WO2013113167A1 - 应用于微波通信系统的信号处理方法及设备 - Google Patents
应用于微波通信系统的信号处理方法及设备 Download PDFInfo
- Publication number
- WO2013113167A1 WO2013113167A1 PCT/CN2012/070865 CN2012070865W WO2013113167A1 WO 2013113167 A1 WO2013113167 A1 WO 2013113167A1 CN 2012070865 W CN2012070865 W CN 2012070865W WO 2013113167 A1 WO2013113167 A1 WO 2013113167A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- phase
- phase noise
- input signal
- matrix
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03178—Arrangements involving sequence estimation techniques
- H04L25/03248—Arrangements for operating in conjunction with other apparatus
- H04L25/03273—Arrangements for operating in conjunction with other apparatus with carrier recovery circuitry
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/01—Equalisers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0204—Channel estimation of multiple channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/024—Channel estimation channel estimation algorithms
- H04L25/0242—Channel estimation channel estimation algorithms using matrix methods
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03012—Arrangements for removing intersymbol interference operating in the time domain
- H04L25/03019—Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/0054—Detection of the synchronisation error by features other than the received signal transition
- H04L7/0058—Detection of the synchronisation error by features other than the received signal transition detection of error based on equalizer tap values
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/02—Speed or phase control by the received code signals, the signals containing no special synchronisation information
- H04L7/033—Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L2025/0335—Arrangements for removing intersymbol interference characterised by the type of transmission
- H04L2025/03426—Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L2025/03592—Adaptation methods
- H04L2025/03598—Algorithms
- H04L2025/03611—Iterative algorithms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/0014—Carrier regulation
- H04L2027/0024—Carrier regulation at the receiver end
- H04L2027/0026—Correction of carrier offset
- H04L2027/0038—Correction of carrier offset using an equaliser
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/0014—Carrier regulation
- H04L2027/0044—Control loops for carrier regulation
- H04L2027/0063—Elements of loops
- H04L2027/0065—Frequency error detectors
Definitions
- the present invention relates to the field of data signal processing, and in particular, to a signal processing method and apparatus applied to a microwave communication system.
- multi-input multi-output (MIMO) technology is usually used to transmit signals to improve the utilization of the channel spectrum and to expand the transmission capacity.
- the channel of the microwave communication system is usually a Line of Sight (LOS) channel.
- LOS Line of Sight
- the channel matrix is not completely orthogonal, and the number of channel conditions is seriously ill, so it is difficult to support relatively independent data streams.
- the phase noise of the microwave communication system is more serious than that of the wireless communication system. How to effectively suppress the phase noise and improve the performance of the whole microwave communication system has been a hot spot in the field.
- phase noise suppression architectures are commonly used in receivers for microwave communication systems.
- the existing phase noise suppression architecture usually consists of a space-time equalizer, a phase-locked loop, and a combiner.
- the working process is summarized as follows:
- the space-time equalizer receives each input signal and performs equalization processing and outputs it to the phase-locked loop;
- the phase-locked loop suppresses the phase noise of each signal output by the space-time equalizer; the multi-channel signals output by the phase-locked loop are superimposed by the combiner to obtain one received signal.
- phase noise suppression depends on the phase-locked loop bandwidth, and the phase-locked loop bandwidth setting is too large, which causes the phase-locked loop to diverge. Therefore, the phase-locked loop bandwidth is generally narrower, which limits the pair. Phase noise suppression.
- the embodiment of the invention provides a signal processing method and device applied to a microwave communication system, which can effectively improve the phase noise suppression capability under the condition that the phase locked loop bandwidth is narrow.
- a signal processing method applied to a microwave communication system comprising:
- An equalizer is used to perform equalization processing on each input signal to obtain an equalization processing signal corresponding to each input signal;
- Phase estimation of phase noise in the equalization processed signal to obtain the phase noise Estimated phase
- Residual phase noise in the phase rotation signal is suppressed by a phase locked loop to output an error signal and a received signal;
- the filter coefficients of the equalizer are iteratively updated using the error signal.
- a signal processing method applied to a microwave communication system comprising:
- Phase noise estimation is performed on each input signal to obtain a phase noise estimate of the input signal
- phase noise in the equalization processing signal is suppressed by using a phase locked loop, and the error signal and the received signal are output;
- the filter coefficients of the equalizer are iteratively updated using the error signal.
- a signal processing device applied to a microwave communication system comprising:
- An equalizer configured to perform equalization processing on each input signal to obtain an equalization processing signal corresponding to each input signal and output to the phase estimator and the signal rotator;
- the phase estimator is configured to perform phase estimation on phase noise in the equalization processing signal to obtain an estimated phase of the phase noise and output to the signal rotator;
- the signal rotator is configured to perform phase rotation on the equalization processing signal to cancel an estimated phase of the phase noise to obtain a phase rotation signal and output the signal to a phase locked loop;
- the phase locked loop is configured to suppress residual phase noise in the phase rotation signal to output an error signal and a received signal;
- the equalizer is further configured to use the error signal to overlap filter coefficients of the equalizer Generation update.
- a signal processing device applied to a microwave communication system comprising:
- phase noise estimator for performing phase noise estimation on each input signal to obtain a phase noise estimate of the input signal
- a multipath channel estimator for performing channel estimation on the input signal by using the phase noise estimation value to obtain a channel estimation value and sending it to an equalizer
- the equalizer is configured to perform equalization processing on each input signal to obtain an equalization processing signal corresponding to the input signal and output a phase locked loop; and use the channel estimation value to perform fast convergence;
- the phase locked loop is configured to suppress phase noise in the equalization processing signal to output an error signal and a received signal;
- the equalizer is further configured to perform an iterative update on the filter coefficients of the equalizer by using the error signal.
- phase noise in each equalization processed signal output by the equalizer is first estimated to obtain the estimated phase of the phase noise.
- Phase-rotating the signal of the equalization processing signal to cancel the estimated phase of the phase noise obtain a phase rotation signal and input the phase-locked loop, and further suppress the residual phase noise in the phase rotation signal by the phase-locked loop, and output an error Signal and receive signal.
- phase-rotating each equalization processed signal to cancel the estimated phase of the phase noise most of the phase noise in the equalization processed signal can be filtered out, so that a relatively narrow bandwidth phase lock can be used for the residual phase noise in the phase rotated signal.
- the loop is suppressed, so that the embodiment of the present invention can effectively improve the suppression of phase noise under the condition that the phase-locked loop has a narrow bandwidth.
- phase noise estimation is performed on each input signal to obtain a phase noise estimation value of the input signal
- channel input estimation is performed on the channel input signal by using the phase noise estimation value of the input signal.
- the channel estimate is sent to the equalizer, and the equalizer uses the channel estimate of the input signal for fast convergence.
- the equalizer is used to equalize each input signal to obtain the equalization processing signal corresponding to the input signal, and the phase noise in the equalization processing signal is suppressed by the phase locked loop, and the output error signal and the reception are output. signal. Due to the channel The influence of phase noise is considered in the estimation, so that the accuracy of channel estimation is effectively improved, and the improvement of channel estimation accuracy is beneficial to the fast convergence of the equalizer, thereby reducing the bit error rate of the system.
- FIG. 1 is a flowchart of a signal processing method applied to a microwave communication system according to an embodiment of the present invention
- FIG. 2 is a flowchart of another signal processing method applied to a microwave communication system according to an embodiment of the present invention
- FIG. 3 is a structural diagram of a signal processing device applied to a microwave communication system according to an embodiment of the present invention.
- FIG. 4 is a structural diagram of another signal processing device applied to a microwave communication system according to an embodiment of the present invention.
- FIG. 5 is a structural diagram of a phase noise estimator according to an embodiment of the present invention.
- FIG. 6 is a structural diagram of a multipath channel estimator according to an embodiment of the present invention.
- FIG. 7 is a structural diagram of an orthogonal long pilot according to an embodiment of the present invention.
- FIG. 8 is a structural diagram of a phase estimator according to an embodiment of the present invention.
- FIG. 9 is a structural diagram of an orthogonal short pilot according to an embodiment of the present invention.
- FIG. 10 is a structural diagram of another signal processing device applied to a microwave communication system according to an embodiment of the present invention.
