WO2013114515A1 - ズームレンズ系、撮像装置及びカメラ - Google Patents

ズームレンズ系、撮像装置及びカメラ Download PDF

Info

Publication number
WO2013114515A1
WO2013114515A1 PCT/JP2012/008416 JP2012008416W WO2013114515A1 WO 2013114515 A1 WO2013114515 A1 WO 2013114515A1 JP 2012008416 W JP2012008416 W JP 2012008416W WO 2013114515 A1 WO2013114515 A1 WO 2013114515A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
lens
image
telephoto end
lens element
Prior art date
Application number
PCT/JP2012/008416
Other languages
English (en)
French (fr)
Inventor
祐亮 米谷
善昭 栗岡
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201280068571.8A priority Critical patent/CN104204895A/zh
Publication of WO2013114515A1 publication Critical patent/WO2013114515A1/ja
Priority to US14/447,631 priority patent/US20140340545A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145121Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-+-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/142Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/146Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
    • G02B15/1461Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being positive

Definitions

  • the present disclosure relates to a zoom lens system, an imaging device, and a camera.
  • Patent Documents 1, 2 and 5 disclose a zoom lens having a five-group configuration of positive, negative, positive and positive and a zoom ratio of 20 to 30 times and a high magnification.
  • Patent Documents 3 and 4 disclose positive and negative 3 A zoom lens having one lens group and a subsequent lens group including one or more lens groups and a zoom ratio of 20 to 30 times and a high magnification is disclosed.
  • JP 2011-123337 A JP2011-075985A JP 2011-033868 A JP 2010-276655 A JP 2009-282398 A
  • the present disclosure can be sufficiently adapted to wide-angle photography with a field angle of 80 ° or more at a wide-angle end while being small, and has a large zoom ratio of 24 times or more.
  • a bright zoom lens system having an F-number of about 2.8 from the wide-angle end to the telephoto end is provided.
  • the present disclosure also provides an imaging apparatus including the zoom lens system and a compact camera including the imaging apparatus.
  • the zoom lens system in the present disclosure is: From the object side to the image side, A first lens group having positive power; A second lens group having negative power; A third lens group having positive power; A fourth lens group having negative power; A fifth lens group having positive power,
  • the first lens group includes three or more lens elements;
  • L G3 thickness of the third lens group on the optical axis
  • f T focal length of the entire system at the telephoto end
  • ⁇ T half angle of view at the telephoto end
  • M G1 is the amount of movement of the first lens unit in the optical axis direction during zooming from the wide
  • An imaging apparatus capable of outputting an optical image of an object as an electrical image signal, A zoom lens system that forms an optical image of the object; An image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
  • the zoom lens system is From the object side to the image side, A first lens group having positive power; A second lens group having negative power; A third lens group having positive power; A fourth lens group having negative power; A fifth lens group having positive power,
  • the first lens group includes three or more lens elements;
  • at least the first lens group, the second lens group, and the third lens group move relative to the image plane,
  • the camera in the present disclosure is A camera that converts an optical image of an object into an electrical image signal, and displays and stores the converted image signal;
  • An image pickup apparatus including a zoom lens system that forms an optical image of an object, and an image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
  • the zoom lens system is From the object side to the image side, A first lens group having positive power; A second lens group having negative power; A third lens group having positive power; A fourth lens group having negative power; A fifth lens group having positive power,
  • the first lens group includes three or more lens elements;
  • at least the first lens group, the second lens group, and the third lens group move relative to the image plane,
  • the zoom lens system according to the present disclosure is not only high in resolution, but also has a large zoom ratio of 24 times or more with a small angle of view and an angle of view of 80 ° or more at the wide-angle end and sufficient for wide-angle shooting. It has a bright F number of about 2.8 from the wide-angle end to the telephoto end.
  • FIG. 1 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 1 (Numerical Example 1).
  • FIG. 2 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 1 when the zoom lens system is in focus at infinity.
  • FIG. 3 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of the zoom lens system according to Numerical Example 1.
  • FIG. 4 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 2 (Numerical Example 2).
  • FIG. 5 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 2 when the zoom lens system is in focus at infinity.
  • FIG. 6 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of a zoom lens system according to Numerical Example 2.
  • FIG. FIG. 7 is a lens layout diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 3 (Numerical Example 3).
  • FIG. 8 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 3 when the zoom lens system is in focus at infinity.
  • FIG. 9 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of a zoom lens system according to Numerical Example 3.
  • FIG. 10 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 4 (Numerical Example 4).
  • FIG. 11 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 4 when the zoom lens system is in focus at infinity.
  • 12 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of a zoom lens system according to Numerical Example 4.
  • FIG. FIG. 13 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 5 (Numerical Example 5).
  • FIG. 14 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 5 when the zoom lens system is in focus at infinity.
  • FIG. 11 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 4 when the zoom lens system is in focus at infinity.
  • 12 is a lateral aberration diagram in a basic state where image blur correction is not performed
  • FIG. 15 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of a zoom lens system according to Numerical Example 5.
  • FIG. 16 is a lens layout diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 6 (Numerical Example 6).
  • FIG. 17 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 6 when the zoom lens system is in focus at infinity.
  • FIG. 18 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of a zoom lens system according to Numerical Example 6.
  • FIG. 19 is a schematic configuration diagram of a digital still camera according to the seventh embodiment.
  • 1, 4, 7, 10, 13, and 16 each represent a zoom lens system in an infinitely focused state.
  • the lens configuration of T )) and (c) show the lens configuration at the telephoto end (longest focal length state: focal length f T ).
  • straight or curved arrows provided between FIGS. (A) and (b) indicate the movement of each lens group from the wide-angle end to the telephoto end via the intermediate position.
  • the arrow attached to the lens group represents the focusing from the infinite focus state to the close object focus state. That is, the moving direction during focusing from the infinitely focused state to the close object focused state is shown.
  • an asterisk * attached to a specific surface indicates that the surface is aspherical.
  • a symbol (+) and a symbol ( ⁇ ) attached to a symbol of each lens group correspond to a power symbol of each lens group.
  • the straight line described on the rightmost side represents the position of the image plane S.
  • an aperture stop A is provided between the second lens group G2 and the third lens group G3.
  • the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a positive meniscus having a convex surface facing the object side. It comprises a second lens element L2 having a shape and a third lens element L3 having a positive meniscus shape with a convex surface facing the object side. Among these, the first lens element L1 and the second lens element L2 are cemented.
  • the second lens group G2 includes, in order from the object side to the image side, a biconcave fourth lens element L4, a biconcave fifth lens element L5, a biconvex sixth lens element L6, Consists of a concave seventh lens element L7.
  • the fifth lens element L5 and the sixth lens element L6 are cemented.
  • the fourth lens element L4 has two aspheric surfaces.
  • the third lens group G3 includes, in order from the object side to the image side, a positive meniscus eighth lens element L8 having a convex surface directed toward the object side, a biconvex ninth lens element L9, and a biconcave first lens element L9. It consists of a ten lens element L10 and a biconvex eleventh lens element L11. Among these, the ninth lens element L9 and the tenth lens element L10 are cemented. The eighth lens element L8 and the eleventh lens element L11 are both aspheric on both surfaces.
  • the fourth lens group G4 comprises solely a negative meniscus twelfth lens element L12 with the convex surface facing the object side.
  • the fifth lens group G5 comprises solely a bi-convex thirteenth lens element L13.
  • the thirteenth lens element L13 has two aspheric surfaces.
  • the sixth lens group G6 comprises solely a negative meniscus fourteenth lens element L14 with the convex surface facing the object side.
  • the fourteenth lens element L14 has two aspheric surfaces.
  • the first lens group G1 moves to the object side
  • the second lens group G2 moves to the image side
  • the third lens group G3 is integrated with the aperture stop A.
  • the fourth lens group G4 moves toward the object side
  • the fifth lens group G5 moves toward the image side
  • the sixth lens group G6 does not move. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 and the fourth lens.
  • the first lens so that the distance between the group G4 changes, the distance between the fourth lens group G4 and the fifth lens group G5 increases, and the distance between the fifth lens group G5 and the sixth lens group G6 decreases.
  • the group G1, the second lens group G2, the third lens group G3, the fourth lens group G4, and the fifth lens group G5 move along the optical axis.
  • the fourth lens group G4 moves to the image side along the optical axis.
  • image point movement due to vibration of the entire system is corrected, that is, image blur due to camera shake, vibration, etc. is optically corrected. Can be corrected automatically.
  • the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 with a convex surface facing the object side, and a biconvex second lens element L2. And a positive meniscus third lens element L3 having a convex surface facing the object side.
  • the first lens element L1 and the second lens element L2 are cemented.
  • the second lens group G2 includes, in order from the object side to the image side, a biconcave fourth lens element L4, a biconcave fifth lens element L5, a biconvex sixth lens element L6, and an image. And a negative meniscus seventh lens element L7 with a convex surface facing the side.
  • the fifth lens element L5 and the sixth lens element L6 are cemented.
  • the fourth lens element L4 has two aspheric surfaces.
  • the third lens group G3 includes, in order from the object side to the image side, a positive meniscus eighth lens element L8 having a convex surface directed toward the object side, a biconvex ninth lens element L9, and a biconcave first lens element L9. It consists of a ten lens element L10 and a biconvex eleventh lens element L11. Among these, the ninth lens element L9 and the tenth lens element L10 are cemented. The eighth lens element L8 and the eleventh lens element L11 are both aspheric on both surfaces.
  • the fourth lens group G4 comprises solely a negative meniscus twelfth lens element L12 with the convex surface facing the object side.
  • the fifth lens group G5 comprises solely a bi-convex thirteenth lens element L13.
  • the thirteenth lens element L13 has two aspheric surfaces.
  • the sixth lens group G6 comprises solely a negative meniscus fourteenth lens element L14 with the convex surface facing the object side.
  • the first lens group G1 moves to the object side
  • the second lens group G2 moves to the image side
  • the third lens group G3 is integrated with the aperture stop A.
  • the fourth lens group G4 moves toward the object side
  • the fifth lens group G5 moves toward the image side
  • the sixth lens group G6 does not move. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 and the fourth lens.
  • the first lens so that the distance between the group G4 changes, the distance between the fourth lens group G4 and the fifth lens group G5 increases, and the distance between the fifth lens group G5 and the sixth lens group G6 decreases.
  • the group G1, the second lens group G2, the third lens group G3, the fourth lens group G4, and the fifth lens group G5 move along the optical axis.
  • the fourth lens group G4 moves to the image side along the optical axis.
  • the eleventh lens element L11 which is a part of the third lens group G3, as an image blur correction lens group in a direction perpendicular to the optical axis, the image point movement due to vibration of the entire system is corrected, that is, Image blur due to camera shake, vibration, or the like can be optically corrected.
  • the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a positive meniscus having a convex surface facing the object side.
  • the second lens element L2 having a shape
  • the third lens element L3 having a positive meniscus shape having a convex surface facing the object side
  • the fourth lens element L4 having a positive meniscus shape having a convex surface facing the object side.
  • the first lens element L1 and the second lens element L2 are cemented.
  • the second lens group G2 includes, in order from the object side to the image side, a negative meniscus fifth lens element L5 having a convex surface facing the object side, a biconcave sixth lens element L6, and a biconvex first lens element L6. 7 lens element L7 and negative meniscus eighth lens element L8 having a convex surface facing the image side. Among these, the sixth lens element L6 and the seventh lens element L7 are cemented.
  • the fifth lens element L5 has two aspheric surfaces.
  • the third lens group G3 includes, in order from the object side to the image side, a positive meniscus ninth lens element L9 having a convex surface directed toward the object side, a biconvex tenth lens element L10, and a biconcave first lens element L10. 11 lens element L11 and biconvex twelfth lens element L12. Among these, the tenth lens element L10 and the eleventh lens element L11 are cemented. The ninth lens element L9 and the twelfth lens element L12 are both aspheric on both surfaces.
  • the fourth lens group G4 comprises solely a negative meniscus thirteenth lens element L13 with the convex surface facing the object side.
  • the fifth lens group G5 includes, in order from the object side to the image side, a biconvex fourteenth lens element L14 and a negative meniscus fifteenth lens element L15 having a convex surface directed toward the object side.
  • the fourteenth lens element L14 has two aspheric surfaces.
  • the first lens group G1 moves to the object side
  • the second lens group G2 moves to the image side
  • the third lens group G3 is integrated with the aperture stop A.
  • the fourth lens group G4 moves to the object side
  • the fifth lens group G5 does not move. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 and the fourth lens.
  • the first lens group G1, the second lens group G2, the third lens group G3, and the fourth lens so that the distance between the group G4 changes and the distance between the fourth lens group G4 and the fifth lens group G5 increases.
  • the group G4 moves along the optical axis.
  • the fourth lens group G4 moves to the image side along the optical axis.
  • image point movement due to vibration of the entire system is corrected, that is, image blur due to camera shake, vibration, etc. is optically corrected. Can be corrected automatically.
  • the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a biconvex second lens element L2. And a positive meniscus third lens element L3 having a convex surface facing the object side.
  • the first lens element L1 and the second lens element L2 are cemented.
  • the second lens group G2 includes, in order from the object side to the image side, a biconcave fourth lens element L4, a biconcave fifth lens element L5, a biconvex sixth lens element L6, Consists of a concave seventh lens element L7.
  • the fourth lens element L4 has two aspheric surfaces.
  • the third lens group G3 includes, in order from the object side to the image side, a biconvex eighth lens element L8, a biconvex ninth lens element L9, and a negative meniscus second lens with a convex surface facing the image side. It consists of a ten-lens element L10, a biconcave eleventh lens element L11, and a biconvex twelfth lens element L12. Among these, the ninth lens element L9 and the tenth lens element L10 are cemented. The eighth lens element L8 and the twelfth lens element L12 are both aspheric on both surfaces.
  • the fourth lens group G4 comprises solely a negative meniscus thirteenth lens element L13 with the convex surface facing the object side.
  • the fifth lens group G5 comprises solely a bi-convex fourteenth lens element L14.
  • the fourteenth lens element L14 has two aspheric surfaces.
  • the sixth lens group G6 comprises solely a negative meniscus fifteenth lens element L15 with the convex surface facing the object side.
  • the first lens group G1 moves to the object side
  • the second lens group G2 moves to the image side
  • the third lens group G3 is integrated with the aperture stop A.
  • the fourth lens group G4 moves toward the object side
  • the fifth lens group G5 moves toward the image side
  • the sixth lens group G6 does not move. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 and the fourth lens.
  • the first lens so that the distance between the group G4 changes, the distance between the fourth lens group G4 and the fifth lens group G5 increases, and the distance between the fifth lens group G5 and the sixth lens group G6 decreases.
  • the group G1, the second lens group G2, the third lens group G3, the fourth lens group G4, and the fifth lens group G5 move along the optical axis.
  • the fourth lens group G4 moves to the image side along the optical axis.
  • the three lens elements that is, the eighth lens element L8, the ninth lens element L9, and the tenth lens element L10, which are a part of the third lens group G3, are integrally orthogonal to the optical axis as an image blur correction lens group.
  • image point movement due to vibration of the entire system can be corrected, that is, image blur due to camera shake, vibration, etc. can be optically corrected.
  • the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 with a convex surface facing the object side, and a biconvex second lens element L2. And a positive meniscus third lens element L3 having a convex surface facing the object side.
  • the first lens element L1 and the second lens element L2 are cemented.
  • the second lens group G2 includes, in order from the object side to the image side, a biconcave fourth lens element L4, a biconcave fifth lens element L5, a biconvex sixth lens element L6, Consists of a concave seventh lens element L7.
  • the fifth lens element L5 and the sixth lens element L6 are cemented.
  • the fourth lens element L4 has two aspheric surfaces.
  • the third lens group G3 includes, in order from the object side to the image side, a positive meniscus eighth lens element L8 having a convex surface directed toward the object side, a biconvex ninth lens element L9, and a biconcave first lens element L9. It consists of a ten lens element L10 and a biconvex eleventh lens element L11. Among these, the ninth lens element L9 and the tenth lens element L10 are cemented. The eighth lens element L8 and the eleventh lens element L11 are both aspheric on both surfaces.
  • the fourth lens group G4 comprises solely a negative meniscus twelfth lens element L12 with the convex surface facing the object side.
  • the fifth lens group G5 comprises solely a bi-convex thirteenth lens element L13.
  • the thirteenth lens element L13 has two aspheric surfaces.
  • the sixth lens group G6 comprises solely a negative meniscus fourteenth lens element L14 with the convex surface facing the object side.
  • the fourteenth lens element L14 has two aspheric surfaces.
  • the first lens group G1 moves to the object side
  • the second lens group G2 moves to the image side
  • the third lens group G3 is integrated with the aperture stop A.
  • the fourth lens group G4 moves toward the object side
  • the fifth lens group G5 moves toward the image side
  • the sixth lens group G6 does not move. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 and the fourth lens.
  • the first lens so that the distance between the group G4 changes, the distance between the fourth lens group G4 and the fifth lens group G5 increases, and the distance between the fifth lens group G5 and the sixth lens group G6 decreases.
  • the group G1, the second lens group G2, the third lens group G3, the fourth lens group G4, and the fifth lens group G5 move along the optical axis.
  • the fourth lens group G4 moves to the image side along the optical axis.
  • image point movement due to vibration of the entire system is corrected, that is, image blur due to camera shake, vibration, etc. is optically corrected. Can be corrected automatically.
  • the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 with a convex surface facing the object side, and a biconvex second lens element L2. And a positive meniscus third lens element L3 having a convex surface facing the object side.
  • the first lens element L1 and the second lens element L2 are cemented.
  • the second lens group G2 includes, in order from the object side to the image side, a biconcave fourth lens element L4, a biconcave fifth lens element L5, a biconvex sixth lens element L6, and an image. And a negative meniscus seventh lens element L7 with a convex surface facing the side.
  • the fifth lens element L5 and the sixth lens element L6 are cemented.
  • the fourth lens element L4 has two aspheric surfaces.
  • the third lens group G3 includes, in order from the object side to the image side, a positive meniscus eighth lens element L8 having a convex surface directed toward the object side, a biconvex ninth lens element L9, and a biconcave first lens element L9. It consists of a ten lens element L10 and a biconvex eleventh lens element L11. Among these, the ninth lens element L9 and the tenth lens element L10 are cemented. The eighth lens element L8 and the eleventh lens element L11 are both aspheric on both surfaces.
  • the fourth lens group G4 comprises solely a negative meniscus twelfth lens element L12 with the convex surface facing the object side.
