WO2013113221A1 - 热敏感器件及其散热系统 - Google Patents

热敏感器件及其散热系统 Download PDF

Info

Publication number
WO2013113221A1
WO2013113221A1 PCT/CN2012/081229 CN2012081229W WO2013113221A1 WO 2013113221 A1 WO2013113221 A1 WO 2013113221A1 CN 2012081229 W CN2012081229 W CN 2012081229W WO 2013113221 A1 WO2013113221 A1 WO 2013113221A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
sensitive device
temperature
thermally expandable
thermally
Prior art date
Application number
PCT/CN2012/081229
Other languages
English (en)
French (fr)
Inventor
靳林芳
康南波
伏坚
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Publication of WO2013113221A1 publication Critical patent/WO2013113221A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic

Definitions

  • This invention relates to heat sensitive devices, and more particularly to a heat sensitive device and its heat dissipation system. Background technique
  • TCXO is a quartz crystal oscillator that reduces the variation of the oscillation frequency caused by the change in operating temperature by an additional temperature compensation circuit, and is widely used in mobile communication systems.
  • TCXO has high temperature sensitivity, it is difficult to compensate the frequency stability caused by its own temperature compensation circuit. It needs to be dissipated through the external auxiliary cooling system to make it work within the required frequency stability. .
  • the TCXO housing and the shield cover are in contact with the thermal pad at the same time.
  • the TCXO is dissipated by the heat transfer of the thermal pad, so that the TCXO operates at a relatively reasonable temperature.
  • the TCXO when the external temperature is low, the TCXO operates at a lower temperature by heat transfer from the thermal pad. This will cause the TCXO's operating temperature to vary greatly, affecting the frequency stability. Therefore, when applied to a scene with a low external temperature, it is necessary to use a temperature compensation circuit pair.
  • TCXO heating adding extra power, is not suitable for battery-powered mobile devices.
  • the technical problem to be solved by the present invention is to provide a heat sensitive device and a heat dissipating system thereof, so that the heat sensitive device can operate at a relatively constant operating temperature, improving the operational stability of the heat sensitive device.
  • the present invention provides a heat dissipation system for a heat sensitive device, including a heat sink and a thermally expandable heat conductive member.
  • the heat dissipating component is spaced apart from the heat source of the heat sensitive component, and the thermal expansion heat conducting component is disposed between the heat generating source and the heat sink.
  • the temperature of the thermally expandable heat-conducting member is lower than the temperature threshold
  • the thermally expandable heat conducting member is spaced apart from the heat generating source or the heat dissipating member.
  • the thermally expandable heat conducting member forms a thermal connection between the heat generating source and the heat dissipating member.
  • the present invention also provides a heat sensitive device including a housing, a heat generating source, and a thermally expandable heat conducting member.
  • the heat source is disposed in the outer casing
  • the heat expansion heat conductive member is disposed in the outer casing and located between the heat source and the outer casing.
  • the thermally expandable heat-conducting member is spaced apart from the outer casing or the heat-generating source.
  • the thermally expandable heat-conducting member is between the outer casing and the heat source. A thermal connection is formed.
  • the heat sensitive device and the heat dissipating system thereof of the embodiments of the present invention utilize the thermal expansion and contraction characteristics of the thermal expansion heat conductive member to selectively dissipate heat according to the temperature of the heat sensitive device, so that the heat sensitive device can be relatively constant. Working at operating temperatures improves the operational stability of thermally sensitive devices.
  • FIG. 1 is a schematic structural view showing a first operational state of a heat dissipation system of a heat sensitive device according to a first embodiment of the present invention
  • FIG. 2 is a schematic structural view showing a second operational state of a heat dissipation system of a heat sensitive device according to a first embodiment of the present invention
  • FIG. 3 is a schematic structural view showing a first operational state of a heat dissipation system of a heat sensitive device according to a second embodiment of the present invention
  • FIG. 4 is a schematic structural view showing a second operational state of a heat dissipation system of a heat sensitive device according to a second embodiment of the present invention
  • FIG. 5 is a schematic structural view showing a first operational state of a heat dissipation system of a heat sensitive device according to a third embodiment of the present invention.
  • FIG. 6 is a schematic structural view showing a second operational state of a heat dissipation system of a heat sensitive device according to a third embodiment of the present invention.
  • FIG. 7 is a schematic structural view showing a first operational state of a heat dissipation system of a heat sensitive device according to a fourth embodiment of the present invention.
  • FIG. 8 is a schematic structural view showing a second operational state of a heat dissipation system of a heat sensitive device according to a fourth embodiment of the present invention.
  • FIG. 9 is a schematic structural view showing a first operational state of a heat dissipation system of a heat sensitive device according to a fifth embodiment of the present invention.
  • FIG. 10 is a second operational state of a heat dissipation system of a heat sensitive device according to a fifth embodiment of the present invention Schematic diagram of the structure.
  • Embodiments of the present invention provide a heat dissipation system for a heat sensitive device, the heat dissipation system mainly comprising a heat sink and a thermally expandable heat conductive member.
  • the heat dissipating component is spaced apart from the heat source of the heat sensitive component, and the heat expansion heat conducting component is disposed between the heat generating source and the heat sink.
  • the heat-expanding heat-conducting member is lower than the temperature threshold
  • the heat-expanding heat-conducting member is spaced apart from the heat-generating source or the heat-dissipating member.
  • the heat-expanding heat-conducting member is in the heat source and the heat sink. A thermal connection is formed between them.
  • the heat dissipation system of the heat sensitive device of the embodiment of the invention can selectively dissipate heat according to the temperature of the heat sensitive device, so that the heat sensitive device can work at a relatively constant working temperature, thereby improving the working stability of the heat sensitive device. . Said.
  • FIG. 1 is a schematic structural view of a first operational state of a heat dissipation system of a heat sensitive device according to a first embodiment of the present invention
  • FIG. 2 is a heat dissipation system of a heat sensitive device according to a first embodiment of the present invention.
  • the heat sensitive device 10 is a TCXO, which specifically includes a case 11, a heat source 12 (for example, a temperature compensated quartz crystal resonator chip) disposed inside the case 11, and a thermistor 13 and the like.