- Embodiment 1 is a part of the embodiments of the present invention, but not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without departing from the inventive scope are the scope of the present invention.
- Embodiment 1 is a part of the embodiments of the present invention, but not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without departing from the inventive scope are the scope of the present invention.
- FIG. 1 is a flowchart of a signal processing method applied to a microwave communication system according to Embodiment 1 of the present invention. As shown in FIG. 1, the method may include the following steps:
- the signal processing method applied to the microwave communication system provided by Embodiment 1 of the present invention can be specifically applied to a MIMO transmission environment of a wave communication system, and the equalizer can receive multiple inputs simultaneously in a MIMO transmission environment. The signal is separately equalized for each input signal to obtain an equalization processing signal corresponding to each input signal.
- the equalizer in the above step 101 may be a space time equalizer.
- the signal processing method applied to the microwave communication system provided by Embodiment 1 of the present invention can be specifically applied to a single carrier transmission environment of a microwave communication system, and the equalizer can receive in a single carrier transmission environment. An input signal is input, and the input signal is equalized to obtain an equalization processing signal corresponding to the input signal of the path.
- the equalizer in the foregoing step 101 may be a time domain equalizer or a frequency domain equalizer, which is not limited in the embodiment of the present invention.
- the equalizer processes the input signal to eliminate inter-symbol interference of the input signal to reduce the error rate of the system.
- the implementation process of the foregoing step 102 may be as follows:
- phase difference input time domain filter is performed to obtain an estimated phase of the phase noise in the equalized processed signal.
- phase-rotating the equalization processed signal to cancel the estimated phase of the phase noise can filter most of the phase noise in the equalized processed signal, so that a narrower bandwidth can be adopted later.
- the phase locked loop suppresses residual phase noise in the phase rotation signal.
- the phase-locked loop is used to suppress residual phase noise in the phase rotation signal to output an error signal and a received signal.
- the method shown in FIG. 1 may further include the following steps:
- All the received signals outputted by the phase locked loop are superimposed by the combiner to form one received signal; wherein the number of received signals output by the phase locked loop is the same as the number of input signals.
- the channel of the microwave communication system is generally multipath.
- the equalizer cannot converge immediately, which may cause the phase-locked loop to diverge, thereby making the whole system unable to converge, causing serious errors or even systems. can not work.
- the method shown in Figure 1 may further include the following steps:
- the channel estimation value of the input signal is sent to the equalizer, so that the equalizer uses the channel estimation value of the input signal to perform fast convergence.
- the equalizer uses the channel estimation value of the input signal to train the pilot data in the input signal, so that the equalizer quickly converges.
- phase noise estimation for each input signal to obtain a phase noise estimation value of the input signal may be as follows:
- the phase noise estimation value pair using the input signal is used.
- the channel input signal is used for channel estimation, and the implementation process of obtaining the channel estimation value of the input signal can be: 3 ⁇ 4 port:
- the influence of the phase noise is considered in the channel estimation, so that the accuracy of the channel estimation is effectively improved, and the channel estimation accuracy is improved to facilitate the fast convergence of the equalizer, thereby reducing the bit error rate of the system.
- phase estimation of phase noise in each equalization processed signal output by the equalizer is first performed to obtain an estimated phase of phase noise; secondly, before the equalization processed signal is input to the phase locked loop, Phase-rotating the signal of the equalization processing signal to cancel the estimated phase of the phase noise, obtain a phase rotation signal and input the phase-locked loop, and further suppress the residual phase noise in the phase rotation signal by the phase-locked loop, and output an error Signal and receive signal.
- phase-rotating each equalization processed signal to cancel the estimated phase of the phase noise most of the phase noise in the equalization processed signal can be filtered out, so that a relatively narrow bandwidth phase lock can be used for the residual phase noise in the phase rotated signal.
- the ring is suppressed, so that the first embodiment of the present invention can effectively improve the suppression of phase noise under the condition that the phase-locked loop has a narrow bandwidth.
- Embodiment 2 is a diagrammatic representation of Embodiment 1:
- FIG. 2 is a flowchart of a signal processing method applied to a microwave communication system according to Embodiment 2 of the present invention.
- the method shown in Fig. 2 can effectively suppress phase noise when the phase noise of the input signal is small, and can cause the equalizer to converge quickly.
- the method can Includes the following steps:
- step 201 has been described in detail in the first embodiment, and the second embodiment of the present invention is not described herein.
- step 202 has been described in detail in the first embodiment, and the second embodiment of the present invention is not described herein.
- the phase noise in the equalization processing signal is suppressed by using a phase locked loop to output an error signal and a received signal.
- the method shown in FIG. 2 may further include the following steps:
- All the received signals outputted by the phase locked loop are superimposed by the combiner to form one received signal; wherein the number of received signals output by the phase locked loop is the same as the number of input signals.
- phase noise estimation is performed on each input signal to obtain a phase noise estimation value of the input signal, and a channel noise estimation value of the input signal is used to perform channel estimation on the channel input signal to obtain a channel.
- the estimated value is sent to the equalizer, and the equalizer uses the channel estimation value of the input signal to perform fast convergence.
- the equalizer is used to equalize each input signal to obtain the equalization processing signal corresponding to the input signal, and the phase noise in the equalization processing signal is suppressed by the phase locked loop, and the output error signal and the reception are output. signal. Since the influence of phase noise is considered in the channel estimation, the accuracy of the channel estimation is effectively improved, and the channel estimation accuracy is improved to facilitate the fast convergence of the equalizer, thereby reducing the bit error rate of the system.
- FIG. 3 is a structural diagram of a signal processing device applied to a microwave communication system according to Embodiment 3 of the present invention.
- the signal processing device may include at least an equalizer 301, a phase estimator 302, a signal rotator 303, and a phase locked loop 304, wherein:
- the equalizer 301 is configured to perform equalization processing on each input signal to obtain an equalization processing signal corresponding to each input signal and output the signal to the phase estimator 302 and the signal rotator 303.
- the equalizer 301 can be a space time equalizer; if the number of input signals is only one way, the equalizer 301 can be a time domain equalizer or a frequency domain equalizer, which is implemented by the present invention.
- the example is not limited.
- the phase estimator 302 is configured to perform phase estimation on the phase noise in the equalization processed signal to obtain an estimated phase of the phase noise and output to the signal rotator 303;
- a signal rotator 303 configured to phase rotate the equalization processed signal to cancel the estimated phase of the phase noise, to obtain a phase rotation signal and output to the phase locked loop 304;
- a phase locked loop 304 is configured to suppress residual phase noise in the phase rotation signal to output an error signal and a received signal.
- the equalizer 301 is further configured to iteratively update the filter coefficients by using an error signal output from the phase locked loop 304.
- the signal processing device shown in FIG. 3 may further include:
- the combiner 305 is configured to superimpose all the received signals outputted by the phase locked loop 304 to form a received signal; wherein, the phase locked loop 304 outputs the same number of received signals as the input signal.
- FIG. 4 is a structural diagram of another signal processing device applied to a microwave communication system according to Embodiment 3 of the present invention.
- the signal processing device shown in Fig. 4 is optimized by the signal processing device shown in Fig. 3.
- the signal processing device further includes:
- phase noise estimator 306 configured to perform phase noise estimation on each input signal to obtain a phase noise estimate of the input signal
- a multipath channel estimator 307 configured to perform channel estimation on the input signal by using a phase noise estimation value of the input signal, to obtain a channel estimation value, and send the channel to the equalizer;
- the equalizer 301 is further configured to perform fast convergence by using the channel estimation value.
- the multipath channel estimator 307 considers the influence of the phase noise in the channel estimation, so that the accuracy of the channel estimation is effectively improved, and the channel estimation accuracy is improved to facilitate the fast convergence of the equalizer 301, thereby Reduce the system's bit error rate.
- FIG. 5 is a structural diagram of a phase noise estimator 306 according to Embodiment 3 of the present invention. As shown in FIG. 5, the phase noise estimator 306 can include:
- An extractor 3061 configured to extract pilot data of each input signal
- Conjugate operator 3062 configured to calculate a conjugate of a known pilot sequence
- a multiplier 3063 configured to multiply the pilot data and a conjugate of the known pilot sequence to obtain a discrete phase noise estimate
- An interpolator 3064 is configured to interpolate the discrete phase noise estimate to obtain a phase noise estimate of the input signal.
