WO2013111699A1 - センサ用光ファイバおよび電力装置監視システム - Google Patents

センサ用光ファイバおよび電力装置監視システム Download PDF

Info

Publication number
WO2013111699A1
WO2013111699A1 PCT/JP2013/051070 JP2013051070W WO2013111699A1 WO 2013111699 A1 WO2013111699 A1 WO 2013111699A1 JP 2013051070 W JP2013051070 W JP 2013051070W WO 2013111699 A1 WO2013111699 A1 WO 2013111699A1
Authority
WO
WIPO (PCT)
Prior art keywords
fbg
metal layer
optical fiber
sensor
light
Prior art date
Application number
PCT/JP2013/051070
Other languages
English (en)
French (fr)
Inventor
功 今岡
嘉文 須崎
弘 岩田
Kiyoshi NAKAGAWA (中川 清)
Original Assignee
株式会社豊田自動織機
国立大学法人香川大学
独立行政法人国立高等専門学校機構
中川 香保里
中川 光
中川 直
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機, 国立大学法人香川大学, 独立行政法人国立高等専門学校機構, 中川 香保里, 中川 光, 中川 直 filed Critical 株式会社豊田自動織機
Priority to US14/373,833 priority Critical patent/US20150069996A1/en
Priority to CN201380015790.4A priority patent/CN104185793B/zh
Priority to EP13740993.4A priority patent/EP2824463A4/en
Publication of WO2013111699A1 publication Critical patent/WO2013111699A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/22Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-emitting devices, e.g. LED, optocouplers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35341Sensor working in transmission
    • G01D5/35345Sensor working in transmission using Amplitude variations to detect the measured quantity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35341Sensor working in transmission
    • G01D5/35351Sensor working in transmission using other means to detect the measured quantity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/3537Optical fibre sensor using a particular arrangement of the optical fibre itself
    • G01D5/35377Means for amplifying or modifying the measured quantity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/3537Optical fibre sensor using a particular arrangement of the optical fibre itself
    • G01D5/3538Optical fibre sensor using a particular arrangement of the optical fibre itself using a particular type of fiber, e.g. fibre with several cores, PANDA fiber, fiber with an elliptic core or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/44Modifications of instruments for temperature compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/02195Refractive index modulation gratings, e.g. Bragg gratings characterised by means for tuning the grating
    • G02B6/02204Refractive index modulation gratings, e.g. Bragg gratings characterised by means for tuning the grating using thermal effects, e.g. heating or cooling of a temperature sensitive mounting body
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/02Measuring effective values, i.e. root-mean-square values
    • G01R19/03Measuring effective values, i.e. root-mean-square values using thermoconverters

