WO2013111904A1 - 高耐食性アルミニウム合金ブレージングシート、ならびに、これを用いた自動車用熱交換器の流路形成部品 - Google Patents

高耐食性アルミニウム合金ブレージングシート、ならびに、これを用いた自動車用熱交換器の流路形成部品 Download PDF

Info

Publication number
WO2013111904A1
WO2013111904A1 PCT/JP2013/051785 JP2013051785W WO2013111904A1 WO 2013111904 A1 WO2013111904 A1 WO 2013111904A1 JP 2013051785 W JP2013051785 W JP 2013051785W WO 2013111904 A1 WO2013111904 A1 WO 2013111904A1
Authority
WO
WIPO (PCT)
Prior art keywords
brazing
mass
brazing sheet
corrosion
aluminum alloy
Prior art date
Application number
PCT/JP2013/051785
Other languages
English (en)
French (fr)
Inventor
神谷定行
寺地翔太
根倉健二
安藤誠
福元敦志
大谷良行
新倉昭男
Original Assignee
株式会社デンソー
古河スカイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, 古河スカイ株式会社 filed Critical 株式会社デンソー
Priority to DE112013000740.1T priority Critical patent/DE112013000740T5/de
Priority to CN201380006589.XA priority patent/CN104105804B/zh
Priority to US14/374,969 priority patent/US10099320B2/en
Publication of WO2013111904A1 publication Critical patent/WO2013111904A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • B23K35/0238Sheets, foils layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0014Brazing of honeycomb sandwich structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • B23K35/288Al as the principal constituent with Sn or Zn
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/006Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12222Shaped configuration for melting [e.g., package, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12292Workpiece with longitudinal passageway or stopweld material [e.g., for tubular stock, etc.]

