WO2014006653A1 - ズームレンズ系、撮像装置及びカメラ - Google Patents

ズームレンズ系、撮像装置及びカメラ Download PDF

Info

Publication number
WO2014006653A1
WO2014006653A1 PCT/JP2012/004318 JP2012004318W WO2014006653A1 WO 2014006653 A1 WO2014006653 A1 WO 2014006653A1 JP 2012004318 W JP2012004318 W JP 2012004318W WO 2014006653 A1 WO2014006653 A1 WO 2014006653A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
lens
zoom lens
image
lens system
Prior art date
Application number
PCT/JP2012/004318
Other languages
English (en)
French (fr)
Inventor
恭一 美藤
優顕 鈴木
善昭 栗岡
祐亮 米谷
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to PCT/JP2012/004318 priority Critical patent/WO2014006653A1/ja
Priority to JP2014523447A priority patent/JPWO2014006653A1/ja
Publication of WO2014006653A1 publication Critical patent/WO2014006653A1/ja
Priority to US14/573,406 priority patent/US9513472B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/146Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
    • G02B15/1461Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being positive
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/22Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with movable lens means specially adapted for focusing at close distances
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/009Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • G02B27/4211Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant correcting chromatic aberrations

Definitions

  • the present disclosure relates to a zoom lens system, an imaging device, and a camera.
  • a digital camera having an image sensor that performs photoelectric conversion (hereinafter simply referred to as a digital camera) such as a digital still camera or a digital video camera is extremely strong.
  • Patent Documents 1 to 4 have a six-group configuration in which the first lens group has positive power, the second lens group has negative power, and the third lens group has positive power. 1 discloses a lens system in which the first to third lens groups move.
  • the first lens group has positive power
  • the second lens group has negative power
  • the third lens group has positive power
  • the fourth lens group has negative power.
  • the fourth lens group performs zooming by changing the interval between these lens groups.
  • the present disclosure provides a zoom lens system that is small and has a high magnification, but is sufficiently bright at the telephoto end and has a high resolution.
  • the present disclosure also provides an imaging device including the zoom lens system and a camera including the imaging device.
  • a zoom lens system includes: From the object side to the image side, A first lens group having positive power; A second lens group having negative power; A third lens group having positive power; A fourth lens group having negative power; A fifth lens group; Consisting of a sixth lens group, During zooming from the wide-angle end to the telephoto end during imaging, the distance between the third lens group and the fourth lens group at the telephoto end is larger than the distance at the wide-angle end. 1 lens group, the second lens group, the third lens group, and the fourth lens group move along the optical axis, The fourth lens group is moved along the optical axis to perform focusing from an infinitely focused state to a close object focused state.
  • An imaging apparatus An optical image of an object can be output as an electrical image signal, A zoom lens system that forms an optical image of the object; An image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
  • the zoom lens system includes: From the object side to the image side, A first lens group having positive power; A second lens group having negative power; A third lens group having positive power; A fourth lens group having negative power; A fifth lens group; Consisting of a sixth lens group, During zooming from the wide-angle end to the telephoto end during imaging, the distance between the third lens group and the fourth lens group at the telephoto end is larger than the distance at the wide-angle end. 1 lens group, the second lens group, the third lens group, and the fourth lens group move along the optical axis, The fourth lens group is moved along the optical axis to perform focusing from an infinitely focused state to a close object focused state.
  • the camera in the present disclosure is Converting an optical image of an object into an electrical image signal, displaying and storing the converted image signal, and
  • An image pickup apparatus including a zoom lens system that forms an optical image of an object, and an image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
  • the zoom lens system includes: From the object side to the image side, A first lens group having positive power; A second lens group having negative power; A third lens group having positive power; A fourth lens group having negative power; A fifth lens group; Consisting of a sixth lens group, During zooming from the wide-angle end to the telephoto end during imaging, the distance between the third lens group and the fourth lens group at the telephoto end is larger than the distance at the wide-angle end. 1 lens group, the second lens group, the third lens group, and the fourth lens group move along the optical axis, The fourth lens group is moved along the optical axis to perform focusing from an infinitely focused state to a close object focused state.
  • the zoom lens system in the present disclosure is: A first lens group having at least positive power in order from the object side to the image side; A second lens group having negative power; A third lens group having positive power, During zooming from the wide-angle end to the telephoto end during imaging, the first lens group, the second lens group, and the third lens group move along the optical axis,
  • F T / F W ⁇ 1.4 (4) (here, L T : total lens length at the telephoto end (distance from the most object side lens surface of the first lens group to the image plane), f T : focal length of the entire system at the telephoto end, f W : focal length of the entire system at the wide-angle end, F T : F number at the telephoto end, F W : F number at the wide-angle end) It is characterized by satisfying.
  • An imaging apparatus An optical image of an object can be output as an electrical image signal, A zoom lens system that forms an optical image of the object; An image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
  • the zoom lens system includes: A first lens group having at least positive power in order from the object side to the image side; A second lens group having negative power; A third lens group having positive power, During zooming from the wide-angle end to the telephoto end during imaging, the first lens group, the second lens group, and the third lens group move along the optical axis, The following conditions (2), (3) and (4): 0.7 ⁇ L T / f T ⁇ 1.5 (2) f T / f W> 12.0 ⁇ (3) F T / F W ⁇ 1.4 (4) (here, L T : total lens length at the telephoto end (distance from the most object side lens surface of the first lens group to the image plane), f T : focal length of the entire system at the telephoto end, f W : focal length of
  • the camera in the present disclosure is Converting an optical image of an object into an electrical image signal, displaying and storing the converted image signal, and
  • An image pickup apparatus including a zoom lens system that forms an optical image of an object, and an image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
  • the zoom lens system includes: A first lens group having at least positive power in order from the object side to the image side; A second lens group having negative power; A third lens group having positive power, During zooming from the wide-angle end to the telephoto end during imaging, the first lens group, the second lens group, and the third lens group move along the optical axis,
  • the zoom lens system in the present disclosure is small and has high magnification, but is sufficiently bright at the telephoto end and has high resolution.
  • FIG. 1 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 1 (Numerical Example 1).
  • FIG. 2 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 1 when the zoom lens system is in focus at infinity.
  • FIG. 3 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of the zoom lens system according to Numerical Example 1.
  • FIG. 4 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 2 (Numerical Example 2).
  • FIG. 5 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 2 when the zoom lens system is in focus at infinity.
  • FIG. 6 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of a zoom lens system according to Numerical Example 2.
  • FIG. FIG. 7 is a lens layout diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 3 (Numerical Example 3).
  • FIG. 8 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 3 when the zoom lens system is in focus at infinity.
  • FIG. 9 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of a zoom lens system according to Numerical Example 3.
  • FIG. 10 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 4 (Numerical Example 4).
  • FIG. 11 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 4 when the zoom lens system is in focus at infinity.
  • 12 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of a zoom lens system according to Numerical Example 4.
  • FIG. FIG. 13 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 5 (Numerical Example 5).
  • FIG. 14 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 5 when the zoom lens system is in focus at infinity.
  • FIG. 11 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 4 when the zoom lens system is in focus at infinity.
  • 12 is a lateral aberration diagram in a basic state where image blur correction is not performed
  • FIG. 15 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of a zoom lens system according to Numerical Example 5.
  • FIG. 16 is a schematic configuration diagram of a digital still camera according to the sixth embodiment.
  • Embodiments 1 to 5 are lens arrangement diagrams of the zoom lens systems according to Embodiments 1 to 5, respectively, and all represent the zoom lens system in an infinitely focused state.
  • the lens configuration of T )) and (c) show the lens configuration at the telephoto end (longest focal length state: focal length f T ).
  • the broken line arrows provided between FIGS. (A) and (b) are obtained by connecting the positions of the lens groups in the wide-angle end, the intermediate position, and the telephoto end in order from the top. Straight line.
  • the wide-angle end and the intermediate position, and the intermediate position and the telephoto end are simply connected by a straight line, which is different from the actual movement of each lens group.
  • FIGS. 1, 4, 7, 10 and 13 show a direction in which a later-described fourth lens group G4 moves during focusing from an infinitely focused state to a close object focused state.
  • the zoom lens system includes, in order from the object side to the image side, a first lens group G1 having a positive power, a second lens group G2 having a negative power, and a first lens group having a positive power.
  • An aperture stop A is provided on the object side of the third lens group G3.
  • the distance between the lens groups that is, the distance between the first lens group G1 and the second lens group G2, the distance between the second lens group G2 and the third lens group G3, the third lens group G3 and the fourth lens.
  • the first lens groups G1 to G1 are changed so that the distance from the group G4, the distance from the fourth lens group G4 to the fifth lens group G5, and the distance from the fifth lens group G5 to the sixth lens group G6 are all changed.
  • the fifth lens group G5 moves along the optical axis.
  • the zoom lens system according to each embodiment can reduce the size of the entire lens system while maintaining high optical performance by arranging these lens groups in a desired power arrangement.
  • an asterisk * attached to a specific surface indicates that the surface is aspherical.
  • a symbol (+) and a symbol ( ⁇ ) attached to a symbol of each lens group correspond to a power symbol of each lens group.
  • the straight line described on the rightmost side represents the position of the image plane S, and on the object side of the image plane S (between the image plane S and the most image side lens surface of the sixth lens group G6).
  • a parallel flat plate P equivalent to an optical low-pass filter, a face plate of an image sensor, or the like is provided.
  • the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a biconvex second lens element L2. And a positive meniscus third lens element L3 having a convex surface facing the object side.
  • the first lens element L1 and the second lens element L2 are cemented, and in the surface data in the corresponding numerical example described later, the adhesion between the first lens element L1 and the second lens element L2 Surface number 2 is given to the agent layer.
  • the second lens group G2 includes, in order from the object side to the image side, a negative meniscus fourth lens element L4 having a convex surface directed toward the object side, a biconcave fifth lens element L5, and a biconvex second lens element L5.
  • 6 lens elements L6 and a negative meniscus seventh lens element L7 having a convex surface facing the image side are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the fifth lens element L5 and the sixth lens element L6.
  • Surface number 10 is given to the agent layer.
  • the fourth lens element L4 has two aspheric surfaces.
  • the third lens group G3 includes, in order from the object side to the image side, a positive meniscus eighth lens element L8 having a convex surface directed toward the object side, a biconvex ninth lens element L9, and a biconcave first lens element L9. It consists of a ten lens element L10 and a biconvex eleventh lens element L11. Among these, the ninth lens element L9 and the tenth lens element L10 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the ninth lens element L9 and the tenth lens element L10. Surface number 19 is given to the agent layer.
  • the eighth lens element L8 has two aspheric surfaces, and the eleventh lens element L11 has two aspheric surfaces.
  • the fourth lens group G4 comprises solely a negative meniscus twelfth lens element L12 with the convex surface facing the object side.
  • the fifth lens group G5 comprises solely a bi-convex thirteenth lens element L13.
  • the thirteenth lens element L13 has two aspheric surfaces.
  • the sixth lens group G6 comprises solely a bi-concave fourteenth lens element L14.
  • the fourteenth lens element L14 has an aspheric object side surface.
  • the first lens group G1 moves toward the object side while drawing a convex locus on the image side.
  • the lens group G2 moves toward the image side with a convex locus on the image side
  • the third lens group G3 moves toward the object side with a locus locus convex on the object side
  • the fourth lens group G4 moves toward the image side.
  • the fifth lens group G5 moves to the image side in a substantially monotonous manner
  • the sixth lens group G6 is fixed with respect to the image plane S.
  • the distance between the first lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 at the telephoto end.
  • the fourth lens group G4 are larger than the distance at the wide-angle end, the distance between the fourth lens group G4 and the fifth lens group G5 changes, and the fifth lens group G5 and the sixth lens group G6.
  • the first lens group G1 to the fifth lens group G5 move along the optical axis so that the distance between the first lens group G1 and the fifth lens group G5 decreases.
  • the fourth lens group G4 moves toward the image side along the optical axis during focusing from the infinite focus state to the close object focus state.
  • the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 with a convex surface facing the object side, and a biconvex second lens element L2. And a positive meniscus third lens element L3 having a convex surface facing the object side.
  • the first lens element L1 and the second lens element L2 are cemented, and in the surface data in the corresponding numerical example described later, the adhesion between the first lens element L1 and the second lens element L2 Surface number 2 is given to the agent layer.
  • the second lens group G2 includes, in order from the object side to the image side, a negative meniscus fourth lens element L4 having a convex surface directed toward the object side, a biconcave fifth lens element L5, and a biconvex second lens element L5.
  • 6 lens elements L6 and a negative meniscus seventh lens element L7 having a convex surface facing the image side are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the fifth lens element L5 and the sixth lens element L6.
  • Surface number 10 is given to the agent layer.
  • the fourth lens element L4 has two aspheric surfaces.
  • the third lens group G3 includes, in order from the object side to the image side, a positive meniscus eighth lens element L8 having a convex surface directed toward the object side, a biconvex ninth lens element L9, and a biconcave first lens element L9. It consists of a ten lens element L10 and a biconvex eleventh lens element L11. Among these, the ninth lens element L9 and the tenth lens element L10 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the ninth lens element L9 and the tenth lens element L10. Surface number 19 is given to the agent layer.
  • the eighth lens element L8 has two aspheric surfaces, and the eleventh lens element L11 has two aspheric surfaces.
  • the fourth lens group G4 comprises solely a negative meniscus twelfth lens element L12 with the convex surface facing the object side.
  • the fifth lens group G5 comprises solely a bi-convex thirteenth lens element L13.
  • the thirteenth lens element L13 has two aspheric surfaces.
  • the sixth lens group G6 comprises solely a bi-concave fourteenth lens element L14.
  • the fourteenth lens element L14 has an aspheric object side surface.
  • the first lens group G1 moves toward the object side while drawing a convex locus on the image side.
  • the lens group G2 moves toward the image side with a convex locus on the image side
  • the third lens group G3 moves toward the object side with a locus locus convex on the object side
  • the fourth lens group G4 moves toward the image side.
  • the fifth lens group G5 moves to the image side in a substantially monotonous manner
  • the sixth lens group G6 is fixed with respect to the image plane S.
  • the distance between the first lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 at the telephoto end.
  • the fourth lens group G4 are larger than the distance at the wide-angle end, the distance between the fourth lens group G4 and the fifth lens group G5 changes, and the fifth lens group G5 and the sixth lens group G6.
  • the first lens group G1 to the fifth lens group G5 move along the optical axis so that the distance between the first lens group G1 and the fifth lens group G5 decreases.
  • the fourth lens group G4 moves toward the image side along the optical axis during focusing from the infinite focus state to the close object focus state.
  • the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a biconvex second lens element L2. And a positive meniscus third lens element L3 having a convex surface facing the object side.
  • the first lens element L1 and the second lens element L2 are cemented, and in the surface data in the corresponding numerical example described later, the adhesion between the first lens element L1 and the second lens element L2 Surface number 2 is given to the agent layer.
  • the second lens group G2 includes, in order from the object side to the image side, a negative meniscus fourth lens element L4 having a convex surface directed toward the object side, a biconcave fifth lens element L5, and a biconvex second lens element L5.
  • 6 lens elements L6 and a negative meniscus seventh lens element L7 having a convex surface facing the image side are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the fifth lens element L5 and the sixth lens element L6.
  • Surface number 10 is given to the agent layer.
  • the fourth lens element L4 has two aspheric surfaces.
  • the third lens group G3 includes, in order from the object side to the image side, a positive meniscus eighth lens element L8 having a convex surface directed toward the object side, a biconvex ninth lens element L9, and a biconcave first lens element L9. It consists of a ten lens element L10 and a biconvex eleventh lens element L11. Among these, the ninth lens element L9 and the tenth lens element L10 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the ninth lens element L9 and the tenth lens element L10. Surface number 19 is given to the agent layer.
  • the eighth lens element L8 has two aspheric surfaces, and the eleventh lens element L11 has two aspheric surfaces.
  • the fourth lens group G4 comprises solely a negative meniscus twelfth lens element L12 with the convex surface facing the object side.
  • the fifth lens group G5 comprises solely a bi-convex thirteenth lens element L13.
  • the thirteenth lens element L13 has two aspheric surfaces.
  • the sixth lens group G6 comprises solely a bi-concave fourteenth lens element L14.
  • the fourteenth lens element L14 has an aspheric object side surface.
  • the first lens group G1 moves toward the object side while drawing a convex locus on the image side.
  • the lens group G2 moves toward the image side with a convex locus on the image side
  • the third lens group G3 moves toward the object side with a locus locus convex on the object side
  • the fourth lens group G4 moves toward the image side.
  • the fifth lens group G5 moves to the image side in a substantially monotonous manner
  • the sixth lens group G6 is fixed with respect to the image plane S.
  • the distance between the first lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 at the telephoto end.
  • the fourth lens group G4 are larger than the distance at the wide-angle end, the distance between the fourth lens group G4 and the fifth lens group G5 changes, and the fifth lens group G5 and the sixth lens group G6.
  • the first lens group G1 to the fifth lens group G5 move along the optical axis so that the distance between the first lens group G1 and the fifth lens group G5 decreases.
  • the fourth lens group G4 moves toward the image side along the optical axis during focusing from the infinite focus state to the close object focus state.
  • the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a biconvex second lens element L2. And a positive meniscus third lens element L3 having a convex surface facing the object side.
  • the first lens element L1 and the second lens element L2 are cemented, and in the surface data in the corresponding numerical example described later, the adhesion between the first lens element L1 and the second lens element L2 Surface number 2 is given to the agent layer.