  • the fifth lens group G5 comprises solely a bi-convex thirteenth lens element L13.
  • the thirteenth lens element L13 has two aspheric surfaces.
  • the sixth lens group G6 comprises solely a negative meniscus fourteenth lens element L14 with the convex surface facing the object side.
  • the first lens group G1 moves to the object side
  • the second lens group G2 moves to the image side
  • the third lens group G3 is integrated with the aperture stop A.
  • the fourth lens group G4 moves toward the object side
  • the fifth lens group G5 moves toward the image side
  • the sixth lens group G6 does not move. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 and the fourth lens.
  • the first lens so that the distance between the group G4 changes, the distance between the fourth lens group G4 and the fifth lens group G5 increases, and the distance between the fifth lens group G5 and the sixth lens group G6 decreases.
  • the group G1, the second lens group G2, the third lens group G3, the fourth lens group G4, and the fifth lens group G5 each move along the optical axis.
  • the fourth lens group G4 moves to the image side along the optical axis.
  • the eleventh lens element L11 which is a part of the third lens group G3, as an image blur correction lens group in a direction perpendicular to the optical axis, the image point movement due to vibration of the entire system is corrected, that is, Image blur due to camera shake, vibration, or the like can be optically corrected.
  • the second lens group G2 includes at least one pair of cemented lens elements. If the second lens group G2 does not include a cemented lens element and a plurality of lens elements are arranged at narrow intervals, the degree of performance deterioration with respect to an error in the air interval increases, and it may be difficult to assemble the optical system. .
  • the zoom lens systems according to Embodiments 1 to 6 include a focusing lens group (fourth lens group G4) that moves with respect to the image plane during focusing from an infinitely focused state to a close object focused state.
  • the focusing lens group is composed of a single lens element. If the focusing lens group is composed of a plurality of lens elements, the actuator for moving the focusing lens group in the optical axis direction becomes large, and it is difficult to provide a compact lens barrel, imaging device, and camera. Become.
  • At least one lens unit is fixed with respect to the image plane during zooming from the wide-angle end to the telephoto end during imaging.
  • the structure of their drive mechanisms becomes enlarged, making it difficult to provide a compact lens barrel, interchangeable lens device, and camera system.
  • Embodiments 1 to 6 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
  • a plurality of useful conditions are defined for the zoom lens system according to each embodiment, but the configuration of the zoom lens system that satisfies all of the plurality of conditions is most useful. However, by satisfying individual conditions, it is possible to obtain a zoom lens system that exhibits the corresponding effects.
  • a first lens group having a positive power, a second lens group having a negative power, and a positive power A third lens group having a negative power, a fourth lens group having a negative power, and a fifth lens group having a positive power, and the first lens group includes three or more lens elements, and imaging
  • the zoom lens system (referred to as a basic configuration of the following form) satisfies the following conditions (1) and (2).
  • L G3 thickness of the third lens group on the optical axis
  • f T focal length of the entire system at the telephoto end
  • ⁇ T half angle of view at the telephoto end
  • M G1 is the amount of movement of the first lens unit in the optical axis direction during zooming from the wide-angle end to the telephoto end during imaging.
  • M G1 is the distance on the optical axis from the image plane at the telephoto end to the outermost object side surface of the first lens group, and from the image plane at the wide angle end to the outermost object side surface of the first lens group It is the value which subtracted.
  • the condition (1) is a condition for defining the relationship between the thickness of the third lens unit on the optical axis and the focal length and half angle of view of the entire system at the telephoto end. If the lower limit of condition (1) is not reached, the distance between the lens elements in the third lens group becomes narrow, and correction of curvature of field at the telephoto end becomes difficult. In addition, the degree of performance deterioration with respect to an error in the distance between lens elements increases, making it difficult to assemble the optical system.
  • the condition (2) is the relationship between the amount of movement of the first lens unit in the optical axis direction during zooming from the wide-angle end to the telephoto end during imaging, and the focal length and half angle of view of the entire system at the telephoto end. It is a condition for prescribing. If the lower limit of condition (2) is not reached, the focal length of the first lens group will be shortened, and aberration fluctuations during zooming will increase, making it difficult to correct various aberrations, making it difficult to achieve a high zoom ratio. It becomes. On the other hand, if the upper limit of condition (2) is exceeded, the amount of movement of the first lens group at the time of zooming increases, making it difficult to provide a compact lens barrel, imaging device, and camera.
  • the second lens unit includes a first lens element having a negative power and a negative power in order from the object side to the image side.
  • the first lens element and the second lens element satisfy the following conditions (3) and (4).
  • R 2a radius of curvature of the object side surface of the first lens element
  • R 2b radius of curvature of the image side surface of the first lens element
  • R 2c is the radius of curvature of the image side surface of the second lens element.
  • the condition (3) is a condition for defining the relationship between the radius of curvature of the object side surface of the first negative lens element in the second lens group and the radius of curvature of the image side surface of the first negative lens element. Below the lower limit of the condition (3), the radius of curvature of the image side surface of the first negative lens element is large, the curvature of the image side surface of the first negative lens element is weak, and it becomes difficult to correct spherical aberration particularly at the telephoto end. .
  • the condition (4) defines the relationship between the radius of curvature of the image side surface of the first negative lens element in the second lens group and the radius of curvature of the image side surface of the second negative lens element in the second lens group. Is the condition. Below the lower limit of condition (4), the radius of curvature of the image side surface of the first negative lens element is smaller than the radius of curvature of the image side surface of the second negative lens element, and the curvature of the image side surface of the first negative lens element is smaller. This is stronger than the curvature of the image side surface of the second negative lens element, and it becomes difficult to correct coma particularly at the telephoto end.
  • the third lens group includes at least one lens element having positive power, and the following condition (5 ) Is beneficial.
  • the condition (5) is a condition for defining the average value of the refractive index with respect to the d-line of the lens elements having the positive power constituting the third lens group. If the upper limit of condition (5) is exceeded, the power of the third lens group becomes strong, and it becomes difficult to correct spherical aberration, particularly at the telephoto end. Further, since the glass material having a high refractive index tends to have a high specific gravity, the weight of the lens elements constituting the third lens group is increased. As a result, when the third lens group is selected as a lens group for optically correcting image blurring, the structure of the driving mechanism of this lens group is enlarged, and a compact lens barrel, imaging device, and camera are installed. It becomes difficult to provide.
  • the zoom lens system having the basic configuration like the zoom lens systems according to Embodiments 1 to 6 is beneficial to satisfy the following condition (6).
  • M G2 the amount of movement of the second lens group in the optical axis direction during zooming from the wide-angle end to the telephoto end during imaging
  • M G4 is the amount of movement of the fourth lens group in the optical axis direction during zooming from the wide-angle end to the telephoto end during imaging.
  • MG2 is the distance on the optical axis from the image plane at the telephoto end to the outermost object side surface of the second lens group, and from the image plane at the wide-angle end to the outermost object side surface of the second lens group. It is the value which subtracted.
  • MG4 is the distance on the optical axis from the image surface at the telephoto end to the outermost object side surface of the fourth lens group, and from the image surface at the wide-angle end to the outermost object side surface of the fourth lens group. It is the value which subtracted.
  • the condition (6) is a ratio of the amount of movement of the second lens group in the optical axis direction and the amount of movement of the fourth lens group in the optical axis direction during zooming from the wide-angle end to the telephoto end during imaging. It is a condition for prescribing. If the lower limit of condition (6) is not reached, the amount of movement of the second lens group will be larger than the amount of movement of the fourth lens group during zooming, and it will be difficult to correct astigmatism, especially at the telephoto end. On the contrary, if the upper limit of condition (6) is exceeded, the amount of movement of the fourth lens unit becomes larger than the amount of movement of the second lens unit during zooming, and it is difficult to correct curvature of field particularly at the telephoto end. Become.
  • the above effect can be further achieved by satisfying at least one of the following conditions (6) ′-2 and (6) ′′. 1.4 ⁇
  • the zoom lens system having the basic configuration like the zoom lens systems according to Embodiments 1 to 6 is beneficial to satisfy the following condition (7).
  • the condition (7) is a condition for defining the relationship between the focal length of the first lens group and the focal length of the entire system at the telephoto end. If the lower limit of condition (7) is not reached, the focal length of the first lens group will be shortened, aberration fluctuations at the time of zooming will increase, and it will be difficult to correct various aberrations, making it difficult to achieve a high zoom ratio. Become. On the other hand, if the upper limit of condition (7) is exceeded, the focal length of the first lens group becomes longer, and the amount of movement of the first lens group at the time of zooming increases, so a compact lens barrel, imaging device, or camera is required. It becomes difficult to provide.
  • the above effect can be further achieved by satisfying at least one of the following conditions (7) ′-2 and (7) ′′. 0.5 ⁇ f G1 / f T (7) '-2 f G1 / f T ⁇ 0.8 (7) ''
  • the zoom lens system having the basic configuration like the zoom lens systems according to Embodiments 1 to 6 is beneficial to satisfy the following condition (8). 10 ⁇
  • (8) here, G 4W : distance from the object side surface top of the fourth lens group to the image plane at the wide angle end, G 4T : distance from the object side surface top of the fourth lens group to the image plane at the telephoto end G 4M : distance from the object side surface top to the image plane of the fourth lens group at the intermediate position, Intermediate position: a position where the focal length f M of the entire system is expressed by the following formula: f M ⁇ (f W * f T ), f W : focal length of the entire system at the wide-angle end, f T : the focal length of the entire system at the telephoto end.
  • the condition (8) is a condition for defining the distance from the object side surface top of the fourth lens group to the image plane at each of the wide-angle end, the telephoto end, and the intermediate position. If the lower limit of condition (8) is not reached, the distance between the fourth lens group and the fifth lens group becomes narrow at the telephoto end, and, for example, when the fourth lens group is moved during focusing, a space for focusing is ensured. It becomes difficult.
  • a zoom lens system having a basic configuration like the zoom lens systems according to Embodiments 1 to 6 is beneficial to satisfy the following condition (9).
  • MG5 is the distance on the optical axis from the image plane at the telephoto end to the outermost object side surface of the fifth lens group, and from the image plane at the wide-angle end to the outermost object side surface of the fifth lens group. It is the value which subtracted.
  • the condition (9) is the relationship between the amount of movement of the fifth lens unit in the optical axis direction during zooming from the wide-angle end to the telephoto end during imaging, and the focal length and half angle of view of the entire system at the telephoto end. It is a condition for prescribing. If the upper limit of condition (9) is exceeded, the amount of movement of the fifth lens group that plays the role of correcting the image plane increases, and it becomes difficult to uniformly correct the image plane from the wide-angle end to the telephoto end.
  • the above-described effect can be further achieved by satisfying at least one of the following conditions (9) ′-2 and (9) ′′-2. 0.4 ⁇
  • Each lens group constituting the zoom lens system according to Embodiments 1 to 6 includes a refractive lens element that deflects incident light by refraction (that is, a type in which deflection is performed at an interface between media having different refractive indexes)
  • a diffractive lens element that deflects incident light by diffraction a refractive / diffractive hybrid lens element that deflects incident light by a combination of diffraction and refraction, and a refractive index that deflects incident light by the refractive index distribution in the medium
  • Each lens group may be composed of a distributed lens element or the like.
  • a diffractive / diffractive hybrid lens element forming a diffractive structure at the interface of media having different refractive indexes is advantageous because the wavelength dependency of diffraction efficiency is improved.
  • FIG. 19 is a schematic configuration diagram of a digital still camera according to the seventh embodiment.
  • the digital still camera includes an image pickup apparatus including a zoom lens system 1 and an image pickup device 2 that is a CCD, a liquid crystal monitor 3, and a housing 4.
  • the zoom lens system 1 includes a first lens group G1, a second lens group G2, an aperture stop A, a third lens group G3, a fourth lens group G4, a fifth lens group G5, A sixth lens group G6 is included.
  • the zoom lens system 1 is disposed on the front side, and the imaging element 2 is disposed on the rear side of the zoom lens system 1.
  • a liquid crystal monitor 3 is disposed on the rear side of the housing 4, and an optical image of the subject by the zoom lens system 1 is formed on the image plane S.
  • the lens barrel is composed of a main lens barrel 5, a movable lens barrel 6, and a cylindrical cam 7.
  • the first lens group G1, the second lens group G2, the aperture stop A and the third lens group G3, the fourth lens group G4, the fifth lens group G5, and the sixth lens group G6 are image sensors. 2 can be moved to a predetermined position with reference to 2 to perform zooming from the wide-angle end to the telephoto end.
  • the fourth lens group G4 is movable in the optical axis direction by a focus adjustment motor.
  • the zoom lens system according to Embodiment 1 for a digital still camera, it is possible to provide a small digital still camera that has a high ability to correct resolution and curvature of field and has a short overall lens length when not in use. it can.
  • any of the zoom lens systems according to the second to sixth embodiments may be used instead of the zoom lens system according to the first embodiment.
  • the optical system of the digital still camera shown in FIG. 19 can also be used for a digital video camera for moving images. In this case, not only a still image but also a moving image with high resolution can be taken.
  • the zoom lens system according to the first to sixth embodiments is shown as the zoom lens system 1, but these zoom lens systems do not use the entire zooming area. May be. That is, a range in which the optical performance is ensured according to a desired zooming area may be cut out and used as a zoom lens system having a lower magnification than the zoom lens system described in the first to sixth embodiments.
  • a prism having an internal reflection surface or a surface reflection mirror may be disposed at an arbitrary position such as in the first lens group G1, and the zoom lens system may be applied to a so-called bent lens barrel.
  • an image pickup apparatus including the zoom lens system according to Embodiments 1 to 6 described above and an image pickup element such as a CCD or a CMOS is used as a camera of a portable information terminal such as a smartphone, a monitoring camera in a monitoring system, a Web
  • a portable information terminal such as a smartphone
  • a monitoring camera in a monitoring system a monitoring system
  • a Web a Web
  • the present invention can also be applied to cameras, in-vehicle cameras, and the like.
  • the seventh embodiment has been described as an example of the technique disclosed in the present application.
  • the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
  • the unit of length in the table is “mm”, and the unit of angle of view is “°”.
  • r is a radius of curvature
  • d is a surface interval
  • nd is a refractive index with respect to the d line
  • vd is an Abbe number with respect to the d line.
  • the surface marked with * is an aspherical surface
  • the aspherical shape is defined by the following equation.
  • Z distance from a point on the aspheric surface having a height h from the optical axis to the tangent plane of the aspheric vertex
  • h height from the optical axis
  • r vertex radius of curvature
  • conic constant
  • An n-order aspherical coefficient.
  • each longitudinal aberration diagram shows the aberration at the wide angle end, (b) shows the intermediate position, and (c) shows the aberration at the telephoto end.
  • SA spherical aberration
  • AST mm
  • DIS distortion
  • the vertical axis represents the F number (indicated by F in the figure)
  • the solid line is the d line (d-line)
  • the short broken line is the F line (F-line)
  • the long broken line is the C line (C- line).
  • the vertical axis represents the image height (indicated by H in the figure), the solid line represents the sagittal plane (indicated by s), and the broken line represents the meridional plane (indicated by m in the figure). is there.
  • the vertical axis represents the image height (indicated by H in the figure).
  • 6, 9, 12, 15, and 18 are lateral aberration diagrams at the telephoto end of the zoom lens systems according to Numerical Examples 1 to 6, respectively.
  • the upper three aberration diagrams show the basic state where image blur correction at the telephoto end is not performed, and the lower three aberration diagrams show that the image blur correction lens group is moved by a predetermined amount in the direction perpendicular to the optical axis. This corresponds to the image blur correction state at the telephoto end.
  • the upper row shows the lateral aberration at the image point of 70% of the maximum image height
  • the middle row shows the lateral aberration at the axial image point
  • the lower row shows the lateral aberration at the image point of -70% of the maximum image height.
  • the upper stage is the lateral aberration at the image point of 70% of the maximum image height
  • the middle stage is the lateral aberration at the axial image point
  • the lower stage is at the image point of -70% of the maximum image height.
  • the horizontal axis represents the distance from the principal ray on the pupil plane
  • the solid line is the d line (d-line)
  • the short broken line is the F line (F-line)
  • the long broken line is the C line ( C-line) characteristics.
  • the meridional plane is a plane including the optical axis of the first lens group G1 and the optical axis of the third lens group G3.
  • the amount of movement in the direction perpendicular to the optical axis of the image blur correction lens group in the image blur correction state at the telephoto end is as follows.
  • Numerical example 1 0.431 mm
  • Numerical example 2 0.517 mm
  • Numerical example 3 0.223 mm
  • Numerical example 4 0.287 mm
  • Numerical example 5 0.228 mm
  • Numerical example 6 0.511 mm
  • the image decentering amount when the shooting distance is ⁇ and the zoom lens system is tilted by 0.6 ° at the telephoto end is in the direction perpendicular to the optical axis of the image blur correction lens group. It is equal to the amount of image decentering when moving in parallel by the above values.
  • the amount of image decentering when the shooting distance is ⁇ and the zoom lens system is tilted by 0.3 ° at the telephoto end is the above-described amount in the direction in which the image blur correction lens unit is perpendicular to the optical axis. It is equal to the amount of image eccentricity when moving in parallel by each value.
  • Table 13 (surface data) Surface number r d nd vd Object ⁇ 1 79.99790 1.25000 1.90366 31.3 2 44.45100 5.00000 1.49700 81.6 3 -2961.73330 0.15000 4 48.37520 4.38830 1.59282 68.6 5 977.07150 Variable 6 * -142.90770 0.50000 1.88202 37.2 7 * 21.72240 4.03380 8 -31.34780 0.55000 1.80420 46.5 9 12.65040 5.00000 1.92286 20.9 10 -88.87860 0.96330 11 -21.85110 0.55000 1.80420 46.5 12 164.29950 Variable 13 (Aperture) ⁇ 1.00000 14 * 13.05890 2.81550 1.51760 63.5 15 * 165.96890 4.10030 16 20.46970 3.10000 1.43700 95.1 17 -19.38200 0.50000 1.69895 30.0 18 21.16650 3.54760 19 * 13.11100 3.93670 1.52996 55.
  • Table 19 shows corresponding values for each condition in the zoom lens system of each numerical example.
  • the present disclosure can be applied to digital input devices such as a digital camera, a camera of a portable information terminal such as a smartphone, a monitoring camera in a monitoring system, a Web camera, and an in-vehicle camera.
  • digital input devices such as a digital camera, a camera of a portable information terminal such as a smartphone, a monitoring camera in a monitoring system, a Web camera, and an in-vehicle camera.
  • the present disclosure is suitable for a photographing optical system that requires high image quality, such as a digital camera.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

