WO2013114148A1 - Installation de conversion de substances de départ hydrocarbonées en combustible gazeux et liquide et chémotron à plasma destiné à cette installation - Google Patents

Installation de conversion de substances de départ hydrocarbonées en combustible gazeux et liquide et chémotron à plasma destiné à cette installation Download PDF

Info

Publication number
WO2013114148A1
WO2013114148A1 PCT/IB2012/000207 IB2012000207W WO2013114148A1 WO 2013114148 A1 WO2013114148 A1 WO 2013114148A1 IB 2012000207 W IB2012000207 W IB 2012000207W WO 2013114148 A1 WO2013114148 A1 WO 2013114148A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
hydrogen
plasma
water
chamber
Prior art date
Application number
PCT/IB2012/000207
Other languages
German (de)
English (en)
Inventor
Alexander POTEMKIN
Original Assignee
Potemkin Alexander
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Potemkin Alexander filed Critical Potemkin Alexander
Priority to PCT/IB2012/000207 priority Critical patent/WO2013114148A1/fr
Priority to PCT/IB2012/002564 priority patent/WO2013114150A1/fr
Publication of WO2013114148A1 publication Critical patent/WO2013114148A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0207Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/06Liquid carbonaceous fuels essentially based on blends of hydrocarbons for spark ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the proposed group of inventions belongs to the field of petroleum chemistry, more specifically to the plants for the catalytic processing of hydrocarbon materials.
  • the shortcomings of the known plant include the considerable consumption of raw materials and the strong formation of carbon dioxide and various admixtures which escape into the atmosphere.
  • a plant for the synthesis of liquid fuel is known with a reforming reactor, which transforms the hydrocarbon raw material into a synthesis gas containing gaseous carbon monoxide and gaseous hydrogen as the basic constituents, with a reactor which contained in the synthesis gas
  • Patent RU 2056008 Known are a process for the conversion of solid fuel and a plasma system for its production.
  • Brown coals Known is a plasma system for the conversion of solid fuel with a plasma reactor, a gas generator, a desulfurizer and a
  • an arc plasma is generated, and water vapor is used as the plasma-forming gas.
  • the energy consumption for the hydrogenation of the hydrogen gas from the water amounts to 4.5-5.3 KWh / 1, and the reduction of the carbon by the hydrogen at 600-800 ° C causes the consumption to almost double.
  • the proposed method is technologically the closest to a plant for the conversion of hydrocarbons into gaseous and liquid fuel, which consists of the following assemblies: a reactor chamber with attached at its bottom heater and catalyst, a compressor, a reactor for the synthesis of a mixture of gasoline and diesel and a rectification column connected to this reactor (Patent RU 2291350).
  • the plant allows a more complete utilization of the fuel capacity of the product gas by synthesizing gaseous and liquid fuel as well as continuous operation without interruption to reload the feedstock.
  • the known solution has a significant disadvantage, namely the presence of admixtures (sulfur oxides, phosphorus, silicon, iron, etc.) in the product obtained,
  • Plasmochemotron comes from the technical point of view, a Plasmochemotron next, which has a vertical transparent body with conical neck, via a mounted on the neck hydrogen lattice receiver, nozzle for introducing the plasma-forming medium (water H 2 0) and for discharging the product gases a hermetic chamber in the housing between the anode and cathode electrodes, the base of the interelectrode chamber being defined by the lower end of the anode consisting of hydrogen and oxygen over inert material, and the cathode being hermetically attached to the hydrogen raster receiver; and via the power supply lines of the voltage source, which are connected to the upper channel of the hydrogen receiver and the housing wall (see Patent RU 107161).
  • the known construction of the Plasmochemotron allows the splitting of the water into hydrogen and oxygen by ignition of a plasma in the water with reduced energy consumption thanks to the high-tech surface of the electrodes.
  • the known construction has several disadvantages, namely: - It is difficult to manufacture, since the cathode consists of capillaries, their production
  • the cathode is difficult to clean, since the entire Plasmochemotron must be broken down at regular intervals for their purification.
  • the technical solution achieved by the proposed group of inventions consists in the production of such a construction of a plant for the conversion of hydrocarbon educts into gaseous and liquid fuels, which makes it possible to produce water and coal with low energy consumption gaseous and liquid hydrocarbons, which in terms of admixtures
  • the technical solution is achieved in the proposed invention, characterized in that one prepares a plant for the conversion of hydrocarbon educts in gaseous and liquid fuel, which consists of: a reactor chamber with attached at its bottom heater and catalyst, a compressor, a reactor for the synthesis of a mixture from gasoline and diesel and a rectification column connected to this reactor, which is equipped according to the invention with a Plasmochemotron, a mixer for the components of the recovered synthesis gas, a water collector, a separator and a reactor for Dimethylrelihersynthese, the Plasmochemotron a water inlet and two exits one of which is connected for the purpose of discharging the recovered oxygen and water from the plasmochemotron via the water collector to the reactor chamber, which is connected via the separator to the mixer connected to the second, the discharge of water connected to the output of the plasma chemotron and via the compressor to the dimethyl ether synthesis reactor connected to the reactor for the synthesis of gasoline and diesel, the heater of the reactor chamber
