔質層は強度が低いため、単独で手袋を形成するのではなく、例えば特許文献1に記載の繊維製手袋基体等の、手袋の強度を維持するための層(支持体層)と積層した積層構造とするのが一般的である。
特開2011-1662号公報
 しかし、こうした積層構造を有する従来の手袋では、特に支持体層の厚みが大きいために柔軟性が低下して、良好な作業性を確保することが困難であった。
 本発明は、高い柔軟性、良好な作業性、ならびに高い断熱性を兼ね備えた新規な手袋と、その製造方法とを提供することにある。
 前記課題を解決するため、発明者は、ゴムまたは樹脂からなる多孔質層を、同様にゴムまたは樹脂からなり、浸漬法等によって形成される、気泡セルを内包しない薄い非多孔質層と積層して、非多孔質層を、強度を維持するための支持体層として機能させることを検討した。
 その結果、多孔質層と非多孔質層との積層体の総厚みの範囲、多孔質層の厚みの、総厚み中に占める割合、ならびに多孔質層の気泡含有率が、それぞれ高い柔軟性、良好な作業性、ならびに高い断熱性を同時に達成するための重要な要素であることが判明した。
 そこで、これらの範囲についてさらに検討した結果、積層体の総厚みを0.4mm以上、0.6mm以下、多孔質層の厚みの、総厚み中に占める割合を30%以上、60%以下、多孔質層の気泡含有率を20%以上、60%以下とすれば、高い柔軟性、良好な作業性、ならびに高い断熱性を兼ね備えた新規な手袋が得られることを見出し、本発明を完成するに至った。
 すなわち本発明は、ゴムまたは樹脂からなる少なくとも1層ずつの多孔質層と非多孔質層との積層体からなる手袋であって、積層体の総厚みは0.4mm以上、0.6mm以下で、かつ多孔質層の厚みの、総厚み中に占める割合は30%以上、60%以下であるとともに、多孔質層の気泡含有率は20%以上、60%以下であることを特徴とするものである。
 なお柔軟性、作業性、および断熱性をより一層向上することを考慮すると、多孔質層の厚みの、積層体の総厚みに占める割合は、前記範囲内でも50%以上であるのが好ましい。
 また、本発明は、手袋を製造するための製造方法であって、多孔質層を、粘度150mPa・s以上、700mPa・s以下の起泡させたラテックス組成物を用いて、浸漬法によって形成することを特徴とするものである。
 本発明によれば、起泡させたラテックス組成物の粘度を150mPa・s以上とすることにより、気泡の安定性を確保することができる。そのため、多孔質層の気泡含有率を、前記範囲内でも高くして、手袋の断熱性をより一層向上することが可能となる。
 一方、粘度を700mPa・s以下とすることにより、起泡させたラテックス組成物の良好な流動性を確保することができる。そのため、多孔質層の気泡含有率を前記範囲内に維持しながら、多孔質層と非多孔質層との積層体の総厚みを、前記範囲内でも小さくして、作業性をより一層向上することが可能となる。
 本発明によれば、高い柔軟性、良好な作業性、ならびに高い断熱性を兼ね備えた新規な手袋と、その製造方法とを提供することができる。
 本発明の手袋は、全体が、ゴムまたは樹脂からなる少なくとも1層ずつの多孔質層と非多孔質層との積層体によって形成されたものである。積層体の具体的な層構成は、少なくとも1層ずつの多孔質層と非多孔質層とを含む以外は特に限定されず、任意に構成することができる。
 例えば積層体は、多孔質層と非多孔質層とを1層ずつ積層した2層構造や、多孔質層、および非多孔質層のうちの少なくとも一方を2層以上含む3層以上の多層構造とすることができる。多孔質層と非多孔質層の積層順序等も任意に設定できる。例えば2層構造の積層体の場合、多孔質層は、手袋の内側でも外側でもよい。