 3枚以上のレンズ素子で構成される正パワーの第1レンズ群、負パワーの第2レンズ群、正パワーの第3レンズ群、負パワーの第4レンズ群、正パワーの第5レンズ群を備え、撮像時の広角端から望遠端へのズーミングの際に、少なくとも第1レンズ群、第2レンズ群、第3レンズ群が像面に対して移動し、条件:3.2<LG3/(f×tan(ω))及び2.0<|MG1/(f×tan(ω))|<15.0(LG3:第3レンズ群の光軸上での厚み、f:望遠端における全系の焦点距離、ω:望遠端における半画角、MG1:ズーミング時の第1レンズ群の光軸方向の移動量)を満足するズームレンズ系。

Description

ズームレンズ系、撮像装置及びカメラ
 本開示は、ズームレンズ系、撮像装置及びカメラに関する。
 近年、高画素のCCD(Charge Coupled Device)やCMOS(Complementary Metal-Oxide Semiconductor)等の固体撮像素子の開発が進み、これら高画素の固体撮像素子に対応した、高い光学性能を有する撮像光学系を含む撮像装置を備えたデジタルスチルカメラやデジタルビデオカメラ(以下、単に「デジタルカメラ」という)が急速に普及してきている。このような高い光学性能を有するデジタルカメラの中でも、特に、1台のデジタルカメラで広角域から高望遠域までの広い焦点距離範囲をカバーすることができる、ズーム比が高いズームレンズ系を搭載したコンパクトタイプのデジタルカメラが、その利便性から強く要望されている。またさらに、撮影範囲が広い広角域を持つズームレンズ系も求められている。
 前記コンパクトタイプのデジタルカメラに対しては、例えば次のような種々のズームレンズ系が提案されている。
 特許文献1、2及び5には、正負正負正の5群構成を有し、ズーム比が20~30倍と高倍率のズームレンズが開示され、特許文献3及び4には、正負正の3つのレンズ群と1つ以上のレンズ群を含む後続レンズ群とを有し、ズーム比が20~30倍と高倍率のズームレンズが開示されている。
特開2011-123337号公報 特開2011-075985号公報 特開2011-033868号公報 特開2010-276655号公報 特開2009-282398号公報
 本開示は、高解像度を有するのは勿論のこと、小型でありながら広角端での画角が80°以上で広角撮影に充分に適応でき、しかも24倍以上の大きなズーム比を有しながら、広角端から望遠端までFナンバーが2.8程度と明るいズームレンズ系を提供する。また本開示は、該ズームレンズ系を含む撮像装置、及び該撮像装置を備えたコンパクトなカメラを提供する。
 本開示におけるズームレンズ系は、
物体側から像側へと順に、
正のパワーを有する第1レンズ群と、
負のパワーを有する第2レンズ群と、
正のパワーを有する第3レンズ群と、
負のパワーを有する第4レンズ群と、
正のパワーを有する第5レンズ群とを備え、
前記第1レンズ群が、3枚以上のレンズ素子で構成され、
撮像時の広角端から望遠端へのズーミングの際に、少なくとも前記第1レンズ群と前記第2レンズ群と前記第3レンズ群とが像面に対して移動し、
以下の条件(1)及び(2):
  3.2<LG3/(f×tan(ω)) ・・・(1)
  2.0<|MG1/(f×tan(ω))|<15.0 ・・・(2)
(ここで、
 LG3:第3レンズ群の光軸上での厚み、
 f:望遠端における全系の焦点距離、
 ω:望遠端における半画角、
 MG1:撮像時の広角端から望遠端へのズーミングの際の、第1レンズ群の光軸方向の移動量
である)
を満足することを特徴とする。
 本開示における撮像装置は、
物体の光学的な像を電気的な画像信号として出力可能な撮像装置であって、
物体の光学的な像を形成するズームレンズ系と、
該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子と
を備え、
前記ズームレンズ系が、
物体側から像側へと順に、
正のパワーを有する第1レンズ群と、
負のパワーを有する第2レンズ群と、
正のパワーを有する第3レンズ群と、
負のパワーを有する第4レンズ群と、
正のパワーを有する第5レンズ群とを備え、
前記第1レンズ群が、3枚以上のレンズ素子で構成され、
撮像時の広角端から望遠端へのズーミングの際に、少なくとも前記第1レンズ群と前記第2レンズ群と前記第3レンズ群とが像面に対して移動し、
以下の条件(1)及び(2):
  3.2<LG3/(f×tan(ω)) ・・・(1)
  2.0<|MG1/(f×tan(ω))|<15.0 ・・・(2)
(ここで、
 LG3:第3レンズ群の光軸上での厚み、
 f:望遠端における全系の焦点距離、
 ω:望遠端における半画角、
 MG1:撮像時の広角端から望遠端へのズーミングの際の、第1レンズ群の光軸方向の移動量
である)
を満足することを特徴とするズームレンズ系である。
 本開示におけるカメラは、
物体の光学的な像を電気的な画像信号に変換し、変換された画像信号の表示及び記憶の少なくとも一方を行うカメラであって、
物体の光学的な像を形成するズームレンズ系と、該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子とを含む撮像装置を備え、
前記ズームレンズ系が、
物体側から像側へと順に、
正のパワーを有する第1レンズ群と、
負のパワーを有する第2レンズ群と、
正のパワーを有する第3レンズ群と、
負のパワーを有する第4レンズ群と、
正のパワーを有する第5レンズ群とを備え、
前記第1レンズ群が、3枚以上のレンズ素子で構成され、
撮像時の広角端から望遠端へのズーミングの際に、少なくとも前記第1レンズ群と前記第2レンズ群と前記第3レンズ群とが像面に対して移動し、
以下の条件(1)及び(2):
  3.2<LG3/(f×tan(ω)) ・・・(1)
  2.0<|MG1/(f×tan(ω))|<15.0 ・・・(2)
(ここで、
 LG3:第3レンズ群の光軸上での厚み、
 f:望遠端における全系の焦点距離、
 ω:望遠端における半画角、
 MG1:撮像時の広角端から望遠端へのズーミングの際の、第1レンズ群の光軸方向の移動量
である)
を満足することを特徴とするズームレンズ系である。
 本開示におけるズームレンズ系は、高解像度を有するのは勿論のこと、小型でありながら広角端での画角が80°以上で広角撮影に充分に適応でき、しかも24倍以上の大きなズーム比を有しながら、広角端から望遠端までFナンバーが2.8程度と明るい。
図1は、実施の形態1(数値実施例1)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。 図2は、数値実施例1に係るズームレンズ系の無限遠合焦状態の縦収差図である。 図3は、数値実施例1に係るズームレンズ系の望遠端における、像ぶれ補正を行っていない基本状態及び像ぶれ補正状態での横収差図である。 図4は、実施の形態2(数値実施例2)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。 図5は、数値実施例2に係るズームレンズ系の無限遠合焦状態の縦収差図である。 図6は、数値実施例2に係るズームレンズ系の望遠端における、像ぶれ補正を行っていない基本状態及び像ぶれ補正状態での横収差図である。 図7は、実施の形態3(数値実施例3)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。 図8は、数値実施例3に係るズームレンズ系の無限遠合焦状態の縦収差図である。 図9は、数値実施例3に係るズームレンズ系の望遠端における、像ぶれ補正を行っていない基本状態及び像ぶれ補正状態での横収差図である。 図10は、実施の形態4(数値実施例4)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。 図11は、数値実施例4に係るズームレンズ系の無限遠合焦状態の縦収差図である。 図12は、数値実施例4に係るズームレンズ系の望遠端における、像ぶれ補正を行っていない基本状態及び像ぶれ補正状態での横収差図である。 図13は、実施の形態5(数値実施例5)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。 図14は、数値実施例5に係るズームレンズ系の無限遠合焦状態の縦収差図である。 図15は、数値実施例5に係るズームレンズ系の望遠端における、像ぶれ補正を行っていない基本状態及び像ぶれ補正状態での横収差図である。 図16は、実施の形態6(数値実施例6)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。 図17は、数値実施例6に係るズームレンズ系の無限遠合焦状態の縦収差図である。 図18は、数値実施例6に係るズームレンズ系の望遠端における、像ぶれ補正を行っていない基本状態及び像ぶれ補正状態での横収差図である。 図19は、実施の形態7に係るデジタルスチルカメラの概略構成図である。
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、発明者らは、当業者が本開示を充分に理解するために添付図面および以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。
(実施の形態1~6)
 図1、4、7、10、13及び16は、各々実施の形態1~6に係るズームレンズ系のレンズ配置図である。
 図1、4、7、10、13及び16は、いずれも無限遠合焦状態にあるズームレンズ系を表している。各図において、(a)図は広角端(最短焦点距離状態:焦点距離f)のレンズ構成、(b)図は中間位置(中間焦点距離状態:焦点距離f=√(f*f))のレンズ構成、(c)図は望遠端(最長焦点距離状態:焦点距離f)のレンズ構成をそれぞれ表している。また各図において、(a)図と(b)図との間に設けられた直線乃至曲線の矢印は、広角端から中間位置を経由して望遠端への、各レンズ群の動きを示す。さらに各図において、レンズ群に付された矢印は、無限遠合焦状態から近接物体合焦状態へのフォーカシングを表す。すなわち、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際の移動方向を示している。
 図1、4、7、10、13及び16において、特定の面に付されたアスタリスク*は、該面が非球面であることを示している。また各図において、各レンズ群の符号に付された記号(+)及び記号(-)は、各レンズ群のパワーの符号に対応する。また各図において、最も右側に記載された直線は、像面Sの位置を表す。
 図1、4、7、10、13及び16において、第2レンズ群G2と第3レンズ群G3との間に開口絞りAが設けられている。
(実施の形態1)
 図1に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、物体側に凸面を向けた正メニスカス形状の第2レンズ素子L2と、物体側に凸面を向けた正メニスカス形状の第3レンズ素子L3とからなる。これらのうち、第1レンズ素子L1と第2レンズ素子L2とが接合されている。
 第2レンズ群G2は、物体側から像側へと順に、両凹形状の第4レンズ素子L4と、両凹形状の第5レンズ素子L5と、両凸形状の第6レンズ素子L6と、両凹形状の第7レンズ素子L7とからなる。これらのうち、第5レンズ素子L5と第6レンズ素子L6とが接合されている。また、第4レンズ素子L4は、その両面が非球面である。
 第3レンズ群G3は、物体側から像側へと順に、物体側に凸面を向けた正メニスカス形状の第8レンズ素子L8と、両凸形状の第9レンズ素子L9と、両凹形状の第10レンズ素子L10と、両凸形状の第11レンズ素子L11とからなる。これらのうち、第9レンズ素子L9と第10レンズ素子L10とが接合されている。また、第8レンズ素子L8及び第11レンズ素子L11は、各々その両面が非球面である。
 第4レンズ群G4は、物体側に凸面を向けた負メニスカス形状の第12レンズ素子L12のみからなる。
 第5レンズ群G5は、両凸形状の第13レンズ素子L13のみからなる。また、第13レンズ素子L13は、その両面が非球面である。
 第6レンズ群G6は、物体側に凸面を向けた負メニスカス形状の第14レンズ素子L14のみからなる。また、第14レンズ素子L14は、その両面が非球面である。
 撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側へ移動し、第3レンズ群G3は開口絞りAと一体的に物体側へ移動し、第4レンズ群G4は物体側へ移動し、第5レンズ群G5は像側へ移動し、第6レンズ群G6は移動しない。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が変化し、第4レンズ群G4と第5レンズ群G5との間隔が増大し、第5レンズ群G5と第6レンズ群G6との間隔が減少するように、第1レンズ群G1、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4及び第5レンズ群G5が光軸に沿ってそれぞれ移動する。
 また、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第4レンズ群G4が光軸に沿って像側へと移動する。
 さらに、第3レンズ群G3を像ぶれ補正レンズ群として光軸に直行する方向に移動させることによって、全系の振動による像点移動を補正する、すなわち、手ぶれ、振動等による像のぶれを光学的に補正することができる。
(実施の形態2)
 図4に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、両凸形状の第2レンズ素子L2と、物体側に凸面を向けた正メニスカス形状の第3レンズ素子L3とからなる。これらのうち、第1レンズ素子L1と第2レンズ素子L2とが接合されている。
 第2レンズ群G2は、物体側から像側へと順に、両凹形状の第4レンズ素子L4と、両凹形状の第5レンズ素子L5と、両凸形状の第6レンズ素子L6と、像側に凸面を向けた負メニスカス形状の第7レンズ素子L7とからなる。これらのうち、第5レンズ素子L5と第6レンズ素子L6とが接合されている。また、第4レンズ素子L4は、その両面が非球面である。
 第3レンズ群G3は、物体側から像側へと順に、物体側に凸面を向けた正メニスカス形状の第8レンズ素子L8と、両凸形状の第9レンズ素子L9と、両凹形状の第10レンズ素子L10と、両凸形状の第11レンズ素子L11とからなる。これらのうち、第9レンズ素子L9と第10レンズ素子L10とが接合されている。また、第8レンズ素子L8及び第11レンズ素子L11は、各々その両面が非球面である。
 第4レンズ群G4は、物体側に凸面を向けた負メニスカス形状の第12レンズ素子L12のみからなる。
 第5レンズ群G5は、両凸形状の第13レンズ素子L13のみからなる。また、第13レンズ素子L13は、その両面が非球面である。
 第6レンズ群G6は、物体側に凸面を向けた負メニスカス形状の第14レンズ素子L14のみからなる。
 撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側へ移動し、第3レンズ群G3は開口絞りAと一体的に物体側へ移動し、第4レンズ群G4は物体側へ移動し、第5レンズ群G5は像側へ移動し、第6レンズ群G6は移動しない。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が変化し、第4レンズ群G4と第5レンズ群G5との間隔が増大し、第5レンズ群G5と第6レンズ群G6との間隔が減少するように、第1レンズ群G1、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4及び第5レンズ群G5が光軸に沿ってそれぞれ移動する。
 また、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第4レンズ群G4が光軸に沿って像側へと移動する。
 さらに、第3レンズ群G3の一部である第11レンズ素子L11を像ぶれ補正レンズ群として光軸に直行する方向に移動させることによって、全系の振動による像点移動を補正する、すなわち、手ぶれ、振動等による像のぶれを光学的に補正することができる。
(実施の形態3)
 図7に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、物体側に凸面を向けた正メニスカス形状の第2レンズ素子L2と、物体側に凸面を向けた正メニスカス形状の第3レンズ素子L3と、物体側に凸面を向けた正メニスカス形状の第4レンズ素子L4とからなる。これらのうち、第1レンズ素子L1と第2レンズ素子L2とが接合されている。
 第2レンズ群G2は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第5レンズ素子L5と、両凹形状の第6レンズ素子L6と、両凸形状の第7レンズ素子L7と、像側に凸面を向けた負メニスカス形状の第8レンズ素子L8とからなる。これらのうち、第6レンズ素子L6と第7レンズ素子L7とが接合されている。また、第5レンズ素子L5は、その両面が非球面である。
 第3レンズ群G3は、物体側から像側へと順に、物体側に凸面を向けた正メニスカス形状の第9レンズ素子L9と、両凸形状の第10レンズ素子L10と、両凹形状の第11レンズ素子L11と、両凸形状の第12レンズ素子L12とからなる。これらのうち、第10レンズ素子L10と第11レンズ素子L11とが接合されている。また、第9レンズ素子L9及び第12レンズ素子L12は、各々その両面が非球面である。
 第4レンズ群G4は、物体側に凸面を向けた負メニスカス形状の第13レンズ素子L13のみからなる。
 第5レンズ群G5は、物体側から像側へと順に、両凸形状の第14レンズ素子L14と、物体側に凸面を向けた負メニスカス形状の第15レンズ素子L15とからなる。また、第14レンズ素子L14は、その両面が非球面である。
 撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側へ移動し、第3レンズ群G3は開口絞りAと一体的に物体側へ移動し、第4レンズ群G4は物体側へ移動し、第5レンズ群G5は移動しない。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が変化し、第4レンズ群G4と第5レンズ群G5との間隔が増大するように、第1レンズ群G1、第2レンズ群G2、第3レンズ群G3及び第4レンズ群G4が光軸に沿ってそれぞれ移動する。
 また、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第4レンズ群G4が光軸に沿って像側へと移動する。
 さらに、第3レンズ群G3を像ぶれ補正レンズ群として光軸に直行する方向に移動させることによって、全系の振動による像点移動を補正する、すなわち、手ぶれ、振動等による像のぶれを光学的に補正することができる。
(実施の形態4)
 図10に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、両凸形状の第2レンズ素子L2と、物体側に凸面を向けた正メニスカス形状の第3レンズ素子L3とからなる。これらのうち、第1レンズ素子L1と第2レンズ素子L2とが接合されている。
 第2レンズ群G2は、物体側から像側へと順に、両凹形状の第4レンズ素子L4と、両凹形状の第5レンズ素子L5と、両凸形状の第6レンズ素子L6と、両凹形状の第7レンズ素子L7とからなる。また、第4レンズ素子L4は、その両面が非球面である。
 第3レンズ群G3は、物体側から像側へと順に、両凸形状の第8レンズ素子L8と、両凸形状の第9レンズ素子L9と、像側に凸面を向けた負メニスカス形状の第10レンズ素子L10と、両凹形状の第11レンズ素子L11と、両凸形状の第12レンズ素子L12とからなる。これらのうち、第9レンズ素子L9と第10レンズ素子L10とが接合されている。また、第8レンズ素子L8及び第12レンズ素子L12は、各々その両面が非球面である。
 第4レンズ群G4は、物体側に凸面を向けた負メニスカス形状の第13レンズ素子L13のみからなる。
 第5レンズ群G5は、両凸形状の第14レンズ素子L14のみからなる。また、第14レンズ素子L14は、その両面が非球面である。
 第6レンズ群G6は、物体側に凸面を向けた負メニスカス形状の第15レンズ素子L15のみからなる。
 撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側へ移動し、第3レンズ群G3は開口絞りAと一体的に物体側へ移動し、第4レンズ群G4は物体側へ移動し、第5レンズ群G5は像側へ移動し、第6レンズ群G6は移動しない。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が変化し、第4レンズ群G4と第5レンズ群G5との間隔が増大し、第5レンズ群G5と第6レンズ群G6との間隔が減少するように、第1レンズ群G1、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4及び第5レンズ群G5が光軸に沿ってそれぞれ移動する。
 また、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第4レンズ群G4が光軸に沿って像側へと移動する。
 さらに、第3レンズ群G3の一部である第8レンズ素子L8、第9レンズ素子L9及び第10レンズ素子L10の3枚のレンズ素子を像ぶれ補正レンズ群として一体的に光軸に直行する方向に移動させることによって、全系の振動による像点移動を補正する、すなわち、手ぶれ、振動等による像のぶれを光学的に補正することができる。
(実施の形態5)
 図13に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、両凸形状の第2レンズ素子L2と、物体側に凸面を向けた正メニスカス形状の第3レンズ素子L3とからなる。これらのうち、第1レンズ素子L1と第2レンズ素子L2とが接合されている。
 第2レンズ群G2は、物体側から像側へと順に、両凹形状の第4レンズ素子L4と、両凹形状の第5レンズ素子L5と、両凸形状の第6レンズ素子L6と、両凹形状の第7レンズ素子L7とからなる。これらのうち、第5レンズ素子L5と第6レンズ素子L6とが接合されている。また、第4レンズ素子L4は、その両面が非球面である。
 第3レンズ群G3は、物体側から像側へと順に、物体側に凸面を向けた正メニスカス形状の第8レンズ素子L8と、両凸形状の第9レンズ素子L9と、両凹形状の第10レンズ素子L10と、両凸形状の第11レンズ素子L11とからなる。これらのうち、第9レンズ素子L9と第10レンズ素子L10とが接合されている。また、第8レンズ素子L8及び第11レンズ素子L11は、各々その両面が非球面である。
 第4レンズ群G4は、物体側に凸面を向けた負メニスカス形状の第12レンズ素子L12のみからなる。
 第5レンズ群G5は、両凸形状の第13レンズ素子L13のみからなる。また、第13レンズ素子L13は、その両面が非球面である。
 第6レンズ群G6は、物体側に凸面を向けた負メニスカス形状の第14レンズ素子L14のみからなる。また、第14レンズ素子L14は、その両面が非球面である。
 撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側へ移動し、第3レンズ群G3は開口絞りAと一体的に物体側へ移動し、第4レンズ群G4は物体側へ移動し、第5レンズ群G5は像側へ移動し、第6レンズ群G6は移動しない。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が変化し、第4レンズ群G4と第5レンズ群G5との間隔が増大し、第5レンズ群G5と第6レンズ群G6との間隔が減少するように、第1レンズ群G1、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4及び第5レンズ群G5が光軸に沿ってそれぞれ移動する。
 また、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第4レンズ群G4が光軸に沿って像側へと移動する。
 さらに、第3レンズ群G3を像ぶれ補正レンズ群として光軸に直行する方向に移動させることによって、全系の振動による像点移動を補正する、すなわち、手ぶれ、振動等による像のぶれを光学的に補正することができる。
(実施の形態6)
 図16に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、両凸形状の第2レンズ素子L2と、物体側に凸面を向けた正メニスカス形状の第3レンズ素子L3とからなる。これらのうち、第1レンズ素子L1と第2レンズ素子L2とが接合されている。