  • the heat source 12 is thermally coupled to the outer casing 11 by direct contact or via a suitable heat transfer medium.
  • the heat sensitive device 10 can be other heat sensitive devices.
  • the heat source 12 is any element that generates heat during operation and needs to dissipate heat.
  • the heat dissipation system of the heat sensitive device 10 includes a shield cover 21, a heat dissipation fin set 22, and a thermally expandable heat conductive member 23.
  • a shield cover 21 is provided on the periphery of the heat sensitive device 10 for shielding the heat sensitive device 10.
  • the heat dissipation fin group 22 is disposed on the shield cover 21.
  • the heat-expanding heat-conducting member 23 is disposed between the outer casing 11 and the shielding cover 21, and is specifically disposed on the shielding cover 21.
  • the thermally expandable heat conductive member 23 has thermal expansion and contraction characteristics. As shown in FIG.
  • the thermally expandable heat-conducting member 23 when the temperature of the thermally expandable heat-conducting member 23 is lower than a predetermined temperature threshold, the thermally expandable heat-conducting member 23 is spaced apart from the outer casing 11. At this time, the thermal connection between the outer casing 11 and the shield cover 21 and the heat dissipation fin group 22 cannot be formed by the thermal expansion heat conductor 23. As shown in FIG. 2, when the temperature of the thermally expandable heat-conducting member 23 is equal to or higher than the above-mentioned temperature threshold, the thermally expandable heat-conducting member 23 is thermally expanded to come into contact with the outer casing 11 so that the outer casing 11 passes between the shield cover 21 and the heat-dissipating fin group 22.
  • the thermally expandable heat conductor 23 forms a thermal connection, which in turn forms a thermal connection between the heat source 12 and the shield cover 21 and the heat sink fin set 22. At this time, the heat generated by the heat source 12 passes through the outer casing 11 and thermally expands. The heat conductive member 23 is transferred to the shield cover 21 and the heat dissipation fin group 22, and is radiated by the shield cover 21 and the heat dissipation fin group 22.
  • the temperature threshold may be set according to the normal operating temperature of the heat source 12, and the thickness of the thermally expandable heat conductor 23 may be set according to the spacing between the outer casing 11 and the shield cover 21 and the linear expansion coefficient of the thermally expandable heat conductive member 23. .
  • the heat sensitive component 10 is dissipated as a heat sink by the combination of the shield cover 21 and the heat sink fin group 22.
  • the heat sink fin set 22 may be omitted.
  • the shielding cover 21 may be omitted or an opening may be provided in the shielding cover 21, Further, the thermally expandable heat conductive member 23 is directly disposed on the heat dissipation fin group 22.
  • the heat-expanding heat-conducting member 23 forms a thermal connection between the heat-generating source 12 and the shielding cover 21 and the heat-dissipating fin group 22, thereby achieving external auxiliary heat dissipation, and in the heat source
  • the thermal connection formed between the heat source 12 and the shielding cover 21 and the heat dissipation fin group 22 is disconnected, thereby preventing the external environment from being too high or too low to cause the temperature of the heat source 12 to be caused. influences.
  • FIG. 3 is a schematic structural view of a first operational state of a heat dissipation system of a heat sensitive device according to a second embodiment of the present invention
  • FIG. 4 is a heat dissipation system of a heat sensitive device according to a second embodiment of the present invention.
  • the heat sensitive device 30 includes a housing 31, a heat source 32 disposed inside the housing 31, and a thermistor 33 and the like.
  • the heat source 32 is thermally coupled to the outer casing 31 by direct contact or via a suitable heat transfer medium.
  • the heat dissipation system of the heat sensitive device 30 includes a shield cover 41, a heat sink fin set 42, and a thermally expandable heat conductor 43.
  • the present embodiment is different from the first embodiment shown in FIGS. 1-2 in that the thermally expandable heat conductive member 43 of the present embodiment is disposed on the outer casing 31, and as shown in FIG. 3, the temperature of the thermally expandable heat conductive member 43 is low. At a temperature threshold, the thermally expandable heat conductive member 43 is spaced apart from the shield cover 41. At this time, the thermal connection between the outer casing 31 and the shield cover 41 and the heat dissipation fin group 42 cannot be formed by the thermal expansion heat conductor 43. As shown in FIG.
  • the thermally expandable heat-conducting member 43 when the temperature of the thermally expandable heat-conducting member 43 is equal to or higher than the above-mentioned temperature threshold, the thermally expandable heat-conducting member 43 is thermally expanded to come into contact with the shield cover 41 such that the outer casing 31 and the shield cover 41 and the heat-dissipating fin group 42 are provided. Pass The thermally expandable heat conductor 43 forms a thermal connection, thereby forming a thermal connection between the heat source 32 and the shield cover 41 and the heat sink fin set 42.
  • the heat generated by the heat source 32 can be transmitted to the shield cover 41 and the heat dissipation fin group 42 via the outer casing 31 and the heat expansion heat conductor 43, and the heat is dissipated by the shield cover 41 and the heat dissipation fin group 42.
  • thermal expansion and contraction characteristics of the thermally expandable heat conducting member 43 selective heat dissipation is performed according to the temperature of the heat sensitive device 30, so that the heat sensitive device 30 can operate at a relatively constant operating temperature, and the heat sensitive device 30 is improved. Work stability. Further, the thermal expansion heat conductor 43 is directly disposed on the outer casing 31 of the heat sensitive device 30, and the response of the heat expansion heat conductor 43 to the temperature of the heat source 32 can be further improved.
  • FIG. 5 is a schematic structural view of a first operational state of a heat dissipation system of a heat sensitive device according to a third embodiment of the present invention
  • FIG. 6 is a heat dissipation system of a heat sensitive device according to a third embodiment of the present invention.
  • the heat sensitive device 50 includes a housing 51, a heat source 52 disposed inside the housing 51, and a thermistor 53 and the like.
  • the heat dissipation system of the heat sensitive device 50 includes a heat sink fin set 62 and a thermally expandable heat conductor 63. The difference between this embodiment and the first embodiment shown in FIG.
  • the thermally expandable heat-conducting member 63 of the present embodiment is disposed in the outer casing 51 of the heat-sensitive device 50 and between the heat source 52 and the outer casing 51.
  • the heat sink fin set 62 is thermally coupled to the outer casing 51 of the heat sensitive device 50 by direct contact or via a suitable heat transfer medium.
  • the thermally expandable heat-conducting member 63 is disposed on the outer casing 51 and spaced apart from the heat-generating source 52 when the temperature of the thermal expansion heat-conducting member 63 is lower than the temperature threshold. At this time, the thermal connection between the outer casing 51 and the heat source 52 cannot be formed by the thermal expansion heat conduction 63.