 かかる積層体からなる本発明の手袋は、当該積層体の総厚みが0.4mm以上、0.6mm以下で、かつ多孔質層の厚みの、総厚み中に占める割合が30%以上、60%以下であるとともに、多孔質層の気泡含有率が20%以上、60%以下である必要がある。
 このうち積層体の総厚みが0.4mm以上、0.6mm以下に限定されるのは、下記の理由による。
 すなわち総厚みが前記範囲未満では積層体が薄すぎるため、当該積層体からなる手袋に十分な強度を付与するためには、多孔質層の厚みや気泡含有率を下げざるを得ない。そのため手袋の断熱性が低下するとともに、それにともなって特に高温時の作業性が低下する。一方、総厚みが前記範囲を超える場合には逆に積層体が厚すぎて、当該積層体からなる手袋の柔軟性と作業性が低下する。
 これに対し、積層体の総厚みを前記範囲内とすることで、当該積層体からなる手袋に十分な強度と高い断熱性とを付与しながら、なおかつ高い柔軟性と良好な作業性とを付与することができる。
 また、総厚み中に占める多孔質層の厚みの割合が30%以上に限定されるのは、前記範囲未満では、当該多孔質層を設けることによる先に説明した効果が得られず、手袋の断熱性、作業性が低下するためである。
 これに対し、総厚み中に占める多孔質層の厚みの割合を前記範囲内とすることで、手袋に高い柔軟性、良好な作業性、ならびに高い断熱性を付与することができる。特に前記割合を、前記範囲内でも50%以上とすることにより、手袋の断熱性、柔軟性、ならびに作業性をより一層向上することができる。
 ただし、総厚み中に占める多孔質層の厚みの割合が高すぎる場合には、相対的に非多孔質層の厚みが小さくなりすぎて、当該非多孔質層の、支持体層としての機能が十分に得られないため、手袋に十分な強度を付与できない。また手袋の柔軟性、作業性が低下する。そのため、総厚み中に占める多孔質層の厚みの割合は、前記範囲内でも60%以下に限定される。
 多孔質層の厚みは、積層体が多孔質層を1層のみ含む場合は、当該1層の多孔質層の厚みであり、積層体が2層以上の多孔質層を含む場合は、当該2層以上の多孔質層の、合計の厚みである。
 多孔質層の気泡含有率が20%以上に限定されるのは、前記範囲未満では、多孔質層それ自体の断熱性、柔軟性が不足するため、当該多孔質層による先に説明した効果が得られず、手袋の断熱性、作業性が低下するためである。
 これに対し、多孔質層の気泡含有率を前記範囲内とすることで、手袋に高い柔軟性、良好な作業性、ならびに高い断熱性を付与することができる。積層体が2層以上の多孔質層を含む場合は、全ての多孔質層の気泡含有率が、前記範囲内でなければならない。
 ただし気泡含有率が高すぎる場合には、多孔質層中に含まれる気泡セルが外力等によって潰れやすくなり、多孔質層を安定的に維持することが難しくなるため、却って手袋の断熱性、作業性が低下する。そのため気泡含有率は、前記範囲内でも60%以下に限定される。
 なお本発明では、積層体の総厚み、および総厚み中に占める多孔質層の厚みの割合、および多孔質層の気泡含有率を、それぞれ下記の方法で測定した値でもって表すこととする。測定は、いずれも23±1℃の環境下で実施するものとする。
 〈厚み〉
 多孔質膜を含む手袋から試験片を切り取り、デジタルマイクロスコープを用いて断面の顕微鏡写真を撮影する。そして撮影した顕微鏡写真から多孔質層、および非多孔質層の厚みを測定し、その結果から、多孔質層と非多孔質層の厚みの合計を、手袋を形成する積層体の総厚み(mm)として求める。また総厚みと多孔質層の厚みとから、当該多孔質層の厚みの、総厚み中に占める割合(%)を求める。
 〈気泡含有率〉
 多孔質膜を含む手袋から所定の面積の試験片を切り取り、デジタルマイクロスコープを用いて断面の顕微鏡写真を撮影する。そして撮影した顕微鏡写真から多孔質層、および非多孔質層の厚みを測定し、厚みと試験片の面積とから、多孔質層、および非多孔質層の体積を求める。また非多孔質層の体積と、当該非多孔質層を形成する材料の真比重とから非多孔質層の質量を求める。