  • the second lens group G2 includes, in order from the object side to the image side, a negative meniscus fourth lens element L4 having a convex surface directed toward the object side, a biconcave fifth lens element L5, and a biconvex second lens element L5. 6 lens elements L6 and a biconcave seventh lens element L7.
  • the fifth lens element L5 and the sixth lens element L6 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the fifth lens element L5 and the sixth lens element L6.
  • Surface number 10 is given to the agent layer.
  • the fourth lens element L4 has two aspheric surfaces.
  • the third lens group G3 includes, in order from the object side to the image side, a biconvex eighth lens element L8, a biconvex ninth lens element L9, a biconcave tenth lens element L10, It consists of a convex eleventh lens element L11.
  • the ninth lens element L9 and the tenth lens element L10 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the ninth lens element L9 and the tenth lens element L10.
  • Surface number 19 is given to the agent layer.
  • the eighth lens element L8 has two aspheric surfaces
  • the eleventh lens element L11 has two aspheric surfaces.
  • the fourth lens group G4 comprises solely a bi-concave twelfth lens element L12.
  • the fifth lens group G5 comprises solely a bi-convex thirteenth lens element L13.
  • the thirteenth lens element L13 has two aspheric surfaces.
  • the sixth lens group G6 comprises solely a bi-concave fourteenth lens element L14.
  • the fourteenth lens element L14 has an aspheric object side surface.
  • the first lens group G1 moves toward the object side along a locus convex to the image side
  • the lens group G2 moves toward the image side with a locus convex to the image side
  • the third lens group G3 moves toward the object side with a locus locus convex to the image side
  • the fourth lens group G4 moves toward the image side.
  • the fifth lens group G5 moves to the image side in a substantially monotonous manner
  • the sixth lens group G6 is fixed with respect to the image plane S.
  • the distance between the first lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 at the telephoto end.
  • the fourth lens group G4 are larger than the distance at the wide-angle end, the distance between the fourth lens group G4 and the fifth lens group G5 changes, and the fifth lens group G5 and the sixth lens group G6.
  • the first lens group G1 to the fifth lens group G5 move along the optical axis so that the distance between the first lens group G1 and the fifth lens group G5 decreases.
  • the fourth lens group G4 moves toward the image side along the optical axis when focusing from the infinite focus state to the close object focus state.
  • the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 with a convex surface facing the object side, and a biconvex second lens element L2. And a positive meniscus third lens element L3 having a convex surface facing the object side.
  • the first lens element L1 and the second lens element L2 are cemented, and in the surface data in the corresponding numerical example described later, the adhesion between the first lens element L1 and the second lens element L2 Surface number 2 is given to the agent layer.
  • the second lens group G2 includes, in order from the object side to the image side, a negative meniscus fourth lens element L4 having a convex surface directed toward the object side, a biconcave fifth lens element L5, and a biconvex second lens element L5.
  • 6 lens elements L6 and a negative meniscus seventh lens element L7 having a convex surface facing the image side are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the fifth lens element L5 and the sixth lens element L6.
  • Surface number 10 is given to the agent layer.
  • the fourth lens element L4 has two aspheric surfaces.
  • the third lens group G3 includes, in order from the object side to the image side, a biconvex eighth lens element L8, a biconvex ninth lens element L9, a biconcave tenth lens element L10, It consists of a convex eleventh lens element L11.
  • the ninth lens element L9 and the tenth lens element L10 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the ninth lens element L9 and the tenth lens element L10.
  • Surface number 19 is given to the agent layer.
  • the eighth lens element L8 has two aspheric surfaces
  • the eleventh lens element L11 has two aspheric surfaces.
  • the fourth lens group G4 comprises solely a negative meniscus twelfth lens element L12 with the convex surface facing the object side.
  • the fifth lens group G5 comprises solely a bi-convex thirteenth lens element L13.
  • the thirteenth lens element L13 has two aspheric surfaces.
  • the sixth lens group G6 comprises solely a bi-concave fourteenth lens element L14.
  • the fourteenth lens element L14 has an aspheric object side surface.
  • the first lens group G1 moves toward the object side along a locus convex to the image side.
  • the lens group G2 moves toward the image side while drawing a convex locus on the image side
  • the third lens group G3 moves toward the object side substantially monotonously
  • the fourth lens group G4 follows a locus that is convex on the image side.
  • Drawing and moving to the object side the fifth lens group G5 moves to the image side substantially monotonically, and the sixth lens group G6 is fixed with respect to the image plane S.
  • the distance between the first lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 at the telephoto end.
  • the fourth lens group G4 are larger than the distance at the wide-angle end, the distance between the fourth lens group G4 and the fifth lens group G5 changes, and the fifth lens group G5 and the sixth lens group G6.
  • the first lens group G1 to the fifth lens group G5 move along the optical axis so that the distance between the first lens group G1 and the fifth lens group G5 decreases.
  • the fourth lens group G4 moves toward the image side along the optical axis during focusing from the infinite focus state to the close object focus state.
  • the fourth lens group G4 has negative power
  • the fifth lens group G5 has positive power
  • the sixth lens group G6 has negative power. Therefore, various aberrations can be corrected well over the entire zoom range, and further downsizing can be achieved while maintaining high performance.
  • the fourth lens group G4 has negative power
  • the fifth lens group G5 has positive power
  • the sixth lens group G6 has Although it has a negative power
  • the fifth lens group G5 and the sixth lens group G6 are both configured by a single lens element. There is no particular limitation on the number of lens elements constituting the lens group G5 and the sixth lens group G6.
  • the distance between the third lens group G3 and the fourth lens group G4 at the telephoto end is set to the wide-angle end during zooming from the wide-angle end to the telephoto end during imaging. Since the first lens group G1 to the fourth lens group G4 move along the optical axis so as to be larger than the distance in FIG. 3, the zooming action in the third lens group G3 and the fourth lens group G4 is greatly increased. It is possible to reduce the size while achieving a high magnification.
  • the fourth lens group G4 is moved along the optical axis to perform focusing from the infinitely focused state to the close object focused state.
  • the amount of movement of the fourth lens group G4 in the state and in the proximity object in-focus state can be reduced, and variation in aberration performance can be suppressed. It is also possible to contribute to downsizing.
  • the aperture stop A is disposed on the object side of the third lens group G3.
  • the aperture stop A Since it moves along the optical axis integrally with the third lens group G3, it is possible to correct aberration performance satisfactorily and to make it compact.
  • the aperture stop A and the third lens group G3 are spaced at the wide-angle end, the light beam passing through the third lens group G3 spreads, and it becomes difficult to suppress various aberrations, particularly spherical aberration. .
  • the distance between the second lens group G2 and the third lens group G3 is widened, and the total lens length at the telephoto end is also increased. For this reason, it is difficult to reduce the size.
  • the diameter of the aperture stop A that determines the open F value may be the same at the wide-angle end and the value at the telephoto end, or may be different.
  • the image blur correction is configured such that the third lens group G3 is movable in a direction perpendicular to the optical axis in order to optically correct image blur.
  • This is a lens group, and the image blur correction lens group is moved in a direction perpendicular to the optical axis to correct image point movement due to vibration of the entire system, that is, image blur due to camera shake, vibration, etc. is optically corrected. Can be corrected automatically.
  • the image blur correction lens group moves in a direction perpendicular to the optical axis, thereby suppressing the enlargement of the entire zoom lens system and making it compact. Further, it is possible to correct image blur while maintaining excellent imaging characteristics with small decentration coma and decentering astigmatism.
  • Embodiments 1 to 5 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
  • a zoom lens system such as the zoom lens systems according to Embodiments 1 to 5
  • a plurality of possible conditions are defined for the zoom lens system according to each embodiment, and a zoom lens system configuration that satisfies all of the plurality of conditions is most effective.
  • individual conditions it is possible to obtain a zoom lens system that exhibits the corresponding effects.
  • a first lens group having a positive power, a second lens group having a negative power, and a positive power A third lens group having negative power, a fourth lens group having negative power, a fifth lens group, and a sixth lens group, and at the time of zooming from the wide-angle end to the telephoto end during imaging
  • the first lens group, the second lens group, the third lens group, and the second lens group so that the distance between the third lens group and the fourth lens group is larger than the distance at the wide-angle end.
  • a zoom lens system in which the fourth lens group is moved along the optical axis and the fourth lens group is moved along the optical axis to perform focusing from the infinitely focused state to the close object focused state is as follows. It is possible to satisfy the condition (1). 0.05 ⁇ D 4 / f T ⁇ 0.20 (1) here, D 4 : the amount of movement of the fourth lens group during zooming from the wide-angle end to the telephoto end during imaging, f T : the focal length of the entire system at the telephoto end.
  • the condition (1) is a condition for defining the ratio between the moving amount of the fourth lens unit during zooming and the focal length of the entire system at the telephoto end. If the lower limit of condition (1) is not reached, the amount of movement of the fourth lens group becomes too small, and the zooming effect in the fourth lens group becomes too small. As a result, the lens unit other than the fourth lens unit bears the zooming action, and it becomes difficult to correct aberrations over the entire system. In addition, the movement amount of the lens groups other than the fourth lens group becomes large, and the total lens length becomes too large, so that it becomes difficult to provide a compact lens barrel, imaging device, and camera.
  • the amount of movement of the fourth lens group becomes too large, and it becomes difficult to correct aberrations such as chromatic aberration and field curvature well over the entire system.
  • the amount of movement of the fourth lens group increases and the total lens length becomes too large, it is difficult to provide a compact lens barrel, imaging device, and camera.
  • the zoom lens systems according to Embodiments 1 to 5 in order from the object side to the image side, at least a first lens group having a positive power, a second lens group having a negative power, and a positive lens A third lens group having the following power, and during zooming from the wide-angle end to the telephoto end during imaging, the first lens group, the second lens group, and the third lens group are along the optical axis.
  • the moving zoom lens system satisfies the following conditions (2), (3) and (4).
  • L T total lens length at the telephoto end (distance from the most object side lens surface of the first lens group to the image plane)
  • f T focal length of the entire system at the telephoto end
  • f W focal length of the entire system at the wide-angle end
  • F T F number at the telephoto end
  • F W F number at the wide-angle end.
  • the condition (2) is a condition for defining the ratio between the total lens length at the telephoto end and the focal length of the entire system at the telephoto end. If the lower limit of condition (2) is not reached, the total lens length at the telephoto end becomes too small, and it becomes difficult to satisfactorily correct aberrations at the telephoto end. Conversely, if the upper limit of condition (2) is exceeded, the total lens length at the telephoto end becomes too large, and it becomes difficult to provide a compact lens barrel, imaging device, and camera.
  • the condition (3) is a condition for defining a ratio between the focal length of the entire system at the telephoto end and the focal length of the entire system at the wide-angle end, that is, a zoom ratio.
  • a zoom ratio When the condition (3) is not satisfied, it is difficult to provide a zoom lens system, an imaging device, and a camera having a small zoom ratio and sufficient magnification.
  • the condition (4) is a condition for defining the ratio between the F number at the telephoto end and the F number at the wide angle end. If the condition (4) is not satisfied, the F-number at the telephoto end becomes too large compared with the F-number at the wide-angle end, and it is difficult to provide a zoom lens system, an imaging device, and a camera that are sufficiently bright at the telephoto end. Become.
  • Each lens group constituting the zoom lens system according to Embodiments 1 to 5 includes a refractive lens element that deflects incident light by refraction (that is, a type in which deflection is performed at an interface between media having different refractive indexes)
  • a diffractive lens element that deflects incident light by diffraction a refractive / diffractive hybrid lens element that deflects incident light by a combination of diffractive action and refractive action, and a refractive index that deflects incident light according to the refractive index distribution in the medium
  • Each lens group may be composed of a distributed lens element or the like.
  • a diffractive / diffractive hybrid lens element when a diffractive structure is formed at the interface of media having different refractive indexes, the wavelength dependence of diffraction efficiency is improved.
  • an optical low-pass filter, a face plate of an image sensor, or the like is equivalent to the object side of the image plane S (between the image plane S and the most image side lens surface of the sixth lens group G6).
  • this low-pass filter a birefringent low-pass filter made of quartz or the like whose predetermined crystal axis direction is adjusted, or a required optical cutoff frequency.
  • a phase-type low-pass filter or the like that achieves the characteristics by the diffraction effect can be applied.
  • FIG. 16 is a schematic configuration diagram of a digital still camera according to the sixth embodiment.
  • the digital still camera includes an image pickup apparatus including a zoom lens system 1 and an image pickup device 2 that is a CCD, a liquid crystal monitor 3, and a housing 4.
  • the zoom lens system 1 includes a first lens group G1, a second lens group G2, an aperture stop A, a third lens group G3, a fourth lens group G4, a fifth lens group G5, A sixth lens group G6 is included.
  • the zoom lens system 1 is disposed on the front side, and the imaging element 2 is disposed on the rear side of the zoom lens system 1.
  • a liquid crystal monitor 3 is disposed on the rear side of the housing 4, and an optical image of the subject by the zoom lens system 1 is formed on the image plane S.
  • the lens barrel is composed of a main lens barrel 5, a movable lens barrel 6, and a cylindrical cam 7.
  • the first lens group G1, the second lens group G2, the aperture stop A and the third lens group G3, the fourth lens group G4, the fifth lens group G5, and the sixth lens group G6 are imaged.
  • the zoom lens can be moved from the wide angle end to the telephoto end by moving to a predetermined position with the element 2 as a reference.
  • the fourth lens group G4 is movable in the optical axis direction by a focus adjustment motor.
  • the zoom lens system according to Embodiment 1 for a digital still camera, it is possible to provide a small digital still camera that has a high ability to correct resolution and curvature of field and has a short overall lens length when not in use. it can.
  • the digital still camera shown in FIG. 16 may use any of the zoom lens systems according to Embodiments 2 to 5 instead of the zoom lens system according to Embodiment 1.
  • the optical system of the digital still camera shown in FIG. 16 can be used for a digital video camera for moving images. In this case, not only a still image but also a moving image with high resolution can be taken.
  • the zoom lens system according to the first to fifth embodiments is shown as the zoom lens system 1, but these zoom lens systems need to use all zooming areas. There is no. That is, a range in which the optical performance is ensured according to a desired zooming area may be cut out and used as a zoom lens system having a lower magnification than the zoom lens system described in the first to fifth embodiments.
  • a prism having an internal reflection surface or a surface reflection mirror may be disposed at an arbitrary position such as in the first lens group G1, and the zoom lens system may be applied to a so-called bent lens barrel.
  • a zoom lens system including the entire second lens group G2, the entire third lens group G3, a part of the second lens group G2, and a part of the third lens group G3 is configured.
  • the zoom lens system may be applied to a so-called sliding lens barrel in which the lens group of the part is retracted from the optical axis when retracted.
  • an image pickup apparatus including the zoom lens system according to Embodiments 1 to 5 described above and an image pickup device such as a CCD or a CMOS is used as a mobile information terminal such as a smartphone, a monitoring camera in a monitoring system, a Web camera, It can also be applied to in-vehicle cameras.
  • the sixth embodiment has been described as an example of the technique disclosed in the present application.
  • the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
  • the unit of length in the table is “mm”, and the unit of angle of view is “°”.
  • r is a radius of curvature
  • d is a surface interval
  • nd is a refractive index with respect to the d line
  • vd is an Abbe number with respect to the d line.
  • the surface marked with * is an aspherical surface
  • the aspherical shape is defined by the following equation.
  • Z distance from a point on the aspheric surface having a height h from the optical axis to the tangent plane of the aspheric vertex
  • h height from the optical axis
  • r vertex radius of curvature
  • conic constant
  • An n-order aspherical coefficient.
  • each longitudinal aberration diagram shows the aberration at the wide angle end, (b) shows the intermediate position, and (c) shows the aberration at the telephoto end.
  • SA spherical aberration
  • AST mm
  • DIS distortion
  • the vertical axis represents the F number (indicated by F in the figure)
  • the solid line is the d line (d-line)
  • the short broken line is the F line (F-line)
  • the long broken line is the C line (C- line).
  • the vertical axis represents the image height (indicated by H in the figure), the solid line represents the sagittal plane (indicated by s), and the broken line represents the meridional plane (indicated by m in the figure). is there.
  • the vertical axis represents the image height (indicated by H in the figure).
  • 6, 9, 12 and 15 are lateral aberration diagrams at the telephoto end of the zoom lens systems according to Numerical Examples 1 to 5, respectively.
  • the upper three aberration diagrams show the basic state in which image blur correction is not performed at the telephoto end, and the lower three aberration diagrams move the image blur correction lens group by a predetermined amount in a direction perpendicular to the optical axis. This corresponds to the image blur correction state at the telephoto end.
  • the upper row shows the lateral aberration at the image point of 70% of the maximum image height
  • the middle row shows the lateral aberration at the axial image point
  • the lower row shows the lateral aberration at the image point of -70% of the maximum image height.
  • the upper stage is the lateral aberration at the image point of 70% of the maximum image height
  • the middle stage is the lateral aberration at the axial image point
  • the lower stage is at the image point of -70% of the maximum image height.
  • the horizontal axis represents the distance from the principal ray on the pupil plane
  • the solid line is the d line (d-line)
  • the short broken line is the F line (F-line)
  • the long broken line is the C line ( C-line) characteristics.
  • the meridional plane is a plane including the optical axis of the first lens group G1 and the optical axis of the third lens group G3.
  • the amount of movement in the direction perpendicular to the optical axis of the image blur correction lens group in the image blur correction state at the telephoto end is as follows.
  • Numerical example 1 0.214 mm
  • Numerical example 2 0.210 mm
  • Numerical example 3 0.215 mm
  • Numerical example 4 0.250 mm
  • Numerical example 5 0.237 mm
  • the image decentering amount is the value when the image blur correction lens group translates by the above values in the direction perpendicular to the optical axis. Equal to image eccentricity.
  • Table 16 shows the corresponding values for each condition in the zoom lens system of each numerical example.
  • the present disclosure can be applied to digital input devices such as digital cameras, cameras of portable information terminals such as smartphones, surveillance cameras in surveillance systems, Web cameras, and in-vehicle cameras.
  • digital input devices such as digital cameras, cameras of portable information terminals such as smartphones, surveillance cameras in surveillance systems, Web cameras, and in-vehicle cameras.
  • the present disclosure can be applied to a photographing optical system that requires high image quality, such as a digital camera.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