  • nanoporous catalysts of copper, platinum and zeolite are used at significantly higher pressures and temperatures for the treatment of the synthesis gas produced to obtain dimethyl ether, gasoline and diesel, thereby increasing speed and degree of conversion and high purity products without those for products from crude oil cracking so typical admixtures arise.
  • a Plasmochemotrons consisting of a vertical and transparent housing with conical neck, a mounted on the neck hydrogen raster receiver, nozzle for introducing the plasma-forming medium (water H 2 0) and for discharging the product gases, an in-housing hermetic chamber between the anode and cathode electrodes, wherein the base of the interelectrode chamber is bounded by the lower end of the anode made of hydrogen and oxygen over inert material and the cathode is hermetically attached to the hydrogen raster receiver, and the power supply lines of the voltage source, which are connected to the upper channel of the hydrogen receiver and the wall of the housing, in which according to the invention, the cathode is designed as a palladium-coated bellows made of porous nickel and the anode as a base on the coaxially arranged un d mounted between the folds of the bellows mounted cylinder.
  • the proposed invention enables the implementation of the method for splitting the water into hydrogen and oxygen (plasma generation by Capacitive discharge in the water, ie 1.1 - 1.3 kWh / 1).
  • the oxygen obtained from the water can be used for the synthesis of carbon monoxide z.
  • the plant for the conversion of hydrocarbon educts into gaseous and liquid fuels consists of the reactor chamber 1 with the heater 2 and the catalyst 3, the compressor 4, the reactor for the synthesis of the mixture of gasoline and diesel 5, the this connected rectification column 6, the plasma chemotron, the mixer for the components of the synthesis gas obtained 7, the water collector 8, the separator 9 and the reactor for dimethyl ether synthesis.
  • the container 10 of the reactor chamber 1 are mounted on the ground: consisting of the composites Ni 3 Al and NiAl heater 2 and the attached above him reticulated catalyst 3, which consists of MgO-based porous ceramic.
  • the container 10 is for loading with the processed carbon, z. B. hard coal or lignite, thought.
  • Pafur are to be used ordinary coal presses, which require no further processing (grinding).
  • the reactor for the dimethyl ether synthesis and the reactor for the gasoline and diesel synthesis are carried out barothermally.
  • the reactor for the dimethyl ether synthesis consists of the housing 11, to which the heater 12 is attached to the voltage source 13, and the interior 14 is to be filled with the catalyst 15, for. As nanoporous copper, thought.
  • the reactor for dimethyl ether synthesis consists of the housing 5, to which the heater 16 is attached to the voltage source 17, and the interior 18 is for filling with the catalyst 19, z. As platinum and zeolite thought.
  • the rectification column 6 is to be filled before start of operation with a mixture of diesel and gasoline.
  • the construction of the rectification column is known, the authors make no claim in this respect novelty.
  • the Plasmochemotron consists of the vertical transparent housing 21 with a conical neck, in this neck 21 housed hydrogen raster receiver, the introduction port 23 for the plasma forming medium (water H 2 0) and the outlet 24 for the gaseous products, the hermetic located in the housing Interelectrode chamber 25 with anode and cathode 26 and the power supply lines 27 of the voltage source 28, which are connected to the upper channel of the hydrogen receiver and with the housing wall 20.
  • the cathode 26 is designed as a bellows, consisting of porous palladium-coated nickel and is hermetically attached to the hydrogen halftone receiver 21.
  • the anode consists of the base 29, on which the coaxially arranged and located between the folds 30 of the bellows cylinder 31 are attached.
  • the lower base of the Interelektrodenhunt 25 is limited by the base 29 of the anode, which consists of a hydrogen and oxygen over inert material, eg. As nickel exists.
  • the housing of the Plasmochemotrons can be mounted and consist of two parts to be joined together.
  • the transparent design of the housing 20, z. B. organic glass, allows an observation of the process flow of plasma dissociation of water.
  • Water is introduced into the housing 20 of the plasma chemotrone via the filler neck 23 for the plasma-forming medium (water H 2 O) and kept at the specified maximum level of water dissociation.
  • the voltage source 28 is turned on, voltage is applied to the power supply lines 27 and controlled by observation of the plasma, so that it does not come to a violent boiling of the water.
  • the electrolytic dissociation of the water is started.
  • the water level is not filled up, as this destabilizes the plasma.
  • the recovered oxygen is passed through the water collector 8 together with small water vapor residues, the oxygen, for. B. by condensation using a normal water-cooled zeolite capacitor is released.
  • the released oxygen is passed through the reactor chamber 1 for partial oxidation of the carbon by the oxygen.
  • the formation of the carbon monoxide from the coal is carried out at a temperature below the dissociation temperature, e.g. B. at 450 - 500 ° C, carried out.
  • the carbon monoxide is purified before the preparation of the mixture CO + H 2 with 60% H 2 and 40% CO as constituents in the separator 9 with the aid of liquid Mattersssorbenten.
  • This device and these liquid reaction sorbents are known, and the authors raise no novelty claim in this respect (http://www.mrbinist.ru).
  • the recovered hydrogen and purified carbon monoxide are further fed to the mixer 7 of the syngas components where the mixture is made.
  • the synthesis gas mixture is compressed to a pressure of 100-120 atm and processed in the barothermic reactor for dimethyl ether synthesis at a temperature of 260-300 ° C with a copper catalyst and dimethyl ether is formed.
  • the dimethyl ether is compressed to a pressure of 100-120 atm and heated in the presence of the catalyst of nanoporous platinum and zeolite at a temperature of 320-360 ° C.
  • Water was used as a material for producing hydrogen and oxygen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