- FIG. 6 is a structural diagram of a multipath channel estimator 307 according to Embodiment 3 of the present invention. As shown in FIG. 6, the multipath channel estimator 307 can include:
- a first matrix multiplier 3071 configured to multiply each input signal by a constant matrix ⁇ to obtain a first multiplication result
- a second matrix multiplier 3072 configured to multiply the first multiplication result by a conjugate of the phase noise estimation value to obtain a second multiplication result
- the third matrix multiplier 3073 is configured to multiply the second multiplication result by the constant matrix B to obtain a channel estimation value of the input signal.
- the pilot An orthogonal long pilot structure can be employed, which occurs only once in a frame.
- the orthogonal code can use a CAZAC code, or other sequences.
- the length of the orthogonal long pilot is 8, and the structure can be as shown in FIG. 7.
- FIG. 8 is a structural diagram of a phase estimator 302 according to Embodiment 3 of the present invention. As shown in FIG. 8, the phase estimator 302 can include:
- a hard decision maker 3021 configured to perform a hard decision on the equalization processing signal to obtain a phase after the hard decision of the equalization processing signal
- a subtracter 3022 configured to calculate a phase difference between a phase before the hard decision of the equalization processing signal and a phase after the hard decision
- a time domain filter 3023 is configured to iteratively update the phase difference to obtain an estimated phase of phase noise in the equalization processing signal.
- the time domain filter 3023 can be implemented by a minimum mean square error algorithm.
- time domain filter 3023 to iteratively update the phase difference to obtain the estimated phase of the phase noise in the equalization processing signal is familiar to those skilled in the art, and is not further introduced in the embodiment of the present invention. .
- the pilot may employ an orthogonal short pilot structure which is repeated in one frame.
- the orthogonal code can use a CAZAC code, or other sequences.
- the phase estimator 302 performs phase estimation on the phase noise in each equalization processed signal output by the equalizer 301 to obtain an estimated phase of the phase noise.
- the signal rotator 303 equalizes the processed signal. Phase rotation is performed to cancel the estimated phase of the phase noise to obtain a phase rotation signal and input to the phase locked loop 304, and the residual phase noise in the phase rotation signal is further suppressed by the phase locked loop 304, and the error signal and the received signal are output.
- the equalization processing signal can be filtered out by performing phase rotation on each equalization processing signal to cancel the estimated phase of the phase noise.
- phase noise suppression Most of the phase noise in the number, so the residual phase noise in the phase rotation signal can be suppressed by using a narrow-bandwidth phase-locked loop, so that the embodiment of the invention can effectively improve the condition of the phase-locked loop with narrow bandwidth. Phase noise suppression.
- Embodiment 4 is a diagrammatic representation of Embodiment 4:
- FIG. 10 is a structural diagram of a signal processing device applied to a microwave communication system according to Embodiment 4 of the present invention.
- the signal processing device shown in Fig. 10 can be applied to a transmission environment with a small phase noise.
- the signal processing apparatus may include at least an equalizer 301, a phase locked loop 304, a phase noise estimator 306, and a multipath channel estimator 307, where:
- a phase noise estimator 306 is configured to perform phase noise estimation on each input signal to obtain a phase noise estimate of the input signal.
- phase noise estimator 306 has been described in detail in the third embodiment, and is not described in detail in the fourth embodiment of the present invention.
- the multipath channel estimator 307 is configured to perform channel estimation on the channel input signal by using the phase noise estimation value described above to obtain a channel estimation value and send it to the equalizer 301.
- the structure of the multipath channel estimator 307 has been described in detail in the third embodiment, and is not described in detail in the fourth embodiment of the present invention.