Definitions

  • the present invention relates to a highly corrosion-resistant aluminum alloy brazing sheet, and more particularly to a highly corrosion-resistant aluminum alloy brazing sheet that is suitably used as a high-temperature compressed air or refrigerant passage component in a heat exchanger such as an intercooler. Furthermore, this invention relates to the flow-path formation component of the heat exchanger for motor vehicles using the said highly corrosion-resistant aluminum alloy brazing sheet.
  • Aluminum alloys are lightweight and have high thermal conductivity, and can be realized with high corrosion resistance by appropriate processing. Therefore, they are used in automotive heat exchangers such as radiators, condensers, evaporators, heaters, and intercoolers.
  • As a tube material for automotive heat exchangers Al-Mn alloy such as 3003 alloy is used as the core material, and brazing material of Al-Si alloy or sacrificial anode material of Al-Zn alloy is clad on one side.
  • a two-layer clad material, and a three-layer clad material clad with a brazing material of an Al—Si alloy on the other side are used.
  • a heat exchanger is usually joined by combining such clad material and corrugated fins and brazing at a high temperature of about 600 ° C.
  • the inner side of the tube is protected by cladding a sacrificial anode material, but the outer side of the tube is not clad with a sacrificial layer on the tube itself, and Zn is added to the fin.
  • the pitting corrosion potential is reduced and the sacrificial anticorrosive action by the fins is utilized.
  • the reason why the outside of the tube can be prevented from being corroded by such a method is that the corrosive liquid to be attached has high conductivity.
  • the conductivity of the corrosive liquid increases as the concentration of the solute component increases. In the external environment of the radiator, a high concentration of corrosive liquid adheres to a solute component such as snow melting salt, so that the conductivity is high, so that the entire tube can be sufficiently protected by the sacrificial effect of the fins.
  • this condensed water contains chloride ions which are exhaust gas components, it has pitting corrosion-inducing properties. Therefore, sacrificial anticorrosive properties are also required on the compressed air side.
  • sacrificial corrosion protection with fins is difficult because the solute component is dilute and is not a submerged environment. Therefore, the surface on the compressed air side of the tube material needs to have both a brazing function with a fin and a sacrificial anticorrosion function.
  • the tube shown in FIG. 2 is formed by brazing both ends of a three-layer aluminum alloy brazing sheet made of brazing material / heart material / sacrificial anode material into a cylindrical shape.
  • the inner surface side of the brazing sheet is a sacrificial anode material
  • the outer surface side is a brazing material made of an Al—Si alloy.
  • Zn is added thereto to lower the pitting potential. In this method, the solder melted from the Al—Si alloy at the time of brazing gathers at the joint and solidifies.
  • the Al—Si alloy contains Zn, it is inevitable to concentrate Zn in the final solidified part. If it does so, it will become a site
  • Brazing sheets having a clad layer having both a brazing function and a sacrificial anticorrosive effect are described in Patent Documents 1 and 2. These brazing sheets are mainly used in radiators in which cooling water flows through the inside of the tube, and as shown in FIG. 3, are intended to assist brazing in a C portion formed in a B-shaped cross-sectional shape.
  • sacrificial corrosion prevention by the tube material itself is not taken into consideration for the outside of the tube, and the tube material on the outside air is only clad with a normal Al-Si alloy brazing material. is there. Thus, in these patent documents, no consideration is given to the preferential corrosion at the joint between the tube materials.
  • the brazing sheet described in Patent Document 1 enables brazing of tube materials in a B shape.
  • the sacrificial anticorrosion effect due to the flow of the brazing is prevented by suppressing the Si amount lower than that of the commonly used Al—Si based brazing filler metal.
  • the amount of Zn added to the brazing material is only 7% or less, and no consideration is given to suppressing Zn concentration in the joint.
  • prevention of the preferential corrosion of a tube junction part is not aimed at.
  • Cu and Mn are added to the clad layer having both the brazing function and the sacrificial anticorrosive effect described in Patent Document 2.
  • the purpose of adding Cu or Mn is to improve strength and not to prevent preferential corrosion of the tube joint.
  • sacrificial corrosion protection by this clad layer is intended for the cooling water side, and 4045 alloy and 4343 alloy, which are conventional brazing alloy, are used on the atmosphere side. Is not considered.
  • an aluminum alloy brazing sheet is used as a tube material for a heat exchanger, for example, when both the inner and outer surfaces of the tube are in a corrosive environment, and sacrificial corrosion protection by the fins is difficult at the joint surface with the fins, It is difficult to provide an aluminum alloy brazing sheet that has a sacrificial anti-corrosion effect on both the inner and outer surfaces, has a brazing function on one of the inner and outer surfaces, and does not cause preferential corrosion between tubes. Met.
  • the present invention has been completed in order to eliminate such problems, and in an aluminum alloy brazing sheet, it has a sacrificial anticorrosive effect on both sides, and has a brazing function on one side, and is further joined by brazing.
  • High corrosion resistance aluminum alloy brazing sheet that prevents preferential corrosion in the zone and exhibits good brazing without diffusion of the molten braze to the core material during brazing, and a flow path of a heat exchanger for automobiles using the same
  • the purpose is to provide molded parts.
  • Such a highly corrosion-resistant aluminum alloy brazing sheet can be suitably used as a flow path forming component of an automotive heat exchanger.
  • the present invention provides an aluminum alloy comprising a core material made of an aluminum alloy, a brazing material clad on one surface of the core material, and a sacrificial anode material clad on the other surface of the core material.
  • the brazing material is Si: 2.5-13.0 mass%, Zn: 0.5-5.5 mass%, Cu: 0.1-0.6 mass%, Fe: 0.05-1
  • the sacrificial anode material comprises Zn: 0.5 to 6.0 mass%, Si: 0.05 to 1.5 mass%, Fe: It is made of an aluminum alloy containing 0.05 to 2.0 mass%, the balance being Al and inevitable impurities, and the core material is made of Si: 0.05 to 1.2 mass%, Fe: 0.00%. 5 to 1.0 mass%, Cu: 0.05 to 1.2 mass%, Mn: 0.6 to 1.8 mass%, and is made of an aluminum alloy composed of the balance Al and inevitable impurities.
  • a corrosion-resistant aluminum alloy brazing sheet was obtained.
  • At least one of the brazing material and the sacrificial anode material includes Mn: 0.05 to 1.8 mass%, Ti in addition to the component elements. : One or more selected from 0.05 to 0.3 mass%, Zr: 0.05 to 0.3 mass%, Cr: 0.05 to 0.3 mass%, and V: 0.05 to 0.3 mass% Furthermore, it can contain.
  • the core material includes Mg: 0.05 to 0.5 mass%, Ti 0.05 to 0.3 mass% in addition to the component elements. , Zr: 0.05 to 0.3 mass%, Cr: 0.05 to 0.3 mass%, and V: 0.05 to 0.3 mass% may further be included. .
  • a pitting corrosion potential difference between the brazing filler metal surface and the core material after brazing addition heat is 20 mV or more, and after brazing addition heat.
  • the pitting corrosion potential on the surface of the sacrificial anode material may be the same as or lower than that of the eutectic structure in the brazing material.
  • the high corrosion resistance aluminum alloy brazing sheet has one surface forming a flow path for cooling liquid and the other surface being air.
  • An environment in which condensed water containing a solute concentration of 10000 ppm or less and containing chloride ions of 5 ppm or more and 500 ppm or less is formed on the other surface as a flow path forming part of an automotive heat exchanger in contact therewith Can be used.
  • the present invention can provide a flow path forming component for an automotive heat exchanger manufactured by brazing the highly corrosion-resistant aluminum alloy brazing sheet in the fifth aspect.
  • an aluminum alloy brazing sheet when used as, for example, a tube material of a heat exchanger, the inner and outer surfaces of the tube are in a corrosive environment, and sacrificial corrosion prevention by fins is difficult at the joint surface with the fins ,
  • a flow path forming component for an automotive heat exchanger is provided.
  • This brazing sheet is excellent in brazing properties such as fin joint rate and erosion resistance, and is suitably used as a heat exchanger tube material for automobiles from the viewpoint of light weight and good thermal conductivity.
  • FIG. 1 It is a schematic diagram which shows the sample for a measurement of the pitting corrosion potential of the highly corrosion-resistant aluminum alloy brazing sheet and the corrosion test on the sacrificial material side according to the present invention. It is explanatory drawing which shows the preferential corrosion of the tube which consists of a 3 layer aluminum alloy brazing sheet. It is sectional drawing of the tube shape
  • the high corrosion resistance aluminum alloy brazing sheet according to the present invention is for solving such problems particularly effectively.
  • the chloride ion concentration of the condensate is 500 ppm or less and the total value of the solute concentrations is 10000 ppm or less, the sacrificial corrosion prevention by the fins is not effectively exhibited, so that the effect of the present invention becomes more effective.
  • the solute concentration of the condensate is 10,000 ppm or less, if the opposite surface is not a corrosive environment such as cooling water, the possibility of preferential corrosion of the tube joint is low.
  • the chloride ion concentration of the condensate is 5 ppm or more, the condensed water has pitting corrosion-inducing properties, so that the effect of the present invention becomes more effective.
  • brazing material the sacrificial anode material, and the core material constituting the highly corrosion resistant aluminum alloy brazing sheet according to the present invention will be described.
  • the brazing material includes: Si: 2.5 to 13.0 mass%, Zn: 0.5 to 5.5 mass%, Cu: 0.1 to 0.6 mass%, Fe: 0.05 to 1.0 mass% As an essential element, an aluminum alloy composed of the balance Al and inevitable impurities is used. Further, the brazing filler metal has Mn: 0.05 to 1.8 mass%, Ti: 0.05 to 0.3 mass%, Zr: 0.05 to 0.3 mass%, Cr: 0.05 to 0.3 mass%, and V: One or more selected from 0.05 to 0.3 mass% may be further contained as a selective additive element. Further, in addition to the above essential elements and selective additive elements, unavoidable impurities may be contained in amounts of 0.05% or less, respectively, and 0.15% or less in total. Below, each component is demonstrated.
  • Si By adding Si, the melting point of the brazing material is lowered to form a liquid phase, thereby enabling brazing.
  • the Si content is 2.5 to 13.0 mass% (hereinafter simply referred to as “%”). If it is less than 2.5%, the resulting liquid phase is small and brazing becomes difficult to function. On the other hand, if it exceeds 13.0%, for example, the amount of Si diffusing into the mating material such as fins becomes excessive, and the mating material melts.
  • a preferable content of Si is 3.5 to 12.0%.
  • Zn Zn can lower the pitting corrosion potential, and can improve the corrosion resistance by the sacrificial anode effect by forming a potential difference with the core material.
  • the Zn content is 0.5 to 5.5%. If it is less than 0.5%, the effect of improving the corrosion resistance due to the sacrificial anode effect cannot be sufficiently obtained. On the other hand, if it exceeds 5.5%, the corrosion rate increases, the sacrificial anticorrosion layer disappears early, and the corrosion resistance decreases.
  • a preferable content of Zn is 0.5 to 4.5%.
  • Cu Cu has a precious effect on the pitting corrosion potential.
  • Cu is also concentrated to prevent the pitting corrosion potential of the joint from becoming too low. be able to.
  • the amount of Cu added is 0.1 to 0.6%. If it is less than 0.1%, the effect of making the pitting corrosion potential of the joint portion noble cannot be obtained sufficiently. On the other hand, if it exceeds 0.6%, the pitting corrosion potential of the sacrificial anticorrosive layer becomes noble, the sacrificial anticorrosive effect is lost, and the corrosion resistance decreases.
  • a preferable content of Cu is 0.1 to 0.4%.
  • Fe Fe easily forms an Al—Fe-based or Al—Fe—Si-based intermetallic compound, so that the amount of Si effective for brazing is reduced and brazing properties are lowered.
  • the Fe content is 0.05 to 1.0%. If it is less than 0.05%, high-purity aluminum ingots must be used, resulting in high costs. On the other hand, if it exceeds 1.0%, brazing becomes insufficient due to the above action.
  • a preferable content of Fe is 0.1 to 0.5%.
  • Mn Mn may be contained because it improves strength and corrosion resistance.
  • the Mn content is 0.05 to 1.8%. If it exceeds 1.8%, a giant intermetallic compound is likely to be formed at the time of casting, the plastic workability is lowered, and the potential of the sacrificial anode layer is made noble, so that the sacrificial anode effect is inhibited and the corrosion resistance is lowered. On the other hand, if it is less than 0.05%, the effect cannot be sufficiently obtained.
  • the Mn content is preferably 0.05 to 1.5%.
  • Ti Ti may be contained because it improves strength and improves corrosion resistance by solid solution strengthening.
  • the Ti content is 0.05 to 0.3%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.3%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
  • the Ti content is preferably 0.1 to 0.2%.
  • Zr Zr may be included because it has the effect of improving strength by solid solution strengthening and precipitating Al—Zr-based intermetallic compounds to coarsen the crystal grains after brazing.
  • the Zr content is 0.05 to 0.3%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.3%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
  • the Zr content is preferably 0.1 to 0.2%.
  • Cr Cr may be contained because it has the effect of improving strength by solid solution strengthening and precipitating Al—Cr-based intermetallic compounds to coarsen the crystal grains after brazing.
  • the Cr content is 0.05 to 0.3%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.3%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
  • the Cr content is preferably 0.1 to 0.2%.
  • V V may be contained because it improves the strength by solid solution strengthening and also improves the corrosion resistance.
  • the V content is 0.05 to 0.3%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.3%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
  • the V content is preferably 0.1 to 0.2%.
  • the sacrificial anode material contains Zn: 0.5 to 6.0 mass%, Si: 0.05 to 1.5 mass%, Fe: 0.05 to 2.0 mass% as essential elements, and the balance Al In addition, an aluminum alloy made of inevitable impurities is used.
  • the sacrificial anode material is Mn: 0.05 to 1.8 mass%, Ti: 0.05 to 0.3 mass%, Zr: 0.05 to 0.3 mass%, Cr: 0.05 to 0.3 mass%.
  • V One or more selected from 0.05 to 0.3 mass% may be further contained as a selective additive element. Further, in addition to the above essential elements and selective additive elements, unavoidable impurities may be contained in amounts of 0.05% or less, respectively, and 0.15% or less in total. Below, each component is demonstrated.
  • Zn Zn can lower the pitting corrosion potential, and can improve the corrosion resistance by the sacrificial anode effect by forming a potential difference with the core material.
  • the Zn content is 0.5 to 6.0%. If it is less than 0.5%, the effect of improving the corrosion resistance due to the sacrificial anode effect cannot be sufficiently obtained. On the other hand, if it exceeds 6.0%, the corrosion rate increases, the sacrificial anticorrosion layer disappears early, and the corrosion resistance decreases.
  • a preferable content of Zn is 1.0 to 5.0%.
  • Si Si forms an Al-Fe-Mn-Si-based intermetallic compound together with Fe and Mn, and improves the strength by dispersion strengthening, or improves the strength by solid solution strengthening by solid solution in the aluminum matrix. . Moreover, it reacts with Mg diffusing from the core material during brazing to form a Mg 2 Si compound, thereby improving the strength.
  • the Si content is 0.05 to 1.5%. If the content is less than 0.05%, high-purity aluminum ingots must be used, resulting in high costs.
  • a preferable content of Si is 0.05 to 1.2%.
  • Fe Fe forms an Al—Fe—Mn—Si intermetallic compound together with Si and Mn, and improves strength by dispersion strengthening.
  • the amount of Fe added is 0.05 to 2.0%. If the content is less than 0.05%, high-purity aluminum ingots must be used, resulting in high costs. On the other hand, if it exceeds 2.0%, a giant intermetallic compound is likely to be formed during casting, and the plastic workability is lowered.
  • a preferable content of Fe is 0.05 to 1.5% or less.
  • Mn Mn may be contained because it improves strength and corrosion resistance.
  • the Mn content is 0.05 to 1.8%. If it exceeds 1.8%, a giant intermetallic compound is likely to be formed at the time of casting, the plastic workability is lowered, and the potential of the sacrificial anode material is made noble, so that the sacrificial anode effect is inhibited and the corrosion resistance is lowered. On the other hand, if it is less than 0.05%, the effect is not sufficient.
  • a preferable content of Mn is 0.05 to 1.5%.
  • Ti Ti may be contained because it improves strength and improves corrosion resistance by solid solution strengthening.
  • the Ti content is 0.05 to 0.3%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.3%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
  • the Ti content is preferably 0.05 to 0.2%.
  • Zr Zr may be included because it has the effect of improving strength by solid solution strengthening and precipitating Al—Zr-based intermetallic compounds to coarsen the crystal grains after brazing.
  • the Zr content is 0.05 to 0.3%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.3%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
  • the Zr content is preferably 0.1 to 0.2%.
  • Cr Cr may be contained because it has the effect of improving strength by solid solution strengthening and precipitating Al—Cr-based intermetallic compounds to coarsen the crystal grains after brazing.
  • the Cr content is 0.05 to 0.3%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.3%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
  • the Cr content is preferably 0.1 to 0.2%.
  • V V may be contained because it improves the strength by solid solution strengthening and also improves the corrosion resistance.
  • the V content is 0.05 to 0.3%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.3%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
  • the V content is preferably 0.05 to 0.2%.
  • Mn, Ti, Zr, Cr, and V may be added in the sacrificial anode material as required.
  • Core material for core material Si: 0.05-1.2 mass%, Fe: 0.05-1.0 mass%, Cu: 0.05-1.2 mass%, Mn: 0.6-1.8 mass% are essential An aluminum alloy which is contained as an element and which consists of the balance Al and inevitable impurities is used. Further, the core material is made of Mg: 0.05 to 0.5 mass%, Ti 0.05 to 0.3 mass%, Zr: 0.05 to 0.3 mass%, Cr: 0.05 to 0.3 mass%, and V: 0. One or more selected from 0.05 to 0.3 mass% may be further contained as a selective additive element. Furthermore, in addition to the essential elements and the selective additive elements, unavoidable impurities may be contained in amounts of 0.05% or less, respectively, and 0.15% in total.
  • a JIS 3000 series alloy for example, an Al—Mn series alloy such as JIS 3003 alloy is preferably used. Below, each component is demonstrated below.