L'invention concerne une installation de conversion de substances de départ hydrocarbonées en combustible gazeux et liquide, comprenant : une chambre de réacteur sur le fond de laquelle sont montés un réchauffeur et un catalyseur; un compresseur; un réacteur servant à synthétiser un mélange d'essence et de gazole; ainsi qu'une colonne de rectification reliée à ce réacteur. L'installation est caractérisée en ce qu'elle est équipée d'un chémotron à plasma, d'un mélangeur pour les constituants du gaz de synthèse obtenu, d'un collecteur d'eau, d'un séparateur et d'un réacteur de synthèse de diméthyléther. Le chémotron à plasma dispose d'une tubulure d'admission d'eau et de deux sorties. Une de ces sorties est raccordée à la chambre de réacteur, par l'intermédiaire du collecteur d'eau, afin d'évacuer du chémotron à plasma l'oxygène obtenu et l'eau. La chambre de réacteur est reliée par l'intermédiaire du séparateur au mélangeur, qui est raccordé à la deuxième sortie servant à évacuer l'hydrogène du chémotron à plasma, et par l'intermédiaire du compresseur au réacteur de synthèse de diméthyléther, lequel est relié au réacteur de synthèse d'essence et de gazole. Le réchauffeur de la chambre de réacteur est fabriqué en matériaux composites Νi3Αl et NiAl; le catalyseur de la chambre, qui se présente sous la forme d'un réseau en céramique poreuse à base de MgO, est disposé au-dessus du réchauffeur; les réacteurs de synthèse du diméthyléther et du mélange essence/gazole sont réalisés de manière à être barothermiques avec les réchauffeurs disposés sur leurs boîtiers; et leurs espaces intérieurs sont destinés à recevoir les catalyseurs à base de cuivre, platine et zéolite nanoporeux.
PCT/IB2012/000207 2012-02-02 2012-02-02 Installation de conversion de substances de départ hydrocarbonées en combustible gazeux et liquide et chémotron à plasma destiné à cette installation WO2013114148A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/IB2012/000207 WO2013114148A1 (fr) 2012-02-02 2012-02-02 Installation de conversion de substances de départ hydrocarbonées en combustible gazeux et liquide et chémotron à plasma destiné à cette installation
PCT/IB2012/002564 WO2013114150A1 (fr) 2012-02-02 2012-11-27 Installation de conversion de substances de départ hydrocarbonées en combustible gazeux et liquide et chémotron à plasma destiné à cette installation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2012/000207 WO2013114148A1 (fr) 2012-02-02 2012-02-02 Installation de conversion de substances de départ hydrocarbonées en combustible gazeux et liquide et chémotron à plasma destiné à cette installation