- the equalizer 301 is configured to perform equalization processing on each input signal to obtain an equalization processing signal corresponding to the input signal of the path and output the phase locked loop 304; and perform fast convergence by using the channel estimation value.
- the phase locked loop 304 is configured to suppress phase noise in the equalization processed signal to output an error signal and a received signal.
- the equalizer 301 is further configured to iteratively update the filter coefficients by using the above error signal.
- the signal processing device shown in FIG. 10 may further include:
- the combiner 305 is configured to superimpose all the received signals outputted by the phase locked loop 304 to form a received signal; wherein, the phase locked loop 304 outputs the same number of received signals as the input signal.
- the phase noise estimator 306 performs phase noise estimation on each input signal to obtain a phase noise estimation value of the input signal
- the multipath estimator 307 uses the phase noise estimation value of the input signal.
- Channel estimation of the input signal to obtain channel estimation The value is sent to the equalizer 301, and the equalizer 301 uses the channel estimation value of the input signal for fast convergence.
- the equalizer 301 is used to equalize each input signal to obtain an equalization processing signal corresponding to the input signal, and the phase noise in the equalization processing signal is suppressed by the phase locked loop 304, and the error signal is output. And receiving signals. Since the influence of phase noise is considered in the channel estimation, the accuracy of the channel estimation is effectively improved, and the channel estimation accuracy is improved to facilitate the fast convergence of the equalizer, thereby reducing the bit error rate of the system.
- the program can be stored in a computer readable storage medium.
- the storage medium can include: Flash drive, Read-Only Memory (ROM), Random Access Memory (RAM), disk or CD.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Noise Elimination (AREA)
Abstract
一种应用于微波通信系统的信号处理方法及设备,该方法包括:利用均衡器对每一路输入信号进行均衡处理,以获得每一路输入信号对应的均衡处理信号;对所述均衡处理信号中的相位噪声进行相位估计,以获得所述相位噪声的估计相位;对所述均衡处理信号进行相位旋转以抵消所述相位噪声的估计相位,以获得相位旋转信号;利用锁相环对所述相位旋转信号中的残余相位噪声进行抑制,以输出误差信号和接收信号;利用所述误差信号对所述均衡器的滤波器系数进行迭代更新。
Description
应用于微波通信系统的信号处理方法及设备 技术领域
本发明涉及数据信号处理领域,尤其涉及一种应用于微波通信系统的信号 处理方法及设备。
背景技术
在敫波通信系统 ( Microwave Communication System ) 中, 通常应用多输 入多输出 ( Multi input Multi output, MIMO )技术来传输信号, 以提高信道频 谱的利用率, 达到扩大传输容量的目的。 实际应用中, 微波通信系统的信道通 常为视距(Line of Sight, LOS )信道, 在这种环境下信道矩阵并不是完全正 交的, 信道条件数严重病态, 因此难以支撑相对独立的数据流。 此外, 微波通 信系统的相位噪声比无线通信系统更为严重, 如何有效的对相位噪声进行抑 制, 从而提高整个微波通信系统的性能, 一直都是本领域研究的热点。
现有的相位噪声抑制架构通常应用于微波通信系统的接收机。现有的相位 噪声抑制架构通常由空时均衡器、锁相环以及合路器组成, 其工作过程概述如 下: 空时均衡器接收输入的每一路信号并进行均衡处理后输出至锁相环; 锁相 环对空时均衡器输出的每一路信号的相位噪声进行抑制;锁相环输出的多路信 号进行合路器叠加后即可得到一路接收信号。
上述相位噪声抑制架构中,相位噪声抑制依赖于锁相环带宽, 而锁相环带 宽设置过大又会导致锁相环发散, 因此, 通常情况下锁相环带宽设置较窄, 从 而限制了对相位噪声的抑制能力。
发明内容
本发明实施例提供了一种应用于微波通信系统的信号处理方法及设备,能 够在锁相环带宽较窄的条件下有效地提高对相位噪声的抑制能力。
一种应用于微波通信系统的信号处理方法, 包括:
利用均衡器对每一路输入信号进行均衡处理,以获得每一路输入信号对应 的均衡处理信号;
对所述均衡处理信号中的相位噪声进行相位估计,以获得所述相位噪声的
估计相位;
对所述均衡处理信号进行相位旋转以抵消所述相位噪声的估计相位,以获 得相位旋转信号;
利用锁相环对所述相位旋转信号中的残余相位噪声进行抑制,以输出误差 信号和接收信号;
利用所述误差信号对所述均衡器的滤波器系数进行迭代更新。
一种应用于微波通信系统的信号处理方法, 包括:
对每一路输入信号进行相位噪声估计,以获得所述输入信号的相位噪声估 计值;
利用所述相位噪声估计值对所述输入信号进行信道估计,以获得信道估计 值;
将所述信道估计值送入至所述均衡器,以使所述均衡器利用所述信道估计 值进行快速收敛;
利用所述均衡器对所述每一路输入信号进行均衡处理,获得所述每一路输 入信号对应的均衡处理信号;
利用锁相环对所述均衡处理信号中的相位噪声进行抑制,输出误差信号和 接收信号;
利用所述误差信号对所述均衡器的滤波器系数进行迭代更新。
一种应用于微波通信系统的信号处理设备, 包括:
均衡器, 用于对每一路输入信号进行均衡处理, 以获得每一路输入信号对 应的均衡处理信号并输出至相位估计器和信号旋转器;
所述相位估计器, 用于对所述均衡处理信号中的相位噪声进行相位估计, 以获得所述相位噪声的估计相位并输出至所述信号旋转器;
所述信号旋转器,用于对所述均衡处理信号进行相位旋转以抵消所述相位 噪声的估计相位, 以获得相位旋转信号并输出至锁相环;
所述锁相环, 用于对所述相位旋转信号中的残余相位噪声进行抑制, 以输 出误差信号和接收信号;
所述均衡器,还用于利用所述误差信号对所述均衡器的滤波器系数进行迭
代更新。
一种应用于微波通信系统的信号处理设备, 包括:
相位噪声估计器, 用于对每一路输入信号进行相位噪声估计, 以获得所述 输入信号的相位噪声估计值;
多径信道估计器,用于利用所述相位噪声估计值对所述输入信号进行信道 估计, 以获得信道估计值并送入均衡器;
所述均衡器, 用于对所述每一路输入信号进行均衡处理, 以获得所述输入 信号对应的均衡处理信号并输出锁相环;以及利用所述信道估计值进行快速收 敛;
所述锁相环, 用于对所述均衡处理信号中的相位噪声进行抑制, 以输出误 差信号和接收信号;
所述均衡器,还用于利用所述误差信号对所述均衡器的滤波器系数进行迭 代更新。
上述的一种方案中,首先对均衡器输出的每一路均衡处理信号中的相位噪 声进行相位估计, 以获得相位噪声的估计相位; 其次, 在将该路均衡处理信号 输入锁相环之前,先对该路均衡处理信号进行相位旋转以抵消相位噪声的估计 相位, 以获得相位旋转信号并输入锁相环, 由锁相环进一步对该路相位旋转信 号中的残余相位噪声进行抑制, 并输出误差信号和接收信号。 由于对每一路均 衡处理信号进行相位旋转以抵消相位噪声的估计相位可以滤去该路均衡处理 信号中的大部分相位噪声,因此对于相位旋转信号中的残余相位噪声可以采用 较窄带宽的锁相环进行抑制,从而本发明实施例可以在锁相环带宽较窄的条件 下有效地提高对相位噪声的抑制能力。
上述的另一种方案中,对每一路输入信号进行相位噪声估计以获得该路输 入信号的相位噪声估计值,以及利用该路输入信号的相位噪声估计值对该路输 入信号进行信道估计以获得信道估计值并送入至均衡器,由均衡器利用该路输 入信号的信道估计值进行快速收敛。 以此同时, 利用均衡器对每一路输入信号 进行均衡处理以获得该路输入信号对应的均衡处理信号,并利用锁相环对该路 均衡处理信号中的相位噪声进行抑制,输出误差信号和接收信号。 由于在信道