 第2レンズ群G2は、物体側から像側へと順に、両凹形状の第4レンズ素子L4と、両凹形状の第5レンズ素子L5と、両凸形状の第6レンズ素子L6と、像側に凸面を向けた負メニスカス形状の第7レンズ素子L7とからなる。これらのうち、第5レンズ素子L5と第6レンズ素子L6とが接合されている。また、第4レンズ素子L4は、その両面が非球面である。
 第3レンズ群G3は、物体側から像側へと順に、物体側に凸面を向けた正メニスカス形状の第8レンズ素子L8と、両凸形状の第9レンズ素子L9と、両凹形状の第10レンズ素子L10と、両凸形状の第11レンズ素子L11とからなる。これらのうち、第9レンズ素子L9と第10レンズ素子L10とが接合されている。また、第8レンズ素子L8及び第11レンズ素子L11は、各々その両面が非球面である。
 第4レンズ群G4は、物体側に凸面を向けた負メニスカス形状の第12レンズ素子L12のみからなる。
 第5レンズ群G5は、両凸形状の第13レンズ素子L13のみからなる。また、第13レンズ素子L13は、その両面が非球面である。
 第6レンズ群G6は、物体側に凸面を向けた負メニスカス形状の第14レンズ素子L14のみからなる。
 撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側へ移動し、第3レンズ群G3は開口絞りAと一体的に物体側へ移動し、第4レンズ群G4は物体側へ移動し、第5レンズ群G5は像側へ移動し、第6レンズ群G6は移動しない。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が変化し、第4レンズ群G4と第5レンズ群G5との間隔が増大し、第5レンズ群G5と第6レンズ群G6との間隔が減少するように、第1レンズ群G1、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4及び第5レンズ群G5が、光軸に沿ってそれぞれ移動する。
 また、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第4レンズ群G4が光軸に沿って像側へと移動する。
 さらに、第3レンズ群G3の一部である第11レンズ素子L11を像ぶれ補正レンズ群として光軸に直行する方向に移動させることによって、全系の振動による像点移動を補正する、すなわち、手ぶれ、振動等による像のぶれを光学的に補正することができる。
 実施の形態1~3及び5~6に係るズームレンズ系では、第2レンズ群G2が少なくとも1組の接合レンズ素子を含む。第2レンズ群G2に接合レンズ素子が含まれず、狭い間隔で複数のレンズ素子が配置されていると、空気間隔の誤差に対する性能劣化度合が高くなり、光学系の組み立てが困難となる場合がある。
 実施の形態1~6に係るズームレンズ系は、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に像面に対して移動するフォーカシングレンズ群(第4レンズ群G4)を備えており、該フォーカシングレンズ群は、1枚のレンズ素子で構成される。フォーカシングレンズ群が複数のレンズ素子で構成されていると、該フォーカシングレンズ群を光軸方向に移動するためのアクチュエータが大きくなり、コンパクトなレンズ鏡筒や撮像装置、カメラを提供することが困難となる。
 実施の形態1~6に係るズームレンズ系では、撮像時の広角端から望遠端へのズーミングの際に、少なくとも1つのレンズ群が像面に対して固定されている。ズーミングの際に像面に対して全てのレンズ群が移動すると、それらの駆動機構の構成が肥大化し、コンパクトなレンズ鏡筒や交換レンズ装置及びカメラシステムを提供することが困難となる。
 以上のように、本出願において開示する技術の例示として、実施の形態1~6を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。
 以下、例えば実施の形態1~6に係るズームレンズ系のごときズームレンズ系が満足することが有益な条件を説明する。なお、各実施の形態に係るズームレンズ系に対して、複数の有益な条件が規定されるが、これら複数の条件すべてを満足するズームレンズ系の構成が最も有益である。しかしながら、個別の条件を満足することにより、それぞれ対応する効果を奏するズームレンズ系を得ることも可能である。
 例えば実施の形態1~6に係るズームレンズ系のように、物体側から像側へと順に、正のパワーを有する第1レンズ群と、負のパワーを有する第2レンズ群と、正のパワーを有する第3レンズ群と、負のパワーを有する第4レンズ群と、正のパワーを有する第5レンズ群とを備え、前記第1レンズ群が、3枚以上のレンズ素子で構成され、撮像時の広角端から望遠端へのズーミングの際に、少なくとも前記第1レンズ群と前記第2レンズ群と前記第3レンズ群とが像面に対して移動する(以下、このレンズ構成を、実施の形態の基本構成という)ズームレンズ系は、以下の条件(1)及び(2)を満足する。
  3.2<LG3/(f×tan(ω)) ・・・(1)
  2.0<|MG1/(f×tan(ω))|<15.0 ・・・(2)
ここで、
 LG3:第3レンズ群の光軸上での厚み、
 f:望遠端における全系の焦点距離、
 ω:望遠端における半画角、
 MG1:撮像時の広角端から望遠端へのズーミングの際の、第1レンズ群の光軸方向の移動量
である。
 なお、MG1は、望遠端における像面から第1レンズ群の最物体側面までの光軸上の距離から、広角端における像面から第1レンズ群の最物体側面までの光軸上の距離を引いた値である。
 前記条件(1)は、第3レンズ群の光軸上での厚みと、望遠端における全系の焦点距離及び半画角との関係を規定するための条件である。条件(1)の下限を下回ると、第3レンズ群内におけるレンズ素子同士の間隔が狭くなり、特に望遠端における像面湾曲の補正が困難となる。また、レンズ素子同士の間隔の誤差に対する性能劣化度合が高くなり、光学系の組み立てが困難となる。
 前記条件(2)は、撮像時の広角端から望遠端へのズーミングの際の、第1レンズ群の光軸方向の移動量と、望遠端における全系の焦点距離及び半画角との関係を規定するための条件である。条件(2)の下限を下回ると、第1レンズ群の焦点距離が短くなり、変倍時の収差変動が大きくなって、諸収差の補正が困難となるため、高い変倍比の実現が困難となる。逆に条件(2)の上限を上回ると、変倍時における第1レンズ群の移動量が大きくなり、コンパクトなレンズ鏡筒や撮像装置、カメラを提供することが困難となる。
 以下の条件(1)’と、(2)’-1及び(2)’’の少なくとも1つと、を満足することにより、前記効果をさらに奏功させることができる。
  3.6<LG3/(f×tan(ω)) ・・・(1)’
  4.0<|MG1/(f×tan(ω))| ・・・(2)’-1
  |MG1/(f×tan(ω))|<12.0 ・・・(2)’’
 また、以下の条件(1)’’と、(2)’-2及び(2)’’の少なくとも1つと、を満足することにより、前記効果をより一層奏功させることができる。
  4.0<LG3/(f×tan(ω)) ・・・(1)’’
  6.0<|MG1/(f×tan(ω))| ・・・(2)’-2
  |MG1/(f×tan(ω))|<12.0 ・・・(2)’’
 例えば実施の形態1~6に係るズームレンズ系のように、基本構成を有し、第2レンズ群が、物体側から像側へと順に、負のパワーを有する第1レンズ素子と負のパワーを有する第2レンズ素子とを有するズームレンズ系では、これら第1レンズ素子及び第2レンズ素子が、以下の条件(3)及び(4)を満足することが有益である。
  4.1<|R2a/R2b| ・・・(3)
  -0.1<(R2b-R2c)/(R2b+R2c) ・・・(4)
ここで、
 R2a:第1レンズ素子の物体側面の曲率半径、
 R2b:第1レンズ素子の像側面の曲率半径、
 R2c:第2レンズ素子の像側面の曲率半径
である。
 前記条件(3)は、第2レンズ群内の第1負レンズ素子の物体側面の曲率半径と、該第1負レンズ素子の像側面の曲率半径との関係を規定するための条件である。条件(3)の下限を下回ると、第1負レンズ素子の像側面の曲率半径が大きく、第1負レンズ素子の像側面の曲率が弱くなり、特に望遠端における球面収差の補正が困難となる。
 前記条件(4)は、第2レンズ群内の第1負レンズ素子の像側面の曲率半径と、第2レンズ群内の第2負レンズ素子の像側面の曲率半径との関係を規定するための条件である。条件(4)の下限を下回ると、第1負レンズ素子の像側面の曲率半径が、第2負レンズ素子の像側面の曲率半径に比べて小さく、第1負レンズ素子の像側面の曲率が、第2負レンズ素子の像側面の曲率に比べて強くなり、特に望遠端におけるコマ収差の補正が困難となる。
 以下の条件(3)’及び(4)’を満足することにより、前記効果をさらに奏功させることができる。
  5.0<|R2a/R2b| ・・・(3)’
  0<(R2b-R2c)/(R2b+R2c) ・・・(4)’
 また、以下の条件(3)’’及び(4)’’を満足することにより、前記効果をより一層奏功させることができる。
  6.0<|R2a/R2b| ・・・(3)’’
  0.1<(R2b-R2c)/(R2b+R2c) ・・・(4)’’
 例えば実施の形態1~6に係るズームレンズ系のように、基本構成を有するズームレンズ系では、第3レンズ群が少なくとも1枚の正のパワーを有するレンズ素子を有し、以下の条件(5)を満足することが有益である。
  N3p<1.64 ・・・(5)
ここで、
 N3p:第3レンズ群を構成する正のパワーを有するレンズ素子の、d線に対する屈折率の平均値
である。
 前記条件(5)は、第3レンズ群を構成する正のパワーを有するレンズ素子の、d線に対する屈折率の平均値を規定するための条件である。条件(5)の上限を上回ると、第3レンズ群のパワーが強くなり、特に望遠端における球面収差の補正が困難となる。また、屈折率の高い硝材は比重が高い傾向にあるため、第3レンズ群を構成するレンズ素子の重量が大きくなる。その結果、像のぶれを光学的に補正するためのレンズ群として第3レンズ群を選んだ際に、このレンズ群の駆動機構の構成が肥大化し、コンパクトなレンズ鏡筒や撮像装置、カメラを提供することが困難となる。
 以下の条件(5)’を満足することにより、前記効果をさらに奏功させることができる。
  N3p<1.59 ・・・(5)’
 また、以下の条件(5)’’を満足することにより、前記効果をより一層奏功させることができる。
  N3p<1.54 ・・・(5)’’
 例えば実施の形態1~6に係るズームレンズ系のように、基本構成を有するズームレンズ系は、以下の条件(6)を満足することが有益である。
  0.6<|MG4/MG2|<8.0 ・・・(6)
ここで、
 MG2:撮像時の広角端から望遠端へのズーミングの際の、第2レンズ群の光軸方向の移動量、
 MG4:撮像時の広角端から望遠端へのズーミングの際の、第4レンズ群の光軸方向の移動量
である。
 なお、MG2は、望遠端における像面から第2レンズ群の最物体側面までの光軸上の距離から、広角端における像面から第2レンズ群の最物体側面までの光軸上の距離を引いた値である。また、MG4は、望遠端における像面から第4レンズ群の最物体側面までの光軸上の距離から、広角端における像面から第4レンズ群の最物体側面までの光軸上の距離を引いた値である。
 前記条件(6)は、撮像時の広角端から望遠端へのズーミングの際の、第2レンズ群の光軸方向の移動量と、第4レンズ群の光軸方向の移動量との比を規定するための条件である。条件(6)の下限を下回ると、ズーミングの際の第4レンズ群の移動量に比べて、第2レンズ群の移動量が大きくなり、特に望遠端における非点収差の補正が困難となる。逆に条件(6)の上限を上回ると、ズーミングの際の第2レンズ群の移動量に比べて、第4レンズ群の移動量が大きくなり、特に望遠端における像面湾曲の補正が困難となる。
 以下の条件(6)’-1及び(6)’’の少なくとも1つを満足することにより、前記効果をさらに奏功させることができる。
  1.0<|MG4/MG2| ・・・(6)’-1
  |MG4/MG2|<6.0 ・・・(6)’’
 また、以下の条件(6)’-2及び(6)’’の少なくとも1つを満足することにより、前記効果をより一層奏功させることができる。
  1.4<|MG4/MG2| ・・・(6)’-2
  |MG4/MG2|<6.0 ・・・(6)’’
 例えば実施の形態1~6に係るズームレンズ系のように、基本構成を有するズームレンズ系は、以下の条件(7)を満足することが有益である。
  0.3<fG1/f<0.9 ・・・(7)
ここで、
 fG1:第1レンズ群の焦点距離、
 f:望遠端における全系の焦点距離
である。
 前記条件(7)は、第1レンズ群の焦点距離と、望遠端における全系の焦点距離との関係を規定するための条件である。条件(7)の下限を下回ると、第1レンズ群の焦点距離が短くなり、変倍時の収差変動が大きくなって、諸収差の補正が困難となるため、高いズーム比の実現が困難となる。逆に条件(7)の上限を上回ると、第1レンズ群の焦点距離が長くなり、変倍時における第1レンズ群の移動量が大きくなるため、コンパクトなレンズ鏡筒や撮像装置、カメラを提供することが困難となる。
 以下の条件(7)’-1及び(7)’’の少なくとも1つを満足することにより、前記効果をさらに奏功させることができる。
  0.4<fG1/f ・・・(7)’-1
  fG1/f<0.8 ・・・(7)’’
 また、以下の条件(7)’-2及び(7)’’の少なくとも1つを満足することにより、前記効果をより一層奏功させることができる。
  0.5<fG1/f ・・・(7)’-2
  fG1/f<0.8 ・・・(7)’’
 例えば実施の形態1~6に係るズームレンズ系のように、基本構成を有するズームレンズ系は、以下の条件(8)を満足することが有益である。
  10<|(G4T-G4M)/(G4M-G4W)| ・・・(8)
ここで、
 G4W:広角端における第4レンズ群の物体側面頂から像面までの距離、
 G4T:望遠端における第4レンズ群の物体側面頂から像面までの距離、
 G4M:中間位置における第4レンズ群の物体側面頂から像面までの距離、
 中間位置:全系の焦点距離fが次式で表される位置
      f=√(f*f)、
 f:広角端における全系の焦点距離、
 f:望遠端における全系の焦点距離
である。
 前記条件(8)は、広角端、望遠端及び中間位置各々における、第4レンズ群の物体側面頂から像面までの距離を規定するための条件である。条件(8)の下限を下回ると、望遠端において第4レンズ群と第5レンズ群との間隔が狭くなり、フォーカシングの際に例えば第4レンズ群を移動させる場合、フォーカシングのための空間の確保が困難となる。
 以下の条件(8)’を満足することにより、前記効果をさらに奏功させることができる。
  15<|(G4T-G4M)/(G4M-G4W)| ・・・(8)’
 また、以下の条件(8)’’を満足することにより、前記効果をより一層奏功させることができる。
  20<|(G4T-G4M)/(G4M-G4W)| ・・・(8)’’
 例えば実施の形態1~6に係るズームレンズ系のように、基本構成を有するズームレンズ系は、以下の条件(9)を満足することが有益である。
  |MG5/(f×tan(ω))|<1.5 ・・・(9)
ここで、
 MG5:撮像時の広角端から望遠端へのズーミングの際の、第5レンズ群の光軸方向の移動量、
 f:望遠端における全系の焦点距離、
 ω:望遠端における半画角
である。
 なお、MG5は、望遠端における像面から第5レンズ群の最物体側面までの光軸上の距離から、広角端における像面から第5レンズ群の最物体側面までの光軸上の距離を引いた値である。
 前記条件(9)は、撮像時の広角端から望遠端へのズーミングの際の、第5レンズ群の光軸方向の移動量と、望遠端における全系の焦点距離及び半画角との関係を規定するための条件である。条件(9)の上限を上回ると、像面を補正する役割を担う第5レンズ群の移動量が大きくなり、広角端から望遠端まで一様に像面を補正することが困難となる。
 以下の条件(9)’-1及び(9)’’-1の少なくとも1つを満足することにより、前記効果をさらに奏功させることができる。
  0.2<|MG5/(f×tan(ω))| ・・・(9)’-1
  |MG5/(f×tan(ω))|<1.4 ・・・(9)’’-1
 また、以下の条件(9)’-2及び(9)’’-2の少なくとも1つを満足することにより、前記効果をより一層奏功させることができる。
  0.4<|MG5/(f×tan(ω))| ・・・(9)’-2
  |MG5/(f×tan(ω))|<1.3 ・・・(9)’’-2
 実施の形態1~6に係るズームレンズ系を構成している各レンズ群は、入射光線を屈折により偏向させる屈折型レンズ素子(すなわち、異なる屈折率を有する媒質同士の界面で偏向が行われるタイプのレンズ素子)のみで構成されているが、これに限定されるものではない。例えば、回折により入射光線を偏向させる回折型レンズ素子、回折作用と屈折作用との組み合わせで入射光線を偏向させる屈折・回折ハイブリッド型レンズ素子、入射光線を媒質内の屈折率分布により偏向させる屈折率分布型レンズ素子等で、各レンズ群を構成してもよい。特に、屈折・回折ハイブリッド型レンズ素子において、屈折率の異なる媒質の界面に回折構造を形成すると、回折効率の波長依存性が改善されるので、有益である。
(実施の形態7)
 図19は、実施の形態7に係るデジタルスチルカメラの概略構成図である。図19において、デジタルスチルカメラは、ズームレンズ系1とCCDである撮像素子2とを含む撮像装置と、液晶モニタ3と、筐体4とから構成される。ズームレンズ系1として、実施の形態1に係るズームレンズ系が用いられている。図19において、ズームレンズ系1は、第1レンズ群G1と、第2レンズ群G2と、開口絞りAと、第3レンズ群G3と、第4レンズ群G4と、第5レンズ群G5と、第6レンズ群G6とから構成されている。筐体4は、前側にズームレンズ系1が配置され、ズームレンズ系1の後側には、撮像素子2が配置されている。筐体4の後側に液晶モニタ3が配置され、ズームレンズ系1による被写体の光学的な像が像面Sに形成される。
 鏡筒は、主鏡筒5と、移動鏡筒6と、円筒カム7とで構成されている。円筒カム7を回転させると、第1レンズ群G1、第2レンズ群G2、開口絞りA及び第3レンズ群G3、第4レンズ群G4、第5レンズ群G5、第6レンズ群G6が撮像素子2を基準にした所定の位置に移動し、広角端から望遠端までのズーミングを行うことができる。第4レンズ群G4はフォーカス調整用モータにより光軸方向に移動可能である。
 こうして、デジタルスチルカメラに実施の形態1に係るズームレンズ系を用いることにより、解像度及び像面湾曲を補正する能力が高く、非使用時のレンズ全長が短い小型のデジタルスチルカメラを提供することができる。なお、図19に示したデジタルスチルカメラには、実施の形態1に係るズームレンズ系の替わりに実施の形態2~6に係るズームレンズ系のいずれかを用いてもよい。また、図19に示したデジタルスチルカメラの光学系は、動画像を対象とするデジタルビデオカメラに用いることもできる。この場合、静止画像だけでなく、解像度の高い動画像を撮影することができる。
 なお、本実施の形態7に係るデジタルスチルカメラでは、ズームレンズ系1として実施の形態1~6に係るズームレンズ系を示したが、これらのズームレンズ系は、全てのズーミング域を使用しなくてもよい。すなわち、所望のズーミング域に応じて、光学性能が確保されている範囲を切り出し、実施の形態1~6で説明したズームレンズ系よりも低倍率のズームレンズ系として使用してもよい。
 さらに、実施の形態7では、いわゆる沈胴構成の鏡筒にズームレンズ系を適用した例を示したが、これに限られない。例えば、第1レンズ群G1内等の任意の位置に、内部反射面を持つプリズムや、表面反射ミラーを配置し、いわゆる屈曲構成の鏡筒にズームレンズ系を適用してもよい。
 また、以上説明した実施の形態1~6に係るズームレンズ系と、CCDやCMOS等の撮像素子とから構成される撮像装置を、スマートフォン等の携帯情報端末のカメラ、監視システムにおける監視カメラ、Webカメラ、車載カメラ等に適用することもできる。
 以上のように、本出願において開示する技術の例示として、実施の形態7を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。
 以下、実施の形態1~6に係るズームレンズ系を具体的に実施した数値実施例を説明する。なお、各数値実施例において、表中の長さの単位はすべて「mm」であり、画角の単位はすべて「°」である。また、各数値実施例において、rは曲率半径、dは面間隔、ndはd線に対する屈折率、vdはd線に対するアッベ数である。また、各数値実施例において、*印を付した面は非球面であり、非球面形状は次式で定義している。
Figure JPOXMLDOC01-appb-M000001
ここで、
Z:光軸からの高さがhの非球面上の点から、非球面頂点の接平面までの距離、
h:光軸からの高さ、
r:頂点曲率半径、
κ:円錐定数、
An:n次の非球面係数
である。
 図2、5、8、11、14及び17は、各々数値実施例1~6に係るズームレンズ系の無限遠合焦状態の縦収差図である。
 各縦収差図において、(a)図は広角端、(b)図は中間位置、(c)図は望遠端における各収差を表す。各縦収差図は、左側から順に、球面収差(SA(mm))、非点収差(AST(mm))、歪曲収差(DIS(%))を示す。球面収差図において、縦軸はFナンバー(図中、Fで示す)を表し、実線はd線(d-line)、短破線はF線(F-line)、長破線はC線(C-line)の特性である。非点収差図において、縦軸は像高(図中、Hで示す)を表し、実線はサジタル平面(図中、sで示す)、破線はメリディオナル平面(図中、mで示す)の特性である。歪曲収差図において、縦軸は像高(図中、Hで示す)を表す。
 図3、6、9、12、15及び18は、各々数値実施例1~6に係るズームレンズ系の望遠端における横収差図である。
 各横収差図において、上段3つの収差図は、望遠端における像ぶれ補正を行っていない基本状態、下段3つの収差図は、像ぶれ補正レンズ群を光軸と垂直な方向に所定量移動させた望遠端における像ぶれ補正状態に、それぞれ対応する。基本状態の各横収差図のうち、上段は最大像高の70%の像点における横収差、中段は軸上像点における横収差、下段は最大像高の-70%の像点における横収差に、それぞれ対応する。像ぶれ補正状態の各横収差図のうち、上段は最大像高の70%の像点における横収差、中段は軸上像点における横収差、下段は最大像高の-70%の像点における横収差に、それぞれ対応する。また各横収差図において、横軸は瞳面上での主光線からの距離を表し、実線はd線(d-line)、短破線はF線(F-line)、長破線はC線(C-line)の特性である。なお各横収差図において、メリディオナル平面を、第1レンズ群G1の光軸と第3レンズ群G3の光軸とを含む平面としている。
 なお、各数値実施例のズームレンズ系について、望遠端における、像ぶれ補正状態での像ぶれ補正レンズ群の光軸と垂直な方向への移動量は、以下に示すとおりである。
数値実施例1 0.431mm
数値実施例2 0.517mm
数値実施例3 0.223mm
数値実施例4 0.287mm
数値実施例5 0.228mm
数値実施例6 0.511mm
 数値実施例1、2及び6について、撮影距離が∞で望遠端において、ズームレンズ系が0.6°だけ傾いた場合の像偏心量は、像ぶれ補正レンズ群が光軸と垂直な方向に上記の各値だけ平行移動するときの像偏心量に等しい。
 数値実施例3~5について、撮影距離が∞で望遠端において、ズームレンズ系が0.3°だけ傾いた場合の像偏心量は、像ぶれ補正レンズ群が光軸と垂直な方向に上記の各値だけ平行移動するときの像偏心量に等しい。
 各横収差図から明らかなように、軸上像点における横収差の対称性は良好であることがわかる。また、+70%像点における横収差と-70%像点における横収差とを基本状態で比較すると、いずれも湾曲度が小さく、収差曲線の傾斜がほぼ等しいことから、偏心コマ収差、偏心非点収差が小さいことがわかる。このことは、像ぶれ補正状態であっても充分な結像性能が得られていることを意味している。また、ズームレンズ系の像ぶれ補正角が同じ場合には、ズームレンズ系全体の焦点距離が短くなるにつれて、像ぶれ補正に必要な平行移動量が減少する。したがって、いずれのズーム位置であっても、0.3°乃至0.6°までの像ぶれ補正角に対して、結像特性を低下させることなく充分な像ぶれ補正を行うことが可能である。
(数値実施例1)
 数値実施例1のズームレンズ系は、図1に示した実施の形態1に対応する。数値実施例1のズームレンズ系の面データを表1に、非球面データを表2に、各種データを表3に示す。
表 1(面データ)
 