  • Si Si forms an Al—Mn—Si-based intermetallic compound together with Mn and improves strength by dispersion strengthening, or by solid solution in an aluminum matrix to improve strength by solid solution strengthening.
  • the Si content is 0.05 to 1.2%. If it is less than 0.05%, the above effect is insufficient, and if it exceeds 1.2%, the melting point of the core material is lowered and the possibility of melting is increased.
  • a preferable content of Si is 0.1 to 1.0%.
  • Fe Fe easily forms an intermetallic compound having a size that can become a recrystallization nucleus, and makes the crystal grain size after brazing coarse so as to suppress the diffusion of the wax from the brazing material to the core material.
  • the Fe content is 0.05 to 1.0%. If it is less than 0.05%, high-purity aluminum ingots must be used, resulting in high costs. On the other hand, if it exceeds 1.0%, the crystal grain size after brazing becomes fine and brazing diffusion may occur.
  • a preferable content of Fe is 0.1 to 0.5%.
  • Cu Cu improves the strength by solid solution strengthening.
  • the Cu content is 0.05 to 1.2%. If it is less than 0.05%, the above effect is insufficient, and if it exceeds 1.2%, there is a high risk of cracking of the aluminum alloy during casting.
  • a preferable content of Cu is 0.3 to 1.0%.
  • Mn Mn forms an Al—Mn—Si-based intermetallic compound together with Si and improves strength by dispersion strengthening, or solid dissolves in an aluminum matrix and improves strength by solid solution strengthening.
  • the Mn content is 0.6 to 1.8%. If the content is less than 0.6%, the above effect is insufficient. If the content exceeds 1.8%, a giant intermetallic compound is easily formed during casting, and the plastic workability is lowered.
  • a preferable content of Mn is 0.8 to 1.6%.
  • Mg Mg may be contained because the strength is improved by precipitation of Mg 2 Si.
  • the Mg content is 0.05 to 0.5%. If it is less than 0.05%, the above effect is insufficient, and if it exceeds 0.5%, brazing becomes difficult.
  • the Mg content is preferably 0.15 to 0.4%.
  • Ti Ti may be contained because it improves the strength by solid solution strengthening.
  • the Ti content is 0.05 to 0.3%. If it is less than 0.05%, the above effect is insufficient. If it exceeds 0.3%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
  • the Ti content is preferably 0.1 to 0.2%.
  • Zr Zr may be included because it has the effect of improving strength by solid solution strengthening and precipitating Al—Zr-based intermetallic compounds to coarsen the crystal grains after brazing.
  • the Zr content is 0.05 to 0.3%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.3%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
  • the Zr content is preferably 0.1 to 0.2%.
  • Cr Cr may be contained because it has the effect of improving strength by solid solution strengthening and precipitating Al—Cr-based intermetallic compounds to coarsen the crystal grains after brazing.
  • the Cr content is 0.05 to 0.3%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.3%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
  • the Cr content is preferably 0.1 to 0.2%.
  • V V may be contained because it improves the strength by solid solution strengthening and also improves the corrosion resistance.
  • the V content is 0.05 to 0.3%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.3%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
  • the V content is preferably 0.1 to 0.2%.
  • Mg, Ti, Zr, Cr, and V may be added to the core material as necessary, if necessary.
  • the joint is filled with molten brazing by being subjected to brazing heat, and the brazing solidifies by subsequent cooling. Joined by.
  • the portion preferentially corrodes.
  • the pitting corrosion potential of the sacrificial anode material surface is the same as or lower than the pitting corrosion potential of the eutectic structure in the brazing material of the joint, the sacrificial anode material surface is preferentially corroded. Therefore, preferential corrosion of the joint does not occur.
  • the pitting corrosion potential of the eutectic structure in the brazing material of the joint is lower than other parts, preferential corrosion occurs at the joint, and this becomes a through hole of the flow path forming component. Note that the pitting corrosion potential of the eutectic structure is the same at the joint and other parts, but the pitting corrosion potential of the eutectic structure other than the joint does not participate in the preferential corrosion of the joint.
  • the brazing material after brazing needs to have a so-called sacrificial anode effect that preferentially corrodes the brazing material surface over the core material.
  • the pitting corrosion potential difference between the brazing filler metal surface and the core material after brazing is 20 mV or more, the sacrificial anode effect due to this potential difference is exhibited, so that the generation of through holes due to corrosion from the brazing filler metal side can be prevented.
  • the pitting corrosion potential difference between the brazing filler metal surface and the core material after brazing is less than 20 mV, the sacrificial anode effect due to this potential difference is not sufficient, and through holes are generated due to corrosion from the brazing filler metal side.
  • the pitting corrosion potential difference between the brazing material surface and the core material after brazing is defined as a value obtained by subtracting the pitting corrosion potential of the brazing material surface from the pitting corrosion potential of the core material after brazing.
  • the eutectic structure and the sacrificial anode material surface in the brazing material of the joint portion, and the brazing material surface and the core material have appropriate pitting corrosion potentials, respectively. It is necessary to have a relationship.
  • the pitting corrosion potential relationship is achieved by adding appropriate amounts of both Zn and Cu to the Al—Si alloy brazing material. That is, by adding Cu to the brazing material, Cu concentrates in the joint after brazing and this concentrated Cu has the effect of making the pitting corrosion potential noble. Can be canceled out.
  • the conditions for brazing are not particularly limited, but it is usually carried out by applying a fluoride-based flux and then heating to about 600 ° C. in a nitrogen atmosphere furnace.
  • the manufacturing process of the highly corrosion-resistant aluminum alloy brazing sheet of the present invention includes a casting process in which the above-described aluminum alloy core material, sacrificial anode material, and Al—Si alloy brazing material are cast into ingots; A hot rolling process in which the anode material and the Al—Si alloy brazing material are each hot-rolled; an Al—Si system in which the hot-rolled sacrificial anode material is superposed on one surface of the ingot for the core material and hot-rolled A hot-clad rolling process in which an alloy brazing material is superposed on the other surface of the ingot for core material, and these are heated and hot-rolled to form a clad material; A cold rolling process; and an annealing process in which annealing is performed during cold rolling or after cold rolling.
  • the heating temperature is usually preferably about 400 to 560 ° C. If it is less than 400 ° C, the plastic workability is poor, so cracks may occur during rolling, and in the case of hot clad rolling, it becomes difficult to press the brazing material and sacrificial anode material against the core material, so hot rolling normally May not be able to do. On the other hand, when the temperature is higher than 560 ° C., the brazing filler metal may be melted during heating.
  • the annealing step is usually preferably performed at about 100 to 560 ° C. for the purpose of reducing processing strain during rolling. If it is less than 100 degreeC, the effect may not be enough, and when it exceeds 560 degreeC, there exists a possibility that a brazing material may fuse
  • the ingot obtained by casting the aluminum alloy core may be subjected to a homogenization treatment step before the hot clad rolling step.
  • the homogenization treatment step is usually preferably performed at 450 to 620 ° C. If the temperature is lower than 450 ° C., the effect may not be sufficient, and if it exceeds 620 ° C., the core material ingot may be melted.
  • the thickness of the highly corrosion-resistant aluminum alloy brazing sheet according to the present invention, the clad rate of the brazing material layer and the sacrificial anode material layer is not particularly limited, for example, when used as a tube material of a heat exchanger for automobiles, A thin brazing sheet of about 0.6 mm or less can be obtained. However, it is not limited to the plate thickness within this range, and it can be used as a relatively thick material of about 0.6 mm or more and about 5 mm or less. Further, the clad rate of the brazing material layer and the sacrificial anode material layer is usually about 2 to 30%.
  • Flow path forming part of automobile heat exchanger A flow path forming part of an automobile heat exchanger, that is, a tube is manufactured using the above-described highly corrosion-resistant aluminum alloy brazing sheet.
  • a brazing sheet as shown in FIG. 3 woven into a B-shaped cross section is brazed by applying a flux and heating to about 600 ° C.
  • a braze alloy having the alloy composition shown in Table 1, a sacrificial anode material alloy having the alloy composition shown in Table 2, and a core alloy having the alloy composition shown in Table 3 were cast by DC casting, respectively, and both sides were faced. Finished. The thickness of the ingot after chamfering was 480 mm.
  • the brazing material and the sacrificial anode material were subjected to a heating process at 520 ° C. for 3 hours and then hot-rolled to a thickness of 60 mm.
  • brazing material shown in Table 1 was combined on one side of the core alloy and the sacrificial anode material shown in Table 2 was combined on the other side.
  • the brazing material and the sacrificial anode material cladding ratio were both 10%.
  • These laminated materials were subjected to a heating process at 520 ° C. for 3 hours, and then subjected to a hot cladding rolling process to produce a three-layer cladding material having a thickness of 3.5 mm.
  • the three-layer clad material was subjected to cold rolling, intermediate annealing held at 400 ° C. for 5 hours, and final cold rolling to produce a brazing sheet sample having a final thickness of 0.3 mm with H1n tempering.
  • the cold rolling rate after the intermediate annealing was 40% in all cases. No problems occur in the above manufacturing process, and if the final plate thickness can be rolled to 0.3 mm, the manufacturability is set to “ ⁇ ”, and cracking occurs during casting or rolling to roll to a final plate thickness of 0.3 mm. If not, the productivity is shown as “x” in Tables 4-6.
  • Table 4 shows the results of subjecting the above brazing sheet samples to the following evaluations. In addition, since the sample was not able to be manufactured for those having the productivity “x” in Table 4, the following evaluation could not be performed. In addition, the items with brazeability “x” in Table 4 were omitted because other items could not be evaluated.
  • a fin material having a thickness of 0.07 mm, a tempered H14, and an alloy component of 3003 alloy with 1.0% Zn added thereto was corrugated to obtain a heat exchanger fin material.
  • the fin material was placed on the brazing material surface of the brazing sheet sample, immersed in a 5% fluoride flux aqueous solution, and subjected to brazing addition heat at 600 ° C. for 3 minutes to prepare a minicore sample.
  • the brazing property is passed (O)
  • the fin joint rate is less than 95% and / or the brazing sheet sample. In the case where melting occurred, the brazing property was determined to be rejected (x).
  • the brazing material surface and the sacrificial anode material surface of the brazing sheet sample were overlapped as shown in FIG. 1, and 5% fluoride flux aqueous solution was applied to the overlapping portion and dried.
  • the entire dried brazing sheet sample was covered with stainless steel foil, and this was subjected to brazing addition heat at 600 ° C. for 3 minutes to prepare a combined sample.
  • NaCl was dissolved in pure water to give a 5 wt% NaCl aqueous solution, and an aqueous solution adjusted to pH 3 by adding acetic acid was prepared.
  • the combined sample was immersed in this aqueous solution, and polarization was measured by scanning the potential from 0 to ⁇ 300 mV using a potentiostat while bubbling with nitrogen gas.
  • the measurement target portions were the brazing material surface, the sacrificial anode material surface, the junction surface, and the core material surface, and masking was performed using an insulating resin so that only the measurement target portion was exposed in each measurement.
  • the measurement was performed by immersing the core material in the NaOH solution to expose the core material.
  • the pitting corrosion potential was read from the anodic polarization curve thus obtained, and the pitting corrosion potential on the sacrificial anode material surface, the pitting corrosion potential on the joint surface, and the pitting corrosion potential difference between the core material and the brazing material surface are shown in Table 4. Shown in The pitting corrosion potential difference between the core material and the brazing material surface is a value obtained by subtracting the pitting corrosion potential on the brazing material surface from the pitting corrosion potential of the core material.
  • each spray solution was an aqueous solution of the components shown in Table 7, the temperature in the test tank was 50 ° C., and the test time was 3000 hours.
  • the corrosion products were removed with concentrated nitric acid, and the depth of the corrosion holes generated on the surface of the sacrificial anode material was measured by the depth of focus method, with the maximum being the corrosion depth.
  • the brazing material side (A side in FIG. 1) of the combined sample was masked with an insulating resin, and the sacrificial anode material surface was used as a test surface.
  • Such a combined sample is immersed in high-temperature water at 88 ° C. containing Cl-500 ppm, SO42-100 ppm, Cu2 + 10 ppm for 8 hours and then allowed to stand at room temperature for 16 hours in a cycle immersion test for 3 months. Provided.
  • the corrosion resistance of the general part was accepted (O) when the brazing sheet did not cause corrosion penetration, and the corrosion resistance of the general part was rejected (X).
  • Comparative Example 11 the brazing property was rejected because the Si component of the brazing material was too small. In Comparative Example 12, the brazing property was rejected because the brazing material contained too much Si component. In Comparative Example 13, since there was too much Cu component in the brazing material, the difference in pitting corrosion potential between the core material and the brazing material surface was too small, and the corrosion resistance on the brazing material side by the liquid C and liquid D was unacceptable. In Comparative Example 14, since the Cu component of the brazing material was too small, the pitting corrosion potential on the surface of the sacrificial anode material became nobler than the pitting corrosion potential on the surface of the joint portion, and the corrosion resistance of the joint portion on the sacrificial anode material side was rejected.
  • Comparative Example 15 since there was too much Zn component in the brazing material, the pitting corrosion potential on the surface of the sacrificial anode material became nobler than the pitting corrosion potential on the surface of the joint portion, and the corrosion resistance of the joint portion on the sacrificial anode material side was unacceptable.
  • Comparative Example 16 since there was too much Zn component in the brazing material, the pitting corrosion potential on the surface of the sacrificial anode material became nobler than the pitting corrosion potential on the surface of the joint portion, and the corrosion resistance of the joint portion on the sacrificial anode material side was unacceptable.
  • Comparative Example 17 since the Zn component of the brazing material was too small, the pitting corrosion potential difference between the core material and the brazing material surface was too small, and the corrosion resistance on the brazing material side of the liquid C and the liquid D was unacceptable. In Comparative Example 18, the brazing property was inferior because there was too much Fe component in the brazing material. In Comparative Example 19, since there were too many components of Mn, Ti, Zr, Cr, and V in the brazing material, cracking occurred during rolling, and a brazing sheet could not be produced, resulting in an unacceptable productivity. In Comparative Example 26, since the sacrificial anode material contained too much Si component, the corrosion resistance of the general part on the sacrificial anode material side failed.
  • Comparative Example 27 the sacrificial anode material had too much Fe component, so that cracking occurred during rolling, and a brazing sheet could not be produced, resulting in an unacceptable productivity.
  • Comparative Example 28 the sacrificial anode material had too many Mn, Ti, Zr, Cr, and V components, so that cracking occurred during rolling, and a brazing sheet could not be produced, resulting in an unacceptable productivity.
  • Comparative Example 29 since the Zn component of the sacrificial anode material was too small, the corrosion resistance of the general part on the sacrificial anode material side was unacceptable.
  • Comparative Example 30 the corrosion resistance of the general part on the side of the sacrificial anode material failed because there was too much Zn component in the sacrificial anode material.
  • Comparative Example 38 the brazing property was rejected because the Si component of the core material was too small.
  • Comparative Example 39 the brazing property was unacceptable because the Mg component of the core was too much.
  • Comparative Example 40 since there was too much Fe component in the core material, cracking occurred during rolling, and a brazing sheet could not be produced, resulting in an unacceptable productivity.
  • Comparative Example 41 since there were too many Ti, Zr, Cr, and V components in the core material, cracking occurred during rolling, and a brazing sheet could not be produced, resulting in an unacceptable productivity.
  • Comparative Example 42 since there was too much Mn component in the core material, cracking occurred during rolling, and a brazing sheet could not be produced, resulting in an unacceptable productivity.
  • Comparative Example 43 since there were too many Cu components in the core material, cracking occurred during casting, and the brazing sheet could not be produced, resulting in an unacceptable productivity.
  • Comparative Example 44 since the Mn component of the core material was too small, the tensile strength after brazing was unacceptable.
  • Comparative Example 45 since the Cu component of the core material was too small, the tensile strength after brazing was unacceptable.
  • Comparative Example 46 since the Si component of the core material was too small, the tensile strength after brazing was unacceptable.
  • an aluminum alloy brazing sheet for a tube material of a heat exchanger in which both inner and outer surfaces of the tube are in a corrosive environment and sacrificial corrosion prevention by fins is difficult on the joint surface with the fins.
  • Such a highly corrosion-resistant aluminum alloy brazing sheet has a sacrificial anti-corrosion effect on both the inside and outside of the tube, and has a brazing function on one side, and can prevent the occurrence of preferential corrosion between tubes.
  • excellent in brazing properties such as fin joint ratio and erosion resistance, light weight, and thermal conductivity.
  • a flow path forming component of an automotive heat exchanger using such a high corrosion resistance aluminum alloy brazing sheet is also provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Laminated Bodies (AREA)