Definitions

  • the present invention relates to a sensor optical fiber and a power device monitoring system including the sensor optical fiber.
  • an optical fiber in which an FBG (fiber Bragg grating) is formed is used as a sensor for measuring temperature, not current or voltage.
  • the FBG is a diffraction grating in which the refractive index of the core of the optical fiber is changed by a predetermined length period (grating period) along the axial direction, and the incident light to the optical fiber depends on the grating period. It has a characteristic of reflecting light of a specific wavelength (Bragg wavelength) and transmitting the remaining light.
  • the grating period changes accordingly. Since the Bragg wavelength changes linearly with respect to the change in the grating period, the temperature can be measured based on the change amount of the Bragg wavelength.
  • Patent Document 1 discloses a temperature measurement system that uses a laser as a light source of incident light to an optical fiber and measures temperatures with a plurality of FBGs provided on an outer panel of an aircraft.
  • Patent Document 2 describes an optical component in which the outer peripheral portion of the cladding layer of the optical fiber is subjected to metallization.
  • Patent Documents 1 and 2 do not describe the measurement of current and voltage using an optical fiber, and the current and voltage can be measured even if the optical fibers described in Patent Documents 1 and 2 are used as they are. I can't.
  • the present invention has been made to solve such a problem, and an object thereof is to provide an optical fiber for a sensor and a power device monitoring system capable of measuring current or voltage with high accuracy.
  • an optical fiber for a sensor according to the present invention is coated with an FBG in which the refractive index of the core of the optical fiber for the sensor is periodically changed along the direction in which incident light propagates, and the FBG. And a pair of electrodes provided on the metal layer.
  • the heat generation amount of the metal layer changes according to the strength of the current.
  • the FBG expands to change the Bragg wavelength, and accordingly, the wavelength of light transmitted through the FBG changes.
  • the metal layer may include a resistive metal material.
  • the metal layer may expand and contract in the direction in which incident light propagates due to Joule heat generated in the metal layer.
  • the sensor optical fiber may include a plurality of FBGs, and one of the metal layer electrodes of one of the FBGs may be connected to a resistor.
  • the sensor optical fiber may include an environmental temperature sensor unit, and the environmental temperature sensor unit may include an FBG different from the FBG.
  • the FBG may include a metallized portion that is covered with a metal layer and a non-metalized portion that is not covered with the metal layer.
  • the total length of the metallized portion in the direction in which incident light propagates may be equal to the total length of the non-metalized portion in the direction in which incident light propagates.
  • the metallized portion may be provided at the center of the direction in which incident light propagates in the FBG.
  • the power device monitoring system includes the above-described sensor optical fiber, a light source that emits light having a plurality of wavelengths as incident light, and a bandwidth of light transmitted through the FBG or reflected by the FBG. And a calculation means for calculating a current flowing in the metal layer or a voltage applied to the metal layer based on the bandwidth.
  • a power device monitoring system includes the above-described sensor optical fiber, a light source that emits incident light, and a light measurement unit that measures light transmitted through the FBG or light reflected by the FBG.
  • the sensor optical fiber includes a plurality of FBGs, and the plurality of FBGs include a current FBG and a voltage FBG.
  • the metal layer of the current FBG is connected in series to the power device, and the metal layer of the voltage FBG One of the electrodes may be connected to a resistor, and the metal layer of the voltage FBG may be connected in parallel to the power device.
  • the light source may emit light having a plurality of wavelengths as incident light
  • the light measurement unit may be a spectroscopic unit that measures the spectrum of light.
  • the spectroscopic means may identify the Bragg wavelength reflected by the FBG, and the power device monitoring system may calculate a current flowing through the metal layer or a voltage applied to the metal layer based on the Bragg wavelength.
  • the optical fiber for the sensor includes an environmental temperature sensor unit, the environmental temperature sensor unit includes an FBG different from the above-described FBG, and the spectroscopic unit specifies and calculates the wavelength reflected by the environmental temperature sensor unit as a reference Bragg wavelength.
  • the means may calculate a current or a voltage based on a difference between the Bragg wavelength and the reference Bragg wavelength.
  • the calorific value of the metal layer differs depending on the current to be measured or the current corresponding to the voltage to be measured, and the Bragg wavelength of the FBG is accordingly changed. Since it changes, the current or voltage can be measured optically, improving accuracy.
  • FIG. 5 is an enlarged view of a part of the sensor optical fiber of FIG. 4.
  • FIG. 6 shows the relationship of the Bragg wavelength of each FBG of FIG. 6 is an enlarged view of a part of a sensor optical fiber according to Embodiment 3.
  • FIG. It is a figure which shows a mode that the spectrum of the light reflected by FBG changes according to the electricity supply to the metal layer of FIG. It is a figure which shows the modification of the optical fiber for sensors of FIG.
  • FIG. 1 is a schematic diagram showing an outline of a configuration of a power device monitoring system 1 according to Embodiment 1 of the present invention.
  • the power device monitoring system 1 is used to measure the current or voltage of the power device and thereby monitor the power device.
  • the power device means, for example, a high-power power device, and includes a battery, a storage battery, a generator, a transformer, and the like.
  • the power device may be a device called a power device, or may be a high-voltage electric circuit or a part thereof.
  • the power device monitoring system 1 includes a sensor optical fiber 10 and a light processing device 20.
  • the sensor optical fiber 10 has a configuration as a known optical fiber.
  • the sensor optical fiber 10 includes a core and a clad as a configuration for propagating incident light in a predetermined direction.
  • the sensor optical fiber 10 includes an optical fiber portion 11 having a configuration as a normal optical fiber, and an FBG 12.
  • the refractive index of the core in the optical fiber portion 11 is assumed to be constant.
  • the refractive index of the core periodically changes with a predetermined length period (grating period) along the direction in which the incident light propagates.
  • the FBG 12 has a characteristic that the incident light reflects light of a specific wavelength (Bragg wavelength) determined according to the grating period and transmits the remaining light.
  • the optical fiber part 11 and the FBG 12 are made of a material such as quartz glass, for example, and have a positive coefficient of thermal expansion.
  • the FBG 12 is formed by irradiating the core of the optical fiber with ultraviolet rays or the like.
  • the sensor optical fiber 10 includes a metal layer 13 that covers the FBG 12.
  • the sensor optical fiber 10 includes a pair of electrodes 14 and 15 provided on the metal layer 13.
  • the electrodes 14 and 15 are connected to different positions of the metal layer 13 by electric wires 16 and 17, respectively. By applying a voltage between the electrode 14 and the electrode 15, a current can be passed through the metal layer 13.
  • the metal layer 13 is a heating element including a resistance metal material having a certain resistance, and for example, is entirely composed of a resistance metal material. Specific examples of such a resistance metal material include titanium, nichrome, stainless steel, and silver. The resistance metal material may be a material in which titanium, nichrome, stainless steel and copper are mixed.
  • the metal layer 13 is formed in a cylindrical surface on the outer periphery of the FBG 12. In the present embodiment, all parts subjected to Bragg processing are covered with the metal layer 13.
  • the metal layer 13 is not necessarily required to completely cover the entire FBG 12, and may be any one that covers at least a part of the FBG 12. Further, the metal layer 13 is formed on, for example, the cladding layer of the FBG 12 and covers the cladding layer, but is not necessarily limited to directly covering the cladding layer.
  • FIG. 2 is a diagram for explaining expansion of the FBG 12. It shows that the length L of the FBG 12 and the metal layer 13 in the axial direction (that is, the direction in which the incident light propagates) increases by ⁇ L due to the current I flowing through the metal layer 13.
  • the FBG 12 is heated, expands due to thermal stress, and expands in the axial direction. Further, the Joule heat causes the metal layer 13 itself to expand and expand in the axial direction, and the FBG 12 extends in the axial direction by the stress at this time.
  • the metal layer 13 is shown to extend only to the right side, but in reality, the metal layer 13 extends to both sides in the axial direction.
  • the FBG 12 and the metal layer 13 expand and contract due to Joule heat.
  • the grating period of the FBG 12 also changes.
  • the grating period is one of the elements that define the Bragg wavelength of the FBG 12, and the Bragg wavelength changes linearly with respect to the amount of change in the grating period. That is, when the FBG 12 expands, the grating period also increases, and accordingly, the Bragg wavelength shifts to the long wavelength side. Conversely, when the temperature of the FBG 12 decreases and the FBG 12 contracts, the grating period also decreases, and accordingly, the Bragg wavelength shifts to the short wavelength side. Therefore, a numerical value representing the temperature of the FBG 12 can be measured based on the shift amount of the Bragg wavelength.
  • FIG. 3 shows how the spectrum of the light transmitted through the sensor optical fiber 10 changes according to the change of the Bragg wavelength.
  • 3A shows a spectrum of transmitted light at the temperature Ta
  • FIG. 3B shows a spectrum of transmitted light at the temperature Tb.
  • Ta ⁇ Tb.
  • the actual light source is not an ideal white light source
  • the spectrum is actually not flat as shown in FIG. 3, but attenuates on the long wavelength side and the short wavelength side. Use the shape shown.
  • the wavelength band used in the present embodiment is sufficiently narrow, there is no need for an ideal white light source, and it may be a broad emission wavelength band that can be regarded as flat within the use range.
  • the wavelength ⁇ a corresponds to the Bragg wavelength. Since the FBG 12 reflects most of the light having the wavelength ⁇ a, the light having the wavelength ⁇ a and a wavelength in the vicinity thereof does not pass through the sensor optical fiber 10, and as a result, the spectrum of the transmitted light has a minimum value at the wavelength ⁇ a.
  • the temperature of the FBG 12 increases from Ta to Tb, the Bragg wavelength shifts to the long wavelength side, for example, becomes ⁇ b. In this case, the light having the wavelength ⁇ b and the wavelength in the vicinity thereof does not pass through the sensor optical fiber 10, and as a result, the spectrum of the transmitted light has a minimum value at the wavelength ⁇ b.
  • the light processing apparatus 20 includes a light source 21 and a light measurement unit 22.
  • the light source 21 emits incident light to the sensor optical fiber 10.
  • the light source 21 is, for example, a laser diode, but may be another light source, for example, a non-laser LED. As shown in FIG. 3, the light source 21 emits light having a continuous spectrum. That is, the incident light consists of a plurality of wavelengths.
  • the light measuring means 22 receives and measures the light transmitted through the sensor optical fiber 10.
  • the light measuring means 22 has a function of measuring the spectrum of light transmitted through the sensor optical fiber 10 and can be constituted by a known spectroscopic means.
  • the light measurement unit 22 includes a plurality of filters having different wavelength characteristics and a light intensity measurement unit that measures the intensity of light transmitted through each filter, and converts the light intensity at each wavelength into an electrical signal.
  • the light intensity measuring means can be composed of a MOS or a CCD.
  • the light measuring means 22 can specify the wavelength reflected by the FBG 12 (that is, the Bragg wavelength of the FBG 12).
  • the wavelength at which the spectrum shows the minimum value is specified as the Bragg wavelength.
  • the light processing apparatus 20 includes a control unit 23 connected to the light measurement unit 22.
  • the control unit 23 includes a calculation unit 24 that performs a calculation based on the signal received from the light measurement unit 22.
  • the computing means 24 has a function of calculating the current flowing through the metal layer 13 based on the Bragg wavelength of the FBG 12. For example, the amount of heat generated by the metal layer 13 is determined according to the magnitude of the current flowing through the metal layer 13, and the amount of heat generated by the metal layer 13 is proportional to the thermal stress applied to the FBG 12, so that the amount of change in Bragg wavelength (predetermined reference Bragg The difference from the wavelength) depends on the magnitude of the current flowing through the metal layer 13.
  • the computing unit 24 can calculate the magnitude of the current based on the relational expression representing this relation.
  • the reference Bragg wavelength and the relational expression can be stored in advance in the computing means 24, for example.
  • the value of the current flowing through the metal layer 13 can be measured, and thus the electrodes 14 and 15 of the metal layer 13 are measured. If it is connected to a desired position, it can be used as a current sensor.
  • the power device monitoring system 1 optically measures the current value based on the change of the Bragg wavelength, it is not affected by electromagnetic noise or the like, so that high-accuracy measurement is possible. Further, since the portion subjected to the Bragg processing (including the entire FBG 12) is covered with the metal layer 13, the reflection wavelength band is not distorted.
  • the power device monitoring system 1 can convert the current value into a voltage value. In other words, in this case, the calculation unit 24 has a function of calculating the voltage applied to the metal layer 13 based on the Bragg wavelength of the FBG 12.
  • Embodiment 2 FIG.
  • the expansion / contraction of the FBG 12 due to a change in environmental temperature is not particularly taken into consideration.
  • the second embodiment is configured to perform measurement with higher accuracy in consideration of changes in environmental temperature.
  • FIG. 4 shows a configuration of the power device monitoring system 101 according to the second embodiment and a battery 200 that is an example of a power device to be monitored.
  • the power device monitoring system 101 includes a sensor optical fiber 110 and an optical processing device 150.
  • the sensor optical fiber 110 includes an optical fiber portion 111 and three FBGs. These three FBGs are a temperature guarantee FBG 112, a voltage FBG 122, and a current FBG 132, respectively. In the present embodiment, these three FBGs all have the same characteristics (length, material, grating period, thermal expansion coefficient, etc.).
  • FIG. 5 is an enlarged view of a part of the optical fiber 110 for sensors.
  • the temperature assurance FBG 112, the voltage FBG 122, and the current FBG 132 are provided in the core of the same sensor optical fiber 110. That is, these three FBGs are provided on the same optical path.
  • the light measured by the light measuring unit 152 is only the light that has passed through all of the temperature assurance FBG 112, the voltage FBG 122, and the current FBG 132.