 物体側から像側へと順に、正のパワーを有する第1レンズ群と、負のパワーを有する第2レンズ群と、正のパワーを有する第3レンズ群と、負のパワーを有する第4レンズ群と、第5レンズ群と、第6レンズ群とからなり、撮像時の広角端から望遠端へのズーミングの際に、望遠端での前記第3レンズ群と前記第4レンズ群との間隔が、広角端での該間隔よりも大きくなるように、前記第1レンズ群、前記第2レンズ群、前記第3レンズ群及び前記第4レンズ群が光軸に沿って移動し、前記第4レンズ群を光軸に沿って移動させて、無限遠合焦状態から近接物体合焦状態へのフォーカシングを行うことを特徴とする、ズームレンズ系。

Description

ズームレンズ系、撮像装置及びカメラ
 本開示は、ズームレンズ系、撮像装置及びカメラに関する。
 デジタルスチルカメラやデジタルビデオカメラ等の、光電変換を行う撮像素子を持つカメラ(以下、単にデジタルカメラという)に対するコンパクト化及び高性能化の要求は極めて強い。
 特許文献1~4は、第1レンズ群が正のパワーを有し、第2レンズ群が負のパワーを有し、第3レンズ群が正のパワーを有する6群構成であり、ズーミングの際に第1レンズ群乃至第3レンズ群が移動するレンズ系を開示している。
 特許文献5は、第1レンズ群が正のパワーを有し、第2レンズ群が負のパワーを有し、第3レンズ群が正のパワーを有し、第4レンズ群が負のパワーを有し、第5レンズ群が正のパワーを有し、第6レンズ群が負のパワーを有する6群構成であり、これらのレンズ群の間隔を変化させて変倍を行い、第4レンズ群を光軸に沿って移動させてフォーカシングを行うレンズ系を開示している。
特開2011-209347号公報 特開2011-123337号公報 特開2011-090190号公報 特開2010-039271号公報 特開2006-251462号公報
 本開示は、小型かつ高倍率でありながら、望遠端においても充分に明るく、解像度が高いズームレンズ系を提供する。また本開示は、該ズームレンズ系を含む撮像装置及び該撮像装置を備えたカメラを提供する。
 (I)本開示におけるズームレンズ系は、
物体側から像側へと順に、
正のパワーを有する第1レンズ群と、
負のパワーを有する第2レンズ群と、
正のパワーを有する第3レンズ群と、
負のパワーを有する第4レンズ群と、
第5レンズ群と、
第6レンズ群とからなり、
撮像時の広角端から望遠端へのズーミングの際に、望遠端での前記第3レンズ群と前記第4レンズ群との間隔が、広角端での該間隔よりも大きくなるように、前記第1レンズ群、前記第2レンズ群、前記第3レンズ群及び前記第4レンズ群が光軸に沿って移動し、
前記第4レンズ群を光軸に沿って移動させて、無限遠合焦状態から近接物体合焦状態へのフォーカシングを行う
ことを特徴とする。
 本開示における撮像装置は、
物体の光学的な像を電気的な画像信号として出力可能であり、
物体の光学的な像を形成するズームレンズ系と、
該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子と
を備え、
前記ズームレンズ系は、
物体側から像側へと順に、
正のパワーを有する第1レンズ群と、
負のパワーを有する第2レンズ群と、
正のパワーを有する第3レンズ群と、
負のパワーを有する第4レンズ群と、
第5レンズ群と、
第6レンズ群とからなり、
撮像時の広角端から望遠端へのズーミングの際に、望遠端での前記第3レンズ群と前記第4レンズ群との間隔が、広角端での該間隔よりも大きくなるように、前記第1レンズ群、前記第2レンズ群、前記第3レンズ群及び前記第4レンズ群が光軸に沿って移動し、
前記第4レンズ群を光軸に沿って移動させて、無限遠合焦状態から近接物体合焦状態へのフォーカシングを行う
ことを特徴とする。
 本開示におけるカメラは、
物体の光学的な像を電気的な画像信号に変換し、変換された画像信号の表示及び記憶の少なくとも一方を行い、
物体の光学的な像を形成するズームレンズ系と、該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子とを含む撮像装置を備え、
前記ズームレンズ系は、
物体側から像側へと順に、
正のパワーを有する第1レンズ群と、
負のパワーを有する第2レンズ群と、
正のパワーを有する第3レンズ群と、
負のパワーを有する第4レンズ群と、
第5レンズ群と、
第6レンズ群とからなり、
撮像時の広角端から望遠端へのズーミングの際に、望遠端での前記第3レンズ群と前記第4レンズ群との間隔が、広角端での該間隔よりも大きくなるように、前記第1レンズ群、前記第2レンズ群、前記第3レンズ群及び前記第4レンズ群が光軸に沿って移動し、
前記第4レンズ群を光軸に沿って移動させて、無限遠合焦状態から近接物体合焦状態へのフォーカシングを行う
ことを特徴とする。
 (II)本開示におけるズームレンズ系は、
物体側から像側へと順に、少なくとも
正のパワーを有する第1レンズ群と、
負のパワーを有する第2レンズ群と、
正のパワーを有する第3レンズ群とを備え、
撮像時の広角端から望遠端へのズーミングの際に、前記第1レンズ群、前記第2レンズ群及び前記第3レンズ群が光軸に沿って移動し、
以下の条件(2)、(3)及び(4):
  0.7<L/f<1.5 ・・・(2)
  f/f>12.0 ・・・(3)
  F/F<1.4 ・・・(4)
(ここで、
 L:望遠端におけるレンズ全長(第1レンズ群の最物体側レンズ面から像面までの距離)、
 f:望遠端における全系の焦点距離、
 f:広角端における全系の焦点距離、
 F:望遠端におけるFナンバー、
 F:広角端におけるFナンバー
である)
を満足する
ことを特徴とする。
 本開示における撮像装置は、
物体の光学的な像を電気的な画像信号として出力可能であり、
物体の光学的な像を形成するズームレンズ系と、
該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子と
を備え、
前記ズームレンズ系は、
物体側から像側へと順に、少なくとも
正のパワーを有する第1レンズ群と、
負のパワーを有する第2レンズ群と、
正のパワーを有する第3レンズ群とを備え、
撮像時の広角端から望遠端へのズーミングの際に、前記第1レンズ群、前記第2レンズ群及び前記第3レンズ群が光軸に沿って移動し、
以下の条件(2)、(3)及び(4):
  0.7<L/f<1.5 ・・・(2)
  f/f>12.0 ・・・(3)
  F/F<1.4 ・・・(4)
(ここで、
 L:望遠端におけるレンズ全長(第1レンズ群の最物体側レンズ面から像面までの距離)、
 f:望遠端における全系の焦点距離、
 f:広角端における全系の焦点距離、
 F:望遠端におけるFナンバー、
 F:広角端におけるFナンバー
である)
を満足する
ことを特徴とする。
 本開示におけるカメラは、
物体の光学的な像を電気的な画像信号に変換し、変換された画像信号の表示及び記憶の少なくとも一方を行い、
物体の光学的な像を形成するズームレンズ系と、該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子とを含む撮像装置を備え、
前記ズームレンズ系は、
物体側から像側へと順に、少なくとも
正のパワーを有する第1レンズ群と、
負のパワーを有する第2レンズ群と、
正のパワーを有する第3レンズ群とを備え、
撮像時の広角端から望遠端へのズーミングの際に、前記第1レンズ群、前記第2レンズ群及び前記第3レンズ群が光軸に沿って移動し、
以下の条件(2)、(3)及び(4):
  0.7<L/f<1.5 ・・・(2)
  f/f>12.0 ・・・(3)
  F/F<1.4 ・・・(4)
(ここで、
 L:望遠端におけるレンズ全長(第1レンズ群の最物体側レンズ面から像面までの距離)、
 f:望遠端における全系の焦点距離、
 f:広角端における全系の焦点距離、
 F:望遠端におけるFナンバー、
 F:広角端におけるFナンバー
である)
を満足する
ことを特徴とする。
 本開示におけるズームレンズ系は、小型かつ高倍率でありながら、望遠端においても充分に明るく、解像度が高い。
図1は、実施の形態1(数値実施例1)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。 図2は、数値実施例1に係るズームレンズ系の無限遠合焦状態の縦収差図である。 図3は、数値実施例1に係るズームレンズ系の望遠端における、像ぶれ補正を行っていない基本状態及び像ぶれ補正状態での横収差図である。 図4は、実施の形態2(数値実施例2)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。 図5は、数値実施例2に係るズームレンズ系の無限遠合焦状態の縦収差図である。 図6は、数値実施例2に係るズームレンズ系の望遠端における、像ぶれ補正を行っていない基本状態及び像ぶれ補正状態での横収差図である。 図7は、実施の形態3(数値実施例3)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。 図8は、数値実施例3に係るズームレンズ系の無限遠合焦状態の縦収差図である。 図9は、数値実施例3に係るズームレンズ系の望遠端における、像ぶれ補正を行っていない基本状態及び像ぶれ補正状態での横収差図である。 図10は、実施の形態4(数値実施例4)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。 図11は、数値実施例4に係るズームレンズ系の無限遠合焦状態の縦収差図である。 図12は、数値実施例4に係るズームレンズ系の望遠端における、像ぶれ補正を行っていない基本状態及び像ぶれ補正状態での横収差図である。 図13は、実施の形態5(数値実施例5)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。 図14は、数値実施例5に係るズームレンズ系の無限遠合焦状態の縦収差図である。 図15は、数値実施例5に係るズームレンズ系の望遠端における、像ぶれ補正を行っていない基本状態及び像ぶれ補正状態での横収差図である。 図16は、実施の形態6に係るデジタルスチルカメラの概略構成図である。
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、発明者らは、当業者が本開示を充分に理解するために添付図面および以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。
(実施の形態1~5)
 図1、4、7、10及び13は、各々実施の形態1~5に係るズームレンズ系のレンズ配置図であり、いずれも無限遠合焦状態にあるズームレンズ系を表している。
 各図において、(a)図は広角端(最短焦点距離状態:焦点距離f)のレンズ構成、(b)図は中間位置(中間焦点距離状態:焦点距離f=√(f*f))のレンズ構成、(c)図は望遠端(最長焦点距離状態:焦点距離f)のレンズ構成をそれぞれ表している。また各図において、(a)図と(b)図との間に設けられた折れ線の矢印は、上から順に、広角端、中間位置、望遠端の各状態におけるレンズ群の位置を結んで得られる直線である。広角端と中間位置との間、中間位置と望遠端との間は、単純に直線で接続されているだけであり、実際の各レンズ群の動きとは異なる。
 さらに各図において、レンズ群に付された矢印は、無限遠合焦状態から近接物体合焦状態へのフォーカシングを表す。すなわち、図1、4、7、10及び13では、後述する第4レンズ群G4が無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に移動する方向を示している。
 各実施の形態に係るズームレンズ系は、物体側から像側へと順に、正のパワーを有する第1レンズ群G1と、負のパワーを有する第2レンズ群G2と、正のパワーを有する第3レンズ群G3と、負のパワーを有する第4レンズ群G4と、正のパワーを有する第5レンズ群G5と、負のパワーを有する第6レンズ群G6とを備える。該第3レンズ群G3の物体側には、開口絞りAが設けられている。
 ズーミングに際して、各レンズ群の間隔、すなわち、第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、第3レンズ群G3と第4レンズ群G4との間隔、第4レンズ群G4と第5レンズ群G5との間隔、及び第5レンズ群G5と第6レンズ群G6との間隔がいずれも変化するように、第1レンズ群G1乃至第5レンズ群G5は光軸に沿ってそれぞれ移動する。各実施の形態に係るズームレンズ系は、これら各レンズ群を所望のパワー配置にすることにより、高い光学性能を保持しつつ、レンズ系全体の小型化を可能にしている。
 図1、4、7、10及び13において、特定の面に付されたアスタリスク*は、該面が非球面であることを示している。各図において、各レンズ群の符号に付された記号(+)及び記号(-)は、各レンズ群のパワーの符号に対応する。各図において、最も右側に記載された直線は、像面Sの位置を表し、該像面Sの物体側(像面Sと第6レンズ群G6の最像側レンズ面との間)には、光学的ローパスフィルタや撮像素子のフェースプレート等と等価な平行平板Pが設けられている。
(実施の形態1)
 図1に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、両凸形状の第2レンズ素子L2と、物体側に凸面を向けた正メニスカス形状の第3レンズ素子L3とからなる。これらのうち、第1レンズ素子L1と第2レンズ素子L2とは接合されており、後述する対応数値実施例における面データでは、これら第1レンズ素子L1と第2レンズ素子L2との間の接着剤層に面番号2が付与されている。
 第2レンズ群G2は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第4レンズ素子L4と、両凹形状の第5レンズ素子L5と、両凸形状の第6レンズ素子L6と、像側に凸面を向けた負メニスカス形状の第7レンズ素子L7とからなる。これらのうち、第5レンズ素子L5と第6レンズ素子L6とは接合されており、後述する対応数値実施例における面データでは、これら第5レンズ素子L5と第6レンズ素子L6との間の接着剤層に面番号10が付与されている。また、第4レンズ素子L4は、その両面が非球面である。
 第3レンズ群G3は、物体側から像側へと順に、物体側に凸面を向けた正メニスカス形状の第8レンズ素子L8と、両凸形状の第9レンズ素子L9と、両凹形状の第10レンズ素子L10と、両凸形状の第11レンズ素子L11とからなる。これらのうち、第9レンズ素子L9と第10レンズ素子L10とは接合されており、後述する対応数値実施例における面データでは、これら第9レンズ素子L9と第10レンズ素子L10との間の接着剤層に面番号19が付与されている。また、第8レンズ素子L8は、その両面が非球面であり、第11レンズ素子L11は、その両面が非球面である。
 第4レンズ群G4は、物体側に凸面を向けた負メニスカス形状の第12レンズ素子L12のみからなる。
 第5レンズ群G5は、両凸形状の第13レンズ素子L13のみからなる。この第13レンズ素子L13は、その両面が非球面である。
 第6レンズ群G6は、両凹形状の第14レンズ素子L14のみからなる。この第14レンズ素子L14は、その物体側面が非球面である。
 実施の形態1に係るズームレンズ系において、撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1は、像側に凸の軌跡を描いて物体側へ移動し、第2レンズ群G2は、像側に凸の軌跡を描いて像側へ移動し、第3レンズ群G3は、物体側に凸の軌跡を描いて物体側へ移動し、第4レンズ群G4は、像側に凸の軌跡を描いて物体側へ移動し、第5レンズ群G5は、略単調に像側へ移動し、第6レンズ群G6は、像面Sに対して固定されている。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、望遠端での第3レンズ群G3と第4レンズ群G4との間隔が広角端での該間隔よりも大きくなり、第4レンズ群G4と第5レンズ群G5との間隔が変化し、第5レンズ群G5と第6レンズ群G6との間隔が減少するように、第1レンズ群G1乃至第5レンズ群G5が光軸に沿ってそれぞれ移動する。
 さらに、実施の形態1に係るズームレンズ系において、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第4レンズ群G4が光軸に沿って像側へ移動する。
(実施の形態2)
 図4に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、両凸形状の第2レンズ素子L2と、物体側に凸面を向けた正メニスカス形状の第3レンズ素子L3とからなる。これらのうち、第1レンズ素子L1と第2レンズ素子L2とは接合されており、後述する対応数値実施例における面データでは、これら第1レンズ素子L1と第2レンズ素子L2との間の接着剤層に面番号2が付与されている。
 第2レンズ群G2は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第4レンズ素子L4と、両凹形状の第5レンズ素子L5と、両凸形状の第6レンズ素子L6と、像側に凸面を向けた負メニスカス形状の第7レンズ素子L7とからなる。これらのうち、第5レンズ素子L5と第6レンズ素子L6とは接合されており、後述する対応数値実施例における面データでは、これら第5レンズ素子L5と第6レンズ素子L6との間の接着剤層に面番号10が付与されている。また、第4レンズ素子L4は、その両面が非球面である。
 第3レンズ群G3は、物体側から像側へと順に、物体側に凸面を向けた正メニスカス形状の第8レンズ素子L8と、両凸形状の第9レンズ素子L9と、両凹形状の第10レンズ素子L10と、両凸形状の第11レンズ素子L11とからなる。これらのうち、第9レンズ素子L9と第10レンズ素子L10とは接合されており、後述する対応数値実施例における面データでは、これら第9レンズ素子L9と第10レンズ素子L10との間の接着剤層に面番号19が付与されている。また、第8レンズ素子L8は、その両面が非球面であり、第11レンズ素子L11は、その両面が非球面である。
 第4レンズ群G4は、物体側に凸面を向けた負メニスカス形状の第12レンズ素子L12のみからなる。
 第5レンズ群G5は、両凸形状の第13レンズ素子L13のみからなる。この第13レンズ素子L13は、その両面が非球面である。
 第6レンズ群G6は、両凹形状の第14レンズ素子L14のみからなる。この第14レンズ素子L14は、その物体側面が非球面である。
 実施の形態2に係るズームレンズ系において、撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1は、像側に凸の軌跡を描いて物体側へ移動し、第2レンズ群G2は、像側に凸の軌跡を描いて像側へ移動し、第3レンズ群G3は、物体側に凸の軌跡を描いて物体側へ移動し、第4レンズ群G4は、像側に凸の軌跡を描いて物体側へ移動し、第5レンズ群G5は、略単調に像側へ移動し、第6レンズ群G6は、像面Sに対して固定されている。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、望遠端での第3レンズ群G3と第4レンズ群G4との間隔が広角端での該間隔よりも大きくなり、第4レンズ群G4と第5レンズ群G5との間隔が変化し、第5レンズ群G5と第6レンズ群G6との間隔が減少するように、第1レンズ群G1乃至第5レンズ群G5が光軸に沿ってそれぞれ移動する。
 さらに、実施の形態2に係るズームレンズ系において、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第4レンズ群G4が光軸に沿って像側へ移動する。
(実施の形態3)
 図7に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、両凸形状の第2レンズ素子L2と、物体側に凸面を向けた正メニスカス形状の第3レンズ素子L3とからなる。これらのうち、第1レンズ素子L1と第2レンズ素子L2とは接合されており、後述する対応数値実施例における面データでは、これら第1レンズ素子L1と第2レンズ素子L2との間の接着剤層に面番号2が付与されている。
 第2レンズ群G2は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第4レンズ素子L4と、両凹形状の第5レンズ素子L5と、両凸形状の第6レンズ素子L6と、像側に凸面を向けた負メニスカス形状の第7レンズ素子L7とからなる。これらのうち、第5レンズ素子L5と第6レンズ素子L6とは接合されており、後述する対応数値実施例における面データでは、これら第5レンズ素子L5と第6レンズ素子L6との間の接着剤層に面番号10が付与されている。また、第4レンズ素子L4は、その両面が非球面である。
 第3レンズ群G3は、物体側から像側へと順に、物体側に凸面を向けた正メニスカス形状の第8レンズ素子L8と、両凸形状の第9レンズ素子L9と、両凹形状の第10レンズ素子L10と、両凸形状の第11レンズ素子L11とからなる。これらのうち、第9レンズ素子L9と第10レンズ素子L10とは接合されており、後述する対応数値実施例における面データでは、これら第9レンズ素子L9と第10レンズ素子L10との間の接着剤層に面番号19が付与されている。また、第8レンズ素子L8は、その両面が非球面であり、第11レンズ素子L11は、その両面が非球面である。
 第4レンズ群G4は、物体側に凸面を向けた負メニスカス形状の第12レンズ素子L12のみからなる。
 第5レンズ群G5は、両凸形状の第13レンズ素子L13のみからなる。この第13レンズ素子L13は、その両面が非球面である。
 第6レンズ群G6は、両凹形状の第14レンズ素子L14のみからなる。この第14レンズ素子L14は、その物体側面が非球面である。
 実施の形態3に係るズームレンズ系において、撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1は、像側に凸の軌跡を描いて物体側へ移動し、第2レンズ群G2は、像側に凸の軌跡を描いて像側へ移動し、第3レンズ群G3は、物体側に凸の軌跡を描いて物体側へ移動し、第4レンズ群G4は、像側に凸の軌跡を描いて物体側へ移動し、第5レンズ群G5は、略単調に像側へ移動し、第6レンズ群G6は、像面Sに対して固定されている。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、望遠端での第3レンズ群G3と第4レンズ群G4との間隔が広角端での該間隔よりも大きくなり、第4レンズ群G4と第5レンズ群G5との間隔が変化し、第5レンズ群G5と第6レンズ群G6との間隔が減少するように、第1レンズ群G1乃至第5レンズ群G5が光軸に沿ってそれぞれ移動する。
 さらに、実施の形態3に係るズームレンズ系において、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第4レンズ群G4が光軸に沿って像側へ移動する。
(実施の形態4)