 次に、電子天秤を用いて試験片の質量を測定し、質量から、先に求めた非多孔質層の質量を差し引いて、多孔質層の質量を求める。そして体積と質量とから、多孔質層の見かけの比重を算出し、当該見かけの比重と、多孔質層を形成する材料の真比重とから、多孔質層の気泡含有率(%)を算出する。
 本発明の手袋は、従来同様に浸漬法によって形成するのが好ましい。
 具体的には、例えば手袋の立体形状に対応した型を用意し、型の表面を通常通り凝固剤で処理したのち、非多孔質層、および多孔質層のもとになるそれぞれのラテックス組成物中に順次、一定時間に亘って浸漬したのち引き上げる操作を繰り返すことで、各々のラテックス組成物を、型の表面に、積層状態で付着させる。
 この際、1回の浸漬ごとに、付着させたラテックス組成物を乾燥させるのが好ましい。これにより、各層間の良好な密着性、一体性を維持しながら、それぞれの層を構成するラテックス組成物が混ざり合うのを防止して、特に多孔質層と非多孔質層の内部構造を明確に分離させることができ、それぞれの層の機能を個別、かつ良好に発現させることができる。
 次いで、型ごと加熱して各層中に含まれるゴムを加硫、もしくは樹脂を硬化反応させたのち脱型させることによって、全体が積層体からなる本発明の手袋を製造することができる。
 浸漬の順序、および回数は、先に説明した積層体の層構成に応じて設定すればよい。
 積層体を構成する多孔質層のもとになるラテックス組成物としては、従来同様にゴムのラテックスもしくは樹脂のエマルションを含むラテックス組成物を調製したのち、当該ラテックス組成物をかく拌したり、空気を吹き込んだり、あるいはこの両方を併用したりして起泡させたものを用いるのが好ましい。
 本発明の手袋の製造方法においては、起泡させたラテックス組成物の粘度を150mPa・s以上、700Pa・s以下とする。
 本発明によれば、起泡させたラテックス組成物の粘度を150mPa・s以上とすることにより、気泡の安定性を確保することができる。そのため、多孔質層の気泡含有率を、前記範囲内でも高くして、手袋の断熱性をより一層向上することが可能となる。
 一方、粘度を700mPa・s以下とすることにより、起泡させたラテックス組成物の良好な流動性を確保することができる。そのため、多孔質層の気泡含有率を前記範囲内に維持しながら、多孔質層と非多孔質層との積層体の総厚みを、前記範囲内でも小さくして、作業性をより一層向上することが可能となる。
 なおこれらの効果をさらに向上することを考慮すると、粘度は、前記範囲内でも200mPa・s以上、特に360mPa・s以上であるのが好ましく、600mPa・s以下、特に450mPa・s以下であるのが好ましい。
 なお本発明では、多孔質層のもとになる起泡させたラテックス組成物の粘度を、23±1℃の環境下、B(ブルックフィールド)型粘度計を用いて測定した値でもって表すこととする。
 多孔質層のもとになるラテックス組成物を起泡させる方法の具体例としては、例えばエア吹き込み口を設置した原料タンクに収容したラテックス組成物に一定量のエアを吹き込みながら、ラテックス組成物を攪拌して気泡を含ませる方法や、ラテックス組成物を高速で攪拌することで、気液界面接触によって気泡を含ませる方法等が挙げられる。
 起泡の条件や、あるいは起泡前のラテックス組成物の組成や粘度等を任意に、かつ個別に設定することで、起泡後の粘度を、前記範囲内となるように調整することができる。
 ゴムを含む起泡前のラテックス組成物は、従来同様に、ゴムのラテックスに加硫剤等の各種添加剤を配合して調製される。