估计中考虑了相位噪声的影响,使得信道估计的精度得到有效提高, 而信道估 计精度的提高有利于均衡器的快速收敛, 从而可以降低系统的误码率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是 本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性 的前提下, 还可以根据这些附图获得其他的附图。
图 1 为本发明实施例提供的一种应用于微波通信系统的信号处理方法的 流程图;
图 2 为本发明实施例提供的另一种应用于微波通信系统的信号处理方法 的流程图;
图 3 为本发明实施例提供的一种应用于微波通信系统的信号处理设备的 结构图;
图 4 是本发明实施例提供的另一种应用于微波通信系统的信号处理设备 的结构图;
图 5是本发明实施例提供的一种相位噪声估计器的结构图;
图 6是本发明实施例提供的一种多径信道估计器的结构图;
图 7是本发明实施例提供的一种正交长导频的结构图;
图 8是本发明实施例提供的一种相位估计器的结构图;
图 9是本发明实施例提供的一种正交短导频的结构图;
图 10是本发明实施例提供的另一种应用于微波通信系统的信号处理设备 的结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
实施例一:
请参阅图 1 , 图 1是本发明实施例一提供的一种应用于微波通信系统的信 号处理方法的流程图。 如图 1所示, 该方法可以包括以下步骤:
101、 利用均衡器对每一路输入信号进行均衡处理, 以获得每一路输入信 号对应的均衡处理信号。
作为一种可选的实施方式,本发明实施例一提供的应用于微波通信系统的 信号处理方法具体可以应用于 波通信系统的 MIMO传输环境, 而在 MIMO 传输环境中均衡器可以同时接收多路输入信号,并分别对每一路输入信号进行 均衡处理, 以获得每一路输入信号对应的均衡处理信号。 在 MIMO传输环境 中, 上述步骤 101中的均衡器可以是空时均衡器。
作为另一种可选的实施方式,本发明实施例一提供的应用于微波通信系统 的信号处理方法具体可以应用于微波通信系统的单载波传输环境,而在单载波 传输环境中均衡器可以接收一路输入信号, 并对该路输入信号进行均衡处理, 以获得该路输入信号对应的均衡处理信号。 在单载波传输环境中, 上述步骤 101中的均衡器可以是时域均衡器或频域均衡器, 本发明实施例不作限定。
本发明实施例中,均衡器对输入信号进行均衡处理的目的是为了消除输入 信号的码间干扰, 以降低系统的误码率。
102、 对均衡处理信号中的相位噪声进行相位估计, 以获得相位噪声的估 计相位。
作为一种可选的实施方式, 上述步骤 102的实现流程可以如下:
1 )、 对均衡处理信号进行硬判决, 以获得均衡处理信号硬判决后的相位。 2 )、 计算均衡处理信号硬判决前的相位与硬判决后的相位的相位差。 3 )、将上述相位差输入时域滤波器进行迭代更新, 以获得均衡处理信号中 的相位噪声的估计相位。
103、 对均衡处理信号进行相位旋转以抵消相位噪声的估计相位, 以获得 相位旋转信号。
本发明实施例中,对均衡处理信号进行相位旋转以抵消相位噪声的估计相 位可以滤去均衡处理信号中的大部分相位噪声,以便于后续可以采用较窄带宽
的锁相环来抑制相位旋转信号中的残余相位噪声。
104、 利用锁相环对相位旋转信号中的残余相位噪声进行抑制, 以输出误 差信号和接收信号。
105、 利用误差信号对均衡器的滤波器系数进行迭代更新。
作为一种可选的实施方式,上述步骤 101中均衡器接收到的输入信号数量 为至少二路时, 图 1所示的方法还可以包括以下步骤:
利用合路器对锁相环输出的所有接收信号进行叠加以形成一路接收信号; 其中, 锁相环输出的接收信号数量与输入信号数量相同。
实际应用中,微波通信系统的信道一般是多径的, 当多径的程度较深时均 衡器不能立即收敛, 会导致锁相环的发散, 从而使得整个系统不能收敛, 产生 严重误码甚至系统不能工作。 为了使均衡器可以快速收敛, 图 1所示的方法还 可以包括以下步骤:
1 )、对每一路输入信号进行相位噪声估计, 以获得该路输入信号的相位噪 声估计值。
2 )、 利用该路输入信号的相位噪声估计值对该路输入信号进行信道估计, 以获得该路输入信号的信道估计值。
3 )、将该路输入信号的信道估计值送入至均衡器, 以使均衡器利用该路输 入信号的信道估计值进行快速收敛。
其中,均衡器利用该路输入信号的信道估计值对该路输入信号中的导频数 据进行训练, 从而使得均衡器快速收敛。
作为一种可选的实施方式, 上述的对每一路输入信号进行相位噪声估计, 以获得该路输入信号的相位噪声估计值的实现流程可以如下:
1 )、 提取每一路输入信号的导频数据。
2 )、将每一路输入信号的导频数据和已知导频序列的共轭相乘, 以获得离 散的相位噪声估计值。
3 )、利用插值器对离散的相位噪声估计值进行插值, 以获得输入信号的相 位噪声估计值。
作为一种可选的实施方式,上述的利用该路输入信号的相位噪声估计值对
该路输入信号进行信道估计,以获得该路输入信号的信道估计值的实现流程可 以: ¾口下:
1 )、 利用矩阵乘法器将该输入信号与常矩阵 A相乘, 以获得第一相乘结 果。
2 )、 利用矩阵乘法器将上述的第一相乘结果与相位噪声估计值的共轭相 乘, 以获得第二相乘结果。
3 )、 利用矩阵乘法器将上述的第二相乘结果与常矩阵 B相乘, 以获得该 路输入信号的信道估计值;
其中, 常矩阵 A = pinv ( S ), 常矩阵 B = pinv ( delta*SH ); pinv表示逆运 算; S为导频构成的训练序列; delta* SH表示选择 SH的前 L行, L为多经的 个数, delta为长度为 LxNp矩阵, 并且所述 LxNp矩阵的前 L行为 I矩阵, 其 余部分为 0。
本发明实施例一中,在信道估计中考虑了相位噪声的影响,使得信道估计 的精度得到有效提高, 而信道估计精度的提高有利于均衡器的快速收敛,从而 可以降低系统的误码率。
本发明实施例一中,首先对均衡器输出的每一路均衡处理信号中的相位噪 声进行相位估计, 以获得相位噪声的估计相位; 其次, 在将该路均衡处理信号 输入锁相环之前,先对该路均衡处理信号进行相位旋转以抵消相位噪声的估计 相位, 以获得相位旋转信号并输入锁相环, 由锁相环进一步对该路相位旋转信 号中的残余相位噪声进行抑制, 并输出误差信号和接收信号。 由于对每一路均 衡处理信号进行相位旋转以抵消相位噪声的估计相位可以滤去该路均衡处理 信号中的大部分相位噪声,因此对于相位旋转信号中的残余相位噪声可以采用 较窄带宽的锁相环进行抑制,从而本发明实施例一可以在锁相环带宽较窄的条 件下有效地提高对相位噪声的抑制能力。
实施例二:
请参阅图 2, 图 2是本发明实施例二提供的一种应用于微波通信系统的信 号处理方法的流程图。 图 2所示的方法可以在输入信号的相位噪声较小时,有 效地抑制相位噪声, 而且可以使得均衡器快速收敛。 如图 2所示, 该方法可以
包括以下步骤:
201、 对每一路输入信号进行相位噪声估计, 以获得该路输入信号的相位 噪声估计值。
其中, 上述步骤 201的实现流程已在实施例一中进行了详细介绍, 本发明 实施例二不作赘述。
202、利用该路输入信号的相位噪声估计值对该路输入信号进行信道估计, 以获得该路输入信号的信道估计值。
其中, 上述步骤 202的实现流程已在实施例一中进行了详细介绍, 本发明 实施例二不作赘述。
203、 将该路输入信号的信道估计值送入至均衡器, 以使均衡器利用该路 输入信号的信道估计值进行快速收敛。
204、 利用均衡器对每一路输入信号进行均衡处理, 以获得每一路输入信 号对应的均衡处理信号。
205、 利用锁相环对均衡处理信号中的相位噪声进行抑制, 以输出误差信 号和接收信号。
206、 利用误差信号对均衡器的滤波器系数进行迭代更新。
作为一种可选的实施方式,上述均衡器接收到的输入信号数量为至少二路 时, 图 2所示的方法还可以包括以下步骤:
利用合路器对锁相环输出的所有接收信号进行叠加以形成一路接收信号; 其中, 锁相环输出的接收信号数量与输入信号数量相同。
本发明实施例二中,对每一路输入信号进行相位噪声估计以获得该路输入 信号的相位噪声估计值,以及利用该路输入信号的相位噪声估计值对该路输入 信号进行信道估计以获得信道估计值并送入至均衡器,由均衡器利用该路输入 信号的信道估计值进行快速收敛。 以此同时, 利用均衡器对每一路输入信号进 行均衡处理以获得该路输入信号对应的均衡处理信号,并利用锁相环对该路均 衡处理信号中的相位噪声进行抑制,输出误差信号和接收信号。 由于在信道估 计中考虑了相位噪声的影响,使得信道估计的精度得到有效提高, 而信道估计 精度的提高有利于均衡器的快速收敛, 从而可以降低系统的误码率。
实施例三:
请参阅图 3 , 图 3是本发明实施例三提供的一种应用于微波通信系统的信 号处理设备的结构图。如图 3所示,该信号处理设备至少可以包括均衡器 301、 相位估计器 302、 信号旋转器 303以及锁相环 304, 其中:
均衡器 301 , 用于对每一路输入信号进行均衡处理, 以获得每一路输入信 号对应的均衡处理信号并输出至相位估计器 302和信号旋转器 303。
其中,如果输入信号的数量为至少二路,则均衡器 301可以是空时均衡器; 如果输入信号的数量只有一路, 则均衡器 301 可以是时域均衡器或频域均衡 器, 本发明实施例不作限定。
相位估计器 302, 用于对均衡处理信号中的相位噪声进行相位估计, 以获 得相位噪声的估计相位并输出至信号旋转器 303;
信号旋转器 303 , 用于对均衡处理信号进行相位旋转以抵消相位噪声的估 计相位, 以获得相位旋转信号并输出至锁相环 304;
锁相环 304, 用于对相位旋转信号中的残余相位噪声进行抑制, 以输出误 差信号和接收信号。
均衡器 301 , 还用于利用锁相环 304输出的误差信号对其滤波器系数进行 迭代更新。
作为一种可选的实施方式,如果均衡器 301接收到的输入信号数量为至少 二路, 那么图 3所示的信号处理设备还可以包括:
合路器 305 , 用于对锁相环 304输出的所有接收信号进行叠加以形成一路 接收信号; 其中, 锁相环 304输出的接收信号数量与输入信号数量相同。
请一并参阅图 4, 图 4是本发明实施例三提供的另一种应用于微波通信系 统的信号处理设备的结构图。其中, 图 4所示的信号处理设备是由图 3所示的 信号处理设备进行优化得到的。 如图 4所示, 该信号处理设备还包括:
相位噪声估计器 306, 用于对每一路输入信号进行相位噪声估计, 以获得 所述输入信号的相位噪声估计值;
多径信道估计器 307, 用于利用所述输入信号的相位噪声估计值对所述输 入信号进行信道估计, 以获得信道估计值并送入所述均衡器;