Publications (1)

Publication Number Publication Date
WO2013114148A1 true WO2013114148A1 (fr) 2013-08-08

Family

ID=47425176

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/IB2012/000207 WO2013114148A1 (fr) 2012-02-02 2012-02-02 Installation de conversion de substances de départ hydrocarbonées en combustible gazeux et liquide et chémotron à plasma destiné à cette installation
PCT/IB2012/002564 WO2013114150A1 (fr) 2012-02-02 2012-11-27 Installation de conversion de substances de départ hydrocarbonées en combustible gazeux et liquide et chémotron à plasma destiné à cette installation

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/IB2012/002564 WO2013114150A1 (fr) 2012-02-02 2012-11-27 Installation de conversion de substances de départ hydrocarbonées en combustible gazeux et liquide et chémotron à plasma destiné à cette installation

Country Status (1)

Country Link
WO (2) WO2013114148A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106530920A (zh) * 2016-11-16 2017-03-22 上海卫星工程研究所 火星表面原位生物制氧方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3332314A1 (de) * 1982-09-07 1984-03-08 Haldor Topsoee A/S, 2800 Lyngby Verfahren zur herstellung von kohlenwasserstoffen
RU2056008C1 (ru) 1992-12-22 1996-03-10 Восточно-Сибирский технологический институт Способ переработки твердого топлива и плазменная установка для его осуществления
RU2198156C2 (ru) 2000-06-20 2003-02-10 Александров Николай Александрович Способ получения жидких углеводородов каталитической переработкой углеводородных газов и установка для его осуществления
RU2291350C1 (ru) 2005-04-22 2007-01-10 Владимир Александрович Глушков Установка переработки углеводородного сырья в газообразное и жидкое топливо
US20070244208A1 (en) * 2006-03-20 2007-10-18 Shulenberger Arthur M Process for producing liquid fuel from carbon dioxide and water
US20090038958A1 (en) * 2007-07-06 2009-02-12 Coyle Edward L Method and Apparatus for a Low Cost and Carbon Free Point of Use Dissociation of Water into Elemental Gases and Production of Hydrogen Related Power
EP2213768A1 (fr) * 2007-11-14 2010-08-04 Fidel Franco Gonzalez Procédé et appareil permettant d'exploiter l'hydrogène
RU2396204C2 (ru) 2008-10-24 2010-08-10 Владимир Николаевич Серебряков Способ получения синтез-газа и продуктов органического синтеза из диоксида углерода и воды
RU2415904C2 (ru) 2006-03-30 2011-04-10 Ниппон Стил Инджиниринг Ко., Лтд. Система синтеза жидкого топлива
RU107161U1 (ru) 2010-12-24 2011-08-10 Николай Викторович СТЕПАНОВ Плазмохимотрон

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006055999A1 (fr) 2004-11-29 2006-06-01 Human Oxy Vertriebs Gmbh Procede et dispositif de production d'eau a teneur accrue en oxygene
RU56008U1 (ru) 2006-02-20 2006-08-27 Федеральное государственное унитарное предприятие "НПО Астрофизика" Сканирующее устройство

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3332314A1 (de) * 1982-09-07 1984-03-08 Haldor Topsoee A/S, 2800 Lyngby Verfahren zur herstellung von kohlenwasserstoffen
RU2056008C1 (ru) 1992-12-22 1996-03-10 Восточно-Сибирский технологический институт Способ переработки твердого топлива и плазменная установка для его осуществления
RU2198156C2 (ru) 2000-06-20 2003-02-10 Александров Николай Александрович Способ получения жидких углеводородов каталитической переработкой углеводородных газов и установка для его осуществления
RU2291350C1 (ru) 2005-04-22 2007-01-10 Владимир Александрович Глушков Установка переработки углеводородного сырья в газообразное и жидкое топливо
US20070244208A1 (en) * 2006-03-20 2007-10-18 Shulenberger Arthur M Process for producing liquid fuel from carbon dioxide and water
RU2415904C2 (ru) 2006-03-30 2011-04-10 Ниппон Стил Инджиниринг Ко., Лтд. Система синтеза жидкого топлива
US20090038958A1 (en) * 2007-07-06 2009-02-12 Coyle Edward L Method and Apparatus for a Low Cost and Carbon Free Point of Use Dissociation of Water into Elemental Gases and Production of Hydrogen Related Power
EP2213768A1 (fr) * 2007-11-14 2010-08-04 Fidel Franco Gonzalez Procédé et appareil permettant d'exploiter l'hydrogène
RU2396204C2 (ru) 2008-10-24 2010-08-10 Владимир Николаевич Серебряков Способ получения синтез-газа и продуктов органического синтеза из диоксида углерода и воды
RU107161U1 (ru) 2010-12-24 2011-08-10 Николай Викторович СТЕПАНОВ Плазмохимотрон

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LOKTEV, S.M.: "Sostojanie i perspektivy Zydkix uglevodorodov iz oksida ugleroda i vodoroda (= Aktueller Stand und Perspektiven der Synthese von Flüssigkohlenwasserstoffen aus Kohlenmonoxid und Wasserstoff", 1977, IGI, pages: 14

Also Published As

Publication number Publication date
WO2013114150A1 (fr) 2013-08-08

Similar Documents

Publication Publication Date Title
EP1848660B1 (fr) Procédé et dispositif pour la production d'hydrogène
EP2935098B1 (fr) Production en parallèle d'hydrogène, de monoxyde de carbone et d'un produit contenant du carbone
AT502478B1 (de) Verwendung eines verfahrens zur wasserstoffproduktion
AT502901B1 (de) Vorrichtung zur wasserstoffherstellung
KR20110058639A (ko) 중질유, 초중질유 및 잔사유에 대한 수소전환 공정
DE2460901A1 (de) Verfahren zur herstellung eines methanreichen gases
EP3172164B1 (fr) Procédé pour la préparation d'hydrogène
DE102006007773A1 (de) Anordnung und Verfahren zum Spalten von Wasser
CN101264860A (zh) 用于焦炉粗煤气混合重整制氢工艺中的透氧膜反应器
DE102023004044A1 (de) Metall- & kohlenstoffbasierte katalytische Vorrichtung zur Durchführung von Methanpyrolyse
WO2013114148A1 (fr) Installation de conversion de substances de départ hydrocarbonées en combustible gazeux et liquide et chémotron à plasma destiné à cette installation
EP4058403A1 (fr) Procédé et dispositif de production d'hydrogène et de carbone pyrolytique à partir d'hydrocarbures
CN106281449A (zh) 一种煤焦油生产轻质燃料和针状焦的方法及系统
DE112018003522T5 (de) Tankstelle zum Versorgen von Fahrzeugen mit Energieträgern
WO2022223458A1 (fr) Système et procédé de production de combustibles synthétiques sans émission de dioxyde de carbone
EP3898504B1 (fr) Procédé de fabrication d'hydrogène, de monoxyde de carbone et d'un produit contenant du carbone
DE102014202803A1 (de) Verfahren zur Herstellung flüssiger und/oder fester Kohlenwasserstoffverbindungen
EP3426764A1 (fr) Synthèse renouvelable de réservoirs d'énergie chimiques et de produits de chimie fine
EP2134645B1 (fr) Procédé de production d'hydrocarbures à chaîne moyenne à longue
WO2023073242A1 (fr) Procédé et dispositif de synthèse de composés carbonés organiques
WO2024079322A1 (fr) Ensemble d'électrodes à plasma et dispositif d'analyse de plasma
DE3246499C2 (de) Verfahren zur elektrochemischen Kohleumwandlung und Verwendung der Reaktionsprodukte
CN118420342A (zh) 一种多孔材料的制备方法及制备装置
DE886800C (de) Herstellung von an Verunreinigungen armem Russ und Wasserstoff
DE1770178C (de) Verfahren zum katalytischen Reformie ren einer Kohlenwasserstoffbeschickung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12706672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12706672

Country of ref document: EP

Kind code of ref document: A1