 ゴムとしては天然ゴム、および合成ゴムの中からラテックス化が可能な種々のゴムがいずれも使用可能であり、かかるゴムとしては、例えば天然ゴム、脱蛋白天然ゴム、アクリロニトリル-ブタジエンゴム(NBR)、スチレン-ブタジエンゴム(SBR)、クロロプレンゴム(CR)等の1種または2種以上が挙げられる。
 ゴムを加硫させる加硫剤としては硫黄や有機含硫黄化合物等が挙げられる。特に硫黄が好ましい。加硫剤の配合割合は、ゴムラテックス中のゴム分(固形分)100質量部あたり0.5質量部以上、3質量部以下であるのが好ましい。
 ゴムおよび加硫剤を含むラテックス組成物中には、さらに加硫促進剤、熱安定剤、加硫促進助剤、老化防止剤、充填剤、界面活性剤、増粘剤、発泡剤、可塑剤、着色剤等の各種添加剤を配合してもよい。
 このうち加硫促進剤としては、例えばPX(N-エチル-N-フェニルジチオカルバミン酸亜鉛)、PZ(ジメチルジチオカルバミン酸亜鉛)、EZ(ジエチルジチオカルバミン酸亜鉛)、BZ(ジブチルジチオカルバミン酸亜鉛)、MZ(2-メルカプトベンゾチアゾールの亜鉛塩)、TT(テトラメチルチウラムジスルフィド)等の1種または2種以上が挙げられる。
 加硫促進剤の配合割合は、ゴムラテックス中のゴム分100質量部あたり0.5質量部以上、3質量部以下であるのが好ましい。
 加硫促進助剤としては、例えば亜鉛華(酸化亜鉛)、および/またはステアリン酸等が挙げられる。加硫促進助剤の配合割合は、ゴムラテックス中のゴム分100質量部あたり0.5質量部以上、3質量部以下であるのが好ましい。
 老化防止剤としては、一般に非汚染性のフェノール類が好適に用いられるが、アミン類を使用してもよい。老化防止剤の配合割合は、ゴムラテックス中のゴム分100質量部あたり0.5質量部以上、3質量部以下であるのが好ましい。
 充填剤としては、例えばカオリンクレー、ハードクレー、炭酸カルシウム、酸化チタン等の1種または2種以上が挙げられる。充填剤の配合割合は、ゴムラテックス中のゴム分100質量部あたり1質量部以上、10質量部以下であるのが好ましい。
 界面活性剤は、各種添加剤をゴムラテックス中に良好に分散させるために配合されるものであり、界面活性剤としては、例えば陰イオン系界面活性剤等の1種または2種以上が挙げられる。界面活性剤の配合割合は、ゴムラテックス中のゴム分100質量部あたり0.3質量部以上、1質量部以下であるのが好ましい。
 増粘剤は、ラテックス組成物を起泡させる際に、当該ラテックス組成物の粘性を高めて起泡を助けるためのものであり、増粘剤としては、例えばポリアクリル酸等の水溶性高分子が挙げられる。増粘剤は省略してもよいが、配合する場合は、ラテックス組成物に求められる起泡後の粘度等に応じて、その配合割合を適宜設定すればよい。
 また樹脂を含む、起泡前のラテックス組成物は、従来同様に、樹脂のエマルションに各種添加剤を配合して調製される。
 樹脂としては、ウレタン系樹脂、硬化性アクリル系樹脂等の、エマルション化が可能な熱硬化性樹脂の1種または2種以上が挙げられる。
 樹脂を含むラテックス組成物中には、さらに熱安定剤、老化防止剤、充填剤、界面活性剤、増粘剤、発泡剤、可塑剤、着色剤等の各種添加剤を配合してもよい。
 このうち老化防止剤としては、先に例示した非汚染性のフェノール類やアミン類等の1種または2種以上が挙げられる。老化防止剤の配合割合は、樹脂エマルション中の樹脂分(固形分)100質量部あたり0.5質量部以上、3質量部以下であるのが好ましい。
 充填剤としては、前記例示した充填剤の1種または2種以上が挙げられる。充填剤の配合割合は、樹脂エマルション中の樹脂分100質量部あたり1質量部以上、10質量部以下であるのが好ましい。
 界面活性剤としては、前記例示した陰イオン系界面活性剤等の1種または2種以上が挙げられる。界面活性剤の配合割合は、樹脂エマルション中の樹脂分100質量部あたり0.3質量部以上、1質量部以下であるのが好ましい。