Abstract

 両面に犠牲防食効果を備え、かつ、その片面にはろう付機能を有し、更に優先腐食の発生を防止した高耐食性アルミニウム合金ブレージングシート、ならびに、これを用いた自動車用熱交換器の流路形成部品を提供することを課題とする。上記課題の解決は、アルミニウム合金の心材と、心材の一方の面にクラッドされたアルミニウム合金のろう材と、心材の他方の面にクラッドされたアルミニウム合金の犠牲陽極材とを備え、Si、Zn、Cu、Feをそれぞれ所定の含有範囲としたろう材、Zn、Si、Feをそれぞれ所定の含有範囲とした犠牲陽極材及びSi、Fe、Cu、Mnをそれぞれ所定の含有範囲とした心材の組み合わせである高耐食性アルミニウム合金ブレージングシート、ならびに、これを用いた自動車用熱交換器の流路形成部品による。

Description

高耐食性アルミニウム合金ブレージングシート、ならびに、これを用いた自動車用熱交換器の流路形成部品
 本発明は、高耐食性アルミニウム合金ブレージングシートに関し、詳細には、インタークーラなどの熱交換器における高温圧縮空気や冷媒の通路構成材として好適に使用される高耐食性アルミニウム合金ブレージングシートに関する。更に本発明は、前記高耐食性アルミニウム合金ブレージングシートを用いた自動車用熱交換器の流路形成部品に関する。
 アルミニウム合金は軽量かつ高熱伝導性を備えており、適切な処理により高耐食性が実現できるため、自動車用熱交換器、例えば、ラジエータ、コンデンサ、エバポレータ、ヒータ、インタークーラなどに用いられている。自動車用熱交換器のチューブ材としては、3003合金などのAl-Mn系合金を芯材として、片面には、Al-Si系合金のろう材や、Al-Zn系合金の犠牲陽極材をクラッドした2層クラッド材や、更にもう片面にAl-Si系合金のろう材をクラッドした3層クラッド材が使用されている。熱交換器は通常、このようなクラッド材とコルゲート成形したフィンを組み合わせ、600℃程度の高温でろう付することによって接合される。
 この熱交換器のチューブの内外に腐食性を有する液体が存在すれば、孔食発生によりチューブが貫通したり、均一腐食によってチューブの板厚が減少して耐圧強度が低下し、チューブ材破裂するおそれがある。その結果、内部を循環している空気や冷却水、冷媒の漏洩が生じる危険性がある。従来、例えばラジエータのチューブ内部には冷却水が流れ、チューブ外部は外環境からの腐食性物質、例えば融雪塩などが付着するため、チューブの内外とも腐食環境にある。これに対しては、チューブの内側については犠牲陽極材をクラッドすることで防食しているが、チューブの外側についてはチューブ自体に犠牲層をクラッドすることはせず、フィンにZnを添加するなどして孔食電位を卑化し、フィンによる犠牲防食作用を利用している。チューブの外側がこのような方法で防食可能なのは、付着する腐食性液体の導電性が高いためである。腐食性液体の導電性は、その溶質成分濃度が高いほど高くなる。ラジエータの外部環境においては、融雪塩などの溶質成分が高濃度の腐食性液体が付着するため導電性が高く、そのためフィンの犠牲効果でチューブ全体を十分に防食することができる。
 ところが、最近の自動車に使用される新しい熱交換器においては、チューブの内外ともに犠牲層をクラッドした材料を用いる必要性が生じてきた。一例として、水冷タイプのインタークーラが挙げられる。この場合、チューブの内外面のうち冷却水が接する側の面は従来のラジエータと同様の腐食環境であるため、犠牲陽極材のクラッドが必要である。一方、反対側の面は、排気ガスの混入した圧縮空気が接することとなる。この場合、熱交換器内で冷却された圧縮空気からは、排気ガスが溶解した凝縮水が結露する。この凝縮水は、排気ガス成分である塩化物イオンを含有するので孔食誘起性を有する。そのため、圧縮空気側にも犠牲防食性が必要である。しかしながら、溶質成分が希薄であり、しかも水没環境ではないため、フィンでの犠牲防食は困難である。従って、チューブ材の圧縮空気側となる面は、フィンとのろう付機能と、犠牲防食機能の両方を備える必要が生じる。
 例えば、図2に示すチューブは、ろう材/心材/犠牲陽極材からなる3層のアルミニウム合金ブレージングシートの両端部をろう付して筒状としたものである。ブレージングシートの内面側が犠牲陽極材であり、外面側がAl-Si系合金からなるろう材である。このような従来用いられているAl-Si系合金ろう材にろう付機能に加えて犠牲防食効果を付与するには、これにZnを添加して孔食電位を卑化させる方法が挙げられる。この方法では、ろう付時においてAl-Si系合金から溶融したろうが接合部に集まり、凝固することとなる。Al-Si系合金にはZnが含有されているので、最終凝固部へのZnの濃縮が不可避となる。そうすると、接合部の孔食電位が最も卑となって優先的に腐食が発生する部位となる。図2のチューブ内側は冷却水で満たされているため、このような優先腐食は、図2(a)の矢印Dで示すように、接合部の一端から他端に向けて進行し、最終的には、図2(b)に示すような腐食部分となる。
 ろう付機能と犠牲防食効果の両方を有するクラッド層を持つブレージングシートは、特許文献1及び2に記載されている。これらブレージングシートは、主にチューブ内部を冷却水が流れるラジエータに用いられ、図3に示すように、B型断面形状に成形されたC部におけるろう付補助を目的とする。しかしながら、これらの技術によるブレージングシートでは、チューブ外部についてはチューブ材自身による犠牲防食は考慮されておらず、外気側のチューブ材には通常のAl-Si系合金ろう材がクラッドされているのみである。このように、これら特許文献では、チューブ材同士の接合部における優先腐食については何ら考慮されていない。
 すなわち、特許文献1に記載されるブレージングシートは、B型形状でのチューブ材同士のろう付を可能としている。クラッド層の成分については、通常用いられるAl-Si系合金ろう材よりもSi量を低く抑えることで、ろうの流動による犠牲防食効果の減少を防いでいる。しかしながら、ろう材のZn添加量については7%以下とされているだけであり、接合部へのZn濃縮を抑制することについては考慮されていない。このように、特許文献1においては、チューブ接合部の優先腐食の防止が図られていない。
 一方、特許文献2に記載されるろう付機能と犠牲防食効果を合わせ持つクラッド層には、SiとZnの他にCuやMnが添加されている。しかしながら、CuやMnの添加目的は強度の向上であり、チューブ接合部の優先腐食の防止のためのものではない。また、このクラッド層による犠牲防食は冷却水側を対象としており、大気側は従来通りのろう材合金である4045合金や4343合金が用いられており、チューブ材のクラッド層による大気側の防食については考慮されていない。
特開2008-188616号公報 特表2011-524254号公報
 上述のように、アルミニウム合金ブレージングシートを例えば熱交換器のチューブ材として用いる際に、チューブの内外両面が腐食環境にあり、フィンとの接合面においてフィンによる犠牲防食が困難な場合において、チューブの内外両面に犠牲防食効果を備え、かつ、内外両面のうちの片面にはろう付機能を有し、更にチューブ同士の優先腐食が発生しないアルミニウム合金ブレージングシートを提供することは、従来の技術では困難であった。
 本発明は、斯かる問題点を解消するべく完成したものであって、アルミニウム合金ブレージングシートにおいて、両面に犠牲防食効果を備え、かつ、その片面にはろう付機能を有し、更にろう付接合部における優先腐食を防止し、ろう付時において溶融ろうの心材への拡散がない良好なろう付性を発揮する高耐食性アルミニウム合金ブレージングシート、ならびに、これを用いた自動車用熱交換器の流路形成部品の提供を目的とする。このような高耐食性アルミニウム合金ブレージングシートは、自動車用熱交換器の流路形成部品として好適に使用できる。
 本発明者らは上記課題について鋭意研究を重ねた結果、それぞれが特定の合金組成を有するろう材、心材及び犠牲陽極材をクラッドした材料がその課題を解決することができることを見出し、本発明を完成させるに至った。
 具体的には、本発明は第1の側面において、アルミニウム合金の心材と、当該心材の一方の面にクラッドされたろう材と、前記心材の他方の面にクラッドされた犠牲陽極材とを備えるアルミニウム合金ブレージングシートにおいて、前記ろう材が、Si:2.5~13.0mass%、Zn:0.5~5.5mass%、Cu:0.1~0.6mass%、Fe:0.05~1.0mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記犠牲陽極材が、Zn:0.5~6.0mass%、Si:0.05~1.5mass%、Fe:0.05~2.0mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記心材が、Si:0.05~1.2mass%、Fe:0.05~1.0mass%、Cu:0.05~1.2mass%、Mn:0.6~1.8mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなることを特徴とする高耐食性アルミニウム合金ブレージングシートとした。
 本発明の第2の側面では、前記第1の側面において、前記ろう材及び犠牲陽極材の少なくともいずれか一方が、前記各成分元素の他に、Mn:0.05~1.8mass%、Ti:0.05~0.3mass%、Zr:0.05~0.3mass%、Cr:0.05~0.3mass%及びV:0.05~0.3mass%から選択される1種以上を更に含有するものとすることができる。
 本発明の第3の側面では、前記第1又は第2の側面において、前記心材が、前記各成分元素の他に、Mg:0.05~0.5mass%、Ti0.05~0.3mass%、Zr:0.05~0.3mass%、Cr:0.05~0.3mass%及びV:0.05~0.3mass%から選択される1種以上を更に含有するものとすることができる。
 本発明の第4の側面では、前記第1~第3の側面のいずれかにおいて、ろう付加熱後におけるろう材表面と心材との孔食電位差が20mV以上であり、かつ、ろう付加熱後における犠牲陽極材表面の孔食電位が、ろう材における共晶組織の孔食電位と同一又はそれより卑であるものとすることができる。
 本発明の第5の側面では、前記第1~第4の側面のいずれかにおいて、高耐食性アルミニウム合金ブレージングシートが、その一方の表面が冷却用液体の流路を形成し他方の表面が空気に接する自動車用熱交換器の流路形成部品として成形され、前記他方の表面には溶質濃度の合計値が10000ppm以下であり、かつ、塩化物イオンを5ppm以上500ppm以下含有する凝縮水が生成する環境で使用されるものとすることができる。
 更に、本発明は第6の側面において、第5の側面における高耐食性アルミニウム合金ブレージングシートをろう付することによって製造される自動車用熱交換器の流路形成部品を得ることができる。
 本発明によれば、アルミニウム合金ブレージングシートを例えば熱交換器のチューブ材として用いる際に、チューブの内外両面が腐食環境にあり、かつ、フィンとの接合面においてフィンによる犠牲防食が困難である場合において、チューブの内外両面に犠牲防食効果を備え、かつ、その片面にはろう付機能を有し、更にチューブ同士の優先腐食の発生を防止した高耐食性アルミニウム合金ブレージングシート、ならびに、これを用いた自動車用熱交換器の流路形成部品が提供される。このブレージングシートはフィン接合率、耐エロージョン性などろう付性にも優れ、更に軽量性や良好な熱伝導性の観点から、自動車用の熱交換器チューブ材として好適に用いられる。
本発明に係る高耐食性アルミニウム合金ブレージングシートの孔食電位の測定、および犠牲材側の腐食試験に供するための試料を示す模式図である。 3層のアルミニウム合金ブレージングシートからなるチューブの優先腐食を示す説明図である。 アルミニウム合金ブレージングシートからなるB型断面形状に成形されたチューブの断面図である。
 本発明に係る高耐食性アルミニウム合金ブレージングシート及びその製造方法の好適な実施態様について、詳細に説明する。
1.腐食環境
 まず、本発明が従来技術に対して特に優位性を発揮し、かつ、高耐食性などの効果が最大限に発揮される腐食環境について説明する。本発明に係る高耐食性アルミニウム合金ブレージングシートは、例えば自動車用熱交換器の流路形成部品として用いられる際に、一方の面は冷却用液体の流路を形成し、他方の面は空気に接する。そして、他方の面の表面に溶質濃度の合計値が1000ppm以下であり、かつ、塩化物イオンを5ppm以上含有する凝縮水が生成する場合に、上記効果が最大限に発揮されるものである。
 このような腐食環境では、凝縮液は孔食誘起性を有するため犠牲防食が必要であるが、溶質濃度が低濃度であり、しかも水没環境ではないためフィンによる犠牲防食が有効に作用しない。そこで、従来用いられているようなAl-Si系合金ろう材にZnを添加して、チューブ材自身に犠牲防食効果を持たせることが考えられる。しかしながら、チューブ材同士の接合部にZnが濃縮し、このZn濃縮部が優先腐食を起こしてしまう問題が生じる。
 本発明に係る高耐食性アルミニウム合金ブレージングシートは、このような問題点を特に有効に解決するためのものである。凝縮液の塩化物イオン濃度が500ppm以下で、なおかつ溶質濃度の合計値が10000ppm以下の場合には、フィンによる犠牲防食が有効に発揮されないので、本発明の効果が一層有効となる。なお、凝縮液の溶質濃度が10000ppm以下の場合であっても、その反対面が冷却水のような腐食環境でなければ、チューブ接合部の優先腐食が発生する可能性は低い。また、凝縮液の塩化物イオン濃度が5ppm以上の場合には、凝縮水が孔食誘起性を有するので、本発明の効果が一層有効となる。
 次に、本発明に係る高耐食性アルミニウム合金ブレージングシートを構成するろう材、犠牲陽極材及び心材について説明する。
2.ろう材
 ろう材には、Si:2.5~13.0mass%、Zn:0.5~5.5mass%、Cu:0.1~0.6mass%、Fe:0.05~1.0mass%を必須元素として含有し、残部Al及び不可避的不純物からなるアルミニウム合金が用いられる。