  • the temperature assurance FBG 112 has the same configuration as the FBG used as a conventional temperature sensor.
  • the temperature assurance FBG 112 is not covered with a metal layer (however, a configuration in which a coating with a metal layer is provided is not excluded).
  • the temperature assurance FBG 112 is an FBG different from the voltage FBG 122 and the current FBG 132 as shown in the figure, and functions as an environmental temperature sensor unit that measures the temperature of the surrounding environment.
  • a metal layer 123 and a metal layer 133 are formed on the voltage FBG 122 and the current FBG 132, respectively.
  • a pair of electrodes 124 and 125 are provided on the metal layer 123, and are connected to different positions of the metal layer 123 by electric wires 126 and 127, respectively.
  • One of these electrodes is inserted into a resistor 128 having a resistance value R1 via a corresponding electric wire 126.
  • the metal layer 133 is provided with a pair of electrodes 134 and 135, which are connected to different positions of the metal layer 133 by electric wires 136 and 137, respectively. Unlike the voltage FBG 122, no resistor is inserted in the current FBG 132.
  • the light processing apparatus 150 includes a light source 151, a light measurement unit 152, and a control unit 153.
  • the light source 151 emits incident light to the sensor optical fiber 110
  • the light measurement unit 152 receives and measures the light transmitted through the sensor optical fiber 110.
  • the control unit 153 includes a calculation unit 154 and a light source control unit 155.
  • the battery 200 includes an anode 201 and a cathode 202, and a load 203 is connected between the anode 201 and the cathode 202. In this way, the battery 200 and the load 203 constitute an electric circuit C.
  • the battery 200 has an internal resistance R2 and the load 203 is equivalent to the resistance R3.
  • the resistance value of the metal layer 123 of the voltage FBG 122 is Rv
  • it is preferable to design the magnitude relationship between the resistors to be, for example, R1 >> R3 >> R2, Rv, Ri, but is not limited thereto.
  • the metal layer 123 and the resistor 128 of the voltage FBG 122 are connected to the battery 200 in parallel in the electric circuit C. Further, the metal layer 133 of the current FBG 132 is connected in series to the battery 200 in the electric circuit C.
  • the temperature assurance FBG 112 is independent of the electric circuit C. With such a configuration, the Bragg wavelength of the temperature assurance FBG 112 becomes a wavelength corresponding to the ambient temperature, while the Bragg wavelengths of the voltage FBG 122 and the current FBG 132 correspond to the ambient temperature of the metal layer 123 and the metal layer 133, respectively. The wavelength corresponds to the temperature obtained by adding the temperature corresponding to the heat generation.
  • the length L1 (FIG. 4) of the portion between the electrodes 134 and 135 of the current FBG 132 is always connected to be constant.
  • the length L1 may be adjusted so that the resistance value of this portion is always constant.
  • any configuration may be used as long as the calculation unit 154 can acquire or calculate the resistance value of the portion of the electric circuit C.
  • FIG. 6 shows the relationship of the Bragg wavelength of each FBG.
  • FIG. 6A schematically shows a spectrum around the Bragg wavelength ⁇ t of the temperature assurance FBG 112 enlarged in the wavelength direction.
  • FIG. 6B shows a spectrum of reflected light reflected by each of the three FBGs. As shown in FIG. 6B, since the three FBGs reflect light at different Bragg wavelengths, the light spectrum measured by the light measuring means 152 has three minimums as shown in FIG. The value appears.
  • the computing means 154 calculates the current and voltage related to the battery 200 based on the Bragg wavelengths ⁇ t, ⁇ v, and ⁇ i. This calculation can be performed as follows, for example. First, the computing means 154 obtains the shortest of the three minimum values appearing in the spectrum as the Bragg wavelength ⁇ t of the temperature assurance FBG 112, and then obtains the shortest as the Bragg wavelength ⁇ v of the voltage FBG 122, Next, the shortest one (that is, the longest one) is acquired as the Bragg wavelength ⁇ i of the current FBG 132.
  • the difference ⁇ v ⁇ v ⁇ t for compensating for the error due to the environmental temperature is calculated, and the current flowing through the metal layer 123 of the voltage FBG 122 is calculated based on the difference ⁇ v. Further, the voltage between the electrodes 124 and 125 of the metal layer 123 is calculated based on the current flowing through the metal layer 123 and the resistance value R 1 of the resistor 128. This voltage is a voltage between the anode 201 and the cathode 202 of the battery 200. In this way, the power device monitoring system 101 measures the voltage value of the battery 200.
  • the current and voltage of the battery 200 can be measured, and the state of the battery 200 can be monitored.
  • the power device monitoring system 101 optically measures the current value and the voltage value based on the change of the Bragg wavelength, and thus can measure with high accuracy.
  • the temperature of the temperature assurance FBG 112 itself does not vary between when the power device monitoring system 101 is stopped and when it is operating. That is, there is no need to warm up the temperature assurance FBG 112 or to stabilize the temperature assurance FBG 112 with respect to the environmental temperature.
  • the change in Bragg wavelength and measurement thereof in each FBG are optical and are not subjected to electromagnetic interference, so that measurement with a high S / N ratio can be performed by eliminating electromagnetic noise.
  • the measurement of the wavelength corresponding to the environmental temperature (reference Bragg wavelength ⁇ t) and the measurement of the wavelength corresponding to the current and current (Bragg wavelengths ⁇ i and ⁇ v) are both performed based on the fluctuation of the Bragg wavelength of the FBG, that is, Since it is based on the same physical principle, error compensation is more accurate.
  • the light processing device measures current and / or voltage based on the transmitted light that has passed through each FBG.
  • the light processing apparatus may measure a current or a voltage based on the reflected light reflected by each FBG.
  • the light measuring means is provided on the incident side of the sensor optical fiber, and measures the spectrum of the light reflected by each FBG.
  • the Bragg wavelength is specified as a wavelength that gives the maximum value of the measured spectrum.
  • a resistor corresponding to the resistor 128 of the second embodiment may be provided on the electric wire 16 of the metal layer 13 of the first embodiment (FIG. 1).
  • the power device monitoring system 1 of the first embodiment can measure the voltage more accurately.
  • the sensor optical fiber may include both an FBG provided with a resistor and an FBG without a resistor (that is, FBG 12 shown in FIG. 1).
  • the configuration in which both FBGs are provided is the same as the configuration in which the temperature assurance FBG 112 is omitted in the sensor optical fiber 110 of the second embodiment (FIG. 4).
  • Embodiment 2 three FBGs are used, but this may be two or more.
  • either the voltage FBG 122 or the current FBG 132 can be omitted.
  • the power device monitoring system 101 measures either the current or the voltage of the battery 200.
  • the current FBG 132 is connected in parallel with a part of the electric circuit C, but this may be connected in series to the electric circuit C in the same manner as a conventional ammeter.
  • the calculation means 154 can measure the current value flowing through the metal layer 133 of the current FBG 132 as it is as the current value of the battery 200.
  • the temperature assurance FBG 112, the voltage FBG 122, and the current FBG 132 all have the same characteristics, but they may have different characteristics. For example, they may have different coefficients of thermal expansion, and may have different grating periods at the same temperature. Even in such a configuration, if the respective characteristics are known, the calculation means 154 can calculate the current value and the voltage value by an appropriate calculation.
  • Embodiment 3 FIG.
  • a current detection unit and a temperature detection unit are provided in one FBG, and calculation based on the reflection bandwidth is performed, thereby enabling temperature guarantee (temperature compensation) with a single FBG.
  • FIG. 7 is an enlarged view of a part of the sensor optical fiber 310 according to the third embodiment.
  • differences from the sensor optical fiber 10 of the first embodiment (FIGS. 1 and 2) will be described.
  • the sensor optical fiber 310 includes a metal layer 313 that covers the FBG 312.
  • the metal layer 313 is formed by metal vapor deposition, for example.
  • the length of the FBG 312 in the axial direction is L0.
  • the metal layer 313 does not cover the entire FBG 312 but covers only a part thereof. That is, the FBG 312 includes a metallized portion 312 a that is covered with the metal layer 313 and a non-metalized portion 312 b that is not covered with the metal layer 313. (The non-metallized portion 312b does not need to be exposed and may be covered with a structure other than the metal layer.)
  • the grating period is constant throughout the FBG 312. That is, the grating period of the metallization unit 312a and the grating period of the non-metallization unit 312b are the same.
  • the metallization unit 312a functions as a current detection unit
  • the non-metallization unit 312b functions as a temperature detection unit.
  • the metallization unit 312a is provided in the center of the FBG 312 in the axial direction and has an axial length La.
  • La Lb. That is, the total length of the metallization unit 312a (in the example of FIG. 7, the total length is La because there is only one metallization unit 312a) is equal to the total length of the non-metallization unit 312b.
  • the metallized portion 312a and the non-metalized portion 312b have the same spectral characteristics at the same temperature because the grating periods are the same and the lengths are the same.
  • FIG. 8 shows how the spectrum of light reflected by the FBG 312 changes in response to energization of the metal layer 313.
  • FIG. 8A shows a state before energization.
  • the FBG 312 is entirely at a temperature before energization (for example, room temperature). That is, the reflection spectrum Sa of the metallization unit 312a matches the reflection spectrum Sb of the non-metallization unit 312b. The peak wavelength at this time is ⁇ 0.
  • the bandwidth of the wavelength reflected by the entire FBG 312 is assumed to be B0. This bandwidth B0 can be measured by a known method. For example, the bandwidth B0 is a width of a band in which the intensity of reflected light is equal to or greater than a predetermined threshold.
  • FIG. 8B shows a state immediately after energization of the metal layer 313 is started.
  • the metallized portion 312a rapidly rises in temperature, and the reflection spectrum Sa shifts to the longer wavelength side due to thermal expansion.
  • the temperature of the non-metallized portion 312b has not risen, and thus the reflection spectrum Sb remains unchanged.
  • the power device monitoring system includes a light source that emits light having a plurality of wavelengths as incident light, a light measurement unit (spectral unit) that measures a bandwidth Bt of a wavelength reflected by the FBG 312, and a measured bandwidth It can comprise so that the calculation means which calculates the electric current which flows into the metal layer 313 based on Bt may be provided. Note that the voltage applied to the metal layer 313 can be calculated in the same manner.
  • the control unit may store in advance the bandwidth B0 of the wavelength reflected by the FBG 312 when the current is zero.
  • FIG. 8C shows a state where energization to the metal layer 313 is continued for a while.
  • Heat propagates from the metallized portion 312a to the entire sensor optical fiber 310, and the reflection spectra Sa and Sb of the metallized portion 312a and the non-metalized portion 312b are both shifted to the longer wavelength side.
  • the shift is performed by ⁇ t.
  • the entire reflection spectrum of the FBG 312 is shifted to the longer wavelength side without changing its shape. Therefore, the bandwidth of the wavelength reflected by the entire FBG 312 remains Bt and does not change.
  • the value ⁇ i that depends only on the magnitude of the current can be obtained with high accuracy regardless of the magnitude ⁇ t of the temperature variation of the entire sensor optical fiber 310 due to the continued energization.
  • FIG. 8D shows a state immediately after the energization is stopped. Since the metallized portion 312a is rapidly cooled, the reflection spectrum Sa returns to the short wavelength side, but due to the temperature rise of the entire sensor optical fiber 310, the longer wavelength side than before the start of energization (state of FIG. 8A). The peak wavelength is ⁇ 2. Further, the reflection spectrum Sb of the non-metallized portion 312b does not change, and the peak wavelength remains ⁇ 2. Therefore, the reflection spectrum Sa of the metallized portion 312a matches the reflection spectrum Sb of the non-metalized portion 312b.
  • the reflection spectrum of the entire FBG 312 is shifted to the longer wavelength side than before the start of energization (FIG. 8A), but the bandwidth of the reflection spectrum is B0 as before the start of energization.
  • the magnitude of the current can be obtained with high accuracy regardless of the presence or absence of the influence ⁇ t of the temperature fluctuation of the entire sensor optical fiber 310 due to the continuation of energization. Note that when a certain amount of time elapses after the energization is stopped, the temperature of the entire sensor optical fiber 310 decreases, and the state before the start of energization (FIG. 8A) is restored.
  • the current detection unit (metallization unit 312a) and the temperature detection unit (non-metallization unit 312b) are provided in one FBG, and the calculation based on the reflection bandwidth is performed.
  • An accurate current value or voltage value can be calculated by performing temperature guarantee (temperature compensation) with the FBG 312.
  • the current value can be accurately calculated even when the amount of heat accumulated due to heat generation causes a drift in wavelength shift.
  • the FBG 312 can be realized by one FBG element, an increase in cost can be avoided. In particular, a temperature sensor or the like using an external FBG is unnecessary, and the cost can be reduced and the entire apparatus can be downsized.
  • the length of the metallized portion 312a and the length of the non-metalized portion 312b are equal to each other, the respective reflection spectra exhibit common characteristics (for example, the same reflectivity), and more accurate measurement can be performed.
  • these lengths are not equal, it is theoretically possible to perform measurement if the lengths are not zero. Also, these lengths do not need to be exactly the same, and even if the lengths are slightly different, the lengths are mutually different as long as the errors given to the wavelength measurement accuracy or current / voltage calculation accuracy are negligible. Can be considered equal.
  • the thermal responsiveness of the non-metalized portion 312b is increased (that is, the time constant is reduced).
  • the thermal responsiveness of the non-metalized portion 312b can be maintained to some extent if the non-metalized portion 312b is located on both sides of the metalized portion 312a.
  • the metallization unit 312a is provided in the FBG 312, it is possible to calculate the current value with a certain degree of thermal responsiveness.
  • the metallization unit 312a may be provided at the end as in the modification shown in FIG. . 9, the sensor optical fiber 410 includes an FBG 412.
  • the FBG 412 has a metallized portion 412a (length La) covered by a metal layer 413 and a non-metalized portion 412b (length) not covered by the metal layer 413. Lb).
  • the current and / or voltage is measured based on the wavelength of the light reflected by the FBG 312.
  • the current or voltage may be measured based on the wavelength of light transmitted through the FBG 312.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

 電流または電圧を高い精度で測定できるセンサ用光ファイバを提供する。 センサ用光ファイバ10は、コアの屈折率を周期的に変化させたFBG12と、FBG12を被覆する金属層13と、金属層13に設けられる一対の電極14および15とを備える。電極14および15を測定対象の所望の位置に接続し、FBG12のブラッグ波長の変化に基づいて、金属層13に流れる電流を算出する。

Description

センサ用光ファイバおよび電力装置監視システム
 本発明は、センサ用光ファイバと、当該センサ用光ファイバを備える電力装置監視システムとに関する。
 電池や発電機等の状況を監視するためには電流や電圧の測定が必要となる。従来の電流センサや電圧センサでは、たとえば電磁誘導の原理を用いて測定を行う。
 また、電流や電圧ではなく、温度を測定するためのセンサとして、FBG(ファイバブラッググレーティング)が形成された光ファイバが利用される。FBGとは、光ファイバのコアの屈折率を軸方向に沿った所定の長さ周期(グレーティング周期)で変化させた回折格子であって、光ファイバへの入射光に対し、グレーティング周期に応じた特定の波長(ブラッグ波長)の光を反射し、残りの光を透過するという特性を有している。温度変化に応じてFBGが熱膨張すると、それに伴ってグレーティング周期が変化する。ブラッグ波長は、グレーティング周期の変化に対して線形に変化するため、ブラッグ波長の変化量に基づいて温度を測定することが可能となる。また、一本の光ファイバに複数のFBGを形成すれば複数箇所の温度を測定する多点温度測定が可能となる。例えば特許文献1には、光ファイバへの入射光の光源としてレーザーを用い、航空機の外板上に設けられた複数のFBGで温度を測定する温度測定システムが開示されている。
 なお、温度センサ用でない光ファイバの構成の例として、特許文献2には、光ファイバのクラッド層の外周部にメタライズ処理を施した光部品が記載されている。
特表2009-516855号公報 特開2004-29691号公報
 しかしながら、従来の電流センサや電圧センサでは、測定値に含まれる誤差が比較的大きく、精度の高い測定を行うことが困難であるという問題があった。
 また、従来のセンサ用光ファイバでは、電流や電圧を測定することができないという問題があった。たとえば特許文献1および2には、光ファイバを用いて電流・電圧を測定することについては記載がなく、また、特許文献1および2に記載される光ファイバをそのまま用いても電流・電圧の測定はできない。
 本発明は、このような問題を解決するためになされたものであり、電流または電圧を高い精度で測定できるセンサ用光ファイバおよび電力装置監視システムを提供することを目的とする。
 上述の問題を解決するため、この発明に係るセンサ用光ファイバは、入射光が伝播する方向に沿って、センサ用光ファイバのコアの屈折率を周期的に変化させたFBGと、FBGを被覆する金属層と、金属層に設けられる一対の電極とを備える。
 このような構成によれば、測定すべき電流(または測定すべき電圧に対応する電流)が金属層に流れた場合に、その電流の強さに応じて金属層の発熱量が変化する。そして、金属層の発熱量と金属層の熱による膨張の応力に応じて、FBGが伸張してブラッグ波長が変化し、これに伴ってFBGを透過する光の波長が変化する。
 金属層は抵抗金属材料を含んでもよい。
 金属層に発生するジュール熱により、入射光が伝播する方向に金属層が伸縮するものであってもよい。
 センサ用光ファイバは、複数のFBGを備え、FBGの1つが有する金属層の電極のうち一方は抵抗器に接続されてもよい。
 センサ用光ファイバは環境温度センサ部を備え、環境温度センサ部は、FBGとは異なるFBGを備えてもよい。
 FBGは、金属層によって被覆されるメタライズ部と、金属層によっては被覆されない非メタライズ部とを備えてもよい。
 メタライズ部の、入射光が伝播する方向における合計の長さと、非メタライズ部の、入射光が伝播する方向における合計の長さとは互いに等しいものであってもよい。
 メタライズ部は、FBGにおいて、入射光が伝播する方向中央に設けられてもよい。
 また、この発明に係る電力装置監視システムは、上述のセンサ用光ファイバと、入射光として複数の波長からなる光を放射する光源と、FBGを透過した光またはFBGによって反射された波長の帯域幅を測定する分光手段と、帯域幅に基づいて金属層に流れる電流または金属層に印加された電圧を算出する、算出手段とを備える。
 また、この発明に係る電力装置監視システムは、上述のセンサ用光ファイバと、入射光を放射する光源と、FBGを透過した光またはFBGによって反射された光を測定する光測定手段とを備える。
 センサ用光ファイバは、複数のFBGを備え、複数のFBGは、電流用FBGおよび電圧用FBGを含み、電流用FBGの金属層は、電力装置に直列に接続され、電圧用FBGの金属層の電極のうち一方は抵抗器に接続され、電圧用FBGの金属層は、電力装置に並列に接続されてもよい。
 光源は、入射光として複数の波長からなる光を放射し、光測定手段は、光のスペクトルを測定する分光手段であってもよい。
 分光手段は、FBGによって反射されたブラッグ波長を特定し、電力装置監視システムは、ブラッグ波長に基づいて、金属層に流れる電流または金属層に印加された電圧を算出してもよい。
 センサ用光ファイバは環境温度センサ部を備え、環境温度センサ部は、上述のFBGとは異なるFBGを備え、分光手段は、環境温度センサ部によって反射された波長を基準ブラッグ波長として特定し、算出手段は、ブラッグ波長と基準ブラッグ波長との差分に基づいて、電流または電圧を算出してもよい。
 本発明のセンサ用光ファイバおよび電力装置監視システムによれば、測定すべき電流によって、または測定すべき電圧に対応する電流によって、金属層の発熱量が異なり、これに応じてFBGのブラッグ波長が変化するので、電流または電圧を光学的に測定することができ、精度が向上する。
本発明の実施の形態1に係る電力装置監視システムの構成を示す図である。 図1のFBGの伸張を説明する図である。 図1のセンサ用光ファイバを透過する光のスペクトルが変化する様子を示す図である。 実施の形態2に係る電力装置監視システムの構成を示す図である。 図4のセンサ用光ファイバの一部の拡大図である。 図4の各FBGのブラッグ波長の関係を示す図である。 実施の形態3に係るセンサ用光ファイバの一部の拡大図である。 図7の金属層への通電に応じて、FBGによって反射される光のスペクトルが変化する様子を示す図である。 図7のセンサ用光ファイバの変形例を示す図である。
 以下、この発明の実施の形態を添付図面に基づいて説明する。
実施の形態1.
 図1は本発明の実施の形態1に係る電力装置監視システム1の構成の概略を示す模式図である。
 電力装置監視システム1は、電力装置の電流または電圧を測定し、これによって電力装置を監視するために用いられる。電力装置とは、たとえば強電の電力装置を意味し、電池、蓄電池、発電機、変電器等を含む。また、電力装置とは、パワーデバイスと呼ばれるものであってもよく、高圧電気回路またはその一部であってもよい。
 電力装置監視システム1は、センサ用光ファイバ10および光処理装置20を備える。センサ用光ファイバ10は、公知の光ファイバとしての構成を有する。たとえば、センサ用光ファイバ10は、入射光を所定の方向に伝播させるための構成として、コアおよびクラッドを備える。
 センサ用光ファイバ10は、通常の光ファイバとしての構成を有する光ファイバ部11と、FBG12とを備える。図1の例では、光ファイバ部11におけるコアの屈折率は一定であるものとする。FBG12において、コアの屈折率は、入射光が伝播する方向に沿って、所定の長さ周期(グレーティング周期)をもって周期的に変化する。このため、FBG12は、入射光に対し、グレーティング周期に応じて定まる特定の波長(ブラッグ波長)の光を反射し、残りの光を透過するという特性を有している。なお、光ファイバ部11およびFBG12は、例えば石英ガラス等の材料から形成されており、その熱膨張率は正の値となっている。また、一例として、FBG12の形成は、光ファイバのコアに紫外線等を照射することによって行われる。
 センサ用光ファイバ10は、FBG12を被覆する金属層13を備える。また、センサ用光ファイバ10は、金属層13に設けられる一対の電極14および15を備える。電極14および15は、それぞれ電線16および17によって金属層13の異なる位置に接続される。電極14と電極15との間に電圧を印加することにより、金属層13に電流を流すことができる。
 金属層13は、一定の抵抗を有する抵抗金属材料を含む発熱体であり、たとえばその全体が抵抗金属材料によって構成される。このような抵抗金属材料の具体例としてはチタン、ニクロム、ステンレス、銀が挙げられる。また、抵抗金属材料は、チタン、ニクロム、ステンレスと銅とを混合した材料であってもよい。この金属層13は、FBG12の外周に円筒面状に形成される。本実施の形態において、ブラッグ加工してある部分はすべて金属層13で被覆されている。金属層13は、必ずしもFBG12の全体を完全に被覆する必要はなく、FBG12の少なくとも一部を被覆するものであればよい。さらに、金属層13は、たとえばFBG12のクラッド層上に形成されてクラッド層を被覆するものであるが、必ずしもクラッド層を直接被覆するものに限られない。
 このような構成において、金属層13に電流が流れると、金属層13に発生するジュール熱によりFBG12が伸張する。これについて、図2を用いて説明する。
 図2は、FBG12の伸張を説明する図である。金属層13に流れる電流Iにより、FBG12および金属層13の軸方向(すなわち入射光が伝播する方向)の長さLがΔLだけ増加することを示す。金属層13にジュール熱が発生すると、FBG12が加熱されて熱応力により膨張して軸方向に伸張する。また、このジュール熱により金属層13自身が膨張して軸方向に伸張し、この際の応力によりFBG12を軸方向に伸張させる。このような効果により、FBG12の長さLがΔLだけ増加する。
 なお図2では説明の便宜上、金属層13が右側にのみ伸張するように示しているが、実際には金属層13は軸方向両側に伸張する。このように、FBG12および金属層13はジュール熱により伸縮する。
 FBG12の長さの変化に伴い、FBG12のグレーティング周期もまた変化する。グレーティング周期は、FBG12のブラッグ波長を規定する要素の1つとなっており、グレーティング周期の変化量に対してブラッグ波長が線形に変化するようになっている。すなわち、FBG12が伸張すると、グレーティング周期も大きくなるため、それに伴ってブラッグ波長が長波長側にシフトする。逆に、FBG12の温度が低下してFBG12が収縮すると、グレーティング周期も小さくなるため、それに伴ってブラッグ波長が短波長側にシフトする。したがって、ブラッグ波長のシフト量に基づいて、FBG12の温度を表す数値を測定することが可能となる。
 図3は、ブラッグ波長の変化に応じて、センサ用光ファイバ10を透過する光のスペクトルが変化する様子を示す。図3(a)は温度Taにおける透過光のスペクトルであり、図3(b)は温度Tbにおける透過光のスペクトルである。ここでTa<Tbとする。なお、現実の光源は理想的な白色光源ではないため、実際にはスペクトルは図3のように平坦なものではなく長波長側および短波長側において減衰するが、ここでは説明の便宜上図3に示す形状を用いる。また、本実施形態において使用する波長帯域は十分に狭いので、理想的な白色光源の必要は無く、使用範囲内でフラットと見なせる程度のブロードの発光波長帯域であればよい。
 図3(a)に示すように、温度Taでは、波長λaがブラッグ波長に相当する。FBG12が波長λaの光の大部分を反射するため、波長λaおよびその近傍の波長を持つ光はセンサ用光ファイバ10を透過せず、結果として透過光のスペクトルは波長λaにおいて極小値を示す。
 FBG12の温度がTaからTbに上昇すると、ブラッグ波長が長波長側にシフトし、たとえばλbとなる。この場合には、波長λbおよびその近傍の波長を持つ光はセンサ用光ファイバ10を透過せず、結果として透過光のスペクトルは波長λbにおいて極小値を示す。
 図1に戻り、光処理装置20の構成について説明する。
 光処理装置20は、光源21および光測定手段22を備える。光源21は、センサ用光ファイバ10に対して入射光を放射する。光源21はたとえばレーザーダイオードであるが、他の光源であってもよく、たとえば非レーザーのLEDであってもよい。光源21は、図3に示すように、連続的なスペクトルを持つ光を放射する。すなわち、入射光は複数の波長からなる。
 光測定手段22は、センサ用光ファイバ10を透過した光を受光し測定する。光測定手段22はセンサ用光ファイバ10を透過した光のスペクトルを測定する機能を有し、公知の分光手段によって構成することができる。たとえば、光測定手段22は、それぞれ異なる波長特性を有する複数のフィルタと、各フィルタを透過した光の強度を測定する光強度測定手段とを備え、各波長における光の強度を電気信号に変換する。ここで、光強度測定手段は、MOSやCCDによって構成することができる。このようにして、光測定手段22はFBG12によって反射された波長(すなわちFBG12のブラッグ波長)を特定することができる。たとえば、スペクトルが極小値を示す波長をブラッグ波長として特定する。
 また、光処理装置20は、光測定手段22に接続される制御部23を備える。制御部23は、光測定手段22から受信した信号に基づいて演算を行う演算手段24を備える。演算手段24は、FBG12のブラッグ波長に基づいて、金属層13に流れる電流を算出する機能を有する。
 たとえば、金属層13に流れる電流の大きさに応じて金属層13の発熱量が定まり、金属層13の発熱量はFBG12に加わる熱応力に比例するので、ブラッグ波長の変化量(所定の基準ブラッグ波長からの差分)は、金属層13に流れる電流の大きさに依存することになる。演算手段24は、この関係を表す関係式に基づいて電流の大きさを算出することができる。なお、この基準ブラッグ波長および関係式は、たとえばあらかじめ演算手段24に記憶させておくことができる。
 以上のように、本発明の実施の形態1に係る電力装置監視システム1によれば、金属層13に流れる電流値を測定することができるので、金属層13の電極14および15を測定対象の所望の位置に接続すれば、電流センサとして用いることができる。ここで、電力装置監視システム1は電流値をブラッグ波長の変化に基づいて光学的に測定するので、電磁ノイズ等の影響を受けないため高い精度の測定が可能である。
 また、ブラッグ加工してある部分(FBG12の全体を含む)はすべて金属層13で被覆されているので、反射波長帯域の歪みが生じない。
 なお、金属層13の抵抗値は既知であるため、電力装置監視システム1は、電流値を電圧値に変換することができる。すなわち、この場合、演算手段24は、FBG12のブラッグ波長に基づいて、金属層13に印加された電圧を算出する機能を有する。
実施の形態2.
 実施の形態1では、環境温度の変化によるFBG12の伸縮についてはとくに考慮していない。実施の形態2は、環境温度の変化を考慮し、より精度の高い測定を行える構成としたものである。
 図4は、実施の形態2に係る電力装置監視システム101と、監視対象の電力装置の例である電池200との構成を示す。電力装置監視システム101は、センサ用光ファイバ110および光処理装置150を備える。センサ用光ファイバ110は、光ファイバ部111と、3つのFBGとを備える。これら3つのFBGは、それぞれ、温度保証用FBG112、電圧用FBG122および電流用FBG132である。本実施形態では、これら3つのFBGは、すべて同一の特性(長さ、材質、グレーティング周期、熱膨張率など)を有する。
 図5は、センサ用光ファイバ110の一部の拡大図である。温度保証用FBG112、電圧用FBG122および電流用FBG132は、同一のセンサ用光ファイバ110のコアに設けられる。すなわち、これら3つのFBGは、同一の光路上に設けられる。このような構成により、光測定手段152によって測定される光は、温度保証用FBG112、電圧用FBG122および電流用FBG132のすべてを透過した光のみとなる。
 温度保証用FBG112は、従来の温度センサとして用いられるFBGと同様の構成を有する。たとえば、本実施形態では、温度保証用FBG112は金属層によっては被覆されない(ただし金属層による被覆が設けられる構成を除外するものではない)。この温度保証用FBG112は、図示のように電圧用FBG122および電流用FBG132とは異なるFBGであり、周囲環境の温度を測定する環境温度センサ部として機能する。
 電圧用FBG122および電流用FBG132には、実施の形態1と同様に、それぞれを被覆する金属層123および金属層133が形成される。
 電圧用FBG122について、金属層123には一対の電極124および125が設けられ、それぞれ電線126および127によって金属層123の異なる位置に接続される。これら電極のうち一方(図5の例では電極124)は、対応する電線126を介して抵抗値R1を有する抵抗器128に挿入される。
 また、電流用FBG132について、金属層133には一対の電極134および135が設けられ、それぞれ電線136および137によって金属層133の異なる位置に接続される。電圧用FBG122と異なり、電流用FBG132には抵抗器は挿入されない。
 図4に戻り、光処理装置150の構成について説明する。
 光処理装置150は、光源151、光測定手段152および制御部153を備える。実施の形態1と同様に、光源151はセンサ用光ファイバ110に対して入射光を放射し、光測定手段152はセンサ用光ファイバ110を透過した光を受光し測定する。制御部153は、演算手段154および光源制御手段155を備える。
 電池200は陽極201および陰極202を備え、陽極201および陰極202の間には負荷203が接続される。このようにして、電池200および負荷203は電気回路Cを構成する。ここで、電池200は内部抵抗R2を有し、負荷203は抵抗R3と等価であるとする。また、電圧用FBG122の金属層123の抵抗値はRvであり、電流用FBG132の金属層133の抵抗値はRiであるとする(Rv=Riであってもよい)。この場合、各抵抗の大小関係は、たとえばR1>>R3>>R2,Rv,Riとなるよう設計することが好ましいが、これに限られない。
 電圧用FBG122の金属層123および抵抗器128は、電気回路Cにおいて電池200に並列に接続される。また、電流用FBG132の金属層133は、電気回路Cにおいて電池200に直列に接続される。温度保証用FBG112は電気回路Cからは独立している。このような構成により、温度保証用FBG112のブラッグ波長は周囲の温度に対応する波長となり、一方、電圧用FBG122および電流用FBG132のブラッグ波長は、周囲の温度にそれぞれ金属層123および金属層133の発熱に対応する温度を加えた温度に対応する波長となる。
 なお、実施の形態2では、電気回路Cにおいて、電流用FBG132の電極134および135の間の部分の長さL1(図4)は、常に一定となるように接続される。変形例として、この部分の抵抗値が常に一定となるように、長さL1を調整してもよい。いずれにしても、演算手段154が、電気回路Cの当該部分の抵抗値を取得または算出できる構成であればよい。
 次に、図6を用いて、実施の形態2に係る電力装置監視システム101の動作を説明する。
 図6は、各FBGのブラッグ波長の関係を示す。図6(a)は、温度保証用FBG112のブラッグ波長λt周辺のスペクトルを、波長方向に模式的に拡大したものである。図6(b)は、3つのFBGそれぞれが反射する反射光のスペクトルを示す。図6(b)に示すように、3つのFBGがそれぞれ異なるブラッグ波長において光を反射するため、光測定手段152が測定する光のスペクトルには、図6(a)に示すように3つの極小値が現れる。
 演算手段154は、各ブラッグ波長λt、λvおよびλiに基づいて、電池200に係る電流および電圧を算出する。この算出は、たとえば次のようにして行うことができる。演算手段154は、まず、スペクトルに現れる3つの極小値のうち波長が最も短いものを温度保証用FBG112のブラッグ波長λtとして取得し、次に短いものを電圧用FBG122のブラッグ波長λvとして取得し、次に短いもの(すなわち最も長いもの)を電流用FBG132のブラッグ波長λiとして取得する。
 そして、環境温度による誤差を補償するための差分Δλv=λv-λtを算出し、この差分Δλvに基づいて電圧用FBG122の金属層123に流れる電流を算出する。さらに、金属層123に流れる電流と、抵抗器128の抵抗値R1とに基づいて、金属層123の電極124および125の間の電圧を算出する。この電圧が、電池200の陽極201および陰極202の間の電圧となる。このようにして、電力装置監視システム101は電池200の電圧値を測定する。
 同様に、演算手段154は、環境温度による誤差を補償するための差分Δλi=λi-λtを算出し、この差分Δλiに基づいて電流用FBG132の金属層133に流れる電流を算出する。そして、この電流と、金属層133の抵抗値Ri(あらかじめ記憶していてもよい)と、電気回路Cにおける電極134および135の間の抵抗値とに基づき、電気回路Cに流れる電流を算出する。このようにして、電力装置監視システム101は電池200の電流値を測定する。
 以上のように、本発明の実施の形態2に係る電力装置監視システム101によれば、電池200の電流および電圧を測定することができ、電池200の状態を監視することができる。実施の形態1と同様に、電力装置監視システム101は、電流値および電圧値をブラッグ波長の変化に基づいて光学的に測定するので、高い精度の測定が可能である。
 また、実施の形態2では、ブラッグ波長λiおよびλvの絶対値をそのまま用いるのではなく、環境温度に対応するブラッグ波長λtとの差分Δλi=λi-λtおよびΔλv=λv-λtを用いるので、環境温度の変動に起因する誤差を補償することができ、さらに高い精度の測定が可能である。
 また、温度保証用FBG112およびその周辺には電流が流れないので、温度保証用FBG112自体の温度は電力装置監視システム101の停止時と稼動時とで変動しない。すなわち、温度保証用FBG112のウォームアップや、環境温度に対して温度保証用FBG112をスタビライズさせる作業が不要となる。また、各FBGにおけるブラッグ波長の変化およびその測定は光学的なものであり、電磁的干渉を受けないので、電磁的なノイズを排除してS/N比の高い測定を行うことができる。
 また、環境温度に対応する波長(基準ブラッグ波長λt)の測定と、電流および電流に対応する波長(ブラッグ波長λiおよびλv)の測定を、いずれもFBGのブラッグ波長の変動に基づいて行う、すなわち同じ物理的原理に基づいて行うので、誤差の補償がより正確になる。
 上述の実施の形態1および2において、以下のような変形を加えることができる。
 実施の形態1および2では、光処理装置は各FBGを透過した透過光に基づいて電流および/または電圧を測定する。変形例として、光処理装置は各FBGによって反射された反射光に基づいて電流または電圧を測定してもよい。この場合、光測定手段はセンサ用光ファイバの入射側に設けられ、各FBGによって反射された光のスペクトルを測定する。また、ブラッグ波長は、測定されたスペクトルの極大値を与える波長として特定されることになる。
 実施の形態1(図1)の金属層13の電線16に、実施の形態2(図5)の抵抗器128に相当する抵抗器が設けられてもよい。この場合は、実施の形態1の電力装置監視システム1は、電圧をより正確に測定することができる。また、センサ用光ファイバは、そのように抵抗器を設けたFBGと、抵抗器を設けないFBG(すなわち図1に示すFBG12)との双方を備えてもよい。これら双方のFBGを設けた構成は、実施の形態2(図4)のセンサ用光ファイバ110において温度保証用FBG112を省略した構成と同等である。
 実施の形態2では3つのFBGを用いるが、これは2つ以上であればよい。たとえば、電圧用FBG122または電流用FBG132のいずれか一方を省略することができる。この場合、電力装置監視システム101は電池200の電流または電圧のいずれか一方を測定することになる。
 実施の形態2では電流用FBG132は電気回路Cの一部と並列に接続されるが、これは従来の電流計と同様に電気回路Cに直列に接続されてもよい。この場合、演算手段154は、電流用FBG132の金属層133に流れる電流値をそのまま電池200の電流値として測定することができる。
 実施の形態2では、温度保証用FBG112、電圧用FBG122および電流用FBG132はすべて同一の特性を有するが、これらはそれぞれ異なった特性を有してもよい。たとえば、それぞれ異なる熱膨張率を有してもよく、同一の温度においてそれぞれ異なるグレーティング周期を有してもよい。このような構成であっても、それぞれの特性が既知であれば、演算手段154は適切な演算によって電流値および電圧値を算出することができる。
実施の形態3.
 実施の形態3は、1つのFBGに電流検出部および温度検出部を設け、反射帯域幅に基づく演算を行うことにより、単一のFBGで温度保証(温度補償)を可能とするものである。
 図7は、実施の形態3に係るセンサ用光ファイバ310の一部の拡大図である。以下、実施の形態1のセンサ用光ファイバ10(図1、図2)との相違点を説明する。
 センサ用光ファイバ310は、FBG312を被覆する金属層313を備える。金属層313は、たとえば金属蒸着により形成される。
 FBG312の軸方向の長さをL0とする。実施の形態1と異なり、金属層313はFBG312の全体を被覆するのではなく、一部のみを被覆する。すなわち、FBG312は、金属層313によって被覆されるメタライズ部312aと、金属層313によっては被覆されない非メタライズ部312bとを備える。(なお非メタライズ部312bは露出している必要はなく、金属層以外の構造によって被覆されてもよい。)
 FBG312の全体を通してグレーティング周期は一定である。すなわち、メタライズ部312aのグレーティング周期と非メタライズ部312bのグレーティング周期とは同一である。本実施形態では、メタライズ部312aが電流検出部として機能し、非メタライズ部312bが温度検出部として機能する。
 メタライズ部312aは、FBG312の軸方向中央に設けられ、軸方向の長さLaを有する。また、非メタライズ部312bは、FBG312においてメタライズ部312aの軸方向両側に設けられ、それぞれの側で軸方向の長さLb/2を有する。すなわち、非メタライズ部312bの合計の長さはLbであり、L0=La+Lbとなる。
 本実施形態ではLa=Lbである。すなわち、メタライズ部312aの合計の長さ(図7の例では、メタライズ部312aは1箇所なので、合計の長さはLaである)は、非メタライズ部312bの合計の長さに等しい。このように、メタライズ部312aと非メタライズ部312bとは、互いにグレーティング周期が等しく、かつ長さも等しいので、同一の温度では同一のスペクトル特性を有することになる。
 図8は、金属層313への通電に応じて、FBG312によって反射される光のスペクトルが変化する様子を示す。図8(a)は通電前の状態を表す。FBG312は全体が通電前の温度(たとえば室温)にある。すなわち、メタライズ部312aの反射スペクトルSaと、非メタライズ部312bの反射スペクトルSbとは一致する。このときのピーク波長をλ0とする。また、FBG312全体で反射される波長の帯域幅をB0とする。この帯域幅B0は公知の方法によって測定することができ、たとえば反射される光の強度が所定の閾値以上となる帯域の幅である。
 図8(b)は、金属層313への通電が開始された直後の状態を表す。通電開始直後は、メタライズ部312aのみ急速に温度が上昇し、熱膨張により反射スペクトルSaが長波長側にシフトする。ここではΔλiだけシフトして、ピーク波長がλ1=λ0+Δλiとなったとする。この時点では非メタライズ部312bの温度は上昇しておらず、したがって反射スペクトルSbは元のままである。
 このようにメタライズ部312aの反射スペクトルSaだけがシフトした結果、FBG312全体でみると反射スペクトルの幅が広がる。このとき、FBG312全体で反射される波長の帯域幅をBtとすると、Bt=B0+Δλiとなる。したがって、B0およびBtを測定すればΔλiを算出することができる(たとえばΔλi=B2-B0)。さらに、Δλiは電流の大きさに依存するので、Δλiに基づいて電流の大きさを算出することができる。
 たとえば、電力装置監視システムは、入射光として複数の波長からなる光を放射する光源と、FBG312によって反射された波長の帯域幅Btを測定する光測定手段(分光手段)と、測定された帯域幅Btに基づいて金属層313に流れる電流を算出する算出手段とを備えるよう構成することができる。なお金属層313に印加された電圧も同様に算出可能である。制御部は、電流が0である場合にFBG312によって反射される波長の帯域幅B0を予め記憶していてもよい。
 図8(c)は、金属層313への通電がしばらく継続している状態を表す。メタライズ部312aからセンサ用光ファイバ310の全体に熱が伝播し、メタライズ部312aおよび非メタライズ部312bの反射スペクトルSaおよびSbがいずれも長波長側にシフトする。ここではΔλtだけシフトしたとする。この結果、メタライズ部312aの反射スペクトルのピーク波長はλ3=λ1+Δλtとなり、非メタライズ部312bの反射スペクトルSbのピーク波長はλ2=λ0+Δλtとなる。
 このような状態では、金属層313に流れる電流が一定であっても、メタライズ部312aの反射スペクトルSaのピーク波長が時間とともに変動するので、電流値の算出を反射スペクトルSaのピーク波長のみに基づいて厳密に行うには、なんらかの補正が必要となる。
 しかしながら、Δλtのシフトはメタライズ部312aおよび非メタライズ部312bに同様に現れるため、FBG312全体の反射スペクトルはその形状が変わらないまま全体が長波長側にシフトする。したがって、FBG312全体で反射される波長の帯域幅はBtのままで変化しない。このように、通電継続によるセンサ用光ファイバ310全体の温度変動の影響Δλtの大きさに関わらず、電流の大きさのみに依存する値Δλiを精度良く求めることができる。
 図8(d)は、通電を停止した直後の状態を表す。メタライズ部312aは急速に冷却されるため反射スペクトルSaは短波長側に戻るが、センサ用光ファイバ310全体の温度上昇のため、通電開始前(図8(a)の状態)よりは長波長側寄りであり、ピーク波長はλ2となる。また、非メタライズ部312bの反射スペクトルSbは変化せず、ピーク波長はλ2のままである。したがって、メタライズ部312aの反射スペクトルSaと、非メタライズ部312bの反射スペクトルSbとが一致する。
 この時点では、FBG312全体の反射スペクトルは通電開始前(図8(a))に比べて長波長側にシフトしているが、反射スペクトルの帯域幅は通電開始前と同じくB0となる。このように、通電継続によるセンサ用光ファイバ310全体の温度変動の影響Δλtの存否に関わらず、電流の大きさを精度良く求めることができる。
 なお、通電停止後しばらく時間が経過すると、センサ用光ファイバ310全体の温度が低下し、通電開始前の状態(図8(a))に戻る。
 このように、実施の形態3によれば、1つのFBGに電流検出部(メタライズ部312a)および温度検出部(非メタライズ部312b)を設け、反射帯域幅に基づく演算を行うので、単一のFBG312で温度保証(温度補償)を行って正確な電流値または電圧値を算出することができる。
 したがって、発熱による熱量蓄積が波長シフトのドリフトをもたらすような場合であっても、正確に電流値を算出することができる。
 また、1個のFBG素子でFBG312を実現できるため、コストの上昇が回避できる。とくに、外付けFBGによる温度センサ等は不要であり、コストを低減するとともに装置全体を小型化することができる。
 また、メタライズ部312aの長さと非メタライズ部312bの長さとが互いに等しいので、それぞれの反射スペクトルが共通する特性(たとえば同一の反射率)を示し、より精度の高い測定を行うことができる。ただし、これらの長さが等しくない場合であっても、それぞれ0でない長さであれば測定を行うことは理論上可能である。また、これらの長さは厳密に一致する必要はなく、長さが多少異なっていても、波長の測定精度または電流・電圧の算出精度に与える誤差が無視できる程度であれば、長さが互いに等しいとみなすことができる。
 また、メタライズ部312aは、FBG312の軸方向中央に設けられるので、非メタライズ部312bの熱応答性が高まる(すなわち時定数が小さくなる)。ただし、厳密に中央に配置される必要はなく、メタライズ部312aの両側に非メタライズ部312bが位置する構成であれば、ある程度非メタライズ部312bの熱応答性を維持することができる。
 ただし、メタライズ部312aがFBG312のどこに設けられても、ある程度の熱応答性をもって電流値の算出を行うことは可能であり、たとえば図9に示す変形例のように端部に設けられてもよい。図9の変形例において、センサ用光ファイバ410はFBG412を備え、FBG412は金属層413によって被覆されるメタライズ部412a(長さLa)と、金属層413によっては被覆されない非メタライズ部412b(長さLb)とを備える。
 実施の形態3では、FBG312によって反射された光の波長に基づいて電流および/または電圧を測定する。変形例として、FBG312を透過した光の波長に基づいて電流または電圧を測定してもよい。

Claims (14)

  1.  センサ用光ファイバであって、
     入射光が伝播する方向に沿って、前記センサ用光ファイバのコアの屈折率を周期的に変化させたFBGと、
     前記FBGを被覆する金属層と、
     前記金属層に設けられる一対の電極と
    を備えたセンサ用光ファイバ。
  2.  前記金属層は抵抗金属材料を含む、請求項1に記載のセンサ用光ファイバ。
  3.  前記金属層に発生するジュール熱により、前記入射光が伝播する方向に前記金属層が伸縮する、請求項1に記載のセンサ用光ファイバ。
  4.  前記センサ用光ファイバは、複数の前記FBGを備え、
     前記FBGの1つが有する前記金属層の電極のうち一方は抵抗器に接続される、請求項1に記載のセンサ用光ファイバ。
  5.  前記センサ用光ファイバは環境温度センサ部を備え、
     前記環境温度センサ部は、前記FBGとは異なるFBGを備える、請求項1に記載のセンサ用光ファイバ。
  6.  前記FBGは、前記金属層によって被覆されるメタライズ部と、前記金属層によっては被覆されない非メタライズ部とを備える、請求項1に記載のセンサ用光ファイバ。
  7.  前記メタライズ部の、前記入射光が伝播する方向における合計の長さと、
     前記非メタライズ部の、前記入射光が伝播する方向における合計の長さと
    は互いに等しい、請求項6に記載のセンサ用光ファイバ。
  8.  前記メタライズ部は、前記FBGにおいて、前記入射光が伝播する方向中央に設けられる、請求項6に記載のセンサ用光ファイバ。
  9.  請求項6に記載のセンサ用光ファイバと、
     前記入射光として複数の波長からなる光を放射する光源と、
     前記FBGを透過した光または前記FBGによって反射された波長の帯域幅を測定する分光手段と、
     前記帯域幅に基づいて前記金属層に流れる電流または前記金属層に印加された電圧を算出する、算出手段と
    を備える、電力装置監視システム。
  10.  請求項1に記載のセンサ用光ファイバと、
     前記入射光を放射する光源と、
     前記FBGを透過した光または前記FBGによって反射された光を測定する光測定手段と
    を備えた電力装置監視システム。
  11.  前記センサ用光ファイバは、複数の前記FBGを備え、
     前記複数のFBGは、電流用FBGおよび電圧用FBGを含み、
     前記電流用FBGの金属層は、前記電力装置に直列に接続され、
     前記電圧用FBGの金属層の電極のうち一方は抵抗器に接続され、
     前記電圧用FBGの金属層は、前記電力装置に並列に接続される、
    請求項10に記載の電力装置監視システム。
  12.  前記光源は、前記入射光として複数の波長からなる光を放射し、
     前記光測定手段は、光のスペクトルを測定する分光手段である、請求項10に記載の電力装置監視システム。
  13.  前記分光手段は、前記FBGによって反射されたブラッグ波長を特定し、
     前記電力装置監視システムは、前記ブラッグ波長に基づいて、前記金属層に流れる電流または前記金属層に印加された電圧を算出する、算出手段をさらに備える、請求項12に記載の電力装置監視システム。
  14.  前記センサ用光ファイバは環境温度センサ部を備え、
     前記環境温度センサ部は、前記FBGとは異なるFBGを備え、
     前記分光手段は、前記環境温度センサ部によって反射された波長を基準ブラッグ波長として特定し、
     前記算出手段は、前記ブラッグ波長と前記基準ブラッグ波長との差分に基づいて、前記電流または前記電圧を算出する、請求項13に記載の電力装置監視システム。
PCT/JP2013/051070 2012-01-23 2013-01-21 センサ用光ファイバおよび電力装置監視システム WO2013111699A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/373,833 US20150069996A1 (en) 2012-01-23 2013-01-21 Optical fiber for a sensor and a power device monitoring system
CN201380015790.4A CN104185793B (zh) 2012-01-23 2013-01-21 传感器用光纤以及电力装置监视系统
EP13740993.4A EP2824463A4 (en) 2012-01-23 2013-01-21 Glass fiber for a sensor and monitoring system for a powered device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012011250 2012-01-23
JP2012-011250 2012-01-23
JP2012056060A JP5843668B2 (ja) 2012-01-23 2012-03-13 センサ用光ファイバおよび電力装置監視システム
JP2012-056060 2012-03-13

Publications (1)

Publication Number Publication Date
WO2013111699A1 true WO2013111699A1 (ja) 2013-08-01

Family

ID=48873419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051070 WO2013111699A1 (ja) 2012-01-23 2013-01-21 センサ用光ファイバおよび電力装置監視システム

Country Status (5)

Country Link
US (1) US20150069996A1 (ja)
EP (1) EP2824463A4 (ja)
JP (1) JP5843668B2 (ja)
CN (1) CN104185793B (ja)
WO (1) WO2013111699A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5826645B2 (ja) * 2012-01-23 2015-12-02 株式会社豊田自動織機 温度センサ用光ファイバおよび電力装置監視システム
DE102012223573A1 (de) * 2012-12-18 2014-07-03 Robert Bosch Gmbh Verfahren und Vorrichtung zum Überwachen von Signalpegeln
ITMI20131668A1 (it) * 2013-10-09 2015-04-09 Cnr Consiglio Naz Delle Ric Erche High voltage fiber optic sensor for the measurement of an alternating electric field
DE102015006449B4 (de) 2015-05-18 2022-10-13 Michael Franke Verfahren zur Messung elektrischer Ströme
WO2017135933A1 (en) * 2016-02-02 2017-08-10 Halliburton Energy Services, Inc. Fluid analysis system based on integrated computing element technology and fiber bragg grating radiometry
US10591549B2 (en) * 2016-09-14 2020-03-17 GM Global Technology Operations LLC Sensor and method of making and using the same
US10589629B2 (en) * 2016-09-14 2020-03-17 GM Global Technology Operations LLC Electrochemical device sensor and method of making and using the same
CN109669065A (zh) * 2018-12-11 2019-04-23 龙岩学院 基于条形径向偏振光栅实现的电压测量方法
CN109444503A (zh) * 2018-12-13 2019-03-08 云南电网有限责任公司电力科学研究院 一种用于提高光纤电流检测频率的传感器系统
CN110988603A (zh) * 2019-12-25 2020-04-10 武汉三相电力科技有限公司 一种基于光纤光栅的数字差动区间保护方法及系统
CN111551870A (zh) * 2020-05-18 2020-08-18 国网江苏省电力有限公司无锡供电分公司 一种基于光纤光栅的绝缘子泄露电流监测装置及方法
CN113346199B (zh) * 2021-04-13 2022-10-04 华中科技大学 一种集成式光纤极耳、制备方法和应用
BR202021017059U2 (pt) * 2021-08-27 2023-03-07 Companhia Paulista De Força E Luz - Cpfl Disposição introduzida em dispositivo passivo adaptador para sensor de corrente
KR102555301B1 (ko) * 2021-10-13 2023-07-12 연세대학교 산학협력단 정밀 형상 가변형 섬유 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346722A (ja) * 1999-06-07 2000-12-15 Furukawa Electric Co Ltd:The 力学センサ
JP2004029691A (ja) 2002-05-07 2004-01-29 Furukawa Electric Co Ltd:The ファイバグレーティング型光部品
WO2005028995A1 (ja) * 2003-09-17 2005-03-31 Kyocera Corporation Fbgセンシングシステム
JP2007028792A (ja) * 2005-07-15 2007-02-01 Yamatake Corp コンバータ
JP2009516855A (ja) 2005-11-15 2009-04-23 ゾロ テクノロジーズ,インコーポレイティド 航空推進用途に対する内蔵型飛行センサのための全ファイバ・アーキテクチャ
JP2010054715A (ja) * 2008-08-27 2010-03-11 Fujikura Ltd 温度補償型光ファイバブラッググレーティング

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3534550B2 (ja) * 1995-11-01 2004-06-07 住友電気工業株式会社 Otdr装置
JP3469726B2 (ja) * 1996-02-06 2003-11-25 古河電気工業株式会社 超磁歪合金を用いた電流検出器および超磁歪合金センサを備えた電力ケーブル線路
US6282340B1 (en) * 1998-04-23 2001-08-28 The Furukawa Electric Co., Ltd. Light wavelength tuning device and light source optical demultiplexer and wavelength division multiplexed optical communication system using the tuning device
US20040208624A1 (en) * 2002-04-05 2004-10-21 Universite Laval Fast frequency hopping spread spectrum for code division multiple access communications networks (FFH-CDMA)
GB2407377B (en) * 2003-10-16 2006-04-19 Kidde Ip Holdings Ltd Fibre bragg grating sensors
JP2005141074A (ja) * 2003-11-07 2005-06-02 Nec Corp 石英導波路デバイス、可変光アッテネータおよび光スイッチ
US7239778B2 (en) * 2004-01-23 2007-07-03 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Active in-fiber optic components powered by in-fiber light
US6950578B1 (en) * 2004-05-28 2005-09-27 Fitel Usa Corp. Highly index-sensitive optical devices including long period fiber gratings
US7228017B2 (en) * 2005-09-30 2007-06-05 General Electric Company Fiber optic sensing device and method of making and operating the same
US7151872B1 (en) * 2005-11-22 2006-12-19 General Electric Company Method, system and module for monitoring a power generating system
KR100927594B1 (ko) * 2006-12-05 2009-11-23 한국전자통신연구원 평판형 광도파로(plc) 소자, 그 소자를 포함한 파장가변 광원 및 그 광원을 이용한 wdm-pon
US8180185B2 (en) * 2007-03-22 2012-05-15 General Electric Company Fiber optic sensor for detecting multiple parameters in a harsh environment
US8240913B2 (en) * 2008-09-24 2012-08-14 General Electric Company Fiber optic sensing device and method
CN101509962B (zh) * 2009-03-06 2011-05-11 电子科技大学 一种磁感应强度的测量方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346722A (ja) * 1999-06-07 2000-12-15 Furukawa Electric Co Ltd:The 力学センサ
JP2004029691A (ja) 2002-05-07 2004-01-29 Furukawa Electric Co Ltd:The ファイバグレーティング型光部品
WO2005028995A1 (ja) * 2003-09-17 2005-03-31 Kyocera Corporation Fbgセンシングシステム
JP2007028792A (ja) * 2005-07-15 2007-02-01 Yamatake Corp コンバータ
JP2009516855A (ja) 2005-11-15 2009-04-23 ゾロ テクノロジーズ,インコーポレイティド 航空推進用途に対する内蔵型飛行センサのための全ファイバ・アーキテクチャ
JP2010054715A (ja) * 2008-08-27 2010-03-11 Fujikura Ltd 温度補償型光ファイバブラッググレーティング

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
P.M. CAVALEIRO ET AL.: "Metal-coated fibre Bragg grating sensor for electric current metering", ELECTRONICS LETTERS, vol. 34, no. 11, 28 May 1998 (1998-05-28), pages 1133 - 1135, XP000846235 *
See also references of EP2824463A4

Also Published As

Publication number Publication date
CN104185793B (zh) 2016-08-24
US20150069996A1 (en) 2015-03-12
JP5843668B2 (ja) 2016-01-13
EP2824463A4 (en) 2016-04-13
EP2824463A1 (en) 2015-01-14
CN104185793A (zh) 2014-12-03
JP2013174572A (ja) 2013-09-05

Similar Documents

Publication Publication Date Title
JP5843668B2 (ja) センサ用光ファイバおよび電力装置監視システム
US20150023389A1 (en) Optical fiber for temperature sensor and a power device monitoring system
JP5150445B2 (ja) 光ファイバセンサ装置および温度とひずみの計測方法と光ファイバセンサ
US20130027030A1 (en) Fiber optic magnetic flux sensor for application in high voltage generator stator bars
EP2980537B1 (en) Multi-peak reference grating
EP2839554A1 (en) Frequency tunable laser system
JP5945120B2 (ja) 光ファイバセンサおよびこれを用いたひずみと温度の同時計測方法
JP2008185384A (ja) Fbgファブリペロー型超狭帯域光フィルタを用いた高精度センシングシステム
Wang et al. Fabrication of phase-shifted long-period fiber grating and its application to strain measurement
KR101113778B1 (ko) 브래그 격자 및 패브리 패로 간섭을 이용한 광섬유 센서 탐촉자, 광섬유 센서 시스템 및 그 시스템의 센싱방법
JP2008232878A (ja) 光スペクトルパタンマッチング法による分布型センサシステム
Guo et al. Echelle diffractive grating based wavelength interrogator for potential aerospace applications
KR100614006B1 (ko) 온도 제어 가능한 파장 가변 광발생기를 구비한 스트레인계측 모듈 및 이를 이용한 광섬유 스트레인 계측 시스템
US20150362386A1 (en) Fiber optic sensor system and method
Polyakov et al. High voltage monitoring with a fiber-optic recirculation measuring system
Mandal et al. A parallel multiplexed temperature sensor system using Bragg-grating-based fiber lasers
JP2013083558A (ja) Fbgひずみセンサ及びひずみ量計測システム
JP2007205783A (ja) 反射スペクトラム測定システム
Della Tamin et al. Quasi-Distributed Fabry-Perot Optical Fibre Sensor for Temperature Measurements
CN113639892B (zh) 一种光纤光栅温度传感器及准分布式测温系统
Wada et al. Experimental investigation of dynamic characteristics of wavelength of DFB-LD for FBG-FPI vibration sensor based on wavelength-to-time mapping
Caucheteur et al. Infrared radiation detection with matched fiber Bragg gratings
Padhy et al. Cost-Effective Fiber Bragg Grating Temperature Sensor Using Power Measurement
Dražić-Šegrt et al. Portable FBG based optical sensor array
Sengupta et al. An FBG sensor for strain and temperature discrimination at cryogenic regime

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13740993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013740993

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013740993

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14373833

Country of ref document: US