 図10に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、両凸形状の第2レンズ素子L2と、物体側に凸面を向けた正メニスカス形状の第3レンズ素子L3とからなる。これらのうち、第1レンズ素子L1と第2レンズ素子L2とは接合されており、後述する対応数値実施例における面データでは、これら第1レンズ素子L1と第2レンズ素子L2との間の接着剤層に面番号2が付与されている。
 第2レンズ群G2は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第4レンズ素子L4と、両凹形状の第5レンズ素子L5と、両凸形状の第6レンズ素子L6と、両凹形状の第7レンズ素子L7とからなる。これらのうち、第5レンズ素子L5と第6レンズ素子L6とは接合されており、後述する対応数値実施例における面データでは、これら第5レンズ素子L5と第6レンズ素子L6との間の接着剤層に面番号10が付与されている。また、第4レンズ素子L4は、その両面が非球面である。
 第3レンズ群G3は、物体側から像側へと順に、両凸形状の第8レンズ素子L8と、両凸形状の第9レンズ素子L9と、両凹形状の第10レンズ素子L10と、両凸形状の第11レンズ素子L11とからなる。これらのうち、第9レンズ素子L9と第10レンズ素子L10とは接合されており、後述する対応数値実施例における面データでは、これら第9レンズ素子L9と第10レンズ素子L10との間の接着剤層に面番号19が付与されている。また、第8レンズ素子L8は、その両面が非球面であり、第11レンズ素子L11は、その両面が非球面である。
 第4レンズ群G4は、両凹形状の第12レンズ素子L12のみからなる。
 第5レンズ群G5は、両凸形状の第13レンズ素子L13のみからなる。この第13レンズ素子L13は、その両面が非球面である。
 第6レンズ群G6は、両凹形状の第14レンズ素子L14のみからなる。この第14レンズ素子L14は、その物体側面が非球面である。
 実施の形態4に係るズームレンズ系において、撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1は、像側に凸の軌跡を描いて物体側へ移動し、第2レンズ群G2は、像側に凸の軌跡を描いて像側へ移動し、第3レンズ群G3は、像側に凸の軌跡を描いて物体側へ移動し、第4レンズ群G4は、像側に凸の軌跡を描いて物体側へ移動し、第5レンズ群G5は、略単調に像側へ移動し、第6レンズ群G6は、像面Sに対して固定されている。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、望遠端での第3レンズ群G3と第4レンズ群G4との間隔が広角端での該間隔よりも大きくなり、第4レンズ群G4と第5レンズ群G5との間隔が変化し、第5レンズ群G5と第6レンズ群G6との間隔が減少するように、第1レンズ群G1乃至第5レンズ群G5が光軸に沿ってそれぞれ移動する。
 さらに、実施の形態4に係るズームレンズ系において、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第4レンズ群G4が光軸に沿って像側へ移動する。
(実施の形態5)
 図13に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、両凸形状の第2レンズ素子L2と、物体側に凸面を向けた正メニスカス形状の第3レンズ素子L3とからなる。これらのうち、第1レンズ素子L1と第2レンズ素子L2とは接合されており、後述する対応数値実施例における面データでは、これら第1レンズ素子L1と第2レンズ素子L2との間の接着剤層に面番号2が付与されている。
 第2レンズ群G2は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第4レンズ素子L4と、両凹形状の第5レンズ素子L5と、両凸形状の第6レンズ素子L6と、像側に凸面を向けた負メニスカス形状の第7レンズ素子L7とからなる。これらのうち、第5レンズ素子L5と第6レンズ素子L6とは接合されており、後述する対応数値実施例における面データでは、これら第5レンズ素子L5と第6レンズ素子L6との間の接着剤層に面番号10が付与されている。また、第4レンズ素子L4は、その両面が非球面である。
 第3レンズ群G3は、物体側から像側へと順に、両凸形状の第8レンズ素子L8と、両凸形状の第9レンズ素子L9と、両凹形状の第10レンズ素子L10と、両凸形状の第11レンズ素子L11とからなる。これらのうち、第9レンズ素子L9と第10レンズ素子L10とは接合されており、後述する対応数値実施例における面データでは、これら第9レンズ素子L9と第10レンズ素子L10との間の接着剤層に面番号19が付与されている。また、第8レンズ素子L8は、その両面が非球面であり、第11レンズ素子L11は、その両面が非球面である。
 第4レンズ群G4は、物体側に凸面を向けた負メニスカス形状の第12レンズ素子L12のみからなる。
 第5レンズ群G5は、両凸形状の第13レンズ素子L13のみからなる。この第13レンズ素子L13は、その両面が非球面である。
 第6レンズ群G6は、両凹形状の第14レンズ素子L14のみからなる。この第14レンズ素子L14は、その物体側面が非球面である。
 実施の形態5に係るズームレンズ系において、撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1は、像側に凸の軌跡を描いて物体側へ移動し、第2レンズ群G2は、像側に凸の軌跡を描いて像側へ移動し、第3レンズ群G3は、略単調に物体側へ移動し、第4レンズ群G4は、像側に凸の軌跡を描いて物体側へ移動し、第5レンズ群G5は、略単調に像側へ移動し、第6レンズ群G6は、像面Sに対して固定されている。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、望遠端での第3レンズ群G3と第4レンズ群G4との間隔が広角端での該間隔よりも大きくなり、第4レンズ群G4と第5レンズ群G5との間隔が変化し、第5レンズ群G5と第6レンズ群G6との間隔が減少するように、第1レンズ群G1乃至第5レンズ群G5が光軸に沿ってそれぞれ移動する。
 さらに、実施の形態5に係るズームレンズ系において、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第4レンズ群G4が光軸に沿って像側へ移動する。
 実施の形態1~5に係るズームレンズ系では、第4レンズ群G4が負のパワーを有し、第5レンズ群G5が正のパワーを有し、第6レンズ群G6が負のパワーを有するので、ズーム全域に渡って諸収差を良好に補正することができ、高性能を維持しながらさらなるコンパクト化が可能である。
 前記したように、実施の形態1~5に係るズームレンズ系では、第4レンズ群G4が負のパワーを有し、第5レンズ群G5が正のパワーを有し、第6レンズ群G6が負のパワーを有するが、本開示において、第3レンズ群G3よりも像側に配置されるレンズ群のパワーには特に限定がない。
 実施の形態1~5に係るズームレンズ系では、第5レンズ群G5及び第6レンズ群G6がいずれも、1枚のレンズ素子で構成されるので、さらなるコンパクト化が可能である。
 前記したように、実施の形態1~5に係るズームレンズ系では、第5レンズ群G5及び第6レンズ群G6がいずれも、1枚のレンズ素子で構成されるが、本開示において、第5レンズ群G5及び第6レンズ群G6を構成するレンズ素子の数には特に限定がない。
 実施の形態1~5に係るズームレンズ系では、撮像時の広角端から望遠端へのズーミングの際に、望遠端での第3レンズ群G3と第4レンズ群G4との間隔が、広角端での該間隔よりも大きくなるように、第1レンズ群G1乃至第4レンズ群G4が光軸に沿って移動するので、第3レンズ群G3及び第4レンズ群G4での変倍作用を大きくすることができ、高倍率を達成しながら、かつコンパクト化が可能である。
 実施の形態1~5に係るズームレンズ系では、第4レンズ群G4を光軸に沿って移動させて、無限遠合焦状態から近接物体合焦状態へのフォーカシングを行うので、無限遠合焦状態及び近接物体合焦状態での第4レンズ群G4の移動量を小さくすることができ、収差性能の変動を抑えることが可能である。また、コンパクト化にも寄与させることが可能である。
 実施の形態1~5に係るズームレンズ系では、第3レンズ群G3の物体側に開口絞りAが配置されており、撮像時の広角端から望遠端へのズーミングの際に、該開口絞りAは該第3レンズ群G3と一体となって光軸に沿って移動するので、収差性能を良好に補正することと、コンパクト化とが可能となる。具体的には、広角端で開口絞りAと第3レンズ群G3との間隔を開けると、第3レンズ群G3内を通る光束が広がり、諸収差、特に球面収差を抑制することが困難となる。また、望遠端で開口絞りAと第3レンズ群G3との間隔を開けると、第2レンズ群G2と第3レンズ群G3との間隔が広がることになり、望遠端でのレンズ全長も長くなることから、コンパクト化が困難となる。
 なお、開放F値を決定する開口絞りAの径は、広角端での値と望遠端での値とが同じであってもよく、異なっていてもよい。
 実施の形態1~5に係るズームレンズ系では、第3レンズ群G3が、像のぶれを光学的に補正するために、光軸に対して垂直な方向に移動可能に構成された像ぶれ補正レンズ群であり、該像ぶれ補正レンズ群を光軸に対して垂直な方向に移動させることによって、全系の振動による像点移動を補正する、すなわち、手ぶれ、振動等による像のぶれを光学的に補正することができる。
 全系の振動による像点移動を補正する際に、像ぶれ補正レンズ群が光軸に対して垂直な方向に移動することにより、ズームレンズ系全体の大型化を抑制してコンパクトに構成しながら、偏心コマ収差や偏心非点収差が小さい優れた結像特性を維持して像ぶれの補正を行うことができる。
 以上のように、本出願において開示する技術の例示として、実施の形態1~5を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。
 以下、例えば実施の形態1~5に係るズームレンズ系のごときズームレンズ系が満足することが可能な条件を説明する。なお、各実施の形態に係るズームレンズ系に対して、複数の可能な条件が規定されるが、これら複数の条件すべてを満足するズームレンズ系の構成が最も効果的である。しかしながら、個別の条件を満足することにより、それぞれ対応する効果を奏するズームレンズ系を得ることも可能である。
 例えば実施の形態1~5に係るズームレンズ系のように、物体側から像側へと順に、正のパワーを有する第1レンズ群と、負のパワーを有する第2レンズ群と、正のパワーを有する第3レンズ群と、負のパワーを有する第4レンズ群と、第5レンズ群と、第6レンズ群とからなり、撮像時の広角端から望遠端へのズーミングの際に、望遠端での前記第3レンズ群と前記第4レンズ群との間隔が、広角端での該間隔よりも大きくなるように、前記第1レンズ群、前記第2レンズ群、前記第3レンズ群及び前記第4レンズ群が光軸に沿って移動し、前記第4レンズ群を光軸に沿って移動させて、無限遠合焦状態から近接物体合焦状態へのフォーカシングを行うズームレンズ系は、以下の条件(1)を満足することが可能である。
  0.05<D/f<0.20 ・・・(1)
ここで、
 D:撮像時の広角端から望遠端へのズーミングの際の、第4レンズ群の移動量、
 f:望遠端における全系の焦点距離
である。
 前記条件(1)は、ズーミングの際の第4レンズ群の移動量と望遠端における全系の焦点距離との比を規定するための条件である。条件(1)の下限を下回ると、第4レンズ群の移動量が小さくなり過ぎ、第4レンズ群での変倍作用が小さくなり過ぎる。その結果、第4レンズ群以外のレンズ群で変倍作用を負担することになり、全系に渡っての収差補正が困難となる。また、第4レンズ群以外のレンズ群の移動量が大きくなり、レンズ全長も大きくなり過ぎることから、コンパクトなレンズ鏡筒や撮像装置、カメラを提供することが困難となる。逆に条件(1)の上限を上回ると、第4レンズ群の移動量が大きくなり過ぎ、色収差や像面湾曲等の収差を全系に渡って良好に補正することが困難となる。また、第4レンズ群の移動量が大きくなり、レンズ全長も大きくなり過ぎることから、コンパクトなレンズ鏡筒や撮像装置、カメラを提供することが困難となる。
 例えば実施の形態1~5に係るズームレンズ系のように、物体側から像側へと順に、少なくとも、正のパワーを有する第1レンズ群と、負のパワーを有する第2レンズ群と、正のパワーを有する第3レンズ群とを備え、撮像時の広角端から望遠端へのズーミングの際に、前記第1レンズ群、前記第2レンズ群及び前記第3レンズ群が光軸に沿って移動するズームレンズ系は、以下の条件(2)、(3)及び(4)を満足する。
  0.7<L/f<1.5 ・・・(2)
  f/f>12.0 ・・・(3)
  F/F<1.4 ・・・(4)
ここで、
 L:望遠端におけるレンズ全長(第1レンズ群の最物体側レンズ面から像面までの距離)、
 f:望遠端における全系の焦点距離、
 f:広角端における全系の焦点距離、
 F:望遠端におけるFナンバー、
 F:広角端におけるFナンバー
である。
 前記条件(2)は、望遠端におけるレンズ全長と望遠端における全系の焦点距離との比を規定するための条件である。条件(2)の下限を下回ると、望遠端におけるレンズ全長が小さくなり過ぎ、望遠端における収差補正を良好に行うことが困難となる。逆に条件(2)の上限を上回ると、望遠端におけるレンズ全長が大きくなり過ぎ、コンパクトなレンズ鏡筒や撮像装置、カメラを提供することが困難となる。
 以下の条件(2)’及び(2)’’の少なくとも1つを満足することにより、前記効果をさらに奏功させることができる。
  0.9<L/f ・・・(2)’
  L/f<1.3 ・・・(2)’’
 前記条件(3)は、望遠端における全系の焦点距離と広角端における全系の焦点距離との比、すなわちズーム比を規定するための条件である。条件(3)を満足しない場合には、ズーム比が小さく、充分な倍率を有するズームレンズ系や撮像装置、カメラを提供することが困難となる。
 以下の条件(3)’を満足することにより、前記効果をさらに奏功させることができる。
  f/f>20.0 ・・・(3)’
 前記条件(4)は、望遠端におけるFナンバーと広角端におけるFナンバーとの比を規定するための条件である。条件(4)を満足しない場合には、広角端におけるFナンバーに対して望遠端におけるFナンバーが大きくなり過ぎ、望遠端において充分に明るいズームレンズ系や撮像装置、カメラを提供することが困難となる。
 以下の条件(4)’を満足することにより、前記効果をさらに奏功させることができる。
  F/F<1.2 ・・・(4)’
 実施の形態1~5に係るズームレンズ系を構成している各レンズ群は、入射光線を屈折により偏向させる屈折型レンズ素子(すなわち、異なる屈折率を有する媒質同士の界面で偏向が行われるタイプのレンズ素子)のみで構成されているが、これに限定されるものではない。例えば、回折により入射光線を偏向させる回折型レンズ素子、回折作用と屈折作用との組み合わせで入射光線を偏向させる屈折・回折ハイブリッド型レンズ素子、入射光線を媒質内の屈折率分布により偏向させる屈折率分布型レンズ素子等で、各レンズ群を構成してもよい。特に、屈折・回折ハイブリッド型レンズ素子において、屈折率の異なる媒質の界面に回折構造を形成すると、回折効率の波長依存性が改善される。
 さらに各実施の形態では、像面Sの物体側(像面Sと第6レンズ群G6の最像側レンズ面との間)には、光学的ローパスフィルタや撮像素子のフェースプレート等と等価な平行平板Pを配置する構成を示したが、このローパスフィルタとしては、所定の結晶軸方向が調整された水晶等を材料とする複屈折型ローパスフィルタや、必要とされる光学的な遮断周波数の特性を回折効果により達成する位相型ローパスフィルタ等が適用可能である。
(実施の形態6)
 図16は、実施の形態6に係るデジタルスチルカメラの概略構成図である。図16において、デジタルスチルカメラは、ズームレンズ系1とCCDである撮像素子2とを含む撮像装置と、液晶モニタ3と、筐体4とから構成される。ズームレンズ系1として、実施の形態1に係るズームレンズ系が用いられている。図16において、ズームレンズ系1は、第1レンズ群G1と、第2レンズ群G2と、開口絞りAと、第3レンズ群G3と、第4レンズ群G4と、第5レンズ群G5と、第6レンズ群G6とから構成されている。筐体4は、前側にズームレンズ系1が配置され、ズームレンズ系1の後側には、撮像素子2が配置されている。筐体4の後側に液晶モニタ3が配置され、ズームレンズ系1による被写体の光学的な像が像面Sに形成される。
 鏡筒は、主鏡筒5と、移動鏡筒6と、円筒カム7とで構成されている。円筒カム7を回転させると、第1レンズ群G1、第2レンズ群G2、開口絞りAと第3レンズ群G3、第4レンズ群G4、第5レンズ群G5及び第6レンズ群G6が、撮像素子2を基準にした所定の位置に移動し、広角端から望遠端までのズーミングを行うことができる。第4レンズ群G4はフォーカス調整用モータにより光軸方向に移動可能である。
 こうして、デジタルスチルカメラに実施の形態1に係るズームレンズ系を用いることにより、解像度及び像面湾曲を補正する能力が高く、非使用時のレンズ全長が短い小型のデジタルスチルカメラを提供することができる。なお、図16に示したデジタルスチルカメラには、実施の形態1に係るズームレンズ系の替わりに実施の形態2~5に係るズームレンズ系のいずれかを用いてもよい。また、図16に示したデジタルスチルカメラの光学系は、動画像を対象とするデジタルビデオカメラに用いることもできる。この場合、静止画像だけでなく、解像度の高い動画像を撮影することができる。
 なお、本実施の形態6に係るデジタルスチルカメラでは、ズームレンズ系1として実施の形態1~5に係るズームレンズ系を示したが、これらのズームレンズ系は、全てのズーミング域を使用する必要はない。すなわち、所望のズーミング域に応じて、光学性能が確保されている範囲を切り出し、実施の形態1~5で説明したズームレンズ系よりも低倍率のズームレンズ系として使用してもよい。
 さらに、実施の形態6では、いわゆる沈胴構成の鏡筒にズームレンズ系を適用した例を示したが、これに限られない。例えば、第1レンズ群G1内等の任意の位置に、内部反射面を持つプリズムや、表面反射ミラーを配置し、いわゆる屈曲構成の鏡筒にズームレンズ系を適用してもよい。さらに、実施の形態6において、第2レンズ群G2全体、第3レンズ群G3全体、第2レンズ群G2の一部、第3レンズ群G3の一部等のズームレンズ系を構成している一部のレンズ群を、沈胴時に光軸上から退避させる、いわゆるスライディング鏡筒にズームレンズ系を適用してもよい。
 また、以上説明した実施の形態1~5に係るズームレンズ系と、CCDやCMOS等の撮像素子とから構成される撮像装置を、スマートフォン等の携帯情報端末、監視システムにおける監視カメラ、Webカメラ、車載カメラ等に適用することもできる。
 以上のように、本出願において開示する技術の例示として、実施の形態6を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。
 以下、実施の形態1~5に係るズームレンズ系を具体的に実施した数値実施例を説明する。なお、各数値実施例において、表中の長さの単位はすべて「mm」であり、画角の単位はすべて「°」である。また、各数値実施例において、rは曲率半径、dは面間隔、ndはd線に対する屈折率、vdはd線に対するアッベ数である。また、各数値実施例において、*印を付した面は非球面であり、非球面形状は次式で定義している。
Figure JPOXMLDOC01-appb-M000001
ここで、
Z:光軸からの高さがhの非球面上の点から、非球面頂点の接平面までの距離、
h:光軸からの高さ、
r:頂点曲率半径、
κ:円錐定数、
An:n次の非球面係数
である。
 図2、5、8、11及び14は、各々数値実施例1~5に係るズームレンズ系の縦収差図である。
 各縦収差図において、(a)図は広角端、(b)図は中間位置、(c)図は望遠端における各収差を表す。各縦収差図は、左側から順に、球面収差(SA(mm))、非点収差(AST(mm))、歪曲収差(DIS(%))を示す。球面収差図において、縦軸はFナンバー(図中、Fで示す)を表し、実線はd線(d-line)、短破線はF線(F-line)、長破線はC線(C-line)の特性である。非点収差図において、縦軸は像高(図中、Hで示す)を表し、実線はサジタル平面(図中、sで示す)、破線はメリディオナル平面(図中、mで示す)の特性である。歪曲収差図において、縦軸は像高(図中、Hで示す)を表す。
 図3、6、9、12及び15は、各々数値実施例1~5に係るズームレンズ系の望遠端における横収差図である。
 各横収差図において、上段3つの収差図は、望遠端における像ぶれ補正を行っていない基本状態、下段3つの収差図は、像ぶれ補正レンズ群を光軸と垂直な方向に所定量移動させた望遠端における像ぶれ補正状態に、それぞれ対応する。基本状態の各横収差図のうち、上段は最大像高の70%の像点における横収差、中段は軸上像点における横収差、下段は最大像高の-70%の像点における横収差に、それぞれ対応する。像ぶれ補正状態の各横収差図のうち、上段は最大像高の70%の像点における横収差、中段は軸上像点における横収差、下段は最大像高の-70%の像点における横収差に、それぞれ対応する。また各横収差図において、横軸は瞳面上での主光線からの距離を表し、実線はd線(d-line)、短破線はF線(F-line)、長破線はC線(C-line)の特性である。なお各横収差図において、メリディオナル平面を、第1レンズ群G1の光軸と第3レンズ群G3の光軸とを含む平面としている。
 なお、各数値実施例のズームレンズ系について、望遠端における、像ぶれ補正状態での像ぶれ補正レンズ群の光軸と垂直な方向への移動量は、以下に示すとおりである。
数値実施例1 0.214mm
数値実施例2 0.210mm
数値実施例3 0.215mm
数値実施例4 0.250mm
数値実施例5 0.237mm
 撮影距離が∞で望遠端において、ズームレンズ系が0.3°だけ傾いた場合の像偏心量は、像ぶれ補正レンズ群が光軸と垂直な方向に上記の各値だけ平行移動するときの像偏心量に等しい。
 各横収差図から明らかなように、軸上像点における横収差の対称性は良好であることがわかる。また、+70%像点における横収差と-70%像点における横収差とを基本状態で比較すると、いずれも湾曲度が小さく、収差曲線の傾斜がほぼ等しいことから、偏心コマ収差、偏心非点収差が小さいことがわかる。このことは、像ぶれ補正状態であっても充分な結像性能が得られていることを意味している。また、ズームレンズ系の像ぶれ補正角が同じ場合には、ズームレンズ系全体の焦点距離が短くなるにつれて、像ぶれ補正に必要な平行移動量が減少する。したがって、いずれのズーム位置であっても、0.3°までの像ぶれ補正角に対して、結像特性を低下させることなく充分な像ぶれ補正を行うことが可能である。
(数値実施例1)
 数値実施例1のズームレンズ系は、図1に示した実施の形態1に対応する。数値実施例1のズームレンズ系の面データを表1に、非球面データを表2に、各種データを表3に示す。
表 1(面データ)
 