  • the thermally expandable heat-conducting member 63 when the temperature of the thermally expandable heat-conducting member 63 is equal to or higher than the above-mentioned temperature threshold, the thermally expandable heat-conducting member 63 is thermally expanded to form a thermal connection between the heat-generating source 53 and the heat-dissipating fin group 62. At this time, the heat generated by the heat source 52 is transferred to the heat radiation fin group 62 through the heat expansion heat conductor 63 and the outer casing 51, and is radiated by the heat radiation fin group 62.
  • the heat sensitive device 50 is dissipated by the heat dissipation fin group 62 as a heat sink.
  • a shield cover may be provided between the outer casing 51 and the heat sink fin set 62 if shielding of the heat sensitive device 50 is desired. This The shield cover is thermally coupled to the outer casing 51 by direct contact or via a suitable thermally conductive medium, and the heat sink fin set 62 can be omitted or further thermally coupled to the shield cover by direct contact or via a suitable thermally conductive medium.
  • thermally expandable heat-conducting member 63 selective heat dissipation is performed according to the temperature of the heat-sensitive device 50, so that the heat-sensitive device 50 can operate at a relatively constant operating temperature, and the heat-sensitive device 50 is improved. Work stability. Further, the thermally expandable heat-conducting member 63 is disposed in the outer casing 51 of the heat-sensitive device 50 to facilitate integration of the product.
  • FIG. 7 is a schematic structural view showing a first operational state of a heat dissipation system of a heat sensitive device according to a fourth embodiment of the present invention
  • FIG. 8 is a heat dissipation system of a heat sensitive device according to a fourth embodiment of the present invention.
  • the heat sensitive device 70 includes a housing 71, a heat source 72 disposed inside the housing 71, and a thermistor 73 and the like.
  • the heat dissipation system of the heat sensitive device 70 includes a heat sink fin set 82 and a thermally expandable heat conductor 83.
  • the present embodiment is different from the third embodiment shown in FIGS.
  • the thermally expandable heat conductive member 83 of the present embodiment is disposed on the heat generating source 72, and as shown in FIG. 7, at the temperature of the thermally expandable heat conducting member 83. Below the temperature threshold, the thermally expandable heat conductor 83 is spaced from the outer casing 71. At this time, the thermal connection between the outer casing 71 and the heat source 72 cannot be formed by the thermal expansion heat conductor 83. As shown in Fig.
  • the thermally expandable heat-conducting member 83 when the temperature of the thermally expandable heat-conducting member 83 is equal to or higher than the above-mentioned temperature threshold, the thermally expandable heat-conducting member 83 is thermally expanded to come into contact with the outer casing 71, so that heat is formed between the outer casing 71 and the heat-generating source 72 by the heat-expanding heat-conducting member 83.
  • the connection forms a thermal connection between the heat source 72 and the heat sink fin set 82.
  • the heat generated by the heat source 72 can be transferred to the heat sink fin group 82 via the heat expansion heat conductor 83 and the outer casing 71, and is radiated by the heat sink fin group 82.
  • thermal expansion and contraction characteristics of the thermally expandable heat conducting member 83 selective heat dissipation is performed according to the temperature of the heat sensitive device 70, so that the heat sensitive device 70 can operate at a relatively constant operating temperature, and the heat sensitive device 70 is improved. Work stability. Further, the thermal expansion heat conductor 83 is directly disposed on the heat source 72, and the response of the heat expansion heat conductor 83 to the temperature of the heat source 72 can be further improved.
  • the thermally expandable heat-conducting members 23, 43, 63 and 83 are required to have thermal expansion and contraction characteristics, and the coefficient of linear expansion thereof is preferably more than 30%, and the thermal conductivity is preferably greater than 1 W/(mK), that is, 1 watt / ( M-Kelvin).
  • FIG. 9 is a heat dissipation system of a heat sensitive device according to a fifth embodiment of the present invention.
  • FIG. 10 is a schematic structural view of a second operational state of a heat dissipation system of a heat sensitive device according to a fifth embodiment of the present invention.
  • the heat dissipation system of the heat sensitive device of the present embodiment further includes a heat insulating skeleton 91 having a porous structure 911, and the heat expansion heat conductive member 103 is made of a phase change heat conductive material such as a thermal conductive silica gel.
  • the thermally expandable heat conductive member 103 is disposed in the porous structure 911 of the heat insulating skeleton 91. As shown in FIG.
  • the thermally expandable heat-conducting member 103 when the temperature of the thermally expandable heat-conducting member 103 is lower than the temperature threshold, the thermally expandable heat-conducting member 103 is in a solid state and occupies only a part of the space of the porous structure 911, and heat cannot be formed on the opposite sides of the heat-insulating skeleton 91 at this time. connection.
  • the thermally expandable heat conductive member 103 becomes a liquid state and expands. At this time, the thermally expandable heat conductive member 103 occupies the entire space of the porous structure 911, thereby forming a thermal connection on the opposite sides of the heat insulating skeleton 91.
  • thermally expandable thermally conductive members of the third and fourth embodiments described above may be disposed within the outer casing of the thermally sensitive device as part of the thermally sensitive device to form the thermally sensitive device of the embodiments of the present invention.
  • the thermally expandable heat conducting member is disposed within the outer casing of the heat sensitive device and between the heat generating source and the outer casing. When the temperature of the thermally expandable heat-conducting member is lower than the temperature threshold, the thermally expandable heat-conducting member is spaced apart from the outer casing or the heat-generating source.
  • the thermally expandable heat-conducting member When the temperature of the thermally expandable heat-conducting member is equal to or higher than the temperature, the thermally expandable heat-conducting member is between the outer casing and the heat source. A thermal connection is formed.
  • the thermally expandable heat-conducting member can also employ the thermally expandable heat-conductive member 103 of the fifth embodiment.
  • the heat sensitive device of the embodiment of the present invention can be combined with the shield cover and/or heat sink fin set or other heat sink described above to selectively dissipate heat from the heat source within the heat sensitive device.
  • the above external heat sink can also be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本发明实施例提供了一种热敏感器件及其散热系统。该散热系统包括散热件以及热膨胀导热件。散热件与热敏感器件的发热源间隔设置,热膨胀导热件设置于发热源与散热件之间。在热膨胀导热件的温度低于温度阈值时,热膨胀导热件与发热源或散热件保持间隔设置,在热膨胀导热件的温度等于或高于温度阈值时,热膨胀导热件在发热源与散热件之间形成热连接。通过上述方式,根据热敏感器件的温度进行选择性散热,使得热敏感器件能够在相对恒定的工作温度下工作,提高了热敏感器件的工作稳定性。