 また、ろう材は、Mn:0.05~1.8mass%、Ti:0.05~0.3mass%、Zr:0.05~0.3mass%、Cr:0.05~0.3mass%及びV:0.05~0.3mass%から選択される1種以上を選択的添加元素として更に含有してもよい。更に、上記必須元素及び選択的添加元素の他に不可避的不純物を、各々0.05%以下、全体で0.15%以下含有していてもよい。以下に、各成分について説明する。
2-1.Si
 Siを添加することによりろう材の融点が低下して液相を生じさせ、これによってろう付を可能にする。Si含有量は2.5~13.0mass%(以下、単に「%」と記す)である。2.5%未満では、生じる液相が僅かでありろう付が機能し難くなる。一方、13.0%を超えると、例えばフィンなどの相手材へ拡散するSi量が過剰となり、相手材の溶融が発生してしまう。Siの好ましい含有量は、3.5~12.0%である。
2-2.Zn
 Znは孔食電位を卑にすることができ、心材との電位差を形成することで犠牲陽極効果により耐食性を向上することができる。Znの含有量は0.5~5.5%である。0.5%未満では、犠牲陽極効果による耐食性向上の効果が十分に得られない。一方、5.5%を超えると、腐食速度が速くなり早期に犠牲防食層が消失して耐食性が低下する。Znの好ましい含有量は、0.5~4.5%である。
2-3.Cu
 Cuは、孔食電位を貴に作用を有する。適切量のCuが添加された場合には、前述のようにチューブ接合部にZnが濃縮しても、Cuも同じく濃縮するために、接合部の孔食電位が卑になり過ぎることを防止することができる。Cuの添加量は0.1~0.6%である。0.1%未満では接合部の孔食電位を貴化する効果が十分に得られない。一方、0.6%を超えると、犠牲防食層の孔食電位が貴になってしまい、犠牲防食効果を損失して耐食性が低下する。Cuの好ましい含有量は、0.1~0.4%である。
2-4.Fe
 FeはAl-Fe系やAl-Fe-Si系の金属間化合物を形成し易いために、ろう付に有効となるSi量を低下させ、ろう付性の低下を招く。Fe含有量は、0.05~1.0%である。0.05%未満では、高純度アルミニウム地金を使用しなければならずコスト高を招く。一方、1.0%を超えると、上記作用によりろう付が不十分となる。Feの好ましい含有量は、0.1~0.5%である。
2-5.Mn
 Mnは、強度と耐食性を向上させるので含有させてもよい。Mnの含有量は、0.05~1.8%である。1.8%を超えると鋳造時に巨大金属間化合物が形成され易くなり、塑性加工性を低下させ、また犠牲陽極層の電位を貴にするため、犠牲陽極効果を阻害して耐食性を低下させる。一方、0.05%未満では、その効果が十分得られない。Mn含有量は、好ましくは0.05~1.5%である。
2-6.Ti
 Tiは、固溶強化により強度を向上させると共に耐食性も向上させるので含有させてもよい。Ti含有量は、0.05~0.3%である。0.05%未満では、上記効果が得られない。0.3%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Ti含有量は、好ましくは0.1~0.2%である。
2-7.Zr
 Zrは、固溶強化により強度を向上させると共にAl-Zr系の金属間化合物を析出させてろう付後の結晶粒を粗大化する作用を有するので含有させてもよい。Zr含有量は、0.05~0.3%である。0.05%未満では上記効果が得られない。0.3%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Zr含有量は、好ましくは0.1~0.2%である。
2-8.Cr
 Crは、固溶強化により強度を向上させると共にAl-Cr系の金属間化合物を析出させてろう付後の結晶粒を粗大化する作用を有するので含有させてもよい。Cr含有量は、0.05~0.3%である。0.05%未満では上記効果が得られない。0.3%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Cr含有量は、好ましくは0.1~0.2%である。
2-9.V
 Vは、固溶強化により強度を向上させると共に耐食性も向上させるので含有させてもよい。V含有量は、0.05~0.3%である。0.05%未満では上記効果が得られない。0.3%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。V含有量は、好ましくは0.1~0.2%である。
 これらMn、Ti、Zr、Cr、Vは、ろう材中に必要により少なくとも1種が添加されていればよい。
3.犠牲陽極材
 犠牲陽極材には、Zn:0.5~6.0mass%、Si:0.05~1.5mass%、Fe:0.05~2.0mass%を必須元素として含有し、残部Al及び不可避的不純物からなるアルミニウム合金が用いられる。
 また、犠牲陽極材は、Mn:0.05~1.8mass%、Ti:0.05~0.3mass%、Zr:0.05~0.3mass%、Cr:0.05~0.3mass%及びV:0.05~0.3mass%から選択される1種以上を選択的添加元素として更に含有してもよい。更に、上記必須元素及び選択的添加元素の他に不可避的不純物を、各々0.05%以下、全体で0.15%以下含有していてもよい。以下に、各成分について説明する。
3-1.Zn
 Znは孔食電位を卑にすることができ、心材との電位差を形成することで犠牲陽極効果により耐食性を向上することができる。Znの含有量は0.5~6.0%である。0.5%未満では、犠牲陽極効果による耐食性向上の効果が十分に得られない。一方、6.0%を超えると、腐食速度が速くなり早期に犠牲防食層が消失して耐食性が低下する。Znの好ましい含有量は、1.0~5.0%である。
3-2.Si
 Siは、Fe、MnとともにAl-Fe-Mn-Si系の金属間化合物を形成し、分散強化により強度を向上させ、或いは、アルミニウム母相中に固溶して固溶強化により強度を向上させる。また、ろう付時に心材から拡散してくるMgと反応してMgSi化合物を形成することで、強度を向上させる。Siの含有量は、0.05~1.5%である。含有量が0.05%未満では、高純度アルミニウム地金を使用しなければならずコスト高となる。一方、1.5%を超えると犠牲陽極材の融点が低下して溶融してしまい、また、犠牲陽極材の電位を貴にするため、犠牲陽極効果を阻害して耐食性を低下させる。Siの好ましい含有量は、0.05~1.2%である。
3-3.Fe
 Feは、Si、MnとともにAl-Fe-Mn-Si系の金属間化合物を形成し、分散強化により強度を向上させる。Feの添加量は、0.05~2.0%である。含有量が0.05%未満では、高純度アルミニウム地金を使用しなければならずコスト高となる。一方、2.0%を超えると鋳造時に巨大金属間化合物が形成され易くなり、塑性加工性を低下させる。Feの好ましい含有量は、0.05~1.5%以下である。
3-4.Mn
 Mnは、強度と耐食性を向上させるので含有させてもよい。Mnの含有量は、0.05~1.8%である。1.8%を超えると鋳造時に巨大金属間化合物が形成され易くなり、塑性加工性を低下させ、また犠牲陽極材の電位を貴にするため、犠牲陽極効果を阻害して耐食性を低下させる。一方、0.05%未満では、その効果が十分でない。Mnの好ましい含有量は、0.05~1.5%である。
3-5.Ti
 Tiは、固溶強化により強度を向上させると共に耐食性も向上させるので含有させてもよい。Ti含有量は、0.05~0.3%である。0.05%未満では、上記効果が得られない。0.3%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Ti含有量は、好ましくは0.05~0.2%である。
3-6.Zr
 Zrは、固溶強化により強度を向上させると共にAl-Zr系の金属間化合物を析出させてろう付後の結晶粒を粗大化する作用を有するので含有させてもよい。Zr含有量は、0.05~0.3%である。0.05%未満では上記効果が得られない。0.3%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Zr含有量は、好ましくは0.1~0.2%である。
3-7.Cr
 Crは、固溶強化により強度を向上させると共にAl-Cr系の金属間化合物を析出させてろう付後の結晶粒を粗大化する作用を有するので含有させてもよい。Cr含有量は、0.05~0.3%である。0.05%未満では上記効果が得られない。0.3%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Cr含有量は、好ましくは0.1~0.2%である。
3-8.V
 Vは、固溶強化により強度を向上させると共に耐食性も向上させるので含有させてもよい。V含有量は、0.05~0.3%である。0.05%未満では上記効果が得られない。0.3%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。V含有量は、好ましくは0.05~0.2%である。
 これらMn、Ti、Zr、Cr及びVは、犠牲陽極材中に必要により少なくとも1種が添加されていればよい。
4.心材
 心材には、Si:0.05~1.2mass%、Fe:0.05~1.0mass%、Cu:0.05~1.2mass%、Mn:0.6~1.8mass%を必須元素として含有し、残部Al及び不可避的不純物からなるアルミニウム合金が用いられる。
 また、心材は、Mg:0.05~0.5mass%、Ti0.05~0.3mass%、Zr:0.05~0.3mass%、Cr:0.05~0.3mass%及びV:0.05~0.3mass%から選択される1種以上を選択的添加元素として更に含有してもよい。
 更に、上記必須元素及び選択的添加元素の他に不可避的不純物を、各々0.05%以下、全体で0.15%含有していてもよい。
 本発明の心材に用いるアルミニウム合金は、JIS 3000系合金、例えばJIS 3003合金等のAl-Mn系合金が好適に用いられる。以下に、各成分について以下に説明する。
4-1.Si
 Siは、Mnと共にAl-Mn-Si系の金属間化合物を形成し、分散強化により強度を向上させ、或いは、アルミニウム母相中に固溶して固溶強化により強度を向上させる。Si含有量は、0.05~1.2%である。0.05%未満では上記効果が不十分となり、1.2%を超えると心材の融点が低下して溶融が生じるおそれが高くなる。Siの好ましい含有量は、0.1~1.0%である。
4-2.Fe
 Feは、再結晶核となり得るサイズの金属間化合物を形成し易く、ろう付後の結晶粒径を粗大にしてろう材から心材へのろうの拡散を抑制する。Fe含有量は、0.05~1.0%である。0.05%未満では、高純度アルミニウム地金を使用しなければならずコスト高となる。一方、1.0%を超えるとろう付後の結晶粒径が微細となり、ろう拡散が生じるおそれがある。Feの好ましい含有量は、0.1~0.5%である。
4-3.Cu
 Cuは、固溶強化により強度を向上させる。Cu含有量は、0.05~1.2%である。0.05%未満では上記効果が不十分となり、1.2%を超えると鋳造時におけるアルミニウム合金の割れ発生のおそれが高くなる。Cuの好ましい含有量は、0.3~1.0%である。
4-4.Mn
 Mnは、Siと共にAl-Mn-Si系の金属間化合物を形成し、分散強化により強度を向上させ、或いは、アルミニウム母相中に固溶して固溶強化により強度を向上させる。Mn含有量は、0.6~1.8%である。0.6%未満では上記効果が不十分となり、1.8%を超えると鋳造時に巨大金属間化合物が形成され易くなり、塑性加工性を低下させる。Mnの好ましい含有量は、0.8~1.6%である。
4-5.Mg
 Mgは、MgSiの析出により強度を向上させるので含有させてもよい。Mg含有量は、0.05~0.5%である。0.05%未満では上記効果が不十分となり、0.5%を超えるとろう付が困難となる。Mg含有量は、好ましくは0.15~0.4%である。
4-6.Ti
 Tiは、固溶強化により強度を向上させるので含有させてもよい。Ti含有量は、0.05~0.3%である。0.05%未満では上記効果が不十分となる。0.3%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Ti含有量は、好ましくは0.1~0.2%である。
4-7.Zr
 Zrは、固溶強化により強度を向上させると共にAl-Zr系の金属間化合物を析出させてろう付後の結晶粒を粗大化する作用を有するので含有させてもよい。Zr含有量は、0.05~0.3%である。0.05%未満では上記効果が得られない。0.3%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Zr含有量は、好ましくは0.1~0.2%である。
4-8.Cr
 Crは、固溶強化により強度を向上させると共にAl-Cr系の金属間化合物を析出させてろう付後の結晶粒を粗大化する作用を有するので含有させてもよい。Cr含有量は、0.05~0.3%である。0.05%未満では上記効果が得られない。0.3%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Cr含有量は、好ましくは0.1~0.2%である。
4-9.V
 Vは、固溶強化により強度を向上させると共に耐食性も向上させるので含有させてもよい。V含有量は、0.05~0.3%である。0.05%未満では上記効果が得られない。0.3%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。V含有量は、好ましくは0.1~0.2%である。
 これらMg、Ti、Zr、Cr及びVは、心材中に必要により少なくとも1種が添加されていればよい。
5.ろう付加熱後の孔食電位
 例えば図2のように成形されたチューブでは、ろう付加熱に供されることにより、溶融したろうでその接合部が満たされ、その後の冷却によりろうが凝固することによって接合される。ろう付後のチューブにおいて、周囲よりも孔食電位の卑な部位が存在すれば、その部位が優先的に腐食を起こす。このようなろう付後の状態において、犠牲陽極材表面の孔食電位が接合部のろう材における共晶組織の孔食電位と同一又はそれよりも卑であれば、犠牲陽極材表面が優先腐食するため接合部の優先腐食は発生しない。しかしながら、接合部のろう材における共晶組織の孔食電位が他の部位よりも卑であると接合部において優先腐食が発生し、これが流路形成部品の貫通孔となってしまう。なお、共晶組織の孔食電位は接合部においてもそれ以外の部位においても同じとなるが、接合部以外の共晶組織の孔食電位は、接合部の優先腐食に関与することは無い。