  面番号         r           d           nd         vd     
    物面             ∞                                    
     1         77.26180     1.25000     1.90366    31.3    
     2         43.58840     4.99930     1.49700    81.6    
     3       3475.28240     0.15000                        
     4         48.53490     4.40900     1.59282    68.6    
     5       1255.14270        可変                        
     6*      -173.72890     0.50000     1.88202    37.2    
     7*        20.55860     3.88600                        
     8        -30.69750     0.55000     1.80420    46.5    
     9         12.74650     4.92640     1.92286    20.9    
    10        -85.79200     0.95080                        
    11        -22.33630     0.55000     1.80420    46.5    
    12        221.20270        可変                        
  13(絞り)           ∞     1.00000                        
    14*        12.71340     2.88440     1.51760    63.5    
    15*       176.37160     5.77000                        
    16         16.59210     3.09530     1.43700    95.1    
    17        -22.69720     0.50000     1.69895    30.0    
    18         16.81620     4.28870                        
    19*        12.47270     4.11140     1.52996    55.8    
    20*       -27.25680        可変                        
    21         76.43180     1.29130     1.43700    95.1    
    22         19.70840        可変                        
    23*        18.51920     2.00000     1.52996    55.8    
    24*       -27.35030        可変                        
    25*        93.41950     1.63940     1.88202    37.2    
    26*        14.45290        (BF)                        
    像面             ∞                                    
表 2(非球面データ)
 
  第6面
   K= 0.00000E+00, A4= 7.03907E-06, A6= 1.73538E-06, A8=-1.58316E-08 
   A10= 6.92314E-11, A12=-1.41360E-13, A14= 0.00000E+00 
  第7面
   K= 0.00000E+00, A4= 9.20742E-06, A6= 1.99757E-06, A8=-9.25527E-09 
   A10= 1.55543E-10, A12=-2.76001E-13, A14= 0.00000E+00 
  第14面
   K= 0.00000E+00, A4=-2.21991E-05, A6=-1.60020E-06, A8= 1.24976E-07 
   A10=-3.39866E-09, A12= 4.20857E-11, A14=-1.53813E-16 
  第15面
   K= 0.00000E+00, A4= 3.22722E-05, A6=-2.82561E-06, A8= 2.20595E-07 
   A10=-6.12270E-09, A12= 7.24126E-11, A14=-5.87135E-16 
  第19面
   K= 0.00000E+00, A4=-8.89475E-05, A6=-7.28424E-07, A8= 2.18418E-08 
   A10=-2.17787E-10, A12= 0.00000E+00, A14= 0.00000E+00 
  第20面
   K= 0.00000E+00, A4= 6.08125E-05, A6=-6.28035E-07, A8= 2.23874E-08 
   A10=-2.14290E-10, A12= 0.00000E+00, A14= 0.00000E+00 
  第23面
   K= 0.00000E+00, A4=-2.52665E-04, A6= 1.92989E-07, A8= 1.49693E-07 
   A10=-4.63114E-11, A12= 0.00000E+00, A14= 0.00000E+00 
  第24面
   K= 0.00000E+00, A4=-1.64660E-04, A6= 2.05481E-06, A8= 2.33718E-07 
   A10=-2.08344E-09, A12= 0.00000E+00, A14= 0.00000E+00 
  第25面
   K= 0.00000E+00, A4=-8.10377E-05, A6=-8.05120E-06, A8=-1.79624E-07 
   A10= 9.89689E-09, A12= 0.00000E+00, A14= 0.00000E+00 
  第26面
   K= 0.00000E+00, A4=-1.47993E-04, A6=-2.02818E-05, A8=-3.76149E-07 
   A10= 2.19605E-08, A12= 0.00000E+00, A14= 0.00000E+00 
表 3(各種データ)
 
  ズーム比    23.27974
                広角      中間      望遠
  焦点距離       4.6411   22.3922  108.0443
 Fナンバー     2.85063   2.85099   2.85105
    画角        41.2210   10.3348    2.0558
    像高         3.3930    3.8920    3.8920
 レンズ全長     91.8431  105.7605  128.8431
    BF         2.7714    2.7941    2.8211
    d5           0.6000   25.4000   48.1056 
    d12         34.7765    9.7102    1.7014 
    d20          2.2814    8.0955    1.2501 
    d22          2.1794   12.3619   28.2340 
    d24          3.2538    1.4409    0.8000 
 
ズームレンズ群データ
  群    始面      焦点距離
   1       1      72.10667
   2       6      -9.08906
   3      13      19.22679
   4      21     -61.19245
   5      23      21.15566
   6      25     -19.57561
(数値実施例2)
 数値実施例2のズームレンズ系は、図4に示した実施の形態2に対応する。数値実施例2のズームレンズ系の面データを表4に、非球面データを表5に、各種データを表6に示す。
表 4(面データ)
 
  面番号         r           d           nd         vd     
    物面             ∞                                    
     1         83.96140     1.25000     1.90366    31.3    
     2         46.47590     4.99690     1.49700    81.6    
     3       -709.80670     0.15000                        
     4         46.04520     4.17910     1.59282    68.6    
     5        306.35190        可変                        
     6*      -263.78830     0.50000     1.88202    37.2    
     7*        15.39430     3.66430                        
     8        -89.30300     0.55000     1.80420    46.5    
     9         11.00000     5.00000     1.92286    20.9    
    10        -61.97480     2.38630                        
    11        -12.97010     0.55000     1.80420    46.5    
    12        -84.04030        可変                        
  13(絞り)           ∞     1.00000                        
    14*        13.16370     2.83280     1.61035    57.9    
    15*       203.78650     3.48480                        
    16         21.92920     2.08820     1.43700    95.1    
    17        -40.98430     0.50000     1.75520    27.5    
    18         15.05090     2.80730                        
    19*        14.63730     4.28680     1.52500    70.3    
    20*       -18.33730        可変                        
    21         53.49830     0.70000     1.80000    29.8    
    22         20.74610        可変                        
    23*        20.59310     2.00000     1.63550    23.9    
    24*       -48.84340        可変                        
    25         11.71490     0.60000     1.70154    41.1    
    26          8.39090        (BF)                        
    像面             ∞                                    
表 5(非球面データ)
 
  第6面
   K= 0.00000E+00, A4= 7.63579E-05, A6=-8.20832E-07, A8= 7.29428E-09 
   A10=-3.63091E-11, A12= 7.05692E-14, A14= 0.00000E+00 
  第7面
   K= 0.00000E+00, A4= 5.04440E-05, A6=-6.29251E-07, A8= 1.69006E-09 
   A10= 7.65749E-11, A12=-1.04523E-12, A14= 0.00000E+00 
  第14面
   K= 0.00000E+00, A4= 1.46776E-05, A6=-1.58781E-06, A8= 1.32090E-07 
   A10=-3.40616E-09, A12= 4.17207E-11, A14= 4.05294E-17 
  第15面
   K= 0.00000E+00, A4= 8.53831E-05, A6=-2.49793E-06, A8= 2.08242E-07 
   A10=-5.68134E-09, A12= 7.03937E-11, A14=-5.87133E-16 
  第19面
   K= 0.00000E+00, A4=-8.45850E-05, A6= 7.53780E-08, A8=-4.09606E-09 
   A10= 3.61828E-11, A12= 0.00000E+00, A14= 0.00000E+00 
  第20面
   K= 0.00000E+00, A4= 3.89614E-05, A6= 1.38892E-07, A8=-4.90556E-09 
   A10= 4.79332E-11, A12= 0.00000E+00, A14= 0.00000E+00 
  第23面
   K= 0.00000E+00, A4= 3.07337E-05, A6=-3.04031E-06, A8= 1.30493E-07 
   A10=-1.18745E-09, A12= 0.00000E+00, A14= 0.00000E+00 
  第24面
   K= 0.00000E+00, A4= 9.23579E-05, A6=-4.21265E-06, A8= 1.85834E-07 
   A10=-1.99753E-09, A12= 0.00000E+00, A14= 0.00000E+00 
表 6(各種データ)
 
  ズーム比    23.27799
                広角      中間      望遠
  焦点距離       4.6406   22.3890  108.0242
 Fナンバー     2.85062   2.85017   2.85035
    画角        41.7241   10.8092    2.0067
    像高         3.3930    3.8917    3.8920
 レンズ全長     85.5628  101.0141  127.5627
    BF         4.0041    3.9749    4.0043
    d5           0.6000   25.4000   49.5829 
    d12         31.5541    7.3942    1.6034 
    d20          1.2500   15.4447    9.0177 
    d22          2.6655    3.9412   19.8358 
    d24          5.9667    5.3075    3.9964 
 
ズームレンズ群データ
  群    始面      焦点距離
   1       1      73.39099
   2       6      -8.69400
   3      13      17.82752
   4      21     -42.76525
   5      23      23.05219
   6      25     -45.54273
(数値実施例3)
 数値実施例3のズームレンズ系は、図7に示した実施の形態3に対応する。数値実施例3のズームレンズ系の面データを表7に、非球面データを表8に、各種データを表9に示す。
表 7(面データ)
 
  面番号         r           d           nd         vd     
    物面             ∞                                    
     1        124.45980     1.25000     1.90366    31.3    
     2         57.01060     4.98570     1.49700    81.6    
     3       2762.40130     0.15000                        
     4         59.57740     4.17970     1.59282    68.6    
     5       1143.79190     0.15000                        
     6         56.24580     2.32830     1.49700    81.6    
     7        120.74790        可変                        
     8*        51.26110     0.50000     1.88202    37.2    
     9*        12.21230     4.92590                        
    10        -22.32630     0.55000     1.80420    46.5    
    11         14.25070     3.24550     1.92286    20.9    
    12        -47.60180     1.61580                        
    13        -14.49640     0.55000     1.80420    46.5    
    14        -40.59450        可変                        
  15(絞り)           ∞     1.07740                        
    16*        12.85200     2.85900     1.51760    63.5    
    17*       227.47230     6.73230                        
    18         14.04740     3.00910     1.49700    81.6    
    19        -40.95780     0.50000     1.69895    30.0    
    20         13.24750     3.59360                        
    21*        11.17310     3.86220     1.52996    55.8    
    22*       -44.69580        可変                        
    23         80.51560     2.13330     1.69384    53.1    
    24         22.35780        可変                        
    25*        30.56000     1.66000     1.61035    57.9    
    26*       -60.47800     0.50100                        
    27         15.90920     2.76060     1.80518    25.5    
    28         12.45570        (BF)                        
    像面             ∞                                    
表 8(非球面データ)
 
  第8面
   K= 0.00000E+00, A4=-2.15652E-05, A6= 1.69349E-06, A8=-1.94115E-08 
   A10= 8.49738E-11, A12=-9.61072E-14, A14= 0.00000E+00 
  第9面
   K= 0.00000E+00, A4=-2.49121E-05, A6= 1.27123E-06, A8= 1.41551E-08 
   A10=-2.61562E-10, A12= 4.49913E-13, A14= 0.00000E+00 
  第16面
   K= 0.00000E+00, A4=-3.04137E-05, A6=-1.68911E-06, A8= 1.20172E-07 
   A10=-3.34117E-09, A12= 4.21124E-11, A14= 7.45635E-16 
  第17面
   K= 0.00000E+00, A4= 2.14583E-05, A6=-3.08631E-06, A8= 2.21305E-07 
   A10=-6.10459E-09, A12= 7.23383E-11, A14=-7.26924E-15 
  第21面
   K= 0.00000E+00, A4=-1.02865E-04, A6=-1.00237E-06, A8= 1.89860E-08 
   A10=-2.96477E-10, A12= 0.00000E+00, A14= 0.00000E+00 
  第22面
   K= 0.00000E+00, A4= 6.32235E-05, A6=-6.67878E-07, A8= 1.56517E-08 
   A10=-2.38086E-10, A12= 0.00000E+00, A14= 0.00000E+00 
  第25面
   K= 0.00000E+00, A4=-5.30369E-04, A6= 1.28246E-06, A8=-1.65118E-08 
   A10= 1.25837E-09, A12= 0.00000E+00, A14= 0.00000E+00 
  第26面
   K= 0.00000E+00, A4=-5.81172E-04, A6= 3.79435E-06, A8= 1.50369E-08 
   A10= 3.61571E-10, A12= 0.00000E+00, A14= 0.00000E+00 
表 9(各種データ)
 
  ズーム比    23.30577
                広角      中間      望遠
  焦点距離       4.5799   22.1224  106.7388
 Fナンバー     2.85077   2.85037   2.85014
    画角        40.6642    9.9776    1.9641
    像高         3.3930    3.8920    3.8920
 レンズ全長     92.8788  107.9142  129.8019
    BF         3.6236    3.6332    3.5781
    d7           0.6000   25.3493   48.0279 
    d14         34.0543    9.4275    1.5344 
    d22          1.9978    5.3632    1.2632 
    d24          3.1073   14.6548   25.8570 
 
ズームレンズ群データ
  群    始面      焦点距離
   1       1      71.12830
   2       8      -8.64638
   3      15      18.40932
   4      23     -45.29138
   5      25      41.49418
(数値実施例4)
 数値実施例4のズームレンズ系は、図10に示した実施の形態4に対応する。数値実施例4のズームレンズ系の面データを表10に、非球面データを表11に、各種データを表12に示す。
表 10(面データ)
 
  面番号         r           d           nd         vd     
    物面             ∞                                    
     1         92.75920     1.25000     1.90366    31.3    
     2         49.80050     5.00000     1.49700    81.6    
     3       -562.50160     0.15000                        
     4         45.96440     4.16140     1.59282    68.6    
     5        244.72290        可変                        
     6*      -200.89350     0.50000     1.84973    40.6    
     7*        29.28690     3.44440                        
     8        -30.43030     0.55000     1.80420    46.5    
     9         14.83270     1.02260                        
    10         17.72110     3.06220     2.00171    20.7    
    11        -68.91810     0.56950                        
    12        -32.12080     0.55000     1.80420    46.5    
    13         39.88410        可変                        
  14(絞り)           ∞     1.00000                        
    15*        19.84410     2.42830     1.52500    70.4    
    16*       -37.86360     5.09380                        
    17        201.22880     2.95500     1.43700    95.1    
    18        -11.24150     0.50000     1.80518    25.5    
    19        -15.90840     0.30000                        
    20        -82.66520     0.50000     1.69320    33.7    
    21         23.32440     0.60000                        
    22*        17.37980     4.96580     1.52500    70.4    
    23*       -20.09370        可変                        
    24       1000.55010     0.40000     1.49700    81.6    
    25         14.57800        可変                        
    26*        41.35120     1.65160     1.84973    40.6    
    27*       -28.97700        可変                        
    28         19.93230     2.29380     1.85135    40.1    
    29         12.19080        (BF)                        
    像面             ∞                                    
表 11(非球面データ)
 
  第6面
   K= 0.00000E+00, A4=-3.62599E-05, A6= 2.13649E-06, A8=-2.07363E-08 
   A10= 1.26497E-10, A12=-2.93497E-13, A14= 0.00000E+00 
  第7面
   K= 0.00000E+00, A4=-5.97899E-05, A6= 1.45668E-06, A8= 1.33947E-08 
   A10=-3.72182E-10, A12= 3.08502E-12, A14= 0.00000E+00 
  第15面
   K= 0.00000E+00, A4=-6.92258E-06, A6=-3.69585E-06, A8= 1.97004E-07 
   A10=-5.72682E-09, A12= 6.87423E-11, A14=-3.22728E-16 
  第16面
   K= 0.00000E+00, A4= 5.40466E-05, A6=-3.54952E-06, A8= 1.84169E-07 
   A10=-5.46057E-09, A12= 6.63289E-11, A14=-3.59594E-16 
  第22面
   K= 0.00000E+00, A4=-7.56769E-05, A6=-8.10168E-07, A8= 4.88590E-09 
   A10=-2.94581E-10, A12= 0.00000E+00, A14= 0.00000E+00 
  第23面
   K= 0.00000E+00, A4=-1.39708E-05, A6=-5.53748E-07, A8=-1.59134E-10 
   A10=-2.03175E-10, A12= 0.00000E+00, A14= 0.00000E+00 
  第26面
   K= 0.00000E+00, A4= 6.38132E-05, A6=-9.97756E-06, A8= 3.83966E-07 
   A10=-3.38587E-09, A12= 0.00000E+00, A14= 0.00000E+00 
  第27面
   K= 0.00000E+00, A4= 1.50576E-04, A6=-1.14359E-05, A8= 4.37691E-07 
   A10=-4.02267E-09, A12= 0.00000E+00, A14= 0.00000E+00 
表 12(各種データ)
 
  ズーム比    23.21500
                広角      中間      望遠
  焦点距離       4.6406   22.3285  107.7322
 Fナンバー     2.85011   2.85047   2.85021
    画角        41.3503   11.6157    1.9900
    像高         3.3930    3.8920    3.8920
 レンズ全長     89.4884   92.6047  122.3765
    BF         3.3502    3.3171    3.3154
    d5           0.6000   22.5341   52.6386 
    d13         37.4487    6.1094    2.2640 
    d23          1.2651   13.4940    4.8143 
    d25          2.9183    4.1526   18.9112 
    d27          4.3079    3.3662    0.8000 
 
ズームレンズ群データ
  群    始面      焦点距離
   1       1      77.24939
   2       6     -10.48009
   3      14      16.79812
   4      24     -29.76985
   5      26      20.26944
   6      28     -42.68462
(数値実施例5)
 数値実施例5のズームレンズ系は、図13に示した実施の形態5に対応する。数値実施例5のズームレンズ系の面データを表13に、非球面データを表14に、各種データを表15に示す。
表 13(面データ)
 
  面番号         r           d           nd         vd     
    物面             ∞                                    
     1         79.99790     1.25000     1.90366    31.3    
     2         44.45100     5.00000     1.49700    81.6    
     3      -2961.73330     0.15000                        
     4         48.37520     4.38830     1.59282    68.6    
     5        977.07150        可変                        
     6*      -142.90770     0.50000     1.88202    37.2    
     7*        21.72240     4.03380                        
     8        -31.34780     0.55000     1.80420    46.5    
     9         12.65040     5.00000     1.92286    20.9    
    10        -88.87860     0.96330                        
    11        -21.85110     0.55000     1.80420    46.5    
    12        164.29950        可変                        
  13(絞り)           ∞     1.00000                        
    14*        13.05890     2.81550     1.51760    63.5    
    15*       165.96890     4.10030                        
    16         20.46970     3.10000     1.43700    95.1    
    17        -19.38200     0.50000     1.69895    30.0    
    18         21.16650     3.54760                        
    19*        13.11100     3.93670     1.52996    55.8    
    20*       -24.15390        可変                        
    21         56.36440     0.44540     1.43700    95.1    
    22         19.05840        可変                        
    23*        25.15790     2.00000     1.69384    53.1    
    24*       -29.61790        可変                        
    25*        25.86320     0.60000     1.63550    23.9    
    26*         9.34160        (BF)                        
    像面             ∞                                    
表 14(非球面データ)
 
  第6面
   K= 0.00000E+00, A4= 2.91294E-05, A6= 1.35644E-06, A8=-1.27422E-08 
   A10= 5.43760E-11, A12=-1.09375E-13, A14= 0.00000E+00 
  第7面
   K= 0.00000E+00, A4= 3.07597E-05, A6= 1.54032E-06, A8=-3.12503E-09 
   A10= 8.97954E-11, A12=-2.50830E-13, A14= 0.00000E+00 
  第14面
   K= 0.00000E+00, A4= 3.60684E-06, A6=-1.69684E-06, A8= 1.21445E-07 
   A10=-3.33576E-09, A12= 4.20857E-11, A14=-1.53813E-16 
  第15面
   K= 0.00000E+00, A4= 4.81157E-05, A6=-3.00612E-06, A8= 2.16050E-07 
   A10=-6.05916E-09, A12= 7.24126E-11, A14=-5.87135E-16 
  第19面
   K= 0.00000E+00, A4=-7.95455E-05, A6=-6.59699E-07, A8= 2.32215E-08 
   A10=-2.28186E-10, A12= 0.00000E+00, A14= 0.00000E+00 
  第20面
   K= 0.00000E+00, A4= 7.96778E-05, A6=-6.42253E-07, A8= 2.50708E-08 
   A10=-2.38401E-10, A12= 0.00000E+00, A14= 0.00000E+00 
  第23面
   K= 0.00000E+00, A4=-3.17605E-04, A6= 1.25084E-06, A8=-7.26996E-08 
   A10= 4.65159E-09, A12= 0.00000E+00, A14= 0.00000E+00 
  第24面
   K= 0.00000E+00, A4=-2.05015E-04, A6= 2.38725E-06, A8=-2.02005E-08 
   A10= 4.17779E-09, A12= 0.00000E+00, A14= 0.00000E+00 
  第25面
   K= 0.00000E+00, A4=-1.57596E-04, A6=-3.16768E-05, A8= 1.32944E-06 
   A10=-2.13742E-08, A12= 0.00000E+00, A14= 0.00000E+00 
  第26面
   K= 0.00000E+00, A4=-4.79859E-04, A6=-1.55977E-05, A8=-1.80516E-07 
   A10= 1.97355E-09, A12= 0.00000E+00, A14= 0.00000E+00 
表 15(各種データ)
 
  ズーム比    23.27906
                広角      中間      望遠
  焦点距離       4.6407   22.3901  108.0301
 Fナンバー     2.85066   2.85030   2.89876
    画角        41.1157   10.1627    2.0238
    像高         3.3931    3.8920    3.8920
 レンズ全長     90.4992  103.5042  127.4992
    BF         2.7903    2.7693    2.7693
    d5           0.6000   25.4000   48.0961 
    d12         34.0590    9.1603    1.7400 
    d20          2.0773    9.1744    1.2545 
    d22          6.3461   13.6567   31.1541 
    d24          2.9859    1.6819    0.8236 
 
ズームレンズ群データ
  群    始面      焦点距離
   1       1      72.06655
   2       6      -8.95876
   3      13      17.95109
   4      21     -66.13173
   5      23      19.90325
   6      25     -23.34038
(数値実施例6)
 数値実施例6のズームレンズ系は、図16に示した実施の形態6に対応する。数値実施例6のズームレンズ系の面データを表16に、非球面データを表17に、各種データを表18に示す。
表 16(面データ)
 
  面番号         r           d           nd         vd     
    物面             ∞                                    
     1         92.29080     1.25000     1.90366    31.3    
     2         48.22440     5.45730     1.49700    81.6    
     3       -287.11830     0.15000                        
     4         43.18150     4.33750     1.59282    68.6    
     5        219.91930        可変                        
     6*      -125.38600     0.50000     1.88202    37.2    
     7*        17.01030     3.69790                        
     8        -50.22220     0.55000     1.80420    46.5    
     9         11.00000     6.54870     1.92286    20.9    
    10        -39.00980     1.65180                        
    11        -13.34240     0.55000     1.80610    40.7    
    12       -276.37120        可変                        
  13(絞り)           ∞     1.09990                        
    14*        13.49020     2.74890     1.61035    57.9    
    15*       492.32460     3.06590                        
    16         21.73680     2.58890     1.43700    95.1    
    17        -39.63730     0.50000     1.75520    27.5    
    18         14.43810     3.22430                        
    19*        14.26550     4.84180     1.52500    70.3    
    20*       -18.52090        可変                        
    21         75.64570     0.70000     1.80610    33.3    
    22         23.87520        可変                        
    23*        20.44610     1.99990     1.63550    23.9    
    24*       -44.12100        可変                        
    25         10.93080     0.59990     1.92286    20.9    
    26          8.35650        (BF)                        
    像面             ∞                                    
表 17(非球面データ)
 
  第6面
   K= 0.00000E+00, A4= 8.46888E-05, A6=-7.28555E-07, A8= 6.80042E-09 
   A10=-4.10607E-11, A12= 1.00053E-13, A14= 0.00000E+00 
  第7面
   K= 0.00000E+00, A4= 6.03673E-05, A6=-6.98515E-07, A8= 9.80781E-09 
   A10=-2.21444E-11, A12=-7.65499E-13, A14= 0.00000E+00 
  第14面
   K= 0.00000E+00, A4= 3.05752E-06, A6=-1.74126E-06, A8= 1.29713E-07 
   A10=-3.63149E-09, A12= 4.28365E-11, A14=-4.48940E-15 
  第15面
   K= 0.00000E+00, A4= 6.23523E-05, A6=-2.67648E-06, A8= 1.98861E-07 
   A10=-5.61538E-09, A12= 6.50709E-11, A14=-6.66716E-16 
  第19面
   K= 0.00000E+00, A4=-8.76283E-05, A6= 6.46989E-08, A8=-4.02665E-09 
   A10= 3.16161E-11, A12= 0.00000E+00, A14= 0.00000E+00 
  第20面
   K= 0.00000E+00, A4= 3.79040E-05, A6= 1.41149E-07, A8=-4.39865E-09 
   A10= 3.81191E-11, A12= 0.00000E+00, A14= 0.00000E+00 
  第23面
   K= 0.00000E+00, A4= 3.52237E-06, A6=-4.03440E-06, A8= 1.30838E-07 
   A10=-7.09177E-10, A12= 0.00000E+00, A14= 0.00000E+00 
  第24面
   K= 0.00000E+00, A4= 6.77811E-05, A6=-5.11314E-06, A8= 1.83867E-07 
   A10=-1.38931E-09, A12= 0.00000E+00, A14= 0.00000E+00 
表 18(各種データ)
 
  ズーム比    23.27909
                広角      中間      望遠
  焦点距離       4.6404   22.3921  108.0241
 Fナンバー     2.85014   2.85022   2.84965
    画角        41.5379   10.5396    1.9768
    像高         3.3930    3.8920    3.8920
 レンズ全長     88.0377  103.5976  129.3882
    BF         4.0425    4.0289    4.0363
    d5           0.6000   25.4000   47.2715 
    d12         31.1428    7.4736    1.5000 
    d20          1.2500   15.0424    8.7388 
    d22          3.4037    4.7316   22.2940 
    d24          5.5785    4.8873    3.5212 
 
ズームレンズ群データ
  群    始面      焦点距離
   1       1      70.68901
   2       6      -8.51184
   3      13      18.15092
   4      21     -43.54006
   5      23      22.25295
   6      25     -43.29039
 以下の表19に、各数値実施例のズームレンズ系における各条件の対応値を示す。
表 19(条件の対応値)
Figure JPOXMLDOC01-appb-T000001
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示は、例えばデジタルカメラ、スマートフォン等の携帯情報端末のカメラ、監視システムにおける監視カメラ、Webカメラ、車載カメラ等のデジタル入力装置に適用可能である。特に本開示は、デジタルカメラ等の高画質が要求される撮影光学系に好適である。
G1  第1レンズ群
G2  第2レンズ群
G3  第3レンズ群
G4  第4レンズ群
G5  第5レンズ群
G6  第6レンズ群
L1  第1レンズ素子
L2  第2レンズ素子
L3  第3レンズ素子
L4  第4レンズ素子
L5  第5レンズ素子
L6  第6レンズ素子
L7  第7レンズ素子
L8  第8レンズ素子
L9  第9レンズ素子
L10 第10レンズ素子
L11 第11レンズ素子
L12 第12レンズ素子
L13 第13レンズ素子
L14 第14レンズ素子
L15 第15レンズ素子
A   開口絞り
S   像面
1   ズームレンズ系
2   撮像素子
3   液晶モニタ
4   筐体
5   主鏡筒
6   移動鏡筒
7   円筒カム

Claims (12)

  1.  物体側から像側へと順に、
    正のパワーを有する第1レンズ群と、
    負のパワーを有する第2レンズ群と、
    正のパワーを有する第3レンズ群と、
    負のパワーを有する第4レンズ群と、
    正のパワーを有する第5レンズ群とを備え、
    前記第1レンズ群が、3枚以上のレンズ素子で構成され、
    撮像時の広角端から望遠端へのズーミングの際に、少なくとも前記第1レンズ群と前記第2レンズ群と前記第3レンズ群とが像面に対して移動し、
    以下の条件(1)及び(2)を満足する、ズームレンズ系:
      3.2<LG3/(f×tan(ω)) ・・・(1)
      2.0<|MG1/(f×tan(ω))|<15.0 ・・・(2)
    ここで、
     LG3:第3レンズ群の光軸上での厚み、
     f:望遠端における全系の焦点距離、
     ω:望遠端における半画角、
     MG1:撮像時の広角端から望遠端へのズーミングの際の、第1レンズ群の光軸方向の移動量
    である。
  2.  前記第2レンズ群が、物体側から像側へと順に、負のパワーを有する第1レンズ素子と負のパワーを有する第2レンズ素子とを有し、
    前記第1レンズ素子及び前記第2レンズ素子が、以下の条件(3)及び(4)を満足する、請求項1に記載のズームレンズ系:
      4.1<|R2a/R2b| ・・・(3)
      -0.1<(R2b-R2c)/(R2b+R2c) ・・・(4)
    ここで、
     R2a:第1レンズ素子の物体側面の曲率半径、
     R2b:第1レンズ素子の像側面の曲率半径、
     R2c:第2レンズ素子の像側面の曲率半径
    である。
  3.  前記第3レンズ群が、少なくとも1枚の正のパワーを有するレンズ素子を有し、以下の条件(5)を満足する、請求項1に記載のズームレンズ系:
      N3p<1.64 ・・・(5)
    ここで、
     N3p:第3レンズ群を構成する正のパワーを有するレンズ素子の、d線に対する屈折率の平均値
    である。
  4.  以下の条件(6)を満足する、請求項1に記載のズームレンズ系:
      0.6<|MG4/MG2|<8.0 ・・・(6)
    ここで、
     MG2:撮像時の広角端から望遠端へのズーミングの際の、第2レンズ群の光軸方向の移動量、
     MG4:撮像時の広角端から望遠端へのズーミングの際の、第4レンズ群の光軸方向の移動量
    である。
  5.  以下の条件(7)を満足する、請求項1に記載のズームレンズ系:
      0.3<fG1/f<0.9 ・・・(7)
    ここで、
     fG1:第1レンズ群の焦点距離、
     f:望遠端における全系の焦点距離
    である。
  6.  以下の条件(8)を満足する、請求項1に記載のズームレンズ系:
      10<|(G4T-G4M)/(G4M-G4W)| ・・・(8)
    ここで、
     G4W:広角端における第4レンズ群の物体側面頂から像面までの距離、
     G4T:望遠端における第4レンズ群の物体側面頂から像面までの距離、
     G4M:中間位置における第4レンズ群の物体側面頂から像面までの距離、
     中間位置:全系の焦点距離fが次式で表される位置
          f=√(f*f)、
     f:広角端における全系の焦点距離、
     f:望遠端における全系の焦点距離
    である。
  7.  以下の条件(9)を満足する、請求項1に記載のズームレンズ系:
      |MG5/(f×tan(ω))|<1.5 ・・・(9)
    ここで、
     MG5:撮像時の広角端から望遠端へのズーミングの際の、第5レンズ群の光軸方向の移動量、
     f:望遠端における全系の焦点距離、
     ω:望遠端における半画角
    である。
  8.  前記第2レンズ群が、少なくとも1組の接合レンズ素子を含む、請求項1に記載のズームレンズ系。
  9.  無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、像面に対して移動するフォーカシングレンズ群を備え、
    前記フォーカシングレンズ群が、1枚のレンズ素子で構成される、請求項1に記載のズームレンズ系。
  10.  撮像時の広角端から望遠端へのズーミングの際に、少なくとも1つのレンズ群が、像面に対して固定されている、請求項1に記載のズームレンズ系。
  11.  物体の光学的な像を電気的な画像信号として出力可能な撮像装置であって、
    物体の光学的な像を形成するズームレンズ系と、
    該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子と
    を備え、
    前記ズームレンズ系が、請求項1に記載のズームレンズ系である、撮像装置。
  12.  物体の光学的な像を電気的な画像信号に変換し、変換された画像信号の表示及び記憶の少なくとも一方を行うカメラであって、
    物体の光学的な像を形成するズームレンズ系と、該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子とを含む撮像装置を備え、
    前記ズームレンズ系が、請求項1に記載のズームレンズ系である、カメラ。
PCT/JP2012/008416 2012-02-02 2012-12-27 ズームレンズ系、撮像装置及びカメラ WO2013114515A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280068571.8A CN104204895A (zh) 2012-02-02 2012-12-27 变焦透镜系统、摄像装置以及照相机
US14/447,631 US20140340545A1 (en) 2012-02-02 2014-07-31 Zoom lens system, imaging device and camera

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-020578 2012-02-02
JP2012020578 2012-02-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/447,631 Continuation US20140340545A1 (en) 2012-02-02 2014-07-31 Zoom lens system, imaging device and camera

Publications (1)

Publication Number Publication Date
WO2013114515A1 true WO2013114515A1 (ja) 2013-08-08

Family

ID=48904603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008416 WO2013114515A1 (ja) 2012-02-02 2012-12-27 ズームレンズ系、撮像装置及びカメラ

Country Status (4)

Country Link
US (1) US20140340545A1 (ja)
JP (1) JPWO2013114515A1 (ja)
CN (1) CN104204895A (ja)
WO (1) WO2013114515A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015118141A (ja) * 2013-12-17 2015-06-25 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2015146015A (ja) * 2014-01-06 2015-08-13 パナソニックIpマネジメント株式会社 単焦点レンズ系、交換レンズ装置及びカメラシステム
JP2019101286A (ja) * 2017-12-05 2019-06-24 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001350093A (ja) * 2000-04-07 2001-12-21 Minolta Co Ltd 撮像レンズ装置
JP2004117826A (ja) * 2002-09-26 2004-04-15 Minolta Co Ltd 撮像装置
JP2005189670A (ja) * 2003-12-26 2005-07-14 Olympus Corp ズームレンズおよびそれを備えたカメラ
JP2005284097A (ja) * 2004-03-30 2005-10-13 Nikon Corp 防振機能を有するズームレンズ
JP2007093977A (ja) * 2005-09-28 2007-04-12 Nikon Corp ズームレンズ
JP2011186417A (ja) * 2009-07-23 2011-09-22 Fujifilm Corp ズームレンズおよび撮像装置
JP2011252962A (ja) * 2010-05-31 2011-12-15 Olympus Imaging Corp 結像光学系及びそれを備えた撮像装置
JP2012008601A (ja) * 2011-09-16 2012-01-12 Canon Inc ズームレンズ及びそれを有する撮像装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4896950A (en) * 1987-02-20 1990-01-30 Canon Kabushiki Kaisha Zoom lens of high power varying ratio
JP3478637B2 (ja) * 1995-05-30 2003-12-15 キヤノン株式会社 小型のズームレンズ
JP2008304708A (ja) * 2007-06-07 2008-12-18 Konica Minolta Opto Inc ズームレンズ及び撮像装置
JP4869288B2 (ja) * 2008-05-23 2012-02-08 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP5344549B2 (ja) * 2008-08-08 2013-11-20 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JPWO2011102091A1 (ja) * 2010-02-16 2013-06-17 パナソニック株式会社 ズームレンズ系、撮像装置及びカメラ
JP5543838B2 (ja) * 2010-04-27 2014-07-09 パナソニック株式会社 ズームレンズ系、撮像装置及びカメラ
JP5769606B2 (ja) * 2011-12-05 2015-08-26 オリンパス株式会社 ズームレンズ及びそれを備えた撮像装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001350093A (ja) * 2000-04-07 2001-12-21 Minolta Co Ltd 撮像レンズ装置
JP2004117826A (ja) * 2002-09-26 2004-04-15 Minolta Co Ltd 撮像装置
JP2005189670A (ja) * 2003-12-26 2005-07-14 Olympus Corp ズームレンズおよびそれを備えたカメラ
JP2005284097A (ja) * 2004-03-30 2005-10-13 Nikon Corp 防振機能を有するズームレンズ
JP2007093977A (ja) * 2005-09-28 2007-04-12 Nikon Corp ズームレンズ
JP2011186417A (ja) * 2009-07-23 2011-09-22 Fujifilm Corp ズームレンズおよび撮像装置
JP2011252962A (ja) * 2010-05-31 2011-12-15 Olympus Imaging Corp 結像光学系及びそれを備えた撮像装置
JP2012008601A (ja) * 2011-09-16 2012-01-12 Canon Inc ズームレンズ及びそれを有する撮像装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015118141A (ja) * 2013-12-17 2015-06-25 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2015146015A (ja) * 2014-01-06 2015-08-13 パナソニックIpマネジメント株式会社 単焦点レンズ系、交換レンズ装置及びカメラシステム
JP2019101286A (ja) * 2017-12-05 2019-06-24 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP7158849B2 (ja) 2017-12-05 2022-10-24 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置

Also Published As

Publication number Publication date
JPWO2013114515A1 (ja) 2015-05-11
CN104204895A (zh) 2014-12-10
US20140340545A1 (en) 2014-11-20

Similar Documents

Publication Publication Date Title
JP5676505B2 (ja) ズームレンズ系、撮像装置及びカメラ
JP5543838B2 (ja) ズームレンズ系、撮像装置及びカメラ
WO2012101959A1 (ja) ズームレンズ系、撮像装置及びカメラ
JP2012198504A (ja) ズームレンズ系、撮像装置及びカメラ
WO2009096156A1 (ja) ズームレンズ系、撮像装置及びカメラ
JP5919519B2 (ja) ズームレンズ系、撮像装置及びカメラ
JP2012198503A (ja) ズームレンズ系、撮像装置及びカメラ
JP2012048200A (ja) ズームレンズ系、撮像装置及びカメラ
JP2011232542A (ja) ズームレンズ系、撮像装置及びカメラ
JP2012198505A (ja) ズームレンズ系、撮像装置及びカメラ
WO2014006653A1 (ja) ズームレンズ系、撮像装置及びカメラ
JP5919518B2 (ja) ズームレンズ系、撮像装置及びカメラ
JP2012198506A (ja) ズームレンズ系、撮像装置及びカメラ
WO2011102091A1 (ja) ズームレンズ系、撮像装置及びカメラ
JP5498495B2 (ja) ズームレンズ系、撮像装置及びカメラ
WO2013105190A1 (ja) ズームレンズ系、撮像装置及びカメラ
JP2011064933A (ja) ズームレンズ系、撮像装置及びカメラ
JP5179518B2 (ja) ズームレンズ系、撮像装置及びカメラ
WO2013114515A1 (ja) ズームレンズ系、撮像装置及びカメラ
WO2012098617A1 (ja) ズームレンズ系、撮像装置及びカメラ
JP2012150432A (ja) ズームレンズ系、撮像装置及びカメラ
JP2011248269A (ja) ズームレンズ系、撮像装置およびカメラシステム
WO2014013648A1 (ja) ズームレンズ系、撮像装置及びカメラ
JP2008176229A (ja) ズームレンズ系、撮像装置及びカメラ
JP5669105B2 (ja) ズームレンズ系、撮像装置及びカメラ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867625

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556062

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867625

Country of ref document: EP

Kind code of ref document: A1