Description

热敏感器件及其散热系统 本申请要求于 2012 年 1 月 31 日提交中国专利局、 申请号为 201210021896.2、 发明名称为"热敏感器件及其散热系统"的中国专利申请的 优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及热敏感器件, 特别是涉及一种热敏感器件及其散热系统。 背景技术
温度补偿型石英晶体谐振器 (Temperature Compensate X'tal Oscillator,
TCXO )是一种通过附加的温度补偿电路使得由工作温度变化产生的振荡频率 变化量削减的石英晶体振荡器, 被广泛地应用于移动通信系统。
由于 TCXO具有温度高敏感特性, 因此在其自身温度补偿电路难以补偿 工作温度变化对频率稳定度造成的影响时, 需要通过外部辅助散热系统来进 行散热, 以使其工作在要求的频率稳定度内。
在现有技术的 TCXO散热架构中, TCXO外壳与屏蔽盖同时与导热垫片 接触。 此时, 在 TCXO的工作温度超出一定温度范围时, 通过导热垫片的热 量传递对 TCXO进行散热, 使得 TCXO在相对合理的温度下工作。 然而, 在 上述散热架构中, 当外部温度较低时,通过导热垫片的热量传递而使得 TCXO 在较低的温度下工作。 这样会引起 TCXO的工作温度变化较大, 影响频率稳 定度。 因此, 在应用到外部温度较低的场景下时, 需要利用温度补偿电路对
TCXO加热, 增加额外功耗, 不适用于靠电池供电的移动设备。
此外, 在具有温度高敏感特定的其他热敏感器件的使用过程中也存在类 似的问题。
发明内容
本发明主要解决的技术问题是提供一种热敏感器件及其散热系统, 以使 得热敏感器件能够在相对恒定的工作温度下工作, 提高热敏感器件的工作稳 定性。
为解决上述技术问题, 本发明提供一种热敏感器件的散热系统, 包括散 热件和热膨胀导热件。 其中, 散热件与热敏感器件的发热源间隔设置, 热膨 胀导热件设置于发热源与散热件之间。 在热膨胀导热件的温度低于温度阔值 时, 热膨胀导热件与发热源或散热件保持间隔设置, 在热膨胀导热件的温度 等于或高于温度阔值时, 热膨胀导热件在发热源与散热件之间形成热连接。
为解决上述技术问题, 本发明还提供一种热敏感器件, 包括外壳、 发热 源以及热膨胀导热件。 发热源设置于外壳内, 热膨胀导热件设置于外壳内, 且位于发热源与外壳之间。 在热膨胀导热件的温度低于温度阔值时, 热膨胀 导热件与外壳或发热源保持间隔设置, 在热膨胀导热件的温度等于或高于温 度阔值时, 热膨胀导热件在外壳与发热源之间形成热连接。
区别于现有技术的情况, 本发明实施例的热敏感器件及其散热系统利用 热膨胀导热件的热胀冷缩特性, 根据热敏感器件的温度进行选择性散热, 使 得热敏感器件能够在相对恒定的工作温度下工作, 提高了热敏感器件的工作 稳定性。
附图说明
图 1是根据本发明第一实施例的热敏感器件的散热系统的第一工作状态 的结构示意图;
图 2是根据本发明第一实施例的热敏感器件的散热系统的第二工作状态的 结构示意图;
图 3是根据本发明第二实施例的热敏感器件的散热系统的第一工作状态的 结构示意图;
图 4是根据本发明第二实施例的热敏感器件的散热系统的第二工作状态的 结构示意图;
图 5是根据本发明第三实施例的热敏感器件的散热系统的第一工作状态的 结构示意图;
图 6是根据本发明第三实施例的热敏感器件的散热系统的第二工作状态的 结构示意图;
图 7是根据本发明第四实施例的热敏感器件的散热系统的第一工作状态的 结构示意图;
图 8是根据本发明第四实施例的热敏感器件的散热系统的第二工作状态的 结构示意图;
图 9是根据本发明第五实施例的热敏感器件的散热系统的第一工作状态的 结构示意图;
图 10是根据本发明第五实施例的热敏感器件的散热系统的第二工作状态 的结构示意图。
具体实施方式
本发明实施例提供了一种热敏感器件的散热系统, 该散热系统主要包括 散热件和热膨胀导热件。 其中, 散热件与热敏感器件的发热源间隔设置, 热 膨胀导热件设置于发热源与散热件之间。 在热膨胀导热件的温度低于温度阔 值时, 热膨胀导热件与发热源或散热件保持间隔设置, 在热膨胀导热件的温 度等于或高于温度阔值时, 热膨胀导热件在发热源与散热件之间形成热连接。
通过上述方式, 本发明实施例的热敏感器件的散热系统能够根据热敏感 器件的温度进行选择性散热, 使得热敏感器件能够在相对恒定的工作温度下 工作, 提高了热敏感器件的工作稳定性。 述。
请参见图 1-2, 图 1是根据本发明第一实施例的热敏感器件的散热系统的 第一工作状态的结构示意图, 图 2是根据本发明第一实施例的热敏感器件的 散热系统的第二工作状态的结构示意图。 在本实施例中, 热敏感器件 10 为 TCXO, 其具体包括外壳 11、 设置于外壳 11内部的发热源 12 (例如, 温度补 偿型石英晶体谐振芯片) 以及热敏电阻 13等元件。 发热源 12通过直接接触 或经适当的导热介质热连接到外壳 11。 当然, 本领域技术人员完全可以想到, 热敏感器件 10可以是其他热敏感器件。 此时, 发热源 12为在工作过程中产 生热量, 并需要对其进行散热的任意元件。
在本实施例中, 热敏感器件 10 的散热系统包括屏蔽盖 21、 散热鰭片组 22以及热膨胀导热件 23。 屏蔽盖 21设置于热敏感器件 10的外围, 用于对热 敏感器件 10进行屏蔽。散热鰭片组 22设置于屏蔽盖 21上。 热膨胀导热件 23 设置于外壳 11与屏蔽盖 21之间, 并具体设置于屏蔽盖 21上。 热膨胀导热件 23具有热胀冷缩特性。如图 1所示, 在热膨胀导热件 23的温度低于一预先设 定的温度阔值时, 热膨胀导热件 23与外壳 11保持间隔设置。 此时, 外壳 11 与屏蔽盖 21和散热鰭片组 22之间无法通过热膨胀导热件 23形成热连接。 如 图 2所示, 在热膨胀导热件 23的温度等于或高于上述温度阔值时, 热膨胀导 热件 23热膨胀成与外壳 11接触, 使得外壳 11与屏蔽盖 21和散热鰭片组 22 之间通过热膨胀导热件 23形成热连接, 进而在发热源 12与屏蔽盖 21和散热 鰭片组 22之间形成热连接。 此时, 发热源 12产生的热量经外壳 11和热膨胀 导热件 23传递到屏蔽盖 21和散热鰭片组 22, 并由屏蔽盖 21和散热鰭片组 22进行散热。
在本实施例中, 温度阔值可根据发热源 12的正常工作温度进行设置, 同 时可根据外壳 11与屏蔽盖 21之间的间距以及热膨胀导热件 23的线膨胀系数 设置热膨胀导热件 23的厚度。
在本实施例中, 通过屏蔽盖 21与散热鰭片组 22的组合作为散热件对热 敏感器件 10进行散热。 然而, 本领域技术人员完全可以根据实际情况进行变 化。 例如, 在一备选实施例中, 若屏蔽盖 21 的散热面积足以满足发热源 12 的散热需求, 可以将散热鰭片组 22省略。 在另一备选实施例中, 若无需使用 屏蔽盖 21对热敏感器件 10进行屏蔽或者屏蔽盖 21的导热系数无法满足导热 需求时, 可将屏蔽盖 21省略或在屏蔽盖 21设置一开口, 进而将热膨胀导热 件 23直接设置于散热鰭片组 22之上。
通过上述方式, 利用热膨胀导热件 23的热胀冷缩特性, 根据热敏感器件 10的温度进行选择性散热,使得热敏感器件 10能够在相对恒定的工作温度下 工作, 提高了热敏感器件 10的工作稳定性。 具体来说, 在发热源 12的温度 超过正常工作温度时, 热膨胀导热件 23在发热源 12与屏蔽盖 21和散热鰭片 组 22之间形成热连接, 进而实现外部辅助散热, 而在发热源 12的温度保持 在正常工作温度时, 则断开发热源 12与屏蔽盖 21和散热鰭片组 22之间所形 成的热连接,进而避免外部环境温度过高或过低对发热源 12的温度造成影响。
请参见图 3-4, 图 3是根据本发明第二实施例的热敏感器件的散热系统的 第一工作状态的结构示意图, 图 4是根据本发明第二实施例的热敏感器件的 散热系统的第二工作状态的结构示意图。 在本实施例中, 热敏感器件 30包括 外壳 31、 设置于外壳 31 内部的发热源 32以及热敏电阻 33等元件。 发热源 32通过直接接触或经适当的导热介质热连接到外壳 31。 热敏感器件 30的散 热系统则包括屏蔽盖 41、 散热鰭片组 42 以及热膨胀导热件 43。 本实施例与 图 1-2所示的第一实施例的不同之处在于, 本实施例的热膨胀导热件 43设置 于外壳 31上, 并且如图 3所示, 在热膨胀导热件 43的温度低于温度阔值时, 热膨胀导热件 43与屏蔽盖 41保持间隔设置。 此时, 外壳 31与屏蔽盖 41和 散热鰭片组 42之间无法通过热膨胀导热件 43形成热连接。 如图 4所示, 在 热膨胀导热件 43的温度等于或高于上述温度阔值时, 热膨胀导热件 43热膨 胀成与屏蔽盖 41接触, 使得外壳 31与屏蔽盖 41和散热鰭片组 42之间通过 热膨胀导热件 43形成热连接,进而在发热源 32与屏蔽盖 41和散热鰭片组 42 之间形成热连接。 此时, 发热源 32产生的热量可经外壳 31和热膨胀导热件 43传递到屏蔽盖 41和散热鰭片组 42, 并由屏蔽盖 41和散热鰭片组 42进行 散热。
与第一实施例类似, 本领域技术人员完全可以根据实际情况对本实施例 中由屏蔽盖 41与散热鰭片组 42所形成的散热件进行变化。
通过上述方式, 利用热膨胀导热件 43的热胀冷缩特性, 根据热敏感器件 30的温度进行选择性散热,使得热敏感器件 30能够在相对恒定的工作温度下 工作, 提高了热敏感器件 30的工作稳定性。 此外, 由热膨胀导热件 43直接 设置于热敏感器件 30的外壳 31上, 可以进一步提高热膨胀导热件 43对发热 源 32的温度的响应。
请参见图 5-6, 图 5是根据本发明第三实施例的热敏感器件的散热系统的 第一工作状态的结构示意图, 图 6是根据本发明第三实施例的热敏感器件的 散热系统的第二工作状态的结构示意图。 在本实施例中, 热敏感器件 50包括 外壳 51、设置于外壳 51内部的发热源 52以及热敏电阻 53等元件。 热敏感器 件 50的散热系统则包括散热鰭片组 62以及热膨胀导热件 63。 本实施例与图 1-2所示的第一实施例的不同之处在于, 本实施例的热膨胀导热件 63设置于 热敏感器件 50的外壳 51 内, 且位于发热源 52与外壳 51之间, 散热鰭片组 62则通过直接接触或经适当的导热介质热连接到热敏感器件 50的外壳 51上。 具体来说, 如图 5所示, 热膨胀导热件 63设置于外壳 51上, 并在热膨胀导 热件 63的温度低于温度阔值时与发热源 52保持间隔设置。 此时, 外壳 51与 发热源 52之间无法通过热膨胀导热 63形成热连接。 如图 6所示, 在热膨胀 导热件 63的温度等于或高于上述温度阔值时, 热膨胀导热件 63热膨胀成接 进而在发热源 53与散热鰭片组 62之间形成热连接。 此时, 发热源 52产生的 热量经热膨胀导热件 63和外壳 51传递到散热鰭片组 62, 并由散热鰭片组 62 进行散热。
在本实施例中, 通过散热鰭片组 62作为散热件对热敏感器件 50进行散 热。 然而, 本领域技术人员完全可以根据实际情况对本实施例中的由散热鰭 片组 62所形成的散热件进行变化。 例如, 在一备选实施例中, 若需要对热敏 感器件 50进行屏蔽, 则可以在外壳 51与散热鰭片组 62之间设置屏蔽盖。 此 时, 屏蔽盖通过直接接触或经适当的导热介质热连接到外壳 51上, 而散热鰭 片组 62则可省略或进一步通过直接接触或经适当的导热介质热连接到屏蔽盖 上。
通过上述方式, 利用热膨胀导热件 63的热胀冷缩特性, 根据热敏感器件 50的温度进行选择性散热,使得热敏感器件 50能够在相对恒定的工作温度下 工作, 提高了热敏感器件 50的工作稳定性。 此外, 热膨胀导热件 63设置于 热敏感器件 50的外壳 51内, 便于产品的集成化。
请参见图 7-8, 图 7是根据本发明第四实施例的热敏感器件的散热系统的 第一工作状态的结构示意图, 图 8是根据本发明第四实施例的热敏感器件的 散热系统的第二工作状态的结构示意图。 在本实施例中, 热敏感器件 70包括 外壳 71、设置于外壳 71内部的发热源 72以及热敏电阻 73等元件。 热敏感器 件 70的散热系统则包括散热鰭片组 82以及热膨胀导热件 83。 本实施例与图 5-6所示的第三实施例的不同之处在于, 本实施例的热膨胀导热件 83设置于 发热源 72上, 并且如图 7所示, 在热膨胀导热件 83的温度低于温度阔值时, 热膨胀导热件 83与外壳 71保持间隔设置。 此时, 外壳 71与发热源 72之间 无法通过热膨胀导热件 83形成热连接。 如图 8所示, 在热膨胀导热件 83的 温度等于或高于上述温度阔值时, 热膨胀导热件 83热膨胀成与外壳 71接触, 使得外壳 71与发热源 72之间通过热膨胀导热件 83形成热连接, 进而在发热 源 72与散热鰭片组 82之间形成热连接。 此时, 发热源 72产生的热量可经热 膨胀导热件 83和外壳 71传递到散热鰭片组 82,并由散热鰭片组 82进行散热。
与第三实施例类似, 本领域技术人员完全可以根据实际情况对本实施例 中由散热鰭片组 82所形成的散热件进行变化。
通过上述方式, 利用热膨胀导热件 83的热胀冷缩特性, 根据热敏感器件 70的温度进行选择性散热,使得热敏感器件 70能够在相对恒定的工作温度下 工作, 提高了热敏感器件 70的工作稳定性。 此外, 由热膨胀导热件 83直接 设置于发热源 72, 可以进一步提高热膨胀导热件 83对发热源 72的温度的响 应。
在上述实施例中, 热膨胀导热件 23、 43、 63和 83需具有热胀冷缩特性, 且其线膨胀系数优选大于 30%,且导热系数优选大于 lW/(mK),即 1瓦 /(米-开 尔文)。
请参见图 9-10, 图 9根据本发明第五实施例的热敏感器件的散热系统的 第一工作状态的结构示意图, 图 10是根据本发明第五实施例的热敏感器件的 散热系统的第二工作状态的结构示意图。 本实施例的热敏感器件的散热系统 进一步包括具有多孔结构 911的绝热骨架 91 , 并且热膨胀导热件 103釆用相 变导热材质, 例如导热硅胶。 热膨胀导热件 103设置于绝热骨架 91的多孔结 构 911 中。 如图 9所示, 在热膨胀导热件 103的温度低于温度阔值时, 热膨 胀导热件 103呈固态, 并且仅占据多孔结构 911 的部分空间, 此时无法在绝 热骨架 91的相对两侧形成热连接。 如图 10所示, 在热膨胀导热件 103的温 度等于或高于温度阔值时, 热膨胀导热件 103变成液态, 并发生膨胀。 此时, 热膨胀导热件 103占据多孔结构 911的整个空间, 进而在绝热骨架 91的相对 两侧形成热连接。
进一步。 上述第三和第四实施例中的热膨胀导热件可以设置在热敏感器 件的外壳内作为热敏感器件的一部分, 进而形成本发明实施例的热敏感器件。 在本发明实施例的热敏感器件中, 热膨胀导热件设置于热敏感器件的外壳内, 且位于发热源与外壳之间。 在热膨胀导热件的温度低于温度阔值时, 热膨胀 导热件与外壳或发热源保持间隔设置, 在热膨胀导热件的温度等于或高于温 度阔值时, 热膨胀导热件在外壳与发热源之间形成热连接。 在本发明实施例 的热敏感器件中, 热膨胀导热件同样可以釆用第五实施例中的热膨胀导热件 103。
通过上述方式, 本发明实施例的热敏感器件可以与上文描述的屏蔽盖和 / 或散热鰭片组或者其他散热件组合来对热敏感器件内的发热源进行选择性散 热。 此外, 当热敏感器件的外壳面积可满足发热源的散热需求时, 也可以省 略上述的外部散热件。
以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利用 本发明说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接运 用在其他相关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权 利 要 求
1. 一种热敏感器件的散热系统, 其特征在于, 所述热敏感器件的散热系 统包括:
散热件 , 所述散热件与热敏感器件的发热源间隔设置;
热膨胀导热件, 所述热膨胀导热件设置于所述发热源与所述散热件之间 , 在所述热膨胀导热件的温度低于温度阈值时, 所述热膨胀导热件与所述发热 源或所述散热件保持间隔设置, 在所述热膨胀导热件的温度等于或高于所述
2. 根据权利要求 1所述的热敏感器件的散热系统, 其特征在于, 所述发 热源热连接到所述热敏感器件的外壳, 所述热膨胀导热件设置于所述外壳与 所述散热件之间。
3. 根据权利要求 2所述的热敏感器件的散热系统, 其特征在于, 所述热 膨胀导热件设置于所述散热件上, 在所述热膨胀导热件的温度低于所述温度 阔值时, 所述热膨胀导热件与所述外壳保持间隔设置, 并在所述热膨胀导热 件的温度等于或高于所述温度阔值时, 所述热膨胀导热件热膨胀成接触所述 外壳。
4. 根据权利要求 2所述的热敏感器件的散热系统, 其特征在于, 所述热 膨胀导热件设置于所述外壳上, 在所述热膨胀导热件的温度低于所述温度阔 值时, 所述热膨胀导热件与所述散热件保持间隔设置, 并在所述热膨胀导热 件的温度等于或高于所述温度阔值时, 所述热膨胀导热件热膨胀成接触所述 散热件。
5. 根据权利要求 1所述的热敏感器件的散热系统, 其特征在于, 所述热 膨胀导热件设置于所述热敏感器件的外壳内, 且位于所述发热源与所述外壳 之间, 所述散热件热连接到所述外壳上, 在所述热膨胀导热件的温度低于所 述温度阔值时, 所述热膨胀导热件与所述外壳或所述发热源保持间隔设置, 并在所述热膨胀导热件的温度等于或高于所述温度阈值时, 所述热膨胀导热 件在所述外壳与所述发热源之间形成热连接。
6. 根据权利要求 5所述的热敏感器件的散热系统, 其特征在于, 所述热 膨胀导热件设置于所述外壳上, 在所述热膨胀导热件的温度低于所述温度阔 值时, 所述热膨胀导热件与所述发热源保持间隔设置, 并在所述热膨胀导热 件的温度等于或高于所述温度阔值时, 所述热膨胀导热件热膨胀成接触所述 发热源。
7. 根据权利要求 5所述的热敏感器件的散热系统, 其特征在于, 所述热 膨胀导热件设置于所述发热源上, 在所述热膨胀导热件的温度低于所述温度 阔值时, 所述热膨胀导热件与所述外壳保持间隔设置, 并在所述热膨胀导热 件的温度等于或高于所述温度阔值时, 所述热膨胀导热件热膨胀成接触所述 外壳。
8. 根据权利要求 1所述的热敏感器件的散热系统, 其特征在于, 所述热 敏感器件为温度补偿型石英晶体谐振器, 所述发热源为温度补偿型石英晶体 谐振芯片。
9. 根据权利要求 1所述的热敏感器件的散热系统, 其特征在于, 所述散 热件为屏蔽盖、 散热鰭片组或二者的组合。
10. 根据权利要求 1所述的热敏感器件的散热系统, 其特征在于, 所述热 膨胀导热件的线膨胀系数大于 30% , 所述热膨胀导热件的导热系数大于 lW/(mK)。
11. 根据权利要求 1所述的热敏感器件的散热系统, 其特征在于, 所述热 敏感器件的散热系统进一步包括具有多孔结构的绝热骨架, 所述热膨胀导热 件为设置于所述多孔结构内的相变导热材质。
12. 根据权利要求 11所述的热敏感器件的散热系统, 其特征在于, 所述 相变导热材质为导热硅胶。
13. 一种热敏感器件, 其特征在于, 所述热敏感器件包括:
外壳;
发热源, 所述发热源设置于所述外壳内;
热膨胀导热件, 所述热膨胀导热件设置于所述外壳内, 且位于所述发热 源与所述外壳之间, 在所述热膨胀导热件的温度低于温度阔值时, 所述热膨 胀导热件与所述外壳或所述发热源保持间隔设置, 在所述热膨胀导热件的温 度等于或高于所述温度阔值时, 所述热膨胀导热件在所述外壳与所述发热源 之间形成热连接。
14. 根据权利要求 13所述的热敏感器件, 其特征在于, 所述热膨胀导热 件设置于所述外壳上, 在所述热膨胀导热件的温度低于所述温度阔值时, 所 述热膨胀导热件与所述发热源保持间隔设置, 并在所述热膨胀导热件的温度 等于或高于所述温度阔值时, 所述热膨胀导热件热膨胀成接触所述发热源。
15. 根据权利要求 13所述的热敏感器件, 其特征在于, 所述热膨胀导热 件设置于所述发热源上, 在所述热膨胀导热件的温度低于所述温度阔值时, 所述热膨胀导热件与所述外壳保持间隔设置, 并在所述热膨胀导热件的温度 等于或高于所述温度阔值时, 所述热膨胀导热件热膨胀成接触所述外壳。
16. 根据权利要求 13所述的热敏感器件, 其特征在于, 所述热敏感器件 为温度补偿型石英晶体谐振器, 所述发热源为温度补偿型石英晶体谐振芯片。
17. 根据权利要求 13所述的热敏感器件, 其特征在于, 所述热膨胀导热 件的线膨胀系数大于 30%, 所述热膨胀导热件的导热系数大于 lW/(mK)。
18. 根据权利要求 13所述的热敏感器件, 其特征在于, 所述热敏感器件 进一步包括具有多孔结构的绝热骨架, 所述热膨胀导热件为设置于所述多孔 结构内的相变导热材质。
19. 根据权利要求 18所述的热敏感器件, 其特征在于, 所述相变导热材 质为导热硅胶。
PCT/CN2012/081229 2012-01-31 2012-09-11 热敏感器件及其散热系统 WO2013113221A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210021896.2 2012-01-31
CN2012100218962A CN102594289A (zh) 2012-01-31 2012-01-31 热敏感器件及其散热系统

Publications (1)

Publication Number Publication Date
WO2013113221A1 true WO2013113221A1 (zh) 2013-08-08

Family

ID=46482563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081229 WO2013113221A1 (zh) 2012-01-31 2012-09-11 热敏感器件及其散热系统

Country Status (2)

Country Link
CN (1) CN102594289A (zh)
WO (1) WO2013113221A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2581998A (en) * 2019-03-07 2020-09-09 Dualitas Ltd Thermal management of display device
WO2022258031A1 (zh) * 2021-06-11 2022-12-15 中兴通讯股份有限公司 结构件、通信装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594289A (zh) * 2012-01-31 2012-07-18 华为终端有限公司 热敏感器件及其散热系统
US9080820B2 (en) * 2012-05-22 2015-07-14 The Boeing Company Heat dissipation switch
US9658660B2 (en) 2012-12-27 2017-05-23 Intel Corporation Electronic device having a bimetallic material
EP3806143A1 (en) * 2013-09-20 2021-04-14 Intelligent Platforms, LLC Variable heat conductor
CN106304772B (zh) * 2015-06-09 2019-02-05 联想(北京)有限公司 散热装置、电子设备及热控方法
CN106973543A (zh) * 2016-01-14 2017-07-21 中兴通讯股份有限公司 一种自调节高低温保护装置
CN107396592B (zh) * 2016-05-17 2021-02-02 中兴通讯股份有限公司 终端设备及其散热结构
JP6620725B2 (ja) * 2016-11-14 2019-12-18 株式会社オートネットワーク技術研究所 電気接続箱
US10004160B1 (en) * 2017-04-14 2018-06-19 Futurewei Technologies, Inc. Adaptive heat dissipation
CN108207097B (zh) 2018-02-09 2022-04-29 中兴通讯股份有限公司 一种隔热装置和电子产品
CN108323111A (zh) * 2018-02-09 2018-07-24 苏州天脉导热科技股份有限公司 单向散热模组
CN108578726A (zh) * 2018-05-31 2018-09-28 包旭红 一种医疗专用的蒸汽灭菌消毒设备
JP7058613B2 (ja) * 2019-01-15 2022-04-22 本田技研工業株式会社 電池パック
CN110260531B (zh) * 2019-06-15 2021-01-15 厦门市钛科创科技有限公司 具有自适应散热结构的相变储热太阳能热水器
CN110911368B (zh) * 2019-12-23 2021-10-01 深圳市中科领创实业有限公司 一种具有自动散热功能的集成电路
CN112636163A (zh) * 2020-10-09 2021-04-09 金雷 一种电子器件的温控装置
CN114463906B (zh) * 2020-11-10 2023-09-26 群光电子股份有限公司 门铃装置
CN113732096A (zh) * 2021-08-13 2021-12-03 广东伟业铝厂集团有限公司 一种局部温度可调的铝材成型模具

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101022712A (zh) * 2006-02-15 2007-08-22 富准精密工业(深圳)有限公司 热界面材料及使用该热界面材料的散热装置组合
CN101212889A (zh) * 2006-12-31 2008-07-02 联想(北京)有限公司 散热装置
CN102270510A (zh) * 2011-05-11 2011-12-07 杨宪宁 一种基于相变材料的变功耗散热器
CN102594289A (zh) * 2012-01-31 2012-07-18 华为终端有限公司 热敏感器件及其散热系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101022712A (zh) * 2006-02-15 2007-08-22 富准精密工业(深圳)有限公司 热界面材料及使用该热界面材料的散热装置组合
CN101212889A (zh) * 2006-12-31 2008-07-02 联想(北京)有限公司 散热装置
CN102270510A (zh) * 2011-05-11 2011-12-07 杨宪宁 一种基于相变材料的变功耗散热器
CN102594289A (zh) * 2012-01-31 2012-07-18 华为终端有限公司 热敏感器件及其散热系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2581998A (en) * 2019-03-07 2020-09-09 Dualitas Ltd Thermal management of display device
GB2581998B (en) * 2019-03-07 2021-07-28 Dualitas Ltd Thermal management of display device
WO2022258031A1 (zh) * 2021-06-11 2022-12-15 中兴通讯股份有限公司 结构件、通信装置

Also Published As

Publication number Publication date
CN102594289A (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
WO2013113221A1 (zh) 热敏感器件及其散热系统
US8031470B2 (en) Systems and methods for thermal management
JP5818120B2 (ja) 断熱構造を有するデバイス
JP2000137548A (ja) 熱拡散プレ―トを有する薄型電磁妨害シ―ルド
JP3979531B2 (ja) 電子冷却装置
WO2014180181A1 (zh) 一种车载无线上网设备
JP2000106495A (ja) 電気電子器具の内部構造
WO2016179915A1 (zh) 移动通信终端
US11812583B2 (en) Passive thermal-control system of a mesh network device and associated mesh network devices
WO2014094395A1 (zh) 一种功率设备的热控制装置
JP3639575B2 (ja) フォトニック結晶を備えるヒートパイプ,伝熱装置およびデータ処理システム
JP2021061319A (ja) 電子機器、制御装置、制御方法及びプログラム
TWI761541B (zh) 電子設備的主機板散熱系統
JP2000002493A (ja) 冷却ユニットとそれを用いた冷却構造
JP2002319652A (ja) 電気電子器具の内部構造
WO2017020624A1 (zh) 一种射频拉远单元、安装件及射频通信系统
CN214335673U (zh) 一种笔记本电脑热管散热装置
CN112236004B (zh) 单向导热装置
KR200200517Y1 (ko) 전자기기용 방열판의 냉각장치
CN110494016B (zh) 一种散热装置及终端电子设备
JP5480123B2 (ja) 放熱構造
KR101939764B1 (ko) 고발열 장비의 운용을 위한 방열 시스템
WO2012113264A1 (zh) 一种电容器在电动车辆逆变器中的散热结构
KR100912195B1 (ko) 환경 친화적 직접 냉온장치
CN201601121U (zh) 一种半导体散热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867631

Country of ref document: EP

Kind code of ref document: A1