所述均衡器 301 , 还用于利用所述信道估计值进行快速收敛。
本发明实施例三中,多径信道估计器 307在信道估计中考虑了相位噪声的 影响,使得信道估计的精度得到有效提高, 而信道估计精度的提高有利于均衡 器 301的快速收敛, 从而可以降低系统的误码率。
请一并参阅图 5, 图 5是本发明实施例三提供的一种相位噪声估计器 306 的结构图。 如图 5所示, 该相位噪声估计器 306可以包括:
提取器 3061 , 用于提取每一路输入信号的导频数据;
共轭运算器 3062, 用于计算已知导频序列的共轭;
乘法器 3063, 用于将所述导频数据和所述已知导频序列的共轭相乘, 以 获得离散的相位噪声估计值;
其中, 所述导频数据和所述已知导频序列的共轭相乘, 以获得离散的相位 噪声估计值的具体原理是本领域技术人员所熟悉 ,本发明实施例不作进一步介 绍。
插值器 3064, 用于对所述离散的相位噪声估计值进行插值, 以获得所述 输入信号的相位噪声估计值。
请一并参阅图 6, 图 6是本发明实施例三提供的一种多径信道估计器 307 的结构图。 如图 6所示, 该多径信道估计器 307可以包括:
第一矩阵乘法器 3071 , 用于将每一路输入信号与常矩阵 Α相乘, 以获得 第一相乘结果;
第二矩阵乘法器 3072, 用于将第一相乘结果与相位噪声估计值的共轭相 乘, 以获得第二相乘结果;
第三矩阵乘法器 3073, 用于将第二相乘结果与常矩阵 B相乘, 以获得该 路输入信号的信道估计值。
其中, 所述常矩阵 A = pinv ( S ), 常矩阵 B = pinv ( delta*SH ); pinv表示 逆运算; S为导频构成的训练序列; delta* SH表示选择 SH的前 L行, L为多 经的个数, delta为长度为 LxNp矩阵,并且所述 LxNp矩阵的前 L行为 I矩阵, 其余部分为 0。
在图 5所示的相位噪声估计器以及在图 6所示的多径信道估计器中,导频
可以采用正交长导频结构, 该正交长导频在一帧中只出现一次。 其中, 正交码 可以采用 CAZAC码, 或者其他序列。 以 4x4的 MIMO传输环境为例, 殳设 正交长导频的长度为 8, 其结构可以图 7所示, 其中导频数据 Si ( i=l~Np, Np为导频长度)可以表示为 Si = exp(G*pi*M*iA2)/Np), 其中, M为大于 0的整 数, pi=3.1415926。
请一并参阅图 8, 图 8是本发明实施例三提供的一种相位估计器 302的结 构图。 如图 8所示, 该相位估计器 302可以包括:
硬判决器 3021 , 用于对所述均衡处理信号进行硬判决, 以获得所述均衡 处理信号硬判决后的相位;
减法器 3022, 用于计算所述均衡处理信号硬判决前的相位与硬判决后的 相位的相位差;
时域滤波器 3023, 用于将所述相位差进行迭代更新, 以获得所述均衡处 理信号中的相位噪声的估计相位。
其中, 时域滤波器 3023可以采用最小均方误差算法来实现。
其中, 时域滤波器 3023将所述相位差进行迭代更新, 以获得所述均衡处 理信号中的相位噪声的估计相位的具体实现过程是本领域技术人员所熟悉的, 本发明实施例不作进一步介绍。
在图 8所示的相位估计器中,导频可以采用正交短导频结构, 该正交短导 频在一帧中重复出现。 其中, 正交码可以采用 CAZAC码, 或者其他序列。 以 4x4的 MIMO传输环境为例, 假设正交短导频的长度为 4, 其结构可以图 9所 示, 其中导频数据 Si ( i=l~Np , Np 为导频长度) 可以表示为 Si = exp((j*pi*M*iA2)/Np), 其中, M为大于 0的整数。
本发明实施例三中,相位估计器 302对均衡器 301输出的每一路均衡处理 信号中的相位噪声进行相位估计, 以获得相位噪声的估计相位; 其次, 信号旋 转器 303对该路均衡处理信号进行相位旋转以抵消相位噪声的估计相位,以获 得相位旋转信号并输入锁相环 304, 由锁相环 304进一步对该路相位旋转信号 中的残余相位噪声进行抑制, 并输出误差信号和接收信号。 由于对每一路均衡 处理信号进行相位旋转以抵消相位噪声的估计相位可以滤去该路均衡处理信
号中的大部分相位噪声,因此对于相位旋转信号中的残余相位噪声可以采用较 窄带宽的锁相环进行抑制,从而本发明实施例可以在锁相环带宽较窄的条件下 有效地提高对相位噪声的抑制能力。
实施例四:
请参阅图 10, 图 10是本发明实施例四提供的一种应用于微波通信系统的 信号处理设备的结构图。 图 10所示的信号处理设备可以应用于相位噪声较小 的传输环境。 如图 10所示, 该信号处理设备至少可以包括均衡器 301、 锁相 环 304、 相位噪声估计器 306以及多径信道估计器 307 , 其中:
相位噪声估计器 306, 用于对每一路输入信号进行相位噪声估计, 以获得 该输入信号的相位噪声估计值。
其中, 上述相位噪声估计器 306的结构已在实施例三中进行了详细介绍, 本发明实施例四不作赘述。
多径信道估计器 307, 用于利用上述的相位噪声估计值对该路输入信号进 行信道估计, 以获得信道估计值并送入均衡器 301。
其中, 上述多径信道估计器 307的结构已在实施例三中进行了详细介绍, 本发明实施例四不作赘述。
均衡器 301 , 用于对每一路输入信号进行均衡处理, 以获得该路输入信号 对应的均衡处理信号并输出锁相环 304; 以及利用信道估计值进行快速收敛。
锁相环 304, 用于对均衡处理信号中的相位噪声进行抑制, 以输出误差信 号和接收信号。
均衡器 301 , 还用于利用上述误差信号对其滤波器系数进行迭代更新。 作为一种可选的实施方式,如果均衡器 301接收到的输入信号数量为至少 二路, 那么图 10所示的信号处理设备还可以包括:
合路器 305 , 用于对锁相环 304输出的所有接收信号进行叠加以形成一路 接收信号; 其中, 锁相环 304输出的接收信号数量与输入信号数量相同。
本发明实施例四中,相位噪声估计器 306对每一路输入信号进行相位噪声 估计以获得该路输入信号的相位噪声估计值,以及多径信道估计器 307利用该 路输入信号的相位噪声估计值对该路输入信号进行信道估计以获得信道估计
值并送入至均衡器 301 , 由均衡器 301利用该路输入信号的信道估计值进行快 速收敛。 以此同时, 利用均衡器 301对每一路输入信号进行均衡处理以获得该 路输入信号对应的均衡处理信号,并利用锁相环 304对该路均衡处理信号中的 相位噪声进行抑制,输出误差信号和接收信号。 由于在信道估计中考虑了相位 噪声的影响,使得信道估计的精度得到有效提高, 而信道估计精度的提高有利 于均衡器的快速收敛, 从而可以降低系统的误码率。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步 骤是可以通过程序来指令相关的硬件来完成, 该程序可以存储于一计算机可 读存储介质中, 存储介质可以包括: 闪存盘、 只读存储器 ( Read-Only Memory , ROM ) 、 随机存取器( Random Access Memory, RAM ) 、 磁盘或 光盘等。
以上对本发明实施例提供的应用于微波通信系统的信号处理方法及设备 阐述, 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想; 同 时, 对于本领域的一般技术人员, 依据本发明的思想, 在具体实施方式及应 用范围上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的 限制。
Claims
1、 一种应用于微波通信系统的信号处理方法, 其特征在于, 包括: 利用均衡器对每一路输入信号进行均衡处理,以获得每一路输入信号对应 的均衡处理信号;
对所述均衡处理信号中的相位噪声进行相位估计,以获得所述相位噪声的 估计相位;
对所述均衡处理信号进行相位旋转以抵消所述相位噪声的估计相位,以获 得相位旋转信号;
利用锁相环对所述相位旋转信号中的残余相位噪声进行抑制,以输出误差 信号和接收信号;
利用所述误差信号对所述均衡器的滤波器系数进行迭代更新。
2、 根据权利要求 1所述的信号处理方法, 其特征在于, 所述输入信号数 量为至少二路, 所述方法还包括:
利用合路器对所述锁相环输出的所有接收信号进行叠加以形成一路接收 信号; 所述锁相环输出的接收信号数量与所述输入信号数量相同。
3、 根据权利要求 1或 2所述的信号处理方法, 其特征在于, 所述方法还 包括:
对每一路输入信号进行相位噪声估计,以获得所述输入信号的相位噪声估 计值;
利用所述相位噪声估计值对所述输入信号进行信道估计,以获得信道估计 值;
将所述信道估计值送入至所述均衡器,以使所述均衡器利用所述信道估计 值进行快速收敛。
4、 根据权利要求 3所述的信号处理方法, 其特征在于, 所述对每一路输 入信号进行相位噪声估计, 以获得所述输入信号的相位噪声估计值包括: 提取每一路输入信号的导频数据;
将所述导频数据和已知导频序列的共轭相乘,以获得离散的相位噪声估计 值; 利用插值器对所述离散的相位噪声估计值进行插值,以获得所述输入信号 的相位噪声估计值。
5、 根据权利要求 3或 4所述的信号处理方法, 其特征在于, 所述利用所 述相位噪声估计值对所述输入信号进行信道估计, 以获得信道估计值包括: 利用矩阵乘法器将所述输入信号与常矩阵 A相乘, 以获得第一相乘结果; 利用矩阵乘法器将所述第一相乘结果与所述相位噪声估计值的共轭相乘, 以获得第二相乘结果;
利用矩阵乘法器将所述第二相乘结果与常矩阵 B相乘, 以获得所述输入 信号的信道估计值;
其中, 所述常矩阵 A = pinv ( S ), 常矩阵 B = pinv ( delta*SH ); pinv表示 逆运算; S为导频构成的训练序列; delta* SH表示选择 SH的前 L行, L为多 经的个数, delta为长度为 LxNp矩阵,并且所述 LxNp矩阵的前 L行为 I矩阵, 其余部分为 0。
6、 根据权利要求 1~5任意一项所述的信号处理方法, 其特征在于, 对所 述均衡处理信号中的相位噪声进行相位估计,以获得所述相位噪声的估计相位 包括:
对所述均衡处理信号进行硬判决,以获得所述均衡处理信号硬判决后的相 位;
计算所述均衡处理信号硬判决前的相位与硬判决后的相位的相位差; 将所述相位差输入时域滤波器进行迭代更新,以获得所述均衡处理信号中 的相位噪声的估计相位。
7、 一种应用于微波通信系统的信号处理方法, 其特征在于, 包括: 对每一路输入信号进行相位噪声估计,以获得所述输入信号的相位噪声估 计值;
利用所述相位噪声估计值对所述输入信号进行信道估计,以获得信道估计 值;