 増粘剤としては、水溶性高分子等の、ラテックス組成物の起泡を助ける機能を有する種々の増粘剤が使用可能である。増粘剤は省略しても良いが、配合する場合は、ラテックス組成物に求められる起泡後の粘度等に応じて、その配合割合を適宜設定すればよい。
 またラテックス組成物には、ウレタン系樹脂等を硬化反応させるための架橋剤、硬化剤等を、適宜の割合で配合してもよい。
 多孔質層とともに積層体を構成する非多孔質層のもとになるラテックス組成物としては、先に説明した各成分を含み、かつ起泡させていない通常のラテックス組成物を用いることができる。
 多孔質層、および非多孔質層を形成するゴムまたは樹脂としては、両層間での密着性を高めるために、同種の、あるいは互いに相溶性を有するゴムまたは樹脂を使用するのが好ましい。
 多孔質層と非多孔質層との積層体の総厚み、および当該総厚み中に占める多孔質層の厚みの割合を先に規定した範囲内とするためには、それぞれの層を浸漬法によって形成する際の浸漬条件を変更したり、先に説明したように多孔質層のもとになる起泡させたラテックス組成物の粘度を変更したり、あるいは非多孔質層のもとになる起泡させていないラテックス組成物の粘度を変更したりすればよい。一般的には、ラテックス組成物の粘度を高くするほど、非発泡層、発泡層の厚みが大きくなる傾向がある。
 なお非多孔質層は、浸漬法に代えて、当該非多孔質層のもとになるゴムや樹脂を含む塗布液を調製し、塗布液を、例えばスプレー法等の任意の塗布法によって型の表面に塗布したのち加熱して乾燥させるとともにゴムを加硫、もしくは樹脂を硬化反応させて形成してもよい。
 〈実施例1〉
 (非多孔質層用のラテックス組成物Aの調製)
 天然ゴムラテックスに、下記表1に示す各成分を配合して2日間熟成させた後、軟水を加えて固形分濃度を調整して、非多孔質層用の起泡させていないラテックス組成物Aを調製した。なお表中の各成分の質量部は、天然ゴムラテックス中のゴム分(固形分)100質量部あたりの質量部とした。
Figure JPOXMLDOC01-appb-T000001
 (多孔質層用のラテックス組成物Bの調製)
 天然ゴムラテックスに、表1に示す各成分を配合して2日間熟成させた後、ポリアクリル酸系増粘剤を加えた。次いでこの混合物を、ディスクタービン型攪拌翼を備えた容器に収容して一定量の空気を吹き込んだ後、ディスクタービン型攪拌翼を用いて攪拌することで起泡させて、多孔質層用のラテックス組成物Bを調製した。
 ラテックス組成物Bの粘度を、先に説明したように23±1℃の環境下、B型粘度計を用いて測定したところ420mPa・sであった。
 (手袋の製造)
 型としては、陶器製で手袋の立体形状に対応したものを用意した。
 型を、まず20%硝酸カルシウム水溶液に浸漬し、引き上げたのち乾燥させることで、型の表面を凝固剤としての硝酸カルシウムによって処理した。
 次に型を、液温を25℃に保持した非多孔質層用のラテックス組成物Aに一定の速度で浸漬し、10秒間保持したのち一定の速度で引き上げることで、型の表面にラテックス組成物Aを付着させて90℃で1分間乾燥させた。
 次に型を、液温を25℃に保持した多孔質層用のラテックス組成物Bに一定の速度で浸漬し、5秒間保持したのち一定の速度で引き上げることで、型の表面にラテックス組成物Bを付着させた。
 そして引き上げた型を、100℃に加熱したオーブン中に入れて50分間加熱して乾燥させるとともに天然ゴムを架橋させ、次いでオーブンから取り出して冷却させたのち脱型して、多孔質層と非多孔質層の2層構造の積層体からなる手袋を製造した。
 〈実施例2~4、比較例1~6〉