 一方、ろう付後のろう材に関しては、ろう材表面を心材よりも優先腐食させる、いわゆる犠牲陽極効果を持たせる必要がある。ろう付後におけるろう材表面と心材との孔食電位差が20mV以上である場合、この電位差による犠牲陽極効果が発揮されるため、ろう材側からの腐食による貫通孔の発生を防ぐことができる。ろう付後のろう材表面と心材との孔食電位差が20mV未満である場合、この電位差による犠牲陽極効果が十分でないため、ろう材側からの腐食により貫通孔が発生してしまう。ここで、ろう付後におけるろう材表面と心材との孔食電位差とは、ろう付後における心材の孔食電位からろう材表面の孔食電位を差し引いた値として定義される。
 以上のように、本発明に係るブレージングシートは、ろう付後の状態において、接合部のろう材における共晶組織と犠牲陽極材表面、ならびに、ろう材表面と心材が、それぞれ適切な孔食電位の関係を有している必要がある。本発明においては、Al-Si系合金ろう材にZnとCuの両方をそれぞれ適量添加することにより、前記孔食電位の関係を達成するものである。すなわち、ろう材にCuを添加することにより、ろう付後の接合部においてCuが濃縮しこの濃縮したCuが孔食電位を貴化させる効果を奏するため、Znの濃縮による孔食電位の卑化を打ち消すことができるものである。
 なお、ここでのろう付における条件については特に限定されるものではないが、通常はフッ化物系のフラックスを塗布した後、窒素雰囲気炉において600℃程度に加熱されることにより実施される。
6.製造方法
 本発明の高耐食性アルミニウム合金ブレージングシートの製造工程は、上記のアルミニウム合金心材、犠牲陽極材、Al-Si系合金ろう材をそれぞれ鋳造して鋳塊となす鋳造工程と;鋳塊した犠牲陽極材とAl-Si系合金ろう材をそれぞれ熱間圧延する熱間圧延工程と;熱間圧延した犠牲陽極材を心材用鋳塊の一方の面に重ね合わせ、熱間圧延したAl-Si系合金ろう材を心材用鋳塊の他方の面に重ね合わせて、これらを加熱して熱間圧延を行ってクラッド材とする熱間クラッド圧延工程と;得られたクラッド材を冷間圧延する冷間圧延工程と;冷間圧延の途中又は冷間圧延の後に焼鈍を行う焼鈍工程と;を備える。
 鋳造工程における条件に特に制限は無いが、通常は水冷式の半連続鋳造によって行われる。熱間圧延工程及び熱間クラッド圧延工程において、その加熱温度は通常は400~560℃程度で行うのが好ましい。400℃未満では塑性加工性が乏しいため圧延時にコバ割れなどを生じる場合があり、また熱間クラッド圧延の場合は心材に対してろう材や犠牲陽極材の圧着が困難となり、正常に熱間圧延を行うことができない場合がある。一方、560℃より高温の場合には、加熱中にろう材が溶融してしまうおそれがある。
 焼鈍工程は圧延中の加工ひずみを低減させる目的で、通常は100~560℃程度で行うのが好ましい。100℃未満ではその効果が十分でない場合があり、560℃を超えるとろう材が溶融してしまうおそれがある。なお、焼鈍工程にはバッチ式の炉を用いても、連続式の炉を用いても良い。また、焼鈍工程は冷間圧延工程の途中又は冷間圧延工程の後に少なくとも1回以上行われるものであるが、その実施回数に上限は無い。
 アルミニウム合金心材を鋳造して得られる鋳塊を、熱間クラッド圧延工程の前に均質化処理工程に供しても良い。均質化処理工程は、通常は450~620℃で行うことが好ましい。温度が450℃未満ではその効果が十分でない場合があり、620℃を超えると心材鋳塊の溶融を生じてしまうおそれがある。
 本発明に係る高耐食性アルミニウム合金ブレージングシートの厚さ、ろう材層や犠牲陽極材層のクラッド率には特に制限はないが、例えば自動車用熱交換器のチューブ材として使う場合には、通常、約0.6mm程度以下の薄肉ブレージングシートとすることができる。ただし、この範囲内の板厚に限定されるものではなく、0.6mm程度以上、5mm程度以下の比較的厚肉の材料として使用することも可能である。また、ろう材層や犠牲陽極材層のクラッド率は、通常は2~30%程度である。
7.自動車用熱交換器の流路形成部品
 上述の高耐食性アルミニウム合金ブレージングシートを用いて、自動車用熱交換器の流路形成部品、すなわち、チューブが製造される。例えば、図3に示すようなブレージングシートをB型断面形状に織り込んだものを、フラックスを塗布して600℃程度に加熱することによりろう付するものである。
 次に、本発明例と比較例に基づいて本発明を更に詳細に説明するが、本発明はこれらに制限されるものではない。
 表1に示す合金組成を有するろう材合金、表2に示す合金組成を有する犠牲陽極材合金、表3に示す合金組成を有する心材合金をそれぞれDC鋳造により鋳造し、各々両面を面削して仕上げた。面削後の鋳塊厚さは、いずれも480mmとした。ろう材及び犠牲陽極材については、520℃で3時間の加熱工程に供した後、厚さ60mmまで熱間圧延した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 これらの合金を用い、心材合金の一方の面には表1のろう材を、他方の面には表2の犠牲陽極材を組み合わせた。ろう材及び犠牲陽極材クラッド率は、いずれも10%とした。これらの合わせ材を520℃で3時間の条件で加熱工程に供した後、熱間クラッド圧延工程にかけ、3.5mm厚さの3層クラッド材を作製した。この3層クラッド材に冷間圧延、400℃で5時間保持の中間焼鈍、ならびに、最終冷間圧延を施して、H1n調質の最終板厚0.3mmのブレージングシート試料を作製した。中間焼鈍後の冷間圧延率は、いずれも40%とした。以上の製造工程において問題が発生せず、0.3mmの最終板厚まで圧延できた場合は製造性を「○」とし、鋳造時や圧延時に割れが生じて0.3mmの最終板厚まで圧延できなかった場合は製造性を「×」として表4~6に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 上記ブレージングシート試料を下記の各評価に供した結果を、表4に示す。なお、表4における製造性「×」のものについては試料を製造できなかったため、下記評価は行なうことができなかった。また、表4におけるろう付性「×」のものについては、評価不可能な項目があるため、その他の評価を省略した。
 (ろう付性の評価)
 厚さ0.07mm、調質H14、合金成分は3003合金に1.0%のZnを添加したフィン材を用意し、これをコルゲート成形して熱交換器フィン材とした。このフィン材を上記ブレージングシート試料のろう材面に配置し、5%のフッ化物フラックス水溶液中に浸漬し、600℃で3分のろう付加熱に供して、ミニコア試料を作製した。このミニコア試料のフィン接合率が95%以上であり、かつ、ブレージングシート試料に溶融が生じていない場合をろう付性が合格(○)とし、フィン接合率が95%未満及び/又はブレージングシート試料に溶融が生じた場合をろう付性が不合格(×)とした。
 (ろう付後における引張強さの測定)
 600℃で3分の熱処理(ろう付加熱に相当)を施したブレージングシート試料を、引張速度10mm/分、ゲージ長50mmの条件で、JIS Z2241に従って引張試験に供した。得られた応力-ひずみ曲線から引張強さを読み取った。その結果、引張強さが150MPa以上の場合を合格(○)とし、それ未満を不合格(×)とした。
 (孔食電位の測定)
 上記ブレージングシート試料のろう材面と犠牲陽極材面を、図1に示すように重ね合わせ、重なっている部分には5%のフッ化物フラックス水溶液を塗布して乾燥させた。次いで、乾燥させたブレージングシート試料の全体をステンレス箔で覆い、これを600℃で3分のろう付加熱に供して合わせ試料を作製した。純水にNaClを溶解して5重量%のNaCl水溶液とし、これに酢酸を添加してpH3にした水溶液を調整した。
 この水溶液に前記合わせ試料を浸漬し、窒素ガスでバブリングしながら、ポテンショスタッドを用いて0~-300mVまで電位を走査させて分極測定を行った。なお、測定対象部位はろう材表面、犠牲陽極材表面、接合部表面、心材表面であり、それぞれの測定において測定対象部位だけが露出するよう、絶縁樹脂を用いてマスキングを行った。心材の測定においては、NaOH溶液に浸漬して心材を露出させて測定を行った。このようにして得られたアノード分極曲線から孔食電位を読み取り、犠牲陽極材表面の孔食電位、接合部表面の孔食電位、ならびに、心材とろう材表面との孔食電位差を、表4に示す。なお、心材とろう材表面との孔食電位差とは、心材の孔食電位からろう材表面の孔食電位を差し引いた値である。
 (ろう材側耐食性)
 ろう付性の評価にて用いたものと同じミニコア試料を用い、ブレージングシートの犠牲陽極材表面を絶縁樹脂でマスキングしてろう材面を試験面とし、JIS-H8502に基づいて1000時間のCASS試験に供した。その結果、ブレージングシートに腐食貫通の生じなかったものをCASSの耐食性合格(○)とし、生じたものをCASSの耐食性不合格(×)とした。
 更に、同様にマスキングしたミニコア試料をサイクル腐食試験機にて、噴霧2時間(噴霧量1~2ml/80cm/h)、乾燥2時間(相対湿度20~30%)、湿潤2時間(相対湿度95%以上)のサイクル腐食試験に供した。噴霧液はそれぞれ表7に示す成分の水溶液であり、試験槽内の温度は50℃、試験時間は3000時間とした。試験終了後、濃硝酸によって腐食生成物を除去し、犠牲陽極材面に発生した腐食孔の深さを焦点深度法により測定し、最大のものを腐食深さとした。水溶液A、B、C、Dでの評価において、腐食深さが100μm未満であった場合を優秀(◎)とし、腐食深さが100μ以上150μm未満であった場合を合格(○)とし、腐食深さが150μm以上であった場合を不合格(×)とした。
Figure JPOXMLDOC01-appb-T000007
 (犠牲材側耐食性)
 前記合せ試料のろう材側(図1のA側)を絶縁樹脂によってマスキングし、犠牲陽極材面を試験面とした。このような合せ試料を、Cl-500ppm、SO42-100ppm、Cu2+10ppmを含有する88℃の高温水中で8時間浸漬し、次いで室温で16時間放置する工程を1サイクルとするサイクル浸漬試験に3ヶ月間供した。その結果、ブレージングシートに腐食貫通の生じなかったものを一般部の耐食性合格(○)とし、生じたものを一般部の耐食性不合格(×)とした。また、接合部の剥がれが生じなかったものを接合部の耐食性合格(○)とし、腐食によって接合部の剥がれが生じたものを接合部の耐食性不合格(×)とした。
 本発明例1~10、20~25、31~37では、本発明で規定する条件を満たしており、製造性、ろう付性、ろう付後の引張強さ及び耐食性のいずれも合格であった。
 これに対して、比較例11では、ろう材のSi成分が少な過ぎたためろう付性が不合格であった。
 比較例12では、ろう材のSi成分が多過ぎたためろう付性が不合格であった。
 比較例13では、ろう材のCu成分が多過ぎたため心材とろう材表面との孔食電位差が小さ過ぎ、液Cおよび液Dによるろう材側での耐食性が不合格であった。
 比較例14では、ろう材のCu成分が少な過ぎたため犠牲陽極材表面の孔食電位が接合部表面の孔食電位より貴となり、犠牲陽極材側の接合部の耐食性が不合格であった。
 比較例15では、ろう材のZn成分が多過ぎたため犠牲陽極材表面の孔食電位が接合部表面の孔食電位より貴となり、犠牲陽極材側の接合部の耐食性が不合格であった。
 比較例16では、ろう材のZn成分が多過ぎたため犠牲陽極材表面の孔食電位が接合部表面の孔食電位より貴となり、犠牲陽極材側の接合部の耐食性が不合格であった。
 比較例17では、ろう材のZn成分が少な過ぎたため心材とろう材表面との孔食電位差が小さ過ぎ、液Cおよび液Dのろう材側での耐食性が不合格であった。
 比較例18では、ろう材のFe成分が多過ぎたためろう付性が劣った。
 比較例19では、ろう材のMn、Ti、Zr、Cr、V成分が多過ぎたため圧延時に割れが生じ、ブレージングシートを作製することができず製造性が不合格であった。
 比較例26では、犠牲陽極材のSi成分が多過ぎたため犠牲陽極材側の一般部の耐食性が不合格であった。
 比較例27では、犠牲陽極材のFe成分が多過ぎたため圧延時に割れが生じ、ブレージングシートを作製することができず製造性が不合格であった。
 比較例28では、犠牲陽極材のMn、Ti、Zr、Cr、V成分が多過ぎたため圧延時に割れが生じ、ブレージングシートを作製することができず製造性が不合格であった。
 比較例29では、犠牲陽極材のZn成分が少な過ぎたため犠牲陽極材側の一般部の耐食性が不合格であった。
 比較例30では、犠牲陽極材のZn成分が多過ぎたため犠牲陽極材側の一般部の耐食性が不合格であった。
 比較例38では、心材のSi成分が少な過ぎたためろう付性が不合格であった。
 比較例39では、心材のMg成分が多過ぎたためろう付性が不合格であった。
 比較例40では、心材のFe成分が多過ぎたため圧延時に割れが生じ、ブレージングシートを作製することができず製造性が不合格であった。
 比較例41では、心材のTi、Zr、Cr、V成分が多過ぎたため圧延時に割れが生じ、ブレージングシートを作製することができず製造性が不合格であった。
 比較例42では、心材のMn成分が多過ぎたため圧延時に割れが生じ、ブレージングシートを作製することができず製造性が不合格であった。
 比較例43では、心材のCu成分が多過ぎたため鋳造時に割れが生じ、ブレージングシートを作製することができず製造性が不合格であった。
 比較例44では、心材のMn成分が少な過ぎたためろう付後の引張強さが不合格であった。
 比較例45では、心材のCu成分が少な過ぎたためろう付後の引張強さが不合格であった。
 比較例46では、心材のSi成分が少な過ぎたためろう付後の引張強さが不合格であった。
 本発明により、例えば、チューブの内外両面が腐食環境にあり、かつ、フィンとの接合面においてフィンによる犠牲防食が困難である熱交換器のチューブ材用アルミニウム合金ブレージングシートを提供できる。このような高耐食性アルミニウム合金ブレージングシートは、チューブの内外両面に犠牲防食効果を備え、かつ、その片面にはろう付機能を有し、更にチューブ同士の優先腐食の発生を防止することが可能であり、フィン接合率、耐エロージョン性などのろう付性、軽量性、熱伝導性に優れる。更に、このような高耐食性アルミニウム合金ブレージングシートを用いた自動車用熱交換器の流路形成部品も提供される。