  面番号         r           d           nd         vd                
    物面             ∞                                               
     1         80.38640     1.40000     1.84666    23.8               
     2         53.08730     0.01000     1.56732    42.8               
     3         53.08730     5.91570     1.49700    81.6               
     4       -427.75360     0.15000                                   
     5         47.31150     3.54490     1.59282    68.6               
     6        127.17770        可変                                   
     7*      1000.00000     0.70000     1.88202    37.2               
     8*        12.38510     4.58100                                   
     9        -28.39050     0.55000     1.77250    49.6               
    10         12.36070     0.01000     1.56732    42.8               
    11         12.36070     3.67970     1.92286    20.9               
    12        -51.96170     1.26980                                   
    13        -17.75000     0.55000     1.84666    23.8               
    14        -36.34810        可変                                   
  15(絞り)           ∞     1.00000                                   
    16*        14.09100     2.63060     1.58332    59.1               
    17*        73.19700     2.44310                                   
    18         14.31860     4.20000     1.48749    70.4               
    19        -14.31860     0.01000     1.56732    42.8               
    20        -14.31860     0.80000     1.64769    33.8               
    21         14.31860     2.03170                                   
    22*        14.05690     3.80690     1.51776    69.9               
    23*       -20.22820        可変                                   
    24         90.88390     0.99560     1.49700    81.6               
    25         14.50130        可変                                   
    26*        10.75510     3.30000     1.51776    69.9               
    27*       -15.56410        可変                                   
    28*       -11.55200     0.87360     1.54410    56.1               
    29         20.74910     1.00000                                   
    30               ∞     0.78000     1.51680    64.2               
    31               ∞        (BF)                                   
    像面             ∞                                               
表 2(非球面データ)
 