 ラテックス組成物Bの起泡条件等を調整して、その粘度を、表2、3に示す値とするとともに、ラテックス組成物A、Bへの型の浸漬条件、乾燥、加硫条件等をそれぞれ調整したこと以外は実施例1と同様にして、手袋を製造した。
 〈厚み測定〉
 各実施例、比較例で製造した手袋から試験片を切り取り、デジタルマイクロスコープを用いて断面の顕微鏡写真を撮影した。そして撮影した顕微鏡写真から多孔質層、および非多孔質層の厚みを測定し、その結果から、多孔質層と非多孔質層の厚みの合計を、手袋を形成する積層体の総厚み(mm)として求めた。また総厚みと多孔質層の厚みとから、当該多孔質層の厚みの、総厚み中に占める割合(%)を求めた。
 〈多孔質層の気泡含有率測定〉
 各実施例、比較例で製造した手袋から所定の面積の試験片を切り取り、デジタルマイクロスコープを用いて断面の顕微鏡写真を撮影した。そして撮影した顕微鏡写真から多孔質層、および非多孔質層の厚みを測定し、厚みと試験片の面積とから、多孔質層、および非多孔質層の体積を求めた。また非多孔質層の体積と、当該非多孔質層を形成する材料の真比重とから非多孔質層の質量を求めた。
 次に、電子天秤を用いて試験片の質量を測定し、質量から、先に求めた非多孔質層の質量を差し引いて、多孔質層の質量を求めた。そして体積と質量とから、多孔質層の見かけの比重を算出し、当該見かけの比重と、多孔質層を形成する材料の真比重とから、多孔質層の気泡含有率(%)を算出した。
 〈官能試験〉
 10名の被験者に、各実施例、比較例で清掃した手袋を装着して、50℃の温水を使って100mlビーカーを洗浄する作業を1分間実施してもらった後、手袋の断熱性、柔軟性、および作業性を、それぞれ下記の3段階で評価してもらった。そして最も人数の多かった段階でもって、その手袋の断熱性、柔軟性、および作業性の評価とした。
 (断熱性)
 A:1分間の作業中、温水が熱いと感じることはなかった。断熱性良好。
 B:作業開始から30秒までは、温水が厚いと感じなかった。断熱性通常。
 C:作業開始からすぐに、温水が熱いと感じた。断熱性不良。
 (柔軟性)
 A:非常に軟らかいと感じた。
 B:比較的軟らかいと感じた。
 C:軟らかいとは感じなかった。
 (作業性)
 A:非常に作業しやすく、1分間で10個以上のビーカーを洗浄することができた。
 B:比較的作用がしやすく、1分間で5個以上、9個以下のビーカーを洗浄することができた。
 C:作業し難く、1分間で4個以下のビーカーしか洗浄できなかった。
 以上の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2、表3の比較例1、2の結果より、手袋を形成する積層体の総厚みが0.4mm未満では、断熱性と作業性が低下し、総厚みが0.6mmを超える場合には、柔軟性と作業性が低下することが判った。
 また比較例3、4の結果より、多孔質層の厚みの、総厚み中に占める割合が30%未満では、断熱性と作業性が低下し、割合が60%を超える場合には、柔軟性と作業性が低下することが判った。
 さらに比較例5、6の結果より、多孔質層の気泡含有率が20%未満では、断熱性と作業性が低下し、気泡含有率が60%を超える場合には、やはり柔軟性と作業性が低下することが判った。
 これに対し、表2の実施例1~4の結果より、手袋を形成する積層体の総厚みを0.4mm以上、0.6mm以下、多孔質層の厚みの、総厚み中に占める割合を30%以上、60%以下、そして多孔質層の気泡含有率を20%以上、60%以下とすることにより、断熱性、柔軟性、および作業性に優れた手袋が得られることが判った。
 また、特に多孔質層の厚みの割合を50%以上としたり、多孔質層のもとになる起泡させたラテックス組成物の粘度を150mPa・s以上、700mPa・s以下としたりするのが、断熱性、柔軟性、および作業性をより一層向上する上で好ましいことも判った。

Claims (3)

  1.  ゴムまたは樹脂からなる少なくとも1層ずつの多孔質層と非多孔質層との積層体からなる手袋であって、積層体の総厚みは0.4mm以上、0.6mm以下で、かつ多孔質層の厚みの、総厚み中に占める割合は30%以上、60%以下であるとともに、多孔質層の気泡含有率は20%以上、60%以下であることを特徴とする手袋。
  2.  多孔質層の厚みの、総厚みに占める割合は50%以上である請求項1に記載の手袋。
  3.  請求項1または2に記載の手袋を製造するための製造方法であって、多孔質層を、粘度150mPa・s以上、700mPa・s以下の起泡させたラテックス組成物を用いて、浸漬法によって形成することを特徴とする手袋の製造方法。
PCT/JP2012/080726 2012-02-02 2012-11-28 手袋およびその製造方法 WO2013114714A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012020983 2012-02-02
JP2012-020983 2012-02-02
JP2012156615A JP5490190B2 (ja) 2012-02-02 2012-07-12 手袋およびその製造方法
JP2012-156615 2012-07-12

Publications (1)

Publication Number Publication Date
WO2013114714A1 true WO2013114714A1 (ja) 2013-08-08

Family

ID=48904776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080726 WO2013114714A1 (ja) 2012-02-02 2012-11-28 手袋およびその製造方法

Country Status (2)

Country Link
JP (1) JP5490190B2 (ja)
WO (1) WO2013114714A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7217114B2 (ja) * 2018-09-21 2023-02-02 住友理工株式会社 ゴム成形体の製造方法
JP2021155509A (ja) * 2020-03-25 2021-10-07 住友理工株式会社 ゴム成形体およびその製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1072712A (ja) * 1996-08-26 1998-03-17 Sumitomo Rubber Ind Ltd 手 袋
JP2010138499A (ja) * 2008-12-09 2010-06-24 Showa Glove Kk 滑り止め手袋及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3021450B1 (ja) * 1999-05-14 2000-03-15 東京電力株式会社 耐電性手袋

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1072712A (ja) * 1996-08-26 1998-03-17 Sumitomo Rubber Ind Ltd 手 袋
JP2010138499A (ja) * 2008-12-09 2010-06-24 Showa Glove Kk 滑り止め手袋及びその製造方法

Also Published As

Publication number Publication date
JP5490190B2 (ja) 2014-05-14
JP2013177717A (ja) 2013-09-09

Similar Documents

Publication Publication Date Title
AU2007232440B2 (en) Polyisoprene condoms
US20150128329A1 (en) Polymeric compositions comprising polyisoprene
CN101243129A (zh) 胶乳促进剂组合物
JP2005519144A (ja) ポリイソプレンコンドーム
JP2015094038A (ja) 手袋の製造方法
US20130095257A1 (en) Surfactant composition, coating solution containing the surfactant composition, and rubber article treated by the coating solution
CN111253639A (zh) 一种环保热敏性丁腈防护手套的制备方法
CA3161886A1 (en) Polymer compositions and products formed therewith
CN112048917A (zh) 一种有衬里的双层丁基防化手套的制备方法
JP6021198B2 (ja) ゴム手袋の製造方法
JP5490190B2 (ja) 手袋およびその製造方法
JPH1161527A (ja) 着脱性に優れたゴム製手袋及びその製造方法
JP5323968B2 (ja) 手袋
JP2014169517A (ja) ゴム手袋の製造方法
JP5481529B2 (ja) 手袋の製造方法
WO2016099307A1 (en) A latex composition for the manufacture of insulation gloves which withstand voltage of 40 v
CN112280130A (zh) 用聚异戊二烯胶乳制备胶乳膜制品的方法
JP2003138413A (ja) 手袋の製造方法
JP2015028224A (ja) 透明ゴムコート手袋とその製造方法
JP2005120549A (ja) ゴム手袋の製造方法
JP2016148122A (ja) 手袋の製造方法
JP2013087374A (ja) 手袋
JP2005162901A (ja) フォームラバー
KR20060134158A (ko) 무분말 고무 장갑의 온―라인 제조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867299

Country of ref document: EP

Kind code of ref document: A1