Claims (6)

  1.  アルミニウム合金の心材と、当該心材の一方の面にクラッドされたろう材と、前記心材の他方の面にクラッドされた犠牲陽極材とを備えるアルミニウム合金ブレージングシートにおいて、前記ろう材が、Si:2.5~13.0mass%、Zn:0.5~5.5mass%、Cu:0.1~0.6mass%、Fe:0.05~1.0mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記犠牲陽極材が、Zn:0.5~6.0mass%、Si:0.05~1.5mass%、Fe:0.05~2.0mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記心材が、Si:0.05~1.2mass%、Fe:0.05~1.0mass%、Cu:0.05~1.2mass%、Mn:0.6~1.8mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなることを特徴とする高耐食性アルミニウム合金ブレージングシート。
  2.  前記ろう材及び犠牲陽極材の少なくともいずれか一方が、前記各成分元素の他に、Mn:0.05~1.8mass%、Ti:0.05~0.3mass%、Zr:0.05~0.3mass%、Cr:0.05~0.3mass%及びV:0.05~0.3mass%から選択される1種以上を更に含有する、請求項1に記載の高耐食性アルミニウム合金ブレージングシート。
  3.  前記心材が、前記各成分元素の他に、Mg:0.05~0.5mass%、Ti0.05~0.3mass%、Zr:0.05~0.3mass%、Cr:0.05~0.3mass%及びV:0.05~0.3mass%から選択される1種以上を更に含有する、請求項1又は2に記載の高耐食性アルミニウム合金ブレージングシート。
  4.  ろう付加熱後におけるろう材表面と心材との孔食電位差が20mV以上であり、かつ、ろう付加熱後における犠牲陽極材表面の孔食電位が、ろう材における共晶組織の孔食電位と同一又はそれより卑である、請求項1~3のいずれか一項に記載の高耐食性アルミニウム合金ブレージングシート。
  5.  一方の表面は冷却用液体の流路を形成し他方の表面は空気に接する自動車用熱交換器の流路形成部品として成形され、前記他方の表面には溶質濃度の合計値が10000ppm以下であり、かつ、塩化物イオンを5ppm以上500ppm以下含有する凝縮水が生成する環境で使用される、請求項1~4のいずれか一項に記載の高耐食性アルミニウム合金ブレージングシート。
  6.  請求項5に記載の高耐食性アルミニウム合金ブレージングシートをろう付することによって製造される自動車用熱交換器の流路形成部品。
PCT/JP2013/051785 2012-01-29 2013-01-28 高耐食性アルミニウム合金ブレージングシート、ならびに、これを用いた自動車用熱交換器の流路形成部品 WO2013111904A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112013000740.1T DE112013000740T5 (de) 2012-01-29 2013-01-28 Hoch korrosionsbeständiges Hartlötblech aus Aluminiumlegierung und daraus hergestellte kanalbildende Komponente für einen Fahrzeugwärmetauscher
CN201380006589.XA CN104105804B (zh) 2012-01-29 2013-01-28 高耐蚀性铝合金钎焊片材以及使用其的流道形成零件
US14/374,969 US10099320B2 (en) 2012-01-29 2013-01-28 High corrosion-resistant aluminum alloy brazing sheet and channel forming component for vehicular heat exchanger using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-016013 2012-01-29
JP2012016013A JP5873343B2 (ja) 2012-01-29 2012-01-29 高耐食性アルミニウム合金ブレージングシート、ならびに、これを用いた自動車用熱交換器の流路形成部品

Publications (1)

Publication Number Publication Date
WO2013111904A1 true WO2013111904A1 (ja) 2013-08-01

Family

ID=48873614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051785 WO2013111904A1 (ja) 2012-01-29 2013-01-28 高耐食性アルミニウム合金ブレージングシート、ならびに、これを用いた自動車用熱交換器の流路形成部品

Country Status (5)

Country Link
US (1) US10099320B2 (ja)
JP (1) JP5873343B2 (ja)
CN (1) CN104105804B (ja)
DE (1) DE112013000740T5 (ja)
WO (1) WO2013111904A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3178951A1 (en) 2015-12-09 2017-06-14 Denso Automotive Deutschland GmbH Aluminium aloy, semi-manufactured product, especially for manufacturing block joints, method for making such a semi-manufactured product and respective block joint
CN106863850A (zh) * 2017-03-24 2017-06-20 中国电子科技集团公司第三十八研究所 一种滴灌溶解式金属转移芯模和金属镀层的转移方法
US10518363B2 (en) 2014-11-10 2019-12-31 Mitsubishi Aluminum Co., Ltd. Aluminum alloy brazing sheet having high strength, high corrosion resistance and high material elongation, and method of manufacturing heat exchanger
CN111527368A (zh) * 2018-01-19 2020-08-11 株式会社电装 热交换器

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6115892B2 (ja) * 2012-10-26 2017-04-19 株式会社Uacj フィン用アルミニウム合金製ブレージングシート、熱交換器及び熱交換器の製造方法
DE102013102821A1 (de) * 2013-03-19 2014-09-25 Hydro Aluminium Rolled Products Gmbh Verfahren zur Herstellung eines walzplattierten Aluminiumwerkstücks, walzplattiertes Aluminiumwerkstück und Verwendung dafür
EP3121301B1 (en) * 2014-03-19 2018-10-17 UACJ Corporation Cladded aluminium-alloy material and production method therefor, and heat exchanger using said cladded aluminium-alloy material and production method therefor
CN104561685B (zh) * 2014-12-29 2017-04-12 江苏鼎胜新能源材料股份有限公司 钎焊用铝箔材料及其制造方法
US20160375515A1 (en) * 2015-06-29 2016-12-29 Lam Research Corporation Use of atomic layer deposition coatings to protect brazing line against corrosion, erosion, and arcing
JP6713861B2 (ja) 2015-07-08 2020-06-24 株式会社デンソー アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器
US20180326540A1 (en) * 2015-11-13 2018-11-15 Gränges Ab Brazing sheet and production method
JP2017145463A (ja) * 2016-02-17 2017-08-24 株式会社Uacj アルミニウム合金ブレージングシート及びその製造方法、ならびに、当該ブレージングシートを用いた自動車用熱交換器
JP6263574B2 (ja) * 2016-05-30 2018-01-17 株式会社Uacj ブレージングシート及びその製造方法並びにアルミニウム構造体のろう付方法
KR101899456B1 (ko) * 2017-11-27 2018-09-18 주식회사 코렌스 내식성이 향상된 이지알 쿨러용 가스튜브
JP2021063263A (ja) * 2019-10-11 2021-04-22 パナソニックIpマネジメント株式会社 熱交換器用ブレージングシートおよび熱交換器用ブレージングシートの接合構造、並びに、熱交換器
JP2021063264A (ja) * 2019-10-11 2021-04-22 パナソニックIpマネジメント株式会社 熱交換器用ブレージングシートおよび空気調和装置用熱交換器
CN118011578B (zh) * 2024-04-09 2024-06-11 江苏亨通华海科技股份有限公司 一种光缆用复合铝带及其钎焊工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788682A (ja) * 1993-08-20 1995-04-04 Furukawa Electric Co Ltd:The アルミニウム合金ろう材およびアルミニウム合金製熱交換器の製造方法
JPH0947893A (ja) * 1995-08-07 1997-02-18 Furukawa Electric Co Ltd:The 熱交換器用アルミニウム合金ろう材とこれを用いたアルミニウム合金製熱交換器の製造方法
JP2007297673A (ja) * 2006-04-28 2007-11-15 Furukawa Sky Kk 熱交換器用高耐食性アルミニウム合金複合材及びアルミニウム合金製熱交換器
JP2007327093A (ja) * 2006-06-07 2007-12-20 Sumitomo Light Metal Ind Ltd ろう付け性に優れた熱交換器用高強度アルミニウム合金クラッド材
JP2007327094A (ja) * 2006-06-07 2007-12-20 Sumitomo Light Metal Ind Ltd ろう付け性に優れた熱交換器用高強度アルミニウム合金クラッド材
JP2008246525A (ja) * 2007-03-29 2008-10-16 Kobe Steel Ltd アルミニウム合金製ブレージングシートおよびその製造方法
JP2009228010A (ja) * 2008-03-19 2009-10-08 Kobe Steel Ltd アルミニウム合金製ブレージングシート及び熱交換器の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5350436A (en) * 1992-11-24 1994-09-27 Kobe Alcoa Transportation Products Ltd. Aluminum alloy composite material for brazing
US7226669B2 (en) * 2003-08-29 2007-06-05 Aleris Aluminum Koblenz Gmbh High strength aluminium alloy brazing sheet, brazed assembly and method for producing same
JP5049488B2 (ja) * 2005-12-08 2012-10-17 古河スカイ株式会社 アルミニウム合金ブレージングシートの製造方法
JP4822277B2 (ja) 2007-02-02 2011-11-24 三菱アルミニウム株式会社 ろう付性と耐食性に優れた熱交換器管用アルミニウム合金ブレージングシートおよび耐食性に優れた熱交換器管
FR2931713B1 (fr) 2008-06-02 2010-05-14 Alcan Int Ltd Bandes en alliage d'aluminium pour tubes d'echangeurs thermiques brases
JP5704835B2 (ja) * 2009-05-27 2015-04-22 株式会社神戸製鋼所 熱交換器用アルミニウム合金製ブレージングシート
JP5336967B2 (ja) * 2009-07-28 2013-11-06 株式会社神戸製鋼所 アルミニウム合金クラッド材

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788682A (ja) * 1993-08-20 1995-04-04 Furukawa Electric Co Ltd:The アルミニウム合金ろう材およびアルミニウム合金製熱交換器の製造方法
JPH0947893A (ja) * 1995-08-07 1997-02-18 Furukawa Electric Co Ltd:The 熱交換器用アルミニウム合金ろう材とこれを用いたアルミニウム合金製熱交換器の製造方法
JP2007297673A (ja) * 2006-04-28 2007-11-15 Furukawa Sky Kk 熱交換器用高耐食性アルミニウム合金複合材及びアルミニウム合金製熱交換器
JP2007327093A (ja) * 2006-06-07 2007-12-20 Sumitomo Light Metal Ind Ltd ろう付け性に優れた熱交換器用高強度アルミニウム合金クラッド材
JP2007327094A (ja) * 2006-06-07 2007-12-20 Sumitomo Light Metal Ind Ltd ろう付け性に優れた熱交換器用高強度アルミニウム合金クラッド材
JP2008246525A (ja) * 2007-03-29 2008-10-16 Kobe Steel Ltd アルミニウム合金製ブレージングシートおよびその製造方法
JP2009228010A (ja) * 2008-03-19 2009-10-08 Kobe Steel Ltd アルミニウム合金製ブレージングシート及び熱交換器の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10518363B2 (en) 2014-11-10 2019-12-31 Mitsubishi Aluminum Co., Ltd. Aluminum alloy brazing sheet having high strength, high corrosion resistance and high material elongation, and method of manufacturing heat exchanger
EP3178951A1 (en) 2015-12-09 2017-06-14 Denso Automotive Deutschland GmbH Aluminium aloy, semi-manufactured product, especially for manufacturing block joints, method for making such a semi-manufactured product and respective block joint
CN106863850A (zh) * 2017-03-24 2017-06-20 中国电子科技集团公司第三十八研究所 一种滴灌溶解式金属转移芯模和金属镀层的转移方法
CN106863850B (zh) * 2017-03-24 2018-12-21 中国电子科技集团公司第三十八研究所 一种滴灌溶解式金属转移芯模和金属镀层的转移方法
CN111527368A (zh) * 2018-01-19 2020-08-11 株式会社电装 热交换器
CN111527368B (zh) * 2018-01-19 2022-05-13 株式会社电装 热交换器

Also Published As

Publication number Publication date
CN104105804B (zh) 2017-08-18
DE112013000740T5 (de) 2014-10-23
CN104105804A (zh) 2014-10-15
JP5873343B2 (ja) 2016-03-01
US20150004428A1 (en) 2015-01-01
US10099320B2 (en) 2018-10-16
JP2013155404A (ja) 2013-08-15

Similar Documents

Publication Publication Date Title
JP5873343B2 (ja) 高耐食性アルミニウム合金ブレージングシート、ならびに、これを用いた自動車用熱交換器の流路形成部品
CN108699637B (zh) 铝合金钎焊片的制造方法
JP5576666B2 (ja) 熱交換器に用いられるアルミニウム合金クラッド材およびそれに用いるアルミニウム合金クラッド材用芯材
JP6452627B2 (ja) アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器及びその製造方法
JP6452626B2 (ja) アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器及びその製造方法
WO2010137649A1 (ja) 熱交換器用アルミニウム合金製ブレージングシートおよび熱交換器用アルミニウム合金製ろう付け体
WO2015015767A1 (ja) アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器
KR101784581B1 (ko) 열교환기용 브레이징 시트 코어 합금
JP6418714B2 (ja) アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器及びその製造方法
EP2969376B1 (en) Clad sheet alloys for brazing applications
JP2010255013A (ja) 熱交換器用アルミニウム合金クラッド材およびその製造方法
JP6372950B2 (ja) アルミニウム合金クラッド材及びその製造方法
JP5985973B2 (ja) アルミニウム合金ブレージングシート及びその製造方法、ならびに、当該アルミニウム合金ブレージングシートを用いた熱交換器
JP6351206B2 (ja) 高耐食性アルミニウム合金ブレージングシート及び自動車用熱交換器の流路形成部品
KR20220003083A (ko) 무용제 경납땜 적용을 위한 알루미늄 합금, 이의 제조 방법 및 이의 용도
JP5629113B2 (ja) ろう付け性及び耐食性に優れたアルミニウム合金ブレージングシート、及びそれを用いた熱交換器
CN107849645B (zh) 铝合金包覆材及其制造方法、以及使用所述铝合金包覆材的热交换器
JP6351205B2 (ja) 高耐食性アルミニウム合金ブレージングシート
JP5952995B2 (ja) 熱交換器用アルミニウム合金フィン材
JP4874074B2 (ja) 熱交換器用アルミニウム合金クラッド材
JP6738667B2 (ja) 大気環境における耐食性に優れるアルミニウム合金製熱交換器及びアルミニウム合金製熱交換器の製造方法
JP4263160B2 (ja) アルミニウム合金クラッド材並びにそれを用いた熱交換器用チューブ及び熱交換器
JP2014062296A (ja) 耐食性に優れたアルミニウム合金ブレージングシート
JP5576662B2 (ja) アルミニウム合金ブレージングシート及びアルミニウム合金ブレージングシートの製造方法
WO2019189428A1 (ja) 排気再循環システム用アルミニウム合金製熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13740847

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14374969

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130007401

Country of ref document: DE

Ref document number: 112013000740

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13740847

Country of ref document: EP

Kind code of ref document: A1