  第7面
   K= 0.00000E+00, A4= 5.35704E-05, A6= 4.65344E-07, A8=-7.25267E-09 
   A10= 2.22110E-11, A12= 8.30852E-15, A14= 0.00000E+00 
  第8面
   K= 0.00000E+00, A4= 5.50272E-05, A6= 3.09902E-07, A8= 3.07019E-08 
   A10=-2.86257E-10, A12=-4.52816E-13, A14= 0.00000E+00 
  第16面
   K= 0.00000E+00, A4= 3.48800E-06, A6=-1.42689E-06, A8= 1.35938E-07 
   A10=-3.63061E-09, A12= 4.20870E-11, A14=-1.53813E-16 
  第17面
   K= 0.00000E+00, A4= 2.92293E-05, A6=-2.39842E-06, A8= 2.21752E-07 
   A10=-6.29904E-09, A12= 7.24108E-11, A14=-5.87135E-16 
  第22面
   K= 0.00000E+00, A4=-1.48035E-04, A6=-4.24178E-07, A8= 5.45212E-08 
   A10=-1.39274E-09, A12= 0.00000E+00, A14= 0.00000E+00 
  第23面
   K= 0.00000E+00, A4= 2.14264E-05, A6=-4.49634E-07, A8= 4.61173E-08 
   A10=-1.19672E-09, A12= 0.00000E+00, A14= 0.00000E+00 
  第26面
   K= 0.00000E+00, A4=-1.62288E-04, A6= 6.30224E-06, A8=-2.17877E-07 
   A10= 4.94955E-10, A12= 0.00000E+00, A14= 0.00000E+00 
  第27面
   K= 0.00000E+00, A4= 2.37250E-04, A6= 7.41232E-06, A8=-4.10461E-07 
   A10= 4.09234E-09, A12= 0.00000E+00, A14= 0.00000E+00 
  第28面
   K= 0.00000E+00, A4= 1.55938E-03, A6=-4.44918E-05, A8= 1.30805E-06 
   A10=-1.79649E-08, A12= 0.00000E+00, A14= 0.00000E+00
表 3(各種データ)
 
  ズーム比    22.21907
                広角      中間      望遠
  焦点距離       4.6399   21.8698  103.0950
 Fナンバー     2.90063   2.90020   2.90012
    画角        40.7907   10.4346    2.2365
    像高         3.4100    3.9020    3.9020
 レンズ全長     89.3284   96.5798  125.0498
    BF        0.86417   0.87415   0.84363
    d6           0.5000   22.7670   51.7865 
    d14         32.7666    5.2446    0.5000 
    d23          1.5008   14.2646    6.7433 
    d25          4.7802    5.2935   18.1364 
    d27          2.6840    1.9034    0.8074 
 入射瞳位置     20.8000   65.3027  331.5043
 射出瞳位置    -25.7393  -33.0473  -57.2754
 前側主点位置   24.6307   73.0726  251.7233
 後側主点位置   84.6884   74.7100   21.9548
 
単レンズデータ
  レンズ     始面     焦点距離
     1         1     -189.0808
     2         3       95.4127
     3         5      125.0190
     4         7      -14.2225
     5         9      -11.0823
     6        11       11.1255
     7        13      -41.5364
     8        16       29.4329
     9        18       15.4276
    10        20      -10.9335
    11        22       16.6488
    12        24      -34.8681
    13        26       12.8328
    14        28      -13.5096
 
ズームレンズ群データ
  群   始面    焦点距離  レンズ構成長    前側主点位置  後側主点位置
   1      1    76.99427    11.02060         2.24926       6.15356
   2      7    -9.91095    11.34050         1.67140       4.91428
   3     15    16.66467    16.92230         7.57014       8.08711
   4     24   -34.86815     0.99560         0.79477       1.12241
   5     26    12.83282     3.30000         0.92819       1.95678
   6     28   -13.50956     2.65360         0.20043       0.77936
 
ズームレンズ群倍率
  群   始面    広角       中間       望遠
   1      1    0.00000    0.00000    0.00000
   2      7   -0.16506   -0.26235   -1.13160
   3     15   -0.40016   -1.10455   -0.87904
   4     24    1.53837    1.47178    1.74972
   5     26    0.49313    0.55342    0.64048
   6     28    1.20270    1.20344    1.20118
(数値実施例2)
 数値実施例2のズームレンズ系は、図4に示した実施の形態2に対応する。数値実施例2のズームレンズ系の面データを表4に、非球面データを表5に、各種データを表6に示す。
表 4(面データ)
 
  面番号         r           d           nd         vd                
    物面             ∞                                               
     1         84.41040     1.40000     1.84666    23.8               
     2         54.78730     0.01000     1.56732    42.8               
     3         54.78730     5.47000     1.49700    81.6               
     4       -307.33830     0.15000                                   
     5         44.96750     3.43000     1.59282    68.6               
     6        107.82550        可変                                   
     7*       283.42180     0.70000     1.80500    41.0               
     8*        12.27460     5.16690                                   
     9        -26.03490     0.65000     1.77250    49.6               
    10         12.39940     0.01000     1.56732    42.8               
    11         12.39940     3.66000     1.92286    20.9               
    12        -63.96980     1.41520                                   
    13        -17.65500     0.55000     1.84666    23.8               
    14        -39.04090        可変                                   
  15(絞り)           ∞     1.00000                                   
    16*        14.59700     2.66000     1.58332    59.1               
    17*       195.60410     2.63140                                   
    18         14.35680     4.20000     1.48749    70.4               
    19        -13.66430     0.01000     1.56732    42.8               
    20        -13.66430     0.80000     1.64769    33.8               
    21         14.76440     2.90000                                   
    22*        13.37660     3.48000     1.51776    69.9               
    23*       -25.00000        可変                                   
    24         21.33210     0.50000     1.49700    81.6               
    25          9.38540        可変                                   
    26*        18.06850     3.30000     1.54410    56.1               
    27*       -17.97860        可変                                   
    28*       -11.26470     1.09000     1.54410    56.1               
    29        440.74570     1.00000                                   
    30               ∞     0.78000     1.51680    64.2               
    31               ∞        (BF)                                   
    像面             ∞                                               
表 5(非球面データ)
 
  第7面
   K= 0.00000E+00, A4= 4.38493E-05, A6= 5.30075E-07, A8=-6.11003E-09 
   A10= 1.52956E-11, A12= 8.30852E-15, A14= 0.00000E+00 
  第8面
   K= 0.00000E+00, A4= 5.58387E-05, A6= 5.27818E-07, A8= 2.21787E-08 
   A10=-8.88913E-11, A12=-4.52816E-13, A14= 0.00000E+00 
  第16面
   K= 0.00000E+00, A4= 2.00544E-05, A6=-1.35728E-06, A8= 1.31657E-07 
   A10=-3.41192E-09, A12= 4.20870E-11, A14=-1.53813E-16 
  第17面
   K= 0.00000E+00, A4= 4.71991E-05, A6=-2.53319E-06, A8= 2.18726E-07 
   A10=-6.02035E-09, A12= 7.24108E-11, A14=-5.87135E-16 
  第22面
   K= 0.00000E+00, A4=-1.09419E-04, A6=-5.79182E-07, A8= 5.91557E-08 
   A10=-1.17679E-09, A12= 0.00000E+00, A14= 0.00000E+00 
  第23面
   K= 0.00000E+00, A4= 5.14361E-05, A6=-3.30779E-07, A8= 4.96534E-08 
   A10=-1.06024E-09, A12= 0.00000E+00, A14= 0.00000E+00 
  第26面
   K= 0.00000E+00, A4=-1.54005E-04, A6= 2.16390E-06, A8=-1.24191E-07 
   A10= 1.33463E-09, A12= 0.00000E+00, A14= 0.00000E+00 
  第27面
   K= 0.00000E+00, A4= 1.04292E-04, A6= 8.68906E-06, A8=-3.82250E-07 
   A10= 5.58455E-09, A12= 0.00000E+00, A14= 0.00000E+00 
  第28面
   K= 0.00000E+00, A4= 1.46492E-03, A6=-1.95582E-05, A8= 2.74882E-07 
   A10=-4.53479E-10, A12= 0.00000E+00, A14= 0.00000E+00
表 6(各種データ)
 
  ズーム比    22.22135
                広角      中間      望遠
  焦点距離       4.6398   21.8696  103.1025
 Fナンバー     2.90008   2.89986   2.90043
    画角        40.8126   10.3718    2.2358
    像高         3.4100    3.9020    3.9020
 レンズ全長     96.5170   95.5082  122.6972
    BF        0.86490   0.86532   0.85221
    d6           0.5000   22.0610   51.5230 
    d14         39.0933    5.1449    0.5000 
    d23          1.5016   16.1964    9.0765 
    d25          5.3571    1.9960   12.9820 
    d27          2.2366    2.2811    0.8000 
 入射瞳位置     21.3078   63.9241  336.7968
 射出瞳位置    -29.2375  -29.6516  -48.1944
 前側主点位置   25.2325   70.1211  223.1641
 後側主点位置   91.8772   73.6386   19.5947
 
単レンズデータ
  レンズ     始面     焦点距離
     1         1     -188.4726
     2         3       94.0301
     3         5      127.5279
     4         7      -15.9566
     5         9      -10.7932
     6        11       11.5193
     7        13      -38.5213
     8        16       26.8964
     9        18       15.1032
    10        20      -10.8368
    11        22       17.3675
    12        24      -34.1949
    13        26       17.1147
    14        28      -20.1703
 
ズームレンズ群データ
  群   始面    焦点距離  レンズ構成長    前側主点位置  後側主点位置
   1      1    76.85520    10.46000         2.03474       5.76639
   2      7    -9.53363    12.15210         2.33810       5.90644
   3     15    16.70504    17.68140         8.18918       7.90966
   4     24   -34.19489     0.50000         0.60480       0.76609
   5     26    17.11471     3.30000         1.10696       2.19855
   6     28   -20.17027     2.87000         0.01758       0.66802
 
ズームレンズ群倍率
  群   始面    広角       中間       望遠
   1      1    0.00000    0.00000    0.00000
   2      7   -0.15945   -0.24938   -1.08746
   3     15   -0.34892   -1.12980   -0.92136
   4     24    1.45267    1.35751    1.58666
   5     26    0.64839    0.64577    0.73289
   6     28    1.15205    1.15207    1.15142
(数値実施例3)
 数値実施例3のズームレンズ系は、図7に示した実施の形態3に対応する。数値実施例3のズームレンズ系の面データを表7に、非球面データを表8に、各種データを表9に示す。
表 7(面データ)
 
  面番号         r           d           nd         vd                
    物面             ∞                                               
     1         86.31960     1.40000     1.84666    23.8               
     2         55.60180     0.01000     1.56732    42.8               
     3         55.60180     5.47000     1.49700    81.6               
     4       -279.47210     0.15000                                   
     5         45.23330     3.43000     1.59282    68.6               
     6        109.72110        可変                                   
     7*       155.76370     0.70000     1.80500    41.0               
     8*        12.04000     5.30310                                   
     9        -25.63560     0.65000     1.77250    49.6               
    10         12.07150     0.01000     1.56732    42.8               
    11         12.07150     3.66000     1.92286    20.9               
    12        -60.40720     1.52570                                   
    13        -16.38790     0.55000     1.84666    23.8               
    14        -33.25120        可変                                   
  15(絞り)           ∞     1.00000                                   
    16*        14.07800     2.66000     1.58332    59.1               
    17*       110.60450     3.26150                                   
    18         14.38670     4.20000     1.48749    70.4               
    19        -12.40040     0.01000     1.56732    42.8               
    20        -12.40040     0.80000     1.64769    33.8               
    21         14.76440     2.90000                                   
    22*        13.37660     3.48000     1.51776    69.9               
    23*       -25.00000        可変                                   
    24         39.03180     0.50000     1.49700    81.6               
    25         13.11540        可変                                   
    26*        12.27840     3.30000     1.54410    56.1               
    27*       -12.33230        可変                                   
    28*        -9.81250     1.09000     1.54410    56.1               
    29         21.36130     1.00000                                   
    30               ∞     0.78000     1.51680    64.2               
    31               ∞        (BF)                                   
    像面             ∞                                               
表 8(非球面データ)
 
  第7面
   K= 0.00000E+00, A4= 4.18016E-05, A6= 6.27207E-07, A8=-6.73152E-09 
   A10= 1.63026E-11, A12= 8.30852E-15, A14= 0.00000E+00 
  第8面
   K= 0.00000E+00, A4= 5.07841E-05, A6= 6.06733E-07, A8= 2.61719E-08 
   A10=-9.05126E-11, A12=-4.52816E-13, A14= 0.00000E+00 
  第16面
   K= 0.00000E+00, A4= 8.17589E-06, A6=-1.31105E-06, A8= 1.31005E-07 
   A10=-3.43152E-09, A12= 4.20870E-11, A14=-1.53813E-16 
  第17面
   K= 0.00000E+00, A4= 3.82028E-05, A6=-2.62741E-06, A8= 2.19488E-07 
   A10=-6.05000E-09, A12= 7.24108E-11, A14=-5.87135E-16 
  第22面
   K= 0.00000E+00, A4=-1.01230E-04, A6=-6.53434E-07, A8= 5.69916E-08 
   A10=-1.21030E-09, A12= 0.00000E+00, A14= 0.00000E+00 
  第23面
   K= 0.00000E+00, A4= 5.63360E-05, A6=-4.20103E-07, A8= 4.76244E-08 
   A10=-1.09765E-09, A12= 0.00000E+00, A14= 0.00000E+00 
  第26面
   K= 0.00000E+00, A4=-1.43850E-04, A6= 4.28820E-06, A8=-1.33364E-07 
   A10= 3.14965E-09, A12= 0.00000E+00, A14= 0.00000E+00 
  第27面
   K= 0.00000E+00, A4= 4.78110E-04, A6= 6.53552E-06, A8=-3.36027E-07 
   A10= 7.66131E-09, A12= 0.00000E+00, A14= 0.00000E+00 
  第28面
   K= 0.00000E+00, A4= 1.83072E-03, A6=-2.71355E-05, A8= 2.63493E-07 
   A10= 5.50617E-09, A12= 0.00000E+00, A14= 0.00000E+00
表 9(各種データ)
 
  ズーム比    22.22074
                広角      中間      望遠
  焦点距離       4.6399   21.8705  103.1027
 Fナンバー     2.90019   2.90032   2.90022
    画角        40.8220   10.4137    2.2379
    像高         3.4100    3.9020    3.9020
 レンズ全長     89.5347   98.2937  128.0535
    BF        0.86975   0.85945   0.84822
    d6           0.5000   24.3050   51.2109 
    d14         32.6582    4.7118    0.5000 
    d23          3.9654   17.0043    4.7742 
    d25          1.9994    1.9964   21.8535 
    d27          1.7016    1.5765    1.0264 
 入射瞳位置     21.2392   71.8720  335.1599
 射出瞳位置    -26.2637  -32.4471  -83.8206
 前側主点位置   25.0857   79.3814  312.7126
 後側主点位置   84.8947   76.4233   24.9508
 
単レンズデータ
  レンズ     始面     焦点距離
     1         1     -188.4814
     2         3       93.8194
     3         5      127.3019
     4         7      -16.2447
     5         9      -10.5447
     6        11       11.1727
     7        13      -38.7454
     8        16       27.3762
     9        18       14.4018
    10        20      -10.2868
    11        22       17.3675
    12        24      -40.0002
    13        26       11.8687
    14        28      -12.2073
 
ズームレンズ群データ
  群   始面    焦点距離  レンズ構成長    前側主点位置  後側主点位置
   1      1    76.58004    10.46000         2.10862       5.83858
   2      7    -9.75851    12.39880         2.37607       5.96050
   3     15    17.29164    18.31150         8.70607       8.01016
   4     24   -40.00019     0.50000         0.50627       0.67012
   5     26    11.86872     3.30000         1.11912       2.17597
   6     28   -12.20733     2.87000         0.21949       0.87793
 
ズームレンズ群倍率
  群   始面    広角       中間       望遠
   1      1    0.00000    0.00000    0.00000
   2      7   -0.16450   -0.27474   -1.13298
   3     15   -0.41294   -1.15246   -0.90214
   4     24    1.31835    1.30752    1.76283
   5     26    0.54810    0.55921    0.60618
   6     28    1.23443    1.23359    1.23267
(数値実施例4)
 数値実施例4のズームレンズ系は、図10に示した実施の形態4に対応する。数値実施例4のズームレンズ系の面データを表10に、非球面データを表11に、各種データを表12に示す。
表 10(面データ)
 
  面番号         r           d           nd         vd                
    物面             ∞                                               
     1         76.77810     1.40000     1.84666    23.8               
     2         51.74840     0.01000     1.56732    42.8               
     3         51.74840     9.67880     1.49700    81.6               
     4       -774.08150     0.15000                                   
     5         40.67490     4.96510     1.59282    68.6               
     6         93.84660        可変                                   
     7*      1000.00000     0.70000     1.80500    41.0               
     8*        18.10200     6.97910                                   
     9        -31.25220     0.65000     1.77250    49.6               
    10         11.54730     0.01000     1.56732    42.8               
    11         11.54730     5.74060     1.92286    20.9               
    12        -43.31600     0.96440                                   
    13        -23.58020     0.55000     1.84666    23.8               
    14         63.17730        可変                                   
  15(絞り)           ∞     1.00000                                   
    16*        15.45470     2.92040     1.58332    59.1               
    17*      -736.39480     0.50000                                   
    18         14.36600     4.20000     1.48749    70.4               
    19        -13.92460     0.01000     1.56732    42.8               
    20        -13.92460     0.80000     1.64769    33.8               
    21         14.76440     2.90000                                   
    22*        13.37660     3.48000     1.51776    69.9               
    23*       -25.00000        可変                                   
    24       -309.47300     0.50000     1.49700    81.6               
    25         16.33030        可変                                   
    26*        16.12680     3.30000     1.54410    56.1               
    27*        -8.59250        可変                                   
    28*        -8.60680     1.09000     1.54410    56.1               
    29         21.35880     1.00000                                   
    30               ∞     0.78000     1.51680    64.2               
    31               ∞        (BF)                                   
    像面             ∞                                               
表 11(非球面データ)
 
  第7面
   K= 0.00000E+00, A4= 1.54891E-05, A6= 4.32295E-07, A8=-1.70160E-09 
   A10=-9.56497E-13, A12= 8.30852E-15, A14= 0.00000E+00 
  第8面
   K= 0.00000E+00, A4= 2.44340E-05, A6= 5.67445E-07, A8=-9.23392E-10 
   A10= 1.16767E-10, A12=-4.52816E-13, A14= 0.00000E+00 
  第16面
   K= 0.00000E+00, A4= 1.70477E-05, A6=-1.56759E-06, A8= 1.21695E-07 
   A10=-3.46611E-09, A12= 4.20870E-11, A14=-1.53813E-16 
  第17面
   K= 0.00000E+00, A4= 2.51373E-05, A6=-2.94271E-06, A8= 2.17038E-07 
   A10=-6.26625E-09, A12= 7.24108E-11, A14=-5.87135E-16 
  第22面
   K= 0.00000E+00, A4=-1.21862E-04, A6=-5.87339E-07, A8= 5.29754E-08 
   A10=-1.07619E-09, A12= 0.00000E+00, A14= 0.00000E+00 
  第23面
   K= 0.00000E+00, A4= 5.39483E-05, A6=-5.86702E-07, A8= 5.65871E-08 
   A10=-1.17720E-09, A12= 0.00000E+00, A14= 0.00000E+00 
  第26面
   K= 0.00000E+00, A4=-2.48433E-04, A6= 7.62607E-06, A8= 1.60117E-07 
   A10= 4.66949E-09, A12= 0.00000E+00, A14= 0.00000E+00 
  第27面
   K= 0.00000E+00, A4= 1.03431E-03, A6= 2.39928E-06, A8= 1.50495E-07 
   A10= 1.23473E-08, A12= 0.00000E+00, A14= 0.00000E+00 
  第28面
   K= 0.00000E+00, A4= 2.90825E-03, A6=-6.79142E-05, A8= 2.28889E-06 
   A10=-3.41163E-08, A12= 0.00000E+00, A14= 0.00000E+00
表 12(各種データ)
 
  ズーム比    28.00356
                広角      中間      望遠
  焦点距離       4.6397   24.5522  129.9269
 Fナンバー     2.90018   2.90046   2.90047
    画角        41.3696    9.7236    1.8083
    像高         3.4100    3.9020    3.9020
 レンズ全長    103.4994  107.9156  132.2629
    BF        0.86242   0.86454   0.82628
    d6           0.5000   29.1093   47.3190 
    d14         39.3966    8.5764    0.5000 
    d23          1.7355   11.6609    1.9970 
    d25          4.9809    1.9993   26.1179 
    d27          1.7456    1.4268    1.2243 
 入射瞳位置     30.9726  125.4345  378.6119
 射出瞳位置    -24.6835  -24.2125 -101.0576
 前側主点位置   34.7696  125.9483  342.8503
 後側主点位置   98.8598   83.3634    2.3360
 
単レンズデータ
  レンズ     始面     焦点距離
     1         1     -192.4201
     2         3       97.9788
     3         5      117.0320
     4         7      -22.9088
     5         9      -10.8432
     6        11       10.4013
     7        13      -20.2223
     8        16       25.9870
     9        18       15.2466
    10        20      -10.9441
    11        22       17.3675
    12        24      -31.1951
    13        26       10.8113
    14        28      -11.1323
 
ズームレンズ群データ
  群   始面    焦点距離  レンズ構成長    前側主点位置  後側主点位置
   1      1    75.35494    16.20390         3.25350       8.94907
   2      7    -9.77320    15.59410         4.48558      10.14794
   3     15    15.65146    15.81040         6.61409       7.52575
   4     24   -31.19509     0.50000         0.31710       0.48327
   5     26    10.81132     3.30000         1.46311       2.52044
   6     28   -11.13232     2.87000         0.20019       0.85897
 
ズームレンズ群倍率
  群   始面    広角       中間       望遠
   1      1    0.00000    0.00000    0.00000
   2      7   -0.18322   -0.39516   -1.49842
   3     15   -0.33041   -0.84055   -0.73390
   4     24    1.50632    1.37724    2.12852
   5     26    0.53666    0.56603    0.58700
   6     28    1.25812    1.25831    1.25487
(数値実施例5)
 数値実施例5のズームレンズ系は、図13に示した実施の形態5に対応する。数値実施例5のズームレンズ系の面データを表13に、非球面データを表14に、各種データを表15に示す。
表 13(面データ)
 
  面番号         r           d           nd         vd                
    物面             ∞                                               
     1         80.12480     1.40000     1.84666    23.8               
     2         53.41990     0.01000     1.56732    42.8               
     3         53.41990     7.13700     1.49700    81.6               
     4       -898.58100     0.15000                                   
     5         47.99770     4.29620     1.59282    68.6               
     6        152.93390        可変                                   
     7*        85.13440     0.70000     1.80500    41.0               
     8*        14.12710     6.77380                                   
     9        -24.47630     0.65000     1.77250    49.6               
    10         12.40270     0.01000     1.56732    42.8               
    11         12.40270     4.74680     1.92286    20.9               
    12        -38.13480     1.15510                                   
    13        -19.33380     0.55000     1.84666    23.8               
    14       -984.62630        可変                                   
  15(絞り)           ∞     1.00000                                   
    16*        14.62830     2.99610     1.58332    59.1               
    17*      -322.73360     1.40340                                   
    18         16.14620     3.95370     1.48749    70.4               
    19        -13.25720     0.01000     1.56732    42.8               
    20        -13.25720     0.80000     1.64769    33.8               
    21         14.76440     2.90000                                   
    22*        13.37660     3.47200     1.51776    69.9               
    23*       -25.00000        可変                                   
    24         60.10550     0.50000     1.49700    81.6               
    25         14.89760        可変                                   
    26*        13.81940     2.84390     1.54410    56.1               
    27*       -12.45050        可変                                   
    28*       -10.86940     1.09000     1.54410    56.1               
    29         21.44620     1.00000                                   
    30               ∞     0.78000     1.51680    64.2               
    31               ∞        (BF)                                   
    像面             ∞                                               
表 14(非球面データ)
 
  第7面
   K= 0.00000E+00, A4= 8.47580E-06, A6= 5.61846E-07, A8=-3.06412E-09 
   A10= 2.35805E-12, A12= 8.30852E-15, A14= 0.00000E+00 
  第8面
   K= 0.00000E+00, A4= 1.74688E-05, A6= 5.63030E-07, A8= 5.61040E-09 
   A10= 8.64032E-11, A12=-4.52816E-13, A14= 0.00000E+00 
  第16面
   K= 0.00000E+00, A4= 2.33571E-06, A6=-1.48478E-06, A8= 1.19322E-07 
   A10=-3.40533E-09, A12= 4.20870E-11, A14=-1.53813E-16 
  第17面
   K= 0.00000E+00, A4= 2.35366E-05, A6=-3.04971E-06, A8= 2.18616E-07 
   A10=-6.21530E-09, A12= 7.24108E-11, A14=-5.87135E-16 
  第22面
   K= 0.00000E+00, A4=-1.10358E-04, A6=-8.98389E-07, A8= 5.50286E-08 
   A10=-1.33718E-09, A12= 0.00000E+00, A14= 0.00000E+00 
  第23面
   K= 0.00000E+00, A4= 4.71055E-05, A6=-5.88116E-07, A8= 4.21873E-08 
   A10=-1.17312E-09, A12= 0.00000E+00, A14= 0.00000E+00 
  第26面
   K= 0.00000E+00, A4=-2.09805E-04, A6= 1.51149E-06, A8=-1.97232E-07 
   A10= 1.13403E-08, A12= 0.00000E+00, A14= 0.00000E+00 
  第27面
   K= 0.00000E+00, A4= 2.48914E-04, A6= 5.18792E-06, A8=-1.59195E-07 
   A10= 1.22784E-08, A12= 0.00000E+00, A14= 0.00000E+00 
  第28面
   K= 0.00000E+00, A4= 1.19282E-03, A6=-1.09455E-05, A8= 6.11459E-07 
   A10=-9.59011E-09, A12= 0.00000E+00, A14= 0.00000E+00
表 15(各種データ)
 
  ズーム比    22.22177
                広角      中間      望遠
  焦点距離       4.6397   21.8708  103.1029
 Fナンバー     2.49990   2.49995   2.50039
    画角        40.8521   10.3296    2.1710
    像高         3.4100    3.9020    3.9020
 レンズ全長     98.4695  104.2279  125.7405
    BF        0.85582   0.86438   0.84510
    d6           0.5000   28.8939   50.1417 
    d14         37.8099    8.0590    0.5000 
    d23          1.5028   12.5243    3.5569 
    d25          5.9784    1.9974   18.9512 
    d27          1.4946    1.5609    1.4176 
 入射瞳位置     26.2653  106.5446  369.2967
 射出瞳位置    -27.6839  -27.2556  -62.1438
 前側主点位置   30.1508  111.4050  303.6364
 後側主点位置   93.8298   82.3571   22.6376
 
単レンズデータ
  レンズ     始面     焦点距離
     1         1     -193.9699
     2         3      101.7071
     3         5      116.2274
     4         7      -21.1336
     5         9      -10.5745
     6        11       10.6199
     7        13      -23.2987
     8        16       24.0690
     9        18       15.6218
    10        20      -10.6650
    11        22       17.3662
    12        24      -40.0000
    13        26       12.5150
    14        28      -13.1019
 
ズームレンズ群データ
  群   始面    焦点距離  レンズ構成長    前側主点位置  後側主点位置
   1      1    76.79698    12.99320         2.82005       7.38914
   2      7    -9.72035    14.58570         3.90761       8.74199
   3     15    16.16441    16.53520         7.19737       7.61315
   4     24   -39.99998     0.50000         0.44570       0.61047
   5     26    12.51498     2.84390         1.00730       1.93638
   6     28   -13.10188     2.87000         0.23465       0.89278
 
ズームレンズ群倍率
  群   始面    広角       中間       望遠
   1      1    0.00000    0.00000    0.00000
   2      7   -0.17034   -0.33903   -1.30944
   3     15   -0.35092   -0.90045   -0.81534
   4     24    1.37771    1.28319    1.69631
   5     26    0.60319    0.59743    0.60992
   6     28    1.21623    1.21688    1.21541
 以下の表16に、各数値実施例のズームレンズ系における各条件の対応値を示す。
表 16(条件の対応値)
Figure JPOXMLDOC01-appb-T000001
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示は、デジタルカメラ、スマートフォン等の携帯情報端末のカメラ、監視システムにおける監視カメラ、Webカメラ、車載カメラ等のデジタル入力装置に適用可能である。特に本開示は、デジタルカメラ等の高画質が要求される撮影光学系に適用可能である。
G1  第1レンズ群
G2  第2レンズ群
G3  第3レンズ群
G4  第4レンズ群
G5  第5レンズ群
G6  第6レンズ群
L1  第1レンズ素子
L2  第2レンズ素子
L3  第3レンズ素子
L4  第4レンズ素子
L5  第5レンズ素子
L6  第6レンズ素子
L7  第7レンズ素子
L8  第8レンズ素子
L9  第9レンズ素子
L10 第10レンズ素子
L11 第11レンズ素子
L12 第12レンズ素子
L13 第13レンズ素子
L14 第14レンズ素子
A   開口絞り
P   平行平板
S   像面
1   ズームレンズ系
2   撮像素子
3   液晶モニタ
4   筐体
5   主鏡筒
6   移動鏡筒
7   円筒カム
 

Claims (14)

  1.  物体側から像側へと順に、
    正のパワーを有する第1レンズ群と、
    負のパワーを有する第2レンズ群と、
    正のパワーを有する第3レンズ群と、
    負のパワーを有する第4レンズ群と、
    第5レンズ群と、
    第6レンズ群とからなり、
    撮像時の広角端から望遠端へのズーミングの際に、望遠端での前記第3レンズ群と前記第4レンズ群との間隔が、広角端での該間隔よりも大きくなるように、前記第1レンズ群、前記第2レンズ群、前記第3レンズ群及び前記第4レンズ群が光軸に沿って移動し、
    前記第4レンズ群を光軸に沿って移動させて、無限遠合焦状態から近接物体合焦状態へのフォーカシングを行う
    ことを特徴とする、ズームレンズ系。
  2.  以下の条件(1)を満足する、請求項1に記載のズームレンズ系:
      0.05<D/f<0.20 ・・・(1)
    ここで、
     D:撮像時の広角端から望遠端へのズーミングの際の、第4レンズ群の移動量、
     f:望遠端における全系の焦点距離
    である。
  3.  前記第5レンズ群は、正のパワーを有する、請求項1に記載のズームレンズ系。
  4.  前記第6レンズ群は、負のパワーを有する、請求項1に記載のズームレンズ系。
  5.  前記第5レンズ群は、1枚のレンズ素子で構成される、請求項1に記載のズームレンズ系。
  6.  前記第6レンズ群は、1枚のレンズ素子で構成される、請求項1に記載のズームレンズ系。
  7.  前記第3レンズ群の物体側に開口絞りが配置され、撮像時の広角端から望遠端へのズーミングの際に、該開口絞りは該第3レンズ群と一体となって光軸に沿って移動する、請求項1に記載のズームレンズ系。
  8.  物体の光学的な像を電気的な画像信号として出力可能な撮像装置であって、
    物体の光学的な像を形成するズームレンズ系と、
    該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子と
    を備え、
    前記ズームレンズ系が、請求項1に記載のズームレンズ系である、撮像装置。
  9.  物体の光学的な像を電気的な画像信号に変換し、変換された画像信号の表示及び記憶の少なくとも一方を行うカメラであって、
    物体の光学的な像を形成するズームレンズ系と、該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子とを含む撮像装置を備え、
    前記ズームレンズ系が、請求項1に記載のズームレンズ系である、カメラ。
  10.  物体側から像側へと順に、少なくとも
    正のパワーを有する第1レンズ群と、
    負のパワーを有する第2レンズ群と、
    正のパワーを有する第3レンズ群とを備え、
    撮像時の広角端から望遠端へのズーミングの際に、前記第1レンズ群、前記第2レンズ群及び前記第3レンズ群が光軸に沿って移動し、
    以下の条件(2)、(3)及び(4)を満足することを特徴とする、ズームレンズ系:
      0.7<L/f<1.5 ・・・(2)
      f/f>12.0 ・・・(3)
      F/F<1.4 ・・・(4)
    ここで、
     L:望遠端におけるレンズ全長(第1レンズ群の最物体側レンズ面から像面までの距離)、
     f:望遠端における全系の焦点距離、
     f:広角端における全系の焦点距離、
     F:望遠端におけるFナンバー、
     F:広角端におけるFナンバー
    である。
  11.  前記第3レンズ群の像側に、物体側から像側へと順に、負のパワーを有する第4レンズ群と、正のパワーを有する第5レンズ群と、負のパワーを有する第6レンズ群とが配置されている、請求項10に記載のズームレンズ系。
  12.  前記第3レンズ群の物体側に開口絞りが配置され、撮像時の広角端から望遠端へのズーミングの際に、該開口絞りは該第3レンズ群と一体となって光軸に沿って移動する、請求項10に記載のズームレンズ系。
  13.  物体の光学的な像を電気的な画像信号として出力可能な撮像装置であって、
    物体の光学的な像を形成するズームレンズ系と、
    該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子と
    を備え、
    前記ズームレンズ系が、請求項10に記載のズームレンズ系である、撮像装置。
  14.  物体の光学的な像を電気的な画像信号に変換し、変換された画像信号の表示及び記憶の少なくとも一方を行うカメラであって、
    物体の光学的な像を形成するズームレンズ系と、該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子とを含む撮像装置を備え、
    前記ズームレンズ系が、請求項10に記載のズームレンズ系である、カメラ。
     
PCT/JP2012/004318 2012-07-04 2012-07-04 ズームレンズ系、撮像装置及びカメラ WO2014006653A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2012/004318 WO2014006653A1 (ja) 2012-07-04 2012-07-04 ズームレンズ系、撮像装置及びカメラ
JP2014523447A JPWO2014006653A1 (ja) 2012-07-04 2012-07-04 ズームレンズ系、撮像装置及びカメラ
US14/573,406 US9513472B2 (en) 2012-07-04 2014-12-17 Zoom lens system, imaging device and camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/004318 WO2014006653A1 (ja) 2012-07-04 2012-07-04 ズームレンズ系、撮像装置及びカメラ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/573,406 Continuation US9513472B2 (en) 2012-07-04 2014-12-17 Zoom lens system, imaging device and camera

Publications (1)

Publication Number Publication Date
WO2014006653A1 true WO2014006653A1 (ja) 2014-01-09

Family

ID=49881453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004318 WO2014006653A1 (ja) 2012-07-04 2012-07-04 ズームレンズ系、撮像装置及びカメラ

Country Status (3)

Country Link
US (1) US9513472B2 (ja)
JP (1) JPWO2014006653A1 (ja)
WO (1) WO2014006653A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015118141A (ja) * 2013-12-17 2015-06-25 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2016035538A (ja) * 2014-08-04 2016-03-17 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2019101286A (ja) * 2017-12-05 2019-06-24 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
US11150442B2 (en) 2017-10-27 2021-10-19 Panasonic Intellectual Property Management Co., Ltd. Zoom lens system and imaging device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017099243A1 (ja) * 2015-12-09 2018-10-04 株式会社ニコン ズームレンズ、光学機器及びズームレンズの製造方法
JP7179594B2 (ja) * 2018-11-29 2022-11-29 キヤノン株式会社 ズームレンズ及び撮像装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04186211A (ja) * 1990-11-20 1992-07-03 Canon Inc 高変倍ズームレンズ
JP2001350093A (ja) * 2000-04-07 2001-12-21 Minolta Co Ltd 撮像レンズ装置
JP2006251462A (ja) * 2005-03-11 2006-09-21 Sony Corp ズームレンズ系及び撮像装置
JP2010271362A (ja) * 2009-05-19 2010-12-02 Nikon Corp 変倍光学系、この変倍光学系を有する光学機器、及び、変倍光学系の製造方法
JP2011033867A (ja) * 2009-08-03 2011-02-17 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2011099925A (ja) * 2009-11-04 2011-05-19 Nikon Corp 変倍光学系、光学装置、変倍光学系の製造方法
JP2011123337A (ja) * 2009-12-11 2011-06-23 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2011186159A (ja) * 2010-03-08 2011-09-22 Nikon Corp 変倍光学系、光学装置、変倍光学系の製造方法
JP2011186161A (ja) * 2010-03-08 2011-09-22 Nikon Corp 変倍光学系、光学装置、変倍光学系の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189557A (en) 1990-11-20 1993-02-23 Canon Kabushiki Kaisha High variable magnification range zoom lens
US5691851A (en) 1993-07-14 1997-11-25 Canon Kabushiki Kaisha Zoom lens
JP3155884B2 (ja) * 1993-07-14 2001-04-16 キヤノン株式会社 ズームレンズ
JP4560745B2 (ja) 2008-08-06 2010-10-13 ソニー株式会社 可変焦点距離レンズ系
JP5541663B2 (ja) * 2009-10-06 2014-07-09 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP5455551B2 (ja) 2009-10-23 2014-03-26 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
US8339713B2 (en) 2009-11-04 2012-12-25 Nikon Corporation Zoom optical system, optical apparatus and method for manufacturing zoom optical system
CN102193175B (zh) 2010-03-08 2016-01-20 株式会社尼康 变焦镜头系统和光学设备
JP2011209347A (ja) 2010-03-29 2011-10-20 Sony Corp ズームレンズ及び撮像装置
JP5273167B2 (ja) * 2011-01-25 2013-08-28 株式会社ニコン 変倍光学系、光学装置、変倍光学系の製造方法
CN105388601B (zh) 2011-01-25 2019-08-09 株式会社尼康 变焦镜头系统和光学设备
JP5440560B2 (ja) * 2011-06-30 2014-03-12 株式会社ニコン 変倍光学系、光学装置、変倍光学系の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04186211A (ja) * 1990-11-20 1992-07-03 Canon Inc 高変倍ズームレンズ
JP2001350093A (ja) * 2000-04-07 2001-12-21 Minolta Co Ltd 撮像レンズ装置
JP2006251462A (ja) * 2005-03-11 2006-09-21 Sony Corp ズームレンズ系及び撮像装置
JP2010271362A (ja) * 2009-05-19 2010-12-02 Nikon Corp 変倍光学系、この変倍光学系を有する光学機器、及び、変倍光学系の製造方法
JP2011033867A (ja) * 2009-08-03 2011-02-17 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2011099925A (ja) * 2009-11-04 2011-05-19 Nikon Corp 変倍光学系、光学装置、変倍光学系の製造方法
JP2011123337A (ja) * 2009-12-11 2011-06-23 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2011186159A (ja) * 2010-03-08 2011-09-22 Nikon Corp 変倍光学系、光学装置、変倍光学系の製造方法
JP2011186161A (ja) * 2010-03-08 2011-09-22 Nikon Corp 変倍光学系、光学装置、変倍光学系の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015118141A (ja) * 2013-12-17 2015-06-25 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2016035538A (ja) * 2014-08-04 2016-03-17 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
US11150442B2 (en) 2017-10-27 2021-10-19 Panasonic Intellectual Property Management Co., Ltd. Zoom lens system and imaging device
JP2019101286A (ja) * 2017-12-05 2019-06-24 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP7158849B2 (ja) 2017-12-05 2022-10-24 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置

Also Published As

Publication number Publication date
US9513472B2 (en) 2016-12-06
JPWO2014006653A1 (ja) 2016-06-02
US20150103211A1 (en) 2015-04-16

Similar Documents

Publication Publication Date Title
JP5676505B2 (ja) ズームレンズ系、撮像装置及びカメラ
JP5891448B2 (ja) ズームレンズ系、交換レンズ装置及びカメラシステム
JP5891447B2 (ja) ズームレンズ系、交換レンズ装置及びカメラシステム
JP6206740B2 (ja) ズームレンズ系、撮像装置及びカメラ
WO2012101959A1 (ja) ズームレンズ系、撮像装置及びカメラ
JP2011232543A (ja) ズームレンズ系、撮像装置及びカメラ
JPWO2012086153A1 (ja) ズームレンズ系、交換レンズ装置及びカメラシステム
JP2012133230A (ja) ズームレンズ系、交換レンズ装置及びカメラシステム
JP2012198504A (ja) ズームレンズ系、撮像装置及びカメラ
JP5919519B2 (ja) ズームレンズ系、撮像装置及びカメラ
JP2012198503A (ja) ズームレンズ系、撮像装置及びカメラ
JP2012048200A (ja) ズームレンズ系、撮像装置及びカメラ
JP5891452B2 (ja) ズームレンズ系、交換レンズ装置及びカメラシステム
WO2014006653A1 (ja) ズームレンズ系、撮像装置及びカメラ
JP2012198505A (ja) ズームレンズ系、撮像装置及びカメラ
JP5919518B2 (ja) ズームレンズ系、撮像装置及びカメラ
JP2012198506A (ja) ズームレンズ系、撮像装置及びカメラ
WO2013105190A1 (ja) ズームレンズ系、撮像装置及びカメラ
JP6198071B2 (ja) ズームレンズ系、撮像装置及びカメラ
JPWO2012098617A1 (ja) ズームレンズ系、撮像装置及びカメラ
JP2010160334A (ja) ズームレンズ系、撮像装置及びカメラ
JP5669105B2 (ja) ズームレンズ系、撮像装置及びカメラ
JP5271090B2 (ja) ズームレンズ系、撮像装置及びカメラ
WO2013111602A1 (ja) ズームレンズ系、撮像装置及びカメラ
WO2014132291A1 (ja) ズームレンズ系、交換レンズ装置及びカメラシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880349

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014523447

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12880349

Country of ref document: EP

Kind code of ref document: A1