将所述信道估计值送入至所述均衡器,以使所述均衡器利用所述信道估计 值进行快速收敛; 利用所述均衡器对所述每一路输入信号进行均衡处理,以获得所述每一路 输入信号对应的均衡处理信号;
利用锁相环对所述均衡处理信号中的相位噪声进行抑制,以输出误差信号 和接收信号;
利用所述误差信号对所述均衡器的滤波器系数进行迭代更新。
8、 根据权利要求 7所述的信号处理方法, 其特征在于, 所述输入信号数 量为至少二路, 所述方法还包括:
利用合路器对所述锁相环输出的所有接收信号进行叠加以形成一路接收 信号; 所述锁相环输出的接收信号数量与所述输入信号数量相同。
9、 根据权利要求 7或 8所述的信号处理方法, 其特征在于, 所述对每一 路输入信号进行相位噪声估计, 以获得所述输入信号的相位噪声估计值包括: 提取所述每一路输入信号的导频数据;
将所述导频数据和已知导频序列的共轭相乘, 获得相乘结果;
利用所述相乘结果对所述输入信号的导频之间的数据进行至少一次插值, 获得所述输入信号的相位噪声估计值。
10、 根据权利要求 7、 8或 9所述的信号处理方法, 其特征在于, 所述利 用所述相位噪声估计值对所述输入信号进行信道估计, 以获得信道估计值包 括:
利用矩阵乘法器将所述输入信号与常矩阵 A相乘, 获得第一相乘结果; 利用矩阵乘法器将所述第一相乘结果与所述相位噪声估计值的共轭相乘, 获得第二相乘结果;
利用矩阵乘法器将所述第二相乘结果与常矩阵 B相乘, 获得所述输入信 号的信道估计值;
其中, 所述常矩阵 A = pinv ( S ), 常矩阵 B = pinv ( delta*SH ); pinv表示 逆运算; delta* SH表示选择 SH的前 L行, L为输入信号的个数, delta为长度 为 LxNp矩阵, 并且前 L行为 I矩阵, 其余部分为 0, S为导频构成的训练序 列。
11、 一种应用于微波通信系统的信号处理设备, 其特征在于, 包括: 均衡器, 用于对每一路输入信号进行均衡处理, 以获得每一路输入信号对 应的均衡处理信号并输出至相位估计器和信号旋转器;
所述相位估计器, 用于对所述均衡处理信号中的相位噪声进行相位估计, 以获得所述相位噪声的估计相位并输出至所述信号旋转器;
所述信号旋转器,用于对所述均衡处理信号进行相位旋转以抵消所述相位 噪声的估计相位, 以获得相位旋转信号并输出至锁相环;
所述锁相环, 用于对所述相位旋转信号中的残余相位噪声进行抑制, 以输 出误差信号和接收信号;
所述均衡器,还用于利用所述误差信号对所述均衡器的滤波器系数进行迭 代更新。
12、 根据权利要求 11所述的信号处理设备, 其特征在于, 所述输入信号 数量为至少二路, 所述信号处理设备还包括:
合路器, 用于对所述锁相环输出的所有接收信号进行叠加以形成一路接收 信号; 所述锁相环输出的接收信号数量与所述输入信号数量相同。
13、 根据权利要求 11或 12所述的信号处理设备, 其特征在于, 所述信号 处理设备还包括:
相位噪声估计器, 用于对每一路输入信号进行相位噪声估计, 以获得所述 输入信号的相位噪声估计值;
多径信道估计器,用于利用所述输入信号的相位噪声估计值对所述输入信 号进行信道估计, 以获得信道估计值并送入所述均衡器;
所述均衡器, 还用于利用所述信道估计值进行快速收敛。
14、 根据权利要求 13所述的信号处理设备, 其特征在于, 所述相位噪声 估计器包括:
提取器, 用于提取每一路输入信号的导频数据;
共轭运算器, 用于计算已知导频序列的共轭;
乘法器, 用于将所述导频数据和所述已知导频序列的共轭相乘, 以获得离 散的相位噪声估计值;
插值器, 用于对所述离散的相位噪声估计值进行插值, 以获得所述输入信 号的相位噪声估计值。
15、 根据权利要求 13或 14所述的信号处理设备, 其特征在于, 所述多径 信道估计器包括:
第一矩阵乘法器, 用于将所述输入信号与常矩阵 A相乘, 以获得第一相 乘结果;
第二矩阵乘法器,用于将所述第一相乘结果与所述相位噪声估计值的共轭 相乘, 以获得第二相乘结果;
第三矩阵乘法器, 用于将所述第二相乘结果与常矩阵 B相乘, 以获得所 述输入信号的信道估计值;
其中, 所述常矩阵 A = pinv ( S ), 常矩阵 B = pinv ( delta*SH ); pinv表示 逆运算; S为导频构成的训练序列; delta* SH表示选择 SH的前 L行, L为多 经的个数, delta为长度为 LxNp矩阵,并且所述 LxNp矩阵的前 L行为 I矩阵, 其余部分为 0。
16、 根据权利要求 11~15任意一项所述的信号处理设备, 其特征在于, 所 述相位估计器包括:
硬判决器, 用于对所述均衡处理信号进行硬判决, 以获得所述均衡处理信 号硬判决后的相位;
减法器,用于计算所述均衡处理信号硬判决前的相位与硬判决后的相位的 相位差;
时域滤波器, 用于将所述相位差进行迭代更新, 以获得所述均衡处理信号 中的相位噪声的估计相位。
17、 一种应用于微波通信系统的信号处理设备, 其特征在于, 包括: 相位噪声估计器, 用于对每一路输入信号进行相位噪声估计, 以获得所述 输入信号的相位噪声估计值;
多径信道估计器,用于利用所述相位噪声估计值对所述输入信号进行信道 估计, 以获得信道估计值并送入均衡器;
所述均衡器, 用于对所述每一路输入信号进行均衡处理, 以获得所述输入 信号对应的均衡处理信号并输出锁相环;以及利用所述信道估计值进行快速收 敛;
所述锁相环, 用于对所述均衡处理信号中的相位噪声进行抑制, 以输出误 差信号和接收信号;
所述均衡器,还用于利用所述误差信号对所述均衡器的滤波器系数进行迭 代更新。
18、 根据权利要求 17所述的信号处理设备, 其特征在于, 所述输入信号 数量为至少二路, 所述信号处理设备还包括:
合路器,用于对所述锁相环输出的所有接收信号进行叠加以形成一路接收 信号; 所述锁相环输出的接收信号数量与所述输入信号数量相同。
19、 根据权利要求 17或 18所述的信号处理设备, 其特征在于, 所述相位 噪声估计器包括:
提取器, 用于提取每一路输入信号的导频数据;
共轭运算器, 用于计算已知导频序列的共轭;
乘法器, 用于将所述导频数据和所述已知导频序列的共轭相乘, 以获得离 散的相位噪声估计值;
插值器, 用于对所述离散的相位噪声估计值进行插值, 以获得所述输入信 号的相位噪声估计值。
20根据权利要求 17、 18或 19所述的信号处理设备, 其特征在于, 所述 多径信道估计器包括:
第一矩阵乘法器, 用于将所述输入信号与常矩阵 A相乘, 以获得第一相 乘结果;
第二矩阵乘法器,用于将所述第一相乘结果与所述相位噪声估计值的共轭 相乘, 以获得第二相乘结果;
第三矩阵乘法器, 用于将所述第二相乘结果与常矩阵 B相乘, 以获得所 述输入信号的信道估计值;
其中, 所述常矩阵 A = pinv ( S ), 常矩阵 B = pinv ( delta*SH ); pinv表示 逆运算; S为导频构成的训练序列; delta* SH表示选择 SH的前 L行, L为多 经的个数, delta为长度为 LxNp矩阵,并且所述 LxNp矩阵的前 L行为 I矩阵, 其余部分为 0。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280000066.XA CN103348622B (zh) | 2012-02-03 | 2012-02-03 | 应用于微波通信系统的信号处理方法及设备 |
PCT/CN2012/070865 WO2013113167A1 (zh) | 2012-02-03 | 2012-02-03 | 应用于微波通信系统的信号处理方法及设备 |
EP12780070.4A EP2642684B1 (en) | 2012-02-03 | 2012-02-03 | Signal processing method and apparatus in microwave communication system |
US13/728,876 US8798128B2 (en) | 2012-02-03 | 2012-12-27 | Method and device for signal processing and applied to microwave communication system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2012/070865 WO2013113167A1 (zh) | 2012-02-03 | 2012-02-03 | 应用于微波通信系统的信号处理方法及设备 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/728,876 Continuation US8798128B2 (en) | 2012-02-03 | 2012-12-27 | Method and device for signal processing and applied to microwave communication system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013113167A1 true WO2013113167A1 (zh) | 2013-08-08 |
Family
ID=48902859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/070865 WO2013113167A1 (zh) | 2012-02-03 | 2012-02-03 | 应用于微波通信系统的信号处理方法及设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8798128B2 (zh) |
EP (1) | EP2642684B1 (zh) |
CN (1) | CN103348622B (zh) |
WO (1) | WO2013113167A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI504169B (zh) * | 2013-05-31 | 2015-10-11 | Mstar Semiconductor Inc | 加速等化收斂速度的接收裝置與方法 |
US9143371B1 (en) | 2013-07-15 | 2015-09-22 | Pmc-Sierra Us, Inc. | Method for reducing jitter in receivers |
US9020022B1 (en) * | 2013-08-02 | 2015-04-28 | Pmc-Sierra Us, Inc. | Analog finite impulse response adaptation method and apparatus |
US9787408B2 (en) | 2015-10-06 | 2017-10-10 | Huawei Technologies Co., Ltd. | Apparatus and method for unified mitigation of correlative additive and multiplicative noise |
US10135661B2 (en) | 2016-06-22 | 2018-11-20 | Huawei Technologies Co., Ltd. | Phase noise estimation and cancellation |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1178613A (zh) * | 1995-03-16 | 1998-04-08 | 夸尔柯姆股份有限公司 | 带清除pll的直接数字合成器驱动pll频率合成器 |
CN1853340A (zh) * | 2003-04-07 | 2006-10-25 | 高通股份有限公司 | 用于ofdm系统的锁相环 |
CN101136731A (zh) * | 2007-08-09 | 2008-03-05 | 复旦大学 | 一种利用连续传输参数信令消除相位噪声的方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5386239A (en) * | 1993-05-03 | 1995-01-31 | Thomson Consumer Electronics, Inc. | Multiple QAM digital television signal decoder |
US8170513B2 (en) * | 2002-10-25 | 2012-05-01 | Qualcomm Incorporated | Data detection and demodulation for wireless communication systems |
BR0315664A (pt) * | 2002-10-25 | 2005-08-30 | Qualcomm Inc | Detecção e demodulação de dados para sistemas de comunicação sem fio |
US20060227891A1 (en) | 2005-04-07 | 2006-10-12 | Samsung Electronics Co., Ltd. | Method of channel estimation for MIMO-OFDM using phase rotated low overhead preamble |
US20080101497A1 (en) * | 2006-10-30 | 2008-05-01 | Broadcom Corporation, A California Corporation | MIMO phase noise estimation and correction |
US8094762B2 (en) | 2008-05-02 | 2012-01-10 | Telefonaktiebolaget Lm Ericsson (Publ) | Joint estimation of MIMO channels and noise correlation for wireless systems with multiple receive antennas |
US8433015B2 (en) * | 2009-12-03 | 2013-04-30 | Glowlink Communications Technology, Inc. | System for and method of removing unwanted inband signals from a received communication signal |
-
2012
- 2012-02-03 EP EP12780070.4A patent/EP2642684B1/en active Active
- 2012-02-03 CN CN201280000066.XA patent/CN103348622B/zh active Active
- 2012-02-03 WO PCT/CN2012/070865 patent/WO2013113167A1/zh active Application Filing
- 2012-12-27 US US13/728,876 patent/US8798128B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1178613A (zh) * | 1995-03-16 | 1998-04-08 | 夸尔柯姆股份有限公司 | 带清除pll的直接数字合成器驱动pll频率合成器 |
CN1853340A (zh) * | 2003-04-07 | 2006-10-25 | 高通股份有限公司 | 用于ofdm系统的锁相环 |
CN101136731A (zh) * | 2007-08-09 | 2008-03-05 | 复旦大学 | 一种利用连续传输参数信令消除相位噪声的方法 |
Also Published As
Publication number | Publication date |
---|---|
US20130202022A1 (en) | 2013-08-08 |
US8798128B2 (en) | 2014-08-05 |
CN103348622A (zh) | 2013-10-09 |
CN103348622B (zh) | 2017-05-10 |
EP2642684A4 (en) | 2014-01-08 |
EP2642684A1 (en) | 2013-09-25 |
EP2642684B1 (en) | 2018-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10237095B2 (en) | Linear equalization for use in low latency high speed communication systems | |
JP5644475B2 (ja) | 受信装置 | |
US9020023B2 (en) | Reception device and reception method | |
JP5513523B2 (ja) | 遅延スプレッド補償のための方法及び装置 | |
JP5733465B2 (ja) | バタフライフィルタの係数設定方法とその装置、受信機、及び受信方法 | |
KR20080027148A (ko) | Mimo/miso 무선장치를 위한 주파수 도메인에서의등화기 계수 결정 | |
US9825786B2 (en) | Apparatus and method for transmitting and receiving data in communication system | |
JP4821909B2 (ja) | 受信装置および受信方法 | |
WO2013113167A1 (zh) | 应用于微波通信系统的信号处理方法及设备 | |
WO2017183631A1 (ja) | Los-mimo復調装置、通信装置、los-mimo伝送システム、los-mimo復調方法及びプログラム | |
WO2013185276A1 (zh) | 微波mimo系统中接收信号的均衡方法和均衡器 | |
JP4772462B2 (ja) | 受信機 | |
JP4822946B2 (ja) | 適応等化器 | |
JP2006245810A (ja) | 分数間隔等化器及びそれを用いた受信機 | |
CN115244902A (zh) | 用于多载波调制方案的接收器设备和方法 | |
KR100480881B1 (ko) | 에러궤환을 이용한 블라인드 적응결정 궤환 등화기 | |
JP2003283385A (ja) | 等化装置 | |
KVS et al. | Channel estimation using extended Kalman filter with sliced multi modulus blind equalization algorithm (SMMA) | |
Li et al. | Time domain turbo equalization based on vector approximate message passing for multiple-input multiple-output underwater acoustic communications | |
Chen et al. | Equivalence of Frequency-Domain Turbo Equalization Schemes for Single-Carrier Multiple-Input–Multiple-Output Systems | |
Chen et al. | Frequency domain turbo equalization under MMSE criterion for single carrier MIMO systems | |
CN116488969B (zh) | 信道均衡方法、装置、设备和存储介质 | |
JP2011188107A (ja) | Mimo受信装置および受信方法 | |
CN116491109A (zh) | 用于单载波调制方案的接收器设备和方法 | |
Kapilan et al. | Blind channel equalization in the presence of co-channel interference using higher order statistics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2012780070 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12780070 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |