WO2013111696A1 - Fluorescent material substrate, display apparatus, and electronic apparatus - Google Patents

Fluorescent material substrate, display apparatus, and electronic apparatus Download PDF

Info

Publication number
WO2013111696A1
WO2013111696A1 PCT/JP2013/051066 JP2013051066W WO2013111696A1 WO 2013111696 A1 WO2013111696 A1 WO 2013111696A1 JP 2013051066 W JP2013051066 W JP 2013051066W WO 2013111696 A1 WO2013111696 A1 WO 2013111696A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
substrate
layer
phosphor
partition wall
Prior art date
Application number
PCT/JP2013/051066
Other languages
French (fr)
Japanese (ja)
Inventor
晶子 岩田
充浩 向殿
近藤 克己
悦昌 藤田
勇毅 小林
別所 久徳
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013111696A1 publication Critical patent/WO2013111696A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight

Definitions

  • the present invention relates to a phosphor substrate, a display device, and an electronic device.
  • Patent Documents 1 and 2 as a method for improving viewing angle characteristics in a liquid crystal display device, a phosphor layer is disposed on the front surface of the liquid crystal display device, and a blue light emitted from a light source is obtained.
  • a method is disclosed in which a part is used for blue display and the remaining part is converted into red light and green light with a phosphor to perform full color display.
  • the organic EL display has display characteristics excellent in contrast, viewing angle, and response speed.
  • the organic EL display has a problem that it is difficult to achieve high definition and large size because it is necessary to pattern light emitting layers of RGB colors using mask vapor deposition in order to realize full color display.
  • Patent Documents 3 and 4 disclose a method of emitting phosphor layers of RGB colors using a monochromatic organic EL element as an excitation light source.
  • JP 2000-131683 A Japanese Patent Laid-Open No. 62-194227 Japanese Patent Laid-Open No. 3-152897 JP 2010-282916 A
  • the present invention has been made to solve the above-described problem, and is a phosphor substrate, a display device, and an electronic device that can suppress excitation light from being incident on an adjacent pixel of a pixel that should be incident.
  • the purpose is to provide.
  • Another object of the present invention is to provide a phosphor substrate, a display device, and an electronic apparatus that can suppress undesired phosphor layers from emitting light and causing color bleeding.
  • a phosphor substrate of the present invention includes a substrate, a phosphor layer that is provided on the substrate and emits fluorescence by incident excitation light, and a partition wall that surrounds the side surface of the phosphor layer.
  • the shape of at least the side away from the substrate of the partition wall is such that the cross-sectional area when cut along a plane parallel to one surface of the substrate is small on the side away from the substrate and gradually toward the substrate. It is characterized by a large shape.
  • the phosphor substrate of the present invention is characterized in that the partition wall has light scattering property or light reflecting property.
  • the partition includes a light scattering layer having a light scattering property, and a light absorbing layer having a light absorption property disposed between the substrate and the light scattering layer,
  • the portion of the light absorbing layer on the substrate side has a larger cross-sectional area when cut along a plane parallel to one surface of the substrate than a cross-sectional area when the light scattering layer is cut along a plane parallel to one surface of the substrate. It is characterized by that.
  • the phosphor substrate according to the present invention is characterized in that at least a portion of the light scattering layer in contact with the phosphor layer is formed of a material containing a resin and light scattering particles.
  • the phosphor substrate of the present invention is characterized in that at least a portion of the light scattering layer in contact with the phosphor layer is white.
  • the phosphor substrate of the present invention is characterized in that at least a portion of the light scattering layer in contact with the phosphor layer has an uneven shape.
  • the shape of at least the side surface of the partition wall on the side away from the substrate is a curved shape having a concave cross-sectional shape when cut along a plane orthogonal to one surface of the substrate.
  • the shape of at least a side surface of the partition wall on the side away from the substrate is a curved shape in which a cross-sectional shape is convex when cut along a plane orthogonal to one surface of the substrate.
  • the phosphor substrate of the present invention is characterized in that a low refractive index layer having a refractive index lower than that of the substrate is provided between the substrate and the phosphor layer.
  • the phosphor substrate of the present invention transmits light from the blue region to the incident side of the excitation light of the phosphor layer and transmits light from green to the near infrared region.
  • a reflective band-pass filter is provided.
  • the phosphor substrate of the present invention transmits light in the ultraviolet region to the incident side of the excitation light of the phosphor layer, and transmits light from green to the near infrared region.
  • a reflective band-pass filter is provided.
  • the display device of the present invention includes the phosphor substrate of the present invention, and a light source that emits excitation light that irradiates the phosphor layer.
  • the display device of the present invention includes a plurality of pixels including at least a red sub-pixel that performs display with red light, a green sub-pixel that performs display with green light, and a blue sub-pixel that performs display with blue light.
  • Blue light as the excitation light is emitted from the light source, and as the phosphor layer, a red phosphor layer that emits red light using the blue light as the excitation light is provided in the red sub-pixel, and the green sub-pixel is provided in the green sub-pixel.
  • a green phosphor layer that emits green light using the blue light as the excitation light is provided, and a scattering layer that scatters the blue light is provided in the blue sub-pixel.
  • the display device of the present invention emits blue light as the excitation light from the light source, transmits light in a blue region between the light source and the phosphor substrate, and transmits light from green to the near infrared region.
  • a reflective band-pass filter is provided.
  • the display device of the present invention includes a plurality of pixels including at least a red sub-pixel that performs display with red light, a green sub-pixel that performs display with green light, and a blue sub-pixel that performs display with blue light.
  • Ultraviolet light as the excitation light is emitted from the light source, and as the phosphor layer, a red phosphor layer that emits red light using the ultraviolet light as the excitation light is provided in the red subpixel, and the green subpixel is provided with A green phosphor layer that emits green light using the ultraviolet light as the excitation light is provided, and a blue phosphor layer that emits blue light using the ultraviolet light as the excitation light is provided in the blue sub-pixel.
  • the display device of the present invention emits ultraviolet light as the excitation light from the light source, transmits light in the ultraviolet region between the light source and the phosphor substrate, and transmits light from green to the near infrared region.
  • a reflective band-pass filter is provided.
  • the light source includes an active matrix driving system including a plurality of light emitting elements provided corresponding to the plurality of pixels, and a plurality of driving elements that respectively drive the plurality of light emitting elements. It is characterized by being a light source.
  • the display device of the present invention is characterized in that the light source is any one of a light emitting diode, an organic electroluminescent element, and an inorganic electroluminescent element.
  • the light source is a planar light source that emits light from a light emitting surface, and is emitted from the planar light source for each pixel between the planar light source and the phosphor substrate.
  • a liquid crystal element capable of controlling the light transmittance is provided.
  • the display device of the present invention is characterized in that the light source has directivity.
  • the display device of the present invention is characterized in that a polarizing plate having an extinction ratio of 10,000 or more at a wavelength of 435 nm or more and 480 nm or less is provided between the light source and the phosphor substrate.
  • the display device of the present invention is characterized in that a color filter is provided on either the upper surface or the lower surface of the phosphor layer.
  • the phosphor layer in the region surrounded by the partition wall has a concave shape when cut along a plane orthogonal to one surface of the substrate, and at least a peripheral portion is a side surface of the partition wall. It is arrange
  • An electronic apparatus includes the display device according to the present invention.
  • a phosphor substrate, a display device, and an electronic device that can suppress excitation light from being incident on a pixel adjacent to a pixel that should originally be incident.
  • a phosphor substrate, a display device, and an electronic device that can suppress undesired phosphor layers from emitting light and causing color bleeding.
  • action of a partition It is a cross-sectional schematic diagram of the display apparatus of 5th Embodiment of this invention. It is a cross-sectional schematic diagram of the display apparatus of 6th Embodiment of this invention. It is a cross-sectional schematic diagram which shows the modification of the partition in the fluorescent substance substrate of this invention. It is a cross-sectional schematic diagram which shows the modification of the partition in the fluorescent substance substrate of this invention. It is a cross-sectional schematic diagram which shows the modification of the partition in the fluorescent substance substrate of this invention. It is a cross-sectional schematic diagram which shows the modification of the partition in the fluorescent substance substrate of this invention. It is a cross-sectional schematic diagram which shows the modification of the partition in the fluorescent substance substrate of this invention.
  • FIG. 3 is a schematic cross-sectional view showing a method for manufacturing the phosphor substrate of Example 1.
  • FIG. 3 is a schematic cross-sectional view showing a method for manufacturing the phosphor substrate of Example 1.
  • FIG. 3 is a schematic cross-sectional view showing a method for manufacturing the phosphor substrate of Example 1.
  • FIG. 3 is a schematic cross-sectional view showing a method for manufacturing the phosphor substrate of Example 1.
  • FIG. 3 is a schematic cross-sectional view showing a method for manufacturing the phosphor substrate of Example 1.
  • FIG. 3 is a schematic cross-sectional view showing a method for manufacturing the phosphor substrate of Example 1.
  • FIG. 3 is a schematic cross-sectional view of a display device of Example 1.
  • FIG. 6 is a schematic cross-sectional view showing a method for manufacturing the phosphor substrate of Example 2.
  • FIG. 6 is a schematic cross-sectional view showing a method for manufacturing the phosphor substrate of Example 2.
  • FIG. 6 is a schematic cross-sectional view showing a method for manufacturing the phosphor substrate of Example 2.
  • FIG. 6 is a schematic cross-sectional view showing a method for manufacturing the phosphor substrate of Example 2.
  • FIG. 6 is a schematic cross-sectional view showing a method for manufacturing the phosphor substrate of Example 2.
  • FIG. 6 is a schematic cross-sectional view of a display device of Example 2.
  • FIG. 6 is a schematic cross-sectional view showing
  • FIG. 1 is a schematic cross-sectional view of a display device 100 according to a first embodiment of the present invention.
  • the cross section of FIG. 1 is a cross section when the display device 100 is cut along a plane orthogonal to the upper surface of the substrate 1.
  • a schematic diagram of a cross section when the display device is cut along a plane orthogonal to the upper surface of the substrate 1 may be referred to as a cross sectional view of the display device.
  • the display device 100 includes a phosphor substrate 10 and a light source substrate 11 bonded to the phosphor substrate 10 via an adhesive layer 14.
  • one pixel which is the minimum unit constituting an image, is configured by three sub-pixels that respectively display red, green, and blue.
  • a sub pixel that performs red display is referred to as a red sub pixel PR
  • a sub pixel that performs green display is referred to as a green sub pixel PG
  • a sub pixel that performs blue display is referred to as a blue sub pixel PB.
  • the light source substrate 11 includes a substrate 9 and a light source 2 disposed on the phosphor substrate 10 side of the substrate 9.
  • ultraviolet light is emitted from the light source 2 as the excitation light L1.
  • red fluorescence L2 is produced in the red subpixel PR
  • green fluorescence L2 is produced in the green subpixel PG
  • blue fluorescence is produced in the blue subpixel PB.
  • Fluorescence L2 is generated. Then, full color display is performed by these three color lights of red, green and blue.
  • FIG. 2A and 2B are schematic views of the phosphor substrate 10 according to the first embodiment.
  • FIG. 2A is a schematic cross-sectional view of the phosphor substrate 10 according to the present embodiment.
  • FIG. 2B is a schematic plan view of the phosphor substrate 10 according to the present embodiment.
  • the cross section of FIG. 2A is a cross section when the phosphor substrate 10 is cut along a plane orthogonal to the upper surface of the substrate 1.
  • a schematic diagram of a cross section when the phosphor substrate is cut along a plane orthogonal to the upper surface of the substrate 1 may be referred to as a sectional view of the phosphor substrate.
  • the phosphor substrate 10 includes a substrate 1, phosphor layers 3R, 3G, and 3B, barrier ribs 5, and color filters 4R, 4G, and 4B. ing.
  • the phosphor layers 3R, 3G, and 3B are provided on the substrate 1 and generate fluorescence L2 by the excitation light L1 incident from above the substrate 1.
  • the barrier ribs 5 surround the side surfaces of the phosphor layers 3R, 3G, 3B.
  • the excitation light incident surface 3a on which the excitation light L1 of the phosphor layers 3R, 3G, 3B is incident is exposed from the opening of the partition wall 5. That is, the excitation light incident surface 3a is a surface on which the excitation light L1 emitted from the light source 2 of the light source 2 can enter.
  • the excitation light L1 is converted into fluorescence L2 in the phosphor layers 3R, 3G, 3B, and the fluorescence L2 is emitted from the emission surface 3b of the phosphor layers 3R, 3G, 3B.
  • the phosphor layers 3R, 3G, and 3B are composed of a plurality of phosphor layers that are divided for each sub-pixel, and the plurality of phosphor layers 3R, 3G, and 3B emit different color lights depending on the sub-pixels. Consists of body materials. The phosphor materials constituting the plurality of phosphor layers 3R, 3G, 3B may have different refractive indexes.
  • a wavelength selective transmission / reflection member that transmits the excitation light L1 and reflects the fluorescence L2 emitted from the phosphor layers 3R, 3G, and 3B to the outer surface side of the excitation light incident surface 3a of the phosphor layers 3R, 3G, and 3B.
  • a pass filter may be formed. Note that “transmitting excitation light” means transmitting at least light corresponding to the peak wavelength of excitation light. Further, “reflect the fluorescence generated in the phosphor layers 3R, 3G, 3B” means that at least the light corresponding to the respective emission peak wavelengths from the phosphor layers 3R, 3G, 3B is reflected.
  • the partition wall 5 has a laminated structure of a light absorbing layer 6 having a light absorbing property and a light scattering layer 7 having a light scattering property from the substrate 1 side.
  • the cross-sectional shape of the light absorption layer 6 has a trapezoidal shape in which the side (bottom base) on the side in contact with the substrate 1 is longer than the side (upper base) on the side away from the substrate 1.
  • the cross-sectional shape of the light scattering layer 7 is a trapezoidal shape in which the side (lower base) on the side in contact with the light absorption layer 6 is longer than the side (upper base) on the side away from the light absorption layer 6.
  • the cross-sectional shape of the partition wall 5 is a cross-sectional shape when the partition wall 5 (light absorption layer 6 and light scattering layer 7) is cut along a plane orthogonal to the upper surface of the substrate 1. It is.
  • the cross-sectional shape when the partition wall (light absorption layer, light scattering layer) is cut along a plane orthogonal to the upper surface of the substrate 1 may be referred to as a side cross-sectional shape of the partition wall (light absorption layer, light scattering layer).
  • a light absorption layer 6 is provided on the lower surface of the light scattering layer 7 (between the substrate 1 and the light scattering layer 7).
  • the side of the light scattering layer 7 that is in contact with the light absorption layer 6 (lower base) is shorter than the side of the light absorption layer 6 that is away from the substrate 1 (upper bottom).
  • the width of the light absorption layer 6 is larger than the width of the light scattering layer 7.
  • the thickness of the light absorption layer 6 is thinner than the thickness of the light scattering layer 7.
  • the thickness of the light absorption layer 6 is about 0.01 ⁇ m to 3 ⁇ m.
  • the area of the portion of the light absorption layer 6 on the side in contact with the substrate 1 is larger than the area of the light scattering layer 7.
  • the areas of the light absorption layer 6 and the light scattering layer 7 are cross-sectional areas when the light absorption layer 6 and the light scattering layer 7 are cut along a plane parallel to the upper surface of the substrate 1.
  • a cross-sectional area when the light absorption layer 6 and the light scattering layer 7 are cut along a plane parallel to the upper surface of the substrate 1 may be referred to as a plane cross-sectional area of the light absorption layer and the light scattering layer.
  • the partition wall 5 has a tapered shape such that the opening on the side away from the substrate 1 is wider than the opening on the side in contact with the substrate 1.
  • the ratio of the height of the partition wall 5 (aspect ratio) to the width of the end of the partition wall 5 on the substrate 1 side is desirably 10 or less.
  • the barrier ribs 5 may be formed of a material that reflects the fluorescence generated in the phosphor layer 3. Thereby, the fluorescence component which escapes from the phosphor layer 3 to the side can be reflected. Moreover, the structure by which the surface of the partition 5 was covered with the reflective material may be sufficient. Examples of such a reflective material include reflective metals such as aluminum, silver, gold, aluminum-lithium alloys, aluminum-neodymium alloys, and aluminum-silicon alloys.
  • various shapes surrounding the phosphor layers 3R, 3G, 3B such as a lattice shape and a stripe shape, can be adopted.
  • a red color filter 4R is provided between the substrate 1 and the red phosphor layer 3R.
  • a green color filter 4G is provided between the substrate 1 and the green phosphor layer 3G.
  • a blue color filter 4B is provided between the substrate 1 and the blue phosphor layer 3B.
  • the film thickness of the light absorption layer 6 and the color filter 4 it is desirable that the film thickness of the color filter 4 is thicker than the film thickness of the light absorption layer 6.
  • the side surface of the phosphor layer 3 and the light absorption layer 6 are in contact with each other. This is because light emitted from the phosphor layer 3 is absorbed by the light absorption layer 6 and the light extraction efficiency is reduced.
  • FIG. 3A and 3B are schematic views for explaining the operation of the partition wall 5 of the display device 100 according to the first embodiment.
  • FIG. 3A is a cross-sectional view showing a conventional phosphor substrate 10X
  • FIG. 3B is a cross-sectional view showing the phosphor substrate 10 according to the present embodiment.
  • 3A and 3B, the light absorption layer and the color filter are not shown for convenience.
  • the excitation light L1 if the directivity of the excitation light L1 is insufficient and the distance between the light source (not shown) and the phosphor substrate is large, the excitation light L emitted from the light source. Is incident on the phosphor substrate with a certain extent.
  • a partition wall 5X having a rectangular side cross-sectional shape is formed around the phosphor layer 3X. Therefore, a part of the excitation light L1 emitted from the light source and transmitted through the bandpass filter 12X is incident on a desired pixel, but the remaining part is reflected on the upper surface of the partition wall 5X. A part of the excitation light L1 reflected by the upper surface of the partition wall 5X is reflected by the band pass filter 12X and enters a pixel adjacent to a desired pixel. Therefore, desired color light cannot be extracted.
  • the partition wall 5 has a side cross-sectional shape of the substrate 1, and the side (lower bottom) on the side in contact with the substrate 1 is away from the substrate 1. It has a trapezoidal shape longer than the side (upper base). For this reason, a part of the excitation light L1 emitted from the light source and transmitted through the bandpass filter 12X is directly incident on a desired pixel. On the other hand, the remaining part is reflected by the side surface of the partition wall 5 and enters a desired pixel.
  • the excitation light L1 is reflected toward the side opposite to the substrate 1X, whereas in the phosphor substrate 10 of the present embodiment, a part of the excitation light L1 is reflected on the substrate 1. Reflect toward you. That is, when the size of the portion of the partition wall 5 that is away from the substrate 1 (the area of the upper surface of the substrate 1) is small as in the phosphor substrate 10 of this embodiment, the side of the partition wall 5X that is away from the substrate 1X. Compared with the case where the size of the portion (the area of the upper surface of the substrate 1X) is large, the excitation light L1 emitted from the light source is suppressed from entering the adjacent pixel of the desired pixel.
  • the excitation light L1 emitted from the light source can be incident on the desired phosphor layer with minimal loss. Therefore, it is possible to suppress the excitation light from entering the adjacent pixel of the pixel that should be incident, and to suppress the occurrence of color blur due to the emission of an undesired phosphor layer.
  • the partition wall 5 has a laminated structure of the light absorption layer 6 and the light scattering layer 7 from the substrate 1 side, the area of the light absorption layer 6 is relatively wide. Can take. Therefore, reflection of external light can be suppressed and contrast can be improved.
  • the structural member and the formation method of the fluorescent substance substrate 10 concerning this embodiment are explained concretely, the structural member and the formation method of the fluorescent substance substrate 10 are not limited to this.
  • the substrate 1 for the phosphor substrate 10 used in the present embodiment needs to take out the fluorescence L2 from the phosphor layers 3R, 3G, 3B to the outside, in the emission region of the phosphor layers 3R, 3G, 3B. It is necessary to transmit the fluorescence L2. Therefore, as the substrate 1 for the phosphor substrate 10, for example, an inorganic material substrate made of glass, quartz or the like, a plastic substrate made of polyethylene terephthalate, polycarbazole, polyimide, or the like can be used. However, the substrate 1 for the phosphor substrate 10 is not limited to these substrates.
  • the phosphor layers 3R, 3G, and 3B of the present embodiment absorb excitation light L1 from the light source 2 such as an ultraviolet light emitting organic EL element, a blue light emitting organic EL element, an ultraviolet light emitting LED, and a blue LED, and are red, green, and blue. It comprises a red phosphor layer 3R, a green phosphor layer 3G, and a blue phosphor layer 3B. However, when blue light emission is applied as the light source 2, the blue phosphor layer 3B is not provided, and the blue excitation light L1 may be emitted from the blue subpixel PB.
  • the blue phosphor layer 3B is not provided, and the directional excitation light L1 is scattered so that it can be taken out as isotropic light emission.
  • a simple light scattering layer may be applied.
  • a phosphor layer that emits cyan light and yellow light to the pixels as necessary.
  • the color reproduction range can be further expanded as compared with a display device using pixels that emit three primary colors of red, green, and blue.
  • the phosphor layers 3R, 3G, and 3B may be composed of only the phosphor materials exemplified below, and may optionally contain additives and the like, and these materials are polymer materials (binding resins). Or the structure disperse
  • a known phosphor material can be used as the phosphor material of the present embodiment.
  • Such phosphor materials are classified into organic phosphor materials and inorganic phosphor materials, and specific examples of these compounds are shown below, but the phosphor materials are not limited to these materials. . Moreover, you may use combining these several fluorescent material.
  • Organic phosphor materials include blue fluorescent dyes, stilbenzene dyes: 1,4-bis (2-methylstyryl) benzene, trans-4,4′-diphenylstilbenzene, coumarin dyes: 7-hydroxy- 4-methylcoumarin and the like can be mentioned.
  • a green fluorescent dye a coumarin dye: 2,3,5,6-1H, 4H-tetrahydro-8-trifluoromethylquinolidine (9,9a, 1-gh) coumarin (coumarin 153), 3- ( 2'-benzothiazolyl) -7-diethylaminocoumarin (coumarin 6), 3- (2'-benzoimidazolyl) -7-N, N-diethylaminocoumarin (coumarin 7), naphthalimide dyes: basic yellow 51, solvent yellow 11, Solvent yellow 116 etc. are mentioned.
  • the red fluorescent dye includes cyanine dye: 4-dicyanomethylene-2-methyl-6- (p-dimethylaminostyryl) -4H-pyran, pyridine dye: 1-ethyl-2- [4- ( p-dimethylaminophenyl) -1,3-butadienyl] -pyridinium-perchlorate, and rhodamine dyes: rhodamine B, rhodamine 6G, rhodamine 3B, rhodamine 101, rhodamine 110, basic violet 11, sulforhodamine 101 and the like. .
  • blue phosphors such as Sr 2 P 2 O 7 : Sn 4+ , Sr 4 Al 14 O 25 : Eu 2+ , BaMgAl 10 O 17 : Eu 2+ , SrGa 2 S 4 are used.
  • Y 2 O 2 S Eu 3+ , YAlO 3 : Eu 3+ , Ca 2 Y 2 (SiO 4 ) 6 : Eu 3+ , LiY 9 (SiO 4 ) 6 O 2 : Eu 3+ , YVO 4 : Eu 3+ , CaS: Eu 3+ , Gd 2 O 3 : Eu 3+ , Gd 2 O 2 S: Eu 3+ , Y (P, V) O 4 : Eu 3+ , Mg 4 GeO 5.5 F: Mn 4+ , Mg 4 GeO 6 : Mn 4+ , K 5 Eu 2.5 (WO 4 ) 6.25 , Na 5 Eu 2.5 (WO 4 ) 6.25 , K 5 Eu 2.5 (MoO 4 ) 6.25 , Na 5 Eu 2.5 (MoO 4 ) 6.25 and the like.
  • the inorganic phosphor may be subjected to a surface modification treatment as necessary.
  • a surface modification treatment physical treatment by chemical treatment such as a silane coupling agent or addition of fine particles of submicron order, etc. And the like due to the combined treatment thereof.
  • an inorganic material it is preferable to use an inorganic material.
  • the average particle diameter (d 50 ) is preferably 0.5 to 50 ⁇ m. When the average particle size is 1 ⁇ m or less, the luminous efficiency of the phosphor is drastically reduced. Moreover, when it is 50 ⁇ m or more, it becomes difficult to pattern at a high resolution.
  • the phosphor layer is formed by using a phosphor layer forming coating solution obtained by dissolving and dispersing the phosphor material and the resin material in a solvent, using a spin coating method, a dipping method, a doctor blade method, a discharge coating method, a spraying method.
  • Known wet processes such as coating methods such as coating methods, ink jet methods, letterpress printing methods, intaglio printing methods, screen printing methods, printing methods such as micro gravure coating methods, etc.
  • It can be formed by a known dry process such as a vapor deposition method, molecular beam epitaxy (MBE) method, sputtering method, organic vapor deposition (OVPD) method, or a laser transfer method.
  • the film thickness of the phosphor layer is usually about 100 nm to 100 ⁇ m, preferably 1 ⁇ m to 100 ⁇ m. If the film thickness is less than 100 nm, it is impossible to sufficiently absorb the excitation light from the light source, so that the light emission efficiency decreases, and the color purity deteriorates due to the mixture of the transmitted light of the excitation light with the required color. Problems arise. Further, in order to increase absorption of excitation light from the light source and reduce transmitted light of excitation light to such an extent that the color purity is not adversely affected, the film thickness is preferably 1 ⁇ m or more. Further, when the film thickness exceeds 100 ⁇ m, the excitation light from the light source is already sufficiently absorbed, so that the efficiency is not increased, the material is consumed only, and the material cost is increased.
  • the light scattering particles may be made of an organic material or an inorganic material, but may be made of an inorganic material. It is preferable. Thereby, the light having directivity from the light source 2 can be diffused or scattered more isotropically and effectively. Further, by using an inorganic material, it is possible to provide a light scattering layer that is stable to light and heat. Moreover, it is preferable that the light scattering particles have high transparency.
  • the light scattering particles are preferably particles in which fine particles having a higher refractive index than the base material are dispersed in a low refractive index base material.
  • the particle size of the light scattering particle is in the Mie scattering region, so the particle size of the light scattering particle is 100 nm to 500 nm. The degree is preferred.
  • the main component is an oxide of at least one metal selected from the group consisting of silicon, titanium, zirconium, aluminum, indium, zinc, tin, and antimony. Examples thereof include particles (fine particles).
  • particles (inorganic fine particles) made of an inorganic material for example, silica beads (refractive index: 1.44), alumina beads (refractive index: 1.63), titanium oxide. Beads (refractive index anatase type: 2.50, rutile type: 2.70), zirconia bead (refractive index: 2.05), zinc oxide beads (refractive index: 2.00), barium titanate (BaTiO 3 ) (Refractive index: 2.4).
  • particles (organic fine particles) made of an organic material are used as the light scattering particles, for example, polymethyl methacrylate beads (refractive index: 1.49), acrylic beads (refractive index: 1.50), acrylic- Styrene copolymer beads (refractive index: 1.54), melamine beads (refractive index: 1.57), high refractive index melamine beads (refractive index: 1.65), polycarbonate beads (refractive index: 1.57), Styrene beads (refractive index: 1.60), crosslinked polystyrene beads (refractive index: 1.61), polyvinyl chloride beads (refractive index: 1.60), benzoguanamine-melamine formaldehyde beads (refractive index: 1.68), Examples thereof include silicone beads (refractive index: 1.50).
  • the resin material used by mixing with the above-described light scattering particles is preferably a translucent resin.
  • the resin material include acrylic resin (refractive index: 1.49), melamine resin (refractive index: 1.57), nylon (refractive index: 1.53), polystyrene (refractive index: 1.60).
  • Melamine beads (refractive index: 1.57), polycarbonate (refractive index: 1.57), polyvinyl chloride (refractive index: 1.60), polyvinylidene chloride (refractive index: 1.61), polyvinyl acetate ( Refractive index: 1.46), polyethylene (refractive index: 1.53), polymethyl methacrylate (refractive index: 1.49), poly MBS (refractive index: 1.54), medium density polyethylene (refractive index: 1) .53), high density polyethylene (refractive index: 1.54), tetrafluoroethylene (refractive index: 1.35), poly (trifluoroethylene chloride) (refractive index: 1.42), polytetrafluoroethylene (refractive index) : .35), and the like.
  • Partition wall As a material for the partition, a black matrix or metal used as a partition for a conventional display can be used. In order to improve the light extraction efficiency to the emission side, a resin in a low refractive index resin is used. It is desirable to use a light-scattering partition wall made of a light-scattering material in which light-scattering particles having a higher refractive index are dispersed. More preferably, in order to achieve both high contrast and high light extraction efficiency, after forming a light absorption layer of about 0.01 ⁇ m to 3 ⁇ m on the substrate, the light absorption layer has a ground contact area smaller than the ground contact area to the substrate.
  • a light scattering layer having a thickness of about 1 ⁇ m to 100 ⁇ m is formed so as to be in contact with the absorption layer.
  • the film thickness of the light scattering layer is not sufficiently thicker than the film thickness of the light absorption layer, improvement in light extraction efficiency due to the light scattering effect cannot be expected.
  • the particle size of the light-scattering particles needs to be in the Mie scattering region.
  • About 500 nm is preferable.
  • the CIE 1976 L * a * b display system has a reflectance of 80% or more.
  • the resin for example, the resin materials listed in paragraph [0076] can be used.
  • the light scattering particles for example, the light scattering particles as listed in the paragraphs [0073], [0074], and [0075] can be used.
  • Examples of the method for forming the partition include a photolithography method, a screen printing method, a vapor deposition method, a sand blast method, and a transfer method.
  • Photolithography is used because a partition having a high definition and a high aspect ratio can be formed at a low cost. Formation by the method is desirable.
  • the partition wall material can be made into a negative photoresist, or instead of a photopolymerizable monomer or a photopolymerization initiator. It is possible to make a positive photoresist by adding a photosensitizer such as diazonaphthoquinone, and patterning can be performed by photolithography.
  • the vertical and horizontal sizes of the openings of the partition walls 5 are preferably about 20 ⁇ m ⁇ 20 ⁇ m to about 500 ⁇ m ⁇ 500 ⁇ m.
  • excitation light designed to enter a certain pixel further passes to adjacent pixels.
  • the light scattering layer 7 having a thickness of about 0.01 ⁇ m to 3 ⁇ m is formed on the side opposite to the light extraction direction of the light scattering layer 7 in order to absorb light entering the adjacent pixels.
  • a thin black layer may be inserted.
  • Providing liquid repellency to partition walls When the phosphor layer is patterned by a dispenser method, an ink jet method, or the like, it is essential to impart liquid repellency to the partition wall in order to prevent the phosphor solution from overflowing from the partition wall and mixing colors between adjacent pixels.
  • a method for imparting liquid repellency to the partition include the following methods.
  • (1) Fluorine plasma treatment For example, as disclosed in Japanese Patent Application Laid-Open No. 2000-76979, a plasma treatment is performed on a substrate on which a partition wall is formed under a condition in which an introduced gas is a fluorine-based gas. Liquidity can be imparted.
  • a liquid repellency can be imparted to the partition walls by adding a fluorinated surface modifier to the light scattering partition material.
  • a fluorinated surface modifier for example, a UV curable surface modifier Defenser (manufactured by DIC Corporation), Mega Fuck, or the like can be used.
  • Color filter In the phosphor substrate 10 of the present embodiment, a conventional color filter can be used as the color filter provided between the substrate 1 on the light extraction side and the phosphor layers 3R, 3G, 3B.
  • the color filter by providing the color filter, the color purity of the red subpixel PR, the green subpixel PG, and the blue subpixel PB can be increased, and the color reproduction range of the display device 100 can be expanded.
  • the red color filter 4R facing the red phosphor layer 3R absorbs excitation light that excites the red phosphor layer 3R of external light. For this reason, it becomes possible to reduce and prevent light emission of the red phosphor layer 3R due to external light, and it is possible to reduce and prevent a decrease in contrast. Further, the red color filter 4R can prevent the excitation light L1 that is not absorbed and transmitted by the red phosphor layer 3R from leaking outside. For this reason, it is possible to prevent a decrease in the color purity of the light emission due to the color mixture by the light emission from the red phosphor layer 3R and the excitation light L1.
  • the green color filter 4G facing the green phosphor layer 3G absorbs excitation light that excites the green phosphor layer 3G of external light. For this reason, it becomes possible to reduce and prevent light emission of the green phosphor layer 3G due to external light, and it is possible to reduce and prevent a decrease in contrast. Further, the green color filter 4G can prevent the excitation light L1 that is not absorbed and transmitted by the green phosphor layer 3G from leaking outside. For this reason, it is possible to prevent a decrease in the color purity of the light emission due to the color mixture by the light emission from the green phosphor layer 3G and the excitation light L1.
  • the blue color filter 4B facing the blue phosphor layer 3B absorbs excitation light that excites the blue phosphor layer 3B of external light. For this reason, it becomes possible to reduce and prevent light emission of the blue phosphor layer 3B due to external light, and it is possible to reduce and prevent a decrease in contrast. Further, the blue color filter 4B can prevent the excitation light L1 that is not absorbed and transmitted by the blue phosphor layer 3B from leaking outside. For this reason, it is possible to prevent a decrease in the color purity of the light emission due to the color mixture by the light emission from the blue phosphor layer 3B and the excitation light L1.
  • FIG. 4 is a cross-sectional view of the phosphor substrate 10A of the second embodiment.
  • the basic structure of the phosphor substrate 10A of the present embodiment is the same as that of the first embodiment, and only the shapes of the phosphor layers 3RA, 3GA, 3BA provided in the region surrounded by the partition walls 5 are different from those of the first embodiment. .
  • the same components as those in FIG. 2A of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the side sectional shape of the phosphor layers 3RA, 3GA, 3BA in the region surrounded by the partition walls 5 is a concave shape, and the phosphor layers 3RA, 3GA, A peripheral portion of 3BA is arranged along the side surface of the partition wall 5.
  • the phosphor layers 3RA, 3GA, 3BA have a flat upper surface at the center of the phosphor layers 3RA, 3GA, 3BA.
  • the height of the upper surface of the central part of the phosphor layers 3RA, 3GA, 3BA is approximately half the height of the partition wall 5.
  • the height of the peripheral part of the phosphor layers 3RA, 3GA, 3BA is substantially the same as the height of the partition walls 5.
  • the excitation light traveling from the light source toward the pixel is prevented from being absorbed by the partition wall 5 or transmitted through the partition wall 5. Therefore, the light extraction efficiency can be improved.
  • FIG. 5 is a cross-sectional view of the phosphor substrate 10B of the third embodiment.
  • the basic configuration of the phosphor substrate 10B of the present embodiment is the same as that of the second embodiment, and is different from the second embodiment in that a low refractive index layer 16 having a refractive index lower than that of the substrate 1 is provided.
  • symbol is attached
  • the low refractive index layer 16 is formed between the phosphor layer 3RA and the color filter 4R, between the phosphor layer 3GA and the color filter 4G, They are respectively provided between the layer 3BA and the color filter 4B.
  • the low refractive index layer 16 is a layer having a property of reducing the incident angle of the fluorescence incident on the color filters 4R, 4G, and 4B out of the fluorescence emitted isotropically from the phosphor layers 3RA, 3GA, and 3BA.
  • the low refractive index layer 16 is not limited to being disposed between the phosphor layer 3 and the color filter 4, and may be disposed between the color filter 4 and the substrate 1. In other words, the low refractive index layer 16 may be disposed between the phosphor layer and the substrate 1.
  • the refractive index of the low refractive index layer 16 is such that the outgoing angle (refractive angle) of incident light that passes through the low refractive index layer 16 and enters the substrate 1 from the color filter 4 is at least that of incident light that can be emitted from the substrate to the outside. It is preferable that the value be smaller than the critical angle.
  • the fluorescence emitted isotropically from the phosphor layers 3RA, 3GA, 3BA is transmitted through the low refractive index layer 16, so that the light incident on the substrate 1 can be reliably taken out to the outside, which is very efficient. It becomes possible to take out fluorescence outside.
  • the refractive index of the low refractive index layer 16 is preferably in the range of 1.0 to 1.4.
  • the refractive index of the low refractive index layer 16 is larger than 1.4, the refractive index difference between the substrate 1 and the low refractive index layer 16 is reduced, and most of the light incident on the substrate 1 from the low refractive index layer 16 is The light is reflected at the interface between the substrate 1 and the outside and cannot be taken out to the outside.
  • the light-emitting device has a plurality of phosphor layers divided into predetermined regions, light reflected at the interface between the substrate and the outside enters at least two adjacent phosphor layers, and display blur or There is a concern about blurring.
  • the material of the low refractive index layer 16 include a fluororesin having a refractive index of about 1.35 to 1.4, a silica airgel having a refractive index of about 1.003 to 1.3, and a refractive index of about 1.2 to 1.3.
  • the present embodiment is not limited to these materials. A combination of the above materials may be used.
  • the film thickness of the low refractive index layer 16 is preferably in the range of 10 nm to 50 ⁇ m.
  • the film thickness of the low refractive index layer 16 is greater than 50 ⁇ m, in particular, light incident on the low refractive index layer 16 in an oblique direction from the phosphor layers 3RA, 3GA, 3BA is interfaced between the low refractive index layer 16 and the substrate 1.
  • the distance traveled in the horizontal direction (direction perpendicular to the thickness direction of the substrate 1) with respect to the substrate 1 becomes longer.
  • the fluorescent light emission region extracted from the substrate 1 to the outside is enlarged relative to the light emission region of the phosphor layer itself, which is not preferable particularly for a display device or the like for high definition.
  • the low refractive index layer 16 is more preferably a thin film.
  • the low refractive index layer 16 is preferably made of a gas. As described above, it is desirable that the refractive index of the low refractive index layer 16 is as low as possible. However, when the low refractive index layer 16 is formed of a material such as a solid, liquid, or gel, U.S. Pat. No. 4,402,827, No. 4,279,971, As described in JP-A-2001-202827 and the like, the lower limit of the refractive index is about 1.003. On the other hand, if the low refractive index layer 16 is a gas layer made of a gas such as air or nitrogen, for example, the refractive index can be set to 1.0, and from the phosphor layers 3RA, 3GA, 3BA. Isotropically emitted fluorescence is transmitted through the gas layer (low refractive index layer), so that the light incident on the substrate can be reliably extracted to the outside, and the fluorescence can be extracted to the outside very efficiently. It becomes possible.
  • FIG. 6 is a cross-sectional view of a display device 100C according to the fourth embodiment.
  • the basic configuration of the display device 100C of the present embodiment is the same as that of the first embodiment, and only the configuration of the partition walls 5C is different from that of the first embodiment. Therefore, in the present embodiment, description of the basic configuration of the display device 100C is omitted, and only the partition 5C is described.
  • the portions of the partition walls 5 that are in contact with the phosphor layers 3R, 3G, 3B are flat surfaces.
  • portions of the partition 5C that are in contact with the phosphor layers 3R, 3G, and 3B (side surfaces of the partition 5C) are uneven.
  • Other configurations are the same as those of the first embodiment.
  • the entire surface of the partition wall 5C (the upper surface of the partition wall 5C in addition to the side surface of the partition wall 5C) may be uneven. That is, it is only necessary that at least portions of the partition walls 5C that are in contact with the phosphor layers 3R, 3G, and 3B have an uneven shape.
  • FIG. 7 is a schematic diagram for explaining the operation of the partition wall 5C of the display device 100C according to the fourth embodiment.
  • the fluorescence L2 generated in the phosphor layer 3 is scattered by the uneven shape of the portion in contact with the partition wall 5C, and the fluorescence L2 is Difficult to be absorbed by the partition 5C. For this reason, the loss of the fluorescence L2 due to the fluorescence L2 generated in the phosphor layer 3 being absorbed by the partition walls 5C can be reduced, and the fluorescence L2 can be sufficiently extracted outside.
  • the partition wall 5C may be white. Specifically, the partition wall 5C may be formed including a white resist. In addition, the whole partition 5C may be formed including a white resist, or only portions of the partition 5C that are in contact with the phosphor layers 3R, 3G, and 3B may be formed including a white resist. That is, it is only necessary that at least portions of the partition walls 5C that are in contact with the phosphor layers 3R, 3G, and 3B are white. Thereby, compared with the case where a partition is black, fluorescence can be made hard to be absorbed by the partition 5C.
  • FIG. 8 is a cross-sectional view of a display device 100D of the fifth embodiment.
  • the basic configuration of the display device 100D of the present embodiment is the same as that of the first embodiment, and only the configuration of the partition wall 5D is different from that of the first embodiment. Therefore, in the present embodiment, the description of the basic configuration of the display device 100D is omitted, and only the partition wall 5D is described.
  • the black layer 8 is provided on the upper surface of the light scattering layer 7. Thereby, since a part of the excitation light emitted from the light source 2 is absorbed by the black layer 8, light leakage to adjacent pixels can be suppressed and color mixing can be avoided.
  • the thickness of the black layer 8 is thinner than the thickness of the light scattering layer 7. For example, the thickness of the black layer 8 is about 0.01 ⁇ m to 3 ⁇ m. Further, the width of the black layer 8 is equal to the width of the upper surface of the light scattering layer 7.
  • the black layer 8 is provided on the upper surface of the light scattering layer 7 and the light absorption layer 6 is provided on the lower surface of the light scattering layer 7.
  • the present invention is not limited to this.
  • the black layer 8 may be provided only on the upper surface of the light scattering layer 7, and the light absorption layer 6 may not be provided on the lower surface of the light scattering layer 7.
  • FIG. 9 is a cross-sectional view of a display device 100E according to the sixth embodiment.
  • the basic configuration of the display device 100E of the present embodiment is the same as that of the fifth embodiment, and is different from the fifth embodiment in that the band pass filter 12 is provided on the upper surface of the planarization layer 13. Therefore, in this embodiment, the description of the basic configuration of the display device 100E is omitted.
  • a planarizing layer 13 is formed on the upper surface of each phosphor layer 3R, 3G, 3B of the phosphor substrate 10E.
  • a band pass filter 12 is provided on the upper surfaces of the planarizing layer 13 and the partition walls 5D.
  • the bandpass filter 12 When blue light is emitted as excitation light from the light source 2, the bandpass filter 12 transmits light in the blue region (light in the wavelength range of 435 to 480 nm) and transmits light from green to the near infrared region ( A function of reflecting light outside the wavelength range of the blue region.
  • the band-pass filter 12 is composed of a thin film such as gold or silver, or a dielectric multilayer film. Thereby, the blue light emitted from the light source 2 is transmitted through the band pass filter 12 and wavelength-converted by the phosphor layer 3 so that green light and red light can be emitted. Furthermore, since the bandpass filter 12 reflects the green light and red light toward the bandpass filter 12 again to the phosphor layer side, the green light and red light can be used efficiently.
  • the band pass filter 12 is provided on the upper surface of the planarizing layer 13, but the present invention is not limited to this.
  • the band pass filter 12 may be provided on the upper surface of each phosphor layer 3R, 3G, 3B formed in the opening of the partition wall 5 without providing the planarizing layer 13. That is, the band pass filter 12 only needs to be provided between the light source substrate 11 and the phosphor substrate 10.
  • the bandpass filter 12 transmits light in the ultraviolet region (light in the wavelength range of 360 to 410 nm) and emits light from green to the near infrared region. It may have a function of reflecting (light outside the wavelength range of the ultraviolet region). Thereby, the ultraviolet light emitted from the light source 2 is transmitted through the band-pass filter 12 and wavelength-converted by the phosphor layer 3 to emit green light or red light. Furthermore, since the bandpass filter 12 reflects the green light and red light toward the bandpass filter 12 again to the phosphor layer side, the green light and red light can be used efficiently.
  • FIG. 10A is a cross-sectional view showing a first modification of the partition wall.
  • the partition wall 5 has a laminated structure of the light absorption layer 6 and the light scattering layer 7 from the substrate 1 side.
  • the partition 15 of this modification has a single layer structure of a light scattering layer (light reflection layer) as shown in FIG. 10A.
  • the side cross-sectional shape of the partition wall 15 is a trapezoidal shape in which the side (lower bottom) on the side in contact with the substrate 1 is longer than the side (upper bottom) on the side away from the substrate 1.
  • FIG. 10B is a cross-sectional view showing a second modification of the partition wall.
  • the partition wall 15A of this modification also has a single layer structure of a light scattering layer (light reflection layer) as shown in FIG. 10B.
  • the side cross-sectional shape of the partition wall 15 ⁇ / b> A is a triangular shape having a base on the side in contact with the substrate 1.
  • the side cross-sectional shape of the partition wall 15A is an isosceles triangle shape in which the lengths of two sides adjacent to the bottom side are equal to each other.
  • the portion of the partition wall 15A on the side away from the substrate 1 is pointed, so that the substrate 1 of the partition wall 15A and the portion on the side of the partition wall 15A away from the substrate 1 are flat.
  • the opening on the far side becomes wider. Therefore, it can suppress more reliably that excitation light injects into the adjacent pixel of the pixel which should originally enter, and can fully suppress that the fluorescent substance layer which is not desired light-emits and color blurring arises.
  • FIG. 10C is a cross-sectional view showing a third modification of the partition wall.
  • the partition wall 15B of this modification also has a single layer structure of a light scattering layer (light reflection layer) as shown in FIG. 10C.
  • the area of the partition wall 15B is small on the side away from the substrate 1 and gradually increases toward the substrate 1.
  • the area of the partition wall 15B is a cross-sectional area when the partition wall 15B is cut along a plane parallel to the upper surface of the substrate 1.
  • the cross-sectional area when the partition wall is cut along a plane parallel to the upper surface of the substrate 1 may be referred to as a planar cross-sectional area of the partition wall.
  • the shape of the side surface of the partition wall 15B on the side away from the substrate 1 is a curved shape having a convex side cross-sectional shape. That is, the tip of the partition wall 15B is rounded.
  • the side cross-sectional shape is a triangular shape
  • the portion of the partition wall away from the substrate 1 is pointed. If the part of the partition wall on the side away from the substrate 1 is too sharp, a part having a lateral width locally smaller than the incident direction of the excitation light is generated in the part of the partition wall on the side away from the substrate 1. Therefore, when the excitation light is incident on the part of the partition wall that is away from the substrate 1, the excitation light is transmitted through the part of the partition wall that is away from the substrate 1 and is incident on the adjacent pixel of the pixel that should be incident. There are concerns.
  • the portion of the partition wall 15B on the side away from the substrate 1 is rounded and has a certain lateral width with respect to the incident direction of the excitation light. Therefore, even when the excitation light is incident on the part of the partition wall 15B on the side away from the substrate 1, the excitation light can be prevented from passing through the part of the partition wall on the side away from the substrate 1.
  • FIG. 10D is a cross-sectional view showing a fourth modification of the partition wall.
  • the partition wall 15C of this modification also has a single layer structure of a light scattering layer (light reflection layer) as shown in FIG. 10D.
  • the shape of the partition wall 15 ⁇ / b> C is such that the cross-sectional area is small on the side away from the substrate 1 and gradually increases toward the substrate 1.
  • the part of the partition wall 15C on the side away from the substrate 1 is pointed.
  • the shape of the side surface of the partition wall 15C is a curved shape having a concave side cross-sectional shape.
  • the side cross-sectional shape of the side wall of the partition wall 15C is a curved shape having a concave shape, so that excitation light is emitted from the opening of the partition wall 15C as compared to the curved shape having a convex side cross-sectional shape. It becomes easy to enter the back (substrate 1 side). Therefore, it can suppress more reliably that excitation light injects into the adjacent pixel of the pixel which should originally enter, and can fully suppress that the fluorescent substance layer which is not desired light-emits and color blurring arises.
  • FIG. 10E is a cross-sectional view showing a fifth modification of the partition wall.
  • the partition 15D of this modification also has a single-layer structure of a light scattering layer (light reflection layer) as shown in FIG. 10E.
  • the shape of the side surface of the central portion in the height direction of the partition wall 15D is a curved shape in which the side cross-sectional shape is convex.
  • the shape above the central portion in the height direction of the partition wall 15D is such that the cross-sectional area is small on the side away from the substrate 1 and gradually increases toward the substrate 1.
  • the portion of the partition wall 15D on the side away from the substrate 1 is pointed.
  • the shape of the side surface above the central portion in the height direction of the partition wall 15D is a curved shape having a concave side cross-sectional shape.
  • FIG. 10F is a cross-sectional view illustrating a sixth modification of the partition wall.
  • the partition wall 15E of this modification also has a single-layer structure of a light scattering layer (light reflection layer) as shown in FIG. 10F.
  • the shape of the partition wall 15 ⁇ / b> E is such that the cross-sectional area is small on the side away from the substrate 1 and gradually increases toward the substrate 1.
  • a portion of the partition wall 15E on the side away from the substrate 1 is flat.
  • the shape of the side surface of the partition wall 15E is a curved shape having a concave side cross-sectional shape.
  • the side cross-sectional shape of the side wall of the partition wall 15E is a concave curved shape, so that excitation light is emitted from the opening of the partition wall 15E as compared to the curved shape of the side cross-sectional shape being convex. It becomes easy to enter the back (substrate 1 side). Therefore, it can suppress more reliably that excitation light injects into the adjacent pixel of the pixel which should originally enter, and can fully suppress that the fluorescent substance layer which is not desired light-emits and color blurring arises.
  • FIG. 10G is a cross-sectional view showing a seventh modification of the partition wall.
  • the partition wall 15F of this modification also has a single layer structure of a light scattering layer (light reflection layer) as shown in FIG. 10G.
  • the shape of the partition wall 15F is such that the cross-sectional area is small on the side away from the substrate 1 and gradually increases toward the substrate 1.
  • the shape of the side surface on the side away from the substrate 1 of the partition wall 15F is a curved shape having a convex side cross-sectional shape. That is, the tip of the partition wall 15F is rounded.
  • the shape of the partition wall 15 ⁇ / b> F is such that the cross-sectional area is substantially the same on the side near the substrate 1.
  • the portion of the partition wall 15F on the side away from the substrate 1 is rounded, and has a certain lateral width with respect to the incident direction of the excitation light. Therefore, even when the excitation light is incident on the part of the partition wall 15F on the side away from the substrate 1, the excitation light can be prevented from passing through the part of the partition wall 15F on the side away from the substrate 1.
  • FIG. 10H is a cross-sectional view illustrating an eighth modification of the partition wall.
  • the partition 15G of this modification also has a single-layer structure of a light scattering layer (light reflection layer) as shown in FIG. 10H.
  • the partition wall 15G of this modification has a shape in which the inclination angle of the side surface of the partition wall 15G is changed halfway with respect to the side cross-sectional shape shown in FIG. 10B. Further, the shape of the partition wall 15G is such that the cross-sectional area is substantially the same on the side close to the substrate 1.
  • the portion of the partition wall 15G on the side away from the substrate 1 is pointed, so that the substrate 1 of the partition wall 15G and the partition 1 on the side away from the substrate 1 are flat as compared with the configuration in which the portion of the partition wall away from the substrate 1 is flat.
  • the opening on the far side becomes wider. Therefore, it can suppress more reliably that excitation light injects into the adjacent pixel of the pixel which should originally enter, and can fully suppress that the fluorescent substance layer which is not desired light-emits and color blurring arises.
  • FIG. 10I is a cross-sectional view showing a ninth modification of the partition wall.
  • the partition wall 15H of this modification also has a single layer structure of a light scattering layer (light reflection layer) as shown in FIG. 10I.
  • the partition wall 15H of this modification has a shape in which the inclination angle of the side surface of the partition wall 15H is changed in the middle with respect to the side cross-sectional shape shown in FIG. 10B.
  • the shape of the partition wall 15H is such that the plane cross-sectional area is small on the side away from the substrate 1 and gradually increases toward the substrate 1.
  • the shape of the partition wall 15H is such that the inclination angle of the side surface is gentle on the distal end side of the partition wall 15H, and the inclination angle of the side surface is steep on the proximal end side of the partition wall 15H.
  • the portion of the partition wall 15H on the side away from the substrate 1 is pointed, so that the substrate 1 of the partition wall 15H is different from the configuration in which the portion of the partition wall on the side away from the substrate 1 is flat.
  • the opening on the far side becomes wider. Therefore, it can suppress more reliably that excitation light injects into the adjacent pixel of the pixel which should originally enter, and can fully suppress that the fluorescent substance layer which is not desired light-emits and color blurring arises.
  • FIG. 10J is a cross-sectional view illustrating a tenth modification of the partition wall.
  • the partition 15I of this modification also has a single-layer structure of a light scattering layer (light reflection layer) as shown in FIG. 10J.
  • the shape of the partition wall 15I is such that the plane cross-sectional area is small on the side away from the substrate 1 and gradually increases toward the substrate 1.
  • the part of the partition 15I on the side away from the substrate 1 is pointed.
  • the shape of the side surface of the partition wall 15I is a curved shape having a convex side sectional shape.
  • the side cross-sectional shape of the side surface of the partition wall 15I is a curved shape, so Have a certain thickness. Therefore, even when the excitation light is incident on the portion of the partition wall 15I that is away from the substrate 1, the excitation light can be prevented from passing through the portion of the partition wall 15I that is away from the substrate 1.
  • FIG. 10K is a cross-sectional view showing an eleventh modification of the partition wall.
  • the partition wall 5 has a two-layered structure of the light absorption layer 6 and the light scattering layer 7 from the substrate 1 side.
  • the partition wall 15J according to the present modification has a three-layer structure including a light absorption layer 15Ja, a first light scattering layer 15Jb, and a second light scattering layer 15Jc.
  • the light-absorbing layer 15Ja has a trapezoidal shape in which the side cross-sectional side (bottom base) on the side in contact with the substrate 1 is longer than the side (top bottom) on the side away from the substrate 1.
  • the first light-scattering layer 15Jb has a trapezoidal shape in which the side cross-sectional side (lower base) on the side in contact with the light-absorbing layer 15Ja is longer than the side (upper base) on the side away from the light-absorbing layer 15Ja.
  • the second light scattering layer 15Jc has a trapezoidal shape in which the side cross-sectional shape of the side (lower base) on the side in contact with the first light scattering layer 15Jb is longer than the side (upper base) on the side away from the first light scattering layer 15Jb. It has become.
  • the side (lower base) of the first light scattering layer 15Jb in contact with the light absorption layer 15Ja is shorter than the side (upper bottom) of the light absorption layer 15Ja on the side away from the substrate 1.
  • the side (lower bottom) of the second light scattering layer 15Jc that is in contact with the first light scattering layer 15Jb is shorter than the side (upper bottom) of the first light scattering layer 15Jb that is away from the light absorption layer 15Ja.
  • the partition 15J has been described with reference to an example in which the barrier 15J has a three-layer structure of the light absorption layer 15Ja, the first light scattering layer 15Jb, and the second light scattering layer 15Jc.
  • the partition may have a laminated structure of four or more layers.
  • the first layer may be a light scattering layer.
  • all the layers constituting the laminated structure in the partition may be light scattering layers.
  • the shape of the partition wall is such that at least the shape of the partition wall on the side away from the substrate 1 has a smaller plane cross-sectional area on the side away from the substrate 1 and gradually increases toward the substrate 1.
  • the present invention is not limited to the shapes shown in the above embodiment and the above modified examples, and various shapes can be adopted.
  • FIG. 11A is a cross-sectional view showing a twelfth modification of the partition wall.
  • the partition wall 15K of the present modification has a single layer structure of a light scattering layer (light reflection layer).
  • the partition wall 15K of the present modification has a shape in which the plane cross-sectional area of the partition wall 15K changes in the middle.
  • the shape of the partition wall 15 ⁇ / b> K is such that the plane cross-sectional area is small at the portion on the side away from the substrate 1 and large at the portion on the side in contact with the substrate 1.
  • the shape of the partition wall 15K is a shape (a configuration including a shape perpendicular to the substrate 1) in which the cross-sectional area is substantially the same in each of the portion in contact with the substrate 1 and the portion away from the substrate 1. ing.
  • the side cross-sectional shape of the partition wall 15K is a rectangular shape in which the portion on the side away from the substrate 1 is smaller in width than the portion on the side in contact with the substrate 1, and thus the side cross-sectional shape of the partition wall Compared to the configuration (rectangular shape) in which the width of the portion on the side away from the substrate 1 and the portion on the side in contact with the substrate 1 are equal (rectangular shape), the opening on the side away from the substrate 1 of the partition wall 15K becomes wider. Therefore, also in the configuration of the present modification, it is possible to suppress the excitation light from entering the adjacent pixel of the pixel that should be incident, and to suppress the occurrence of color blur due to the emission of an undesired phosphor layer. .
  • FIG. 11B is a cross-sectional view showing a thirteenth modification of the partition wall.
  • the partition 15L of this modification also has a single-layer structure of a light scattering layer (light reflection layer) as shown in FIG. 11B.
  • the partition wall 15L of this modification also has a shape in which the plane cross-sectional area of the partition wall 15L changes in the middle.
  • the shape of the partition wall 15 ⁇ / b> L is such that the plane cross-sectional area is small at the part away from the substrate 1 and large at the part in contact with the substrate 1.
  • the shape of the partition wall 15 ⁇ / b> L is a shape (a configuration including a shape perpendicular to the substrate 1) in which the plane cross-sectional area is substantially the same in the portion on the side away from the substrate 1.
  • the portion on the side in contact with the substrate 1 has a shape in which the plane cross-sectional area gradually decreases toward the substrate 1.
  • the side cross-sectional area of the partition wall 15L is smaller on the side away from the substrate 1 although the plane cross-sectional area gradually decreases toward the substrate 1 at the portion of the partition wall 15L on the side in contact with the substrate 1.
  • the width of the portion is smaller than that of the portion in contact with the substrate 1. Therefore, the partition wall 15L is separated from the substrate 1 in comparison with the configuration (rectangular shape) in which the side cross-sectional shape of the partition wall is the same width between the portion on the side away from the substrate 1 and the portion on the side in contact with the substrate 1
  • the opening on the side is widened. Therefore, also in the configuration of the present modification, it is possible to suppress the excitation light from entering the adjacent pixel of the pixel that should be incident, and to suppress the occurrence of color blur due to the emission of an undesired phosphor layer. .
  • FIG. 11C is a cross-sectional view showing a fourteenth modification of the partition wall.
  • the partition wall 15M of this modification also has a single layer structure of a light scattering layer (light reflection layer) as shown in FIG. 11C.
  • the partition wall 15M of the present modification also has a shape in which the plane cross-sectional area of the partition wall 15M changes midway.
  • the shape of the partition wall 15 ⁇ / b> M is small in the portion on the side away from the substrate 1 and large in the portion on the side in contact with the substrate 1.
  • the shape of the partition wall 15 ⁇ / b> M is a shape (a configuration including a shape perpendicular to the substrate 1) in which the plane cross-sectional area is substantially the same in the portion in contact with the substrate 1.
  • the portion on the side away from the substrate 1 has a shape in which the plane cross-sectional area gradually decreases toward the substrate 1.
  • the side cross-sectional shape of the partition 15M is the side away from the substrate 1, although the flat cross-sectional area gradually decreases toward the substrate 1 at the portion of the partition 15L away from the substrate 1.
  • This portion has a smaller width than the portion in contact with the substrate 1.
  • the partition wall 15M is separated from the substrate 1 in comparison with the configuration (rectangular shape) in which the side cross-sectional shape of the partition wall is a shape in which the width of the portion on the side away from the substrate 1 and the portion on the side in contact with the substrate 1 are equal.
  • the opening on the side is widened. Therefore, also in the configuration of the present modification, it is possible to suppress the excitation light from entering the adjacent pixel of the pixel that should be incident, and to suppress the occurrence of color blur due to the emission of an undesired phosphor layer. .
  • FIG. 11D is a cross-sectional view showing a fifteenth modification of the partition wall.
  • the partition wall 15N of this modification also has a single-layer structure of a light scattering layer (light reflection layer) as shown in FIG. 11D.
  • the partition wall 15N of this modification also has a shape in which the plane cross-sectional area of the partition wall 15N changes in the middle.
  • the shape of the partition wall 15N is small at the portion on the side away from the substrate 1 and large at the portion on the side in contact with the substrate 1.
  • the shape of the partition wall 15N is such that the cross-sectional area gradually decreases toward the substrate 1 in each of the portion on the side in contact with the substrate 1 and the portion on the side away from the substrate 1.
  • the cross-sectional area of the partition wall 15N is gradually reduced toward the substrate 1 in each of the portion on the side in contact with the substrate 1 and the portion on the side away from the substrate 1.
  • the opening on the side is widened. Therefore, also in the configuration of the present modification, it is possible to suppress the excitation light from entering the adjacent pixel of the pixel that should be incident, and to suppress the occurrence of color blur due to the emission of an undesired phosphor layer. .
  • FIG. 11E is a cross-sectional view showing a sixteenth modification of the partition wall.
  • the partition wall 15O of this modification has a two-layer structure of a light absorption layer 15Oa and a light scattering layer 15Ob.
  • the partition wall 15O of this modification includes a light absorption layer 15Oa having a rectangular side cross-sectional shape and a light scattering layer 15Ob having a rectangular side cross-sectional shape smaller than the width of the light absorption layer 15Oa.
  • the side cross-sectional shape of the partition wall 15O is a rectangular shape having a smaller width than the light absorption layer 15Oa on the side where the light scattering layer 15Ob on the side away from the substrate 1 is in contact with the substrate 1.
  • the opening on the side away from the substrate 1 of the partition wall 15O is widened. Therefore, also in the configuration of the present modification, it is possible to suppress the excitation light from entering the adjacent pixel of the pixel that should be incident, and to suppress the occurrence of color blur due to the emission of an undesired phosphor layer. .
  • FIG. 11F is a cross-sectional view showing a seventeenth modification of the partition wall. Also in the partition wall 15P of this modification, as shown in FIG. 11F, it has a two-layer laminated structure of a light absorption layer 15Pa and a light scattering layer 15Pb.
  • the light absorbing layer 15Pa has a trapezoidal shape in which the side cross-sectional shape is a side (lower bottom) on the side in contact with the substrate 1 shorter than the side (upper bottom) on the side away from the substrate 1.
  • the light scattering layer 15Pb has a rectangular shape in which the side cross-sectional side (lower side) on the side in contact with the light absorption layer 15Pa is shorter than the side (upper bottom) on the side away from the substrate 1 of the light absorption layer 15Pa.
  • the side cross-sectional shape of the partition wall 15P is that the light scattering layer 15Pb on the side away from the substrate 1 is the substrate. 1 has a smaller width than the light absorption layer 15Pa on the side in contact with 1.
  • substrate 1 is wide. Therefore, also in the configuration of the present modification, it is possible to suppress the excitation light from entering the adjacent pixel of the pixel that should be incident, and to suppress the occurrence of color blur due to the emission of an undesired phosphor layer. .
  • FIG. 11G is a cross-sectional view showing an eighteenth modification of the partition wall.
  • the partition wall 15Q of the present modification also has a two-layer structure of a light absorption layer 15Qa and a light scattering layer 15Qb.
  • the light absorption layer 15Qa has a rectangular side cross-sectional shape.
  • the light scattering layer 15 ⁇ / b> Qb has a trapezoidal shape in which the side cross-section side (lower base) on the side in contact with the light absorption layer 15 ⁇ / b> Qa is shorter than the side (upper base) on the side away from the substrate 1.
  • the side cross-sectional shape is such that the side (lower bottom) on the side in contact with the light absorption layer 15Qa is shorter than the side (upper bottom) on the side away from the substrate 1 of the light absorption layer 15Qa.
  • the side cross-sectional shape of the partition wall 15Q is that the light scattering layer 15Qb on the side away from the substrate 1 is the substrate. 1, the width is smaller than that of the light absorption layer 15Qa on the side in contact with 1. For this reason, compared with the configuration (rectangular shape) in which the side cross-sectional shape of the partition wall has the same width between the light scattering layer and the light absorption layer (rectangular shape), the opening portion on the side away from the substrate 1 of the partition wall 15Q becomes wider. Therefore, also in the configuration of the present modification, it is possible to suppress the excitation light from entering the adjacent pixel of the pixel that should be incident, and to suppress the occurrence of color blur due to the emission of an undesired phosphor layer. .
  • FIG. 11H is a cross-sectional view showing a nineteenth modification of the partition wall.
  • the partition wall 15R of this modification also has a two-layer structure of a light absorption layer 15Ra and a light scattering layer 15Rb as shown in FIG. 11H.
  • the light absorption layer 15 ⁇ / b> Ra has a trapezoidal shape in which the side cross-section side (lower base) on the side in contact with the substrate 1 is shorter than the side (upper base) on the side away from the substrate 1.
  • the light scattering layer 15 ⁇ / b> Rb has a trapezoidal shape in which the side section (lower base) on the side in contact with the light absorption layer 15 ⁇ / b> Ra is shorter than the side (upper base) on the side away from the substrate 1.
  • the light scattering layer 15Rb has a side cross-sectional shape whose side (lower bottom) on the side in contact with the light absorption layer 15Ra is shorter than the side (upper bottom) on the side away from the substrate 1 of the light absorption layer 15Ra.
  • the side cross-sectional shape of the partition wall 15R is separated from the substrate 1, although the planar cross-sectional area gradually decreases toward the substrate 1 in each of the light absorption layer 15Ra and the light scattering layer 15Rb.
  • the light scattering layer 15 ⁇ / b> Rb on the side has a shape smaller in width than the light absorption layer 15 ⁇ / b> Ra on the side in contact with the substrate 1.
  • the opening portion on the side away from the substrate 1 of the partition wall 15R becomes wider. Therefore, also in the configuration of the present modification, it is possible to suppress the excitation light from entering the adjacent pixel of the pixel that should be incident, and to suppress the occurrence of color blur due to the emission of an undesired phosphor layer. .
  • the shape of the partition wall includes a configuration that includes a shape perpendicular to the substrate 1 in at least a part of the partition wall, and gradually decreases as the cross-sectional area toward the substrate 1.
  • the present invention is not limited to the shape shown in the modification example, and various shapes can be adopted.
  • the light source 2 for exciting the phosphor layers 3R, 3G, 3B is preferably ultraviolet light or blue light.
  • EL etc. are mentioned, this embodiment is not limited to these light sources.
  • by directly switching these light sources 2 it is possible to control ON / OFF of light emission for displaying an image. It is also possible to control the ON / OFF of light emission by arranging a layer having a shutter function such as liquid crystal between the phosphor layers 3R, 3G, 3B and the light source 2, and controlling it. is there. It is also possible to control ON / OFF of both the layer having a shutter function such as liquid crystal and the light source 2.
  • the light source 2 a known ultraviolet LED, blue LED, ultraviolet light emitting inorganic EL, blue light emitting inorganic EL, ultraviolet light emitting organic EL, blue light emitting organic EL or the like can be used, and is not particularly limited. It can be produced by a known production method.
  • the ultraviolet light preferably emits light having a main light emission peak of 360 nm to 410 nm, and the blue light preferably has light emission of a main light emission peak of 435 nm to 480 nm.
  • the light source 2 desirably has directivity. Directivity refers to the property that the intensity of light varies depending on the direction. The directivity may be provided at the time when light enters the phosphor layer.
  • the light source 2 desirably makes parallel light incident on the phosphor layer.
  • the degree of directivity of the light source 2 is preferably a half width of ⁇ 30 degrees or less, more preferably ⁇ 10 degrees or less. This is because when the half-value width is larger than 30 degrees, light emitted from the backlight is incident on a pixel other than a desired pixel and excites an undesired phosphor to reduce color purity and contrast.
  • the light source 2A that can be suitably used for the light source 2 will be described.
  • an LED light emitting diode
  • a known LED can be used.
  • an ultraviolet light emitting inorganic LED and a blue light emitting inorganic LED are suitable. These LEDs include, for example, a first buffer layer 23, an n-type contact layer 24, a second n-type cladding layer 25, a first n-type cladding layer 26, an active layer 27, a first layer on one surface of the substrate 9.
  • a p-type cladding layer 28, a second p-type cladding layer 29, and a second buffer layer 30 are sequentially stacked, a cathode 22 is formed on the n-type contact layer 24, and an anode 21 is formed on the second buffer layer 30. It is the light source 2A of the formed structure.
  • the specific structure of LED is not restricted to the above-mentioned thing.
  • the active layer 27 is a layer that emits light by recombination of electrons and holes, and a known active layer material for LED can be used as the active layer material.
  • a known active layer material for LED can be used as the active layer material.
  • an active layer material for example, as an ultraviolet active layer material, AlGaN, InAlN, In a Al b Ga 1-ab N (0 ⁇ a, 0 ⁇ b, a + b ⁇ 1), blue active layer material In z Ga 1 -z N (0 ⁇ z ⁇ 1) and the like are exemplified, but the active layer material is not limited thereto.
  • the active layer 27 a single quantum well structure or a multiple quantum well structure can be used.
  • the active layer of the quantum well structure may be either n-type or p-type.
  • the half-value width of the emission wavelength is narrowed by band-to-band emission, and emission with good color purity is obtained. Therefore, it is preferable.
  • the active layer 27 may be doped with at least one of a donor impurity and an acceptor impurity. If the crystallinity of the active layer doped with impurities is the same as that of non-doped, doping with donor impurities can further increase the emission intensity between bands as compared with non-doped ones.
  • the acceptor impurity is doped, the peak wavelength can be shifted to a lower energy side by about 0.5 eV than the peak wavelength of interband light emission, but the full width at half maximum is increased.
  • both the acceptor impurity and the donor impurity are doped, the light emission intensity can be further increased as compared with the light emission intensity of the active layer doped only with the acceptor impurity.
  • the conductivity type of the active layer is preferably doped with a donor impurity such as Si to be n-type.
  • the n-type cladding layers 25 and 26 known n-type cladding layer materials for LEDs can be used.
  • the n-type cladding layer is composed of two layers, a first n-type cladding layer 26 and a second n-type cladding layer 25, but the n-type cladding layer may be a single layer, Three or more layers may be used.
  • the n-type cladding layer By forming the n-type cladding layer with a material formed of an n-type semiconductor having a band gap energy larger than that of the active layer 27, a potential barrier for holes is formed between the n-type cladding layer and the active layer 27. Can be confined in the active layer.
  • n-type cladding layers 25 and 26 can be formed by n-type Inx Ga1-x N (0 ⁇ x ⁇ 1), but n-type cladding layers 25 and 26 are limited to these. is not.
  • the p-type cladding layers 28 and 29 a known p-type cladding layer material for LED can be used.
  • the p-type cladding layer is composed of two layers, a first p-type cladding layer 28 and a second p-type cladding layer 29, but the p-type cladding layer may be a single layer, Three or more layers may be used.
  • the p-type cladding layer By forming the p-type cladding layer with a material formed of a p-type semiconductor having a band gap energy larger than that of the active layer 27, a potential barrier for electrons is formed between the p-type cladding layer and the active layer 27, and the electrons are active. It becomes possible to confine in the layer 27.
  • the p-type cladding layers 28 and 29 can be formed of Aly Ga1-y N (0 ⁇ y ⁇ 1), but the p-type cladding layers 28 and 29 are not limited to these.
  • n-type contact layer 24 a known contact layer material for LED can be used.
  • an n-type contact layer made of n-type GaN can be formed as a layer for forming an electrode (cathode 22) in contact with the n-type cladding layer.
  • a p-type contact layer made of p-type GaN as a layer for forming the electrode (anode 21) in contact with the p-type cladding layer.
  • this contact layer need not be formed if the second n-type cladding layer 25 and the second p-type cladding layer 29 are made of GaN.
  • the second n-type and p-type cladding layers are not necessary. Can be used as a contact layer.
  • a known film formation process for LED can be used, but the film formation process is not particularly limited thereto.
  • a vapor phase growth method such as MOVPE (metal organic vapor phase epitaxy), MBE (molecular beam vapor phase epitaxy), HDVPE (hydride vapor phase epitaxy), for example, sapphire (C plane, A plane, R ), SiC (including 6H—SiC, 4H—SiC), spinel (MgAl 2 O 4 , especially its (111) plane), ZnO, Si, GaAs, or other oxide single crystal substrates (such as NGO)
  • MOVPE metal organic vapor phase epitaxy
  • MBE molecular beam vapor phase epitaxy
  • HDVPE hydrogen vapor phase epitaxy
  • sapphire C plane, A plane, R
  • SiC including 6H—SiC, 4H—SiC
  • spinel MgAl 2 O 4 , especially its (111) plane
  • an organic EL element can be used as the light source 2B.
  • a known organic EL can be used.
  • the organic EL element 2B includes, for example, an anode 41, a hole injection layer 43, a hole transport layer 44, a light emitting layer 45, a hole prevention layer 46, an electron transport layer 47, an electron injection layer 48, and a cathode 49 on one surface of the substrate 9.
  • An edge cover 42 is formed so as to cover the end face of the anode 41.
  • the organic EL element 2B only needs to include an organic EL layer including at least a light emitting layer (organic light emitting layer) 45 made of an organic light emitting material between the anode 41 and the cathode 49.
  • a light emitting layer organic light emitting layer
  • the specific configuration is as described above. It is not limited to.
  • the layers from the hole injection layer 43 to the electron injection layer 48 may be referred to as an organic EL layer.
  • the organic EL element 2B is provided in a matrix corresponding to each of the red subpixel PR, the green subpixel PG, and the blue subpixel PB shown in FIG. 1, and is individually controlled to be turned on / off. Yes.
  • the driving method of the plurality of organic EL elements 2B may be active matrix driving or passive matrix driving. A configuration example using an active matrix organic EL element will be described in detail later.
  • substrate As the substrate 9 used in this embodiment, for example, an inorganic substrate made of glass, quartz, etc., a plastic substrate made of polyethylene terephthalate, polycarbazole, polyimide, etc., an insulating substrate such as a ceramic substrate made of alumina, or the like, or A metal substrate made of aluminum (Al), iron (Fe), or the like, or a substrate in which an insulating material made of silicon oxide (SiO 2 ) or an organic insulating material is coated on the substrate, or a metal substrate made of Al or the like Examples thereof include a substrate whose surface is subjected to insulation treatment by a method such as anodization.
  • a substrate in which the plastic substrate is coated with an inorganic material, and a substrate in which the metal substrate is coated with an inorganic insulating material are more preferable.
  • deterioration of organic EL due to moisture permeation which is the biggest problem when a plastic substrate is used as an organic EL substrate (organic EL is known to occur particularly even with a low amount of moisture, is known. Can be resolved.
  • leakage (short) due to protrusions on the metal substrate which is the biggest problem when a metal substrate is used as an organic EL substrate (the film thickness of the organic EL is as thin as about 100 to 200 nm, so the pixel portion due to the protrusions) It is known that leakage (short-circuit) occurs in the current at (1).
  • a substrate that does not melt at a temperature of 500 ° C. or lower and does not cause distortion.
  • a general metal substrate has a coefficient of thermal expansion different from that of glass, it is difficult to form a TFT on the metal substrate with a conventional production apparatus, but the linear expansion coefficient is 1 ⁇ 10 ⁇ 5 / ° C. or less.
  • a metal substrate which is an iron-nickel alloy of this type and adjusting the linear expansion coefficient to glass, it becomes possible to form TFTs on the metal substrate at low cost using a conventional production apparatus.
  • the heat-resistant temperature is very low, it is possible to transfer and form the TFT on the plastic substrate by forming the TFT on the glass substrate and then transferring the TFT to the plastic substrate. is there.
  • the substrate used is from the organic EL layer. In order to extract emitted light to the outside, it is necessary to use a transparent or translucent substrate.
  • the anode 41 and the cathode 49 used in the present embodiment function as a first electrode and a second electrode that supply current to the organic EL layer.
  • the anode 41 that is the first electrode is disposed on the substrate 9 side with the organic EL layer interposed therebetween, and the cathode 49 that is the second electrode is disposed on the side opposite to the substrate 9 with the organic EL layer interposed therebetween.
  • this relationship may be reversed.
  • the anode 41 that is the first electrode may be disposed on the side opposite to the substrate 9 with the organic EL layer interposed therebetween, and the cathode 49 that is the second electrode may be disposed on the substrate 9 side with the organic EL layer interposed therebetween.
  • Specific compounds and formation methods are exemplified below, but the compounds and formation methods are not limited to these.
  • an electrode material for forming the anode 41 and the cathode 49 a known electrode material can be used.
  • an electrode material for forming the anode gold (Au), platinum (Pt), nickel (Ni) or the like having a work function of 4.5 eV or more is used from the viewpoint of efficiently injecting holes into the organic EL layer.
  • Metals and oxides (ITO) made of indium (In) and tin (Sn), oxides of tin (Sn) (SnO 2 ), oxides of indium (In) and zinc (Zn) (IZO), etc. It is mentioned as a transparent electrode material.
  • metals such as barium (Ba) and aluminum (Al), or alloys such as Mg: Ag alloy and Li: Al alloy containing these metals.
  • the anode 41 and the cathode 49 can be formed by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, or a resistance heating vapor deposition method using the above materials. It is not limited to the forming method. If necessary, the formed electrode can be patterned by a photolithographic fee method or a laser peeling method, or a patterned electrode can be directly formed by combining with a shadow mask.
  • the film thickness is preferably 50 nm or more. When the film thickness is less than 50 nm, the wiring resistance is increased, which may increase the drive voltage.
  • a translucent electrode is used as the anode 41. It is preferable to use it.
  • the material used here it is possible to use a metal translucent electrode alone or a combination of a metal translucent electrode and a transparent electrode material, but as a translucent electrode material, from the viewpoint of reflectance and transmittance Silver is preferred.
  • the film thickness of the translucent electrode is preferably 5 to 30 nm. When the film thickness is less than 5 nm, light cannot be sufficiently reflected, and interference effects cannot be obtained sufficiently.
  • the film thickness exceeds 30 nm, the light transmittance is drastically reduced, so that the luminance and efficiency may be lowered.
  • an electrode with high reflectivity that reflects light as the cathode 49.
  • electrode materials used in this case include reflective metal electrodes such as aluminum, silver, gold, aluminum-lithium alloys, aluminum-neodymium alloys, and aluminum-silicon alloys, transparent electrodes, and reflective metal electrodes (reflective electrodes). The electrode etc. which combined these are mentioned.
  • the anode 41 When light emitted from the organic EL layer is taken out from the cathode 49 side, the anode 41 may be formed of a highly reflective electrode and the cathode 49 may be a translucent electrode, contrary to the above.
  • Organic EL layer used in the present embodiment may be a single layer structure of an organic light emitting layer or a multilayer structure of an organic light emitting layer and a charge transport layer. Specifically, the following configurations may be mentioned. The configuration is not limited by these. In the example of FIG. 13, the following configuration (8) is used. In the following description, holes and electrons are referred to as charges, and a layer that injects charges from the anode 41 or the cathode 49 toward the light emitting layer 45 (hole injection layer or electron injection layer) is referred to as a charge injection layer.
  • a layer (hole transport layer, electron transport layer) that transports charges injected from the anode 41 or the cathode 49 by the charge injection layer toward the light emitting layer 45 is referred to as a charge transport layer, and the charge injection layer and the charge transport layer are collectively referred to. Therefore, it may be referred to as a charge injection / transport layer.
  • Organic light emitting layer (2) Hole transport layer / organic light emitting layer (3) Organic light emitting layer / electron transport layer (4) Hole transport layer / organic light emitting layer / electron transport layer (5) Hole injection layer / Hole transport layer / organic light emitting layer / electron transport layer (6) hole injection layer / hole transport layer / organic light emitting layer / electron transport layer / electron injection layer (7) hole injection layer / hole transport layer / organic Light emitting layer / Hole prevention layer / Electron transport layer (8) Hole injection layer / Hole transport layer / Organic light emitting layer / Hole prevention layer / Electron transport layer / Electron injection layer (9) Hole injection layer / Hole Transport layer / electron prevention layer / organic light emitting layer / hole prevention layer / electron transport layer / electron injection layer
  • Each layer of the organic light emitting layer, hole injection layer, hole transport layer, hole prevention layer, electron prevention layer, electron transport layer and electron injection layer may have a single layer structure or a multilayer structure.
  • the organic light emitting layer 45 may be composed of only an organic light emitting material exemplified below, or may be composed of a combination of a light emitting dopant and a host material, and optionally a hole transport material, an electron transport material, Additives (donor, acceptor, etc.) may be included, and these materials may be dispersed in a polymer material (binding resin) or an inorganic material. From the viewpoint of luminous efficiency and lifetime, those in which a luminescent dopant is dispersed in a host material are preferable.
  • organic light emitting material a known light emitting material for organic EL can be used. Such light-emitting materials are classified into low-molecular light-emitting materials, polymer light-emitting materials, and the like. Specific examples of these compounds are given below, but organic light-emitting materials are not limited to these materials.
  • the light-emitting material may be classified into a fluorescent material, a phosphorescent material, and the like, and it is preferable to use a phosphorescent material with high light emission efficiency from the viewpoint of reducing power consumption.
  • organic light emitting material is not limited to these materials.
  • a known dopant material for organic EL can be used as the light-emitting dopant optionally contained in the light-emitting layer.
  • a dopant material for example, as an ultraviolet light emitting material, p-quaterphenyl, 3,5,3,5 tetra-t-butylsecphenyl, 3,5,3,5 tetra-t-butyl-p -Fluorescent materials such as quinckphenyl.
  • fluorescent light emitting materials such as styryl derivatives, bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate, iridium (III) (FIrpic), bis (4 ′, 6′-difluorophenyl) And phosphorescent organometallic complexes such as polydinato) tetrakis (1-pyrazoyl) borate, iridium (III) (FIr6), and the like.
  • a known host material for organic EL can be used as a host material when using a dopant.
  • host materials include the low-molecular light-emitting materials, the polymer light-emitting materials, 4,4′-bis (carbazole) biphenyl, 9,9-di (4-dicarbazole-benzyl) fluorene (CPF), 3 , 6-bis (triphenylsilyl) carbazole (mCP), carbazole derivatives such as (PCF), aniline derivatives such as 4- (diphenylphosphoyl) -N, N-diphenylaniline (HM-A1), 1,3- And fluorene derivatives such as bis (9-phenyl-9H-fluoren-9-yl) benzene (mDPFB) and 1,4-bis (9-phenyl-9H-fluoren-9-yl) benzene (pDPFB).
  • the charge injection / transport layer is used to more efficiently inject charges (holes, electrons) from the electrode and transport (injection) to the light emitting layer, and the charge injection layer (hole injection layer, electron injection layer). It is classified as a transport layer (hole transport layer, electron transport layer).
  • the charge injecting and transporting layer may be composed only of the charge injecting and transporting material exemplified below, and may optionally contain additives (donor, acceptor, etc.), and these materials are polymer materials (conjugation). Wear resin) or a structure dispersed in an inorganic material.
  • charge injection / transport material known charge transport materials for organic EL and organic photoconductors can be used. Such charge injecting and transporting materials are classified into hole injecting and transporting materials and electron injecting and transporting materials. Specific examples of these compounds are given below, but the charge injecting and transporting materials are not limited to these materials. Absent.
  • the hole injection / hole transport material examples include oxides such as vanadium oxide (V 2 O 5 ) and molybdenum oxide (MoO 2 ), inorganic p-type semiconductor materials, porphyrin compounds, N, N′-bis (3 -Methylphenyl) -N, N′-bis (phenyl) -benzidine (TPD), N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine (NPD), etc.
  • oxides such as vanadium oxide (V 2 O 5 ) and molybdenum oxide (MoO 2 )
  • inorganic p-type semiconductor materials examples include porphyrin compounds, N, N′-bis (3 -Methylphenyl) -N, N′-bis (phenyl) -benzidine (TPD), N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine (NPD), etc
  • Low molecular weight materials such as tertiary amine compounds, hydrazone compounds, quinacridone compounds, styrylamine compounds, polyaniline (PANI), polyaniline-camphor sulfonic acid (PANI-CSA), 3,4-polyethylenedioxythiophene / polystyrene sulfonate ( PEDOT / PSS), poly (triphenylamine) derivative (Poly-TPD), polyvinylcarbazole (PVC) z), polymer materials such as poly (p-phenylene vinylene) (PPV), poly (p-naphthalene vinylene) (PNV), and the like.
  • PANI polyaniline
  • PANI-CSA polyaniline-camphor sulfonic acid
  • PEDOT / PSS poly (triphenylamine) derivative
  • PVC polyvinylcarbazole
  • polymer materials such as poly (p-phenylene vinylene) (PPV), poly (p-naphthalene
  • the highest occupied molecular orbital than the hole injection / transport material used for the hole transport layer 44 is used as a material used for the hole injection layer 43 in terms of more efficiently injecting / transporting holes from the anode 41.
  • a material having a low energy level of (HOMO) is preferably used, and a material having a higher hole mobility than the hole injection transport material used for the hole injection layer 43 is used as the hole transport layer 44. preferable.
  • acceptor In order to improve the hole injection / transport property, it is preferable to dope the hole injection / transport material with an acceptor.
  • an acceptor a known acceptor material for organic EL can be used. Although these specific compounds are illustrated below, acceptor material is not limited to these materials.
  • Acceptor materials include Au, Pt, W, Ir, POCl 3 , AsF 6 , Cl, Br, I, vanadium oxide (V 2 O 5 ), molybdenum oxide (MoO 2 ), and other inorganic materials, TCNQ (7, 7 , 8,8, -tetracyanoquinodimethane), TCNQF 4 (tetrafluorotetracyanoquinodimethane), TCNE (tetracyanoethylene), HCNB (hexacyanobutadiene), DDQ (dicyclodicyanobenzoquinone), etc.
  • TNF trinitrofluorenone
  • DNF dinitrofluorenone
  • organic materials such as fluoranyl, chloranil and bromanyl.
  • compounds having a cyano group such as TCNQ, TCNQF 4 , TCNE, HCNB, DDQ and the like are more preferable because they can increase the carrier concentration more effectively.
  • Electron injection / electron transport materials include, for example, inorganic materials that are n-type semiconductors, oxadiazole derivatives, triazole derivatives, thiopyrazine dioxide derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, diphenoquinone derivatives, fluorenone derivatives, benzodifuran derivatives And low molecular weight materials such as poly (oxadiazole) (Poly-OXZ) and polystyrene derivatives (PSS).
  • examples of the electron injection material include fluorides such as lithium fluoride (LiF) and barium fluoride (BaF 2 ), and oxides such as lithium oxide (Li 2 O).
  • the energy level of the lowest unoccupied molecular orbital (LUMO) than the electron injection and transport material used for the electron transport layer 47 is used. It is preferable to use a material having a high electron mobility, and it is preferable to use a material having a higher electron mobility than the electron injection transport material used for the electron injection layer 48 as the material used for the electron transport layer 47.
  • LUMO lowest unoccupied molecular orbital
  • the electron injection / transport material In order to further improve the electron injection / transport property, it is preferable to dope the electron injection / transport material with a donor.
  • a donor a known donor material for organic EL can be used. Although these specific compounds are illustrated below, donor material is not limited to these materials.
  • Donor materials include inorganic materials such as alkali metals, alkaline earth metals, rare earth elements, Al, Ag, Cu, In, anilines, phenylenediamines, benzidines (N, N, N ′, N′-tetraphenyl) Benzidine, N, N'-bis- (3-methylphenyl) -N, N'-bis- (phenyl) -benzidine, N, N'-di (naphthalen-1-yl) -N, N'-diphenyl- Benzidine, etc.), triphenylamines (triphenylamine, 4,4′4 ′′ -tris (N, N-diphenyl-amino) -triphenylamine, 4,4′4 ′′ -tris (N-3- Methylphenyl-N-phenyl-amino) -triphenylamine, 4,4′4 ′′ -tris (N- (1-naphthyl) -N
  • organic materials such as condensed polycyclic compounds (wherein the condensed polycyclic compounds may have a substituent), TTFs (tetrathiafulvalene), dibenzofuran, phenothiazine, and carbazole.
  • a compound having an aromatic tertiary amine as a skeleton, a condensed polycyclic compound, and an alkali metal are more preferable because the carrier concentration can be increased more effectively.
  • the organic EL layers such as the light-emitting layer 45, the hole transport layer 44, the electron transport layer 47, the hole injection layer 43, and the electron injection layer 48 are organic EL layer forming coating solutions in which the above materials are dissolved and dispersed in a solvent.
  • a known wet process such as a resistance heating vapor deposition method, an electron beam (EB) vapor deposition method, a molecular beam epitaxy (MBE) method, a sputtering method, an organic vapor deposition (OVPD) method or the like, Alternatively, it can be formed by a laser transfer method or the like.
  • the coating liquid for organic EL layer formation may contain the additive for adjusting the physical properties of coating liquid, such as a leveling agent and a viscosity modifier.
  • the film thickness of each organic EL layer is usually about 1 nm to 1000 nm, but preferably 10 nm to 200 nm. If the film thickness is less than 10 nm, the properties (charge injection characteristics, transport characteristics, confinement characteristics) that are originally required cannot be obtained. In addition, pixel defects due to foreign matters such as dust may occur. On the other hand, if the film thickness exceeds 200 nm, the drive voltage increases due to the resistance component of the organic EL layer, leading to an increase in power consumption.
  • an edge cover 42 is provided for the purpose of preventing leakage between the anode 41 and the cathode 49 at the edge portion of the anode 41 formed on the substrate 9 side.
  • the edge cover 42 can be formed by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, or a resistance heating vapor deposition method using an insulating material, and a known dry or wet photolithography.
  • the method of forming the edge cover 42 is not limited to these methods.
  • a known material can be used as the material constituting the edge cover 42 and is not particularly limited in the present embodiment.
  • the film thickness is preferably 100 nm to 2000 nm.
  • the thickness is 100 nm or less, the insulating property is not sufficient, and leakage occurs between the anode 41 and the cathode 49, resulting in an increase in power consumption and non-light emission.
  • the thickness is 2000 nm or more, the film forming process takes time, and the productivity is deteriorated and the electrode is disconnected at the edge cover 42.
  • the organic EL element 2B preferably has a microcavity structure (optical microresonator structure) due to an interference effect between a reflective electrode and a translucent electrode used as the anode 41 and the cathode 49, or a dielectric multilayer film.
  • a microcavity structure optical microresonator structure
  • the emission spectrum can be adjusted due to the interference effect, and the emission spectrum can be adjusted by adjusting to a desired emission peak wavelength and half width. Thereby, it is possible to control the phosphor layers 3R, 3G, and 3B to a spectrum that can be excited more effectively.
  • Organic EL element 2B is electrically connected to an external drive circuit.
  • the organic EL element 2B may be directly connected to and driven by an external drive circuit, or a switching circuit such as a TFT is arranged in the pixel, and the external drive circuit (scan line electrode) is connected to a wiring to which the TFT or the like is connected.
  • Circuit source driver
  • data signal electrode circuit gate driver
  • power supply circuit may be electrically connected.
  • FIG. 14 is a cross-sectional view of an organic EL element substrate 70 (light source) using the active matrix driving type organic EL element 2B.
  • a TFT (driving element) 51 is formed on one surface of the substrate 9. That is, the gate electrode 52 and the gate line 53 are formed, and the gate insulating film 54 is formed on the substrate 9 so as to cover the gate electrode 52 and the gate line 53.
  • An active layer (not shown) is formed on the gate insulating film 54, and a source electrode 55, a drain electrode 56 and a data line 57 are formed on the active layer, and covers the source electrode 55, the drain electrode 56 and the data line 57.
  • a planarizing film 58 is formed.
  • planarization film 58 does not have to have a single layer structure, and may be configured by combining another interlayer insulating film and the planarization film. Further, a contact hole 59 that reaches the drain electrode 56 through the planarizing film or the interlayer insulating film is formed, and the organic EL element that is electrically connected to the drain electrode 56 through the contact hole 59 on the planarizing film 58. A 2B anode 41 is formed. The configuration of the organic EL element 2B itself is the same as that described above.
  • the TFT 51 is formed on the substrate 9 before forming the organic EL element 2B, and functions as a pixel switching element and an organic EL element driving element.
  • Examples of the TFT 51 used in this embodiment include known TFTs, which can be formed using known materials, structures, and formation methods.
  • a metal-insulator-metal (MIM) diode can be used instead of the TFT 51.
  • Examples of the material of the active layer of the TFT 51 include inorganic semiconductor materials such as amorphous silicon (amorphous silicon), polycrystalline silicon (polysilicon), microcrystalline silicon, and cadmium selenide, zinc oxide, indium oxide-gallium oxide, and the like. Examples thereof include oxide semiconductor materials such as zinc oxide, or organic semiconductor materials such as polythiophene derivatives, thiophene oligomers, poly (p-ferylene vinylene) derivatives, naphthacene, and pentacene. Moreover, as a structure of TFT51, a stagger type
  • a method for forming the active layer constituting the TFT 51 (1) a method of ion doping impurities into amorphous silicon formed by plasma induced chemical vapor deposition (PECVD), and (2) a silane (SiH 4 ) gas is used.
  • PECVD plasma induced chemical vapor deposition
  • SiH 4 silane
  • amorphous silicon by low pressure chemical vapor deposition (LPCVD), crystallizing amorphous silicon by solid phase epitaxy to obtain polysilicon, and then ion doping by ion implantation, (3) Si 2 H A method in which amorphous silicon is formed by LPCVD using 6 gases or PECVD using SiH 4 gas, annealed by a laser such as an excimer laser, and amorphous silicon is crystallized to obtain polysilicon, followed by ion doping (Low temperature process), (4) LPCVD How is a polysilicon layer is formed by a PECVD method, a gate insulating film formed by thermal oxidation at 1000 ° C.
  • LPCVD low pressure chemical vapor deposition
  • the gate insulating film 54 of the TFT 51 used in this embodiment can be formed using a known material. Examples thereof include SiO 2 formed by PECVD, LPCVD, etc., or SiO 2 obtained by thermally oxidizing a polysilicon film. Further, the data line 57, the gate line 53, the source electrode 55, and the drain electrode 56 of the TFT 51 used in this embodiment can be formed using a known conductive material, for example, tantalum (Ta), aluminum (Al ), Copper (Cu), and the like.
  • the TFT 51 according to this embodiment can be configured as described above, but is not limited to these materials, structures, and formation methods.
  • the interlayer insulating film used in the present embodiment can be formed using a known material.
  • the formation method include dry processes such as chemical vapor deposition (CVD) and vacuum deposition, and wet processes such as spin coating. Moreover, it can also pattern by the photolithographic method etc. as needed.
  • the present embodiment is not limited to these materials and forming methods.
  • unevenness is formed on the surface of the TFT 51 formed on the substrate 9 and various wirings and electrodes, and this unevenness causes defects in the organic EL element 2B (for example, defects or disconnection of the anode 41 or the cathode 49, There is a risk that a defect of the organic EL layer, a short circuit between the anode 41 and the cathode 49, a decrease in breakdown voltage, or the like) may occur. Therefore, it is desirable to provide the planarizing film 58 on the interlayer insulating film for the purpose of preventing these defects.
  • the planarization film 58 used in the present embodiment can be formed using a known material, for example, an inorganic material such as silicon oxide, silicon nitride, or tantalum oxide, or an organic material such as polyimide, acrylic resin, or resist material. Etc.
  • Examples of the method for forming the planarizing film 58 include a dry process such as a CVD method and a vacuum deposition method, and a wet process such as a spin coat method.
  • the present embodiment is not limited to these materials and the formation method. .
  • the planarizing film 58 may have a single layer structure or a multilayer structure.
  • FIG. 15 is a schematic configuration diagram of a display device 200 including the organic EL element substrate 70.
  • the display device 200 includes an organic EL element substrate 70, a phosphor substrate 10 disposed to face the organic EL element substrate 70, and a pixel unit 71 provided in a region where the organic EL element substrate 70 and the phosphor substrate 10 face each other.
  • a gate signal side drive circuit 72 for supplying a drive signal to the pixel portion 71, a data signal side drive circuit 73, a signal wiring 74, a current supply line 75, and a flexible printed wiring board 76 (connected to the organic EL element substrate 70).
  • FPC field-driven driving circuit
  • the organic EL element substrate 70 is connected to an external drive circuit 77 including a scanning line electrode circuit, a data signal electrode circuit, a power supply circuit, and the like via the FPC 76 in order to drive the organic EL element 2B shown in FIG. Are electrically connected.
  • the switching circuit such as the TFT 51 shown in FIG. 14 is arranged in the pixel portion 71, and the organic EL element 2B is driven to the wiring such as the data line 57 and the gate line 53 to which the TFT 51 is connected.
  • the data signal side driving circuit 73 and the gate signal side driving circuit 72 are connected to each other, and an external driving circuit 77 is connected to these driving circuits via a signal wiring 74.
  • a plurality of gate lines 53 and a plurality of data lines 57 are arranged, and TFTs 51 are arranged at intersections of the gate lines 53 and the data lines 57.
  • the organic EL element according to this embodiment is driven by a voltage-driven digital gradation method, and two TFTs, a switching TFT and a driving TFT, are arranged for each pixel, and the driving TFT And the anode of the light emitting portion (organic EL element 2B) are electrically connected through a contact hole 59 formed in the planarizing film 58 shown in FIG. Further, a capacitor for setting the gate potential of the driving TFT to a constant potential is arranged in one pixel so as to be connected to the gate electrode of the driving TFT.
  • the present embodiment is not particularly limited to these, and the driving method may be the voltage-driven digital gradation method described above or the current-driven analog gradation method.
  • the number of TFTs is not particularly limited, and the organic EL element may be driven by the two TFTs described above, and in order to prevent variations in TFT characteristics (mobility, threshold voltage), Alternatively, the organic EL element may be driven using two or more TFTs incorporating a compensation circuit.
  • an inorganic EL element can be used as the light source 2C.
  • a known inorganic EL element can be used.
  • an ultraviolet light emitting inorganic EL element and a blue light emitting inorganic EL element are suitable.
  • These inorganic EL elements are, for example, light sources having a configuration in which a first electrode 81, a first dielectric layer 82, a light emitting layer 83, a second dielectric layer 84, and a second electrode 85 are sequentially stacked on one surface of a substrate 9. 2C.
  • the specific configuration of the inorganic EL element is not limited to the above.
  • first electrode 81 and the second electrode 85 used in this embodiment metals such as aluminum (Al), gold (Au), platinum (Pt), nickel (Ni), and indium (In) and tin (
  • transparent electrode material examples include an oxide (ITO) made of Sn), an oxide of Sn (Sn) (SnO 2 ), an oxide made of indium (In) and zinc (Zn) (IZO), etc. It is not limited to these materials. However, a transparent electrode such as ITO is better in the light extraction direction. A reflective film such as aluminum is preferably used on the side opposite to the light extraction direction.
  • the first electrode 81 and the second electrode 85 can be formed by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, or a resistance heating vapor deposition method using the above materials. Is not limited to these forming methods. If necessary, the formed electrode can be patterned by a photolithographic fee method or a laser peeling method, or a patterned electrode can be directly formed by combining with a shadow mask.
  • the film thickness is preferably 50 nm or more. When the film thickness is less than 50 nm, the wiring resistance is increased, which may increase the drive voltage.
  • Dielectric layer As the first dielectric layer 82 and the second dielectric layer 84 used in the present embodiment, a known dielectric material for inorganic EL can be used. Examples of such dielectric materials include tantalum pentoxide (Ta 2 O 5 ), silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), aluminum titanate ( AlTiO 3 ) barium titanate (BaTiO 3 ), strontium titanate (SrTiO 3 ) and the like can be mentioned, but the dielectric material is not limited to these.
  • first dielectric layer 82 and the second dielectric layer 84 of the present embodiment may have one type selected from the above dielectric materials or a structure in which two or more types of materials are laminated.
  • the film thicknesses of the first dielectric layer 82 and the second dielectric layer 84 are preferably about 200 nm to 500 nm.
  • Light emitting layer As the light emitting layer 83 used in the present embodiment, a known light emitting material for inorganic EL elements can be used. As such a light emitting material, for example, ZnF 2 : Gd as an ultraviolet light emitting material, BaAl 2 S 4 : Eu, CaAl 2 S 4 : Eu, ZnAl 2 S 4 : Eu, Ba 2 as a blue light emitting material. Examples include SiS 4 : Ce, ZnS: Tm, SrS: Ce, SrS: Cu, CaS: Pb, (Ba, Mg) Al 2 S 4 : Eu, and the like, but the light emitting material is not limited thereto.
  • the thickness of the light emitting layer 83 is preferably about 300 nm to 1000 nm.
  • an LED, an organic EL element, an inorganic EL element, or the like can be suitably used as the light source 2 according to the display device of the above embodiment.
  • a sealing film or a sealing substrate for sealing a light emitting element such as an LED, an organic EL element, or an inorganic EL element.
  • the sealing film and the sealing substrate can be formed by a known sealing material and sealing method.
  • the sealing film can be formed by applying a resin on the surface opposite to the substrate main body constituting the light source by using a spin coat method, an ODF, or a laminate method.
  • resin is further applied using spin coating, ODF, or lamination.
  • the sealing film can be formed by bonding.
  • Such a sealing film or sealing substrate can prevent the entry of oxygen and moisture into the light source 2 from the outside, and the life of the light source 2 is improved. Further, when the light source substrate 11 provided with the light source 2 and the phosphor substrate 10 are bonded, it is possible to bond them with an adhesive layer 14 such as a general ultraviolet curable resin or a thermosetting resin. Further, when the light source 2 is directly formed on the phosphor substrate 10, for example, a method of sealing an inert gas such as nitrogen gas or argon gas with a glass plate, a metal plate, or the like can be given.
  • a hygroscopic agent such as barium oxide in the enclosed inert gas because deterioration of the organic EL due to moisture can be more effectively reduced.
  • the above embodiment is not limited to these members and forming methods.
  • the display device 100 of FIG. 1 may be provided with a polarizing plate on the light extraction side.
  • a polarizing plate a combination of a conventional linear polarizing plate and a ⁇ / 4 plate can be used.
  • the polarizing plate it is possible to prevent external light reflection from the electrodes of the display device 100 and external light reflection from the surface of the substrates 1 and 9 or the sealing substrate. Can be improved.
  • FIG. 18 is a schematic cross-sectional view of a display device 300 according to the seventh embodiment.
  • the display device 300 is a configuration example in which a liquid crystal element 90 that is an optical member is inserted between the phosphor substrate 10F and the light source substrate 11F.
  • the same reference numerals are given to components common to the display device 100 of the first embodiment, and detailed description thereof is omitted.
  • the display device 300 of this embodiment includes a phosphor substrate 10F, an organic EL element substrate 11F (light source substrate), and a liquid crystal element 90.
  • the basic configuration of the phosphor substrate 10F is the same as that of the first embodiment, and only the configuration of the partition 15A is different from that of the first embodiment.
  • the partition wall 15A of the present embodiment is the same as the partition wall of the second modification shown in FIG. 10B, and the side cross-sectional shape of the partition wall 15A is a triangular shape having a base on the side in contact with the substrate 1.
  • the laminated structure of the organic EL element substrate 11F is the same as that shown in FIG.
  • a driving signal is individually supplied to the organic EL element corresponding to each pixel, and each organic EL element is independently controlled to emit light and not emit light
  • the organic EL element 2B is not divided for each pixel and functions as a planar light source common to all the pixels.
  • the liquid crystal element 90 is configured such that the voltage applied to the liquid crystal layer 98 can be controlled for each pixel using the pair of electrodes 93 and 94, and the transmittance of light emitted from the entire surface of the organic EL element 2B is set to the pixel. Control every time. That is, the liquid crystal element 90 has a function as an optical shutter that selectively transmits light from the organic EL element substrate 11F for each pixel.
  • a known liquid crystal element can be used as the liquid crystal element 90 of the present embodiment.
  • the liquid crystal element 90 includes a pair of polarizing plates 91 and 92, electrodes 93 and 94, alignment films 95 and 96, and a substrate 97.
  • a liquid crystal layer 98 is sandwiched between the alignment films 95 and 96.
  • one optically anisotropic layer is disposed between the liquid crystal cell and one polarizing plate 91 or 92, or the optically anisotropic layer is disposed between the liquid crystal cell and both polarizing plates 91 and 92. 2 may be arranged.
  • the type of liquid crystal cell is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include TN mode, VA mode, OCB mode, IPS mode, and ECB mode.
  • the liquid crystal element 90 may be passively driven or may be actively driven using a switching element such as a TFT.
  • the phosphor substrate 10F, the liquid crystal element 90, and the organic EL element substrate 11F are joined and integrated through the adhesive layer 14. That is, the surface of the phosphor substrate 10F on which the phosphor layers 3R, 3G, and 3B are formed and the polarizing plate 91 of the liquid crystal element 90 are bonded together via the adhesive layer 14, and the organic EL element 2B of the organic EL element substrate 11F. And the polarizing plate 92 of the liquid crystal element 90 are bonded to each other with the adhesive layer 14 interposed therebetween.
  • At least one of the polarizing plates 91 and 92 preferably has an extinction ratio of 10,000 or more at a wavelength of 435 nm or more and 480 nm or less.
  • the extinction ratio can be measured, for example, by a rotating analyzer method using a Glan-Thompson prism.
  • the polarization transmittance refers to the transmittance when ideal polarized light is incident using a Glan-Thompson prism.
  • the contrast and transmittance mainly in the region of 550 nm, and the quenching in the short wavelength region of 490 nm or less of the iodine polarizing plate used in the conventional liquid crystal is about 2000 to 3000 (the extinction ratio in the green region and the red region is about 10,000).
  • the polarizing plate for a blue excitation type display using the blue light backlight according to the present embodiment, an optimum design can be made for the blue region, so that the extinction ratio in the blue region is 10,000 or more.
  • a polarizing plate is used.
  • the contrast of the panel can be increased.
  • a polarizing plate with a high extinction ratio has high transmittance, the light use efficiency of the backlight can be increased, and power consumption can be reduced.
  • Examples of the electronic apparatus provided with the display device of the embodiment include a mobile phone shown in FIG. 19A and a television receiver shown in FIG. 19B.
  • a cellular phone 1000 illustrated in FIG. 19A includes a main body 1001, a display portion 1002, an audio input portion 1003, an audio output portion 1004, an antenna 1005, an operation switch 1006, and the like.
  • the display device according to the above embodiment is used as the display portion 1002. It has been.
  • a television receiver 1100 illustrated in FIG. 19B includes a main body cabinet 1101, a display portion 1102, a speaker 1103, a stand 1104, and the like, and the display device of the above embodiment is used for the display portion 1102. In such an electronic device, since the display device of the above-described embodiment is used, an electronic device having excellent display quality can be realized.
  • the display device according to the embodiment of the present invention can be applied to, for example, the portable game machine shown in FIG. 20A.
  • a portable game machine 1200 illustrated in FIG. 20A includes an operation button 1201, an LED lamp 1202, a housing 1203, a display portion 1204, an infrared port 1205, and the like.
  • the display device of the present invention can be suitably applied as the display unit 1204. By applying the display device according to an embodiment of the present invention to the display unit 1204 of the portable game machine 1200, a high-contrast image can be displayed with low power consumption.
  • the display device can be applied to, for example, a notebook computer shown in FIG. 20B.
  • a notebook personal computer 1300 illustrated in FIG. 20B includes a keyboard 1301, a pointing device 1302, a housing 1303, a display portion 1304, a camera 1305, an external connection port 1306, a power switch 1307, and the like.
  • the display device of the present invention can be suitably applied as the display unit 1304 of the notebook computer 1300.
  • the notebook computer 1300 capable of displaying a high-contrast image can be realized.
  • the display device according to the embodiment of the present invention can be applied to, for example, the ceiling light shown in FIG. 21A.
  • a ceiling light 1400 illustrated in FIG. 21A includes an illumination unit 1401, a hanging tool 1402, a power cord 1403, and the like.
  • the display device of the present invention can be preferably applied as the illumination unit 1401.
  • illumination light having a free color tone can be obtained, and an illumination fixture with high light performance can be realized.
  • the display device according to an embodiment of the present invention can be applied to, for example, a lighting stand shown in FIG. 21B.
  • a lighting stand 1500 illustrated in FIG. 21B includes a lighting unit 1501, a stand 1502, a power switch 1503, a power cord 1504, and the like.
  • the display device of the present invention can be suitably applied as the illumination unit 1501.
  • illumination light with a free color tone can be obtained, and an illumination fixture with high light performance can be realized.
  • FIG. 22A to 22E are cross-sectional views showing a method for manufacturing the phosphor substrate 410X of the comparative example. As shown in FIG. 22A, 0.7 mm glass was used as the substrate 101X. This was washed with water, then subjected to pure water ultrasonic cleaning for 10 minutes, acetone ultrasonic cleaning for 10 minutes, and isopropyl alcohol vapor cleaning for 5 minutes, and dried at 100 ° C. for 1 hour.
  • a BK resist manufactured by Tokyo Ohka Co., Ltd. was applied using a spin coater. Then, it prebaked at 70 degreeC for 15 minutes, and formed the coating film with a film thickness of 1 micrometer.
  • the coating film was covered with a mask (pixel pitch 500 ⁇ m, line width 70 ⁇ m) capable of forming a desired image pattern, and exposed to i-line (100 mJ / cm 2 ). Subsequently, it developed using the sodium carbonate aqueous solution as a developing solution, and the rinse process was performed with the pure water, and the pattern-shaped structure 108X was obtained.
  • a white photosensitive composition comprising a photopolymerization initiator and an aromatic solvent was stirred and mixed to obtain a negative resist.
  • This negative resist was applied onto the substrate 101X using a spin coater.
  • a pattern was formed with a pixel pitch of 500 ⁇ m and a line width of 60 ⁇ m, and a rectangular partition wall 104X having a thickness of 50 ⁇ m for partitioning the sub-pixels was manufactured (FIG. 22A).
  • a red color filter 109XR, a green color filter 109XG, and a blue color filter 109XB were formed in a pattern on the area partitioned by the partition 104X.
  • a red phosphor layer 121X, a green phosphor layer 122X, and a blue light scattering layer 123X were formed in a pattern in a region partitioned by the partition wall 104X.
  • red phosphor layer 121X In the formation process of the red phosphor layer 121X, first, 30 g of 10 wt% polyvinyl alcohol aqueous solution was added to 20 g of red phosphor CaS: Eu having an average particle diameter of 4 ⁇ m, and a red phosphor forming coating solution was prepared by stirring with a disperser. .
  • the prepared red phosphor forming coating solution was applied by patterning to the area partitioned by the partition 104X by a dispenser method. Subsequently, it was dried by heating in a vacuum oven (200 ° C., 10 mmHg) for 4 hours, and a red phosphor layer 121 having a refractive index of 1.6 was patterned with a film thickness of 25 ⁇ m (FIG. 22C).
  • the green phosphor layer 122X In the formation process of the green phosphor layer 122X, first, 30 g of 10 wt% polyvinyl alcohol aqueous solution was added to 20 g of green phosphor Ga2SrS4: Eu having an average particle diameter of 4 ⁇ m, and a green phosphor forming coating solution was prepared by stirring with a disperser. .
  • the prepared green phosphor forming coating solution was applied in a pattern to the area partitioned by the partition 104X by a dispenser method. Subsequently, it was dried by heating in a vacuum oven (200 ° C., 10 mmHg) for 4 hours to form a green phosphor layer 122X having a refractive index of 1.6 with a film thickness of 25 ⁇ m (FIG. 22D).
  • a blue scatterer layer forming coating solution obtained by adding 30 g of a 10 wt% polyvinyl alcohol aqueous solution to 20 g of 1.5 ⁇ m silica particles (refractive index: 1.65) and stirring with a disperser. was made.
  • the prepared blue scatterer layer forming coating solution was applied in a pattern to the region partitioned by the partition 104X by a dispenser technique. Subsequently, it was dried by heating in a vacuum oven (200 ° C., 10 mmHg) for 4 hours to form a blue light scattering layer 123X having a refractive index of 1.6 with a film thickness of 50 ⁇ m (FIG. 22E). Thus, the phosphor substrate 410X was completed.
  • FIG. 23 is a cross-sectional view of a display device 400X of a comparative example.
  • symbol hX is a distance between the surface of the partition wall 104X on the substrate 101X side and the surface of the liquid crystal substrate 490 side.
  • the symbol hX is the height of the partition wall 104X.
  • hX 50 ⁇ m.
  • the symbol sX is the distance between the surface on the partition 104X side of the second adhesive layer 422 and the surface on the bandpass filter 415 side.
  • the symbol sX is the thickness of the second adhesive layer 422 between the surface on the liquid crystal substrate 490 side of the partition 104X and the surface on the phosphor substrate 410X side of the bandpass filter 415.
  • the symbol dX is a thickness obtained by adding the thicknesses sX, d1, d2, d3, and d4 of the five layers excluding the height hX of the partition wall 104X among these six layers.
  • the symbol dX is the thickness between the surface of the partition 104X on the liquid crystal substrate 490 side and the surface of the first substrate 493 on the liquid crystal layer 498 side.
  • dX 250 ⁇ m.
  • Symbol NL passes through one side edge (the right side edge in the drawing) of the surface of the black matrix 495 on the first substrate 493 side and is parallel to the normal line of the surface of the first substrate 493X on the liquid crystal layer 498 side. It is.
  • the symbol MLX is a line connecting one side edge of the surface of the black matrix 495 on the first substrate 493 side and one side edge (right side edge in the drawing) of the surface of the partition 104X on the liquid crystal substrate 490 side. is there.
  • the backlight 412 includes a light source 413 and a light guide plate 414.
  • a blue LED was used as the light source 413.
  • the liquid crystal substrate 490 includes a first polarizing plate 491, a first substrate 493, a liquid crystal layer 498, a second substrate 494, and a second polarizing plate 492.
  • the first polarizing plate 491 and the second polarizing plate 492 have an extinction ratio of 12000 at a wavelength of 435 nm to 480 nm.
  • the liquid crystal is driven by an active matrix driving method using TFTs.
  • the pixels of the liquid crystal substrate 490 are partitioned by a black matrix 495.
  • a band pass filter 415 that transmits light in the blue region and reflects light from green to the near infrared region is bonded to the first knitted light plate 491 through the first adhesive layer 421.
  • the phosphor substrate 410X prepared by the above method was bonded to a liquid crystal substrate 490 provided with a bandpass filter 415 via a second adhesive layer 422.
  • a thermosetting transparent elastomer was used as the first adhesive layer 421 and the second adhesive layer 422.
  • a directional backlight having a directional light source 413 blue LED 413, peak wavelength 450 nm
  • light having a certain range of directivity predetermined light distribution
  • Light having characteristics is emitted.
  • the inventor of the present application when the backlight 412 is used, forms the light emission angle from the backlight 412 when color blur occurs in the display device 400X, and the line NL and the line MLX. It has been found that there is a certain relationship with the angle ⁇ X.
  • the emission angle of the light from the backlight 412 is the light incident perpendicularly to the liquid crystal substrate 490 in the direction of the light having directivity from the backlight 412 incident on the liquid crystal substrate 490. And the direction of light incident on the liquid crystal substrate 490 at a wide angle.
  • the light emission angle from the backlight 412 is oblique to the liquid crystal substrate 490 from the backlight 412 with reference to the direction of light perpendicularly incident on the liquid crystal substrate 490 from the backlight 412 (0 °).
  • the right side in the figure relative to the reference direction is the + side
  • the left side in the figure relative to the reference direction is the ⁇ side.
  • the light emission angle from the backlight 412 has a predetermined angle from the ⁇ side to the + side.
  • Whether or not color blur occurs in the display device 400X when the backlight 412 is used is determined by irradiating blue light from the backlight 412 toward the liquid crystal substrate 490X and emitting light from the phosphor layer 121X with a spectral luminance light intensity. Evaluation was made using a meter.
  • Example 1 As shown in FIG. 24A, the substrate was washed and the black layer was formed in the same manner as in Comparative Example 1. Next, as a material for the partition wall 104, epoxy resin (refractive index: 1.59), acrylic resin (refractive index: 1.49), rutile type titanium oxide (refractive index: 2.71, particle size 250 nm), A white photosensitive composition composed of diazonaphthoquinone and an aromatic solvent was stirred and mixed to obtain a negative resist.
  • epoxy resin reffractive index: 1.59
  • acrylic resin reffractive index: 1.49
  • rutile type titanium oxide Refractive index: 2.71, particle size 250 nm
  • a positive resist was applied onto the substrate 101 using a spin coater. Then, it prebaked at 80 degreeC for 10 minute (s), and formed the coating film with a film thickness of 50 micrometers.
  • the coating film was covered with a mask (pixel pitch 500 ⁇ m, line width 60 ⁇ m) capable of forming a desired image pattern, and exposed to i-line (300 mJ / cm 2 ). Subsequently, it developed using the alkaline developing solution, and obtained the pixel pattern-like structure. Subsequently, using a hot air circulation type drying furnace, post-baking was performed at 140 ° C. for 60 minutes, and the partition wall 104 partitioning the sub-pixels was produced. When observed by SEM, as shown in FIG. 24A, a partition wall 104 having a trapezoidal side cross-sectional shape could be formed.
  • a red color filter 109R, a green color filter 109G, and a blue color filter 109B were formed in a pattern in the area partitioned by the partition wall 104.
  • the red phosphor layer 121, the green phosphor layer 122, and the blue light scattering layer 123 were formed in a pattern in the region partitioned by the partition wall 104. .
  • the phosphor substrate 410 was completed.
  • FIG. 25 is a cross-sectional view of the display device 400 according to the first embodiment.
  • symbol h is the distance between the surface of the partition 104 on the substrate 101 side and the surface on the liquid crystal substrate 490 side.
  • the symbol h is the height of the partition wall 104.
  • h 50 ⁇ m.
  • the symbol s is the distance between the surface of the second adhesive layer 422 on the partition wall 104 side and the surface of the bandpass filter 415 side.
  • the symbol s is the thickness of the second adhesive layer 422 between the surface of the partition wall 104 on the liquid crystal substrate 490 side and the surface of the bandpass filter 415 on the phosphor substrate 410 side.
  • s 10 ⁇ m.
  • Reference sign d1 denotes the thickness of the bandpass filter 415.
  • d1 30 ⁇ m.
  • Reference sign d ⁇ b> 2 is the thickness of the first adhesive layer 421.
  • Reference sign d2 10 ⁇ m.
  • Reference sign d3 is the thickness of the first polarizing plate 491.
  • Reference sign d4 is the thickness of the first substrate 493.
  • d4 150 ⁇ m.
  • the symbol d is a thickness obtained by adding the thicknesses s, d1, d2, d3, and d4 of the five layers excluding the height h of the partition wall 104 among these six layers.
  • the symbol d is the thickness between the surface of the partition 104 on the liquid crystal substrate 490 side and the surface of the first substrate 493 on the liquid crystal layer 498 side.
  • d 250 ⁇ m.
  • Symbol NL passes through one side edge (the right side edge in the drawing) of the surface of the black matrix 495 on the first substrate 493 side and is parallel to the normal line of the surface of the first substrate 493X on the liquid crystal layer 498 side. It is.
  • the symbol ML connects one side edge of the surface of the black matrix 495 on the first substrate 493 side and one side edge of the surface of the partition wall 104 away from the substrate 101 (right side edge in the drawing). Is a line.
  • the backlight 412 includes a light source 413 and a light guide plate 414.
  • a blue LED was used as the light source 413.
  • the phosphor substrate 410 prepared by the above method was bonded to the liquid crystal substrate 490 provided with the band pass filter 415 through the second adhesive layer 422.
  • Whether or not color blur occurs in the display device 400 when the backlight 412 is used is determined by irradiating blue light from the backlight 412 toward the liquid crystal substrate 490 and emitting light from the phosphor layer 121 using spectral luminance light intensity. Evaluation was made using a meter.
  • Example 2 As shown in FIG. 26A, the substrate was washed and the black layer was formed in the same manner as in Comparative Example 1. Next, as a material of the partition wall 104A, epoxy resin (refractive index: 1.59), acrylic resin (refractive index: 1.49), rutile titanium oxide (refractive index: 2.71, particle size 250 nm), A white photosensitive composition composed of diazonaphthoquinone and an aromatic solvent was stirred and mixed to obtain a positive resist.
  • epoxy resin reffractive index: 1.59
  • acrylic resin reffractive index: 1.49
  • rutile titanium oxide Refractive index: 2.71, particle size 250 nm
  • a positive resist was applied onto the substrate 101 using a spin coater. Then, it prebaked at 80 degreeC for 10 minute (s), and formed the coating film with a film thickness of 50 micrometers.
  • the coating film was covered with a mask (pixel pitch 500 ⁇ m, line width 60 ⁇ m) capable of forming a desired image pattern, and exposed to i-line (300 mJ / cm 2 ). Subsequently, it developed using the alkaline developing solution, and obtained the pixel pattern-like structure. Subsequently, using a hot air circulation type drying furnace, post-baking was performed at 140 ° C. for 60 minutes to produce partition walls 104A for partitioning the sub-pixels. When observed with an SEM, a partition wall 104A having a triangular side cross-sectional shape as shown in FIG. 26A was formed.
  • a red color filter 109R, a green color filter 109G, and a blue color filter 109B were formed in a pattern in an area partitioned by the partition 104A.
  • FIG. 27 is a cross-sectional view of the display device 400A of the second embodiment.
  • symbol hA is the distance between the apex of the partition 104A on the side away from the substrate 101 and the surface on the liquid crystal substrate 490 side.
  • the symbol hA is the height of the partition wall 104A.
  • hA 50 ⁇ m.
  • Symbol sA is the thickness of the second adhesive layer 422 between the apex of the partition 104A on the side away from the substrate 101 and the surface of the bandpass filter 415 on the phosphor substrate 410 side.
  • sA 10 ⁇ m.
  • Reference sign d1 denotes the thickness of the bandpass filter 415.
  • d1 30 ⁇ m.
  • Reference sign d ⁇ b> 2 is the thickness of the first adhesive layer 421.
  • Reference sign d2 10 ⁇ m.
  • Reference sign d3 is the thickness of the first polarizing plate 491.
  • Reference sign d4 is the thickness of the first substrate 493.
  • d4 150 ⁇ m.
  • the symbol dA is a thickness obtained by adding the thicknesses sA, d1, d2, d3, and d4 of five layers excluding the height hA of the partition wall 104A among these six layers.
  • the symbol dA is the distance between the vertex of the partition 104A on the side away from the substrate 101 and the surface of the first substrate 493 on the liquid crystal layer 498 side.
  • dA 250 ⁇ m.
  • Symbol NL passes through one side edge (the right side edge in the drawing) of the surface of the black matrix 495 on the first substrate 493 side and is parallel to the normal line of the surface of the first substrate 493X on the liquid crystal layer 498 side. It is.
  • a symbol MLA is a line connecting one side edge of the surface of the black matrix 495 on the first substrate 493 side and a vertex of the partition 104A on the side away from the substrate 101.
  • the backlight 412 includes a light source 413 and a light guide plate 414.
  • a blue LED was used as the light source 413.
  • the phosphor substrate 410A prepared by the above method was bonded to the liquid crystal substrate 490 provided with the band pass filter 415 through the second adhesive layer 422.
  • Whether or not color blur occurs in the display device 400A when the backlight 412 is used is determined by irradiating blue light from the backlight 412 toward the liquid crystal substrate 490, and emitting light from the phosphor layer 121 using spectral luminance luminous intensity. Evaluation was made using a meter.
  • the present invention can be used in the fields of phosphor substrates, display devices, and electronic devices.
  • notebook computer electronic device
  • 1400 ceiling light
  • 1500 lighting stand
  • L1 excitation light
  • L2 fluorescence
  • PR red subpixel
  • PG green subpixel
  • PB blue subpixel

Abstract

A fluorescent material substrate (10) includes: a substrate (1); a fluorescent material layer (3), which is provided on the substrate, and which emits fluorescence due to excitation light inputted thereto; and barrier ribs (5), which surround side surfaces of the fluorescent material layer. A barrier rib shape on the side at a distance from at least the substrate has a cross-sectional area, which is small on the side at a distance from the substrate, and which gradually increases toward the substrate, said cross-sectional area being obtained by cutting the barrier ribs at a plane parallel to one surface of the substrate.

Description

蛍光体基板、表示装置および電子機器Phosphor substrate, display device and electronic apparatus
 本発明は、蛍光体基板、表示装置および電子機器に関するものである。
 本願は、2012年1月23日に、日本に出願された特願2012-011061号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a phosphor substrate, a display device, and an electronic device.
This application claims priority on January 23, 2012 based on Japanese Patent Application No. 2012-011061 filed in Japan, the contents of which are incorporated herein by reference.
 近年、テレビ、パーソナルコンピューター、情報端末機器などに搭載されるディスプレイの高性能化の要求が高まっている。ブラウン管ディスプレイ、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイなど様々なタイプの表示装置の研究開発が進められている。中でも液晶ディスプレイは薄型軽量であるため、現在ディスプレイ市場の主流を占めている。しかしながら、液晶ディスプレイは、従来のブラウン管ディスプレイに比べて、視野角が狭く、斜め方向からの画像認識性が悪いという問題がある。 In recent years, there has been an increasing demand for higher performance of displays mounted on televisions, personal computers, information terminal devices, and the like. Research and development of various types of display devices such as cathode ray tube displays, liquid crystal displays, plasma displays, and organic EL displays are underway. Among them, the liquid crystal display is thin and light, so it currently occupies the mainstream display market. However, the liquid crystal display has a problem that the viewing angle is narrow and the image recognizability from an oblique direction is poor as compared with the conventional cathode ray tube display.
 この問題に対して、例えば特許文献1、2では、液晶表示装置において視野角特性向上を実現する方法として、液晶表示装置の前面に蛍光体層を配置し、光源から射出された青色光の一部を青表示に用い、残りの一部を蛍光体で赤色光と緑色光とに色変換してフルカラー表示を行う方法が開示されている。 In order to solve this problem, for example, in Patent Documents 1 and 2, as a method for improving viewing angle characteristics in a liquid crystal display device, a phosphor layer is disposed on the front surface of the liquid crystal display device, and a blue light emitted from a light source is obtained. A method is disclosed in which a part is used for blue display and the remaining part is converted into red light and green light with a phosphor to perform full color display.
 一方、有機ELディスプレイは、コントラスト、視野角、応答速度に優れた表示特性を有する。しかしながら、有機ELディスプレイは、フルカラー表示を実現するためにマスク蒸着を用いたRGB各色の発光層のパターニングが必要であり、高精細化、大型化を図ることが難しいという問題がある。 On the other hand, the organic EL display has display characteristics excellent in contrast, viewing angle, and response speed. However, the organic EL display has a problem that it is difficult to achieve high definition and large size because it is necessary to pattern light emitting layers of RGB colors using mask vapor deposition in order to realize full color display.
 この問題に対して、例えば特許文献3、4では、単色の有機EL素子を励起光源としてRGB各色の蛍光体層を発光させる方法が開示されている。 In response to this problem, for example, Patent Documents 3 and 4 disclose a method of emitting phosphor layers of RGB colors using a monochromatic organic EL element as an excitation light source.
特開2000-131683号公報JP 2000-131683 A 特開昭62-194227号公報Japanese Patent Laid-Open No. 62-194227 特開平3-152897号公報Japanese Patent Laid-Open No. 3-152897 特開2010-282916号公報JP 2010-282916 A
 ところで、蛍光体層を備えた基板(蛍光体基板)の背面から照射された励起光を効率良く所望の画素のみに入射させるための技術の要求が高まっている。例えば、この要求に応えるための技術としては、励起光に指向性を持たせ、かつ、励起光源と蛍光体基板の距離が小さくなるよう表示装置を薄型化することが考えられる。しかしながら、これらを双方ともに実現することは設計上非常に難しい。また、励起光の指向性が不十分であると、励起光が本来入射すべき画素に隣接する画素にも入射してしまう。そのため、所望外の蛍光体層が発光することによって色滲みが起こるという問題がある。 Incidentally, there is an increasing demand for a technique for efficiently making excitation light irradiated from the back surface of a substrate (phosphor substrate) provided with a phosphor layer enter only a desired pixel. For example, as a technique for meeting this requirement, it is conceivable to make the display device thin so that the excitation light has directivity and the distance between the excitation light source and the phosphor substrate is reduced. However, it is very difficult to realize both of these in terms of design. In addition, if the directivity of the excitation light is insufficient, the excitation light is also incident on a pixel adjacent to the pixel that should be incident. Therefore, there is a problem that color blur occurs when an undesired phosphor layer emits light.
 本発明は、上記の課題を解決するためになされたものであって、励起光が本来入射すべき画素の隣接画素に入射することを抑制することが可能な蛍光体基板、表示装置および電子機器を提供することを目的とする。また、この他にも、所望外の蛍光体層が発光して色滲みが生じることを抑制することが可能な蛍光体基板、表示装置および電子機器を提供することを目的とする。 The present invention has been made to solve the above-described problem, and is a phosphor substrate, a display device, and an electronic device that can suppress excitation light from being incident on an adjacent pixel of a pixel that should be incident. The purpose is to provide. Another object of the present invention is to provide a phosphor substrate, a display device, and an electronic apparatus that can suppress undesired phosphor layers from emitting light and causing color bleeding.
 上記の目的を達成するために、本発明の蛍光体基板は、基板と、前記基板上に設けられ、入射された励起光により蛍光を発する蛍光体層と、前記蛍光体層の側面を囲む隔壁と、を含み、前記隔壁の少なくとも前記基板と離れた側の形状は、前記基板の一面に平行な平面で切断したときの断面積が前記基板と離れた側で小さく、前記基板に向かうにつれて漸次大きくなる形状であることを特徴とする。 In order to achieve the above object, a phosphor substrate of the present invention includes a substrate, a phosphor layer that is provided on the substrate and emits fluorescence by incident excitation light, and a partition wall that surrounds the side surface of the phosphor layer. The shape of at least the side away from the substrate of the partition wall is such that the cross-sectional area when cut along a plane parallel to one surface of the substrate is small on the side away from the substrate and gradually toward the substrate. It is characterized by a large shape.
 本発明の蛍光体基板は、前記隔壁が、光散乱性または光反射性を有していることを特徴とする。 The phosphor substrate of the present invention is characterized in that the partition wall has light scattering property or light reflecting property.
 本発明の蛍光体基板において、前記隔壁は、光散乱性を有する光散乱層と、前記基板と前記光散乱層との間に配置され、光吸収性を有する光吸収層と、を含み、前記光吸収層の前記基板側の部分は、前記基板の一面に平行な平面で切断したときの断面積が前記光散乱層を前記基板の一面に平行な平面で切断したときの断面積よりも大きいことを特徴とする。 In the phosphor substrate of the present invention, the partition includes a light scattering layer having a light scattering property, and a light absorbing layer having a light absorption property disposed between the substrate and the light scattering layer, The portion of the light absorbing layer on the substrate side has a larger cross-sectional area when cut along a plane parallel to one surface of the substrate than a cross-sectional area when the light scattering layer is cut along a plane parallel to one surface of the substrate. It is characterized by that.
 本発明の蛍光体基板は、前記光散乱層の少なくとも前記蛍光体層と接する部分が樹脂と光散乱性粒子とを含む材料で形成されていることを特徴とする。 The phosphor substrate according to the present invention is characterized in that at least a portion of the light scattering layer in contact with the phosphor layer is formed of a material containing a resin and light scattering particles.
 本発明の蛍光体基板は、前記光散乱層の少なくとも前記蛍光体層と接する部分が白色であることを特徴とする。 The phosphor substrate of the present invention is characterized in that at least a portion of the light scattering layer in contact with the phosphor layer is white.
 本発明の蛍光体基板は、前記光散乱層の少なくとも前記蛍光体層と接する部分が凹凸形状であることを特徴とする。 The phosphor substrate of the present invention is characterized in that at least a portion of the light scattering layer in contact with the phosphor layer has an uneven shape.
 本発明の蛍光体基板は、前記隔壁の少なくとも前記基板と離れた側の側面の形状は、前記基板の一面に直交する平面で切断したときの断面形状が凹をなす曲線形状であることを特徴とする。 In the phosphor substrate according to the present invention, the shape of at least the side surface of the partition wall on the side away from the substrate is a curved shape having a concave cross-sectional shape when cut along a plane orthogonal to one surface of the substrate. And
 本発明の蛍光体基板は、前記隔壁の少なくとも前記基板と離れた側の側面の形状は、前記基板の一面に直交する平面で切断したときの断面形状が凸をなす曲線形状であることを特徴とする。 In the phosphor substrate according to the present invention, the shape of at least a side surface of the partition wall on the side away from the substrate is a curved shape in which a cross-sectional shape is convex when cut along a plane orthogonal to one surface of the substrate. And
 本発明の蛍光体基板は、前記基板と前記蛍光体層との間に、前記基板の屈折率よりも低い屈折率を有する低屈折率層が設けられたことを特徴とする。 The phosphor substrate of the present invention is characterized in that a low refractive index layer having a refractive index lower than that of the substrate is provided between the substrate and the phosphor layer.
 本発明の蛍光体基板は、前記励起光が青色光であるときに、前記蛍光体層の前記励起光の入射側に、青色領域の光を透過し、緑色から近赤外領域までの光を反射するバンドパスフィルターが設けられたことを特徴とする。 When the excitation light is blue light, the phosphor substrate of the present invention transmits light from the blue region to the incident side of the excitation light of the phosphor layer and transmits light from green to the near infrared region. A reflective band-pass filter is provided.
 本発明の蛍光体基板は、前記励起光が紫外光であるときに、前記蛍光体層の前記励起光の入射側に、紫外領域の光を透過し、緑色から近赤外領域までの光を反射するバンドパスフィルターが設けられたことを特徴とする。 When the excitation light is ultraviolet light, the phosphor substrate of the present invention transmits light in the ultraviolet region to the incident side of the excitation light of the phosphor layer, and transmits light from green to the near infrared region. A reflective band-pass filter is provided.
 本発明の表示装置は、前記本発明の蛍光体基板と、前記蛍光体層に照射する励起光を射出する光源と、を備えたことを特徴とする。 The display device of the present invention includes the phosphor substrate of the present invention, and a light source that emits excitation light that irradiates the phosphor layer.
 本発明の表示装置は、赤色光による表示を行う赤色サブ画素と、緑色光による表示を行う緑色サブ画素と、青色光による表示を行う青色サブ画素と、を少なくとも含む複数の画素が備えられ、前記光源から前記励起光としての青色光が射出され、前記蛍光体層として、前記赤色サブ画素に前記青色光を前記励起光として赤色光を発する赤色蛍光体層が設けられ、前記緑色サブ画素に前記青色光を前記励起光として緑色光を発する緑色蛍光体層が設けられ、前記青色サブ画素には前記青色光を散乱させる散乱層が設けられたことを特徴とする。 The display device of the present invention includes a plurality of pixels including at least a red sub-pixel that performs display with red light, a green sub-pixel that performs display with green light, and a blue sub-pixel that performs display with blue light. Blue light as the excitation light is emitted from the light source, and as the phosphor layer, a red phosphor layer that emits red light using the blue light as the excitation light is provided in the red sub-pixel, and the green sub-pixel is provided in the green sub-pixel. A green phosphor layer that emits green light using the blue light as the excitation light is provided, and a scattering layer that scatters the blue light is provided in the blue sub-pixel.
 本発明の表示装置は、前記光源から前記励起光として青色光が射出され、前記光源と前記蛍光体基板との間に、青色領域の光を透過し、緑色から近赤外領域までの光を反射するバンドパスフィルターが設けられたことを特徴とする。 The display device of the present invention emits blue light as the excitation light from the light source, transmits light in a blue region between the light source and the phosphor substrate, and transmits light from green to the near infrared region. A reflective band-pass filter is provided.
 本発明の表示装置は、赤色光による表示を行う赤色サブ画素と、緑色光による表示を行う緑色サブ画素と、青色光による表示を行う青色サブ画素と、を少なくとも含む複数の画素が備えられ、前記光源から前記励起光としての紫外光が射出され、前記蛍光体層として、前記赤色サブ画素に前記紫外光を前記励起光として赤色光を発する赤色蛍光体層が設けられ、前記緑色サブ画素に前記紫外光を前記励起光として緑色光を発する緑色蛍光体層が設けられ、前記青色サブ画素に前記紫外光を前記励起光として青色光を発する青色蛍光体層が設けられたことを特徴とする。 The display device of the present invention includes a plurality of pixels including at least a red sub-pixel that performs display with red light, a green sub-pixel that performs display with green light, and a blue sub-pixel that performs display with blue light. Ultraviolet light as the excitation light is emitted from the light source, and as the phosphor layer, a red phosphor layer that emits red light using the ultraviolet light as the excitation light is provided in the red subpixel, and the green subpixel is provided with A green phosphor layer that emits green light using the ultraviolet light as the excitation light is provided, and a blue phosphor layer that emits blue light using the ultraviolet light as the excitation light is provided in the blue sub-pixel. .
 本発明の表示装置は、前記光源から前記励起光として紫外光が射出され、前記光源と前記蛍光体基板との間に、紫外領域の光を透過し、緑色から近赤外領域までの光を反射するバンドパスフィルターが設けられたことを特徴とする。 The display device of the present invention emits ultraviolet light as the excitation light from the light source, transmits light in the ultraviolet region between the light source and the phosphor substrate, and transmits light from green to the near infrared region. A reflective band-pass filter is provided.
 本発明の表示装置は、前記光源は、前記複数の画素に対応して設けられた複数の発光素子と、前記複数の発光素子をそれぞれ駆動する複数の駆動素子と、を備えたアクティブマトリクス駆動方式の光源であることを特徴とする。 In the display device of the present invention, the light source includes an active matrix driving system including a plurality of light emitting elements provided corresponding to the plurality of pixels, and a plurality of driving elements that respectively drive the plurality of light emitting elements. It is characterized by being a light source.
 本発明の表示装置は、前記光源が、発光ダイオード、有機エレクトロルミネセンス素子、無機エレクトロルミネセンス素子のいずれかであることを特徴とする。 The display device of the present invention is characterized in that the light source is any one of a light emitting diode, an organic electroluminescent element, and an inorganic electroluminescent element.
 本発明の表示装置は、前記光源が、光射出面から光を射出する面状光源であり、前記面状光源と前記蛍光体基板との間に、前記画素毎に前記面状光源から射出された光の透過率を制御可能な液晶素子が設けられたことを特徴とする。 In the display device of the present invention, the light source is a planar light source that emits light from a light emitting surface, and is emitted from the planar light source for each pixel between the planar light source and the phosphor substrate. A liquid crystal element capable of controlling the light transmittance is provided.
 本発明の表示装置は、前記光源が、指向性を有していることを特徴とする。 The display device of the present invention is characterized in that the light source has directivity.
 本発明の表示装置は、前記光源と前記蛍光体基板との間に、波長435nm以上480nm以下における消光比が10000以上である偏光板が設けられていることを特徴とする。 The display device of the present invention is characterized in that a polarizing plate having an extinction ratio of 10,000 or more at a wavelength of 435 nm or more and 480 nm or less is provided between the light source and the phosphor substrate.
 本発明の表示装置は、前記蛍光体層の上面または下面のいずれか一方にカラーフィルターが設けられたことを特徴とする。 The display device of the present invention is characterized in that a color filter is provided on either the upper surface or the lower surface of the phosphor layer.
 本発明の表示装置は、前記隔壁に囲まれた領域の前記蛍光体層は、前記基板の一面と直交する平面で切断したときの断面形状が凹型形状であり、少なくとも周辺部が前記隔壁の側面に沿って配置されていることを特徴とする。 In the display device of the present invention, the phosphor layer in the region surrounded by the partition wall has a concave shape when cut along a plane orthogonal to one surface of the substrate, and at least a peripheral portion is a side surface of the partition wall. It is arrange | positioned along.
 本発明の電子機器は、前記本発明の表示装置を備えたことを特徴とする。 An electronic apparatus according to the present invention includes the display device according to the present invention.
 本発明によれば、励起光が本来入射すべき画素の隣接画素に入射することを抑制することが可能な蛍光体基板、表示装置および電子機器を提供することができる。また、この他にも、所望外の蛍光体層が発光して色滲みが生じることを抑制することが可能な蛍光体基板、表示装置および電子機器を提供することができる。 According to the present invention, it is possible to provide a phosphor substrate, a display device, and an electronic device that can suppress excitation light from being incident on a pixel adjacent to a pixel that should originally be incident. In addition to this, it is possible to provide a phosphor substrate, a display device, and an electronic device that can suppress undesired phosphor layers from emitting light and causing color bleeding.
本発明の第1実施形態の表示装置の断面模式図である。It is a cross-sectional schematic diagram of the display apparatus of 1st Embodiment of this invention. 本発明の第1実施形態の蛍光体基板の断面図である。It is sectional drawing of the fluorescent substance substrate of 1st Embodiment of this invention. 本発明の第1実施形態の蛍光体基板の平面図である。It is a top view of the fluorescent substance substrate of a 1st embodiment of the present invention. 従来の隔壁の作用を説明するための模式図である。It is a schematic diagram for demonstrating the effect | action of the conventional partition. 本発明の第1実施形態の隔壁の作用を説明するための模式図である。It is a schematic diagram for demonstrating the effect | action of the partition of 1st Embodiment of this invention. 本発明の第2実施形態の蛍光体基板の断面模式図である。It is a cross-sectional schematic diagram of the phosphor substrate of the second embodiment of the present invention. 本発明の第3実施形態の蛍光体基板の断面模式図である。It is a cross-sectional schematic diagram of the phosphor substrate of the third embodiment of the present invention. 本発明の第4実施形態の表示装置の断面模式図である。It is a cross-sectional schematic diagram of the display apparatus of 4th Embodiment of this invention. 同、隔壁の作用を説明するための模式図である。It is a schematic diagram for demonstrating the effect | action of a partition. 本発明の第5実施形態の表示装置の断面模式図である。It is a cross-sectional schematic diagram of the display apparatus of 5th Embodiment of this invention. 本発明の第6実施形態の表示装置の断面模式図である。It is a cross-sectional schematic diagram of the display apparatus of 6th Embodiment of this invention. 本発明の蛍光体基板における隔壁の変形例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the modification of the partition in the fluorescent substance substrate of this invention. 本発明の蛍光体基板における隔壁の変形例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the modification of the partition in the fluorescent substance substrate of this invention. 本発明の蛍光体基板における隔壁の変形例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the modification of the partition in the fluorescent substance substrate of this invention. 本発明の蛍光体基板における隔壁の変形例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the modification of the partition in the fluorescent substance substrate of this invention. 本発明の蛍光体基板における隔壁の変形例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the modification of the partition in the fluorescent substance substrate of this invention. 本発明の蛍光体基板における隔壁の変形例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the modification of the partition in the fluorescent substance substrate of this invention. 本発明の蛍光体基板における隔壁の変形例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the modification of the partition in the fluorescent substance substrate of this invention. 本発明の蛍光体基板における隔壁の変形例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the modification of the partition in the fluorescent substance substrate of this invention. 本発明の蛍光体基板における隔壁の変形例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the modification of the partition in the fluorescent substance substrate of this invention. 本発明の蛍光体基板における隔壁の変形例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the modification of the partition in the fluorescent substance substrate of this invention. 本発明の蛍光体基板における隔壁の変形例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the modification of the partition in the fluorescent substance substrate of this invention. 本発明の蛍光体基板における隔壁の変形例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the modification of the partition in the fluorescent substance substrate of this invention. 本発明の蛍光体基板における隔壁の変形例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the modification of the partition in the fluorescent substance substrate of this invention. 本発明の蛍光体基板における隔壁の変形例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the modification of the partition in the fluorescent substance substrate of this invention. 本発明の蛍光体基板における隔壁の変形例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the modification of the partition in the fluorescent substance substrate of this invention. 本発明の蛍光体基板における隔壁の変形例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the modification of the partition in the fluorescent substance substrate of this invention. 本発明の蛍光体基板における隔壁の変形例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the modification of the partition in the fluorescent substance substrate of this invention. 本発明の蛍光体基板における隔壁の変形例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the modification of the partition in the fluorescent substance substrate of this invention. 本発明の蛍光体基板における隔壁の変形例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the modification of the partition in the fluorescent substance substrate of this invention. 発光素子の一例であるLEDの断面模式図である。It is a cross-sectional schematic diagram of LED which is an example of a light emitting element. 発光素子の一例である有機EL素子の断面模式図である。It is a cross-sectional schematic diagram of the organic EL element which is an example of a light emitting element. 発光素子の一例であるアクティブマトリクス駆動方式の有機EL素子の断面模式図である。It is a cross-sectional schematic diagram of the organic EL element of the active matrix drive system which is an example of a light emitting element. 表示装置の平面模式図である。It is a plane schematic diagram of a display device. 表示装置の1画素(サブ画素)の等価回路である。It is an equivalent circuit of one pixel (sub pixel) of the display device. 発光素子の一例である無機EL素子の断面模式図である。It is a cross-sectional schematic diagram of the inorganic EL element which is an example of a light emitting element. 本発明の第7実施形態の表示装置の断面模式図である。It is a cross-sectional schematic diagram of the display apparatus of 7th Embodiment of this invention. 電子機器の一例を示す模式図である。It is a schematic diagram which shows an example of an electronic device. 電子機器の一例を示す模式図である。It is a schematic diagram which shows an example of an electronic device. 電子機器の一例を示す模式図である。It is a schematic diagram which shows an example of an electronic device. 電子機器の一例を示す模式図である。It is a schematic diagram which shows an example of an electronic device. 電子機器の一例を示す模式図である。It is a schematic diagram which shows an example of an electronic device. 電子機器の一例を示す模式図である。It is a schematic diagram which shows an example of an electronic device. 比較例の蛍光体基板の製造方法を示す断面模式図である。It is a cross-sectional schematic diagram which shows the manufacturing method of the fluorescent substance substrate of a comparative example. 比較例の蛍光体基板の製造方法を示す断面模式図である。It is a cross-sectional schematic diagram which shows the manufacturing method of the fluorescent substance substrate of a comparative example. 比較例の蛍光体基板の製造方法を示す断面模式図である。It is a cross-sectional schematic diagram which shows the manufacturing method of the fluorescent substance substrate of a comparative example. 比較例の蛍光体基板の製造方法を示す断面模式図である。It is a cross-sectional schematic diagram which shows the manufacturing method of the fluorescent substance substrate of a comparative example. 比較例の蛍光体基板の製造方法を示す断面模式図である。It is a cross-sectional schematic diagram which shows the manufacturing method of the fluorescent substance substrate of a comparative example. 比較例の表示装置の断面模式図である。It is a cross-sectional schematic diagram of the display apparatus of a comparative example. 実施例1の蛍光体基板の製造方法を示す断面模式図である。3 is a schematic cross-sectional view showing a method for manufacturing the phosphor substrate of Example 1. FIG. 実施例1の蛍光体基板の製造方法を示す断面模式図である。3 is a schematic cross-sectional view showing a method for manufacturing the phosphor substrate of Example 1. FIG. 実施例1の蛍光体基板の製造方法を示す断面模式図である。3 is a schematic cross-sectional view showing a method for manufacturing the phosphor substrate of Example 1. FIG. 実施例1の蛍光体基板の製造方法を示す断面模式図である。3 is a schematic cross-sectional view showing a method for manufacturing the phosphor substrate of Example 1. FIG. 実施例1の蛍光体基板の製造方法を示す断面模式図である。3 is a schematic cross-sectional view showing a method for manufacturing the phosphor substrate of Example 1. FIG. 実施例1の表示装置の断面模式図である。3 is a schematic cross-sectional view of a display device of Example 1. FIG. 実施例2の蛍光体基板の製造方法を示す断面模式図である。6 is a schematic cross-sectional view showing a method for manufacturing the phosphor substrate of Example 2. FIG. 実施例2の蛍光体基板の製造方法を示す断面模式図である。6 is a schematic cross-sectional view showing a method for manufacturing the phosphor substrate of Example 2. FIG. 実施例2の蛍光体基板の製造方法を示す断面模式図である。6 is a schematic cross-sectional view showing a method for manufacturing the phosphor substrate of Example 2. FIG. 実施例2の蛍光体基板の製造方法を示す断面模式図である。6 is a schematic cross-sectional view showing a method for manufacturing the phosphor substrate of Example 2. FIG. 実施例2の蛍光体基板の製造方法を示す断面模式図である。6 is a schematic cross-sectional view showing a method for manufacturing the phosphor substrate of Example 2. FIG. 実施例2の表示装置の断面模式図である。6 is a schematic cross-sectional view of a display device of Example 2. FIG.
 以下に実施形態及び実施例を挙げ、本発明を更に詳細に説明するが、本発明はこれらの実施形態及び実施例に限定されるものではない。
 なお、以下の全ての図面においては、各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがある。
Hereinafter, the present invention will be described in more detail with reference to embodiments and examples, but the present invention is not limited to these embodiments and examples.
In all of the following drawings, in order to make each component easy to see, the scale of the size may be changed depending on the component.
[第1実施形態]
 図1は、本発明の第1実施形態の表示装置100の断面模式図である。ここで、図1の断面は表示装置100を基板1の上面に直交する平面で切断したときの断面である。以下、表示装置を基板1の上面に直交する平面で切断したときの断面の模式図を、表示装置の断面図ということがある。
[First embodiment]
FIG. 1 is a schematic cross-sectional view of a display device 100 according to a first embodiment of the present invention. Here, the cross section of FIG. 1 is a cross section when the display device 100 is cut along a plane orthogonal to the upper surface of the substrate 1. Hereinafter, a schematic diagram of a cross section when the display device is cut along a plane orthogonal to the upper surface of the substrate 1 may be referred to as a cross sectional view of the display device.
 本実施形態に係る表示装置100は、蛍光体基板10と、蛍光体基板10上に接着剤層14を介して貼り合わされた光源基板11と、を備えている。蛍光体基板10は、赤色、緑色および青色の表示をそれぞれ行う3つのサブ画素により画像を構成する最小単位である1つの画素が構成されている。以下の説明では、赤色の表示を行うサブ画素を赤色サブ画素PR、緑色の表示を行うサブ画素を緑色サブ画素PG、青色の表示を行うサブ画素を青色サブ画素PBと称する。 The display device 100 according to the present embodiment includes a phosphor substrate 10 and a light source substrate 11 bonded to the phosphor substrate 10 via an adhesive layer 14. In the phosphor substrate 10, one pixel, which is the minimum unit constituting an image, is configured by three sub-pixels that respectively display red, green, and blue. In the following description, a sub pixel that performs red display is referred to as a red sub pixel PR, a sub pixel that performs green display is referred to as a green sub pixel PG, and a sub pixel that performs blue display is referred to as a blue sub pixel PB.
 光源基板11は、基板9と、基板9の蛍光体基板10の側に配置された光源2と、を備えている。光源2からは励起光L1として例えば紫外光が射出される。蛍光体基板10では、光源2から射出された励起光L1を受けて、赤色サブ画素PRにおいて赤色の蛍光L2が生じ、緑色サブ画素PGにおいて緑色の蛍光L2が生じ、青色サブ画素PBにおいて青色の蛍光L2が生じる。そして、これら赤色、緑色および青色の3つの色光によってフルカラー表示が行われる。 The light source substrate 11 includes a substrate 9 and a light source 2 disposed on the phosphor substrate 10 side of the substrate 9. For example, ultraviolet light is emitted from the light source 2 as the excitation light L1. In the phosphor substrate 10, upon receiving the excitation light L1 emitted from the light source 2, red fluorescence L2 is produced in the red subpixel PR, green fluorescence L2 is produced in the green subpixel PG, and blue fluorescence is produced in the blue subpixel PB. Fluorescence L2 is generated. Then, full color display is performed by these three color lights of red, green and blue.
(蛍光体基板)
 図2A及び図2Bは、第1実施形態に係る蛍光体基板10の模式図である。図2Aは、本実施形態に係る蛍光体基板10の断面模式図である。図2Bは、本実施形態に係る蛍光体基板10の平面模式図である。ここで、図2Aの断面は蛍光体基板10を基板1の上面に直交する平面で切断したときの断面である。以下、蛍光体基板を基板1の上面に直交する平面で切断したときの断面の模式図を、蛍光体基板の断面図ということがある。
(Phosphor substrate)
2A and 2B are schematic views of the phosphor substrate 10 according to the first embodiment. FIG. 2A is a schematic cross-sectional view of the phosphor substrate 10 according to the present embodiment. FIG. 2B is a schematic plan view of the phosphor substrate 10 according to the present embodiment. Here, the cross section of FIG. 2A is a cross section when the phosphor substrate 10 is cut along a plane orthogonal to the upper surface of the substrate 1. Hereinafter, a schematic diagram of a cross section when the phosphor substrate is cut along a plane orthogonal to the upper surface of the substrate 1 may be referred to as a sectional view of the phosphor substrate.
 図2A、図2Bに示すように、本実施形態に係る蛍光体基板10は、基板1と、蛍光体層3R,3G,3Bと、隔壁5と、カラーフィルター4R,4G,4Bと、を備えている。蛍光体層3R,3G,3Bは、基板1上に設けられ、基板1の上方から入射した励起光L1により蛍光L2を生じる。隔壁5は、蛍光体層3R,3G,3Bの側面を囲む。 As shown in FIGS. 2A and 2B, the phosphor substrate 10 according to this embodiment includes a substrate 1, phosphor layers 3R, 3G, and 3B, barrier ribs 5, and color filters 4R, 4G, and 4B. ing. The phosphor layers 3R, 3G, and 3B are provided on the substrate 1 and generate fluorescence L2 by the excitation light L1 incident from above the substrate 1. The barrier ribs 5 surround the side surfaces of the phosphor layers 3R, 3G, 3B.
 蛍光体層3R,3G,3Bの励起光L1が入射する励起光入射面3aは、隔壁5の開口部から露出している。すなわち、励起光入射面3aは、光源2の光源2から射出された励起光L1が入射可能な面である。励起光L1は蛍光体層3R,3G,3Bにおいて蛍光L2に変換され、蛍光L2は蛍光体層3R,3G,3Bの射出面3bから射出される。 The excitation light incident surface 3a on which the excitation light L1 of the phosphor layers 3R, 3G, 3B is incident is exposed from the opening of the partition wall 5. That is, the excitation light incident surface 3a is a surface on which the excitation light L1 emitted from the light source 2 of the light source 2 can enter. The excitation light L1 is converted into fluorescence L2 in the phosphor layers 3R, 3G, 3B, and the fluorescence L2 is emitted from the emission surface 3b of the phosphor layers 3R, 3G, 3B.
 蛍光体層3R,3G,3Bは、サブ画素毎に分割された複数の蛍光体層からなり、複数の蛍光体層3R,3G,3Bはサブ画素によって異なる色の色光を発光するために異なる蛍光体材料で構成されている。なお、これら複数の蛍光体層3R,3G,3Bを構成する蛍光体材料は、互いにその屈折率が異なっていてもよい。 The phosphor layers 3R, 3G, and 3B are composed of a plurality of phosphor layers that are divided for each sub-pixel, and the plurality of phosphor layers 3R, 3G, and 3B emit different color lights depending on the sub-pixels. Consists of body materials. The phosphor materials constituting the plurality of phosphor layers 3R, 3G, 3B may have different refractive indexes.
 蛍光体層3R,3G,3Bの励起光入射面3aの外面側に、励起光L1を透過し、蛍光体層3R,3G,3Bから放射された蛍光L2を反射する波長選択透過反射部材(バンドパスフィルター)が形成されていてもよい。なお、「励起光を透過する」とは、励起光のピーク波長にあたる光を少なくとも透過することを意味する。また、「蛍光体層3R,3G,3Bで生じた蛍光を反射する」とは、蛍光体層3R,3G,3Bからのそれぞれの発光ピーク波長にあたる光を少なくとも反射することを意味する。 A wavelength selective transmission / reflection member (band) that transmits the excitation light L1 and reflects the fluorescence L2 emitted from the phosphor layers 3R, 3G, and 3B to the outer surface side of the excitation light incident surface 3a of the phosphor layers 3R, 3G, and 3B. A pass filter) may be formed. Note that “transmitting excitation light” means transmitting at least light corresponding to the peak wavelength of excitation light. Further, “reflect the fluorescence generated in the phosphor layers 3R, 3G, 3B” means that at least the light corresponding to the respective emission peak wavelengths from the phosphor layers 3R, 3G, 3B is reflected.
 隔壁5は、図2Aに示すように、基板1の側から、光吸収性を有する光吸収層6と光散乱性を有する光散乱層7との積層構造を有している。 As shown in FIG. 2A, the partition wall 5 has a laminated structure of a light absorbing layer 6 having a light absorbing property and a light scattering layer 7 having a light scattering property from the substrate 1 side.
 光吸収層6の断面形状は、基板1と接する側の辺(下底)が基板1と離れた側の辺(上底)よりも長い台形形状となっている。光散乱層7の断面形状は、光吸収層6と接する側の辺(下底)が光吸収層6と離れた側の辺(上底)よりも長い台形形状となっている。 The cross-sectional shape of the light absorption layer 6 has a trapezoidal shape in which the side (bottom base) on the side in contact with the substrate 1 is longer than the side (upper base) on the side away from the substrate 1. The cross-sectional shape of the light scattering layer 7 is a trapezoidal shape in which the side (lower base) on the side in contact with the light absorption layer 6 is longer than the side (upper base) on the side away from the light absorption layer 6.
 ここで、隔壁5(光吸収層6、光散乱層7)の断面形状は、隔壁5(光吸収層6、光散乱層7)を基板1の上面に直交する平面で切断したときの断面形状である。以下、隔壁(光吸収層、光散乱層)を基板1の上面に直交する平面で切断したときの断面形状を、隔壁(光吸収層、光散乱層)の側断面形状ということがある。 Here, the cross-sectional shape of the partition wall 5 (light absorption layer 6 and light scattering layer 7) is a cross-sectional shape when the partition wall 5 (light absorption layer 6 and light scattering layer 7) is cut along a plane orthogonal to the upper surface of the substrate 1. It is. Hereinafter, the cross-sectional shape when the partition wall (light absorption layer, light scattering layer) is cut along a plane orthogonal to the upper surface of the substrate 1 may be referred to as a side cross-sectional shape of the partition wall (light absorption layer, light scattering layer).
 光散乱層7の下面(基板1と光散乱層7との間)には光吸収層6が設けられている。隔壁5の側断面形状において、光散乱層7の光吸収層6と接する側の辺(下底)は、光吸収層6の基板1と離れた側の辺(上底)よりも短くなっている。つまり、光吸収層6の幅が光散乱層7の幅よりも大きくなっている。これにより、画面を見た時に光散乱層7が光吸収層6によって隠れ、外光の一部が光吸収層6で吸収されるため、コントラストを高くすることができる。 A light absorption layer 6 is provided on the lower surface of the light scattering layer 7 (between the substrate 1 and the light scattering layer 7). In the side cross-sectional shape of the partition wall 5, the side of the light scattering layer 7 that is in contact with the light absorption layer 6 (lower base) is shorter than the side of the light absorption layer 6 that is away from the substrate 1 (upper bottom). Yes. That is, the width of the light absorption layer 6 is larger than the width of the light scattering layer 7. Thereby, when the screen is viewed, the light scattering layer 7 is hidden by the light absorption layer 6, and a part of the external light is absorbed by the light absorption layer 6, so that the contrast can be increased.
 なお、光吸収層6の厚みは光散乱層7の厚みよりも薄くなっている。例えば、光吸収層6の厚みは、0.01μm~3μm程度となっている。 In addition, the thickness of the light absorption layer 6 is thinner than the thickness of the light scattering layer 7. For example, the thickness of the light absorption layer 6 is about 0.01 μm to 3 μm.
 図2Bに示すように、光吸収層6の基板1と接する側の部分の面積は、光散乱層7の面積よりも大きい。ここで、光吸収層6、光散乱層7の面積は、光吸収層6、光散乱層7を基板1の上面に平行な平面で切断したときの断面積である。以下、光吸収層6、光散乱層7を基板1の上面に平行な平面で切断したときの断面積を、光吸収層、光散乱層の平断面積ということがある。 As shown in FIG. 2B, the area of the portion of the light absorption layer 6 on the side in contact with the substrate 1 is larger than the area of the light scattering layer 7. Here, the areas of the light absorption layer 6 and the light scattering layer 7 are cross-sectional areas when the light absorption layer 6 and the light scattering layer 7 are cut along a plane parallel to the upper surface of the substrate 1. Hereinafter, a cross-sectional area when the light absorption layer 6 and the light scattering layer 7 are cut along a plane parallel to the upper surface of the substrate 1 may be referred to as a plane cross-sectional area of the light absorption layer and the light scattering layer.
 図2Aに戻り、隔壁5は、基板1と離れた側の開口部が基板1と接する側の開口部よりも広くなるようなテーパー形状となっている。 Returning to FIG. 2A, the partition wall 5 has a tapered shape such that the opening on the side away from the substrate 1 is wider than the opening on the side in contact with the substrate 1.
 なお、基板1と隔壁5との密着性を十分に高めるためには、隔壁5の基板1側の端部の横幅に対する隔壁5の高さの比率(アスペクト比)が10以下であることが望ましい。 In order to sufficiently improve the adhesion between the substrate 1 and the partition wall 5, the ratio of the height of the partition wall 5 (aspect ratio) to the width of the end of the partition wall 5 on the substrate 1 side is desirably 10 or less. .
 また、隔壁5は、蛍光体層3で生じた蛍光を反射する材料によって形成されていてもよい。これにより、蛍光体層3から側方に逃げる蛍光成分を反射させることができる。また、隔壁5の表面が反射材料で覆われた構成であってもよい。このような反射材料としては、例えば、アルミニウム、銀、金、アルミニウム-リチウム合金、アルミニウム-ネオジウム合金、アルミニウム-シリコン合金等の反射性金属等が挙げられる。 Further, the barrier ribs 5 may be formed of a material that reflects the fluorescence generated in the phosphor layer 3. Thereby, the fluorescence component which escapes from the phosphor layer 3 to the side can be reflected. Moreover, the structure by which the surface of the partition 5 was covered with the reflective material may be sufficient. Examples of such a reflective material include reflective metals such as aluminum, silver, gold, aluminum-lithium alloys, aluminum-neodymium alloys, and aluminum-silicon alloys.
 また、このような隔壁5の形状としては、格子状、ストライプ状など、蛍光体層3R,3G,3Bの周囲を囲む各種の形状を採用することができる。 As the shape of the partition wall 5, various shapes surrounding the phosphor layers 3R, 3G, 3B, such as a lattice shape and a stripe shape, can be adopted.
 本実施形態の表示装置100において、基板1と赤色蛍光体層3Rとの間には赤色カラーフィルター4Rが設けられている。基板1と緑色蛍光体層3Gとの間には緑色カラーフィルター4Gが設けられている。基板1と青色蛍光体層3Bとの間には青色カラーフィルター4Bが設けられている。これにより、色度を向上させることができる。 In the display device 100 of the present embodiment, a red color filter 4R is provided between the substrate 1 and the red phosphor layer 3R. A green color filter 4G is provided between the substrate 1 and the green phosphor layer 3G. A blue color filter 4B is provided between the substrate 1 and the blue phosphor layer 3B. Thereby, chromaticity can be improved.
 光吸収層6とカラーフィルター4の膜厚に関しては、カラーフィルター4の膜厚が光吸収層6の膜厚よりも厚いことが望ましい。カラーフィルター4の膜厚の方が光吸収層6の膜厚に比べて薄い場合には、蛍光体層3の側面と光吸収層6とが接することになる。これにより、蛍光体層3からの発光が光吸収層6に吸収されてしまい、光取出し効率が低下してしまうという問題が生じるからである。 Regarding the film thickness of the light absorption layer 6 and the color filter 4, it is desirable that the film thickness of the color filter 4 is thicker than the film thickness of the light absorption layer 6. When the color filter 4 is thinner than the light absorption layer 6, the side surface of the phosphor layer 3 and the light absorption layer 6 are in contact with each other. This is because light emitted from the phosphor layer 3 is absorbed by the light absorption layer 6 and the light extraction efficiency is reduced.
 図3A及び図3Bは、第1実施形態に係る表示装置100の隔壁5の作用を説明するための模式図である。図3Aは、従来の蛍光体基板10Xを示す断面図であり、図3Bは、本実施形態に係る蛍光体基板10を示す断面図である。なお、図3A、図3Bにおいては、便宜上、光吸収層及びカラーフィルターの図示を省略している。 3A and 3B are schematic views for explaining the operation of the partition wall 5 of the display device 100 according to the first embodiment. FIG. 3A is a cross-sectional view showing a conventional phosphor substrate 10X, and FIG. 3B is a cross-sectional view showing the phosphor substrate 10 according to the present embodiment. 3A and 3B, the light absorption layer and the color filter are not shown for convenience.
 図3A、図3Bに示すように、励起光L1の指向性が不十分であり、かつ、光源(図示略)と蛍光体基板との距離が離れていると、光源から射出された励起光Lがある程度の広がりをもって蛍光体基板に入射することとなる。 As shown in FIGS. 3A and 3B, if the directivity of the excitation light L1 is insufficient and the distance between the light source (not shown) and the phosphor substrate is large, the excitation light L emitted from the light source. Is incident on the phosphor substrate with a certain extent.
 従来の蛍光体基板10Xは、図3Aに示すように、蛍光体層3Xの周囲に、側断面形状が矩形形状の隔壁5Xが形成されている。このため、光源から射出されてバンドパスフィルター12Xを透過した励起光L1の一部は所望の画素に入射するものの、残りの一部は隔壁5Xの上面で反射する。隔壁5Xの上面で反射した励起光L1の一部は、バンドパスフィルター12Xで反射し、所望の画素に隣接する画素に入射する。そのため、所望の色光を取り出すことができない。 In the conventional phosphor substrate 10X, as shown in FIG. 3A, a partition wall 5X having a rectangular side cross-sectional shape is formed around the phosphor layer 3X. Therefore, a part of the excitation light L1 emitted from the light source and transmitted through the bandpass filter 12X is incident on a desired pixel, but the remaining part is reflected on the upper surface of the partition wall 5X. A part of the excitation light L1 reflected by the upper surface of the partition wall 5X is reflected by the band pass filter 12X and enters a pixel adjacent to a desired pixel. Therefore, desired color light cannot be extracted.
 これに対し、本実施形態の蛍光体基板10は、図3Bに示すように、隔壁5を基板1の側断面形状が、基板1と接する側の辺(下底)が基板1と離れた側の辺(上底)より長い台形形状となっている。このため、光源から射出されてバンドパスフィルター12Xを透過した励起光L1の一部は所望の画素に直接入射する。一方、残りの一部は隔壁5の側面で反射して所望の画素に入射する。従来の蛍光体基板10Xでは、励起光L1の一部が基板1Xとは反対側に向けて反射するのに対し、本実施形態の蛍光体基板10では、励起光L1の一部が基板1に向けて反射する。つまり、本実施形態の蛍光体基板10のように、隔壁5の基板1と離れた側の部分の大きさ(基板1の上面の面積)が小さい場合は、隔壁5Xの基板1Xと離れた側の部分の大きさ(基板1Xの上面の面積)が大きい場合に比べて、光源から射出された励起光L1が所望の画素の隣接画素に入射することが抑制される。よって、光源から射出された励起光L1を極力損失なく所望の蛍光体層へと入射させることができる。したがって、励起光が本来入射すべき画素の隣接画素に入射することを抑制し、所望外の蛍光体層が発光して色滲みが生じることを抑制することができる。 On the other hand, in the phosphor substrate 10 of this embodiment, as shown in FIG. 3B, the partition wall 5 has a side cross-sectional shape of the substrate 1, and the side (lower bottom) on the side in contact with the substrate 1 is away from the substrate 1. It has a trapezoidal shape longer than the side (upper base). For this reason, a part of the excitation light L1 emitted from the light source and transmitted through the bandpass filter 12X is directly incident on a desired pixel. On the other hand, the remaining part is reflected by the side surface of the partition wall 5 and enters a desired pixel. In the conventional phosphor substrate 10X, a part of the excitation light L1 is reflected toward the side opposite to the substrate 1X, whereas in the phosphor substrate 10 of the present embodiment, a part of the excitation light L1 is reflected on the substrate 1. Reflect toward you. That is, when the size of the portion of the partition wall 5 that is away from the substrate 1 (the area of the upper surface of the substrate 1) is small as in the phosphor substrate 10 of this embodiment, the side of the partition wall 5X that is away from the substrate 1X. Compared with the case where the size of the portion (the area of the upper surface of the substrate 1X) is large, the excitation light L1 emitted from the light source is suppressed from entering the adjacent pixel of the desired pixel. Therefore, the excitation light L1 emitted from the light source can be incident on the desired phosphor layer with minimal loss. Therefore, it is possible to suppress the excitation light from entering the adjacent pixel of the pixel that should be incident, and to suppress the occurrence of color blur due to the emission of an undesired phosphor layer.
 また、本実施形態の蛍光体基板10は、隔壁5が基板1の側から光吸収層6と光散乱層7との積層構造を有しているため、光吸収層6の面積を比較的広くとることができる。よって、外光反射を抑制し、コントラストを向上させることができる。 Further, in the phosphor substrate 10 of the present embodiment, since the partition wall 5 has a laminated structure of the light absorption layer 6 and the light scattering layer 7 from the substrate 1 side, the area of the light absorption layer 6 is relatively wide. Can take. Therefore, reflection of external light can be suppressed and contrast can be improved.
 以下、本実施形態に係る蛍光体基板10の構成部材及びその形成方法について具体的に説明するが、蛍光体基板10の構成部材およびその形成方法は、これに限定されるものではない。 Hereinafter, although the structural member and the formation method of the fluorescent substance substrate 10 concerning this embodiment are explained concretely, the structural member and the formation method of the fluorescent substance substrate 10 are not limited to this.
「基板」
 本実施形態で用いられる蛍光体基板10用の基板1は、蛍光体層3R,3G,3Bからの蛍光L2を外部に取り出す必要がある事から、蛍光体層3R,3G,3Bの発光領域で、蛍光L2を透過する必要がある。そのため、蛍光体基板10用の基板1としては、例えば、ガラス、石英等からなる無機材料基板、ポリエチレンテレフタレート、ポリカルバゾール、ポリイミド等からなるプラスチック基板等を用いることができる。ただし、蛍光体基板10用の基板1はこれらの基板に限定されるものではない。
"substrate"
Since the substrate 1 for the phosphor substrate 10 used in the present embodiment needs to take out the fluorescence L2 from the phosphor layers 3R, 3G, 3B to the outside, in the emission region of the phosphor layers 3R, 3G, 3B. It is necessary to transmit the fluorescence L2. Therefore, as the substrate 1 for the phosphor substrate 10, for example, an inorganic material substrate made of glass, quartz or the like, a plastic substrate made of polyethylene terephthalate, polycarbazole, polyimide, or the like can be used. However, the substrate 1 for the phosphor substrate 10 is not limited to these substrates.
「蛍光体層」
 本実施形態の蛍光体層3R,3G,3Bは、紫外発光有機EL素子、青色発光有機EL素子、紫外発光LED、青色LED等の光源2からの励起光L1を吸収し、赤色、緑色、青色に発光する赤色蛍光体層3R、緑色蛍光体層3G、青色蛍光体層3Bから構成されている。ただし、光源2として青色発光を適用する場合、青色蛍光体層3Bは設けず、青色励起光L1を青色サブ画素PBからの発光としてもよい。また、光源2として指向性を有する青色発光を適用する場合は、青色蛍光体層3Bは設けず、当該指向性を有する励起光L1を散乱し、等方発光にして外部へ取り出すことができるような光散乱層を適用してもよい。
`` Phosphor layer ''
The phosphor layers 3R, 3G, and 3B of the present embodiment absorb excitation light L1 from the light source 2 such as an ultraviolet light emitting organic EL element, a blue light emitting organic EL element, an ultraviolet light emitting LED, and a blue LED, and are red, green, and blue. It comprises a red phosphor layer 3R, a green phosphor layer 3G, and a blue phosphor layer 3B. However, when blue light emission is applied as the light source 2, the blue phosphor layer 3B is not provided, and the blue excitation light L1 may be emitted from the blue subpixel PB. In addition, in the case where directional blue light emission is applied as the light source 2, the blue phosphor layer 3B is not provided, and the directional excitation light L1 is scattered so that it can be taken out as isotropic light emission. A simple light scattering layer may be applied.
 また、必要に応じて、シアン光、イエロー光に発光する蛍光体層を画素に加える事が好ましい。ここで、シアン光、イエロー光に発光する画素のそれぞれの色純度を、色度図上での赤色、緑色、青色に発光する画素の色純度の点で結ばれる三角形より外側にすることで、赤色、緑色、青色の3原色を発光する画素を使用する表示装置より色再現範囲を更に広げる事が可能となる。 In addition, it is preferable to add a phosphor layer that emits cyan light and yellow light to the pixels as necessary. Here, by making the color purity of each pixel emitting light to cyan light and yellow light outside the triangle connected by the color purity points of pixels emitting light in red, green, and blue on the chromaticity diagram, The color reproduction range can be further expanded as compared with a display device using pixels that emit three primary colors of red, green, and blue.
 蛍光体層3R,3G,3Bは、以下に例示する蛍光体材料のみから構成されていてもよく、任意に添加剤等を含んでいてもよく、これらの材料が高分子材料(結着用樹脂)又は無機材料中に分散された構成であってもよい。 The phosphor layers 3R, 3G, and 3B may be composed of only the phosphor materials exemplified below, and may optionally contain additives and the like, and these materials are polymer materials (binding resins). Or the structure disperse | distributed in the inorganic material may be sufficient.
 本実施形態の蛍光体材料としては、公知の蛍光体材料を用いることができる。このような蛍光体材料は、有機系蛍光体材料と無機系蛍光体材料に分類され、これらの具体的な化合物を以下に例示するが、蛍光体材料はこれらの材料に限定されるものではない。また、これら複数の蛍光体材料を組み合わせて使用してもよい。 A known phosphor material can be used as the phosphor material of the present embodiment. Such phosphor materials are classified into organic phosphor materials and inorganic phosphor materials, and specific examples of these compounds are shown below, but the phosphor materials are not limited to these materials. . Moreover, you may use combining these several fluorescent material.
 有機系蛍光体材料としては、青色蛍光色素として、スチルベンゼン系色素:1,4-ビス(2-メチルスチリル)ベンゼン、トランス-4,4‘-ジフェニルスチルベンゼン、クマリン系色素:7-ヒドロキシ-4-メチルクマリン等が挙げられる。また、緑色蛍光色素として、クマリン系色素:2,3,5,6-1H、4H-テトラヒドロ-8-トリフロメチルキノリジン(9,9a、1-gh)クマリン(クマリン153)、3-(2′-ベンゾチアゾリル)―7-ジエチルアミノクマリン(クマリン6)、3-(2′-ベンゾイミダゾリル)―7-N,N-ジエチルアミノクマリン(クマリン7)、ナフタルイミド系色素:ベーシックイエロー51、ソルベントイエロー11、ソルベントイエロー116等が挙げられる。また、赤色蛍光色素としては、シアニン系色素:4-ジシアノメチレン-2-メチル-6-(p-ジメチルアミノスチルリル)-4H-ピラン、ピリジン系色素:1-エチル-2-[4-(p-ジメチルアミノフェニル)-1,3-ブタジエニル]-ピリジニウム-パークロレート、及びローダミン系色素:ローダミンB、ローダミン6G、ローダミン3B、ローダミン101、ローダミン110、ベーシックバイオレット11、スルホローダミン101等が挙げられる。 Organic phosphor materials include blue fluorescent dyes, stilbenzene dyes: 1,4-bis (2-methylstyryl) benzene, trans-4,4′-diphenylstilbenzene, coumarin dyes: 7-hydroxy- 4-methylcoumarin and the like can be mentioned. Further, as a green fluorescent dye, a coumarin dye: 2,3,5,6-1H, 4H-tetrahydro-8-trifluoromethylquinolidine (9,9a, 1-gh) coumarin (coumarin 153), 3- ( 2'-benzothiazolyl) -7-diethylaminocoumarin (coumarin 6), 3- (2'-benzoimidazolyl) -7-N, N-diethylaminocoumarin (coumarin 7), naphthalimide dyes: basic yellow 51, solvent yellow 11, Solvent yellow 116 etc. are mentioned. The red fluorescent dye includes cyanine dye: 4-dicyanomethylene-2-methyl-6- (p-dimethylaminostyryl) -4H-pyran, pyridine dye: 1-ethyl-2- [4- ( p-dimethylaminophenyl) -1,3-butadienyl] -pyridinium-perchlorate, and rhodamine dyes: rhodamine B, rhodamine 6G, rhodamine 3B, rhodamine 101, rhodamine 110, basic violet 11, sulforhodamine 101 and the like. .
 また、無機系蛍光体材料としては、青色蛍光体として、Sr227:Sn4+、Sr4Al1425:Eu2+、BaMgAl1017:Eu2+、SrGa24:Ce3+、CaGa24:Ce3+、(Ba、Sr)(Mg、Mn)Al1017:Eu2+、(Sr、Ca、Ba2、0 Mg)10(PO46Cl2:Eu2+、BaAl2SiO8:Eu2+、Sr227:Eu2+、Sr5(PO43Cl:Eu2+、(Sr,Ca,Ba)5(PO43Cl:Eu2+、BaMg2Al1627:Eu2+、(Ba,Ca)5(PO43Cl:Eu2+、Ba3MgSi28:Eu2+、Sr3MgSi28:Eu2+等が挙げられる。また、緑色蛍光体として、(BaMg)Al1627:Eu2+,Mn2+、Sr4Al1425:Eu2+、(SrBa)Al12Si28:Eu2+、(BaMg)2SiO4:Eu2+、Y2SiO5:Ce3+,Tb3+、Sr227-Sr225:Eu2+、(BaCaMg)5(PO43Cl:Eu2+、Sr2Si38-2SrCl2:Eu2+、Zr2SiO4、MgAl1119:Ce3+,Tb3+、Ba2SiO4:Eu2+、Sr2SiO4:Eu2+、(BaSr)SiO4:Eu2+等が挙げられる。
また、赤色蛍光体としては、Y22S:Eu3+、YAlO3:Eu3+、Ca22(SiO46:Eu3+、LiY9(SiO462:Eu3+、YVO4:Eu3+、CaS:Eu3+、Gd23:Eu3+、Gd22S:Eu3+、Y(P,V)O4:Eu3+、Mg4GeO5.5F:Mn4+、Mg4GeO6:Mn4+、K5Eu2.5(WO46.25、Na5Eu2.5(WO46.25、K5Eu2.5(MoO46.25、Na5Eu2.5(MoO46.25等が挙げられる。
As the inorganic phosphor material, blue phosphors such as Sr 2 P 2 O 7 : Sn 4+ , Sr 4 Al 14 O 25 : Eu 2+ , BaMgAl 10 O 17 : Eu 2+ , SrGa 2 S 4 are used. : Ce 3+ , CaGa 2 S 4 : Ce 3+ , (Ba, Sr) (Mg, Mn) Al 10 O 17 : Eu 2+ , (Sr, Ca, Ba 2 , 0 Mg) 10 (PO 4 ) 6 Cl 2 : Eu 2+ , BaAl 2 SiO 8 : Eu 2+ , Sr 2 P 2 O 7 : Eu 2+ , Sr 5 (PO 4 ) 3 Cl: Eu 2+ , (Sr, Ca, Ba) 5 (PO 4) 3 Cl: Eu 2+, BaMg 2 Al 16 O 27: Eu 2+, (Ba, Ca) 5 (PO 4) 3 Cl: Eu 2+, Ba 3 MgSi 2 O 8: Eu 2+, Sr 3 MgSi 2 O 8: Eu 2+ and the like. As the green phosphor, (BaMg) Al 16 O 27 : Eu 2+ , Mn 2+ , Sr 4 Al 14 O 25 : Eu 2+ , (SrBa) Al 12 Si 2 O 8 : Eu 2+ , (BaMg) ) 2 SiO 4 : Eu 2+ , Y 2 SiO 5 : Ce 3+ , Tb 3+ , Sr 2 P 2 O 7 —Sr 2 B 2 O 5 : Eu 2+, (BaCaMg) 5 (PO 4 ) 3 Cl: Eu 2+, Sr 2 Si 3 O 8 -2SrCl 2: Eu 2+, Zr 2 SiO 4, MgAl 11 O 19: Ce 3+, Tb 3+, Ba 2 SiO 4: Eu 2+, Sr 2 SiO 4: Eu 2+ , (BaSr) SiO 4 : Eu 2+ and the like.
As red phosphors, Y 2 O 2 S: Eu 3+ , YAlO 3 : Eu 3+ , Ca 2 Y 2 (SiO 4 ) 6 : Eu 3+ , LiY 9 (SiO 4 ) 6 O 2 : Eu 3+ , YVO 4 : Eu 3+ , CaS: Eu 3+ , Gd 2 O 3 : Eu 3+ , Gd 2 O 2 S: Eu 3+ , Y (P, V) O 4 : Eu 3+ , Mg 4 GeO 5.5 F: Mn 4+ , Mg 4 GeO 6 : Mn 4+ , K 5 Eu 2.5 (WO 4 ) 6.25 , Na 5 Eu 2.5 (WO 4 ) 6.25 , K 5 Eu 2.5 (MoO 4 ) 6.25 , Na 5 Eu 2.5 (MoO 4 ) 6.25 and the like.
 また、上記無機系蛍光体は、必要に応じて表面改質処理を施してもよく、その方法としてはシランカップリング剤等の化学的処理によるものや、サブミクロンオーダーの微粒子等の添加による物理的処理によるもの、更にそれらの併用によるもの等が挙げられる。励起光による劣化、発光による劣化等の安定性を考慮すると、無機材料を使用する方が好ましい。更に無機材料を用いる場合には、平均粒径(d50)が、0.5~50μmであることが好ましい。平均粒径が1μm以下であると、蛍光体の発光効率が急激に低下する。
また、50μm以上であると、高解像度にパターニングすることが困難になる。
In addition, the inorganic phosphor may be subjected to a surface modification treatment as necessary. As a method thereof, physical treatment by chemical treatment such as a silane coupling agent or addition of fine particles of submicron order, etc. And the like due to the combined treatment thereof. In consideration of stability such as deterioration due to excitation light and deterioration due to light emission, it is preferable to use an inorganic material. Further, when an inorganic material is used, the average particle diameter (d 50 ) is preferably 0.5 to 50 μm. When the average particle size is 1 μm or less, the luminous efficiency of the phosphor is drastically reduced.
Moreover, when it is 50 μm or more, it becomes difficult to pattern at a high resolution.
 また、蛍光体層は、上記の蛍光体材料と樹脂材料を溶剤に溶解、分散させた蛍光体層形成用塗液を用いて、スピンコーティング法、ディッピング法、ドクターブレード法、吐出コート法、スプレーコート法等の塗布法、インクジェット法、凸版印刷法、凹版印刷法、スクリーン印刷法、マイクログラビアコート法等の印刷法等による公知のウエットプロセス、上記の材料を抵抗加熱蒸着法、電子線(EB)蒸着法、分子線エピタキシー(MBE)法、スパッタリング法、有機気相蒸着(OVPD)法等の公知のドライプロセス、又は、レーザー転写法等により形成することができる。 In addition, the phosphor layer is formed by using a phosphor layer forming coating solution obtained by dissolving and dispersing the phosphor material and the resin material in a solvent, using a spin coating method, a dipping method, a doctor blade method, a discharge coating method, a spraying method. Known wet processes such as coating methods such as coating methods, ink jet methods, letterpress printing methods, intaglio printing methods, screen printing methods, printing methods such as micro gravure coating methods, etc. ) It can be formed by a known dry process such as a vapor deposition method, molecular beam epitaxy (MBE) method, sputtering method, organic vapor deposition (OVPD) method, or a laser transfer method.
 上記の蛍光体層の膜厚は、通常100nm~100μm程度であるが、1μm~100μmが好ましい。膜厚が100nm未満であると、光源からの励起光を十分吸収することが不可能である為、発光効率の低下、必要とされる色に励起光の透過光が混じる事による色純度の悪化といった問題が生じる。更に、光源からの励起光の吸収を高め、色純度の悪影響を及ぼさない程度に励起光の透過光を低減する為には、膜厚として、1μm以上とする事が好ましい。また、膜厚が100μmを超えると光源からの励起光を既に十分吸収する事から、効率の上昇には繋がらず、材料を消費するだけに留まり、材料コストのアップに繋がる。 The film thickness of the phosphor layer is usually about 100 nm to 100 μm, preferably 1 μm to 100 μm. If the film thickness is less than 100 nm, it is impossible to sufficiently absorb the excitation light from the light source, so that the light emission efficiency decreases, and the color purity deteriorates due to the mixture of the transmitted light of the excitation light with the required color. Problems arise. Further, in order to increase absorption of excitation light from the light source and reduce transmitted light of excitation light to such an extent that the color purity is not adversely affected, the film thickness is preferably 1 μm or more. Further, when the film thickness exceeds 100 μm, the excitation light from the light source is already sufficiently absorbed, so that the efficiency is not increased, the material is consumed only, and the material cost is increased.
 一方、青色蛍光体層3Bの代わりとして光散乱層を適用する場合、光散乱粒子は、有機材料により構成されていてもよいし、無機材料により構成されていてもよいが、無機材料により構成されていることが好ましい。これにより、光源2からの指向性を有する光を、より等方的に効果的に拡散または散乱させることが可能となる。また、無機材料を使用することにより、光および熱に安定な光散乱層を提供することが可能となる。また、光散乱粒子としては、透明度が高いものであることが好ましい。また、光散乱粒子としては、低屈折率の母材中に母材よりも高屈折率の微粒子を分散するものであることが好ましい。また、青色光が光散乱層によって効果的に散乱するためには、光散乱性粒子の粒径がミー散乱の領域にあることが必要であるので、光散乱性粒子の粒径として100nm~500nm程度が好ましい。 On the other hand, when a light scattering layer is applied instead of the blue phosphor layer 3B, the light scattering particles may be made of an organic material or an inorganic material, but may be made of an inorganic material. It is preferable. Thereby, the light having directivity from the light source 2 can be diffused or scattered more isotropically and effectively. Further, by using an inorganic material, it is possible to provide a light scattering layer that is stable to light and heat. Moreover, it is preferable that the light scattering particles have high transparency. The light scattering particles are preferably particles in which fine particles having a higher refractive index than the base material are dispersed in a low refractive index base material. Further, in order for blue light to be effectively scattered by the light scattering layer, it is necessary that the particle size of the light scattering particle is in the Mie scattering region, so the particle size of the light scattering particle is 100 nm to 500 nm. The degree is preferred.
 光散乱粒子として、無機材料を用いる場合には、例えば、ケイ素、チタン、ジルコニウム、アルミニウム、インジウム、亜鉛、錫、およびアンチモンからなる群より選ばれる少なくとも1種の金属の酸化物を主成分とした粒子(微粒子)等が挙げられる。 When an inorganic material is used as the light scattering particle, for example, the main component is an oxide of at least one metal selected from the group consisting of silicon, titanium, zirconium, aluminum, indium, zinc, tin, and antimony. Examples thereof include particles (fine particles).
 また、光散乱粒子として、無機材料により構成された粒子(無機微粒子)を用いる場合には、例えば、シリカビーズ(屈折率:1.44)、アルミナビーズ(屈折率:1.63)、酸化チタンビーズ(屈折率 アナタース型:2.50、ルチル型:2.70)、酸化ジルコニアビーズ(屈折率:2.05)、酸化亜鉛ビーズ(屈折率:2.00)、チタン酸バリウム(BaTiO)(屈折率:2.4)等が挙げられる。 Moreover, when using particles (inorganic fine particles) made of an inorganic material as the light scattering particles, for example, silica beads (refractive index: 1.44), alumina beads (refractive index: 1.63), titanium oxide. Beads (refractive index anatase type: 2.50, rutile type: 2.70), zirconia bead (refractive index: 2.05), zinc oxide beads (refractive index: 2.00), barium titanate (BaTiO 3 ) (Refractive index: 2.4).
 光散乱粒子として、有機材料により構成された粒子(有機微粒子)を用いる場合には、例えば、ポリメチルメタクリレートビーズ(屈折率:1.49)、アクリルビーズ(屈折率:1.50)、アクリル-スチレン共重合体ビーズ(屈折率:1.54)、メラミンビーズ(屈折率:1.57)、高屈折率メラミンビーズ(屈折率:1.65)、ポリカーボネートビーズ(屈折率:1.57)、スチレンビーズ(屈折率:1.60)、架橋ポリスチレンビーズ(屈折率:1.61)、ポリ塩化ビニルビーズ(屈折率:1.60)、ベンゾグアナミン-メラミンホルムアルデヒドビーズ(屈折率:1.68)、シリコーンビーズ(屈折率:1.50)等が挙げられる。 When particles (organic fine particles) made of an organic material are used as the light scattering particles, for example, polymethyl methacrylate beads (refractive index: 1.49), acrylic beads (refractive index: 1.50), acrylic- Styrene copolymer beads (refractive index: 1.54), melamine beads (refractive index: 1.57), high refractive index melamine beads (refractive index: 1.65), polycarbonate beads (refractive index: 1.57), Styrene beads (refractive index: 1.60), crosslinked polystyrene beads (refractive index: 1.61), polyvinyl chloride beads (refractive index: 1.60), benzoguanamine-melamine formaldehyde beads (refractive index: 1.68), Examples thereof include silicone beads (refractive index: 1.50).
 上述した光散乱粒子と混合して用いる樹脂材料としては、透光性の樹脂であることが好ましい。また、樹脂材料としては、例えば、アクリル樹脂(屈折率:1.49)、メラミン樹脂(屈折率:1.57)、ナイロン(屈折率:1.53)、ポリスチレン(屈折率:1.60)、メラミンビーズ(屈折率:1.57)、ポリカーボネート(屈折率:1.57)、ポリ塩化ビニル(屈折率:1.60)、ポリ塩化ビニリデン(屈折率:1.61)、ポリ酢酸ビニル(屈折率:1.46)、ポリエチレン(屈折率:1.53)、ポリメタクリル酸メチル(屈折率:1.49)、ポリMBS(屈折率:1.54)、中密度ポリエチレン(屈折率:1.53)、高密度ポリエチレン(屈折率:1.54)、テトラフルオロエチレン(屈折率:1.35)、ポリ三フッ化塩化エチレン(屈折率:1.42)、ポリテトラフルオロエチレン(屈折率:1.35)等が挙げられる。 The resin material used by mixing with the above-described light scattering particles is preferably a translucent resin. Examples of the resin material include acrylic resin (refractive index: 1.49), melamine resin (refractive index: 1.57), nylon (refractive index: 1.53), polystyrene (refractive index: 1.60). , Melamine beads (refractive index: 1.57), polycarbonate (refractive index: 1.57), polyvinyl chloride (refractive index: 1.60), polyvinylidene chloride (refractive index: 1.61), polyvinyl acetate ( Refractive index: 1.46), polyethylene (refractive index: 1.53), polymethyl methacrylate (refractive index: 1.49), poly MBS (refractive index: 1.54), medium density polyethylene (refractive index: 1) .53), high density polyethylene (refractive index: 1.54), tetrafluoroethylene (refractive index: 1.35), poly (trifluoroethylene chloride) (refractive index: 1.42), polytetrafluoroethylene (refractive index) : .35), and the like.
「隔壁」
 隔壁の材料としては、従来のディスプレイの隔壁として使用されているブラックマトリックスや金属を使用することができるが、出射側への光取出し効率を向上させるためには、低屈折率の樹脂中に樹脂よりも高屈折率の光散乱性粒子を分散させた光散乱性材料で形成された光散乱性の隔壁とすることが望ましい。より好ましくは、高コントラストと高光取出し効率を両立させるために、基板上に0.01μmから3μm程度の光吸収層を形成した後に、光吸収層の基板への接地面積よりも小さい接地面積で光吸収層に接地するような膜厚1μmから100μm程度の光散乱層を形成する。但し、光散乱層の膜厚は光吸収層の膜厚に比べて十分に厚くないと、光散乱効果による光取出し効率の向上は望めない。
"Partition wall"
As a material for the partition, a black matrix or metal used as a partition for a conventional display can be used. In order to improve the light extraction efficiency to the emission side, a resin in a low refractive index resin is used. It is desirable to use a light-scattering partition wall made of a light-scattering material in which light-scattering particles having a higher refractive index are dispersed. More preferably, in order to achieve both high contrast and high light extraction efficiency, after forming a light absorption layer of about 0.01 μm to 3 μm on the substrate, the light absorption layer has a ground contact area smaller than the ground contact area to the substrate. A light scattering layer having a thickness of about 1 μm to 100 μm is formed so as to be in contact with the absorption layer. However, if the film thickness of the light scattering layer is not sufficiently thicker than the film thickness of the light absorption layer, improvement in light extraction efficiency due to the light scattering effect cannot be expected.
 また、青色光が光散乱性隔壁によって効果的に散乱するためには、光散乱性粒子の粒径がミー散乱の領域にあることが必要であるので、光散乱性粒子の粒径として100nm~500nm程度が好ましい。CIE1976L*a*b表示系において80%以上の反射率を有することが好ましい。 In addition, in order for blue light to be effectively scattered by the light-scattering partition wall, the particle size of the light-scattering particles needs to be in the Mie scattering region. About 500 nm is preferable. Preferably, the CIE 1976 L * a * b display system has a reflectance of 80% or more.
 樹脂としては、例えば段落[0076]に挙げたような樹脂材料を用いることができる。
また、光散乱性粒子としては、例えば段落[0073]、[0074]、[0075]に挙げたような光散乱性粒子を用いることができる。
As the resin, for example, the resin materials listed in paragraph [0076] can be used.
Further, as the light scattering particles, for example, the light scattering particles as listed in the paragraphs [0073], [0074], and [0075] can be used.
 隔壁の形成方法としては、フォトリソグラフィー法、スクリーン印刷法、蒸着法、サンドブラスト法、転写法などの方法が挙げられるが、高精細、高アスペクト比を有する隔壁を低コストで形成できる点からフォトリソグラフィー法による形成が望ましい。隔壁材料の構成樹脂としてアルカリ可溶性樹脂を選択し、光重合性モノマー、光重合開始剤、溶剤を添加することによって隔壁材料をネガ型フォトレジスト化したり、光重合性モノマーや光重合開始剤の代わりにジアゾナフトキノンなどの感光剤を添加することによってポジ型フォトレジスト化したりすることが可能であり、フォトリソグラフィーによってパターニングすることができる。 Examples of the method for forming the partition include a photolithography method, a screen printing method, a vapor deposition method, a sand blast method, and a transfer method. Photolithography is used because a partition having a high definition and a high aspect ratio can be formed at a low cost. Formation by the method is desirable. By selecting an alkali-soluble resin as the constituent resin of the partition wall material, and adding a photopolymerizable monomer, a photopolymerization initiator, and a solvent, the partition wall material can be made into a negative photoresist, or instead of a photopolymerizable monomer or a photopolymerization initiator. It is possible to make a positive photoresist by adding a photosensitizer such as diazonaphthoquinone, and patterning can be performed by photolithography.
 なお、隔壁5の開口部(蛍光体層一区画)の縦横サイズは、20μm×20μm程度~500μm×500μm程度が好ましい。 Note that the vertical and horizontal sizes of the openings of the partition walls 5 (one section of the phosphor layer) are preferably about 20 μm × 20 μm to about 500 μm × 500 μm.
 また、光散乱層7の光取出し方向側に光散乱層7に比べて薄い光吸収層6を配置することに加えて、更に、ある画素に進入するように設計された励起光が隣接画素に漏れて混色がおきるのを防止するために、隣接画素に進入しようとする光を吸収する目的で、光散乱層7の光取出し方向とは反対側に0.01μmから3μm程度の光散乱層7に比べて薄い黒色層を挿入しても良い。 Further, in addition to disposing the light absorption layer 6 that is thinner than the light scattering layer 7 on the light extraction direction side of the light scattering layer 7, excitation light designed to enter a certain pixel further passes to adjacent pixels. In order to prevent color mixture due to leakage, the light scattering layer 7 having a thickness of about 0.01 μm to 3 μm is formed on the side opposite to the light extraction direction of the light scattering layer 7 in order to absorb light entering the adjacent pixels. A thin black layer may be inserted.
「隔壁への撥液性の付与」
 蛍光体層をディスペンサー法、インクジェット法などによってパターニングする場合、隔壁より蛍光体溶液が溢れ出て隣接画素間での混色を防止するために隔壁に撥液性を付与することが必須である。隔壁に撥液性を付与する方法としては例えば以下のような方法がある。
(1)フッ素プラズマ処理
 例えば、特開2000-76979号公報に開示されているように、隔壁を形成した基板に対して導入ガスをフッ素系とした条件下でプラズマ処理を行うことによって隔壁に撥液性を付与することができる。
(2)フッ素系表面改質剤の添加
 光散乱性隔壁の材料にフッ素系表面改質剤を添加することによって隔壁に撥液性を付与することができる。フッ素系表面改質剤としては、例えばUV硬化型表面改質剤ディフェンサ(DIC株式会社製)やメガファックなどが使用できる。
"Providing liquid repellency to partition walls"
When the phosphor layer is patterned by a dispenser method, an ink jet method, or the like, it is essential to impart liquid repellency to the partition wall in order to prevent the phosphor solution from overflowing from the partition wall and mixing colors between adjacent pixels. Examples of a method for imparting liquid repellency to the partition include the following methods.
(1) Fluorine plasma treatment For example, as disclosed in Japanese Patent Application Laid-Open No. 2000-76979, a plasma treatment is performed on a substrate on which a partition wall is formed under a condition in which an introduced gas is a fluorine-based gas. Liquidity can be imparted.
(2) Addition of fluorinated surface modifier A liquid repellency can be imparted to the partition walls by adding a fluorinated surface modifier to the light scattering partition material. As the fluorine-based surface modifier, for example, a UV curable surface modifier Defenser (manufactured by DIC Corporation), Mega Fuck, or the like can be used.
「カラーフィルター」
 本実施形態の蛍光体基板10において、光取り出し側の基板1と蛍光体層3R,3G,3Bとの間に設けられたカラーフィルターとしては、従来のカラーフィルターを用いることが可能である。ここで、カラーフィルターを設けることによって、赤色サブ画素PR、緑色サブ画素PG、青色サブ画素PBの色純度を高める事が可能となり、表示装置100の色再現範囲を拡大する事ができる。
"Color filter"
In the phosphor substrate 10 of the present embodiment, a conventional color filter can be used as the color filter provided between the substrate 1 on the light extraction side and the phosphor layers 3R, 3G, 3B. Here, by providing the color filter, the color purity of the red subpixel PR, the green subpixel PG, and the blue subpixel PB can be increased, and the color reproduction range of the display device 100 can be expanded.
 赤色蛍光体層3Rと対向する赤色カラーフィルター4Rは、外光の赤色蛍光体層3Rを励起する励起光を吸収する。このため、外光による赤色蛍光体層3Rの発光を低減・防止することが可能となり、コントラストの低下を低減・防止する事が出来る。また、赤色カラーフィルター4Rにより、赤色蛍光体層3Rにより吸収されず、透過してしまう励起光L1が外部に漏れ出す事を防止できる。このため、赤色蛍光体層3Rからの発光と励起光L1による混色による発光の色純度の低下を防止する事が可能となる。 The red color filter 4R facing the red phosphor layer 3R absorbs excitation light that excites the red phosphor layer 3R of external light. For this reason, it becomes possible to reduce and prevent light emission of the red phosphor layer 3R due to external light, and it is possible to reduce and prevent a decrease in contrast. Further, the red color filter 4R can prevent the excitation light L1 that is not absorbed and transmitted by the red phosphor layer 3R from leaking outside. For this reason, it is possible to prevent a decrease in the color purity of the light emission due to the color mixture by the light emission from the red phosphor layer 3R and the excitation light L1.
 同様に、緑色蛍光体層3Gと対向する緑色カラーフィルター4Gは、外光の緑色蛍光体層3Gを励起する励起光を吸収する。このため、外光による緑色蛍光体層3Gの発光を低減・防止することが可能となり、コントラストの低下を低減・防止する事が出来る。また、緑色カラーフィルター4Gにより、緑色蛍光体層3Gにより吸収されず、透過してしまう励起光L1が外部に漏れ出す事を防止できる。このため、緑色蛍光体層3Gからの発光と励起光L1による混色による発光の色純度の低下を防止する事が可能となる。 Similarly, the green color filter 4G facing the green phosphor layer 3G absorbs excitation light that excites the green phosphor layer 3G of external light. For this reason, it becomes possible to reduce and prevent light emission of the green phosphor layer 3G due to external light, and it is possible to reduce and prevent a decrease in contrast. Further, the green color filter 4G can prevent the excitation light L1 that is not absorbed and transmitted by the green phosphor layer 3G from leaking outside. For this reason, it is possible to prevent a decrease in the color purity of the light emission due to the color mixture by the light emission from the green phosphor layer 3G and the excitation light L1.
 同様に、青色蛍光体層3Bと対向する青色カラーフィルター4Bは、外光の青色蛍光体層3Bを励起する励起光を吸収する。このため、外光による青色蛍光体層3Bの発光を低減・防止することが可能となり、コントラストの低下を低減・防止する事が出来る。また、青色カラーフィルター4B、により、青色蛍光体層3Bにより吸収されず、透過してしまう励起光L1が外部に漏れ出す事を防止できる。このため、青色蛍光体層3Bからの発光と励起光L1による混色による発光の色純度の低下を防止する事が可能となる。 Similarly, the blue color filter 4B facing the blue phosphor layer 3B absorbs excitation light that excites the blue phosphor layer 3B of external light. For this reason, it becomes possible to reduce and prevent light emission of the blue phosphor layer 3B due to external light, and it is possible to reduce and prevent a decrease in contrast. Further, the blue color filter 4B can prevent the excitation light L1 that is not absorbed and transmitted by the blue phosphor layer 3B from leaking outside. For this reason, it is possible to prevent a decrease in the color purity of the light emission due to the color mixture by the light emission from the blue phosphor layer 3B and the excitation light L1.
[第2実施形態]
 以下、本発明の第2実施形態の蛍光体基板10Aについて、図4を参照して説明する。
 図4は、第2実施形態の蛍光体基板10Aの断面図である。
 本実施形態の蛍光体基板10Aの基本構成は第1実施形態と同様であり、隔壁5に囲まれた領域に設けられた蛍光体層3RA,3GA,3BAの形状のみが第1実施形態と異なる。
 図4において、第1実施形態の図2Aと共通の構成要素には同一の符号を付し、詳細な説明は省略する。
[Second Embodiment]
Hereinafter, a phosphor substrate 10A according to a second embodiment of the present invention will be described with reference to FIG.
FIG. 4 is a cross-sectional view of the phosphor substrate 10A of the second embodiment.
The basic structure of the phosphor substrate 10A of the present embodiment is the same as that of the first embodiment, and only the shapes of the phosphor layers 3RA, 3GA, 3BA provided in the region surrounded by the partition walls 5 are different from those of the first embodiment. .
In FIG. 4, the same components as those in FIG. 2A of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 図4に示すように、本実施形態の蛍光体基板10Aにおいて、隔壁5に囲まれた領域の蛍光体層3RA,3GA,3BAの側断面形状は凹型形状であり、蛍光体層3RA,3GA,3BAの周辺部が隔壁5の側面に沿って配置されている。蛍光体層3RA,3GA,3BAは、蛍光体層3RA,3GA,3BAの中央部の上面が平坦となっている。蛍光体層3RA,3GA,3BAの中央部の上面の高さは、隔壁5の高さの略半分の高さとなっている。一方、蛍光体層3RA,3GA,3BAの周辺部の高さは、隔壁5の高さの略同じ高さとなっている。 As shown in FIG. 4, in the phosphor substrate 10A of the present embodiment, the side sectional shape of the phosphor layers 3RA, 3GA, 3BA in the region surrounded by the partition walls 5 is a concave shape, and the phosphor layers 3RA, 3GA, A peripheral portion of 3BA is arranged along the side surface of the partition wall 5. The phosphor layers 3RA, 3GA, 3BA have a flat upper surface at the center of the phosphor layers 3RA, 3GA, 3BA. The height of the upper surface of the central part of the phosphor layers 3RA, 3GA, 3BA is approximately half the height of the partition wall 5. On the other hand, the height of the peripheral part of the phosphor layers 3RA, 3GA, 3BA is substantially the same as the height of the partition walls 5.
 本実施形態の構成によれば、光源から画素に向かう励起光が隔壁5に吸収されたり、隔壁5を透過したりすることが抑制される。よって、光取出し効率を向上させることができる。 According to the configuration of the present embodiment, the excitation light traveling from the light source toward the pixel is prevented from being absorbed by the partition wall 5 or transmitted through the partition wall 5. Therefore, the light extraction efficiency can be improved.
[第3実施形態]
 以下、本発明の第3実施形態の蛍光体基板10Bについて、図5を参照して説明する。
 図5は、第3実施形態の蛍光体基板10Bの断面図である。
 本実施形態の蛍光体基板10Bの基本構成は第2実施形態と同様であり、基板1の屈折率よりも低い屈折率を有する低屈折率層16を備えている点が第2実施形態と異なる。
 図5において、第2実施形態の図5と共通の構成要素には同一の符号を付し、詳細な説明は省略する。
[Third embodiment]
Hereinafter, a phosphor substrate 10B according to a third embodiment of the present invention will be described with reference to FIG.
FIG. 5 is a cross-sectional view of the phosphor substrate 10B of the third embodiment.
The basic configuration of the phosphor substrate 10B of the present embodiment is the same as that of the second embodiment, and is different from the second embodiment in that a low refractive index layer 16 having a refractive index lower than that of the substrate 1 is provided. .
In FIG. 5, the same code | symbol is attached | subjected to the same component as FIG. 5 of 2nd Embodiment, and detailed description is abbreviate | omitted.
 図5に示すように、本実施形態の蛍光体基板10Bにおいて、低屈折率層16は、蛍光体層3RAとカラーフィルター4Rとの間、蛍光体層3GAとカラーフィルター4Gとの間、蛍光体層3BAとカラーフィルター4Bとの間、にそれぞれ設けられている。低屈折率層16は、蛍光体層3RA,3GA,3BAから等方的に発光した蛍光のうち、カラーフィルター4R,4G,4Bに入射する蛍光の入射角を小さくする性質を有する層である。 As shown in FIG. 5, in the phosphor substrate 10B of the present embodiment, the low refractive index layer 16 is formed between the phosphor layer 3RA and the color filter 4R, between the phosphor layer 3GA and the color filter 4G, They are respectively provided between the layer 3BA and the color filter 4B. The low refractive index layer 16 is a layer having a property of reducing the incident angle of the fluorescence incident on the color filters 4R, 4G, and 4B out of the fluorescence emitted isotropically from the phosphor layers 3RA, 3GA, and 3BA.
 なお、低屈折率層16は、蛍光体層3とカラーフィルター4との間に配置されることに限らず、カラーフィルター4と基板1と間に配置されていてもよい。すなわち、低屈折率層16は、蛍光体層と基板1との間に配置されていればよい。 Note that the low refractive index layer 16 is not limited to being disposed between the phosphor layer 3 and the color filter 4, and may be disposed between the color filter 4 and the substrate 1. In other words, the low refractive index layer 16 may be disposed between the phosphor layer and the substrate 1.
 低屈折率層16の屈折率は、低屈折率層16を透過してカラーフィルター4から基板1に入射する入射光の出射角(屈折角)が、少なくとも基板から外部に出射可能な入射光の臨界角よりも小さくなるような値であることが好ましい。蛍光体層3RA,3GA,3BAから等方的に発光する蛍光が、低屈折率層16を透過することによって、基板1に入射した光を外部に確実に取り出すことが可能となり、非常に効率よく蛍光を外部に取り出すことが可能となる。 The refractive index of the low refractive index layer 16 is such that the outgoing angle (refractive angle) of incident light that passes through the low refractive index layer 16 and enters the substrate 1 from the color filter 4 is at least that of incident light that can be emitted from the substrate to the outside. It is preferable that the value be smaller than the critical angle. The fluorescence emitted isotropically from the phosphor layers 3RA, 3GA, 3BA is transmitted through the low refractive index layer 16, so that the light incident on the substrate 1 can be reliably taken out to the outside, which is very efficient. It becomes possible to take out fluorescence outside.
 なお、低屈折率層16の屈折率は、1.0~1.4の範囲であることが好ましい。低屈折率層16の屈折率が1.4よりも大きくなると、基板1と低屈折率層16との屈折率差が小さくなり、低屈折率層16から基板1に入射した光の大半が、基板1と外部との界面で反射されてしまい、外部に取り出すことができなくなる。例えば、発光デバイスが、所定の領域に分割された複数の蛍光体層を有する場合、基板と外部との界面で反射された光が、少なくとも隣り合う2つの蛍光体層に進入し、表示滲みやぼやけが発生する懸念がある。 Note that the refractive index of the low refractive index layer 16 is preferably in the range of 1.0 to 1.4. When the refractive index of the low refractive index layer 16 is larger than 1.4, the refractive index difference between the substrate 1 and the low refractive index layer 16 is reduced, and most of the light incident on the substrate 1 from the low refractive index layer 16 is The light is reflected at the interface between the substrate 1 and the outside and cannot be taken out to the outside. For example, when the light-emitting device has a plurality of phosphor layers divided into predetermined regions, light reflected at the interface between the substrate and the outside enters at least two adjacent phosphor layers, and display blur or There is a concern about blurring.
 また、低屈折率層16の屈折率は低いほど望ましい。低屈折率層16の材料としては、例えば、屈折率1.35~1.4程度のフッ素樹脂、屈折率1.003~1.3程度のシリカエアロゲル、屈折率1.2~1.3程度の多孔質シリカや中空シリカ等の透明材料が挙げられるが、本実施形態は、これらの材料に限定されるものではない。上記複数材料の組み合わせでも良い。 Also, the lower the refractive index of the low refractive index layer 16, the better. Examples of the material of the low refractive index layer 16 include a fluororesin having a refractive index of about 1.35 to 1.4, a silica airgel having a refractive index of about 1.003 to 1.3, and a refractive index of about 1.2 to 1.3. However, the present embodiment is not limited to these materials. A combination of the above materials may be used.
 また、低屈折率層16の膜厚は、10nm~50μmの範囲であることが好ましい。低屈折率層16の膜厚が50μmよりも厚くなると、特に、蛍光体層3RA,3GA,3BAから斜め方向に低屈折率層16に入射した光が、低屈折率層16と基板1の界面に達するまでに、基板1に対して水平方向(基板1の厚さ方向と垂直な方向)への進行距離が長くなる。これにより、基板1から外部に取り出される蛍光の発光領域が、蛍光体層自体の発光領域に対して拡大されるため、特に高精細を目的とする表示装置等に対しては好ましくない。また、製造プロセスに与える影響も懸念されることから、低屈折率層16は、薄膜であることがより好ましい。 The film thickness of the low refractive index layer 16 is preferably in the range of 10 nm to 50 μm. When the film thickness of the low refractive index layer 16 is greater than 50 μm, in particular, light incident on the low refractive index layer 16 in an oblique direction from the phosphor layers 3RA, 3GA, 3BA is interfaced between the low refractive index layer 16 and the substrate 1. The distance traveled in the horizontal direction (direction perpendicular to the thickness direction of the substrate 1) with respect to the substrate 1 becomes longer. As a result, the fluorescent light emission region extracted from the substrate 1 to the outside is enlarged relative to the light emission region of the phosphor layer itself, which is not preferable particularly for a display device or the like for high definition. Moreover, since there is concern about the influence on the manufacturing process, the low refractive index layer 16 is more preferably a thin film.
 また、低屈折率層16は、気体からなることが好ましい。上述したように、低屈折率層16の屈折率は低いほど望ましいが、固体、液体、ゲル等の材料により低屈折率層16を形成した場合、米国特許第4402827号公報、特許第4279971号、特開2001-202827等に記載されているように、その屈折率の下限値は1.003程度が限界である。これに対して、低屈折率層16を、例えば、空気や窒素等の気体からなる気体層とすれば、屈折率を1.0とすることが可能となり、蛍光体層3RA,3GA,3BAから等方的に発光する蛍光が、その気体層(低屈折率層)を透過して、基板に入射した光を外部に確実に取り出すことが可能となり、非常に効率よく蛍光を外部に取り出すことが可能となる。 The low refractive index layer 16 is preferably made of a gas. As described above, it is desirable that the refractive index of the low refractive index layer 16 is as low as possible. However, when the low refractive index layer 16 is formed of a material such as a solid, liquid, or gel, U.S. Pat. No. 4,402,827, No. 4,279,971, As described in JP-A-2001-202827 and the like, the lower limit of the refractive index is about 1.003. On the other hand, if the low refractive index layer 16 is a gas layer made of a gas such as air or nitrogen, for example, the refractive index can be set to 1.0, and from the phosphor layers 3RA, 3GA, 3BA. Isotropically emitted fluorescence is transmitted through the gas layer (low refractive index layer), so that the light incident on the substrate can be reliably extracted to the outside, and the fluorescence can be extracted to the outside very efficiently. It becomes possible.
[第4実施形態]
 以下、本発明の第4実施形態の表示装置100Cについて、図6、図7を参照して説明する。
 図6は、第4実施形態の表示装置100Cの断面図である。
 本実施形態の表示装置100Cの基本構成は第1実施形態と同様であり、隔壁5Cの構成が第1実施形態と異なるのみである。したがって、本実施形態では、表示装置100Cの基本構成の説明は省略し、隔壁5Cについてのみ説明する。
[Fourth embodiment]
Hereinafter, a display device 100C according to a fourth embodiment of the present invention will be described with reference to FIGS.
FIG. 6 is a cross-sectional view of a display device 100C according to the fourth embodiment.
The basic configuration of the display device 100C of the present embodiment is the same as that of the first embodiment, and only the configuration of the partition walls 5C is different from that of the first embodiment. Therefore, in the present embodiment, description of the basic configuration of the display device 100C is omitted, and only the partition 5C is described.
 第1実施形態では、隔壁5の蛍光体層3R,3G,3Bと接する部分(隔壁5の側面)は平坦面であった。これに対して、本実施形態の隔壁5Cは、図5に示すように、隔壁5Cの蛍光体層3R,3G,3Bと接する部分(隔壁5Cの側面)が凹凸形状である。その他の構成は第1実施形態と同様である。 In the first embodiment, the portions of the partition walls 5 that are in contact with the phosphor layers 3R, 3G, 3B (side surfaces of the partition walls 5) are flat surfaces. On the other hand, as shown in FIG. 5, in the partition 5C according to the present embodiment, portions of the partition 5C that are in contact with the phosphor layers 3R, 3G, and 3B (side surfaces of the partition 5C) are uneven. Other configurations are the same as those of the first embodiment.
 なお、本実施形態においては、隔壁5Cの側面のみが凹凸形状であるが、これに限らない。例えば、隔壁5Cの表面全体(隔壁5Cの側面に加えて隔壁5Cの上面)が凹凸形状であってもよい。すなわち、隔壁5Cの少なくとも蛍光体層3R,3G,3Bと接する部分が凹凸形状を有していればよい。 In the present embodiment, only the side surface of the partition wall 5C is uneven, but this is not a limitation. For example, the entire surface of the partition wall 5C (the upper surface of the partition wall 5C in addition to the side surface of the partition wall 5C) may be uneven. That is, it is only necessary that at least portions of the partition walls 5C that are in contact with the phosphor layers 3R, 3G, and 3B have an uneven shape.
 図7は、第4実施形態に係る表示装置100Cの隔壁5Cの作用を説明するための模式図である。 FIG. 7 is a schematic diagram for explaining the operation of the partition wall 5C of the display device 100C according to the fourth embodiment.
 本実施形態では、図7に示すように、蛍光体層3の側面が凹凸形状であるため、蛍光体層3で生じた蛍光L2が隔壁5Cと接する部分の凹凸形状で散乱し、蛍光L2が隔壁5Cに吸収されにくい。このため、蛍光体層3で生じた蛍光L2が隔壁5Cに吸収されることによる蛍光L2のロスを少なくすることができ、外部に蛍光L2を十分に取り出すことが可能となる。 In the present embodiment, as shown in FIG. 7, since the side surface of the phosphor layer 3 has an uneven shape, the fluorescence L2 generated in the phosphor layer 3 is scattered by the uneven shape of the portion in contact with the partition wall 5C, and the fluorescence L2 is Difficult to be absorbed by the partition 5C. For this reason, the loss of the fluorescence L2 due to the fluorescence L2 generated in the phosphor layer 3 being absorbed by the partition walls 5C can be reduced, and the fluorescence L2 can be sufficiently extracted outside.
 なお、隔壁5Cは白色であってもよい。具体的には、隔壁5Cは白色レジストを含んで形成されていてもよい。なお、隔壁5C全体が白色レジストを含んで形成されていてもよいし、隔壁5Cの蛍光体層3R,3G,3Bと接する部分のみが白色レジストを含んで形成されていてもよい。すなわち、隔壁5Cの少なくとも蛍光体層3R,3G,3Bと接する部分が白色であればよい。これにより、隔壁が黒色である場合に比べて、蛍光が隔壁5Cに吸収されにくくすることができる。 The partition wall 5C may be white. Specifically, the partition wall 5C may be formed including a white resist. In addition, the whole partition 5C may be formed including a white resist, or only portions of the partition 5C that are in contact with the phosphor layers 3R, 3G, and 3B may be formed including a white resist. That is, it is only necessary that at least portions of the partition walls 5C that are in contact with the phosphor layers 3R, 3G, and 3B are white. Thereby, compared with the case where a partition is black, fluorescence can be made hard to be absorbed by the partition 5C.
[第5実施形態]
 以下、本発明の第5実施形態の表示装置100Dについて、図8を参照して説明する。
 図8は、第5実施形態の表示装置100Dの断面図である。
 本実施形態の表示装置100Dの基本構成は第1実施形態と同様であり、隔壁5Dの構成が第1実施形態と異なるのみである。したがって、本実施形態では、表示装置100Dの基本構成の説明は省略し、隔壁5Dについてのみ説明する。
[Fifth Embodiment]
Hereinafter, a display device 100D according to a fifth embodiment of the present invention will be described with reference to FIG.
FIG. 8 is a cross-sectional view of a display device 100D of the fifth embodiment.
The basic configuration of the display device 100D of the present embodiment is the same as that of the first embodiment, and only the configuration of the partition wall 5D is different from that of the first embodiment. Therefore, in the present embodiment, the description of the basic configuration of the display device 100D is omitted, and only the partition wall 5D is described.
 本実施形態の表示装置100Dにおいて、光散乱層7の上面には黒色層8が設けられている。これにより、光源2から射出された励起光の一部が黒色層8で吸収されるため、隣接画素への光漏れを抑制して混色が生じることを回避することができる。なお、黒色層8の厚みは光散乱層7の厚みよりも薄くなっている。例えば、黒色層8の厚みは0.01μm~3μm程度となっている。また、黒色層8の幅は光散乱層7の上面の幅と同等の幅となっている。 In the display device 100D of the present embodiment, the black layer 8 is provided on the upper surface of the light scattering layer 7. Thereby, since a part of the excitation light emitted from the light source 2 is absorbed by the black layer 8, light leakage to adjacent pixels can be suppressed and color mixing can be avoided. The thickness of the black layer 8 is thinner than the thickness of the light scattering layer 7. For example, the thickness of the black layer 8 is about 0.01 μm to 3 μm. Further, the width of the black layer 8 is equal to the width of the upper surface of the light scattering layer 7.
 なお、本実施形態においては、光散乱層7の上面に黒色層8が設けられ、光散乱層7の下面に光吸収層6が設けられているが、これに限らない。例えば、黒色層8が光散乱層7の上面のみに設けられ、光散乱層7の下面に光吸収層6が設けられていなくてもよい。 In the present embodiment, the black layer 8 is provided on the upper surface of the light scattering layer 7 and the light absorption layer 6 is provided on the lower surface of the light scattering layer 7. However, the present invention is not limited to this. For example, the black layer 8 may be provided only on the upper surface of the light scattering layer 7, and the light absorption layer 6 may not be provided on the lower surface of the light scattering layer 7.
[第6実施形態]
 以下、本発明の第6実施形態の表示装置100Eについて、図9を参照して説明する。
 図9は、第6実施形態の表示装置100Eの断面図である。
 本実施形態の表示装置100Eの基本構成は第5実施形態と同様であり、平坦化層13の上面にバンドパスフィルター12が設けられた点が第5実施形態と異なる。したがって、本実施形態では、表示装置100Eの基本構成の説明は省略する。
[Sixth Embodiment]
Hereinafter, a display device 100E according to a sixth embodiment of the present invention will be described with reference to FIG.
FIG. 9 is a cross-sectional view of a display device 100E according to the sixth embodiment.
The basic configuration of the display device 100E of the present embodiment is the same as that of the fifth embodiment, and is different from the fifth embodiment in that the band pass filter 12 is provided on the upper surface of the planarization layer 13. Therefore, in this embodiment, the description of the basic configuration of the display device 100E is omitted.
 本実施形態の表示装置100Eにおいて、蛍光体基板10Eの各蛍光体層3R,3G,3Bの上面には、平坦化層13が形成されている。平坦化層13および隔壁5Dの上面には、バンドパスフィルター12が設けられている。 In the display device 100E of the present embodiment, a planarizing layer 13 is formed on the upper surface of each phosphor layer 3R, 3G, 3B of the phosphor substrate 10E. A band pass filter 12 is provided on the upper surfaces of the planarizing layer 13 and the partition walls 5D.
 光源2から励起光として青色光が射出される場合において、バンドパスフィルター12は、青色領域の光(波長435~480nmの範囲内の光)を透過し、緑色から近赤外領域までの光(前記青色領域の波長の範囲外の光)を反射する機能を有する。バンドパスフィルター12は、例えば金や銀等の薄膜、あるいは誘電体多層膜によって構成される。これにより、光源2から射出された青色光はバンドパスフィルター12を透過し、蛍光体層3で波長変換して、緑色光や赤色光を発光させることができる。さらに、バンドパスフィルター12は、当該バンドパスフィルター12に向かう緑色光や赤色光を再び蛍光体層側に反射させるので、緑色光や赤色光を効率的に利用することができる。 When blue light is emitted as excitation light from the light source 2, the bandpass filter 12 transmits light in the blue region (light in the wavelength range of 435 to 480 nm) and transmits light from green to the near infrared region ( A function of reflecting light outside the wavelength range of the blue region. The band-pass filter 12 is composed of a thin film such as gold or silver, or a dielectric multilayer film. Thereby, the blue light emitted from the light source 2 is transmitted through the band pass filter 12 and wavelength-converted by the phosphor layer 3 so that green light and red light can be emitted. Furthermore, since the bandpass filter 12 reflects the green light and red light toward the bandpass filter 12 again to the phosphor layer side, the green light and red light can be used efficiently.
 なお、本実施形態においては、平坦化層13の上面にバンドパスフィルター12が設けられているが、これに限らない。例えば、平坦化層13を設けずに、バンドパスフィルター12を隔壁5の開口部に形成された各蛍光体層3R,3G,3Bの上面に設けられていてもよい。すなわち、バンドパスフィルター12は、光源基板11と蛍光体基板10との間に設けられていればよい。 In the present embodiment, the band pass filter 12 is provided on the upper surface of the planarizing layer 13, but the present invention is not limited to this. For example, the band pass filter 12 may be provided on the upper surface of each phosphor layer 3R, 3G, 3B formed in the opening of the partition wall 5 without providing the planarizing layer 13. That is, the band pass filter 12 only needs to be provided between the light source substrate 11 and the phosphor substrate 10.
 また、光源2から励起光として紫外光が射出される場合、バンドパスフィルター12は、紫外領域の光(波長360~410nmの範囲内の光)を透過し、緑色から近赤外領域までの光(前記紫外領域の波長の範囲外の光)を反射する機能を有していてもよい。これにより、光源2から射出された紫外光はバンドパスフィルター12を透過し、蛍光体層3で波長変換して、緑色光や赤色光を発光させることができる。さらに、バンドパスフィルター12は、当該バンドパスフィルター12に向かう緑色光や赤色光を再び蛍光体層側に反射させるので、緑色光や赤色光を効率的に利用することができる。 In addition, when ultraviolet light is emitted from the light source 2 as excitation light, the bandpass filter 12 transmits light in the ultraviolet region (light in the wavelength range of 360 to 410 nm) and emits light from green to the near infrared region. It may have a function of reflecting (light outside the wavelength range of the ultraviolet region). Thereby, the ultraviolet light emitted from the light source 2 is transmitted through the band-pass filter 12 and wavelength-converted by the phosphor layer 3 to emit green light or red light. Furthermore, since the bandpass filter 12 reflects the green light and red light toward the bandpass filter 12 again to the phosphor layer side, the green light and red light can be used efficiently.
(隔壁の変形例)
 以下、上記実施形態の蛍光体基板における隔壁の変形例について、図10Aから図10Kを参照して説明する。
(Partition wall modification)
Hereinafter, modified examples of the barrier ribs in the phosphor substrate of the embodiment will be described with reference to FIGS. 10A to 10K.
(第1変形例)
 図10Aは、隔壁の第1変形例を示す断面図である。
 第1実施形態では、隔壁5は、基板1の側から光吸収層6と光散乱層7との積層構造を有していた。これに対して、本変形例の隔壁15は、図10Aに示すように、光散乱層(光反射層)の単層構造である。隔壁15の側断面形状は、基板1と接する側の辺(下底)が基板1と離れた側の辺(上底)よりも長い台形形状となっている。
(First modification)
FIG. 10A is a cross-sectional view showing a first modification of the partition wall.
In the first embodiment, the partition wall 5 has a laminated structure of the light absorption layer 6 and the light scattering layer 7 from the substrate 1 side. On the other hand, the partition 15 of this modification has a single layer structure of a light scattering layer (light reflection layer) as shown in FIG. 10A. The side cross-sectional shape of the partition wall 15 is a trapezoidal shape in which the side (lower bottom) on the side in contact with the substrate 1 is longer than the side (upper bottom) on the side away from the substrate 1.
 本変形例の構成においても、励起光が本来入射すべき画素の隣接画素に入射することを抑制し、所望外の蛍光体層が発光して色滲みが生じることを抑制することができる。 Also in the configuration of this modification, it is possible to suppress the excitation light from entering the adjacent pixel of the pixel that should be incident, and to suppress the occurrence of color blur due to the emission of an undesired phosphor layer.
(第2変形例)
 図10Bは、隔壁の第2変形例を示す断面図である。
 本変形例の隔壁15Aにおいても、図10Bに示すように、光散乱層(光反射層)の単層構造である。隔壁15Aの側断面形状は、基板1と接する側に底辺を有する三角形形状となっている。本変形例においては、隔壁15Aの側断面形状は、底辺に隣接する2辺の長さが互いに等しい二等辺三角形形状となっている。
(Second modification)
FIG. 10B is a cross-sectional view showing a second modification of the partition wall.
The partition wall 15A of this modification also has a single layer structure of a light scattering layer (light reflection layer) as shown in FIG. 10B. The side cross-sectional shape of the partition wall 15 </ b> A is a triangular shape having a base on the side in contact with the substrate 1. In this modification, the side cross-sectional shape of the partition wall 15A is an isosceles triangle shape in which the lengths of two sides adjacent to the bottom side are equal to each other.
 本変形例の構成においては、隔壁15Aの基板1と離れた側の部分が尖っているため、隔壁の基板1と離れた側の部分が平らである構成に比べて、隔壁15Aの基板1と離れた側の開口部が広くなる。よって、励起光が本来入射すべき画素の隣接画素に入射することをより確実に抑制し、所望外の蛍光体層が発光して色滲みが生じることを十分に抑制することができる。 In the configuration of this modified example, the portion of the partition wall 15A on the side away from the substrate 1 is pointed, so that the substrate 1 of the partition wall 15A and the portion on the side of the partition wall 15A away from the substrate 1 are flat. The opening on the far side becomes wider. Therefore, it can suppress more reliably that excitation light injects into the adjacent pixel of the pixel which should originally enter, and can fully suppress that the fluorescent substance layer which is not desired light-emits and color blurring arises.
(第3変形例)
 図10Cは、隔壁の第3変形例を示す断面図である。
 本変形例の隔壁15Bにおいても、図10Cに示すように、光散乱層(光反射層)の単層構造である。隔壁15Bの面積は、基板1と離れた側で小さく、基板1に向かうにつれて漸次大きくなっている。ここで、隔壁15Bの面積は、隔壁15Bを基板1の上面に平行な平面で切断したときの断面積である。以下、隔壁を基板1の上面に平行な平面で切断したときの断面積を、隔壁の平断面積ということがある。
(Third Modification)
FIG. 10C is a cross-sectional view showing a third modification of the partition wall.
The partition wall 15B of this modification also has a single layer structure of a light scattering layer (light reflection layer) as shown in FIG. 10C. The area of the partition wall 15B is small on the side away from the substrate 1 and gradually increases toward the substrate 1. Here, the area of the partition wall 15B is a cross-sectional area when the partition wall 15B is cut along a plane parallel to the upper surface of the substrate 1. Hereinafter, the cross-sectional area when the partition wall is cut along a plane parallel to the upper surface of the substrate 1 may be referred to as a planar cross-sectional area of the partition wall.
 また、隔壁15Bの基板1と離れた側の側面の形状は、側断面形状が凸をなす曲線形状となっている。つまり、隔壁15Bの先端が丸くなっている。 Further, the shape of the side surface of the partition wall 15B on the side away from the substrate 1 is a curved shape having a convex side cross-sectional shape. That is, the tip of the partition wall 15B is rounded.
 ところで、側断面形状が三角形形状である場合、隔壁の基板1と離れた側の部分が尖ることとなる。隔壁の基板1と離れた側の部分が尖りすぎると、隔壁の基板1と離れた側の部分において励起光の入射方向に対して局所的に横幅が小さくなる部分が生じる。そのため、励起光が隔壁の基板1と離れた側の部分に入射した場合、励起光が隔壁の基板1と離れた側の部分を透過し、本来入射すべき画素の隣接画素に入射してしまう懸念がある。 By the way, when the side cross-sectional shape is a triangular shape, the portion of the partition wall away from the substrate 1 is pointed. If the part of the partition wall on the side away from the substrate 1 is too sharp, a part having a lateral width locally smaller than the incident direction of the excitation light is generated in the part of the partition wall on the side away from the substrate 1. Therefore, when the excitation light is incident on the part of the partition wall that is away from the substrate 1, the excitation light is transmitted through the part of the partition wall that is away from the substrate 1 and is incident on the adjacent pixel of the pixel that should be incident. There are concerns.
 これに対して、本変形例の構成においては、隔壁15Bの基板1と離れた側の部分が丸みを帯びており、励起光の入射方向に対してある程度の横幅を有している。よって、励起光が隔壁15Bの基板1と離れた側の部分に入射した場合でも、励起光が隔壁の基板1と離れた側の部分を透過することを抑制することができる。 On the other hand, in the configuration of the present modification, the portion of the partition wall 15B on the side away from the substrate 1 is rounded and has a certain lateral width with respect to the incident direction of the excitation light. Therefore, even when the excitation light is incident on the part of the partition wall 15B on the side away from the substrate 1, the excitation light can be prevented from passing through the part of the partition wall on the side away from the substrate 1.
(第4変形例)
 図10Dは、隔壁の第4変形例を示す断面図である。
 本変形例の隔壁15Cにおいても、図10Dに示すように、光散乱層(光反射層)の単層構造である。隔壁15Cの形状は、平断面積が基板1と離れた側で小さく、基板1に向かうにつれて漸次大きくなる形状となっている。隔壁15Cの基板1と離れた側の部分は尖っている。隔壁15Cの側面の形状は、側断面形状が凹をなす曲線形状となっている。
(Fourth modification)
FIG. 10D is a cross-sectional view showing a fourth modification of the partition wall.
The partition wall 15C of this modification also has a single layer structure of a light scattering layer (light reflection layer) as shown in FIG. 10D. The shape of the partition wall 15 </ b> C is such that the cross-sectional area is small on the side away from the substrate 1 and gradually increases toward the substrate 1. The part of the partition wall 15C on the side away from the substrate 1 is pointed. The shape of the side surface of the partition wall 15C is a curved shape having a concave side cross-sectional shape.
 本変形例の構成においては、隔壁15Cの側面の側断面形状が凹をなす曲線形状であるため、側断面形状が凸をなす曲線形状の場合に比べて、励起光が隔壁15Cの開口部の奥(基板1の側)まで入り込みやすくなる。よって、励起光が本来入射すべき画素の隣接画素に入射することをより確実に抑制し、所望外の蛍光体層が発光して色滲みが生じることを十分に抑制することができる。 In the configuration of this modification, the side cross-sectional shape of the side wall of the partition wall 15C is a curved shape having a concave shape, so that excitation light is emitted from the opening of the partition wall 15C as compared to the curved shape having a convex side cross-sectional shape. It becomes easy to enter the back (substrate 1 side). Therefore, it can suppress more reliably that excitation light injects into the adjacent pixel of the pixel which should originally enter, and can fully suppress that the fluorescent substance layer which is not desired light-emits and color blurring arises.
(第5変形例)
 図10Eは、隔壁の第5変形例を示す断面図である。
 本変形例の隔壁15Dにおいても、図10Eに示すように、光散乱層(光反射層)の単層構造である。隔壁15Dの高さ方向中央部の側面の形状は、側断面形状が凸をなす曲線形状となっている。隔壁15Dの高さ方向中央部よりも上部の形状は、平断面積が基板1と離れた側で小さく、基板1に向かうにつれて漸次大きくなる形状となっている。隔壁15Dの基板1と離れた側の部分は尖っている。隔壁15Dの高さ方向中央部よりも上部の側面の形状は、側断面形状が凹をなす曲線形状となっている。
(5th modification)
FIG. 10E is a cross-sectional view showing a fifth modification of the partition wall.
The partition 15D of this modification also has a single-layer structure of a light scattering layer (light reflection layer) as shown in FIG. 10E. The shape of the side surface of the central portion in the height direction of the partition wall 15D is a curved shape in which the side cross-sectional shape is convex. The shape above the central portion in the height direction of the partition wall 15D is such that the cross-sectional area is small on the side away from the substrate 1 and gradually increases toward the substrate 1. The portion of the partition wall 15D on the side away from the substrate 1 is pointed. The shape of the side surface above the central portion in the height direction of the partition wall 15D is a curved shape having a concave side cross-sectional shape.
 本変形例の構成においても、励起光が本来入射すべき画素の隣接画素に入射することを抑制し、所望外の蛍光体層が発光して色滲みが生じることを抑制することができる。 Also in the configuration of this modification, it is possible to suppress the excitation light from entering the adjacent pixel of the pixel that should be incident, and to suppress the occurrence of color blur due to the emission of an undesired phosphor layer.
(第6変形例)
 図10Fは、隔壁の第6変形例を示す断面図である。
 本変形例の隔壁15Eにおいても、図10Fに示すように、光散乱層(光反射層)の単層構造である。隔壁15Eの形状は、平断面積が基板1と離れた側で小さく、基板1に向かうにつれて漸次大きくなる形状となっている。隔壁15Eの基板1と離れた側の部分は平らになっている。隔壁15Eの側面の形状は、側断面形状が凹をなす曲線形状となっている。
(Sixth Modification)
FIG. 10F is a cross-sectional view illustrating a sixth modification of the partition wall.
The partition wall 15E of this modification also has a single-layer structure of a light scattering layer (light reflection layer) as shown in FIG. 10F. The shape of the partition wall 15 </ b> E is such that the cross-sectional area is small on the side away from the substrate 1 and gradually increases toward the substrate 1. A portion of the partition wall 15E on the side away from the substrate 1 is flat. The shape of the side surface of the partition wall 15E is a curved shape having a concave side cross-sectional shape.
 本変形例の構成においては、隔壁15Eの側面の側断面形状が凹をなす曲線形状であるため、側断面形状が凸をなす曲線形状の場合に比べて、励起光が隔壁15Eの開口部の奥(基板1の側)まで入り込みやすくなる。よって、励起光が本来入射すべき画素の隣接画素に入射することをより確実に抑制し、所望外の蛍光体層が発光して色滲みが生じることを十分に抑制することができる。 In the configuration of this modified example, the side cross-sectional shape of the side wall of the partition wall 15E is a concave curved shape, so that excitation light is emitted from the opening of the partition wall 15E as compared to the curved shape of the side cross-sectional shape being convex. It becomes easy to enter the back (substrate 1 side). Therefore, it can suppress more reliably that excitation light injects into the adjacent pixel of the pixel which should originally enter, and can fully suppress that the fluorescent substance layer which is not desired light-emits and color blurring arises.
(第7変形例)
 図10Gは、隔壁の第7変形例を示す断面図である。
 本変形例の隔壁15Fにおいても、図10Gに示すように、光散乱層(光反射層)の単層構造である。隔壁15Fの形状は、平断面積が基板1と離れた側で小さく、基板1に向かうにつれて漸次大きくなる形状となっている。隔壁15Fの基板1と離れた側の側面の形状は、側断面形状が凸をなす曲線形状となっている。つまり、隔壁15Fの先端が丸くなっている。一方、隔壁15Fの形状は、基板1と近い側においては平断面積が略同じになる形状となっている。
(Seventh Modification)
FIG. 10G is a cross-sectional view showing a seventh modification of the partition wall.
The partition wall 15F of this modification also has a single layer structure of a light scattering layer (light reflection layer) as shown in FIG. 10G. The shape of the partition wall 15F is such that the cross-sectional area is small on the side away from the substrate 1 and gradually increases toward the substrate 1. The shape of the side surface on the side away from the substrate 1 of the partition wall 15F is a curved shape having a convex side cross-sectional shape. That is, the tip of the partition wall 15F is rounded. On the other hand, the shape of the partition wall 15 </ b> F is such that the cross-sectional area is substantially the same on the side near the substrate 1.
 本変形例の構成においては、隔壁15Fの基板1と離れた側の部分が丸みを帯びており、励起光の入射方向に対してある程度の横幅を有している。よって、励起光が隔壁15Fの基板1と離れた側の部分に入射した場合でも、励起光が隔壁15Fの基板1と離れた側の部分を透過することを抑制することができる。 In the configuration of this modification, the portion of the partition wall 15F on the side away from the substrate 1 is rounded, and has a certain lateral width with respect to the incident direction of the excitation light. Therefore, even when the excitation light is incident on the part of the partition wall 15F on the side away from the substrate 1, the excitation light can be prevented from passing through the part of the partition wall 15F on the side away from the substrate 1.
(第8変形例)
 図10Hは、隔壁の第8変形例を示す断面図である。
 本変形例の隔壁15Gにおいても、図10Hに示すように、光散乱層(光反射層)の単層構造である。本変形例の隔壁15Gは、図10Bに示す側断面形状に対して、隔壁15Gの側面の傾斜角度が途中で変わっている形状となっている。また、隔壁15Gの形状は、基板1と近い側においては平断面積が略同じになる形状となっている。
(Eighth modification)
FIG. 10H is a cross-sectional view illustrating an eighth modification of the partition wall.
The partition 15G of this modification also has a single-layer structure of a light scattering layer (light reflection layer) as shown in FIG. 10H. The partition wall 15G of this modification has a shape in which the inclination angle of the side surface of the partition wall 15G is changed halfway with respect to the side cross-sectional shape shown in FIG. 10B. Further, the shape of the partition wall 15G is such that the cross-sectional area is substantially the same on the side close to the substrate 1.
 本変形例の構成においては、隔壁15Gの基板1と離れた側の部分が尖っているため、隔壁の基板1と離れた側の部分が平らである構成に比べて、隔壁15Gの基板1と離れた側の開口部が広くなる。よって、励起光が本来入射すべき画素の隣接画素に入射することをより確実に抑制し、所望外の蛍光体層が発光して色滲みが生じることを十分に抑制することができる。 In the configuration of this modification, the portion of the partition wall 15G on the side away from the substrate 1 is pointed, so that the substrate 1 of the partition wall 15G and the partition 1 on the side away from the substrate 1 are flat as compared with the configuration in which the portion of the partition wall away from the substrate 1 is flat. The opening on the far side becomes wider. Therefore, it can suppress more reliably that excitation light injects into the adjacent pixel of the pixel which should originally enter, and can fully suppress that the fluorescent substance layer which is not desired light-emits and color blurring arises.
(第9変形例)
 図10Iは、隔壁の第9変形例を示す断面図である。
 本変形例の隔壁15Hにおいても、図10Iに示すように、光散乱層(光反射層)の単層構造である。本変形例の隔壁15Hは、図10Bに示す側断面形状に対して、隔壁15Hの側面の傾斜角度が途中で変わっている形状となっている。また、隔壁15Hの形状は、平断面積が基板1と離れた側で小さく、基板1に向かうにつれて漸次大きくなる形状となっている。隔壁15Hの形状は、隔壁15Hの先端側では側面の傾斜角度が緩やかであり、隔壁15Hの基端側では側面の傾斜角度が急である形状となっている。
(Ninth Modification)
FIG. 10I is a cross-sectional view showing a ninth modification of the partition wall.
The partition wall 15H of this modification also has a single layer structure of a light scattering layer (light reflection layer) as shown in FIG. 10I. The partition wall 15H of this modification has a shape in which the inclination angle of the side surface of the partition wall 15H is changed in the middle with respect to the side cross-sectional shape shown in FIG. 10B. The shape of the partition wall 15H is such that the plane cross-sectional area is small on the side away from the substrate 1 and gradually increases toward the substrate 1. The shape of the partition wall 15H is such that the inclination angle of the side surface is gentle on the distal end side of the partition wall 15H, and the inclination angle of the side surface is steep on the proximal end side of the partition wall 15H.
 本変形例の構成においても、隔壁15Hの基板1と離れた側の部分が尖っているため、隔壁の基板1と離れた側の部分が平らである構成に比べて、隔壁15Hの基板1と離れた側の開口部が広くなる。よって、励起光が本来入射すべき画素の隣接画素に入射することをより確実に抑制し、所望外の蛍光体層が発光して色滲みが生じることを十分に抑制することができる。 Also in the configuration of this modified example, the portion of the partition wall 15H on the side away from the substrate 1 is pointed, so that the substrate 1 of the partition wall 15H is different from the configuration in which the portion of the partition wall on the side away from the substrate 1 is flat. The opening on the far side becomes wider. Therefore, it can suppress more reliably that excitation light injects into the adjacent pixel of the pixel which should originally enter, and can fully suppress that the fluorescent substance layer which is not desired light-emits and color blurring arises.
(第10変形例)
 図10Jは、隔壁の第10変形例を示す断面図である。
 本変形例の隔壁15Iにおいても、図10Jに示すように、光散乱層(光反射層)の単層構造である。隔壁15Iの形状は、平断面積が基板1と離れた側で小さく、基板1に向かうにつれて漸次大きくなる形状となっている。隔壁15Iの基板1と離れた側の部分は尖っている。隔壁15Iの側面の形状は、側断面形状が凸をなす曲線形状となっている。
(10th modification)
FIG. 10J is a cross-sectional view illustrating a tenth modification of the partition wall.
The partition 15I of this modification also has a single-layer structure of a light scattering layer (light reflection layer) as shown in FIG. 10J. The shape of the partition wall 15I is such that the plane cross-sectional area is small on the side away from the substrate 1 and gradually increases toward the substrate 1. The part of the partition 15I on the side away from the substrate 1 is pointed. The shape of the side surface of the partition wall 15I is a curved shape having a convex side sectional shape.
 本変形例の構成においては、隔壁15Iの基板1と離れた側の部分が尖っているものの、隔壁15Iの側面の側断面形状が凸をなす曲線形状であるため、励起光の入射方向に対してある程度の厚みを有している。よって、励起光が隔壁15Iの基板1と離れた側の部分に入射した場合でも、励起光が隔壁15Iの基板1と離れた側の部分を透過することを抑制することができる。 In the configuration of this modification, although the portion of the partition wall 15I on the side away from the substrate 1 is pointed, the side cross-sectional shape of the side surface of the partition wall 15I is a curved shape, so Have a certain thickness. Therefore, even when the excitation light is incident on the portion of the partition wall 15I that is away from the substrate 1, the excitation light can be prevented from passing through the portion of the partition wall 15I that is away from the substrate 1.
(第11変形例)
 図10Kは、隔壁の第11変形例を示す断面図である。
 第1実施形態では、隔壁5は、基板1の側から光吸収層6と光散乱層7との2層の積層構造を有していた。これに対して、本変形例の隔壁15Jは、図10Kに示すように、光吸収層15Ja、第1光散乱層15Jb、第2光散乱層15Jcの3層の積層構造となっている。
(Eleventh modification)
FIG. 10K is a cross-sectional view showing an eleventh modification of the partition wall.
In the first embodiment, the partition wall 5 has a two-layered structure of the light absorption layer 6 and the light scattering layer 7 from the substrate 1 side. On the other hand, as shown in FIG. 10K, the partition wall 15J according to the present modification has a three-layer structure including a light absorption layer 15Ja, a first light scattering layer 15Jb, and a second light scattering layer 15Jc.
 光吸収層15Jaは、側断面形状が基板1と接する側の辺(下底)が基板1と離れた側の辺(上底)よりも長い台形形状となっている。第1光散乱層15Jbは、側断面形状が光吸収層15Jaと接する側の辺(下底)が光吸収層15Jaと離れた側の辺(上底)よりも長い台形形状となっている。第2光散乱層15Jcは、側断面形状が第1光散乱層15Jbと接する側の辺(下底)が第1光散乱層15Jbと離れた側の辺(上底)よりも長い台形形状となっている。 The light-absorbing layer 15Ja has a trapezoidal shape in which the side cross-sectional side (bottom base) on the side in contact with the substrate 1 is longer than the side (top bottom) on the side away from the substrate 1. The first light-scattering layer 15Jb has a trapezoidal shape in which the side cross-sectional side (lower base) on the side in contact with the light-absorbing layer 15Ja is longer than the side (upper base) on the side away from the light-absorbing layer 15Ja. The second light scattering layer 15Jc has a trapezoidal shape in which the side cross-sectional shape of the side (lower base) on the side in contact with the first light scattering layer 15Jb is longer than the side (upper base) on the side away from the first light scattering layer 15Jb. It has become.
 側断面形状において、第1光散乱層15Jbの光吸収層15Jaと接する側の辺(下底)は、光吸収層15Jaの基板1と離れた側の辺(上底)よりも短くなっている。第2光散乱層15Jcの第1光散乱層15Jbと接する側の辺(下底)は、第1光散乱層15Jbの光吸収層15Jaと離れた側の辺(上底)よりも短くなっている。 In the side cross-sectional shape, the side (lower base) of the first light scattering layer 15Jb in contact with the light absorption layer 15Ja is shorter than the side (upper bottom) of the light absorption layer 15Ja on the side away from the substrate 1. . The side (lower bottom) of the second light scattering layer 15Jc that is in contact with the first light scattering layer 15Jb is shorter than the side (upper bottom) of the first light scattering layer 15Jb that is away from the light absorption layer 15Ja. Yes.
 本変形例の構成においても、励起光が本来入射すべき画素の隣接画素に入射することを抑制し、所望外の蛍光体層が発光して色滲みが生じることを抑制することができる。 Also in the configuration of this modification, it is possible to suppress the excitation light from entering the adjacent pixel of the pixel that should be incident, and to suppress the occurrence of color blur due to the emission of an undesired phosphor layer.
 なお、本変形例においては、隔壁15Jが、光吸収層15Ja、第1光散乱層15Jb、第2光散乱層15Jcの3層の積層構造を有している例を挙げて説明したが、これに限らない。例えば、隔壁が4層以上の積層構造を有していてもよい。また、隔壁の基板側の層(第1層)が光吸収層である例を挙げて説明したが、第1層が光散乱層でもよい。また、隔壁において積層構造を構成する層がすべて光散乱層であってもよい。 In the present modification, the partition 15J has been described with reference to an example in which the barrier 15J has a three-layer structure of the light absorption layer 15Ja, the first light scattering layer 15Jb, and the second light scattering layer 15Jc. Not limited to. For example, the partition may have a laminated structure of four or more layers. Moreover, although the example in which the layer (first layer) on the substrate side of the partition wall is a light absorbing layer has been described, the first layer may be a light scattering layer. Further, all the layers constituting the laminated structure in the partition may be light scattering layers.
 また、隔壁の形状は、上記実施形態や上記変形例においては、隔壁の少なくとも基板1と離れた側の形状が、平断面積が基板1と離れた側で小さく、基板1に向かうにつれて漸次大きくなる形状を挙げて説明したが、上記実施形態や上記変形例で示した形状に限らず、種々の形状を採用することができる。 In addition, in the above-described embodiment and the above-described modification, the shape of the partition wall is such that at least the shape of the partition wall on the side away from the substrate 1 has a smaller plane cross-sectional area on the side away from the substrate 1 and gradually increases toward the substrate 1. However, the present invention is not limited to the shapes shown in the above embodiment and the above modified examples, and various shapes can be adopted.
 上記実施形態の蛍光体基板における隔壁のその他の変形例について、図11Aから図11Hを参照して説明する。 Other modifications of the partition walls in the phosphor substrate of the above embodiment will be described with reference to FIGS. 11A to 11H.
(第12変形例)
 図11Aは、隔壁の第12変形例を示す断面図である。
 本変形例の隔壁15Kは、図11Aに示すように、光散乱層(光反射層)の単層構造である。本変形例の隔壁15Kは、隔壁15Kの平断面積が途中で変わっている形状となっている。隔壁15Kの形状は、平断面積が基板1と離れた側の部分で小さく、基板1に接する側の部分で大きい形状となっている。隔壁15Kの形状は、基板1に接する側の部分と基板1と離れた側の部分とのそれぞれにおいて平断面積が略同じになる形状(基板1に対して垂直な形状を含む構成)となっている。
(Twelfth modification)
FIG. 11A is a cross-sectional view showing a twelfth modification of the partition wall.
As shown in FIG. 11A, the partition wall 15K of the present modification has a single layer structure of a light scattering layer (light reflection layer). The partition wall 15K of the present modification has a shape in which the plane cross-sectional area of the partition wall 15K changes in the middle. The shape of the partition wall 15 </ b> K is such that the plane cross-sectional area is small at the portion on the side away from the substrate 1 and large at the portion on the side in contact with the substrate 1. The shape of the partition wall 15K is a shape (a configuration including a shape perpendicular to the substrate 1) in which the cross-sectional area is substantially the same in each of the portion in contact with the substrate 1 and the portion away from the substrate 1. ing.
 本変形例の構成においては、隔壁15Kの側断面形状が、基板1と離れた側の部分が基板1と接する側の部分よりも幅が小さい矩形形状となっているため、隔壁の側断面形状が基板1と離れた側の部分と基板1と接する側の部分とで幅が等しい形状である構成(矩形形状)に比べて、隔壁15Kの基板1と離れた側の開口部が広くなる。よって、本変形例の構成においても、励起光が本来入射すべき画素の隣接画素に入射することを抑制し、所望外の蛍光体層が発光して色滲みが生じることを抑制することができる。 In the configuration of the present modification, the side cross-sectional shape of the partition wall 15K is a rectangular shape in which the portion on the side away from the substrate 1 is smaller in width than the portion on the side in contact with the substrate 1, and thus the side cross-sectional shape of the partition wall Compared to the configuration (rectangular shape) in which the width of the portion on the side away from the substrate 1 and the portion on the side in contact with the substrate 1 are equal (rectangular shape), the opening on the side away from the substrate 1 of the partition wall 15K becomes wider. Therefore, also in the configuration of the present modification, it is possible to suppress the excitation light from entering the adjacent pixel of the pixel that should be incident, and to suppress the occurrence of color blur due to the emission of an undesired phosphor layer. .
(第13変形例)
 図11Bは、隔壁の第13変形例を示す断面図である。
 本変形例の隔壁15Lにおいても、図11Bに示すように、光散乱層(光反射層)の単層構造である。本変形例の隔壁15Lも、隔壁15Lの平断面積が途中で変わっている形状となっている。隔壁15Lの形状は、平断面積が基板1と離れた側の部分で小さく、基板1に接する側の部分で大きい形状となっている。隔壁15Lの形状は、基板1と離れた側の部分において平断面積が略同じになる形状(基板1に対して垂直な形状を含む構成)となっている。これに対し、基板1に接する側の部分においては平断面積が基板1に向かうにつれて漸次小さくなる形状となっている。
(13th modification)
FIG. 11B is a cross-sectional view showing a thirteenth modification of the partition wall.
The partition 15L of this modification also has a single-layer structure of a light scattering layer (light reflection layer) as shown in FIG. 11B. The partition wall 15L of this modification also has a shape in which the plane cross-sectional area of the partition wall 15L changes in the middle. The shape of the partition wall 15 </ b> L is such that the plane cross-sectional area is small at the part away from the substrate 1 and large at the part in contact with the substrate 1. The shape of the partition wall 15 </ b> L is a shape (a configuration including a shape perpendicular to the substrate 1) in which the plane cross-sectional area is substantially the same in the portion on the side away from the substrate 1. On the other hand, the portion on the side in contact with the substrate 1 has a shape in which the plane cross-sectional area gradually decreases toward the substrate 1.
 本変形例の構成においては、隔壁15Lの基板1に接する側の部分においては平断面積が基板1に向かうにつれて漸次小さくなっているものの、隔壁15Lの側断面形状は基板1と離れた側の部分が基板1と接する側の部分よりも幅が小さい形状となっている。このため、隔壁の側断面形状が基板1と離れた側の部分と基板1と接する側の部分とで幅が等しい形状である構成(矩形形状)に比べて、隔壁15Lの基板1と離れた側の開口部が広くなる。よって、本変形例の構成においても、励起光が本来入射すべき画素の隣接画素に入射することを抑制し、所望外の蛍光体層が発光して色滲みが生じることを抑制することができる。 In the configuration of the present modification, the side cross-sectional area of the partition wall 15L is smaller on the side away from the substrate 1 although the plane cross-sectional area gradually decreases toward the substrate 1 at the portion of the partition wall 15L on the side in contact with the substrate 1. The width of the portion is smaller than that of the portion in contact with the substrate 1. Therefore, the partition wall 15L is separated from the substrate 1 in comparison with the configuration (rectangular shape) in which the side cross-sectional shape of the partition wall is the same width between the portion on the side away from the substrate 1 and the portion on the side in contact with the substrate 1 The opening on the side is widened. Therefore, also in the configuration of the present modification, it is possible to suppress the excitation light from entering the adjacent pixel of the pixel that should be incident, and to suppress the occurrence of color blur due to the emission of an undesired phosphor layer. .
(第14変形例)
 図11Cは、隔壁の第14変形例を示す断面図である。
 本変形例の隔壁15Mにおいても、図11Cに示すように、光散乱層(光反射層)の単層構造である。本変形例の隔壁15Mも、隔壁15Mの平断面積が途中で変わっている形状となっている。隔壁15Mの形状は、平断面積が基板1と離れた側の部分で小さく、基板1に接する側の部分で大きい形状となっている。隔壁15Mの形状は、基板1に接する側の部分において平断面積が略同じになる形状(基板1に対して垂直な形状を含む構成)となっている。これに対し、基板1と離れた側の部分においては平断面積が基板1に向かうにつれて漸次小さくなる形状となっている。
(14th modification)
FIG. 11C is a cross-sectional view showing a fourteenth modification of the partition wall.
The partition wall 15M of this modification also has a single layer structure of a light scattering layer (light reflection layer) as shown in FIG. 11C. The partition wall 15M of the present modification also has a shape in which the plane cross-sectional area of the partition wall 15M changes midway. The shape of the partition wall 15 </ b> M is small in the portion on the side away from the substrate 1 and large in the portion on the side in contact with the substrate 1. The shape of the partition wall 15 </ b> M is a shape (a configuration including a shape perpendicular to the substrate 1) in which the plane cross-sectional area is substantially the same in the portion in contact with the substrate 1. On the other hand, the portion on the side away from the substrate 1 has a shape in which the plane cross-sectional area gradually decreases toward the substrate 1.
 本変形例の構成においては、隔壁15Lの基板1と離れた側の部分においては平断面積が基板1に向かうにつれて漸次小さくなっているものの、隔壁15Mの側断面形状は基板1と離れた側の部分が基板1と接する側の部分よりも幅が小さい形状となっている。このため、隔壁の側断面形状が基板1と離れた側の部分と基板1と接する側の部分とで幅が等しい形状である構成(矩形形状)に比べて、隔壁15Mの基板1と離れた側の開口部が広くなる。よって、本変形例の構成においても、励起光が本来入射すべき画素の隣接画素に入射することを抑制し、所望外の蛍光体層が発光して色滲みが生じることを抑制することができる。 In the configuration of this modification, the side cross-sectional shape of the partition 15M is the side away from the substrate 1, although the flat cross-sectional area gradually decreases toward the substrate 1 at the portion of the partition 15L away from the substrate 1. This portion has a smaller width than the portion in contact with the substrate 1. For this reason, the partition wall 15M is separated from the substrate 1 in comparison with the configuration (rectangular shape) in which the side cross-sectional shape of the partition wall is a shape in which the width of the portion on the side away from the substrate 1 and the portion on the side in contact with the substrate 1 are equal. The opening on the side is widened. Therefore, also in the configuration of the present modification, it is possible to suppress the excitation light from entering the adjacent pixel of the pixel that should be incident, and to suppress the occurrence of color blur due to the emission of an undesired phosphor layer. .
(第15変形例)
 図11Dは、隔壁の第15変形例を示す断面図である。
 本変形例の隔壁15Nにおいても、図11Dに示すように、光散乱層(光反射層)の単層構造である。本変形例の隔壁15Nも、隔壁15Nの平断面積が途中で変わっている形状となっている。隔壁15Nの形状は、平断面積が基板1と離れた側の部分で小さく、基板1に接する側の部分で大きい形状となっている。隔壁15Nの形状は、基板1に接する側の部分と基板1と離れた側の部分とのそれぞれにおいて平断面積が基板1に向かうにつれて漸次小さくなる形状となっている。
(15th modification)
FIG. 11D is a cross-sectional view showing a fifteenth modification of the partition wall.
The partition wall 15N of this modification also has a single-layer structure of a light scattering layer (light reflection layer) as shown in FIG. 11D. The partition wall 15N of this modification also has a shape in which the plane cross-sectional area of the partition wall 15N changes in the middle. The shape of the partition wall 15N is small at the portion on the side away from the substrate 1 and large at the portion on the side in contact with the substrate 1. The shape of the partition wall 15N is such that the cross-sectional area gradually decreases toward the substrate 1 in each of the portion on the side in contact with the substrate 1 and the portion on the side away from the substrate 1.
 本変形例の構成においては、基板1に接する側の部分と基板1と離れた側の部分とのそれぞれにおいて平断面積が基板1に向かうにつれて漸次小さくなっているものの、隔壁15Nの側断面形状は基板1と離れた側の部分が基板1と接する側の部分よりも幅が小さい形状となっている。このため、隔壁の側断面形状が基板1と離れた側の部分と基板1と接する側の部分とで幅が等しい形状である構成(矩形形状)に比べて、隔壁15Nの基板1と離れた側の開口部が広くなる。よって、本変形例の構成においても、励起光が本来入射すべき画素の隣接画素に入射することを抑制し、所望外の蛍光体層が発光して色滲みが生じることを抑制することができる。 In the configuration of the present modification, the cross-sectional area of the partition wall 15N is gradually reduced toward the substrate 1 in each of the portion on the side in contact with the substrate 1 and the portion on the side away from the substrate 1. Has a shape in which the portion on the side away from the substrate 1 is smaller in width than the portion on the side in contact with the substrate 1. Therefore, the partition wall 15N is separated from the substrate 1 of the partition wall 15N as compared with the configuration (rectangular shape) in which the side cross-sectional shape of the partition wall is a shape having the same width in the portion on the side away from the substrate 1 and the portion in contact with the substrate 1 The opening on the side is widened. Therefore, also in the configuration of the present modification, it is possible to suppress the excitation light from entering the adjacent pixel of the pixel that should be incident, and to suppress the occurrence of color blur due to the emission of an undesired phosphor layer. .
(第16変形例)
 図11Eは、隔壁の第16変形例を示す断面図である。
 本変形例の隔壁15Oは、図11Eに示すように、光吸収層15Oa、光散乱層15Obの2層の積層構造となっている。
 本変形例の隔壁15Oは、側断面形状が矩形形状である光吸収層15Oaと、側断面形状が光吸収層15Oaの幅よりも小さい矩形形状である光散乱層15Obと、を備えている。
(16th modification)
FIG. 11E is a cross-sectional view showing a sixteenth modification of the partition wall.
As shown in FIG. 11E, the partition wall 15O of this modification has a two-layer structure of a light absorption layer 15Oa and a light scattering layer 15Ob.
The partition wall 15O of this modification includes a light absorption layer 15Oa having a rectangular side cross-sectional shape and a light scattering layer 15Ob having a rectangular side cross-sectional shape smaller than the width of the light absorption layer 15Oa.
 本変形例の構成においては、隔壁15Oの側断面形状が、基板1と離れた側の光散乱層15Obが基板1と接する側の光吸収層15Oaよりも幅が小さい矩形形状となっているため、隔壁の側断面形状が光散乱層と光吸収層とで幅が等しい形状である構成(矩形形状)に比べて、隔壁15Oの基板1と離れた側の開口部が広くなる。よって、本変形例の構成においても、励起光が本来入射すべき画素の隣接画素に入射することを抑制し、所望外の蛍光体層が発光して色滲みが生じることを抑制することができる。 In the configuration of this modification, the side cross-sectional shape of the partition wall 15O is a rectangular shape having a smaller width than the light absorption layer 15Oa on the side where the light scattering layer 15Ob on the side away from the substrate 1 is in contact with the substrate 1. Compared with a configuration (rectangular shape) in which the side cross-sectional shape of the partition wall is a shape in which the light scattering layer and the light absorption layer have the same width (rectangular shape), the opening on the side away from the substrate 1 of the partition wall 15O is widened. Therefore, also in the configuration of the present modification, it is possible to suppress the excitation light from entering the adjacent pixel of the pixel that should be incident, and to suppress the occurrence of color blur due to the emission of an undesired phosphor layer. .
(第17変形例)
 図11Fは、隔壁の第17変形例を示す断面図である。
 本変形例の隔壁15Pにおいても、図11Fに示すように、光吸収層15Pa、光散乱層15Pbの2層の積層構造となっている。
 光吸収層15Paは、側断面形状が基板1と接する側の辺(下底)が基板1と離れた側の辺(上底)よりも短い台形形状となっている。光散乱層15Pbは、側断面形状が光吸収層15Paと接する側の辺(下辺)が光吸収層15Paの基板1と離れた側の辺(上底)よりも短い矩形形状となっている。
(17th modification)
FIG. 11F is a cross-sectional view showing a seventeenth modification of the partition wall.
Also in the partition wall 15P of this modification, as shown in FIG. 11F, it has a two-layer laminated structure of a light absorption layer 15Pa and a light scattering layer 15Pb.
The light absorbing layer 15Pa has a trapezoidal shape in which the side cross-sectional shape is a side (lower bottom) on the side in contact with the substrate 1 shorter than the side (upper bottom) on the side away from the substrate 1. The light scattering layer 15Pb has a rectangular shape in which the side cross-sectional side (lower side) on the side in contact with the light absorption layer 15Pa is shorter than the side (upper bottom) on the side away from the substrate 1 of the light absorption layer 15Pa.
 本変形例の構成においては、光吸収層15Paにおいては平断面積が基板1に向かうにつれて漸次小さくなっているものの、隔壁15Pの側断面形状は基板1と離れた側の光散乱層15Pbが基板1と接する側の光吸収層15Paよりも幅が小さい形状となっている。このため、隔壁の側断面形状が光散乱層と光吸収層とで幅が等しい形状である構成(矩形形状)に比べて、隔壁15Pの基板1と離れた側の開口部が広くなる。よって、本変形例の構成においても、励起光が本来入射すべき画素の隣接画素に入射することを抑制し、所望外の蛍光体層が発光して色滲みが生じることを抑制することができる。 In the configuration of this modification, although the plane cross-sectional area of the light absorption layer 15Pa gradually decreases toward the substrate 1, the side cross-sectional shape of the partition wall 15P is that the light scattering layer 15Pb on the side away from the substrate 1 is the substrate. 1 has a smaller width than the light absorption layer 15Pa on the side in contact with 1. For this reason, compared with the structure (rectangular shape) where the side cross-sectional shape of a partition is a shape (rectangular shape) with the width | variety equal in a light-scattering layer and a light absorption layer, the opening part on the side away from the board | substrate 1 is wide. Therefore, also in the configuration of the present modification, it is possible to suppress the excitation light from entering the adjacent pixel of the pixel that should be incident, and to suppress the occurrence of color blur due to the emission of an undesired phosphor layer. .
(第18変形例)
 図11Gは、隔壁の第18変形例を示す断面図である。
 本変形例の隔壁15Qにおいても、図11Gに示すように、光吸収層15Qa、光散乱層15Qbの2層の積層構造となっている。
 光吸収層15Qaは、側断面形状が矩形形状となっている。光散乱層15Qbは、側断面形状が光吸収層15Qaと接する側の辺(下底)が基板1と離れた側の辺(上底)よりも短い台形形状となっている。光散乱層15Qbは、側断面形状が光吸収層15Qaと接する側の辺(下底)が光吸収層15Qaの基板1と離れた側の辺(上底)よりも短くなっている。
(18th modification)
FIG. 11G is a cross-sectional view showing an eighteenth modification of the partition wall.
As shown in FIG. 11G, the partition wall 15Q of the present modification also has a two-layer structure of a light absorption layer 15Qa and a light scattering layer 15Qb.
The light absorption layer 15Qa has a rectangular side cross-sectional shape. The light scattering layer 15 </ b> Qb has a trapezoidal shape in which the side cross-section side (lower base) on the side in contact with the light absorption layer 15 </ b> Qa is shorter than the side (upper base) on the side away from the substrate 1. In the light scattering layer 15Qb, the side cross-sectional shape is such that the side (lower bottom) on the side in contact with the light absorption layer 15Qa is shorter than the side (upper bottom) on the side away from the substrate 1 of the light absorption layer 15Qa.
 本変形例の構成においては、光散乱層15Qbにおいては平断面積が基板1に向かうにつれて漸次小さくなっているものの、隔壁15Qの側断面形状は基板1と離れた側の光散乱層15Qbが基板1と接する側の光吸収層15Qaよりも幅が小さい形状となっている。このため、隔壁の側断面形状が光散乱層と光吸収層とで幅が等しい形状である構成(矩形形状)に比べて、隔壁15Qの基板1と離れた側の開口部が広くなる。よって、本変形例の構成においても、励起光が本来入射すべき画素の隣接画素に入射することを抑制し、所望外の蛍光体層が発光して色滲みが生じることを抑制することができる。 In the configuration of this modification, although the plane cross-sectional area of the light scattering layer 15Qb gradually decreases toward the substrate 1, the side cross-sectional shape of the partition wall 15Q is that the light scattering layer 15Qb on the side away from the substrate 1 is the substrate. 1, the width is smaller than that of the light absorption layer 15Qa on the side in contact with 1. For this reason, compared with the configuration (rectangular shape) in which the side cross-sectional shape of the partition wall has the same width between the light scattering layer and the light absorption layer (rectangular shape), the opening portion on the side away from the substrate 1 of the partition wall 15Q becomes wider. Therefore, also in the configuration of the present modification, it is possible to suppress the excitation light from entering the adjacent pixel of the pixel that should be incident, and to suppress the occurrence of color blur due to the emission of an undesired phosphor layer. .
(第19変形例)
 図11Hは、隔壁の第19変形例を示す断面図である。
 本変形例の隔壁15Rにおいても、図11Hに示すように、光吸収層15Ra、光散乱層15Rbの2層の積層構造となっている。
 光吸収層15Raは、側断面形状が基板1と接する側の辺(下底)が基板1と離れた側の辺(上底)よりも短い台形形状となっている。光散乱層15Rbは、側断面形状が光吸収層15Raと接する側の辺(下底)が基板1と離れた側の辺(上底)よりも短い台形形状となっている。光散乱層15Rbは、側断面形状が光吸収層15Raと接する側の辺(下底)が光吸収層15Raの基板1と離れた側の辺(上底)よりも短くなっている。
(19th modification)
FIG. 11H is a cross-sectional view showing a nineteenth modification of the partition wall.
The partition wall 15R of this modification also has a two-layer structure of a light absorption layer 15Ra and a light scattering layer 15Rb as shown in FIG. 11H.
The light absorption layer 15 </ b> Ra has a trapezoidal shape in which the side cross-section side (lower base) on the side in contact with the substrate 1 is shorter than the side (upper base) on the side away from the substrate 1. The light scattering layer 15 </ b> Rb has a trapezoidal shape in which the side section (lower base) on the side in contact with the light absorption layer 15 </ b> Ra is shorter than the side (upper base) on the side away from the substrate 1. The light scattering layer 15Rb has a side cross-sectional shape whose side (lower bottom) on the side in contact with the light absorption layer 15Ra is shorter than the side (upper bottom) on the side away from the substrate 1 of the light absorption layer 15Ra.
 本変形例の構成においては、光吸収層15Raと光散乱層15Rbとのそれぞれにおいて平断面積が基板1に向かうにつれて漸次小さくなっているものの、隔壁15Rの側断面形状は、基板1と離れた側の光散乱層15Rbが基板1と接する側の光吸収層15Raよりも幅が小さい形状となっている。このため、隔壁の側断面形状が光散乱層と光吸収層とで幅が等しい形状である構成(矩形形状)に比べて、隔壁15Rの基板1と離れた側の開口部が広くなる。よって、本変形例の構成においても、励起光が本来入射すべき画素の隣接画素に入射することを抑制し、所望外の蛍光体層が発光して色滲みが生じることを抑制することができる。 In the configuration of the present modification, the side cross-sectional shape of the partition wall 15R is separated from the substrate 1, although the planar cross-sectional area gradually decreases toward the substrate 1 in each of the light absorption layer 15Ra and the light scattering layer 15Rb. The light scattering layer 15 </ b> Rb on the side has a shape smaller in width than the light absorption layer 15 </ b> Ra on the side in contact with the substrate 1. For this reason, compared with the configuration (rectangular shape) in which the side cross-sectional shape of the partition wall is a shape in which the light scattering layer and the light absorption layer have the same width (rectangular shape), the opening portion on the side away from the substrate 1 of the partition wall 15R becomes wider. Therefore, also in the configuration of the present modification, it is possible to suppress the excitation light from entering the adjacent pixel of the pixel that should be incident, and to suppress the occurrence of color blur due to the emission of an undesired phosphor layer. .
 なお、隔壁の形状は、上記第12変形例ないし第19変形例においては、隔壁の少なくとも一部において、基板1に対して垂直な形状を含む構成、平断面積が基板1に向かうにつれて漸次小さくなる形状を含む構成、を挙げて説明したが、上記変形例で示した形状に限らず、種々の形状を採用することができる。 In the twelfth to nineteenth modifications, the shape of the partition wall includes a configuration that includes a shape perpendicular to the substrate 1 in at least a part of the partition wall, and gradually decreases as the cross-sectional area toward the substrate 1. However, the present invention is not limited to the shape shown in the modification example, and various shapes can be adopted.
(光源)
 次に、上記実施形態に係る光源2について説明する。
 蛍光体層3R,3G,3Bを励起する光源2としては、紫外光、青色光が好ましく、例えば、紫外LED、青色LED、紫外発光無機EL、青色発光無機EL、紫外発光有機EL、青色発光有機EL等が挙げられるが、本実施形態はこれらの光源に限定されるものではない。また、これらの光源2を直接スイッチングする事で、画像を表示する為の、発光のON/OFFをコントロールする事が可能である。また、蛍光体層3R,3G,3Bと光源2との間に、液晶の様なシャッター機能を有する層を配置し、それを、コントロールする事で発光のON/OFFをコントロールする事も可能である。また、液晶の様なシャッター機能を有する層と光源2とを両方共ON/OFFをコントロールする事も可能である。
(light source)
Next, the light source 2 according to the embodiment will be described.
The light source 2 for exciting the phosphor layers 3R, 3G, 3B is preferably ultraviolet light or blue light. For example, ultraviolet LED, blue LED, ultraviolet light emitting inorganic EL, blue light emitting inorganic EL, ultraviolet light emitting organic EL, blue light emitting organic Although EL etc. are mentioned, this embodiment is not limited to these light sources. Further, by directly switching these light sources 2, it is possible to control ON / OFF of light emission for displaying an image. It is also possible to control the ON / OFF of light emission by arranging a layer having a shutter function such as liquid crystal between the phosphor layers 3R, 3G, 3B and the light source 2, and controlling it. is there. It is also possible to control ON / OFF of both the layer having a shutter function such as liquid crystal and the light source 2.
 光源2としては、公知の紫外LED、青色LED、紫外発光無機EL、青色発光無機EL、紫外発光有機EL、青色発光有機EL等が使用可能であり、特に限定されるものではなく、公知の材料、公知の製造方法で作製する事が可能である。ここで、紫外光としては、主発光ピークが360nm~410nmの発光が好ましく、青色光としては、主発光ピークが435nm~480nmの発光が好ましい。光源2は、指向性を有していることが望ましい。指向性とは、光の強度が方向によって異なる性質をいう。指向性は、光が蛍光体層に入射する時点で有していればよい。光源2は、平行光を蛍光体層に入射させることが望ましい。 As the light source 2, a known ultraviolet LED, blue LED, ultraviolet light emitting inorganic EL, blue light emitting inorganic EL, ultraviolet light emitting organic EL, blue light emitting organic EL or the like can be used, and is not particularly limited. It can be produced by a known production method. Here, the ultraviolet light preferably emits light having a main light emission peak of 360 nm to 410 nm, and the blue light preferably has light emission of a main light emission peak of 435 nm to 480 nm. The light source 2 desirably has directivity. Directivity refers to the property that the intensity of light varies depending on the direction. The directivity may be provided at the time when light enters the phosphor layer. The light source 2 desirably makes parallel light incident on the phosphor layer.
 光源2の指向性の程度としては半値幅±30度以下、より好ましくは±10度以下が良い。半値幅30度よりも大きい場合、バックライトから射出された光が所望の画素以外に入射して所望外の蛍光体を励起することにより色純度やコントラストを低下させるためである。 The degree of directivity of the light source 2 is preferably a half width of ± 30 degrees or less, more preferably ± 10 degrees or less. This is because when the half-value width is larger than 30 degrees, light emitted from the backlight is incident on a pixel other than a desired pixel and excites an undesired phosphor to reduce color purity and contrast.
 以下、光源2に好適に利用可能な光源2Aについて説明する。 Hereinafter, the light source 2A that can be suitably used for the light source 2 will be described.
「LED」
 図12に示すように、LED(発光ダイオード)を光源2Aとして用いることができる。LEDとしては、公知のLEDを用いる事が可能で、例えば、紫外発光無機LED、青色発光無機LEDが好適である。これらのLEDは、例えば、基板9の一面に第1のバッファ層23、n型コンタクト層24、第2のn型クラッド層25、第1のn型クラッド層26、活性層27、第1のp型クラッド層28、第2のp型クラッド層29、第2のバッファ層30が順次積層され、n型コンタクト層24上に陰極22が形成され、第2のバッファ層30上に陽極21が形成された構成の光源2Aである。なお、LEDの具体的な構成は前記のものに限ることはない。
"LED"
As shown in FIG. 12, an LED (light emitting diode) can be used as the light source 2A. As the LED, a known LED can be used. For example, an ultraviolet light emitting inorganic LED and a blue light emitting inorganic LED are suitable. These LEDs include, for example, a first buffer layer 23, an n-type contact layer 24, a second n-type cladding layer 25, a first n-type cladding layer 26, an active layer 27, a first layer on one surface of the substrate 9. A p-type cladding layer 28, a second p-type cladding layer 29, and a second buffer layer 30 are sequentially stacked, a cathode 22 is formed on the n-type contact layer 24, and an anode 21 is formed on the second buffer layer 30. It is the light source 2A of the formed structure. In addition, the specific structure of LED is not restricted to the above-mentioned thing.
 活性層27は、電子と正孔の再結合より発光を行う層であり、活性層材料としては、LED用の公知の活性層材料を用いることができる。このような活性層材料としては、例えば、紫外活性層材料としては、AlGaN、InAlN、InaAlbGa1-a-bN(0≦a、0≦b、a+b≦1)、青色活性層材料としては、Inz Ga1-z N(0<z<1)等が挙げられるが、活性層材料はこれらに限定されるものではない。 The active layer 27 is a layer that emits light by recombination of electrons and holes, and a known active layer material for LED can be used as the active layer material. As such an active layer material, for example, as an ultraviolet active layer material, AlGaN, InAlN, In a Al b Ga 1-ab N (0 ≦ a, 0 ≦ b, a + b ≦ 1), blue active layer material In z Ga 1 -z N (0 <z <1) and the like are exemplified, but the active layer material is not limited thereto.
 活性層27としては、単一量子井戸構造または多重量子井戸構造のものが利用できる。
量子井戸構造の活性層はn型、p型のいずれでもよいが、特にノンドープ(不純物無添加)とすることによりバンド間発光により発光波長の半値幅が狭くなり、色純度のよい発光が得られるため好ましい。
As the active layer 27, a single quantum well structure or a multiple quantum well structure can be used.
The active layer of the quantum well structure may be either n-type or p-type. In particular, when it is non-doped (no impurity added), the half-value width of the emission wavelength is narrowed by band-to-band emission, and emission with good color purity is obtained. Therefore, it is preferable.
 活性層27にドナー不純物、アクセプター不純物の少なくとも一方をドープしてもよい。不純物をドープした活性層の結晶性がノンドープと同じであれば、ドナー不純物をドープすると、ノンドープのものに比べてバンド間発光強度をさらに強くすることができる。
アクセプター不純物をドープするとバンド間発光のピーク波長よりも約0.5eV低エネルギー側にピーク波長をシフトさせることができるが、半値幅は広くなる。アクセプター不純物とドナー不純物との両者をドープすると、アクセプター不純物のみをドープした活性層の発光強度に比べその発光強度をさらに大きくすることができる。特に、アクセプター不純物をドープした活性層を形成する場合、活性層の導電型はSi等のドナー不純物をもドープしてn型とすることが好ましい。
The active layer 27 may be doped with at least one of a donor impurity and an acceptor impurity. If the crystallinity of the active layer doped with impurities is the same as that of non-doped, doping with donor impurities can further increase the emission intensity between bands as compared with non-doped ones.
When the acceptor impurity is doped, the peak wavelength can be shifted to a lower energy side by about 0.5 eV than the peak wavelength of interband light emission, but the full width at half maximum is increased. When both the acceptor impurity and the donor impurity are doped, the light emission intensity can be further increased as compared with the light emission intensity of the active layer doped only with the acceptor impurity. In particular, when an active layer doped with an acceptor impurity is formed, the conductivity type of the active layer is preferably doped with a donor impurity such as Si to be n-type.
 n型クラッド層25,26としては、LED用の公知のn型クラッド層材料を用いることができる。図12の例では、n型クラッド層を第1のn型クラッド層26と第2のn型クラッド層25の2層で構成しているが、n型クラッド層は、1層でもよいし、3層以上の多層でも良い。活性層27よりバンドギャップエネルギーが大きいn型半導体で形成される材料によりn型クラッド層を構成する事で、n型クラッド層と活性層27の間には正孔に対する電位隔壁ができ、正孔を活性層に閉じ込める事が可能となる。例えば、n型Inx Ga1-x N(0≦x<1)によりn型クラッド層を25,26形成する事が可能であるが、n型クラッド層は25,26は、これらに限定されるものではない。 As the n-type cladding layers 25 and 26, known n-type cladding layer materials for LEDs can be used. In the example of FIG. 12, the n-type cladding layer is composed of two layers, a first n-type cladding layer 26 and a second n-type cladding layer 25, but the n-type cladding layer may be a single layer, Three or more layers may be used. By forming the n-type cladding layer with a material formed of an n-type semiconductor having a band gap energy larger than that of the active layer 27, a potential barrier for holes is formed between the n-type cladding layer and the active layer 27. Can be confined in the active layer. For example, n-type cladding layers 25 and 26 can be formed by n-type Inx Ga1-x N (0 ≦ x <1), but n-type cladding layers 25 and 26 are limited to these. is not.
 p型クラッド層28,29としては、LED用の公知のp型クラッド層材料を用いることができる。図12の例では、p型クラッド層を第1のp型クラッド層28と第2のp型クラッド層29の2層で構成しているが、p型クラッド層は、1層でもよいし、3層以上の多層でも良い。活性層27よりバンドギャップエネルギーが大きいp型半導体で形成される材料によりp型クラッド層を構成する事で、p型クラッド層と活性層27の間には電子に対する電位隔壁ができ、電子は活性層27に閉じ込める事が可能となる。例えば、Aly Ga1-y N(0≦y≦1)でp型クラッド層28,29を形成する事が可能であるが、p型クラッド層28,29は、これらに限定されるものではない。 As the p-type cladding layers 28 and 29, a known p-type cladding layer material for LED can be used. In the example of FIG. 12, the p-type cladding layer is composed of two layers, a first p-type cladding layer 28 and a second p-type cladding layer 29, but the p-type cladding layer may be a single layer, Three or more layers may be used. By forming the p-type cladding layer with a material formed of a p-type semiconductor having a band gap energy larger than that of the active layer 27, a potential barrier for electrons is formed between the p-type cladding layer and the active layer 27, and the electrons are active. It becomes possible to confine in the layer 27. For example, the p-type cladding layers 28 and 29 can be formed of Aly Ga1-y N (0 ≦ y ≦ 1), but the p-type cladding layers 28 and 29 are not limited to these.
 n型コンタクト層24としては、LED用の公知のコンタクト層材料を用いることができる。例えば、n型クラッド層に接して電極(陰極22)を形成する層としてn型GaNよりなるn型コンタクト層を形成することが可能である。また、p型クラッド層に接して電極(陽極21)を形成する層としてp型GaNよりなるp型コンタクト層を形成することも可能である。但し、このコンタクト層は、第2のn型クラッド層25、第2のp型クラッド層29をGaNで形成されていれば、特に形成する必要はなく、第2のn型およびp型クラッド層をコンタクト層とすることも可能である。 As the n-type contact layer 24, a known contact layer material for LED can be used. For example, an n-type contact layer made of n-type GaN can be formed as a layer for forming an electrode (cathode 22) in contact with the n-type cladding layer. It is also possible to form a p-type contact layer made of p-type GaN as a layer for forming the electrode (anode 21) in contact with the p-type cladding layer. However, this contact layer need not be formed if the second n-type cladding layer 25 and the second p-type cladding layer 29 are made of GaN. The second n-type and p-type cladding layers are not necessary. Can be used as a contact layer.
 上記各層は、LED用の公知の成膜プロセスを用いる事が可能であるが、成膜プロセスは特にこれらに限定されるものではない。例えば、MOVPE(有機金属気相成長法)、MBE(分子線気相成長法)、HDVPE(ハイドライド気相成長法)等の気相成長法を用いて、例えばサファイア(C面、A面、R面を含む)、SiC(6H-SiC、4H-SiCも含む)、スピネル(MgAl、特にその(111)面)、ZnO、Si、GaAs、あるいは他の酸化物単結晶基板(NGO等)等の基板上に上記各層を形成することが可能である。 For each of the above layers, a known film formation process for LED can be used, but the film formation process is not particularly limited thereto. For example, by using a vapor phase growth method such as MOVPE (metal organic vapor phase epitaxy), MBE (molecular beam vapor phase epitaxy), HDVPE (hydride vapor phase epitaxy), for example, sapphire (C plane, A plane, R ), SiC (including 6H—SiC, 4H—SiC), spinel (MgAl 2 O 4 , especially its (111) plane), ZnO, Si, GaAs, or other oxide single crystal substrates (such as NGO) The above-mentioned layers can be formed on a substrate such as
「有機EL素子」
 図13に示すように、有機EL素子を光源2Bとして用いることができる。本実施形態で用いられる有機EL素子は、公知の有機ELを用いる事が可能である。有機EL素子2Bは、例えば、基板9の一面に陽極41、正孔注入層43、正孔輸送層44、発光層45、正孔防止層46、電子輸送層47、電子注入層48、陰極49が順次積層された構成の光源2Bである。陽極41の端面を覆うようにエッジカバー42が形成されている。有機EL素子2Bとしては、陽極41と陰極49との間に少なくとも有機発光材料からなる発光層(有機発光層)45を含む有機EL層を含んでいればよく、具体的な構成は前記のものに限ることはない。なお、以下の説明では、正孔注入層43から電子注入層48までの層を有機EL層と称することがある。
"Organic EL device"
As shown in FIG. 13, an organic EL element can be used as the light source 2B. As the organic EL element used in the present embodiment, a known organic EL can be used. The organic EL element 2B includes, for example, an anode 41, a hole injection layer 43, a hole transport layer 44, a light emitting layer 45, a hole prevention layer 46, an electron transport layer 47, an electron injection layer 48, and a cathode 49 on one surface of the substrate 9. Is a light source 2B having a configuration in which are sequentially stacked. An edge cover 42 is formed so as to cover the end face of the anode 41. The organic EL element 2B only needs to include an organic EL layer including at least a light emitting layer (organic light emitting layer) 45 made of an organic light emitting material between the anode 41 and the cathode 49. The specific configuration is as described above. It is not limited to. In the following description, the layers from the hole injection layer 43 to the electron injection layer 48 may be referred to as an organic EL layer.
 有機EL素子2Bは、図1に示した赤色サブ画素PR、緑色サブ画素PG、青色サブ画素PBの各々に対応してマトリクス状に設けられ、個別にオン/オフが制御されるようになっている。
複数の有機EL素子2Bの駆動方法は、アクティブマトリクス駆動でもよいし、パッシブマトリクス駆動でもよい。アクティブマトリクス方式の有機EL素子を用いた構成例は、後の説明で詳述する。
The organic EL element 2B is provided in a matrix corresponding to each of the red subpixel PR, the green subpixel PG, and the blue subpixel PB shown in FIG. 1, and is individually controlled to be turned on / off. Yes.
The driving method of the plurality of organic EL elements 2B may be active matrix driving or passive matrix driving. A configuration example using an active matrix organic EL element will be described in detail later.
 以下、有機EL素子2Bの各構成要素について詳細に説明する。 Hereinafter, each component of the organic EL element 2B will be described in detail.
「基板」
 本実施形態で用いられる基板9としては、例えば、ガラス、石英等からなる無機材料基板、ポリエチレンテレフタレート、ポリカルバゾール、ポリイミド等からなるプラスティック基板、アルミナ等からなるセラミックス基板等の絶縁性基板、又は、アルミニウム(Al)、鉄(Fe)等からなる金属基板、または、前記基板上に酸化シリコン(SiO)、有機絶縁材料等からなる絶縁物を表面にコーティングした基板、Al等からなる金属基板の表面を陽極酸化等の方法で絶縁化処理を施した基板等が挙げられる。さらに、前記プラスティック基板に無機材料をコートした基板、前記金属基板に無機絶縁材料をコートした基板が更に好ましい。これにより、プラスティック基板を有機ELの基板として用いた場合の最大の問題となる水分の透過による有機ELの劣化(有機ELは、特に低量の水分に対しても劣化が起こることが知られている。)を解消する事が可能となる。また、金属基板を有機ELの基板として用いた場合の最大の問題となる金属基板の突起によるリーク(ショート)(有機ELの膜厚は、100~200nm程度と非常に薄いため、突起による画素部での電流にリーク(ショート)が、顕著に起こることが知られている。)を解消する事が可能となる。
"substrate"
As the substrate 9 used in this embodiment, for example, an inorganic substrate made of glass, quartz, etc., a plastic substrate made of polyethylene terephthalate, polycarbazole, polyimide, etc., an insulating substrate such as a ceramic substrate made of alumina, or the like, or A metal substrate made of aluminum (Al), iron (Fe), or the like, or a substrate in which an insulating material made of silicon oxide (SiO 2 ) or an organic insulating material is coated on the substrate, or a metal substrate made of Al or the like Examples thereof include a substrate whose surface is subjected to insulation treatment by a method such as anodization. Further, a substrate in which the plastic substrate is coated with an inorganic material, and a substrate in which the metal substrate is coated with an inorganic insulating material are more preferable. As a result, deterioration of organic EL due to moisture permeation, which is the biggest problem when a plastic substrate is used as an organic EL substrate (organic EL is known to occur particularly even with a low amount of moisture, is known. Can be resolved. In addition, leakage (short) due to protrusions on the metal substrate, which is the biggest problem when a metal substrate is used as an organic EL substrate (the film thickness of the organic EL is as thin as about 100 to 200 nm, so the pixel portion due to the protrusions) It is known that leakage (short-circuit) occurs in the current at (1).
 また、有機EL素子をアクティブマトリックス駆動するためのTFTを形成する場合には、500℃以下の温度で融解せず、歪みも生じない基板を用いることが好ましい。また、一般的な金属基板は、ガラスと熱膨張率が異なるため、従来の生産装置で金属基板上にTFTを形成することが困難であるが、線膨張係数が1×10-5/ ℃ 以下の鉄-ニッケル系合金である金属基板を用いて、線膨張係数をガラスに合わせ込む事で金属基板上にTFTを従来の生産装置を用いて安価に形成する事が可能となる。また、プラスティック基板の場合には、耐熱温度が非常に低いため、ガラス基板上にTFTを形成した後、プラスティック基板にTFTを転写する事で、プラスティック基板上にTFTを転写形成する事が可能である。 Further, when forming a TFT for driving an organic EL element in an active matrix, it is preferable to use a substrate that does not melt at a temperature of 500 ° C. or lower and does not cause distortion. In addition, since a general metal substrate has a coefficient of thermal expansion different from that of glass, it is difficult to form a TFT on the metal substrate with a conventional production apparatus, but the linear expansion coefficient is 1 × 10 −5 / ° C. or less. By using a metal substrate which is an iron-nickel alloy of this type and adjusting the linear expansion coefficient to glass, it becomes possible to form TFTs on the metal substrate at low cost using a conventional production apparatus. In the case of a plastic substrate, since the heat-resistant temperature is very low, it is possible to transfer and form the TFT on the plastic substrate by forming the TFT on the glass substrate and then transferring the TFT to the plastic substrate. is there.
 更に、有機EL層からの発光を基板と反対側から取り出す場合には、基板としての制約はないが、有機EL層からの発光を基板側から取り出す場合には、用いる基板として有機EL層からの発光を外部に取り出す為に、透明又は半透明の基板を用いる必要がある。 Furthermore, when the light emission from the organic EL layer is taken out from the side opposite to the substrate, there is no restriction as the substrate. However, when the light emission from the organic EL layer is taken out from the substrate side, the substrate used is from the organic EL layer. In order to extract emitted light to the outside, it is necessary to use a transparent or translucent substrate.
「陽極」及び「陰極」
 本実施形態で用いられる陽極41及び陰極49は、有機EL層に電流を供給する第1電極及び第2電極として機能する。図13では、第1電極である陽極41を有機EL層を挟んで基板9側に配置し、第2電極である陰極49を有機EL層を挟んで基板9とは反対側に配置しているが、この関係は逆にしてもよい。つまり、第1電極である陽極41を有機EL層を挟んで基板9とは反対側に配置し、第2電極である陰極49を有機EL層を挟んで基板9側に配置してもよい。以下に、具体的な化合物及び形成方法を例示するが、化合物及び形成方法はこのようなものに限定されるものではない。
“Anode” and “Cathode”
The anode 41 and the cathode 49 used in the present embodiment function as a first electrode and a second electrode that supply current to the organic EL layer. In FIG. 13, the anode 41 that is the first electrode is disposed on the substrate 9 side with the organic EL layer interposed therebetween, and the cathode 49 that is the second electrode is disposed on the side opposite to the substrate 9 with the organic EL layer interposed therebetween. However, this relationship may be reversed. That is, the anode 41 that is the first electrode may be disposed on the side opposite to the substrate 9 with the organic EL layer interposed therebetween, and the cathode 49 that is the second electrode may be disposed on the substrate 9 side with the organic EL layer interposed therebetween. Specific compounds and formation methods are exemplified below, but the compounds and formation methods are not limited to these.
 陽極41及び陰極49を形成する電極材料としては公知の電極材料を用いることができる。陽極を形成する電極材料としては、有機EL層への正孔の注入をより効率よく行う観点から、仕事関数が4.5eV以上の金(Au)、白金(Pt)、ニッケル(Ni)等の金属、及び、インジウム(In)と錫(Sn)からなる酸化物(ITO)、錫(Sn)の酸化物(SnO)インジウム(In)と亜鉛(Zn)からなる酸化物(IZO)等が透明電極材料として挙げられる。また、陰極49を形成する電極材料としては、有機EL層への電子の注入をより効率よく行う観点から、仕事関数が4.5eV以下のリチウム(Li)、カルシウム(Ca)、セリウム(Ce)、バリウム(Ba)、アルミニウム(Al)等の金属、又は、これらの金属を含有するMg:Ag合金、Li:Al合金等の合金が挙げられる。 As an electrode material for forming the anode 41 and the cathode 49, a known electrode material can be used. As an electrode material for forming the anode, gold (Au), platinum (Pt), nickel (Ni) or the like having a work function of 4.5 eV or more is used from the viewpoint of efficiently injecting holes into the organic EL layer. Metals and oxides (ITO) made of indium (In) and tin (Sn), oxides of tin (Sn) (SnO 2 ), oxides of indium (In) and zinc (Zn) (IZO), etc. It is mentioned as a transparent electrode material. As an electrode material for forming the cathode 49, lithium (Li), calcium (Ca), cerium (Ce) having a work function of 4.5 eV or less from the viewpoint of more efficiently injecting electrons into the organic EL layer. And metals such as barium (Ba) and aluminum (Al), or alloys such as Mg: Ag alloy and Li: Al alloy containing these metals.
 陽極41及び陰極49は、上記の材料を用いてEB蒸着法、スパッタリング法、イオンプレーティング法、抵抗加熱蒸着法等の公知の方法により形成することができるが、陽極及び陰極の形成方法はこれらの形成方法に限定されるものではない。また、必要に応じて、フォトリソグラフフィー法、レーザー剥離法により、形成した電極をパターン化することもでき、シャドーマスクと組み合わせることで直接パターン化した電極を形成することもできる。その膜厚は、50nm以上が好ましい。膜厚が50nm未満の場合には、配線抵抗が高くなることから、駆動電圧の上昇が生じるおそれがある。 The anode 41 and the cathode 49 can be formed by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, or a resistance heating vapor deposition method using the above materials. It is not limited to the forming method. If necessary, the formed electrode can be patterned by a photolithographic fee method or a laser peeling method, or a patterned electrode can be directly formed by combining with a shadow mask. The film thickness is preferably 50 nm or more. When the film thickness is less than 50 nm, the wiring resistance is increased, which may increase the drive voltage.
 色純度の向上、発光効率の向上、正面輝度の向上等の目的でマイクロキャビティ効果を用いる場合には、有機EL層からの発光を陽極41側から取り出す場合には、陽極41として半透明電極を用いることが好ましい。ここで用いる材料として、金属の半透明電極単体、もしくは、金属の半透明電極と透明電極材料の組み合わせを用いる事が可能であるが、半透明電極材料としては、反射率・透過率の観点から、銀が好ましい。半透明電極の膜厚は、5~30nmが好ましい。膜厚が5nm未満の場合には、光の反射が十分行えず、干渉の効果を十分得るとこができない。また、膜厚が30nmを超える場合には、光の透過率が急激に低下することから輝度、効率が低下するおそれがある。また、陰極49として光を反射する反射率の高い電極を用いることが好ましい。この際に用いる電極材料としては、例えば、アルミニウム、銀、金、アルミニウム-リチウム合金、アルミニウム-ネオジウム合金、アルミニウム-シリコン合金等の反射性金属電極、透明電極と前記反射性金属電極(反射電極)を組み合わせた電極等が挙げられる。 When the microcavity effect is used for the purpose of improving the color purity, the luminous efficiency, the front luminance, etc., when the light emitted from the organic EL layer is taken out from the anode 41 side, a translucent electrode is used as the anode 41. It is preferable to use it. As the material used here, it is possible to use a metal translucent electrode alone or a combination of a metal translucent electrode and a transparent electrode material, but as a translucent electrode material, from the viewpoint of reflectance and transmittance Silver is preferred. The film thickness of the translucent electrode is preferably 5 to 30 nm. When the film thickness is less than 5 nm, light cannot be sufficiently reflected, and interference effects cannot be obtained sufficiently. On the other hand, when the film thickness exceeds 30 nm, the light transmittance is drastically reduced, so that the luminance and efficiency may be lowered. Further, it is preferable to use an electrode with high reflectivity that reflects light as the cathode 49. Examples of electrode materials used in this case include reflective metal electrodes such as aluminum, silver, gold, aluminum-lithium alloys, aluminum-neodymium alloys, and aluminum-silicon alloys, transparent electrodes, and reflective metal electrodes (reflective electrodes). The electrode etc. which combined these are mentioned.
 有機EL層からの発光を陰極49側から取り出す場合には、上記とは逆に、陽極41を反射率の高い電極で形成し、陰極49を半透明電極とすればよい。 When light emitted from the organic EL layer is taken out from the cathode 49 side, the anode 41 may be formed of a highly reflective electrode and the cathode 49 may be a translucent electrode, contrary to the above.
「有機EL層」
 本実施形態で用いられる有機EL層は、有機発光層の単層構造でも、有機発光層と電荷輸送層の多層構造でもよく、具体的には、下記の構成が挙げられるが、有機EL層の構成はこれらにより限定されるものではない。図13の例では、下記(8)の構成が用いられている。なお、以下の説明では、正孔および電子を電荷と称し、陽極41又は陰極49から発光層45に向けて電荷を注入する層(正孔注入層又は電子注入層)を電荷注入層と称し、電荷注入層によって陽極41又は陰極49から注入された電荷を発光層45に向けて輸送する層(正孔輸送層、電子輸送層)を電荷輸送層と称し、電荷注入層と電荷輸送層を総称して電荷注入輸送層と称することがある。
"Organic EL layer"
The organic EL layer used in the present embodiment may be a single layer structure of an organic light emitting layer or a multilayer structure of an organic light emitting layer and a charge transport layer. Specifically, the following configurations may be mentioned. The configuration is not limited by these. In the example of FIG. 13, the following configuration (8) is used. In the following description, holes and electrons are referred to as charges, and a layer that injects charges from the anode 41 or the cathode 49 toward the light emitting layer 45 (hole injection layer or electron injection layer) is referred to as a charge injection layer. A layer (hole transport layer, electron transport layer) that transports charges injected from the anode 41 or the cathode 49 by the charge injection layer toward the light emitting layer 45 is referred to as a charge transport layer, and the charge injection layer and the charge transport layer are collectively referred to. Therefore, it may be referred to as a charge injection / transport layer.
(1)有機発光層
(2)正孔輸送層/有機発光層
(3)有機発光層/電子輸送層
(4)正孔輸送層/有機発光層/電子輸送層
(5)正孔注入層/正孔輸送層/有機発光層/電子輸送層
(6)正孔注入層/正孔輸送層/有機発光層/電子輸送層/電子注入層
(7)正孔注入層/正孔輸送層/有機発光層/正孔防止層/電子輸送層
(8)正孔注入層/正孔輸送層/有機発光層/正孔防止層/電子輸送層/電子注入層
(9)正孔注入層/正孔輸送層/電子防止層/有機発光層/正孔防止層/電子輸送層/電子注入層
(1) Organic light emitting layer (2) Hole transport layer / organic light emitting layer (3) Organic light emitting layer / electron transport layer (4) Hole transport layer / organic light emitting layer / electron transport layer (5) Hole injection layer / Hole transport layer / organic light emitting layer / electron transport layer (6) hole injection layer / hole transport layer / organic light emitting layer / electron transport layer / electron injection layer (7) hole injection layer / hole transport layer / organic Light emitting layer / Hole prevention layer / Electron transport layer (8) Hole injection layer / Hole transport layer / Organic light emitting layer / Hole prevention layer / Electron transport layer / Electron injection layer (9) Hole injection layer / Hole Transport layer / electron prevention layer / organic light emitting layer / hole prevention layer / electron transport layer / electron injection layer
 有機発光層、正孔注入層、正孔輸送層、正孔防止層、電子防止層、電子輸送層及び電子注入層の各層は、単層構造でも多層構造でもよい。 Each layer of the organic light emitting layer, hole injection layer, hole transport layer, hole prevention layer, electron prevention layer, electron transport layer and electron injection layer may have a single layer structure or a multilayer structure.
 有機発光層45は、以下に例示する有機発光材料のみから構成されていてもよく、発光性のドーパントとホスト材料の組み合わせから構成されていてもよく、任意に正孔輸送材料、電子輸送材料、添加剤(ドナー、アクセプター等)等を含んでいてもよく、また、これらの材料が高分子材料(結着用樹脂)又は無機材料中に分散された構成であってもよい。発光効率・寿命の観点からは、ホスト材料中に発光性のドーパントが分散されたものが好ましい。 The organic light emitting layer 45 may be composed of only an organic light emitting material exemplified below, or may be composed of a combination of a light emitting dopant and a host material, and optionally a hole transport material, an electron transport material, Additives (donor, acceptor, etc.) may be included, and these materials may be dispersed in a polymer material (binding resin) or an inorganic material. From the viewpoint of luminous efficiency and lifetime, those in which a luminescent dopant is dispersed in a host material are preferable.
 有機発光材料としては、有機EL用の公知の発光材料を用いることができる。このような発光材料は、低分子発光材料、高分子発光材料等に分類され、これらの具体的な化合物を以下に例示するが、有機発光材料はこれらの材料に限定されるものではない。また、上記発光材料は、蛍光材料、燐光材料等に分類されるものでもよく、低消費電力化の観点で、発光効率の高い燐光材料を用いる事が好ましい。 As the organic light emitting material, a known light emitting material for organic EL can be used. Such light-emitting materials are classified into low-molecular light-emitting materials, polymer light-emitting materials, and the like. Specific examples of these compounds are given below, but organic light-emitting materials are not limited to these materials. The light-emitting material may be classified into a fluorescent material, a phosphorescent material, and the like, and it is preferable to use a phosphorescent material with high light emission efficiency from the viewpoint of reducing power consumption.
 ここで、具体的な化合物を以下に例示するが、有機発光材料はこれらの材料に限定されるものではない。 Here, specific compounds are exemplified below, but the organic light emitting material is not limited to these materials.
 発光層に任意に含まれる発光性のドーパントとしては、有機EL用の公知のドーパント材料を用いることができる。このようなドーパント材料としては、例えば、紫外発光材料としては、p-クォーターフェニル、3,5,3,5テトラ-t-ブチルセクシフェニル、3,5,3,5テトラ-t-ブチル-p-クィンクフェニル等の蛍光発光材料等が挙げられる。青色発光材料として、スチリル誘導体等の蛍光発光材料、ビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2‘]ピコリネート イリジウム(III)(FIrpic)、ビス(4’,6‘-ジフルオロフェニルポリジナト)テトラキス(1-ピラゾイル)ボレート イリジウム(III)(FIr6)等の燐光発光有機金属錯体等が挙げられる。 As the light-emitting dopant optionally contained in the light-emitting layer, a known dopant material for organic EL can be used. As such a dopant material, for example, as an ultraviolet light emitting material, p-quaterphenyl, 3,5,3,5 tetra-t-butylsecphenyl, 3,5,3,5 tetra-t-butyl-p -Fluorescent materials such as quinckphenyl. As blue light emitting materials, fluorescent light emitting materials such as styryl derivatives, bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate, iridium (III) (FIrpic), bis (4 ′, 6′-difluorophenyl) And phosphorescent organometallic complexes such as polydinato) tetrakis (1-pyrazoyl) borate, iridium (III) (FIr6), and the like.
 また、ドーパントを用いる時のホスト材料としては、有機EL用の公知のホスト材料を用いることができる。このようなホスト材料としては、上述した低分子発光材料、高分子発光材料、4,4‘-ビス(カルバゾール)ビフェニル、9,9-ジ(4-ジカルバゾール-ベンジル)フルオレン(CPF)、3,6-ビス(トリフェニルシリル)カルバゾール(mCP)、(PCF)等のカルバゾール誘導体、4-(ジフェニルフォスフォイル)-N,N-ジフェニルアニリン(HM-A1)等のアニリン誘導体、1,3-ビス(9-フェニル-9H-フルオレン-9-イル)ベンゼン(mDPFB)、1,4-ビス(9-フェニル-9H-フルオレン-9-イル)ベンゼン(pDPFB)等のフルオレン誘導体等が挙げられる。 Further, as a host material when using a dopant, a known host material for organic EL can be used. Examples of such host materials include the low-molecular light-emitting materials, the polymer light-emitting materials, 4,4′-bis (carbazole) biphenyl, 9,9-di (4-dicarbazole-benzyl) fluorene (CPF), 3 , 6-bis (triphenylsilyl) carbazole (mCP), carbazole derivatives such as (PCF), aniline derivatives such as 4- (diphenylphosphoyl) -N, N-diphenylaniline (HM-A1), 1,3- And fluorene derivatives such as bis (9-phenyl-9H-fluoren-9-yl) benzene (mDPFB) and 1,4-bis (9-phenyl-9H-fluoren-9-yl) benzene (pDPFB).
 電荷注入輸送層は、電荷(正孔、電子)の電極からの注入と発光層への輸送(注入)をより効率よく行う目的で、電荷注入層(正孔注入層、電子注入層)と電荷輸送層(正孔輸送層、電子輸送層)に分類される。電荷注入輸送層は、以下に例示する電荷注入輸送材料のみから構成されていてもよく、任意に添加剤(ドナー、アクセプター等)等を含んでいてもよく、これらの材料が高分子材料(結着用樹脂)又は無機材料中に分散された構成であってもよい。 The charge injection / transport layer is used to more efficiently inject charges (holes, electrons) from the electrode and transport (injection) to the light emitting layer, and the charge injection layer (hole injection layer, electron injection layer). It is classified as a transport layer (hole transport layer, electron transport layer). The charge injecting and transporting layer may be composed only of the charge injecting and transporting material exemplified below, and may optionally contain additives (donor, acceptor, etc.), and these materials are polymer materials (conjugation). Wear resin) or a structure dispersed in an inorganic material.
 電荷注入輸送材料としては、有機EL用、有機光導電体用の公知の電荷輸送材料を用いることができる。このような電荷注入輸送材料は、正孔注入輸送材料及び電子注入輸送材料に分類され、これらの具体的な化合物を以下に例示するが、電荷注入輸送材料はこれらの材料に限定されるものではない。 As the charge injection / transport material, known charge transport materials for organic EL and organic photoconductors can be used. Such charge injecting and transporting materials are classified into hole injecting and transporting materials and electron injecting and transporting materials. Specific examples of these compounds are given below, but the charge injecting and transporting materials are not limited to these materials. Absent.
 正孔注入・正孔輸送材料としては、例えば、酸化バナジウム(V)、酸化モリブデン(MoO)等の酸化物、無機p型半導体材料、ポルフィリン化合物、N,N’-ビス(3-メチルフェニル)-N,N’-ビス(フェニル)-ベンジジン(TPD)、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン(NPD)等の芳香族第三級アミン化合物、ヒドラゾン化合物、キナクリドン化合物、スチリルアミン化合物等の低分子材料、ポリアニリン(PANI)、ポリアニリン-樟脳スルホン酸(PANI-CSA)、3,4-ポリエチレンジオキシチオフェン/ポリスチレンサルフォネイト(PEDOT/PSS)、ポリ(トリフェニルアミン)誘導体(Poly-TPD)、ポリビニルカルバゾール(PVCz)、ポリ(p-フェニレンビニレン)(PPV)、ポリ(p-ナフタレンビニレン)(PNV)等の高分子材料等が挙げられる。 Examples of the hole injection / hole transport material include oxides such as vanadium oxide (V 2 O 5 ) and molybdenum oxide (MoO 2 ), inorganic p-type semiconductor materials, porphyrin compounds, N, N′-bis (3 -Methylphenyl) -N, N′-bis (phenyl) -benzidine (TPD), N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine (NPD), etc. Low molecular weight materials such as tertiary amine compounds, hydrazone compounds, quinacridone compounds, styrylamine compounds, polyaniline (PANI), polyaniline-camphor sulfonic acid (PANI-CSA), 3,4-polyethylenedioxythiophene / polystyrene sulfonate ( PEDOT / PSS), poly (triphenylamine) derivative (Poly-TPD), polyvinylcarbazole (PVC) z), polymer materials such as poly (p-phenylene vinylene) (PPV), poly (p-naphthalene vinylene) (PNV), and the like.
 また、陽極41からの正孔の注入・輸送をより効率よく行う点で、正孔注入層43として用いる材料としては、正孔輸送層44に使用する正孔注入輸送材料より最高被占分子軌道(HOMO)のエネルギー準位が低い材料を用いることが好ましく、正孔輸送層44としては、正孔注入層43に使用する正孔注入輸送材料より正孔の移動度が高い材料を用いることが好ましい。 In addition, as a material used for the hole injection layer 43 in terms of more efficiently injecting / transporting holes from the anode 41, the highest occupied molecular orbital than the hole injection / transport material used for the hole transport layer 44 is used. A material having a low energy level of (HOMO) is preferably used, and a material having a higher hole mobility than the hole injection transport material used for the hole injection layer 43 is used as the hole transport layer 44. preferable.
 また、より正孔の注入・輸送性を向上させるため、前記正孔注入・輸送材料にアクセプターをドープする事が好ましい。アクセプターとしては、有機EL用の公知のアクセプター材料を用いることができる。これらの具体的な化合物を以下に例示するが、アクセプター材料はこれらの材料に限定されるものではない。 In order to improve the hole injection / transport property, it is preferable to dope the hole injection / transport material with an acceptor. As the acceptor, a known acceptor material for organic EL can be used. Although these specific compounds are illustrated below, acceptor material is not limited to these materials.
 アクセプター材料としては、Au、Pt、W,Ir、POCl3 、AsF6 、Cl、Br、I、酸化バナジウム(V)、酸化モリブデン(MoO)等の無機材料、TCNQ(7,7,8,8,-テトラシアノキノジメタン)、TCNQF4 (テトラフルオロテトラシアノキノジメタン)、TCNE(テトラシアノエチレン)、HCNB(ヘキサシアノブタジエン)、DDQ(ジシクロジシアノベンゾキノン)等のシアノ基を有する化合物、TNF(トリニトロフルオレノン)、DNF(ジニトロフルオレノン)等のニトロ基を有する化合物、フルオラニル、クロラニル、ブロマニル等の有機材料が挙げられる。この内、TCNQ、TCNQF4 、TCNE、HCNB、DDQ等のシアノ基を有する化合物がよりキャリア濃度を効果的に増加させることが可能であるためより好ましい。 Acceptor materials include Au, Pt, W, Ir, POCl 3 , AsF 6 , Cl, Br, I, vanadium oxide (V 2 O 5 ), molybdenum oxide (MoO 2 ), and other inorganic materials, TCNQ (7, 7 , 8,8, -tetracyanoquinodimethane), TCNQF 4 (tetrafluorotetracyanoquinodimethane), TCNE (tetracyanoethylene), HCNB (hexacyanobutadiene), DDQ (dicyclodicyanobenzoquinone), etc. And compounds having a nitro group such as TNF (trinitrofluorenone) and DNF (dinitrofluorenone), and organic materials such as fluoranyl, chloranil and bromanyl. Among these, compounds having a cyano group such as TCNQ, TCNQF 4 , TCNE, HCNB, DDQ and the like are more preferable because they can increase the carrier concentration more effectively.
 電子注入・電子輸送材料としては、例えば、n型半導体である無機材料、オキサジアゾール誘導体、トリアゾール誘導体、チオピラジンジオキシド誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、ジフェノキノン誘導体、フルオレノン誘導体、ベンゾジフラン誘導体等の低分子材料;ポリ(オキサジアゾール)(Poly-OXZ)、ポリスチレン誘導体(PSS)等の高分子材料が挙げられる。特に、電子注入材料としては、特にフッ化リチウム(LiF)、フッ化バリウム(BaF)等のフッ化物、酸化リチウム(LiO)等の酸化物等が挙げられる。 Electron injection / electron transport materials include, for example, inorganic materials that are n-type semiconductors, oxadiazole derivatives, triazole derivatives, thiopyrazine dioxide derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, diphenoquinone derivatives, fluorenone derivatives, benzodifuran derivatives And low molecular weight materials such as poly (oxadiazole) (Poly-OXZ) and polystyrene derivatives (PSS). In particular, examples of the electron injection material include fluorides such as lithium fluoride (LiF) and barium fluoride (BaF 2 ), and oxides such as lithium oxide (Li 2 O).
 電子の陰極49からの注入・輸送をより効率よく行う点で、電子注入層48として用いる材料としては、電子輸送層47に使用する電子注入輸送材料より最低空分子軌道(LUMO)のエネルギー準位が高い材料を用いることが好ましく、電子輸送層47として用いる材料としては、電子注入層48に使用する電子注入輸送材料より電子の移動度が高い材料を用いることが好ましい。 As a material used for the electron injection layer 48 in terms of more efficiently injecting and transporting electrons from the cathode 49, the energy level of the lowest unoccupied molecular orbital (LUMO) than the electron injection and transport material used for the electron transport layer 47 is used. It is preferable to use a material having a high electron mobility, and it is preferable to use a material having a higher electron mobility than the electron injection transport material used for the electron injection layer 48 as the material used for the electron transport layer 47.
 また、より電子の注入・輸送性を向上させるため、前記電子注入・輸送材料にドナーをドープする事が好ましい。ドナーとしては、有機EL用の公知のドナー材料を用いることができる。これらの具体的な化合物を以下に例示するが、ドナー材料はこれらの材料に限定されるものではない。 In order to further improve the electron injection / transport property, it is preferable to dope the electron injection / transport material with a donor. As the donor, a known donor material for organic EL can be used. Although these specific compounds are illustrated below, donor material is not limited to these materials.
 ドナー材料としては、アルカリ金属、アルカリ土類金属、希土類元素、Al、Ag、Cu、In等の無機材料、アニリン類、フェニレンジアミン類、ベンジジン類(N,N,N’,N’-テトラフェニルベンジジン、N,N’-ビス-(3-メチルフェニル)-N,N’-ビス-(フェニル)-ベンジジン、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン等)、トリフェニルアミン類(トリフェニルアミン、4,4’4''-トリス(N,N-ジフェニル-アミノ)-トリフェニルアミン、4,4’4''-トリス(N-3-メチルフェニル-N-フェニル-アミノ)-トリフェニルアミン、4,4’4''-トリス(N-(1-ナフチル)-N-フェニル-アミノ)-トリフェニルアミン等)、トリフェニルジアミン類(N,N’-ジ-(4-メチル-フェニル)-N,N’-ジフェニル-1,4-フェニレンジアミン)等の芳香族3級アミンを骨格にもつ化合物、フェナントレン、ピレン、ペリレン、アントラセン、テトラセン、ペンタセン等の縮合多環化合物(ただし、縮合多環化合物は置換基を有してもよい)、TTF(テトラチアフルバレン)類、ジベンゾフラン、フェノチアジン、カルバゾール等の有機材料がある。
この内特に、芳香族3級アミンを骨格にもつ化合物、縮合多環化合物、アルカリ金属がよりキャリア濃度を効果的に増加させることが可能であるためより好ましい。
Donor materials include inorganic materials such as alkali metals, alkaline earth metals, rare earth elements, Al, Ag, Cu, In, anilines, phenylenediamines, benzidines (N, N, N ′, N′-tetraphenyl) Benzidine, N, N'-bis- (3-methylphenyl) -N, N'-bis- (phenyl) -benzidine, N, N'-di (naphthalen-1-yl) -N, N'-diphenyl- Benzidine, etc.), triphenylamines (triphenylamine, 4,4′4 ″ -tris (N, N-diphenyl-amino) -triphenylamine, 4,4′4 ″ -tris (N-3- Methylphenyl-N-phenyl-amino) -triphenylamine, 4,4′4 ″ -tris (N- (1-naphthyl) -N-phenyl-amino) -triphenylamine, etc.), triphenyldiamines ( N, N'- Compounds having an aromatic tertiary amine skeleton such as di- (4-methyl-phenyl) -N, N′-diphenyl-1,4-phenylenediamine), phenanthrene, pyrene, perylene, anthracene, tetracene, pentacene, etc. There are organic materials such as condensed polycyclic compounds (wherein the condensed polycyclic compounds may have a substituent), TTFs (tetrathiafulvalene), dibenzofuran, phenothiazine, and carbazole.
Among these, a compound having an aromatic tertiary amine as a skeleton, a condensed polycyclic compound, and an alkali metal are more preferable because the carrier concentration can be increased more effectively.
 発光層45、正孔輸送層44、電子輸送層47、正孔注入層43及び電子注入層48等の有機EL層は、上記の材料を溶剤に溶解、分散させた有機EL層形成用塗液を用いて、スピンコーティング法、ディッピング法、ドクターブレード法、吐出コート法、スプレーコート法等の塗布法、インクジェット法、凸版印刷法、凹版印刷法、スクリーン印刷法、マイクログラビアコート法等の印刷法等による公知のウエットプロセス、上記の材料を抵抗加熱蒸着法、電子線(EB)蒸着法、分子線エピタキシー(MBE)法、スパッタリング法、有機気相蒸着(OVPD)法等の公知のドライプロセス、又は、レーザー転写法等により形成することができる。なお、ウエットプロセスにより有機EL層を形成する場合には、有機EL層形成用塗液は、レベリング剤、粘度調整剤等の塗液の物性を調整するための添加剤を含んでいてもよい。 The organic EL layers such as the light-emitting layer 45, the hole transport layer 44, the electron transport layer 47, the hole injection layer 43, and the electron injection layer 48 are organic EL layer forming coating solutions in which the above materials are dissolved and dispersed in a solvent. , Spin coating method, dipping method, doctor blade method, discharge coating method, spray coating method and other coating methods, ink jet method, letterpress printing method, intaglio printing method, screen printing method, micro gravure coating method, etc. A known wet process such as a resistance heating vapor deposition method, an electron beam (EB) vapor deposition method, a molecular beam epitaxy (MBE) method, a sputtering method, an organic vapor deposition (OVPD) method or the like, Alternatively, it can be formed by a laser transfer method or the like. In addition, when forming an organic EL layer by a wet process, the coating liquid for organic EL layer formation may contain the additive for adjusting the physical properties of coating liquid, such as a leveling agent and a viscosity modifier.
 上記の各有機EL層の膜厚は、通常1nm~1000nm程度であるが、10nm~200nmが好ましい。膜厚が10nm未満であると、本来必要とされる物性(電荷の注入特性、輸送特性、閉じ込め特性)が得なれない。また、ゴミ等の異物による画素欠陥が生じるおそれがある。また、膜厚が200nmを超えると有機EL層の抵抗成分により駆動電圧の上昇が生じ、消費電力の上昇に繋がる。 The film thickness of each organic EL layer is usually about 1 nm to 1000 nm, but preferably 10 nm to 200 nm. If the film thickness is less than 10 nm, the properties (charge injection characteristics, transport characteristics, confinement characteristics) that are originally required cannot be obtained. In addition, pixel defects due to foreign matters such as dust may occur. On the other hand, if the film thickness exceeds 200 nm, the drive voltage increases due to the resistance component of the organic EL layer, leading to an increase in power consumption.
「エッジカバー」
 図13の例では、基板9側に形成された陽極41のエッジ部で、陽極41と陰極49との間でリークを起こす事を防止する目的でエッジカバー42が設けられている。ここで、エッジカバー42は、絶縁材料を用いてEB蒸着法、スパッタリング法、イオンプレーティング法、抵抗加熱蒸着法等の公知の方法により形成することができ、公知のドライ及びウエット法のフォトリソグラフィー法によりパターン化をすることができるが、エッジカバー42の形成方法はこれらの形成方法に限定されるものではない。
"Edge cover"
In the example of FIG. 13, an edge cover 42 is provided for the purpose of preventing leakage between the anode 41 and the cathode 49 at the edge portion of the anode 41 formed on the substrate 9 side. Here, the edge cover 42 can be formed by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, or a resistance heating vapor deposition method using an insulating material, and a known dry or wet photolithography. However, the method of forming the edge cover 42 is not limited to these methods.
 また、エッジカバー42を構成する材料は、公知の材料を使用することができ、本実施形態では特に限定されないが、光を透過する必要がある場合には、例えば、SiO、SiON、SiN、SiOC、SiC、HfSiON、ZrO、HfO、LaO等が挙げられる。また、膜厚としては、100nm~2000nmが好ましい。100nm以下であると、絶縁性が十分ではなく、陽極41と陰極49との間でリークが起こり、消費電力の上昇、非発光の原因となる。また、2000nm以上であると、成膜プロセスに時間が係り生産性の悪化、エッジカバー42での電極の断線の原因となる。 Further, a known material can be used as the material constituting the edge cover 42 and is not particularly limited in the present embodiment. However, when it is necessary to transmit light, for example, SiO, SiON, SiN, SiOC SiC, HfSiON, ZrO, HfO, LaO and the like. The film thickness is preferably 100 nm to 2000 nm. When the thickness is 100 nm or less, the insulating property is not sufficient, and leakage occurs between the anode 41 and the cathode 49, resulting in an increase in power consumption and non-light emission. On the other hand, when the thickness is 2000 nm or more, the film forming process takes time, and the productivity is deteriorated and the electrode is disconnected at the edge cover 42.
 有機EL素子2Bは、陽極41及び陰極49として用いられる反射電極と半透明電極との干渉効果による、もしくは、誘電体多層膜によるマイクロキャビティ構造(光微小共振器構造)を有する事が好ましい。これにより、有機EL素子2Bの発光を正面方向に集光する(指向性を持たせる)事が可能とり、周囲に逃げる発光ロスを低減する事が可能となり、正面での発光効率を高める事が、可能となる。これにより、より効率良く有機EL素子2Bの発光層45中で生じる発光エネルギーを蛍光体層3R,3G,3Bへ伝搬する事が可能となる。また、干渉効果により、発光スペクトルの調整も可能となり、所望の発光ピーク波長、半値幅に調整する事により発光スペクトルの調整が可能となる。これにより、蛍光体層3R,3G,3Bをより効果的に励起することが可能なスペクトルに制御する事ができる。 The organic EL element 2B preferably has a microcavity structure (optical microresonator structure) due to an interference effect between a reflective electrode and a translucent electrode used as the anode 41 and the cathode 49, or a dielectric multilayer film. As a result, it is possible to condense the light emission of the organic EL element 2B in the front direction (provide directivity), reduce the light emission loss that escapes to the surroundings, and increase the light emission efficiency in the front. It becomes possible. Thereby, it is possible to more efficiently propagate light emission energy generated in the light emitting layer 45 of the organic EL element 2B to the phosphor layers 3R, 3G, and 3B. Further, the emission spectrum can be adjusted due to the interference effect, and the emission spectrum can be adjusted by adjusting to a desired emission peak wavelength and half width. Thereby, it is possible to control the phosphor layers 3R, 3G, and 3B to a spectrum that can be excited more effectively.
 有機EL素子2Bは、外部駆動回路に電気的に接続される。この場合、有機EL素子2Bは直接外部駆動回路に接続され、駆動されてもよいし、TFT等のスイッチング回路を画素内に配置し、TFT等が接続される配線に外部駆動回路(走査線電極回路(ソースドライバ)、データ信号電極回路(ゲートドライバ)、電源回路)が電気的に接続されてもよい。 Organic EL element 2B is electrically connected to an external drive circuit. In this case, the organic EL element 2B may be directly connected to and driven by an external drive circuit, or a switching circuit such as a TFT is arranged in the pixel, and the external drive circuit (scan line electrode) is connected to a wiring to which the TFT or the like is connected. Circuit (source driver), data signal electrode circuit (gate driver), power supply circuit) may be electrically connected.
「アクティブマトリクス駆動型有機EL素子」
 図14は、アクティブマトリクス駆動型の有機EL素子2Bを用いた有機EL素子基板70(光源)の断面図である。
"Active matrix drive type organic EL device"
FIG. 14 is a cross-sectional view of an organic EL element substrate 70 (light source) using the active matrix driving type organic EL element 2B.
 本実施形態の有機EL素子基板70は、基板9の一面にTFT(駆動素子)51が形成されている。すなわち、ゲート電極52およびゲート線53が形成され、これらゲート電極52およびゲート線53を覆うように基板9上にゲート絶縁膜54が形成されている。
ゲート絶縁膜54上には活性層(図示略)が形成され、活性層上にソース電極55、ドレイン電極56およびデータ線57が形成され、これらソース電極55、ドレイン電極56およびデータ線57を覆うように平坦化膜58が形成されている。
In the organic EL element substrate 70 of this embodiment, a TFT (driving element) 51 is formed on one surface of the substrate 9. That is, the gate electrode 52 and the gate line 53 are formed, and the gate insulating film 54 is formed on the substrate 9 so as to cover the gate electrode 52 and the gate line 53.
An active layer (not shown) is formed on the gate insulating film 54, and a source electrode 55, a drain electrode 56 and a data line 57 are formed on the active layer, and covers the source electrode 55, the drain electrode 56 and the data line 57. Thus, a planarizing film 58 is formed.
 なお、この平坦化膜58は単層構造でなくてもよく、他の層間絶縁膜と平坦化膜を組み合わせた構成としてもよい。また、平坦化膜もしくは層間絶縁膜を貫通してドレイン電極56に達するコンタクトホール59が形成され、平坦化膜58上にコンタクトホール59を介してドレイン電極56と電気的に接続された有機EL素子2Bの陽極41が形成されている。有機EL素子2B自体の構成は前述したものと同様である。 Note that the planarization film 58 does not have to have a single layer structure, and may be configured by combining another interlayer insulating film and the planarization film. Further, a contact hole 59 that reaches the drain electrode 56 through the planarizing film or the interlayer insulating film is formed, and the organic EL element that is electrically connected to the drain electrode 56 through the contact hole 59 on the planarizing film 58. A 2B anode 41 is formed. The configuration of the organic EL element 2B itself is the same as that described above.
 TFT51は、有機EL素子2Bを形成する前に基板9上に形成され、画素スイッチング用素子および有機EL素子駆動用素子として機能する。本実施形態で用いられるTFT51としては、公知のTFTが挙げられ、公知の材料、構造および形成方法を用いて形成することができる。また、本実施形態では、TFT51の代わりに、金属-絶縁体-金属(MIM)ダイオードを用いることもできる。 The TFT 51 is formed on the substrate 9 before forming the organic EL element 2B, and functions as a pixel switching element and an organic EL element driving element. Examples of the TFT 51 used in this embodiment include known TFTs, which can be formed using known materials, structures, and formation methods. In this embodiment, a metal-insulator-metal (MIM) diode can be used instead of the TFT 51.
 TFT51の活性層の材料としては、例えば、非晶質シリコン(アモルファスシリコン)、多結晶シリコン(ポリシリコン)、微結晶シリコン、セレン化カドミウム等の無機半導体材料、酸化亜鉛、酸化インジウム-酸化ガリウム-酸化亜鉛等の酸化物半導体材料、またはポリチオフェン誘導体、チオフェンオリゴマー、ポリ(p-フェリレンビニレン)誘導体、ナフタセン、ペンタセン等の有機半導体材料などが挙げられる。また、TFT51の構造としては、例えば、スタガ型、逆スタガ型、トップゲート型、コプレーナ型などが挙げられる。 Examples of the material of the active layer of the TFT 51 include inorganic semiconductor materials such as amorphous silicon (amorphous silicon), polycrystalline silicon (polysilicon), microcrystalline silicon, and cadmium selenide, zinc oxide, indium oxide-gallium oxide, and the like. Examples thereof include oxide semiconductor materials such as zinc oxide, or organic semiconductor materials such as polythiophene derivatives, thiophene oligomers, poly (p-ferylene vinylene) derivatives, naphthacene, and pentacene. Moreover, as a structure of TFT51, a stagger type | mold, a reverse stagger type | mold, a top gate type | mold, a coplanar type | mold etc. are mentioned, for example.
 TFT51を構成する活性層の形成方法としては、(1)プラズマ誘起化学気相成長(PECVD)法により成膜したアモルファスシリコンに不純物をイオンドーピングする方法、(2)シラン(SiH)ガスを用いた減圧化学気相成長(LPCVD)法によりアモルファスシリコンを形成し、固相成長法によりアモルファスシリコンを結晶化してポリシリコンを得た後、イオン打ち込み法によりイオンドーピングする方法、(3)Siガスを用いたLPCVD法またはSiHガスを用いたPECVD法によりアモルファスシリコンを形成し、エキシマレーザー等のレーザーによりアニールし、アモルファスシリコンを結晶化してポリシリコンを得た後、イオンドーピングを行う方法(低温プロセス)、(4)LPCVD法またはPECVD法によりポリシリコン層を形成し、1000℃以上で熱酸化することによりゲート絶縁膜を形成し、その上に、nポリシリコンのゲート電極を形成し、その後、イオンドーピングを行う方法(高温プロセス)、(5)有機半導体材料をインクジェット法等により形成する方法、(6)有機半導体材料の単結晶膜を得る方法等が挙げられる。 As a method for forming the active layer constituting the TFT 51, (1) a method of ion doping impurities into amorphous silicon formed by plasma induced chemical vapor deposition (PECVD), and (2) a silane (SiH 4 ) gas is used. Forming amorphous silicon by low pressure chemical vapor deposition (LPCVD), crystallizing amorphous silicon by solid phase epitaxy to obtain polysilicon, and then ion doping by ion implantation, (3) Si 2 H A method in which amorphous silicon is formed by LPCVD using 6 gases or PECVD using SiH 4 gas, annealed by a laser such as an excimer laser, and amorphous silicon is crystallized to obtain polysilicon, followed by ion doping (Low temperature process), (4) LPCVD How is a polysilicon layer is formed by a PECVD method, a gate insulating film formed by thermal oxidation at 1000 ° C. or higher, thereon to form a gate electrode of the n + polysilicon, then, ion doping ( High temperature process), (5) a method of forming an organic semiconductor material by an inkjet method, and (6) a method of obtaining a single crystal film of the organic semiconductor material.
 本実施形態で用いられるTFT51のゲート絶縁膜54は、公知の材料を用いて形成することができる。例えば、PECVD法、LPCVD法等により形成されたSiOまたはポリシリコン膜を熱酸化して得られるSiO等が挙げられる。また、本実施形態で用いられるTFT51のデータ線57、ゲート線53、ソース電極55およびドレイン電極56は、公知の導電性材料を用いて形成することができ、例えばタンタル(Ta)、アルミニウム(Al)、銅(Cu)等が挙げられる。本実施形態に係るTFT51は、前記のような構成とすることができるが、これらの材料、構造および形成方法に限定されるものではない。 The gate insulating film 54 of the TFT 51 used in this embodiment can be formed using a known material. Examples thereof include SiO 2 formed by PECVD, LPCVD, etc., or SiO 2 obtained by thermally oxidizing a polysilicon film. Further, the data line 57, the gate line 53, the source electrode 55, and the drain electrode 56 of the TFT 51 used in this embodiment can be formed using a known conductive material, for example, tantalum (Ta), aluminum (Al ), Copper (Cu), and the like. The TFT 51 according to this embodiment can be configured as described above, but is not limited to these materials, structures, and formation methods.
 本実施形態に用いられる層間絶縁膜は、公知の材料を用いて形成することができ、例えば、酸化シリコン(SiO)、窒化シリコン(SiN、または、Si)、酸化タンタル(TaO、または、Ta)等の無機材料、または、アクリル樹脂、レジスト材料等の有機材料等が挙げられる。また、その形成方法としては、化学気相成長(CVD)法、真空蒸着法等のドライプロセス、スピンコート法等のウエットプロセスが挙げられる。また、必要に応じて、フォトリソグラフィー法等によりパターニングすることもできる。 The interlayer insulating film used in the present embodiment can be formed using a known material. For example, silicon oxide (SiO 2 ), silicon nitride (SiN or Si 3 N 4 ), tantalum oxide (TaO, Alternatively, an inorganic material such as Ta 2 O 5 ), an organic material such as an acrylic resin or a resist material, or the like can be given. Examples of the formation method include dry processes such as chemical vapor deposition (CVD) and vacuum deposition, and wet processes such as spin coating. Moreover, it can also pattern by the photolithographic method etc. as needed.
 その他、有機EL素子2Bからの光を基板9の反対側から取り出す場合には、基板9上に形成されたTFT51に外光が入射し、TFT51の電気的特性に変化が生じることを防ぐ目的で、遮光性を兼ね備えた遮光性絶縁膜を用いることが好ましい。また、前記の層間絶縁膜と遮光性絶縁膜を組み合わせて用いることもできる。遮光性絶縁膜としては、フタロシアニン、キナクリドン等の顔料または染料をポリイミド等の高分子樹脂に分散したもの、カラーレジスト、ブラックマトリクス材料、NiZnFe等の無機絶縁材料等が挙げられる。しかしながら、本実施形態はこれらの材料および形成方法に限定されるものではない。 In addition, when light from the organic EL element 2B is taken out from the opposite side of the substrate 9, external light is incident on the TFT 51 formed on the substrate 9 to prevent the electrical characteristics of the TFT 51 from changing. It is preferable to use a light-shielding insulating film having light-shielding properties. In addition, the interlayer insulating film and the light-shielding insulating film can be used in combination. Examples of the light-shielding insulating film include a pigment or dye such as phthalocyanine or quinacridone dispersed in a polymer resin such as polyimide, a color resist, a black matrix material, an inorganic insulating material such as Ni x Zn y Fe 2 O 4, or the like. It is done. However, the present embodiment is not limited to these materials and forming methods.
 本実施形態においては、基板9上に形成したTFT51や各種配線、電極により、その表面に凸凹が形成され、この凸凹によって有機EL素子2Bの欠陥(例えば、陽極41や陰極49の欠損や断線、有機EL層の欠損、陽極41と陰極49との短絡、耐圧の低下等)が発生するおそれがある。よって、これらの欠陥を防止する目的で層間絶縁膜上に平坦化膜58を設けることが望ましい。本実施形態で用いられる平坦化膜58は、公知の材料を用いて形成することができ、例えば、酸化シリコン、窒化シリコン、酸化タンタル等の無機材料、ポリイミド、アクリル樹脂、レジスト材料等の有機材料等が挙げられる。平坦化膜58の形成方法としては、CVD法、真空蒸着法等のドライプロセス、スピンコート法等のウエットプロセスが挙げられるが、本実施形態はこれらの材料および形成方法に限定されるものではない。また、平坦化膜58は、単層構造でも多層構造でもよい。 In the present embodiment, unevenness is formed on the surface of the TFT 51 formed on the substrate 9 and various wirings and electrodes, and this unevenness causes defects in the organic EL element 2B (for example, defects or disconnection of the anode 41 or the cathode 49, There is a risk that a defect of the organic EL layer, a short circuit between the anode 41 and the cathode 49, a decrease in breakdown voltage, or the like) may occur. Therefore, it is desirable to provide the planarizing film 58 on the interlayer insulating film for the purpose of preventing these defects. The planarization film 58 used in the present embodiment can be formed using a known material, for example, an inorganic material such as silicon oxide, silicon nitride, or tantalum oxide, or an organic material such as polyimide, acrylic resin, or resist material. Etc. Examples of the method for forming the planarizing film 58 include a dry process such as a CVD method and a vacuum deposition method, and a wet process such as a spin coat method. However, the present embodiment is not limited to these materials and the formation method. . Further, the planarizing film 58 may have a single layer structure or a multilayer structure.
 図15は、上記有機EL素子基板70を備えた表示装置200の概略構成図である。 FIG. 15 is a schematic configuration diagram of a display device 200 including the organic EL element substrate 70.
 表示装置200は、有機EL素子基板70と、有機EL素子基板70と対向配置された蛍光体基板10と、有機EL素子基板70と蛍光体基板10とが対向する領域に設けられた画素部71と、画素部71に駆動信号を供給するゲート信号側駆動回路72、データ信号側駆動回路73、信号配線74および電流供給線75と、有機EL素子基板70に接続されたフレキシブルプリント配線板76(FPC)と、外部駆動回路77とを備えている。 The display device 200 includes an organic EL element substrate 70, a phosphor substrate 10 disposed to face the organic EL element substrate 70, and a pixel unit 71 provided in a region where the organic EL element substrate 70 and the phosphor substrate 10 face each other. A gate signal side drive circuit 72 for supplying a drive signal to the pixel portion 71, a data signal side drive circuit 73, a signal wiring 74, a current supply line 75, and a flexible printed wiring board 76 (connected to the organic EL element substrate 70). FPC) and an external drive circuit 77.
 本実施形態に係る有機EL素子基板70は、図14に示した有機EL素子2Bを駆動するために走査線電極回路、データ信号電極回路、電源回路等を含む外部駆動回路77に、FPC76を介して電気的に接続されている。本実施形態の場合、図14に示したTFT51等のスイッチング回路が画素部71内に配置され、TFT51等が接続されるデータ線57、ゲート線53等の配線に有機EL素子2Bを駆動するためのデータ信号側駆動回路73、ゲート信号側駆動回路72がそれぞれ接続され、これら駆動回路に信号配線74を介して外部駆動回路77が接続されている。画素部71内には、複数のゲート線53および複数のデータ線57が配置され、ゲート線53とデータ線57との交差部にTFT51が配置されている。 The organic EL element substrate 70 according to the present embodiment is connected to an external drive circuit 77 including a scanning line electrode circuit, a data signal electrode circuit, a power supply circuit, and the like via the FPC 76 in order to drive the organic EL element 2B shown in FIG. Are electrically connected. In the case of this embodiment, the switching circuit such as the TFT 51 shown in FIG. 14 is arranged in the pixel portion 71, and the organic EL element 2B is driven to the wiring such as the data line 57 and the gate line 53 to which the TFT 51 is connected. The data signal side driving circuit 73 and the gate signal side driving circuit 72 are connected to each other, and an external driving circuit 77 is connected to these driving circuits via a signal wiring 74. In the pixel portion 71, a plurality of gate lines 53 and a plurality of data lines 57 are arranged, and TFTs 51 are arranged at intersections of the gate lines 53 and the data lines 57.
 本実施形態に係る有機EL素子は、図16に示すように、電圧駆動デジタル階調方式によって駆動が行われ、画素毎にスイッチング用TFTおよび駆動用TFTの2つのTFTが配置され、駆動用TFTと発光部(有機EL素子2B)の陽極とが、図14に示した平坦化膜58に形成されるコンタクトホール59を介して電気的に接続されている。また、一つの画素内には駆動用TFTのゲート電位を定電位にするためのコンデンサーが、駆動用TFTのゲート電極に接続されるように配置されている。しかし、本実施形態では、特にこれらに限定されるものではなく、駆動方式は、前述した電圧駆動デジタル階調方式でも良く、電流駆動アナログ階調方式でもよい。また、TFTの数も特に限定されるものではなく、前述した2つのTFTにより有機EL素子を駆動しても良いし、TFTの特性(移動度、閾値電圧)バラツキを防止する目的で、画素内に補償回路を内蔵した2個以上のTFTを用いて有機EL素子を駆動してもよい。 As shown in FIG. 16, the organic EL element according to this embodiment is driven by a voltage-driven digital gradation method, and two TFTs, a switching TFT and a driving TFT, are arranged for each pixel, and the driving TFT And the anode of the light emitting portion (organic EL element 2B) are electrically connected through a contact hole 59 formed in the planarizing film 58 shown in FIG. Further, a capacitor for setting the gate potential of the driving TFT to a constant potential is arranged in one pixel so as to be connected to the gate electrode of the driving TFT. However, the present embodiment is not particularly limited to these, and the driving method may be the voltage-driven digital gradation method described above or the current-driven analog gradation method. In addition, the number of TFTs is not particularly limited, and the organic EL element may be driven by the two TFTs described above, and in order to prevent variations in TFT characteristics (mobility, threshold voltage), Alternatively, the organic EL element may be driven using two or more TFTs incorporating a compensation circuit.
「無機EL素子」
 図17に示すように、無機EL素子を光源2Cとして用いることができる。無機EL素子としては、公知の無機EL素子を用いる事が可能で、例えば、紫外発光無機EL素子、青色発光無機EL素子が好適である。これらの無機EL素子は、例えば、基板9の一面に第1電極81、第1誘電体層82、発光層83、第2誘電体層84、および第2電極85が順次積層された構成の光源2Cである。なお、無機EL素子の具体的な構成は前記のものに限定されるものではない。
"Inorganic EL element"
As shown in FIG. 17, an inorganic EL element can be used as the light source 2C. As the inorganic EL element, a known inorganic EL element can be used. For example, an ultraviolet light emitting inorganic EL element and a blue light emitting inorganic EL element are suitable. These inorganic EL elements are, for example, light sources having a configuration in which a first electrode 81, a first dielectric layer 82, a light emitting layer 83, a second dielectric layer 84, and a second electrode 85 are sequentially stacked on one surface of a substrate 9. 2C. The specific configuration of the inorganic EL element is not limited to the above.
 以下、無機EL素子2Cの各構成要素について詳細に説明する。 Hereinafter, each component of the inorganic EL element 2C will be described in detail.
「第1電極」および「第2電極」
 本実施形態で用いられる第1電極81及び第2電極85としては、アルミニウム(Al)、金(Au)、白金(Pt)、ニッケル(Ni)等の金属、及び、インジウム(In)と錫(Sn)からなる酸化物(ITO)、錫(Sn)の酸化物(SnO)インジウム(In)と亜鉛(Zn)からなる酸化物(IZO)等が透明電極材料として挙げられるが、電極材料はこれらの材料に限定されるものではない。しかし、光を取り出す方向には、ITO等の透明電極が良く。光を取り出す方向と反対側には、アルミニウム等の反射膜を用いる事が好ましい。
"First electrode" and "Second electrode"
As the first electrode 81 and the second electrode 85 used in this embodiment, metals such as aluminum (Al), gold (Au), platinum (Pt), nickel (Ni), and indium (In) and tin ( Examples of the transparent electrode material include an oxide (ITO) made of Sn), an oxide of Sn (Sn) (SnO 2 ), an oxide made of indium (In) and zinc (Zn) (IZO), etc. It is not limited to these materials. However, a transparent electrode such as ITO is better in the light extraction direction. A reflective film such as aluminum is preferably used on the side opposite to the light extraction direction.
 第1電極81及び第2電極85は、上記の材料を用いてEB蒸着法、スパッタリング法、イオンプレーティング法、抵抗加熱蒸着法等の公知の方法により形成することができるが、電極の形成方法はこれらの形成方法に限定されるものではない。また、必要に応じて、フォトリソグラフフィー法、レーザー剥離法により、形成した電極をパターン化することもでき、シャドーマスクと組み合わせることで直接パターン化した電極を形成することもできる。その膜厚は、50nm以上が好ましい。膜厚が50nm未満の場合には、配線抵抗が高くなることから、駆動電圧の上昇が生じるおそれがある。 The first electrode 81 and the second electrode 85 can be formed by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, or a resistance heating vapor deposition method using the above materials. Is not limited to these forming methods. If necessary, the formed electrode can be patterned by a photolithographic fee method or a laser peeling method, or a patterned electrode can be directly formed by combining with a shadow mask. The film thickness is preferably 50 nm or more. When the film thickness is less than 50 nm, the wiring resistance is increased, which may increase the drive voltage.
「誘電体層」
 本実施形態で用いられる第1誘電体層82及び第2誘電体層84としては、無機EL用の公知の誘電体材料を用いることができる。このような誘電体材料としては、例えば、五酸化タンタル(Ta25)、酸化珪素(SiO)、窒化珪素(Si)、酸化アルミニウム(Al)、チタン酸アルミニウム(AlTiO)チタン酸バリウム(BaTiO)およびチタン酸ストロンチウム(SrTiO)等が挙げられるが、誘電体材料はこれらに限定されるものではない。また、本実施形態の第1誘電体層82及び第2誘電体層84は上記の誘電体材料のうちから選んだ1種類でも、2種類以上の材料を積層した構成でも良い。また、第1誘電体層82及び第2誘電体層84の膜厚は、200nm~500nm程度が、好ましい。
"Dielectric layer"
As the first dielectric layer 82 and the second dielectric layer 84 used in the present embodiment, a known dielectric material for inorganic EL can be used. Examples of such dielectric materials include tantalum pentoxide (Ta 2 O 5 ), silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), aluminum titanate ( AlTiO 3 ) barium titanate (BaTiO 3 ), strontium titanate (SrTiO 3 ) and the like can be mentioned, but the dielectric material is not limited to these. In addition, the first dielectric layer 82 and the second dielectric layer 84 of the present embodiment may have one type selected from the above dielectric materials or a structure in which two or more types of materials are laminated. The film thicknesses of the first dielectric layer 82 and the second dielectric layer 84 are preferably about 200 nm to 500 nm.
「発光層」
 本実施形態で用いられる発光層83としては、無機EL素子用の公知の発光材料を用いることができる。このような発光材料としては、例えば、紫外発光材料としては、ZnF2:Gd、青色発光材料としては、BaAl24:Eu、CaAl24:Eu、ZnAl24:Eu、Ba2SiS4:Ce、ZnS:Tm、SrS:Ce、SrS:Cu、CaS:Pb、(Ba,Mg)Al:Eu等が挙げられるが、発光材料はこれらに限定されるものではない。また、発光層83の膜厚は、300nm~1000nm程度が、好ましい。
"Light emitting layer"
As the light emitting layer 83 used in the present embodiment, a known light emitting material for inorganic EL elements can be used. As such a light emitting material, for example, ZnF 2 : Gd as an ultraviolet light emitting material, BaAl 2 S 4 : Eu, CaAl 2 S 4 : Eu, ZnAl 2 S 4 : Eu, Ba 2 as a blue light emitting material. Examples include SiS 4 : Ce, ZnS: Tm, SrS: Ce, SrS: Cu, CaS: Pb, (Ba, Mg) Al 2 S 4 : Eu, and the like, but the light emitting material is not limited thereto. The thickness of the light emitting layer 83 is preferably about 300 nm to 1000 nm.
 上述のように、上記実施形態の表示装置に係る光源2としては、LED、有機EL素子、無機EL素子などを好適に用いることができる。これらの構成例において、LED、有機EL素子、無機EL素子等の発光素子を封止する封止膜または封止基板を設けることが好ましい。封止膜および封止基板は、公知の封止材料および封止方法により形成することができる。具体的には、光源を構成する基板本体と逆側の表面上にスピンコート法、ODF、ラミレート法を用いて樹脂を塗布することによって封止膜とすることもできる。もしくは、プラズマCVD法、イオンプレーティング法、イオンビーム法、スパッタ法等により、SiO、SiON、SiN等の無機膜を形成した後、さらに、スピンコート法、ODF、ラミレート法を用いて樹脂を塗布する、または、貼り合わせることによって封止膜とすることもできる。 As described above, an LED, an organic EL element, an inorganic EL element, or the like can be suitably used as the light source 2 according to the display device of the above embodiment. In these structural examples, it is preferable to provide a sealing film or a sealing substrate for sealing a light emitting element such as an LED, an organic EL element, or an inorganic EL element. The sealing film and the sealing substrate can be formed by a known sealing material and sealing method. Specifically, the sealing film can be formed by applying a resin on the surface opposite to the substrate main body constituting the light source by using a spin coat method, an ODF, or a laminate method. Alternatively, after forming an inorganic film such as SiO, SiON, or SiN by plasma CVD, ion plating, ion beam, sputtering, etc., resin is further applied using spin coating, ODF, or lamination. Alternatively, the sealing film can be formed by bonding.
 このような封止膜や封止基板により、外部からの光源2内への酸素や水分の混入を防止することができ、光源2の寿命が向上する。また、光源2を備えた光源基板11と蛍光体基板10とを接合するときは、一般の紫外線硬化樹脂、熱硬化樹脂等の接着剤層14で接着させることが可能である。また、蛍光体基板10上に光源2を直接形成した場合には、例えば窒素ガス、アルゴンガス等の不活性ガスをガラス板、金属板等で封止する方法が挙げられる。さらに、封入した不活性ガス中に酸化バリウム等の吸湿剤等を混入すると、水分による有機ELの劣化をより効果的に低減できるため、好ましい。ただし、上記実施形態は、これらの部材や形成方法に限定されるものではない。また、基板1と反対側から光を取り出す場合は、封止膜、封止基板ともに光透過性の材料を使用する必要がある。 Such a sealing film or sealing substrate can prevent the entry of oxygen and moisture into the light source 2 from the outside, and the life of the light source 2 is improved. Further, when the light source substrate 11 provided with the light source 2 and the phosphor substrate 10 are bonded, it is possible to bond them with an adhesive layer 14 such as a general ultraviolet curable resin or a thermosetting resin. Further, when the light source 2 is directly formed on the phosphor substrate 10, for example, a method of sealing an inert gas such as nitrogen gas or argon gas with a glass plate, a metal plate, or the like can be given. Furthermore, it is preferable to mix a hygroscopic agent such as barium oxide in the enclosed inert gas because deterioration of the organic EL due to moisture can be more effectively reduced. However, the above embodiment is not limited to these members and forming methods. When light is extracted from the side opposite to the substrate 1, it is necessary to use a light transmissive material for both the sealing film and the sealing substrate.
 また、図1の表示装置100には、光取り出し側に偏光板を設けてもよい。偏光板としては、従来の直線偏光板とλ/4板とを組み合わせたものを用いることが可能である。ここで、偏光板を設けることによって、表示装置100の電極からの外光反射、基板1,9もしくは封止基板の表面での外光反射を防止する事が可能であり、表示装置100のコントラストを向上させることができる。 Further, the display device 100 of FIG. 1 may be provided with a polarizing plate on the light extraction side. As the polarizing plate, a combination of a conventional linear polarizing plate and a λ / 4 plate can be used. Here, by providing the polarizing plate, it is possible to prevent external light reflection from the electrodes of the display device 100 and external light reflection from the surface of the substrates 1 and 9 or the sealing substrate. Can be improved.
[第7実施形態]
 図18は、第7実施形態の表示装置300の断面模式図である。表示装置300は、蛍光体基板10Fと光源基板11Fとの間に、光学部材である液晶素子90を装入した構成例である。図18において、第1実施形態の表示装置100と共通する構成要素については、同じ符号を付し、詳細な説明は省略する。
[Seventh Embodiment]
FIG. 18 is a schematic cross-sectional view of a display device 300 according to the seventh embodiment. The display device 300 is a configuration example in which a liquid crystal element 90 that is an optical member is inserted between the phosphor substrate 10F and the light source substrate 11F. In FIG. 18, the same reference numerals are given to components common to the display device 100 of the first embodiment, and detailed description thereof is omitted.
 本実施形態の表示装置300は、蛍光体基板10Fと、有機EL素子基板11F(光源基板)と、液晶素子90と、を備えている。蛍光体基板10Fの基本構成は第1実施形態と同様であり、隔壁15Aの構成が第1実施形態と異なるのみである。本実施形態の隔壁15Aは、図10Bに示した第2変形例の隔壁と同様であり、隔壁15Aの側断面形状は、基板1と接する側に底辺を有する三角形形状となっている。 The display device 300 of this embodiment includes a phosphor substrate 10F, an organic EL element substrate 11F (light source substrate), and a liquid crystal element 90. The basic configuration of the phosphor substrate 10F is the same as that of the first embodiment, and only the configuration of the partition 15A is different from that of the first embodiment. The partition wall 15A of the present embodiment is the same as the partition wall of the second modification shown in FIG. 10B, and the side cross-sectional shape of the partition wall 15A is a triangular shape having a base on the side in contact with the substrate 1.
 有機EL素子基板11Fの積層構造は、上記実施形態において図13に示したものと同様である。しかし、上記実施形態では、各画素に対応する有機EL素子に個別に駆動信号が供給され、各有機EL素子が独立して発光、非発光が制御されていたのに対し、本実施形態では、有機EL素子2Bは、画素毎に分割されておらず、全ての画素に共通の面状光源として機能する。また、液晶素子90は、一対の電極93,94を用いて液晶層98に印加する電圧を画素毎に制御可能な構成とされ、有機EL素子2Bの全面から射出された光の透過率を画素毎に制御する。すなわち、液晶素子90は、有機EL素子基板11Fからの光を画素毎に選択的に透過させる光シャッターとしての機能を有するようになっている。 The laminated structure of the organic EL element substrate 11F is the same as that shown in FIG. However, in the above embodiment, a driving signal is individually supplied to the organic EL element corresponding to each pixel, and each organic EL element is independently controlled to emit light and not emit light, whereas in this embodiment, The organic EL element 2B is not divided for each pixel and functions as a planar light source common to all the pixels. Further, the liquid crystal element 90 is configured such that the voltage applied to the liquid crystal layer 98 can be controlled for each pixel using the pair of electrodes 93 and 94, and the transmittance of light emitted from the entire surface of the organic EL element 2B is set to the pixel. Control every time. That is, the liquid crystal element 90 has a function as an optical shutter that selectively transmits light from the organic EL element substrate 11F for each pixel.
 本実施形態の液晶素子90は、公知の液晶素子を用いることが可能であり、例えば一対の偏光板91,92と、電極93,94と、配向膜95,96と、基板97と、を有し、配向膜95,96間に液晶層98が挟持されている。さらに、液晶セルと一方の偏光板91,92との間に光学異方性層が1枚配置されるか、または、液晶セルと双方の偏光板91,92との間に光学異方性層が2枚配置されることもある。 液晶セルの種類としては特に制限はなく、目的に応じて適宜選択することができ、例えばTNモード、VAモード、OCBモード、IPSモード、ECBモードなどが挙げられる。また、液晶素子90は、パッシブ駆動でも良いし、TFT等のスイッチング素子を用いたアクティブ駆動でもよい。 A known liquid crystal element can be used as the liquid crystal element 90 of the present embodiment. For example, the liquid crystal element 90 includes a pair of polarizing plates 91 and 92, electrodes 93 and 94, alignment films 95 and 96, and a substrate 97. A liquid crystal layer 98 is sandwiched between the alignment films 95 and 96. Further, one optically anisotropic layer is disposed between the liquid crystal cell and one polarizing plate 91 or 92, or the optically anisotropic layer is disposed between the liquid crystal cell and both polarizing plates 91 and 92. 2 may be arranged. The type of liquid crystal cell is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include TN mode, VA mode, OCB mode, IPS mode, and ECB mode. Further, the liquid crystal element 90 may be passively driven or may be actively driven using a switching element such as a TFT.
 蛍光体基板10Fと液晶素子90と有機EL素子基板11Fとは、接着剤層14を介して接合され、一体化されている。すなわち、蛍光体基板10Fの蛍光体層3R,3G,3Bが形成された面と液晶素子90の偏光板91とが接着剤層14を介して貼り合わされ、有機EL素子基板11Fの有機EL素子2Bが形成された面と液晶素子90の偏光板92とが接着剤層14を介して貼り合わされている。 The phosphor substrate 10F, the liquid crystal element 90, and the organic EL element substrate 11F are joined and integrated through the adhesive layer 14. That is, the surface of the phosphor substrate 10F on which the phosphor layers 3R, 3G, and 3B are formed and the polarizing plate 91 of the liquid crystal element 90 are bonded together via the adhesive layer 14, and the organic EL element 2B of the organic EL element substrate 11F. And the polarizing plate 92 of the liquid crystal element 90 are bonded to each other with the adhesive layer 14 interposed therebetween.
 偏光板91,92としては、少なくとも一方が、波長435nm以上480nm以下における消光比が10000以上であることが好ましい。消光比は、例えばグラントムソンプリズムを用いた回転検光子法によって測定することができる。消光比とは、偏光板91と偏光板92のそれぞれに固有の性能として表され、以下のように定義される。
 消光比=(偏光板透過軸方向の偏光透過率)/(偏光板吸収軸方向の偏光透過率)
 なお、偏光透過率とは、グラントムソンプリズムを用いて、理想的な偏光光を入射したときの透過率を指す。
At least one of the polarizing plates 91 and 92 preferably has an extinction ratio of 10,000 or more at a wavelength of 435 nm or more and 480 nm or less. The extinction ratio can be measured, for example, by a rotating analyzer method using a Glan-Thompson prism. The extinction ratio is expressed as performance inherent to each of the polarizing plate 91 and the polarizing plate 92 and is defined as follows.
Extinction ratio = (polarized light transmittance in the polarizing plate transmission axis direction) / (polarized light transmittance in the polarizing plate absorption axis direction)
The polarization transmittance refers to the transmittance when ideal polarized light is incident using a Glan-Thompson prism.
 ところで、従来の液晶では、コントラストや透過率は主に550nmの領域に対して最適設計することが一般的であり、従来の液晶で使われているヨウ素偏光板の490nm以下の短波長領域における消光比は2000~3000程度となっている(緑色領域、赤色領域での消光比は10000程度)。これに対して、本実施形態に係る青色光バックライトを使用する青色励起方式ディスプレイ用の偏光板では、青色領域に対して最適設計をすることができるため、青色領域での消光比を10000以上である偏光板を使用する。 By the way, in the conventional liquid crystal, it is common to optimally design the contrast and transmittance mainly in the region of 550 nm, and the quenching in the short wavelength region of 490 nm or less of the iodine polarizing plate used in the conventional liquid crystal. The ratio is about 2000 to 3000 (the extinction ratio in the green region and the red region is about 10,000). On the other hand, in the polarizing plate for a blue excitation type display using the blue light backlight according to the present embodiment, an optimum design can be made for the blue region, so that the extinction ratio in the blue region is 10,000 or more. A polarizing plate is used.
 このように、消光比が高い偏光板を使用することによって、パネルのコントラストを高めることができる。また、消光比の高い偏光板では透過率が高いため、バックライトの光利用効率を高めることができ、低消費電力化を図ることができる。 Thus, by using a polarizing plate having a high extinction ratio, the contrast of the panel can be increased. In addition, since a polarizing plate with a high extinction ratio has high transmittance, the light use efficiency of the backlight can be increased, and power consumption can be reduced.
[電子機器の例]
 前記実施形態の表示装置を備えた電子機器の例として、図19Aに示す携帯電話機、図19Bに示すテレビ受信装置などが挙げられる。
 図19Aに示す携帯電話機1000は、本体1001、表示部1002、音声入力部1003、音声出力部1004、アンテナ1005、操作スイッチ1006等を備えており、表示部1002に前記実施形態の表示装置が用いられている。
 図19Bに示すテレビ受信装置1100は、本体キャビネット1101、表示部1102、スピーカー1103、スタンド1104等を備えており、表示部1102に前記実施形態の表示装置が用いられている。
 このような電子機器においては、前記実施形態の表示装置が用いられているため、表示品位に優れた電子機器を実現することができる。
[Example of electronic equipment]
Examples of the electronic apparatus provided with the display device of the embodiment include a mobile phone shown in FIG. 19A and a television receiver shown in FIG. 19B.
A cellular phone 1000 illustrated in FIG. 19A includes a main body 1001, a display portion 1002, an audio input portion 1003, an audio output portion 1004, an antenna 1005, an operation switch 1006, and the like. The display device according to the above embodiment is used as the display portion 1002. It has been.
A television receiver 1100 illustrated in FIG. 19B includes a main body cabinet 1101, a display portion 1102, a speaker 1103, a stand 1104, and the like, and the display device of the above embodiment is used for the display portion 1102.
In such an electronic device, since the display device of the above-described embodiment is used, an electronic device having excellent display quality can be realized.
 また、本発明の一実施形態に係る表示装置は、例えば、図20Aに示す携帯型ゲーム機に適用できる。図20Aに示す携帯型ゲーム機1200は、操作ボタン1201、LEDランプ1202、筐体1203、表示部1204、赤外線ポート1205等を備えている。そして、表示部1204として本発明の表示装置が好適に適用できる。本発明の一実施形態に係る表示装置を携帯型ゲーム機1200の表示部1204に適用することによって、少ない消費電力で高いコントラストの映像を表示することができる。 Further, the display device according to the embodiment of the present invention can be applied to, for example, the portable game machine shown in FIG. 20A. A portable game machine 1200 illustrated in FIG. 20A includes an operation button 1201, an LED lamp 1202, a housing 1203, a display portion 1204, an infrared port 1205, and the like. The display device of the present invention can be suitably applied as the display unit 1204. By applying the display device according to an embodiment of the present invention to the display unit 1204 of the portable game machine 1200, a high-contrast image can be displayed with low power consumption.
 また、本発明の一実施形態に係る表示装置は、例えば、図20Bに示すノートパソコンに適用できる。図20Bに示すノートパソコン1300は、キーボード1301、ポインティングデバイス1302、筐体1303、表示部1304、カメラ1305、外部接続ポート1306、電源スイッチ1307等を備えている。そして、このノートパソコン1300の表示部1304として本発明の表示装置が好適に適用できる。本発明の一実施形態に係る表示装置をノートパソコン1300の表示部1304に適用することによって、高いコントラストの映像を表示することが可能なノートパソコン1300を実現できる。 The display device according to one embodiment of the present invention can be applied to, for example, a notebook computer shown in FIG. 20B. A notebook personal computer 1300 illustrated in FIG. 20B includes a keyboard 1301, a pointing device 1302, a housing 1303, a display portion 1304, a camera 1305, an external connection port 1306, a power switch 1307, and the like. The display device of the present invention can be suitably applied as the display unit 1304 of the notebook computer 1300. By applying the display device according to an embodiment of the present invention to the display unit 1304 of the notebook computer 1300, the notebook computer 1300 capable of displaying a high-contrast image can be realized.
 また、本発明の一実施形態に係る表示装置は、例えば、図21Aに示すシーリングライトに適用できる。図21Aに示すシーリングライト1400は、照明部1401、吊具1402、及び電源コード1403等を備えている。そして、照明部1401として本発明の表示装置が好適に適用できる。本発明の一実施形態に係る表示装置をシーリングライト1400の照明部1401に適用することによって、自在な色調の照明光を得ることができ、光演出性の高い照明器具を実現することができる。また、均一な照度で色純度の高い面発光が可能な照明器具を実現することができる。 Moreover, the display device according to the embodiment of the present invention can be applied to, for example, the ceiling light shown in FIG. 21A. A ceiling light 1400 illustrated in FIG. 21A includes an illumination unit 1401, a hanging tool 1402, a power cord 1403, and the like. The display device of the present invention can be preferably applied as the illumination unit 1401. By applying the display device according to an embodiment of the present invention to the illumination unit 1401 of the ceiling light 1400, illumination light having a free color tone can be obtained, and an illumination fixture with high light performance can be realized. In addition, it is possible to realize a lighting fixture capable of emitting surface light with high color purity with uniform illuminance.
 また、本発明の一実施形態に係る表示装置は、例えば、図21Bに示す照明スタンドに適用できる。図21Bに示す照明スタンド1500は、照明部1501、スタンド1502、電源スイッチ1503、及び電源コード1504等を備えている。そして、照明部1501として本発明の表示装置が好適に適用できる。本発明の一実施形態に係る表示装置を照明スタンド1500の照明部1501に適用することによって、自在な色調の照明光を得ることができ、光演出性の高い照明器具を実現することができる。また、均一な照度で色純度の高い面発光が可能な照明器具を実現することができる。 Moreover, the display device according to an embodiment of the present invention can be applied to, for example, a lighting stand shown in FIG. 21B. A lighting stand 1500 illustrated in FIG. 21B includes a lighting unit 1501, a stand 1502, a power switch 1503, a power cord 1504, and the like. The display device of the present invention can be suitably applied as the illumination unit 1501. By applying the display device according to an embodiment of the present invention to the illumination unit 1501 of the illumination stand 1500, illumination light with a free color tone can be obtained, and an illumination fixture with high light performance can be realized. In addition, it is possible to realize a lighting fixture capable of emitting surface light with high color purity with uniform illuminance.
 以下、実施例および比較例によって本発明をさらに詳細に説明するが、本発明はこれらの例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples.
(比較例1)
 図22Aから図22Eは、比較例の蛍光体基板410Xの製造方法を示す断面図である。
 図22Aに示すように、基板101Xとして、0.7mmのガラスを用いた。これを水洗後、純水超音波洗浄10分、アセトン超音波洗浄10分、イソプロピルアルコール蒸気洗浄5分を行い、100℃にて1時間乾燥させた。
(Comparative Example 1)
22A to 22E are cross-sectional views showing a method for manufacturing the phosphor substrate 410X of the comparative example.
As shown in FIG. 22A, 0.7 mm glass was used as the substrate 101X. This was washed with water, then subjected to pure water ultrasonic cleaning for 10 minutes, acetone ultrasonic cleaning for 10 minutes, and isopropyl alcohol vapor cleaning for 5 minutes, and dried at 100 ° C. for 1 hour.
 まず、黒色層材料として、東京応化製BKレジストをスピンコーターを用いて塗布した。その後、70℃で15分間プリベークして膜厚1μmの塗膜を形成した。この塗膜に所望の画像パターンが形成できるようなマスク(画素ピッチ500μm、線幅70μm)を被せてi線(100mJ/cm)を照射し、露光した。次いで、現像液として炭酸ナトリウム水溶液を用いて現像し、純水でリンス処理を行い、パターン状の構造物108Xを得た。 First, as a black layer material, a BK resist manufactured by Tokyo Ohka Co., Ltd. was applied using a spin coater. Then, it prebaked at 70 degreeC for 15 minutes, and formed the coating film with a film thickness of 1 micrometer. The coating film was covered with a mask (pixel pitch 500 μm, line width 70 μm) capable of forming a desired image pattern, and exposed to i-line (100 mJ / cm 2 ). Subsequently, it developed using the sodium carbonate aqueous solution as a developing solution, and the rinse process was performed with the pure water, and the pattern-shaped structure 108X was obtained.
 次に、隔壁104Xの材料として、エポキシ系樹脂(屈折率:1.59)、アクリル系樹脂(屈折率:1.49)、ルチル型酸化チタン(屈折率:2.71、粒径250nm)、光重合開始剤、芳香族系溶剤からなる白色感光性組成物を攪拌混合してネガ型レジストとした。基板101X上に、このネガ型レジストをスピンコーターを用いて塗布した。画素ピッチ500μm、線幅60μmでパターン形成し、サブ画素を仕切る矩形状の膜厚50μmの隔壁104Xを作製した(図22A)。 Next, as a material for the partition wall 104X, epoxy resin (refractive index: 1.59), acrylic resin (refractive index: 1.49), rutile titanium oxide (refractive index: 2.71, particle size 250 nm), A white photosensitive composition comprising a photopolymerization initiator and an aromatic solvent was stirred and mixed to obtain a negative resist. This negative resist was applied onto the substrate 101X using a spin coater. A pattern was formed with a pixel pitch of 500 μm and a line width of 60 μm, and a rectangular partition wall 104X having a thickness of 50 μm for partitioning the sub-pixels was manufactured (FIG. 22A).
 次に、図22Bに示すように、隔壁104Xによって区画された領域に、赤色カラーフィルター109XR、緑色カラーフィルター109XG、青色カラーフィルター109XBをパターン形成した。 Next, as shown in FIG. 22B, a red color filter 109XR, a green color filter 109XG, and a blue color filter 109XB were formed in a pattern on the area partitioned by the partition 104X.
 次に、図22Cないし図22Eに示すように、隔壁104Xによって区画された領域に、赤色蛍光体層121X、緑色蛍光体層122X、青色光散乱層123Xをパターン形成した。 Next, as shown in FIGS. 22C to 22E, a red phosphor layer 121X, a green phosphor layer 122X, and a blue light scattering layer 123X were formed in a pattern in a region partitioned by the partition wall 104X.
 赤色蛍光体層121Xの形成工程においては、まず、平均粒径4μmの赤色蛍光体CaS:Eu20gに、10wt%ポリビニルアルコール水溶液30gを加え、分散機により攪拌した赤色蛍光体形成用塗液を作製した。 In the formation process of the red phosphor layer 121X, first, 30 g of 10 wt% polyvinyl alcohol aqueous solution was added to 20 g of red phosphor CaS: Eu having an average particle diameter of 4 μm, and a red phosphor forming coating solution was prepared by stirring with a disperser. .
 次に、作製した赤色蛍光体形成用塗液を、ディスペンサー手法で、隔壁104Xで区画された領域にパターン塗布した。引き続き真空オーブン(200℃、10mmHgの条件)で4時間加熱乾燥し、屈折率1.6の赤色蛍光体層121を膜厚25μmでパターン形成した(図22C)。 Next, the prepared red phosphor forming coating solution was applied by patterning to the area partitioned by the partition 104X by a dispenser method. Subsequently, it was dried by heating in a vacuum oven (200 ° C., 10 mmHg) for 4 hours, and a red phosphor layer 121 having a refractive index of 1.6 was patterned with a film thickness of 25 μm (FIG. 22C).
 緑色蛍光体層122Xの形成工程においては、まず、平均粒径4μmの緑色蛍光体Ga2SrS4:Eu20gに、10wt%ポリビニルアルコール水溶液30gを加え、分散機により攪拌した緑色蛍光体形成用塗液を作製した。 In the formation process of the green phosphor layer 122X, first, 30 g of 10 wt% polyvinyl alcohol aqueous solution was added to 20 g of green phosphor Ga2SrS4: Eu having an average particle diameter of 4 μm, and a green phosphor forming coating solution was prepared by stirring with a disperser. .
 次に、作製した緑色蛍光体形成用塗液を、ディスペンサー手法で、隔壁104Xで区画された領域にパターン塗布した。引き続き真空オーブン(200℃、10mmHgの条件)で4時間加熱乾燥し、屈折率1.6の緑色蛍光体層122Xを膜厚25μmでパターン形成した(図22D)。 Next, the prepared green phosphor forming coating solution was applied in a pattern to the area partitioned by the partition 104X by a dispenser method. Subsequently, it was dried by heating in a vacuum oven (200 ° C., 10 mmHg) for 4 hours to form a green phosphor layer 122X having a refractive index of 1.6 with a film thickness of 25 μm (FIG. 22D).
 青色光散乱層123Xの形成工程においては、1.5μmのシリカ粒子(屈折率:1.65)20gに、10wt%ポリビニルアルコール水溶液30gを加え、分散機により攪拌した青色散乱体層形成用塗液を作製した。 In the step of forming the blue light scattering layer 123X, a blue scatterer layer forming coating solution obtained by adding 30 g of a 10 wt% polyvinyl alcohol aqueous solution to 20 g of 1.5 μm silica particles (refractive index: 1.65) and stirring with a disperser. Was made.
 その後、作製した青色散乱体層形成用塗液を、ディスペンサー手法で、隔壁104Xで区画された領域にパターン塗布した。引き続き真空オーブン(200℃、10mmHgの条件)で4時間加熱乾燥し、屈折率1.6の青色光散乱層123Xを膜厚50μmで形成した(図22E)。
 以上により蛍光体基板410Xを完成させた。
Thereafter, the prepared blue scatterer layer forming coating solution was applied in a pattern to the region partitioned by the partition 104X by a dispenser technique. Subsequently, it was dried by heating in a vacuum oven (200 ° C., 10 mmHg) for 4 hours to form a blue light scattering layer 123X having a refractive index of 1.6 with a film thickness of 50 μm (FIG. 22E).
Thus, the phosphor substrate 410X was completed.
 続いて、所望の画素のみに励起光を照射するために、図23に示すバックライト412と蛍光体基板410Xの間に挿入する液晶基板490を形成した。 Subsequently, in order to irradiate only desired pixels with excitation light, a liquid crystal substrate 490 inserted between the backlight 412 and the phosphor substrate 410X shown in FIG. 23 was formed.
 図23は、比較例の表示装置400Xの断面図である。
 図23において、符号hXは隔壁104Xの基板101X側の面と液晶基板490側の面との間の距離である。言い換えると、符号hXは隔壁104Xの高さである。例えばhX=50μmである。
 符号sXは第2接着剤層422の隔壁104X側の面とバンドパスフィルター415側の面との間の距離である。言い換えると、符号sXは隔壁104Xの液晶基板490側の面とバンドパスフィルター415の蛍光体基板410X側の面との間における第2接着剤層422の厚みである。例えばsX=10μmである。
 符号d1はバンドパスフィルター415の第2接着剤層422側の面と第1接着剤層421側の面との間の距離である。言い換えると、符号d1はバンドパスフィルター415の厚みである。例えばd1=30μmである。
 符号d2は第1接着剤層421のバンドパスフィルター415側の面と第1偏光板491側の面との間の距離である。言い換えると符号d2は第1接着剤層421の厚みである。例えばd2=10μmである。
 符号d3は第1偏光板491の第1接着剤層421側の面と第1基板493側の面との間の距離である。言い換えると、符号d3は第1偏光板491の厚みである。例えばd3=50μmである。
 符号d4は第1基板493の第1偏光板491側の面と液晶層498側の面との間の距離である。言い換えると、符号d4は第1基板493の厚みである。例えばd4=150μmである。
 符号dXは、これら6層の層のうち隔壁104Xの高さhXを除いた5層の層の厚みsX,d1,d2,d3,d4を足し合わせた厚みである。言い換えると、符号dXは隔壁104Xの液晶基板490側の面と第1基板493の液晶層498側の面との間の厚みである。例えばdX=250μmである。
FIG. 23 is a cross-sectional view of a display device 400X of a comparative example.
In FIG. 23, symbol hX is a distance between the surface of the partition wall 104X on the substrate 101X side and the surface of the liquid crystal substrate 490 side. In other words, the symbol hX is the height of the partition wall 104X. For example, hX = 50 μm.
The symbol sX is the distance between the surface on the partition 104X side of the second adhesive layer 422 and the surface on the bandpass filter 415 side. In other words, the symbol sX is the thickness of the second adhesive layer 422 between the surface on the liquid crystal substrate 490 side of the partition 104X and the surface on the phosphor substrate 410X side of the bandpass filter 415. For example, sX = 10 μm.
Reference sign d1 is the distance between the surface of the bandpass filter 415 on the second adhesive layer 422 side and the surface of the first adhesive layer 421 side. In other words, the symbol d1 is the thickness of the bandpass filter 415. For example, d1 = 30 μm.
Reference sign d2 is a distance between the surface of the first adhesive layer 421 on the band-pass filter 415 side and the surface on the first polarizing plate 491 side. In other words, the symbol d2 is the thickness of the first adhesive layer 421. For example, d2 = 10 μm.
Reference sign d3 is the distance between the surface on the first adhesive layer 421 side of the first polarizing plate 491 and the surface on the first substrate 493 side. In other words, the symbol d3 is the thickness of the first polarizing plate 491. For example, d3 = 50 μm.
Reference sign d4 is the distance between the first polarizing plate 491 side surface of the first substrate 493 and the liquid crystal layer 498 side surface. In other words, the symbol d4 is the thickness of the first substrate 493. For example, d4 = 150 μm.
The symbol dX is a thickness obtained by adding the thicknesses sX, d1, d2, d3, and d4 of the five layers excluding the height hX of the partition wall 104X among these six layers. In other words, the symbol dX is the thickness between the surface of the partition 104X on the liquid crystal substrate 490 side and the surface of the first substrate 493 on the liquid crystal layer 498 side. For example, dX = 250 μm.
 符号wXは隔壁104Xの一方の側面(図中右側の側面)と他方の側面(図中左側の側面)との間の距離である。言い換えると、符号wXは隔壁104Xの横幅である。例えばwX=60μmである。
 符号w1はブラックマトリクス495の一方の側面(図中右側の側面)と他方の側面(図中左側の側面)との間の距離である。言い換えると、符号w1はブラックマトリクス495の横幅である。例えばw1=90μmである。
 符号vXは隔壁104Xの一方の側面とブラックマトリクス495の一方の側面との間の距離である。例えばvX=15μmである。
The symbol wX is a distance between one side surface (right side surface in the drawing) and the other side surface (left side surface in the drawing) of the partition wall 104X. In other words, the symbol wX is the lateral width of the partition wall 104X. For example, wX = 60 μm.
The symbol w1 is a distance between one side surface (right side surface in the drawing) and the other side surface (left side surface in the drawing) of the black matrix 495. In other words, the symbol w1 is the width of the black matrix 495. For example, w1 = 90 μm.
A symbol vX is a distance between one side surface of the partition wall 104X and one side surface of the black matrix 495. For example, vX = 15 μm.
 符号NLはブラックマトリクス495の第1基板493側の面の一方の側端縁(図中右側の側端縁)を通りかつ第1基板493Xの液晶層498側の面の法線と平行な線である。
 符号MLXはブラックマトリクス495の第1基板493側の面の一方の側端縁と隔壁104Xの液晶基板490側の面の一方の側端縁(図中右側の側端縁)とを結ぶ線である。
 符号θXは線NLと線MLXとのなす角である。例えばθX=3.4°である。
Symbol NL passes through one side edge (the right side edge in the drawing) of the surface of the black matrix 495 on the first substrate 493 side and is parallel to the normal line of the surface of the first substrate 493X on the liquid crystal layer 498 side. It is.
The symbol MLX is a line connecting one side edge of the surface of the black matrix 495 on the first substrate 493 side and one side edge (right side edge in the drawing) of the surface of the partition 104X on the liquid crystal substrate 490 side. is there.
A symbol θX is an angle formed by the line NL and the line MLX. For example, θX = 3.4 °.
 図23に示すように、バックライト412は、光源413と、導光板414と、を備えている。光源413としては青色LEDを用いた。 As shown in FIG. 23, the backlight 412 includes a light source 413 and a light guide plate 414. A blue LED was used as the light source 413.
 液晶基板490は、第1偏光板491と、第1基板493と、液晶層498と、第2基板494と、第2偏光板492と、を備えている。第1偏光板491及び第2偏光板492は、波長435nm以上480nm以下における消光比が12000である。液晶の駆動は、TFTを用いたアクティブマトリクス駆動方式である。液晶基板490の画素は、ブラックマトリクス495によって区画されている。 The liquid crystal substrate 490 includes a first polarizing plate 491, a first substrate 493, a liquid crystal layer 498, a second substrate 494, and a second polarizing plate 492. The first polarizing plate 491 and the second polarizing plate 492 have an extinction ratio of 12000 at a wavelength of 435 nm to 480 nm. The liquid crystal is driven by an active matrix driving method using TFTs. The pixels of the liquid crystal substrate 490 are partitioned by a black matrix 495.
 また、青色領域の光を透過し、緑色から近赤外領域までの光を反射するバンドパスフィルター415を、第1接着剤層421を介して第1編光板491に貼り合わせた。 Further, a band pass filter 415 that transmits light in the blue region and reflects light from green to the near infrared region is bonded to the first knitted light plate 491 through the first adhesive layer 421.
 更に、上記方法で作成した蛍光体基板410Xを、第2接着剤層422を介してバンドパスフィルター415を設けた液晶基板490に貼り合わせた。第1接着剤層421、第2接着剤層422としては、熱硬化性透明エラストマーを用いた。 Furthermore, the phosphor substrate 410X prepared by the above method was bonded to a liquid crystal substrate 490 provided with a bandpass filter 415 via a second adhesive layer 422. As the first adhesive layer 421 and the second adhesive layer 422, a thermosetting transparent elastomer was used.
 例えば、バックライト412として指向性を有する光源413(青色LED413、ピーク波長450nm)を有する指向性バックライトを用いる場合、当該バックライト412からはある範囲の指向性を持った光(所定の配光特性を有する光)が射出される。 For example, when a directional backlight having a directional light source 413 (blue LED 413, peak wavelength 450 nm) is used as the backlight 412, light having a certain range of directivity (predetermined light distribution) Light having characteristics) is emitted.
 本願発明者は、鋭意研究の結果、前記バックライト412を用いた場合に、表示装置400Xにおいて色滲みが生じるときのバックライト412からの光の出射角度と、前記線NLと線MLXとのなす角θXとの間には、一定の関係があることを見出した。 As a result of earnest research, the inventor of the present application, when the backlight 412 is used, forms the light emission angle from the backlight 412 when color blur occurs in the display device 400X, and the line NL and the line MLX. It has been found that there is a certain relationship with the angle θX.
 ここで、バックライト412からの光の出射角度は、バックライト412からの指向性を持った光が液晶基板490に対して入射する光の方向のうち液晶基板490に対して垂直に入射する光の方向と液晶基板490に対して広角に入射する光の方向とのなす角度である。 Here, the emission angle of the light from the backlight 412 is the light incident perpendicularly to the liquid crystal substrate 490 in the direction of the light having directivity from the backlight 412 incident on the liquid crystal substrate 490. And the direction of light incident on the liquid crystal substrate 490 at a wide angle.
 例えば、バックライト412からの光の出射角度は、バックライト412から液晶基板490に対して垂直に入射する光の方向を基準とし(0°)、バックライト412から液晶基板490に対して斜めに入射する光の方向のうち基準方向よりも図中右側を+側、基準方向よりも図中左側を-側とする。この場合、バックライト412からの光の出射角度は、-側から+側まで所定の角度を有する。 For example, the light emission angle from the backlight 412 is oblique to the liquid crystal substrate 490 from the backlight 412 with reference to the direction of light perpendicularly incident on the liquid crystal substrate 490 from the backlight 412 (0 °). Of the directions of incident light, the right side in the figure relative to the reference direction is the + side, and the left side in the figure relative to the reference direction is the − side. In this case, the light emission angle from the backlight 412 has a predetermined angle from the − side to the + side.
 前記バックライト412を用いた場合に表示装置400Xにおいて色滲みが生じるか否かは、バックライト412から液晶基板490Xに向けて青色光を照射し、蛍光体層121Xからの発光を、分光輝度光度計を用いて評価した。 Whether or not color blur occurs in the display device 400X when the backlight 412 is used is determined by irradiating blue light from the backlight 412 toward the liquid crystal substrate 490X and emitting light from the phosphor layer 121X with a spectral luminance light intensity. Evaluation was made using a meter.
 その結果、バックライト412からの光の出射角度が±3°の時には所望の画素のみが発光し、色滲みのない良好な画像が得られた。 As a result, when the light emission angle from the backlight 412 was ± 3 °, only desired pixels emitted light, and a good image without color blur was obtained.
 しかしながら、バックライト412からの光の出射角度が±5°の時には、所望外の画素へ漏れた励起光により隣接画素も発光してしまい、色滲みが観察された。 However, when the emission angle of light from the backlight 412 is ± 5 °, adjacent pixels also emitted due to excitation light leaking to an undesired pixel, and color blur was observed.
(実施例1)
 図24Aに示すように、比較例1と同様に、基板洗浄、黒色層の形成を行った。
次に、隔壁104の材料として、エポキシ系樹脂(屈折率:1.59)、アクリル系樹脂(屈折率:1.49)、ルチル型酸化チタン(屈折率:2.71、粒径250nm)、ジアゾナフトキノン、芳香族系溶剤からなる白色感光性組成物を攪拌混合してネガ型レジストとした。
(Example 1)
As shown in FIG. 24A, the substrate was washed and the black layer was formed in the same manner as in Comparative Example 1.
Next, as a material for the partition wall 104, epoxy resin (refractive index: 1.59), acrylic resin (refractive index: 1.49), rutile type titanium oxide (refractive index: 2.71, particle size 250 nm), A white photosensitive composition composed of diazonaphthoquinone and an aromatic solvent was stirred and mixed to obtain a negative resist.
 次に、基板101上に、ポジ型レジストをスピンコーターを用いて塗布した。その後、80℃で10分間プリベークして膜厚50μmの塗膜を形成した。この塗膜に所望の画像パターンが形成できるようなマスク(画素ピッチ500μm、線幅60μm)を被せてi線(300mJ/cm)を照射し、露光した。次いで、アルカリ現像液を用いて現像して画素パターン状の構造物を得た。引き続き、熱風循環式乾燥炉を用い、140℃で60分間ポストベークしてサブ画素を仕切る隔壁104を作製した。SEMで観察したところ、図24Aに示すように、側断面形状が台形形状の隔壁104が形成できた。 Next, a positive resist was applied onto the substrate 101 using a spin coater. Then, it prebaked at 80 degreeC for 10 minute (s), and formed the coating film with a film thickness of 50 micrometers. The coating film was covered with a mask (pixel pitch 500 μm, line width 60 μm) capable of forming a desired image pattern, and exposed to i-line (300 mJ / cm 2 ). Subsequently, it developed using the alkaline developing solution, and obtained the pixel pattern-like structure. Subsequently, using a hot air circulation type drying furnace, post-baking was performed at 140 ° C. for 60 minutes, and the partition wall 104 partitioning the sub-pixels was produced. When observed by SEM, as shown in FIG. 24A, a partition wall 104 having a trapezoidal side cross-sectional shape could be formed.
 次に、図24Bに示すように、比較例1と同様に、隔壁104によって区画された領域に、赤色カラーフィルター109R、緑色カラーフィルター109G、青色カラーフィルター109Bをパターン形成した。 Next, as shown in FIG. 24B, as in Comparative Example 1, a red color filter 109R, a green color filter 109G, and a blue color filter 109B were formed in a pattern in the area partitioned by the partition wall 104.
 次に、図24Cないし図24Eに示すように、比較例1と同様に、隔壁104によって区画された領域に、赤色蛍光体層121、緑色蛍光体層122、青色光散乱層123をパターン形成した。
 以上により蛍光体基板410を完成させた。
Next, as shown in FIGS. 24C to 24E, as in Comparative Example 1, the red phosphor layer 121, the green phosphor layer 122, and the blue light scattering layer 123 were formed in a pattern in the region partitioned by the partition wall 104. .
Thus, the phosphor substrate 410 was completed.
 続いて、所望の画素のみに励起光を照射するために、比較例1と同様に、図25に示すバックライト412と蛍光体基板410の間に挿入する液晶基板490を形成した。 Subsequently, in order to irradiate only desired pixels with excitation light, a liquid crystal substrate 490 inserted between the backlight 412 and the phosphor substrate 410 shown in FIG.
 図25は、実施例1の表示装置400の断面図である。
 図25において、符号hは隔壁104の基板101側の面と液晶基板490側の面との間の距離である。言い換えると、符号hは隔壁104の高さである。例えばh=50μmである。
 符号sは第2接着剤層422の隔壁104側の面とバンドパスフィルター415側の面との間の距離である。言い換えると、符号sは隔壁104の液晶基板490側の面とバンドパスフィルター415の蛍光体基板410側の面との間における第2接着剤層422の厚みである。例えばs=10μmである。
 符号d1はバンドパスフィルター415の厚みである。例えばd1=30μmである。
 符号d2は第1接着剤層421の厚みである。例えばd2=10μmである。
 符号d3は第1偏光板491の厚みである。例えばd3=50μmである。
 符号d4は第1基板493の厚みである。例えばd4=150μmである。
 符号dは、これら6層の層のうち隔壁104の高さhを除いた5層の層の厚みs,d1,d2,d3,d4を足し合わせた厚みである。言い換えると、符号dは隔壁104の液晶基板490側の面と第1基板493の液晶層498側の面との間の厚みである。例えばd=250μmである。
FIG. 25 is a cross-sectional view of the display device 400 according to the first embodiment.
In FIG. 25, symbol h is the distance between the surface of the partition 104 on the substrate 101 side and the surface on the liquid crystal substrate 490 side. In other words, the symbol h is the height of the partition wall 104. For example, h = 50 μm.
The symbol s is the distance between the surface of the second adhesive layer 422 on the partition wall 104 side and the surface of the bandpass filter 415 side. In other words, the symbol s is the thickness of the second adhesive layer 422 between the surface of the partition wall 104 on the liquid crystal substrate 490 side and the surface of the bandpass filter 415 on the phosphor substrate 410 side. For example, s = 10 μm.
Reference sign d1 denotes the thickness of the bandpass filter 415. For example, d1 = 30 μm.
Reference sign d <b> 2 is the thickness of the first adhesive layer 421. For example, d2 = 10 μm.
Reference sign d3 is the thickness of the first polarizing plate 491. For example, d3 = 50 μm.
Reference sign d4 is the thickness of the first substrate 493. For example, d4 = 150 μm.
The symbol d is a thickness obtained by adding the thicknesses s, d1, d2, d3, and d4 of the five layers excluding the height h of the partition wall 104 among these six layers. In other words, the symbol d is the thickness between the surface of the partition 104 on the liquid crystal substrate 490 side and the surface of the first substrate 493 on the liquid crystal layer 498 side. For example, d = 250 μm.
 符号wは隔壁104の基板101と離れた側の面の一方の側端縁(図中右側の側端縁)と他方の側端縁(図中左側の側端縁)との間の距離である。言い換えると、符号wは隔壁104の基板101と離れた側の面の横幅である。例えばw=40μmである。
 符号w1はブラックマトリクス495の横幅である。例えばw1=90μmである。
 符号vは隔壁104の基板101と離れた面の一方の端縁とブラックマトリクス495の一方の側面との間の距離である。例えばv=25μmである。
The symbol w is the distance between one side edge (the side edge on the right side in the figure) and the other side edge (the side edge on the left side in the figure) of the surface of the partition wall 104 away from the substrate 101. is there. In other words, the symbol w is the lateral width of the surface of the partition wall 104 on the side away from the substrate 101. For example, w = 40 μm.
Reference symbol w1 represents the width of the black matrix 495. For example, w1 = 90 μm.
The symbol v is the distance between one edge of the surface of the partition wall 104 away from the substrate 101 and one side surface of the black matrix 495. For example, v = 25 μm.
 符号NLはブラックマトリクス495の第1基板493側の面の一方の側端縁(図中右側の側端縁)を通りかつ第1基板493Xの液晶層498側の面の法線と平行な線である。
 符号MLはブラックマトリクス495の第1基板493側の面の一方の側端縁と隔壁104の基板101と離れた側の面の一方の側端縁(図中右側の側端縁)とを結ぶ線である。
 符号θは線NLと線MLとのなす角である。例えばθ=5.7°である。
Symbol NL passes through one side edge (the right side edge in the drawing) of the surface of the black matrix 495 on the first substrate 493 side and is parallel to the normal line of the surface of the first substrate 493X on the liquid crystal layer 498 side. It is.
The symbol ML connects one side edge of the surface of the black matrix 495 on the first substrate 493 side and one side edge of the surface of the partition wall 104 away from the substrate 101 (right side edge in the drawing). Is a line.
A symbol θ is an angle formed by the line NL and the line ML. For example, θ = 5.7 °.
 図25に示すように、比較例1と同様に、バックライト412は、光源413と、導光板414と、を備えている。光源413としては青色LEDを用いた。 25, as in Comparative Example 1, the backlight 412 includes a light source 413 and a light guide plate 414. A blue LED was used as the light source 413.
 そして、上記方法で作成した蛍光体基板410を、第2接着剤層422を介してバンドパスフィルター415を設けた液晶基板490に貼り合わせた。 Then, the phosphor substrate 410 prepared by the above method was bonded to the liquid crystal substrate 490 provided with the band pass filter 415 through the second adhesive layer 422.
 前記バックライト412を用いた場合に表示装置400において色滲みが生じるか否かは、バックライト412から液晶基板490に向けて青色光を照射し、蛍光体層121からの発光を、分光輝度光度計を用いて評価した。 Whether or not color blur occurs in the display device 400 when the backlight 412 is used is determined by irradiating blue light from the backlight 412 toward the liquid crystal substrate 490 and emitting light from the phosphor layer 121 using spectral luminance light intensity. Evaluation was made using a meter.
 その結果、バックライト412からの光の出射角度が±5°の時には所望の画素のみが発光し、色滲みのない良好な画像が得られた。これにより、バックライト412からの光の出射角度が比較例に対して1.67倍の時においても、所望外の蛍光体層が発光して色滲みが生じることを抑制可能であることが分かった。 As a result, when the light emission angle from the backlight 412 was ± 5 °, only desired pixels emitted light, and a good image without color blur was obtained. As a result, it is found that even when the light emission angle from the backlight 412 is 1.67 times that of the comparative example, it is possible to suppress the occurrence of color blur due to the emission of an undesired phosphor layer. It was.
(実施例2)
 図26Aに示すように、比較例1と同様に、基板洗浄、黒色層の形成を行った。
次に、隔壁104Aの材料として、エポキシ系樹脂(屈折率:1.59)、アクリル系樹脂(屈折率:1.49)、ルチル型酸化チタン(屈折率:2.71、粒径250nm)、ジアゾナフトキノン、芳香族系溶剤からなる白色感光性組成物を攪拌混合してポジ型レジストとした。
(Example 2)
As shown in FIG. 26A, the substrate was washed and the black layer was formed in the same manner as in Comparative Example 1.
Next, as a material of the partition wall 104A, epoxy resin (refractive index: 1.59), acrylic resin (refractive index: 1.49), rutile titanium oxide (refractive index: 2.71, particle size 250 nm), A white photosensitive composition composed of diazonaphthoquinone and an aromatic solvent was stirred and mixed to obtain a positive resist.
 次に、基板101上に、ポジ型レジストをスピンコーターを用いて塗布した。その後、80℃で10分間プリベークして膜厚50μmの塗膜を形成した。この塗膜に所望の画像パターンが形成できるようなマスク(画素ピッチ500μm、線幅60μm)を被せてi線(300mJ/cm)を照射し、露光した。次いで、アルカリ現像液を用いて現像して画素パターン状の構造物を得た。引き続き、熱風循環式乾燥炉を用い、140℃で60分間ポストベークしてサブ画素を仕切る隔壁104Aを作製した。SEMで観察したところ、図26Aに示すような側断面形状が三角形形状の隔壁104Aが形成できた。 Next, a positive resist was applied onto the substrate 101 using a spin coater. Then, it prebaked at 80 degreeC for 10 minute (s), and formed the coating film with a film thickness of 50 micrometers. The coating film was covered with a mask (pixel pitch 500 μm, line width 60 μm) capable of forming a desired image pattern, and exposed to i-line (300 mJ / cm 2 ). Subsequently, it developed using the alkaline developing solution, and obtained the pixel pattern-like structure. Subsequently, using a hot air circulation type drying furnace, post-baking was performed at 140 ° C. for 60 minutes to produce partition walls 104A for partitioning the sub-pixels. When observed with an SEM, a partition wall 104A having a triangular side cross-sectional shape as shown in FIG. 26A was formed.
 次に、図26Bに示すように、比較例1と同様に、隔壁104Aによって区画された領域に、赤色カラーフィルター109R、緑色カラーフィルター109G、青色カラーフィルター109Bをパターン形成した。 Next, as shown in FIG. 26B, in the same manner as in Comparative Example 1, a red color filter 109R, a green color filter 109G, and a blue color filter 109B were formed in a pattern in an area partitioned by the partition 104A.
 次に、図26Cないし図26Eに示すように、比較例1と同様に、隔壁104Aによって区画された領域に、赤色蛍光体層121、緑色蛍光体層122、青色光散乱層123をパターン形成した。
 以上により蛍光体基板410Aを完成させた。
Next, as shown in FIGS. 26C to 26E, as in Comparative Example 1, the red phosphor layer 121, the green phosphor layer 122, and the blue light scattering layer 123 were formed in a pattern in the region partitioned by the partition 104A. .
Thus, phosphor substrate 410A was completed.
 続いて、所望の画素のみに励起光を照射するために、比較例1と同様に、図27に示すバックライト412と蛍光体基板410Aの間に挿入する液晶基板490を形成した。 Subsequently, in order to irradiate only desired pixels with excitation light, a liquid crystal substrate 490 inserted between the backlight 412 and the phosphor substrate 410A shown in FIG.
 図27は、実施例2の表示装置400Aの断面図である。
 図27において、符号hAは隔壁104Aの基板101と離れた側の頂点と液晶基板490側の面との間の距離である。言い換えると、符号hAは隔壁104Aの高さである。
例えばhA=50μmである。
 符号sAは隔壁104Aの基板101と離れた側の頂点とバンドパスフィルター415の蛍光体基板410側の面との間における第2接着剤層422の厚みである。例えばsA=10μmである。
 符号d1はバンドパスフィルター415の厚みである。例えばd1=30μmである。
 符号d2は第1接着剤層421の厚みである。例えばd2=10μmである。
 符号d3は第1偏光板491の厚みである。例えばd3=50μmである。
 符号d4は第1基板493の厚みである。例えばd4=150μmである。
 符号dAは、これら6層の層のうち隔壁104Aの高さhAを除いた5層の層の厚みsA,d1,d2,d3,d4を足し合わせた厚みである。言い換えると、符号dAは隔壁104Aの基板101と離れた側の頂点と第1基板493の液晶層498側の面との間の距離である。例えばdA=250μmである。
FIG. 27 is a cross-sectional view of the display device 400A of the second embodiment.
In FIG. 27, symbol hA is the distance between the apex of the partition 104A on the side away from the substrate 101 and the surface on the liquid crystal substrate 490 side. In other words, the symbol hA is the height of the partition wall 104A.
For example, hA = 50 μm.
Symbol sA is the thickness of the second adhesive layer 422 between the apex of the partition 104A on the side away from the substrate 101 and the surface of the bandpass filter 415 on the phosphor substrate 410 side. For example, sA = 10 μm.
Reference sign d1 denotes the thickness of the bandpass filter 415. For example, d1 = 30 μm.
Reference sign d <b> 2 is the thickness of the first adhesive layer 421. For example, d2 = 10 μm.
Reference sign d3 is the thickness of the first polarizing plate 491. For example, d3 = 50 μm.
Reference sign d4 is the thickness of the first substrate 493. For example, d4 = 150 μm.
The symbol dA is a thickness obtained by adding the thicknesses sA, d1, d2, d3, and d4 of five layers excluding the height hA of the partition wall 104A among these six layers. In other words, the symbol dA is the distance between the vertex of the partition 104A on the side away from the substrate 101 and the surface of the first substrate 493 on the liquid crystal layer 498 side. For example, dA = 250 μm.
 符号w1はブラックマトリクス495の横幅である。例えばw1=90μmである。
 符号vAは隔壁104Aの基板101と離れた側の頂点とブラックマトリクス495の一方の側面との間の距離である。例えばvA=45μmである。
Reference symbol w1 represents the width of the black matrix 495. For example, w1 = 90 μm.
The symbol vA is the distance between the apex of the partition 104A on the side away from the substrate 101 and one side surface of the black matrix 495. For example, vA = 45 μm.
 符号NLはブラックマトリクス495の第1基板493側の面の一方の側端縁(図中右側の側端縁)を通りかつ第1基板493Xの液晶層498側の面の法線と平行な線である。
 符号MLAはブラックマトリクス495の第1基板493側の面の一方の側端縁と隔壁104Aの基板101と離れた側の頂点とを結ぶ線である。
 符号θAは線NLと線MLAとのなす角である。例えばθA=10.2°である。
Symbol NL passes through one side edge (the right side edge in the drawing) of the surface of the black matrix 495 on the first substrate 493 side and is parallel to the normal line of the surface of the first substrate 493X on the liquid crystal layer 498 side. It is.
A symbol MLA is a line connecting one side edge of the surface of the black matrix 495 on the first substrate 493 side and a vertex of the partition 104A on the side away from the substrate 101.
A symbol θA is an angle formed by the line NL and the line MLA. For example, θA = 10.2 °.
 図27に示すように、比較例1と同様に、バックライト412は、光源413と、導光板414と、を備えている。光源413としては青色LEDを用いた。 27, as in Comparative Example 1, the backlight 412 includes a light source 413 and a light guide plate 414. A blue LED was used as the light source 413.
 そして、上記方法で作成した蛍光体基板410Aを、第2接着剤層422を介してバンドパスフィルター415を設けた液晶基板490に貼り合わせた。 Then, the phosphor substrate 410A prepared by the above method was bonded to the liquid crystal substrate 490 provided with the band pass filter 415 through the second adhesive layer 422.
 前記バックライト412を用いた場合に表示装置400Aにおいて色滲みが生じるか否かは、バックライト412から液晶基板490に向けて青色光を照射し、蛍光体層121からの発光を、分光輝度光度計を用いて評価した。 Whether or not color blur occurs in the display device 400A when the backlight 412 is used is determined by irradiating blue light from the backlight 412 toward the liquid crystal substrate 490, and emitting light from the phosphor layer 121 using spectral luminance luminous intensity. Evaluation was made using a meter.
 その結果、バックライト412からの光の出射角度が±10°の時には所望の画素のみが発光し、色滲みのない良好な画像が得られた。これにより、バックライト412からの光の出射角度が比較例1に対して3.33倍の時においても、所望外の蛍光体層が発光して色滲みが生じることを抑制可能であることが分かった。 As a result, when the light emission angle from the backlight 412 was ± 10 °, only desired pixels emitted light, and a good image without color blur was obtained. Thereby, even when the emission angle of light from the backlight 412 is 3.33 times that of the comparative example 1, it is possible to suppress the occurrence of color blur due to the emission of an undesired phosphor layer. I understood.
 本発明は、蛍光体基板、表示装置及び電子機器の分野に利用することができる。 The present invention can be used in the fields of phosphor substrates, display devices, and electronic devices.
1…基板、2…光源、3…蛍光体層、3R…赤色蛍光体層、3G…緑色蛍光体層、3B…青色蛍光体層、4…カラーフィルター、4R…赤色カラーフィルター、4G…緑色カラーフィルター、4B…青色カラーフィルター、5,5C,5D,15,15A,15B,15C,15D,15E,15F,15G,15H,15I,15J,15K,15L,15M,15N,15O,15P,15Q,15R…隔壁、6,15Ja,15Oa,15Pa,15Qa,15Ra…光吸収層、7,15Jb,15Jc,15Ob,15Pb,15Qb,15Rb…光散乱層、8…黒色層、9…基板、10,10A,10B,10C,10D,10E…蛍光体基板、11…光源基板、12…バンドパスフィルター、51…TFT(駆動素子)、70…有機EL素子基板(光源)、90…液晶素子、91,92…偏光板、100,100A,100C,100D,100E,200,300…表示装置、1000…携帯電話機(電子機器)、1100…テレビ受信装置(電子機器)、1200…携帯型ゲーム機(電子機器)、1300…ノートパソコン(電子機器)、1400…シーリングライト(電子機器)、1500…照明スタンド(電子機器)、L1…励起光、L2…蛍光、PR…赤色サブ画素、PG…緑色サブ画素、PB…青色サブ画素 DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Light source, 3 ... Phosphor layer, 3R ... Red phosphor layer, 3G ... Green phosphor layer, 3B ... Blue phosphor layer, 4 ... Color filter, 4R ... Red color filter, 4G ... Green color Filter, 4B ... Blue color filter, 5, 5C, 5D, 15, 15A, 15B, 15C, 15D, 15E, 15F, 15G, 15H, 15I, 15J, 15K, 15L, 15M, 15N, 15O, 15P, 15Q, 15R ... partition wall, 6, 15Ja, 15Oa, 15Pa, 15Qa, 15Ra ... light absorption layer, 7, 15Jb, 15Jc, 15Ob, 15Pb, 15Qb, 15Rb ... light scattering layer, 8 ... black layer, 9 ... substrate, 10, 10A , 10B, 10C, 10D, 10E ... phosphor substrate, 11 ... light source substrate, 12 ... band pass filter, 51 ... TFT (driving element), 70 ... EL device substrate (light source), 90 ... liquid crystal device, 91, 92 ... polarizing plate, 100, 100A, 100C, 100D, 100E, 200, 300 ... display device, 1000 ... mobile phone (electronic device), 1100 ... TV reception Device (electronic device), 1200 ... portable game machine (electronic device), 1300 ... notebook computer (electronic device), 1400 ... ceiling light (electronic device), 1500 ... lighting stand (electronic device), L1 ... excitation light, L2 ... fluorescence, PR ... red subpixel, PG ... green subpixel, PB ... blue subpixel

Claims (24)

  1.  基板と、
     前記基板上に設けられ、入射された励起光により蛍光を発する蛍光体層と、
     前記蛍光体層の側面を囲む隔壁と、を含み、
     前記隔壁の少なくとも前記基板と離れた側の形状は、前記基板の一面に平行な平面で切断したときの断面積が前記基板と離れた側で小さく、前記基板に向かうにつれて漸次大きくなる形状であることを特徴とする蛍光体基板。
    A substrate,
    A phosphor layer provided on the substrate and emitting fluorescence by incident excitation light;
    A partition wall that surrounds a side surface of the phosphor layer,
    The shape of at least the side away from the substrate of the partition wall is a shape in which a cross-sectional area when cut along a plane parallel to one surface of the substrate is small on the side away from the substrate and gradually increases toward the substrate. A phosphor substrate characterized by that.
  2.  前記隔壁が、光散乱性または光反射性を有していることを特徴とする請求項1に記載の蛍光体基板。 The phosphor substrate according to claim 1, wherein the partition wall has light scattering property or light reflection property.
  3.  前記隔壁は、
     光散乱性を有する光散乱層と、
     前記基板と前記光散乱層との間に配置され、光吸収性を有する光吸収層と、を含み、
     前記光吸収層の前記基板側の部分は、前記基板の一面に平行な平面で切断したときの断面積が前記光散乱層を前記基板の一面に平行な平面で切断したときの断面積よりも大きいことを特徴とする請求項1または2に記載の蛍光体基板。
    The partition is
    A light scattering layer having light scattering properties;
    A light absorbing layer disposed between the substrate and the light scattering layer and having a light absorption property,
    The portion of the light absorbing layer on the substrate side has a cross-sectional area when cut along a plane parallel to one surface of the substrate and a cross-sectional area when the light scattering layer is cut along a plane parallel to one surface of the substrate. The phosphor substrate according to claim 1, wherein the phosphor substrate is large.
  4.  前記光散乱層の少なくとも前記蛍光体層と接する部分が樹脂と光散乱性粒子とを含む材料で形成されていることを特徴とする請求項3に記載の蛍光体基板。 4. The phosphor substrate according to claim 3, wherein at least a portion of the light scattering layer in contact with the phosphor layer is formed of a material containing a resin and light scattering particles.
  5.  前記光散乱層の少なくとも前記蛍光体層と接する部分が白色であることを特徴とする請求項3または4に記載の蛍光体基板。 The phosphor substrate according to claim 3 or 4, wherein at least a portion of the light scattering layer in contact with the phosphor layer is white.
  6.  前記光散乱層の少なくとも前記蛍光体層と接する部分が凹凸形状であることを特徴とする請求項3ないし5のいずれか一項に記載の蛍光体基板。 6. The phosphor substrate according to claim 3, wherein at least a portion of the light scattering layer in contact with the phosphor layer has an uneven shape.
  7.  前記隔壁の少なくとも前記基板と離れた側の側面の形状は、前記基板の一面に直交する平面で切断したときの断面形状が凹をなす曲線形状であることを特徴とする請求項1ないし6のいずれか一項に記載の蛍光体基板。 7. The shape of at least a side surface of the partition that is remote from the substrate is a curved shape in which a cross-sectional shape when cut along a plane orthogonal to one surface of the substrate is concave. The phosphor substrate according to any one of the above.
  8.  前記隔壁の少なくとも前記基板と離れた側の側面の形状は、前記基板の一面に直交する平面で切断したときの断面形状が凸をなす曲線形状であることを特徴とする請求項1ないし6のいずれか一項に記載の蛍光体基板。 The shape of at least the side surface of the partition that is remote from the substrate is a curved shape having a convex cross-sectional shape when cut along a plane orthogonal to one surface of the substrate. The phosphor substrate according to any one of the above.
  9.  前記基板と前記蛍光体層との間に、前記基板の屈折率よりも低い屈折率を有する低屈折率層が設けられたことを特徴とする請求項1ないし8のいずれか一項に記載の蛍光体基板。 9. The low refractive index layer having a lower refractive index than the refractive index of the substrate is provided between the substrate and the phosphor layer. Phosphor substrate.
  10.  前記励起光が青色光であるときに、
     前記蛍光体層の前記励起光の入射側に、青色領域の光を透過し、緑色から近赤外領域までの光を反射するバンドパスフィルターが設けられたことを特徴とする請求項1ないし9のいずれか一項に記載の蛍光体基板。
    When the excitation light is blue light,
    The band pass filter which permeate | transmits the light of a blue region and reflects the light from green to a near infrared region is provided in the incident side of the said excitation light of the said fluorescent substance layer. The phosphor substrate according to any one of the above.
  11.  前記励起光が紫外光であるときに、
     前記蛍光体層の前記励起光の入射側に、紫外領域の光を透過し、緑色から近赤外領域までの光を反射するバンドパスフィルターが設けられたことを特徴とする請求項1ないし9のいずれか一項に記載の蛍光体基板。
    When the excitation light is ultraviolet light,
    The band pass filter which permeate | transmits the light of an ultraviolet region and reflects the light from a green region to a near infrared region is provided in the incident side of the said excitation light of the said fluorescent substance layer. The phosphor substrate according to any one of the above.
  12.  請求項1ないし9のいずれか一項に記載の蛍光体基板と、前記蛍光体層に照射する励起光を射出する光源と、を備えたことを特徴とする表示装置。 A display device comprising: the phosphor substrate according to any one of claims 1 to 9; and a light source that emits excitation light that irradiates the phosphor layer.
  13.  赤色光による表示を行う赤色サブ画素と、緑色光による表示を行う緑色サブ画素と、青色光による表示を行う青色サブ画素と、を少なくとも含む複数の画素が備えられ、
     前記光源から前記励起光としての青色光が射出され、
     前記蛍光体層として、前記赤色サブ画素に前記青色光を前記励起光として赤色光を発する赤色蛍光体層が設けられ、前記緑色サブ画素に前記青色光を前記励起光として緑色光を発する緑色蛍光体層が設けられ、
     前記青色サブ画素には前記青色光を散乱させる散乱層が設けられたことを特徴とする請求項12に記載の表示装置。
    A plurality of pixels including at least a red sub-pixel for displaying with red light, a green sub-pixel for displaying with green light, and a blue sub-pixel for displaying with blue light;
    Blue light as the excitation light is emitted from the light source,
    As the phosphor layer, a red phosphor layer that emits red light using the blue light as the excitation light is provided on the red sub-pixel, and green fluorescence that emits green light using the blue light as the excitation light on the green sub-pixel. A body layer is provided,
    The display device according to claim 12, wherein the blue sub-pixel is provided with a scattering layer that scatters the blue light.
  14.  前記光源から前記励起光として青色光が射出され、
     前記光源と前記蛍光体基板との間に、青色領域の光を透過し、緑色から近赤外領域までの光を反射するバンドパスフィルターが設けられたことを特徴とする請求項13に記載の表示装置。
    Blue light is emitted from the light source as the excitation light,
    The band pass filter which permeate | transmits the light of a blue area | region and reflects the light from green to a near-infrared area | region was provided between the said light source and the said fluorescent substance board of Claim 13 characterized by the above-mentioned. Display device.
  15.  赤色光による表示を行う赤色サブ画素と、緑色光による表示を行う緑色サブ画素と、青色光による表示を行う青色サブ画素と、を少なくとも含む複数の画素が備えられ、
     前記光源から前記励起光としての紫外光が射出され、
     前記蛍光体層として、前記赤色サブ画素に前記紫外光を前記励起光として赤色光を発する赤色蛍光体層が設けられ、前記緑色サブ画素に前記紫外光を前記励起光として緑色光を発する緑色蛍光体層が設けられ、前記青色サブ画素に前記紫外光を前記励起光として青色光を発する青色蛍光体層が設けられたことを特徴とする請求項12に記載の表示装置。
    A plurality of pixels including at least a red sub-pixel for displaying with red light, a green sub-pixel for displaying with green light, and a blue sub-pixel for displaying with blue light;
    Ultraviolet light as the excitation light is emitted from the light source,
    As the phosphor layer, a red phosphor layer that emits red light using the ultraviolet light as the excitation light is provided on the red sub-pixel, and green fluorescence that emits green light using the ultraviolet light as the excitation light on the green sub-pixel. 13. The display device according to claim 12, further comprising a body layer, and a blue phosphor layer that emits blue light using the ultraviolet light as the excitation light.
  16.  前記光源から前記励起光として紫外光が射出され、
     前記光源と前記蛍光体基板との間に、紫外領域の光を透過し、緑色から近赤外領域までの光を反射するバンドパスフィルターが設けられたことを特徴とする請求項15に記載の表示装置。
    Ultraviolet light is emitted as the excitation light from the light source,
    The band pass filter which permeate | transmits the light of an ultraviolet region and reflects the light from green to a near-infrared area | region was provided between the said light source and the said fluorescent substance board | substrate, It is characterized by the above-mentioned. Display device.
  17.  前記光源は、前記複数の画素に対応して設けられた複数の発光素子と、前記複数の発光素子をそれぞれ駆動する複数の駆動素子と、を備えたアクティブマトリクス駆動方式の光源であることを特徴とする請求項13ないし16のいずれか一項に記載の表示装置。 The light source is an active matrix drive type light source including a plurality of light emitting elements provided corresponding to the plurality of pixels, and a plurality of driving elements that respectively drive the plurality of light emitting elements. The display device according to any one of claims 13 to 16.
  18.  前記光源が、発光ダイオード、有機エレクトロルミネセンス素子、無機エレクトロルミネセンス素子のいずれかであることを特徴とする請求項12ないし17のいずれか一項に記載の表示装置。 The display device according to any one of claims 12 to 17, wherein the light source is any one of a light emitting diode, an organic electroluminescence element, and an inorganic electroluminescence element.
  19.  前記光源が、光射出面から光を射出する面状光源であり、
     前記面状光源と前記蛍光体基板との間に、前記画素毎に前記面状光源から射出された光の透過率を制御可能な液晶素子が設けられたことを特徴とする請求項12ないし18のいずれか一項に記載の表示装置。
    The light source is a planar light source that emits light from a light exit surface;
    19. A liquid crystal element capable of controlling the transmittance of light emitted from the planar light source for each pixel is provided between the planar light source and the phosphor substrate. The display device according to any one of the above.
  20.  前記光源が、指向性を有していることを特徴とする請求項12ないし19のいずれか一項に記載の表示装置。 The display device according to claim 12, wherein the light source has directivity.
  21.  前記光源と前記蛍光体基板との間に、波長435nm以上480nm以下における消光比が10000以上である偏光板が設けられていることを特徴とする請求項12ないし20のいずれか一項に記載の表示装置。 21. The polarizing plate according to claim 12, wherein a polarizing plate having an extinction ratio of 10,000 or more at a wavelength of 435 nm or more and 480 nm or less is provided between the light source and the phosphor substrate. Display device.
  22.  前記蛍光体層の上面または下面のいずれか一方にカラーフィルターが設けられたことを特徴とする請求項12ないし21のいずれか一項に記載の表示装置。 The display device according to any one of claims 12 to 21, wherein a color filter is provided on either the upper surface or the lower surface of the phosphor layer.
  23.  前記隔壁に囲まれた領域の前記蛍光体層は、前記基板の一面と直交する平面で切断したときの断面形状が凹型形状であり、少なくとも周辺部が前記隔壁の側面に沿って配置されていることを特徴とする請求項12ないし22のいずれか一項に記載の表示装置。 The phosphor layer in the region surrounded by the barrier ribs has a concave cross-sectional shape when cut by a plane orthogonal to one surface of the substrate, and at least a peripheral portion is disposed along the side surface of the barrier ribs. The display device according to claim 12, wherein the display device is a display device.
  24.  請求項12ないし23のいずれか一項に記載の表示装置を備えたことを特徴とする電子機器。 An electronic apparatus comprising the display device according to any one of claims 12 to 23.
PCT/JP2013/051066 2012-01-23 2013-01-21 Fluorescent material substrate, display apparatus, and electronic apparatus WO2013111696A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-011061 2012-01-23
JP2012011061A JP2015064391A (en) 2012-01-23 2012-01-23 Phosphor substrate, display device, and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2013111696A1 true WO2013111696A1 (en) 2013-08-01

Family

ID=48873416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051066 WO2013111696A1 (en) 2012-01-23 2013-01-21 Fluorescent material substrate, display apparatus, and electronic apparatus

Country Status (2)

Country Link
JP (1) JP2015064391A (en)
WO (1) WO2013111696A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3570328A1 (en) * 2018-05-14 2019-11-20 Samsung Display Co., Ltd Organic light emitting diode display including color conversion panel
WO2020063157A1 (en) * 2018-09-28 2020-04-02 深圳光峰科技股份有限公司 Led display screen
CN113013349A (en) * 2019-12-19 2021-06-22 乐金显示有限公司 Display device
KR102655695B1 (en) 2022-09-28 2024-04-08 삼성디스플레이 주식회사 Organic light emitting diode display including color conversion panel

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171207A1 (en) * 2015-04-24 2016-10-27 シャープ株式会社 Wavelength conversion substrate, light emitting device, and display apparatus, lighting apparatus and electronic equipment that are provided therewith
KR102377904B1 (en) 2016-04-29 2022-03-23 삼성디스플레이 주식회사 Display device
JP6740762B2 (en) 2016-07-13 2020-08-19 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
KR102618811B1 (en) * 2017-01-23 2023-12-28 삼성디스플레이 주식회사 Color conversion panel and display device including the same
JP2018205456A (en) * 2017-06-01 2018-12-27 株式会社ブイ・テクノロジー Full color LED display panel
CN108987423B (en) 2017-06-05 2023-09-12 三星电子株式会社 display device
KR102395993B1 (en) * 2017-06-05 2022-05-11 삼성전자주식회사 Display apparatus
JP2019028380A (en) * 2017-08-03 2019-02-21 株式会社ブイ・テクノロジー Full color LED display panel
JP2019102664A (en) * 2017-12-04 2019-06-24 株式会社ブイ・テクノロジー Method for manufacturing led display panel
KR102551354B1 (en) 2018-04-20 2023-07-04 삼성전자 주식회사 Semiconductor light emitting devices and methods of manufacturing the same
CN109037265A (en) * 2018-06-12 2018-12-18 南京阿吉必信息科技有限公司 One kind is with full-color array of display structure of optical isolation and preparation method thereof
JP7187879B2 (en) * 2018-08-08 2022-12-13 セイコーエプソン株式会社 Wavelength conversion element, light source device and projector
KR102602673B1 (en) * 2018-10-12 2023-11-17 삼성디스플레이 주식회사 Display device and method of manufacturing the same
JP7369338B2 (en) 2020-04-28 2023-10-26 Toppanホールディングス株式会社 Black matrix substrate and display device equipped with the same
KR20210155674A (en) * 2020-06-16 2021-12-23 엘지디스플레이 주식회사 Display apparatus
JP2022115708A (en) 2021-01-28 2022-08-09 凸版印刷株式会社 Display device and wavelength conversion board
JP7452592B1 (en) 2022-08-31 2024-03-19 Toppanホールディングス株式会社 display device
WO2024053451A1 (en) * 2022-09-05 2024-03-14 Toppanホールディングス株式会社 Wavelength conversion substrate and display device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106443A (en) * 1996-07-10 1998-04-24 Toray Ind Inc Plasma display
JP2001027802A (en) * 1999-05-12 2001-01-30 Toray Ind Inc Photosensitive paste, display and member for plasma display
JP2005123088A (en) * 2003-10-17 2005-05-12 Fuji Electric Holdings Co Ltd Color conversion filter and organic el display using it
WO2006022123A1 (en) * 2004-08-26 2006-03-02 Idemitsu Kosan Co., Ltd. Organic el display device
JP2008186683A (en) * 2007-01-29 2008-08-14 Lg Micron Ltd Planar light-emitting lamp and liquid-crystal display device using the same
JP2009288476A (en) * 2008-05-29 2009-12-10 Sony Corp Method of manufacturing color conversion substrate, method of manufacturing color conversion filter substrate, and method of manufacturing organic electroluminescent device
WO2010010730A1 (en) * 2008-07-24 2010-01-28 富士電機ホールディングス株式会社 Method for manufacturing color conversion substrate
WO2010116559A1 (en) * 2009-03-30 2010-10-14 シャープ株式会社 Display panel and display device
JP2010282916A (en) * 2009-06-08 2010-12-16 Fuji Electric Holdings Co Ltd Manufacturing method for color conversion filter substrate and organic el display

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106443A (en) * 1996-07-10 1998-04-24 Toray Ind Inc Plasma display
JP2001027802A (en) * 1999-05-12 2001-01-30 Toray Ind Inc Photosensitive paste, display and member for plasma display
JP2005123088A (en) * 2003-10-17 2005-05-12 Fuji Electric Holdings Co Ltd Color conversion filter and organic el display using it
WO2006022123A1 (en) * 2004-08-26 2006-03-02 Idemitsu Kosan Co., Ltd. Organic el display device
JP2008186683A (en) * 2007-01-29 2008-08-14 Lg Micron Ltd Planar light-emitting lamp and liquid-crystal display device using the same
JP2009288476A (en) * 2008-05-29 2009-12-10 Sony Corp Method of manufacturing color conversion substrate, method of manufacturing color conversion filter substrate, and method of manufacturing organic electroluminescent device
WO2010010730A1 (en) * 2008-07-24 2010-01-28 富士電機ホールディングス株式会社 Method for manufacturing color conversion substrate
WO2010116559A1 (en) * 2009-03-30 2010-10-14 シャープ株式会社 Display panel and display device
JP2010282916A (en) * 2009-06-08 2010-12-16 Fuji Electric Holdings Co Ltd Manufacturing method for color conversion filter substrate and organic el display

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3570328A1 (en) * 2018-05-14 2019-11-20 Samsung Display Co., Ltd Organic light emitting diode display including color conversion panel
CN110491901A (en) * 2018-05-14 2019-11-22 三星显示有限公司 Organic light emitting diode display including color conversion panel
KR20190130697A (en) * 2018-05-14 2019-11-25 삼성디스플레이 주식회사 Organic light emitting diode display including color conversion panel
US10804334B2 (en) 2018-05-14 2020-10-13 Samsung Display Co., Ltd. Organic light emitting diode display including color conversion panel
KR102450398B1 (en) * 2018-05-14 2022-10-04 삼성디스플레이 주식회사 Organic light emitting diode display including color conversion panel
WO2020063157A1 (en) * 2018-09-28 2020-04-02 深圳光峰科技股份有限公司 Led display screen
CN113013349A (en) * 2019-12-19 2021-06-22 乐金显示有限公司 Display device
US20210193968A1 (en) * 2019-12-19 2021-06-24 Lg Display Co., Ltd. Display Device
KR102655695B1 (en) 2022-09-28 2024-04-08 삼성디스플레이 주식회사 Organic light emitting diode display including color conversion panel

Also Published As

Publication number Publication date
JP2015064391A (en) 2015-04-09

Similar Documents

Publication Publication Date Title
WO2013111696A1 (en) Fluorescent material substrate, display apparatus, and electronic apparatus
US9182631B2 (en) Phosphor substrate, display device, and electronic apparatus
US9512976B2 (en) Light-emitting device, display device and illumination device
WO2012108384A1 (en) Fluorescent substrate, and display device and lighting device using same
JP5538519B2 (en) Light emitting element, display and display device
US9099409B2 (en) Organic electroluminescent display device, electronic apparatus including the same, and method for producing organic electroluminescent display device
WO2012090786A1 (en) Light-emitting device, display device, and illumination device
WO2014084012A1 (en) Scatterer substrate
WO2013137052A1 (en) Fluorescent substrate and display device provided with same
WO2013039072A1 (en) Light-emitting device, display apparatus, illumination apparatus, and electricity-generating apparatus
WO2013183751A1 (en) Fluorescent substrate, light-emitting device, display device, and lighting device
WO2011129135A1 (en) Fluorescent substrate and method for producing the same, and display device
WO2011125363A1 (en) Organic electroluminescence element, organic electroluminescence display, and organic electroluminescence display apparatus
WO2012081568A1 (en) Fluorescent substrate, display device, and lighting device
JP2014052606A (en) Phosphor substrate, light-emitting device, display device and luminaire
JP2013109907A (en) Phosphor substrate and display device
JP2016218151A (en) Wavelength conversion substrate, light-emitting device and display device comprising the same, lighting device, and electronic apparatus
WO2012121372A1 (en) Display element and electronic device
WO2011145418A1 (en) Phosphor display device, and phosphor layer
JP2016143658A (en) Light emitting element and display device
WO2012081536A1 (en) Light-emitting device, display device, electronic apparatus, and illumination device
WO2012043172A1 (en) Phosphor substrate, and display device and lighting device each equipped with same
WO2013039027A1 (en) Display apparatus, electronic device, and illumination apparatus
WO2012144426A1 (en) Fluorescent light body substrate and display device
WO2013094645A1 (en) Optical substrate and method for manufacturing same, light-emitting element, liquid crystal element, display device, liquid crystal device, and illumination device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13741513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13741513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP