WO2013111529A1 - Battery temperature adjustment device - Google Patents

Battery temperature adjustment device Download PDF

Info

Publication number
WO2013111529A1
WO2013111529A1 PCT/JP2013/000118 JP2013000118W WO2013111529A1 WO 2013111529 A1 WO2013111529 A1 WO 2013111529A1 JP 2013000118 W JP2013000118 W JP 2013000118W WO 2013111529 A1 WO2013111529 A1 WO 2013111529A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
warm
temperature control
unit cell
heat exchanger
Prior art date
Application number
PCT/JP2013/000118
Other languages
French (fr)
Japanese (ja)
Inventor
英晃 大川
山中 隆
木下 宏
竹内 雅之
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2013111529A1 publication Critical patent/WO2013111529A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • H01M10/6565Gases with forced flow, e.g. by blowers with recirculation or U-turn in the flow path, i.e. back and forth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6566Means within the gas flow to guide the flow around one or more cells, e.g. manifolds, baffles or other barriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a battery temperature control device that adjusts the temperature of an assembled battery including a plurality of single cells by a fluid that circulates around the battery.
  • Patent Document 1 As a conventional battery temperature control device, for example, a device described in Patent Document 1 is known.
  • the apparatus blows an atmosphere cooled or heated by introducing a refrigerant into a heat exchanger to a battery pack by a blower fan.
  • the unit cells constituting the assembled battery are cooled or heated by the air flowing around, but even if cooled or heated, the temperature of the unit cell surface is not always the same. There is a problem that it does not become uniform. For example, in a unit cell, a part with a large calorific value is likely to be hotter than other parts, so that a temperature distribution that forms a high-temperature part and a low-temperature part occurs on the surface of the unit cell, or the direction of air flow to the unit cell In some cases, a temperature distribution may occur depending on the degree of cooling or heating on the surface of the unit cell.
  • the present disclosure aims to provide a battery temperature control device that suppresses a large temperature difference on the battery surface both when the battery is warmed up and when the battery is cooled.
  • the battery temperature control device includes a plurality of unit cells each having an electrode terminal projecting to the outside and connected to be energized, and a plurality of unit cells.
  • Fluid flow device for flowing a temperature-controlled fluid for adjusting the temperature of the cell so as to flow around the unit cell, and a heat source device for warming up to dissipate the temperature-controlled fluid in the warm-up mode for warming up the plurality of unit cells
  • a cooling heat source device that absorbs heat from the temperature control fluid in the cooling mode for cooling a plurality of single cells, and a warm-up heat source device in the warm-up mode to function and control the flow path of the temperature-control fluid and cooling
  • a control device that controls the flow path of the temperature control fluid in the cooling mode, and the control device projects the temperature control fluid to a plurality of single cells in the cooling mode.
  • the temperature adjustment fluid is flowed out from the other side, and in the warm-up mode, the temperature adjustment fluid is circulated around the plurality of single cells in the direction opposite to that in the cooling mode. Control.
  • the temperature control fluid flows from the periphery of the one side portion where the electrode terminal of the unit cell protrudes toward the periphery of the other side portion in the cooling mode, the temperature control fluid moves first to the electrode terminal side of the unit cell. Then, the other side far from the electrode terminal is cooled.
  • the temperature control fluid flows from the periphery of the other side portion of the unit cell toward the periphery of the one side portion in the warm-up mode, the temperature control fluid is heated after the other side far from the electrode terminal of the unit cell is heated first. One side close to the electrode terminal is heated.
  • a temperature-controlled fluid flow having a high effect of strongly heating the other side of the battery can be formed. Therefore, the temperature difference between the one side and the other side of the unit cell can be reduced, and the occurrence of a significant temperature distribution on the unit cell surface can be avoided. From the above, it is possible to provide a battery temperature control device that suppresses the occurrence of a large temperature difference on the battery surface both when the battery is warmed up and when the battery is cooled.
  • the control device includes a single device having a function of a warm-up heat source device and a function of a cooling heat source device, and the control device controls the single device as a warm-up heat source in the warm-up mode. Switching control is performed so that it functions as a device and functions as a cooling heat source device in the cooling mode.
  • the effect of suppressing the temperature difference on the surface of the battery both when the battery is warmed up and when the battery is cooled can be realized by controlling the flow path of the temperature control fluid and switching the function of a single device. . Therefore, appropriate battery temperature control during warm-up and cooling can be provided by a heat source device with a small number of parts.
  • the temperature control fluid is a gas
  • the gas circulates in a circulation passage blocked from the outside, and the plurality of single cells are arranged in the circulation passage.
  • the gas has a smaller heat capacity than the liquid, a remarkable temperature distribution on the surface of the unit cell is likely to occur.
  • the one side portion where the electrode terminal of the unit cell protrudes is cooled first and heated.
  • the remarkable effect of suppressing the temperature difference on the surface of the unit cell can be obtained by the configuration in which the other side portion of the unit cell is heated first in the machine mode.
  • the temperature adjustment fluid is air. According to this, when the temperature control fluid is outside air or indoor air, if moisture contained in the air, dust flowing along with the air, etc. adhere to the electrode terminal which is the conductive part, it may cause a short circuit or poor conduction. However, by circulating the air through the circulation passage that is cut off from the outside, it is possible to prevent an increase in moisture in the circulating air and contamination of dust with the air. Therefore, by using appropriately controlled circulating air as the temperature control fluid, it is possible to suppress the occurrence of electrical problems and continue to use a plurality of single cells properly.
  • the drawing It is a perspective view which shows the structure of the battery temperature control apparatus of 1st Embodiment.
  • the battery temperature control apparatus of 1st Embodiment it is a schematic diagram for demonstrating the air flow at the time of battery warming-up, and the operation state of a heat pump cycle.
  • the battery temperature control apparatus of 1st Embodiment it is a schematic diagram for demonstrating the air flow at the time of battery cooling, and the operation state of a heat pump cycle.
  • It is a schematic diagram which shows the temperature control fluid flow direction with respect to the cell at the time of warming-up.
  • the battery temperature control apparatus of 2nd Embodiment it is a schematic diagram for demonstrating the air flow at the time of battery warming-up, and the operation state of a heat pump cycle.
  • the battery temperature control apparatus of 2nd Embodiment it is a schematic diagram for demonstrating the operation state of the air flow at the time of battery cooling, and a heat pump cycle.
  • the battery temperature control apparatus of 3rd Embodiment it is a schematic diagram for demonstrating the air flow at the time of battery warm-up, and the operation state of each apparatus.
  • the battery temperature control apparatus of 3rd Embodiment it is a schematic diagram for demonstrating the air flow at the time of battery cooling, and the operation state of each apparatus.
  • the battery temperature control apparatus of 4th Embodiment it is a schematic diagram for demonstrating the operation state of the fluid flow at the time of battery warming-up, and a heat pump cycle.
  • the battery temperature control apparatus of 4th Embodiment it is a schematic diagram for demonstrating the fluid flow at the time of battery cooling, and the operation state of a heat pump cycle.
  • the battery temperature control apparatus of 5th Embodiment it is a schematic diagram for demonstrating the fluid state at the time of battery warming-up, and the operation state of a heat pump cycle.
  • the battery temperature control apparatus of 5th Embodiment it is a schematic diagram for demonstrating the fluid flow at the time of battery cooling, and the operation state of a heat pump cycle.
  • the battery temperature control apparatus of 6th Embodiment it is a schematic diagram for demonstrating the fluid flow at the time of battery warming-up, and the operation state of each apparatus.
  • the battery temperature control apparatus of 5th Embodiment it is a schematic diagram for demonstrating the fluid flow at the time of battery cooling, and the operation state of each apparatus. It is a schematic diagram for demonstrating the temperature distribution which may arise on the cell surface with respect to a temperature control fluid flow regarding a prior art example.
  • the battery temperature control device is, for example, a hybrid vehicle using a traveling drive source by combining an internal combustion engine and a motor driven by electric power charged in the battery, an electric vehicle using the motor as a traveling drive source, household equipment, and factory equipment. Used for etc.
  • the temperature-controlled battery is used not only for supplying power to the motor for running, but also for storing power collected by solar cell panels, commercial power supplies, etc., and using the power when necessary. It is done.
  • the electric power is stored in each single battery constituting the assembled battery, and each single battery is, for example, a nickel metal hydride secondary battery, a lithium ion secondary battery, or an organic radical battery, for example, in a state of being housed in a casing.
  • a nickel metal hydride secondary battery a lithium ion secondary battery
  • organic radical battery for example, in a state of being housed in a casing.
  • FIG. 1 is a perspective view showing the configuration of the battery temperature control device 100 of the first embodiment.
  • the flow of the temperature-controlled fluid during battery cooling is indicated by arrows, and the assembled battery 8, the blower 7, and the heat exchanger 6 housed in the housing 9 are easy to understand the configuration. This is indicated by a solid line, not a broken line.
  • FIG. 2 shows the air flow during battery warm-up and the operating state of the heat pump cycle 1 in the battery temperature control apparatus 100.
  • FIG. 3 shows the air flow during battery cooling and the operating state of the heat pump cycle 1 in the battery temperature control apparatus 100.
  • air is employ
  • the battery temperature control device 100 includes an assembled battery 8 composed of a plurality of unit cells 80 connected to be energized, a blower 7 that blows air to the unit cells 80, and radiates heat to the air in the warm-up mode.
  • a heat exchanger 6 that functions as a heat source device for warming up, absorbs heat from the air in the cooling mode and functions as a heat source device for cooling, a control device 50 that controls the function of the heat exchanger 6 and the drive of the blower 7; Is provided.
  • the battery temperature control apparatus 100 arranges the assembled battery 8, the heat exchanger 6, and the blower 7 in a circulation passage 10 formed inside the housing 9, and constructs an air circulation route that circulates through the circulation passage 10. .
  • the air circulating in the circulation passage 10 is flowed by the blower 7, passes through the heat exchange part of the heat exchanger 6 and the periphery of the unit cell 80, and exchanges heat therewith.
  • the circulation passage 10 is a passage cut off from the outside, and the air flowing by the blower 7 continues to circulate through the circulation passage 10 without touching the external atmosphere.
  • the blower 7 is a wind direction variable blower that can blow air in two opposite directions.
  • the control device 50 can control the blowing direction of the blower 7 by switching the rotation direction of the fan of the blower 7 between forward rotation and reverse rotation.
  • the assembled battery 8 in which a plurality of unit cells 80 are stacked is controlled by electronic components (not shown) used for charging, discharging, and temperature control of the plurality of unit cells 80, and each unit is controlled by air flowing around.
  • the battery 80 is cooled.
  • This electronic component is an electronic component that controls a relay, an inverter of a charger, a battery monitoring device, a battery protection circuit, various control devices, and the like.
  • the cell 80 has, for example, a flat rectangular parallelepiped outer case, and has an electrode terminal 81 that protrudes to the outside from a narrow upper end surface 82 that is parallel to the thickness direction.
  • the electrode terminal 81 includes a positive electrode terminal and a negative electrode terminal that are arranged at predetermined intervals in each unit cell 80. All the unit cells 80 constituting the assembled battery 8 are stacked by a bus bar that starts from the negative terminal of the unit cell 80 located on one end side in the stacking direction and connects the electrode terminals of the adjacent unit cells 80. They are connected in series so that they can be energized up to the positive terminal of the unit cell 80 located on the other end side in the direction.
  • the unit cell 80 is provided with a plurality of ribs 84 on the surface facing the adjacent unit cell 80, extending in the projecting direction of the electrode terminal 81 and spaced in a direction perpendicular to the projecting direction.
  • the rib 84 has a rail shape extending in the flow direction of the temperature control fluid, and extends over the entire side surface of the unit cell. Between the adjacent ribs 84, in the state of the assembled battery 8 in which a plurality of single cells 80 are stacked, an inter-battery passage 85 through which the temperature control fluid flows is configured.
  • the plurality of unit cells 80 constituting the assembled battery 8 are, for example, connected by rods (not shown) or the like by connecting restraint plates (not shown) installed at both ends in the stacking direction of the unit cells 80. It is constrained by receiving a compressive force due to an external force directed inward from the both end portions, and is configured integrally.
  • a restraining force in the stacking direction is applied to each unit cell 80 by the restraining device, each of the plurality of ribs 84 comes into contact with the side surface of the adjacent unit cell 80 and acts from the adjacent unit cell 80. Receive power.
  • the plurality of ribs 84 have a strength to receive a force in the compression direction due to the restraining force when contacting the side surface of the adjacent unit cell 80. Further, the plurality of ribs 84 have a function of forming a plurality of elongated rectangular battery-like passages 85 formed between adjacent unit cells 80 and expanding the heat transfer area of the unit cells 80.
  • the rib 84 may be a protrusion formed integrally with the outer case of the unit cell 80, or may be formed on a separate plate member that is a separate component from the outer case of the unit cell 80.
  • the separate plate member can be provided on the side surface of the unit cell 80 by integral molding such as insert molding.
  • the outer case in which the ribs 84 are integrally formed is formed of, for example, an insulating resin, such as polypropylene, polyethylene, polystyrene, vinyl chloride, fluorine resin, PBT, polyamide, polyamideimide (PAI resin), ABS resin ( (Acryliconitrile, butadiene, styrene copolymer synthetic resin), polyacetal, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, polyphenylene sulfide, phenol, epoxy, acrylic resin, and the like.
  • an insulating resin such as polypropylene, polyethylene, polystyrene, vinyl chloride, fluorine resin, PBT, polyamide, polyamideimide (PAI resin), ABS resin ( (Acryliconitrile, butadiene, styrene copolymer synthetic resin), polyacetal, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, polypheny
  • the heat exchanger 6 disposed in the circulation passage 10 in the housing 9 is a functional part of the heat pump cycle 1 used for air conditioning, for example.
  • the heat pump cycle 1 is an apparatus in which an electric compressor 2, a heat exchanger 6, an expansion valve 5, a heat exchanger 4, and a four-way valve 3 are connected in a ring shape by piping, and a refrigerant is sealed inside.
  • the heat pump cycle 1 is configured to allow the heat exchanger 6 to function as both a heat-dissipating heat exchanger and a heat-absorbing heat exchanger by switching the pipe connected by the four-way valve 3.
  • the control device 50 controls operations such as the rotational speed of the electric compressor 2, the switching state of the four-way valve 3, and the rotational speed of the blower 7.
  • the expansion valve 5 is a decompressor with a fixed opening, but an electronically controlled expansion valve with a variable opening may be used.
  • the four-way valve 3 connects the discharge side pipe of the electric compressor 2 and the heat exchanger 6 side pipe, and connects the suction side pipe of the electric compressor 2 and the heat exchanger 4 side pipe.
  • the heat exchanger 6 functions as a heat dissipation heat exchanger
  • the heat exchanger 4 functions as a heat absorption heat exchanger.
  • the four-way valve 3 connects the piping on the discharge side of the electric compressor 2 and the piping on the heat exchanger 4 side, and connects the piping on the suction side of the electric compressor 2 and the piping on the heat exchanger 6 side.
  • the heat exchanger 6 functions as an endothermic heat exchanger, and the heat exchanger 4 functions as a heat radiating heat exchanger.
  • the heat exchanger 6 functions as a warming-up heat source device in the warming-up mode, and is switched and controlled so as to function as a cooling heat source device in the cooling mode. It is.
  • the control device 50 drives the electric compressor 2 and connects the four-way valve 3 to the piping between the discharge side of the electric compressor and the heat exchanger 6. Then, switching is performed so as to connect the pipe between the suction side of the electric compressor 2 and the heat exchanger 4. Further, the control device 50 sets the rotation direction of the fan of the blower 7 so that the air that has passed through the heat exchanger 6 has a lower end surface 83 (the other side) opposite to the upper end surface 82 (one side) from which the electrode terminal 81 protrudes. The air blowing direction of the blower 7 is controlled so as to flow into the inter-battery passage 85 from the side).
  • the refrigerant discharged from the electric compressor 2 radiates heat to the air circulating in the circulation passage 10 by the heat exchanger 6, is decompressed by the expansion valve 5, is vaporized by the heat exchanger 4, and is electrically It is sucked into the compressor 2. That is, the heat exchanger 6 functions as a warm-up heat source device, and the heat exchanger 4 functions as an endothermic heat exchanger (evaporator). At this time, the air cooled by the heat exchanger 4 may be supplied to the passenger compartment as cooling air.
  • the air circulating in the circulation passage 10 flows into the inter-cell passage 85 from the lower end surface 83 which is the other side of the unit cell 80 in a state where the temperature is increased by being heated by the heat exchanger 6.
  • heat is applied to the surface of the unit cell on the other side far from the electrode terminal 81 to heat it.
  • it rises in contact with the side surface of the unit cell 80 and continues to apply heat to the unit cell surface, and finally heat is applied to the unit cell surface at one side near the electrode terminal 81.
  • the amount of heat given to the cell surface by the air decreases from the other side portion toward the one side portion. Therefore, in the warm-up mode, the portion closer to the other side portion has a higher thermal effect, and the portion closer to the one side portion has a lower thermal effect.
  • the control device 50 drives the electric compressor 2 and connects the four-way valve 3 to the piping between the discharge side of the electric compressor 2 and the heat exchanger 4. At the same time, switching is performed so that the piping between the suction side of the electric compressor 2 and the heat exchanger 6 is connected. Further, the control device 50 sets the rotation direction of the fan of the blower 7 so that the air that has passed through the heat exchanger 6 flows into the inter-battery passage 85 from the upper end surface 82 (one side) from which the electrode terminal 81 protrudes. The direction of the blower 7 is controlled.
  • the refrigerant discharged from the electric compressor 2 radiates heat by the heat exchanger 4, is decompressed by the expansion valve 5, is vaporized by the heat exchanger 6, and cools the air circulating through the circulation passage 10.
  • the refrigerant evaporated in the heat exchanger 6 is sucked into the electric compressor 2. That is, the heat exchanger 6 functions as a cooling heat source device (evaporator), and the heat exchanger 4 functions as a heat dissipation heat exchanger. At this time, the air heated by the heat exchanger 4 may be supplied to the passenger compartment as heating air.
  • the air circulating through the circulation passage 10 flows into the inter-cell passage 85 from the upper end surface 83 on one side of the unit cell 80 in a state where the temperature is lowered by being cooled by the heat exchanger 6,
  • the surface of the unit cell on one side near the electrode terminal 81 is deprived of heat and cooled. Furthermore, it descends in contact with the side surface of the unit cell 80 and continues to take heat from the surface of the unit cell, and finally takes heat from the surface of the unit cell on the other side far from the electrode terminal 81.
  • the amount of heat that the air absorbs from the surface of the unit cell decreases from the one side portion toward the other side portion. Therefore, in the cooling mode, the portion closer to the one side portion has a higher cooling effect, and the portion closer to the other side portion has a lower cooling effect.
  • FIG. 16 is a schematic diagram for explaining the temperature distribution that can occur on the surface of the unit cell with respect to the flow of the temperature control fluid in the conventional example which is a comparative example.
  • the temperature control fluid flows into the unit cell 80 in the direction (lateral direction) orthogonal to the protruding direction of the electrode terminal 81 as in the conventional example (see FIG. 16), in the warm-up mode and the cooling mode
  • the temperature distribution on the cell surface has the following tendency.
  • the surface temperature of the unit cell 80 is higher in one side portion (upper surface portion in FIG. 16) close to the electrode terminal 81 that easily generates heat, and the other side portion (lower surface in FIG. 16) than the one side portion. Part) becomes lower.
  • the surface temperature of the unit cell 80 is lower in the portion corresponding to the upstream side of the temperature control fluid flow (the surface portion on the left side in FIG. 16). Conversely, the portion corresponding to the downstream side (the surface portion on the right side in FIG. 16) is higher than the upstream side portion.
  • the surface temperature of the unit cell 80 is the lowest at the other side part far from the electrode terminal 81 and the upstream side part (area surrounded by the two-dot chain line indicated by C2 in the lower left of FIG. 16).
  • the one side part near the electrode terminal 81 and the downstream side part are the hottest.
  • the surface temperature of the unit cell 80 is a portion corresponding to the upstream side of the temperature control fluid flow (the surface portion on the left side in FIG. 16). Conversely, the portion corresponding to the downstream side (the surface portion on the right side of FIG. 16) is lower than the upstream portion.
  • the surface temperature of the unit cell 80 in the warm-up mode is the highest in the one side portion close to the electrode terminal 81 and the upstream side portion (the region surrounded by the two-dot chain line indicated by H1 in the upper left of FIG. 16).
  • the other side portion far from the electrode terminal 81 and the downstream side portion region surrounded by a two-dot chain line indicated by H2 in the lower right of FIG. 16) has the lowest temperature.
  • the battery temperature control apparatus 100 of the present embodiment has a feature that solves this problem.
  • the battery temperature control device 100 includes a plurality of single cells 80, a blower 7 that causes the temperature control fluid to flow around the single cells 80, and air (temperature control fluid) in the warm-up mode.
  • the heat exchanger 6 that dissipates heat and absorbs heat from the air (temperature-controlled fluid) in the cooling mode and the heat exchanger 6 in the warm-up mode function to control the air flow path and exchange heat in the cooling mode.
  • a control device 50 that controls the air flow path. In the cooling mode, the control device 50 allows air to flow into the unit cell 80 from one side where the electrode terminal 81 protrudes and circulates around the unit cell 80, and then flows out from the other side. The air flow path is controlled so that the air flows around the unit cell 80 in the opposite direction to that in the cooling mode.
  • the cooling mode air flows from the periphery of the one side portion where the electrode terminal 81 of the unit cell 80 protrudes toward the periphery of the other side portion. That is, at the time of cooling, a portion having a high heat generation density can be arranged on the upstream side of the air flow. For this reason, air cools the electrode terminal 81 side first, and then cools the other side far from the electrode terminal 81.
  • the warm-up mode air flows from the periphery of the other side portion of the unit cell 80 toward the periphery of the one side portion. That is, at the time of warming up, a portion having a high heat generation density can be arranged on the downstream side of the air flow.
  • the battery temperature control device 100 is a single device that is controlled and switched by the control device 50 so as to function as a heat source device for warm-up in the warm-up mode and to function as a heat source device for cooling in the cooling mode.
  • a heat exchanger 6 is provided. According to this, it is possible to obtain the above-described temperature difference suppression effect on the battery surface by performing the air conditioning fluid flow path control and the control for switching the function of the single device (heat exchanger 6). it can. Therefore, by adopting a heat source device with a small number of parts, it is possible to provide appropriate battery temperature control during warm-up and cooling.
  • the battery temperature control apparatus 100 employs a gas (air, inert gas, etc.) as the temperature control fluid, and the gas flows through the circulation passage 10 that is blocked from the outside. Is arranged in the circulation passage 10. According to this, since the gas has a smaller heat capacity than the liquid, a remarkable temperature distribution on the surface of the unit cell is likely to occur. However, as described above, a configuration in which the one side portion where the electrode terminal 81 of the unit cell 80 protrudes in the cooling mode is cooled first and the other side portion of the unit cell 80 is first heated in the warm-up mode is adopted. Thus, a remarkable effect can be obtained with respect to temperature difference suppression on the surface of the unit cell.
  • a gas air, inert gas, etc.
  • the battery temperature control apparatus 100 employs air as the temperature control fluid. According to this, when the temperature control fluid is outside air or room air, moisture contained in the air, dust flowing along with the air, and the like are likely to adhere to the electrode terminal which is the conductive portion. In this case, although it may cause a short circuit or a failure in energization, the battery temperature control device 100 is less susceptible to external moisture or dust inflow by circulating air through the circulation passage 10 that is blocked from the outside. Therefore, it is possible to prevent the moisture in the air from increasing and dust from being mixed into the air. Therefore, since the appropriately controlled circulating air can be used as the temperature control fluid, it is possible to suppress the occurrence of an electrical failure in the assembled battery 8 and contribute to extending the battery life by proper continuous use.
  • FIG. 6 shows the air flow during battery warm-up and the operating state of the heat pump cycle 1 in the battery temperature control apparatus 100A.
  • FIG. 7 shows the air flow during battery cooling and the operating state of the heat pump cycle 1 in the battery temperature control apparatus 100A.
  • symbol same as FIG. 2 is the same element, The effect is also the same.
  • the battery temperature control device 100A also has the effects described with reference to FIGS. 4 and 5 in the first embodiment.
  • the battery temperature control device 100A functions as a warm-up heat source device in the warm-up mode, the assembled battery 8, the blower 7A that blows air to the unit cell 80, the doors 11 and 12 that switch the air flow path, and the warm-up mode.
  • a heat exchanger 6 that functions as a cooling heat source device in the cooling mode, and a controller 50A that controls the function of the heat exchanger 6, the drive of the blower 7A, and the positions of the doors 11 and 12 are provided.
  • the battery temperature control device 100A is arranged by arranging the assembled battery 8, the heat exchanger 6, and the blower 7A in a circulation passage 10A formed inside the housing 9A, and controlling the positions of the doors 11 and 12, thereby A flow path for air circulating through the closed circulation passage 10A is constructed.
  • the air that has passed through the heat exchanger 6 flows into the inter-cell passage 85 from the upper end surface 82 on one side of the unit cell 80, and the inter-battery passage 85 from the lower end surface 83 on the other side of the unit cell 80.
  • the flow can be switched between
  • the door 11 is controlled to the position shown in FIG. 6, that is, the position where the non-terminal-side passage 10A2 adjacent to the lower end surface 83 opposite to the electrode terminal 81 is connected to the heat exchanger 6.
  • the air that has passed through the exchanger 6 flows into the inter-cell passage 85 from the other side of the unit cell 80.
  • the door 12 is controlled to a position (position shown in FIG. 6) that connects the terminal side passage 10A1 adjacent to the electrode terminal 81 and the suction portion of the blower 7A.
  • the door 11 is controlled to the position shown in FIG. 7, that is, the position where the terminal side passage 10 ⁇ / b> A ⁇ b> 1 and the heat exchanger 6 are connected. Flows into the inter-battery passage 85 from the side. With the position of the door 11, the door 12 is controlled to a position (position shown in FIG. 7) that connects the non-terminal side passage 10A2 and the suction portion of the blower 7A.
  • the control device 50A drives the electric compressor 2, connects the four-way valve 3 to the discharge side of the electric compressor and the heat exchanger 6, and heats the suction side of the electric compressor 2 and heat. It switches so that piping with the exchanger 4 may be connected. Further, the control device 50A drives the fan of the blower 7A and sets the doors 11 and 12 to the positions shown in FIG. 6 as described above. Thereby, the heat exchanger 6 functions as a heat source device for warm-up, and the heat exchanger 4 functions as a heat exchanger for heat absorption.
  • the air blown by the blower 7A is heated when passing through the heat exchanger 6 and rises in temperature, passes through the non-terminal-side passage 10A2, and passes from the lower end surface 83 of the unit cell 80 (the other side of the unit cell 80) to the battery.
  • the battery 80 flows into the inter-passage 85 to heat the cell 80 and flows out from the upper end surface 82 (one side of the cell 80).
  • the air flowing out to the terminal side passage 10A1 further flows down and is sucked into the blower 7A, and continues to circulate through the circulation passage 10A to warm up the unit cell 80.
  • the control device 50A drives the electric compressor 2 to connect the four-way valve 3 to the discharge side of the electric compressor 2 and the pipe of the heat exchanger 4, and to the suction side of the electric compressor 2. And switching to connect the piping of the heat exchanger 6. Further, the control device 50A drives the fan of the blower 7A and sets the doors 11 and 12 to the positions shown in FIG. 7 as described above. Thereby, the heat exchanger 6 functions as a cooling heat source device, and the heat exchanger 4 functions as a heat dissipation heat exchanger.
  • the air blown by the blower 7A is cooled when passing through the heat exchanger 6 and drops in temperature, passes through the terminal-side passage 10A1, and passes from the upper end surface 82 of the unit cell 80 (one side of the unit cell 80) to between the cells.
  • the battery 80 flows into the passage 85 to cool the unit cell 80 and flows out from the lower end surface 83 (the other side of the unit cell 80).
  • the air flowing out to the non-terminal side passage 10A2 further flows down and is sucked into the blower 7A, and continues to circulate through the circulation passage 10A to cool the unit cell 80.
  • the battery temperature control apparatus 100B which is another form with respect to 1st Embodiment is demonstrated with reference to FIG.8 and FIG.9.
  • FIG. 8 shows the air flow during battery warm-up and the operating state of each device in battery temperature control apparatus 100B.
  • FIG. 9 shows the operating state of the air flow during battery cooling and the operating state of each device in the battery temperature control device 100B.
  • symbol same as FIG. 2 is the same element, The effect is also the same.
  • the battery temperature control device 100B also has the effects described with reference to FIGS. 4 and 5 in the first embodiment.
  • the battery temperature control device 100B includes an assembled battery 8, a blower 7 that blows air to the unit cell 80, an electric heater 13 that functions as a warm-up heat source device in the warm-up mode, and an evaporator of the refrigeration cycle 1B. And a heat exchanger 6B that functions as a cooling heat source device in the cooling mode, and a control device 50B that controls the operation of the electric heater 13, the electric compressor 2, and the blower 7.
  • the battery temperature control apparatus 100B arranges the assembled battery 8, the heat exchanger 6B, the electric heater 13, and the blower 7 in the circulation passage 10B formed inside the housing 9B, and connects the electric heater 13 and the electric compressor 2 to each other. By controlling, both warm-up mode and cooling mode can be implemented.
  • the control device 50B operates the electric heater 13 to generate heat, sets the rotation direction of the fan of the blower 7, and the air that has passed through the electric heater 13 has the lower end surface 83 (the other side) of the unit cell 80.
  • the air blowing direction of the blower 7 is controlled so as to flow into the inter-battery passage 85 from the side).
  • the electric heater 13 functions as a warm-up heat source device.
  • the air blown by the blower 7 is heated and increases in temperature when passing through the electric heater 13, and flows into the inter-cell passage 85 from the lower end surface 83 of the unit cell 80 (the other side of the unit cell 80).
  • 80 is heated and flows out from the upper end surface 82 (one side of the unit cell 80).
  • the air flowing out of the inter-battery passage 85 further flows down and is sucked into the blower 7, and continues to circulate through the circulation passage 10B to warm up the unit cell 80.
  • the control device 50B drives the electric compressor 2, sets the rotation direction of the fan of the blower 7, and the air that has passed through the heat exchanger 6B passes through the upper end surface 82 (one side) of the unit cell 80.
  • the air blowing direction of the blower 7 is controlled so as to flow into the inter-battery passage 85 from the side).
  • the heat exchanger 6B functions as a heat source device for cooling when the refrigerant evaporates inside.
  • the air blown by the blower 7 is cooled when passing through the heat exchanger 6 ⁇ / b> B, and its temperature is lowered.
  • the air flows from the upper end surface 82 of the unit cell 80 (one side of the unit cell 80) into the inter-cell passage 85.
  • FIG. 10 shows the temperature control fluid flow during battery warm-up and the operating state of the heat pump cycle 1C in the battery temperature control apparatus 100C.
  • FIG. 11 shows the temperature control fluid flow during battery cooling and the operation state of the heat pump cycle 1C in the battery temperature control apparatus 100C.
  • the heat pump cycle 1C functions in the same manner as the heat pump cycle 1 described in the first embodiment.
  • symbol same as FIG. 2 is the same element, The effect is also the same.
  • action, etc. from 1st Embodiment are demonstrated.
  • the battery temperature control device 100C also has the effects described with reference to FIGS. 4 and 5 in the first embodiment.
  • the battery temperature control device 100C includes a battery pack 8, a circulation circuit 10C in which a temperature adjustment fluid that exchanges heat with the unit cells 80, a pump 7C that circulates the temperature adjustment fluid in the circulation circuit 10C, and a distribution path of the temperature adjustment fluid.
  • Switching valves 14 and 15 for switching a heat exchanger 6C that functions as a heat source device for warm-up in the warm-up mode and functions as a heat source device for cooling in the cooling mode, functions of the heat exchanger 6C, driving of the pump 7C, switching valve And a control device 50C for controlling the switching operation between the fourteen and fifteen.
  • the heat exchanger 6C is a device that includes a refrigerant passage that is a part of the heat pump cycle 1C and a temperature adjusting fluid passage that is a part of the circulation circuit 10C, and heat exchange between the refrigerants flowing through these passages.
  • the battery temperature control device 100C includes a battery passage 85, a heat exchanger 6C, and a pump 7C in the circulation circuit 10C, and controls the switching operation of the switching valves 14 and 15 to thereby circulate the circulation circuit 10C. Establish a distribution channel for conditioning fluid. In this embodiment, water and LLC are used as the temperature control fluid.
  • the switching valve 14 is configured such that the water that has passed through the heat exchanger 6C flows into the inter-cell passage 85 from the upper end surface 82 on one side of the unit cell 80, and the inter-battery passage from the lower end surface 83 on the other side of the unit cell 80. The flow can be switched between the flow flowing into 85.
  • the switching valve 14 is controlled so as to connect the non-terminal side passage 10C2 connected to the position shown in FIG. 10, that is, the lower end face 83 side opposite to the electrode terminal 81, to the heat exchanger 6C. Then, the water that has passed through the heat exchanger 6C flows into the inter-cell passage 85 from the other side of the unit cell 80.
  • the switching valve 15 is controlled so as to connect the terminal side passage 10C1 connected to the upper end face 82 side and the suction portion of the pump 7C (see FIG. 10).
  • the switching valve 14 is controlled to connect the position shown in FIG. 11, that is, the terminal side passage 10 ⁇ / b> C ⁇ b> 1 and the heat exchanger 6 ⁇ / b> C, and the water that has passed through the heat exchanger 6 ⁇ / b> C It flows into the inter-battery passage 85 from one side.
  • the switching valve 15 is controlled so as to connect the non-terminal side passage 10C2 and the suction portion of the pump 7C (see FIG. 11).
  • the control device 50C drives the electric compressor 2, connects the four-way valve 3 to the discharge side of the electric compressor and the heat exchanger 6C, and heats the suction side of the electric compressor 2 and heat. It switches so that piping with the exchanger 4 may be connected. Further, the control device 50C drives the pump 7C and controls the switching valves 14 and 15 as shown in FIG. 10 as described above.
  • the heat exchanger 6C functions as a warm-up heat source device
  • the heat exchanger 4 functions as a heat absorption heat exchanger.
  • the water circulated by the pump 7C is heated by the heat of the refrigerant when passing through the heat exchanger 6C, rises in temperature, passes through the non-terminal side passage 10C2, passes through the lower end surface 83 of the unit cell 80 (the other side of the unit cell 80). From the side) to the inter-battery passage 85 to heat the unit cell 80 and out of the upper end surface 82 (one side of the unit cell 80). The water flowing out to the terminal side passage 10C1 further flows down and is sucked into the pump 7C, and continues to circulate through the circulation circuit 10C to warm up the unit cell 80.
  • the control device 50C drives the electric compressor 2, connects the four-way valve 3 to the discharge side of the electric compressor 2 and the heat exchanger 4, and the suction side of the electric compressor 2. And switching to connect the piping of the heat exchanger 6C. Further, the control device 50C drives the pump 7C and controls the switching valves 14 and 15 as shown in FIG. 10 as described above. Accordingly, the heat exchanger 6C functions as a cooling heat source device, and the heat exchanger 4 functions as a heat dissipation heat exchanger.
  • FIG. 12 shows the temperature control fluid flow during battery warm-up and the operating state of the heat pump cycle 1C in the battery temperature control apparatus 100D.
  • FIG. 13 shows the temperature control fluid flow during battery cooling and the operating state of the heat pump cycle 1C in the battery temperature control apparatus 100D.
  • the heat pump cycle 1C is the same as that described in the fourth embodiment.
  • symbol same as FIG.2 and FIG.10 is the same element, The effect is also the same.
  • the battery temperature control device 100D also has the effects described with reference to FIGS. 4 and 5 in the first embodiment.
  • the battery temperature control device 100D functions as a heat source device for warm-up in the warm-up mode and for cooling in the cooling mode.
  • a heat exchanger 6C that functions as a heat source device, a function of the heat exchanger 6C, and a control device 50D that controls driving of the pump 7D are provided.
  • Battery temperature control apparatus 100D arranges passage 85 between batteries, heat exchanger 6C, and pump 7D in circulation circuit 10D.
  • the pump 7D is a flow direction variable device capable of flowing a temperature control fluid in two opposite directions.
  • the control device 50D can control the direction of fluid flow by the pump 7D by switching the rotation direction of the pump 7D between forward rotation and reverse rotation.
  • water and LLC are used as the temperature control fluid.
  • the control device 50D drives the electric compressor 2, connects the four-way valve 3 to the discharge side of the electric compressor and the heat exchanger 6C, and heats the suction side of the electric compressor 2 and the heat. It switches so that piping with the exchanger 4 may be connected. Further, the control device 50D sets the rotation direction of the pump 7D, and the pump 7D causes the water that has passed through the heat exchanger 6C to flow into the inter-cell passage 85 from the lower end surface 83 (the other side) of the unit cell 80. Control the direction of fluid flow.
  • the heat exchanger 6C functions as a warm-up heat source device
  • the heat exchanger 4 functions as a heat absorption heat exchanger.
  • the water circulated by the pump 7D is heated by the heat of the refrigerant when passing through the heat exchanger 6C and rises in temperature, flows into the inter-cell passage 85 from the other side of the unit cell 80, and warms the unit cell 80. And flows out from one side of the unit cell 80.
  • the water flowing out of the inter-battery passage 85 further flows down and is sucked into the pump 7D, and continues to circulate through the circulation circuit 10D to warm up the unit cell 80.
  • the control device 50D drives the electric compressor 2, connects the four-way valve 3 to the discharge side of the electric compressor 2 and the pipe of the heat exchanger 4, and the suction side of the electric compressor 2 And switching to connect the piping of the heat exchanger 6C. Further, the control device 50D sets the rotation direction of the pump 7D, and the pump 7D causes the water that has passed through the heat exchanger 6C to flow into the inter-cell passage 85 from the upper end surface 82 (one side) of the unit cell 80. Control the direction of fluid flow. Accordingly, the heat exchanger 6C functions as a cooling heat source device, and the heat exchanger 4 functions as a heat dissipation heat exchanger.
  • FIG. 14 shows the temperature control fluid flow and the operating state of each device during battery warm-up in the battery temperature control apparatus 100E.
  • FIG. 14 shows the temperature control fluid flow and the operating state of each device during battery warm-up in the battery temperature control apparatus 100E.
  • FIG. 15 shows the temperature control fluid flow and the operating state of each device during battery cooling in the battery temperature control apparatus 100D.
  • symbol same as FIG.2 and FIG.12 is the same element, The effect is also the same.
  • action, etc. from 1st Embodiment are demonstrated.
  • the battery temperature control device 100E also has the effects described with reference to FIGS. 4 and 5 in the first embodiment.
  • the battery temperature adjustment device 100E includes an assembled battery 8, a circulation circuit 10E through which a temperature adjustment fluid that exchanges heat with the unit cell 80, a pump 7D, an electric heater 16 that functions as a heat source device for warm-up in the warm-up mode, A heat exchanger 6E that functions as a cooling heat source device in the cooling mode, and a control device 50E that controls the operation of the electric heater 16, the electric compressor 2, and the pump 7D are provided.
  • the heat exchanger 6E is a device that includes a refrigerant passage that is a part of the refrigeration cycle 1E and a temperature adjustment fluid passage that is a part of the circulation circuit 10E, and heat exchange is performed between the refrigerants flowing through these passages.
  • the battery temperature control device 100E includes a battery passage 85, a heat exchanger 6E, an electric heater 16, and a pump 7D in the circulation circuit 10E, and controls the electric heater 16 and the electric compressor 2 so that a warm-up mode is achieved. And cooling mode can be implemented.
  • water and LLC are used as the temperature control fluid.
  • the control device 50D operates the electric heater 16 to generate heat, sets the rotation direction of the pump 7D, and water passing through the electric heater 16 has a lower end surface 83 (the other side) of the unit cell 80.
  • the fluid flow direction by the pump 7D is controlled so as to flow into the inter-battery passage 85 from the pump 7D.
  • the electric heater 16 functions as a warm-up heat source device.
  • the water circulated by the pump 7D is heated and increases in temperature when passing through the electric heater 16, and flows into the inter-cell passage 85 from the lower end surface 83 of the unit cell 80 (the other side of the unit cell 80). 80 is heated and flows out from the upper end surface 82 (one side of the unit cell 80).
  • the water flowing out of the inter-battery passage 85 further flows down and is sucked into the pump 7D, and continues to circulate through the circulation circuit 10E to warm up the unit cell 80.
  • the control device 50E drives the electric compressor 2, sets the rotation direction of the pump 7D, and the water that has passed through the heat exchanger 6E passes through the upper end surface 82 (one side) of the unit cell 80.
  • the fluid flow direction by the pump 7D is controlled so as to flow into the inter-battery passage 85 from the pump 7D.
  • the heat exchanger 6E functions as a cooling heat source device by the vaporization of the refrigerant inside.
  • the water circulated by the pump 7D passes through the heat exchanger 6E, it absorbs heat from the refrigerant and drops in temperature, and flows into the inter-cell passage 85 from one side of the unit cell 80 to cool the unit cell 80.
  • the battery 80 flows out from the other side.
  • the water flowing out of the inter-battery passage 85 further flows down and is sucked into the pump 7D, and continues to circulate through the circulation circuit 10E to cool the unit cell 80.
  • the unit cell 80 constituting the assembled battery 8 has a flat rectangular parallelepiped outer case, but the unit cell to which the present disclosure can be applied is not limited to such a shape.
  • the unit cell may have a cylindrical outer case.
  • the electrode terminal 81 of the unit cell 80 is configured to protrude upward on the upper end surface 82, but the protruding direction of the electrode terminal 81 to which the present disclosure can be applied is limited to protrude upward.
  • the assembled battery 8 may be installed in a state where the protruding direction of the electrode terminal 81 is any one of the downward direction, the horizontal direction, the diagonally upward direction, and the diagonally downward direction.
  • the heat exchanger 6 that can function as a heat source device for warm-up and a heat exchanger for heat absorption is adopted, but heat generation and heat absorption are controlled using a Peltier element instead of the heat exchanger 6. By doing so, it can also be configured to function as a warm-up heat source device and a cooling heat source device.

Abstract

A battery temperature adjustment device comprises a plurality of unit batteries (80), a fluid flow device (7), a warm-up heat source device (6) which radiates heat toward a temperature adjustment fluid when in warm-up mode, a cooling heat source device (6) which absorbs heat from the temperature adjustment fluid when in cooling mode, and a control device (50). The plurality of unit batteries further comprise electrode terminals (81) and are connected in a current-carrying-capable manner. When in warm-up mode, the control device makes the warm-up heat source device function and control the flow path of the temperature adjustment fluid, and when in cooling mode, the control device makes the cooling heat source device function and control the flow path of the temperature adjustment fluid. The control device controls the flow path of the temperature adjustment fluid such that, when in cooling mode, the temperature adjustment fluid is made to flow through the unit batteries from one side whereat the electrode terminals protrude, to circulate in the surroundings of the unit batteries, and thereafter exit from the other side thereof, and when in heating mode, the temperature adjustment fluid is made to circulate in the surroundings of the unit batteries in the opposite direction to the direction of the temperature adjustment fluid when in cooling mode.

Description

電池温調装置Battery temperature control device 関連出願の相互参照Cross-reference of related applications
 本開示は、2012年1月24日に出願された日本出願番号2012-12280号に基づくもので、ここにその記載内容を援用する。 This disclosure is based on Japanese Patent Application No. 2012-12280 filed on January 24, 2012, the contents of which are incorporated herein.
 本開示は、複数の単電池からなる組電池について周囲に流通する流体によって温度調節する電池温調装置に関する。 The present disclosure relates to a battery temperature control device that adjusts the temperature of an assembled battery including a plurality of single cells by a fluid that circulates around the battery.
 従来の電池温調装置は、例えば、特許文献1に記載の装置が知られている。当該装置は、熱交換器への冷媒導入によって冷却または加温された雰囲気を送風ファンによって、組電池に送風するものである。 As a conventional battery temperature control device, for example, a device described in Patent Document 1 is known. The apparatus blows an atmosphere cooled or heated by introducing a refrigerant into a heat exchanger to a battery pack by a blower fan.
特開2009-259785号公報 しかしながら、上記従来技術において、組電池を構成する単電池は周囲を流れる空気によって冷却または加温されるが、冷却または加温されても、必ずしも単電池表面の温度は均一な状態にはならないという問題がある。例えば、単電池において発熱量の大きい部分は他の部位に比べて高温になりやすいため、単電池表面に高温部分と低温部分を形成する温度分布が生じる場合や、単電池に対する空気流れ方向に伴う、単電池表面における冷却度合いまたは加熱度合いの違いによって温度分布が生じる場合がある。JP, 2009-259785, A However, in the above-mentioned prior art, the unit cells constituting the assembled battery are cooled or heated by the air flowing around, but even if cooled or heated, the temperature of the unit cell surface is not always the same. There is a problem that it does not become uniform. For example, in a unit cell, a part with a large calorific value is likely to be hotter than other parts, so that a temperature distribution that forms a high-temperature part and a low-temperature part occurs on the surface of the unit cell, or the direction of air flow to the unit cell In some cases, a temperature distribution may occur depending on the degree of cooling or heating on the surface of the unit cell.
 本開示は、電池暖機時と電池冷却時の両方において、電池表面に大きな温度差が生じることを抑制する電池温調装置を提供することを目的とする。 The present disclosure aims to provide a battery temperature control device that suppresses a large temperature difference on the battery surface both when the battery is warmed up and when the battery is cooled.
 上記目的を達成するため、本開示の第1の態様の電池温調装置は、外部に突出する電極端子をそれぞれ有し、通電可能に接続される複数個の単電池と、複数個の単電池の温度を調節する温調流体を単電池の周囲を流れるように流動させる流体流動装置と、複数個の単電池を暖機する暖機モード時に温調流体に対して放熱する暖機用熱源装置と、複数個の単電池を冷却する冷却モード時に温調流体から吸熱する冷却用熱源装置と、暖機モード時に暖機用熱源装置を機能させ、温調流体の流通経路を制御するとともに、冷却モード時に冷却用熱源装置を機能させ、温調流体の流通経路を制御する制御装置と、を備え、制御装置は、冷却モード時に、温調流体を複数個の単電池に対して電極端子が突出する一方側から流入させて複数個の単電池の周囲を流通させた後、他方側から流出させ、暖機モード時に、温調流体を冷却モード時とは反対の向きに複数個の単電池の周囲に流通させるように温調流体の流通経路を制御する。 In order to achieve the above object, the battery temperature control device according to the first aspect of the present disclosure includes a plurality of unit cells each having an electrode terminal projecting to the outside and connected to be energized, and a plurality of unit cells. Fluid flow device for flowing a temperature-controlled fluid for adjusting the temperature of the cell so as to flow around the unit cell, and a heat source device for warming up to dissipate the temperature-controlled fluid in the warm-up mode for warming up the plurality of unit cells And a cooling heat source device that absorbs heat from the temperature control fluid in the cooling mode for cooling a plurality of single cells, and a warm-up heat source device in the warm-up mode to function and control the flow path of the temperature-control fluid and cooling And a control device that controls the flow path of the temperature control fluid in the cooling mode, and the control device projects the temperature control fluid to a plurality of single cells in the cooling mode. Of a plurality of single cells After the enclosure is circulated, the temperature adjustment fluid is flowed out from the other side, and in the warm-up mode, the temperature adjustment fluid is circulated around the plurality of single cells in the direction opposite to that in the cooling mode. Control.
 これによれば、冷却モード時に温調流体は単電池の電極端子が突出する一方側部分の周囲から他方側部分の周囲に向けて流通するため、温調流体は単電池の電極端子側を先に冷却した後、電極端子から遠い他方側を冷却することになる。また、暖機モード時に温調流体は単電池の他方側部分の周囲から一方側部分の周囲に向けて流通するため、温調流体は単電池の電極端子から遠い他方側を先に加熱した後、電極端子に近い一方側を加熱することになる。これにより、発熱して他の部分よりも高温になりやすい単電池の一方側を強く冷却する効果の高い温調流体流れを形成することができるとともに、電極端子側に比べて低温になりやすい単電池の他方側を強く加熱する効果の高い温調流体流れを形成することができる。したがって、単電池の一方側と他方側との温度差を低減でき、単電池表面の顕著な温度分布の発生を回避できる。以上より、電池暖機時と電池冷却時の両方において、電池表面に大きな温度差が生じることを抑制する電池温調装置を提供することができる。 According to this, since the temperature control fluid flows from the periphery of the one side portion where the electrode terminal of the unit cell protrudes toward the periphery of the other side portion in the cooling mode, the temperature control fluid moves first to the electrode terminal side of the unit cell. Then, the other side far from the electrode terminal is cooled. In addition, since the temperature control fluid flows from the periphery of the other side portion of the unit cell toward the periphery of the one side portion in the warm-up mode, the temperature control fluid is heated after the other side far from the electrode terminal of the unit cell is heated first. One side close to the electrode terminal is heated. As a result, it is possible to form a temperature-controlled fluid flow that has a high effect of strongly cooling one side of the unit cell that tends to generate heat and become hotter than the other parts, and at the same time, it is easier to lower the temperature than the electrode terminal side. A temperature-controlled fluid flow having a high effect of strongly heating the other side of the battery can be formed. Therefore, the temperature difference between the one side and the other side of the unit cell can be reduced, and the occurrence of a significant temperature distribution on the unit cell surface can be avoided. From the above, it is possible to provide a battery temperature control device that suppresses the occurrence of a large temperature difference on the battery surface both when the battery is warmed up and when the battery is cooled.
 本開示の第2の態様において、暖機用熱源装置の機能と冷却用熱源装置の機能を有する単一の装置を備え、制御装置は、単一の装置を、暖機モード時に暖機用熱源装置として機能させ、冷却モード時に冷却用熱源装置として機能させるように切り換え制御する。 In a second aspect of the present disclosure, the control device includes a single device having a function of a warm-up heat source device and a function of a cooling heat source device, and the control device controls the single device as a warm-up heat source in the warm-up mode. Switching control is performed so that it functions as a device and functions as a cooling heat source device in the cooling mode.
 これによれば、電池暖機時と電池冷却時の両方で電池表面の温度差抑制効果を、温調流体の流通経路制御と、単一の装置の機能を切り換える制御とにより実現することができる。したがって、暖機時及び冷却時の適切な電池温度制御を部品点数の少ない熱源装置によって提供できる。 According to this, the effect of suppressing the temperature difference on the surface of the battery both when the battery is warmed up and when the battery is cooled can be realized by controlling the flow path of the temperature control fluid and switching the function of a single device. . Therefore, appropriate battery temperature control during warm-up and cooling can be provided by a heat source device with a small number of parts.
 本開示の第3の態様において、温調流体は、気体であり、当該気体は、外部に対して遮断された循環通路を流通し、複数個の単電池は、当該循環通路に配置される。 In the third aspect of the present disclosure, the temperature control fluid is a gas, the gas circulates in a circulation passage blocked from the outside, and the plurality of single cells are arranged in the circulation passage.
 これによれば、気体は液体に比べて熱容量が小さいため、単電池表面の顕著な温度分布が生じやすいが、冷却モード時に単電池の電極端子が突出する一方側部分を先に冷却し、暖機モード時に単電池の他方側部分を先に加熱する構成によって、単電池表面の温度差抑制の顕著な効果を獲得することができる。 According to this, since the gas has a smaller heat capacity than the liquid, a remarkable temperature distribution on the surface of the unit cell is likely to occur. However, in the cooling mode, the one side portion where the electrode terminal of the unit cell protrudes is cooled first and heated. The remarkable effect of suppressing the temperature difference on the surface of the unit cell can be obtained by the configuration in which the other side portion of the unit cell is heated first in the machine mode.
 本開示の第4の態様において、温調流体は、空気である。これによれば、温調流体が外気や室内の空気である場合は、空気に含まれる水分、空気とともに流れる埃等が導電部である電極端子に付着すると、短絡や通電不良を起こす原因となりうるが、外部と遮断された循環通路で空気を循環させることにより、循環空気中の水分の増加や、埃が空気に混じることを防止することができる。したがって、適正に管理された循環空気を温調流体に採用することにより、電気的不具合の発生を抑制し、複数個の単電池を適正に使用し続けることができる。 In the fourth aspect of the present disclosure, the temperature adjustment fluid is air. According to this, when the temperature control fluid is outside air or indoor air, if moisture contained in the air, dust flowing along with the air, etc. adhere to the electrode terminal which is the conductive part, it may cause a short circuit or poor conduction. However, by circulating the air through the circulation passage that is cut off from the outside, it is possible to prevent an increase in moisture in the circulating air and contamination of dust with the air. Therefore, by using appropriately controlled circulating air as the temperature control fluid, it is possible to suppress the occurrence of electrical problems and continue to use a plurality of single cells properly.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
第1実施形態の電池温調装置の構成を示す斜視図である。 第1実施形態の電池温調装置において、電池暖機時の空気流れ及びヒートポンプサイクルの動作状態を説明するための概要図である。 第1実施形態の電池温調装置において、電池冷却時の空気流れ及びヒートポンプサイクルの動作状態を説明するための概要図である。 暖機時における単電池に対する温調流体流れ方向を示す模式図である。 冷却時における単電池に対する温調流体流れ方向を示す模式図である。 第2実施形態の電池温調装置において、電池暖機時の空気流れ及びヒートポンプサイクルの動作状態を説明するための概要図である。 第2実施形態の電池温調装置において、電池冷却時の空気流れ及びヒートポンプサイクルの動作状態を説明するための概要図である。 第3実施形態の電池温調装置において、電池暖機時の空気流れ及び各機器の動作状態を説明するための概要図である。 第3実施形態の電池温調装置において、電池冷却時の空気流れ及び各機器の動作状態を説明するための概要図である。 第4実施形態の電池温調装置において、電池暖機時の流体流れ及びヒートポンプサイクルの動作状態を説明するための概要図である。 第4実施形態の電池温調装置において、電池冷却時の流体流れ及びヒートポンプサイクルの動作状態を説明するための概要図である。 第5実施形態の電池温調装置において、電池暖機時の流体流れ及びヒートポンプサイクルの動作状態を説明するための概要図である。 第5実施形態の電池温調装置において、電池冷却時の流体流れ及びヒートポンプサイクルの動作状態を説明するための概要図である。 第6実施形態の電池温調装置において、電池暖機時の流体流れ及び各機器の動作状態を説明するための概要図である。 第5実施形態の電池温調装置において、電池冷却時の流体流れ及び各機器の動作状態を説明するための概要図である。 従来例に関して、温調流体流れに対して単電池表面に生じうる温度分布を説明するための模式図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
It is a perspective view which shows the structure of the battery temperature control apparatus of 1st Embodiment. In the battery temperature control apparatus of 1st Embodiment, it is a schematic diagram for demonstrating the air flow at the time of battery warming-up, and the operation state of a heat pump cycle. In the battery temperature control apparatus of 1st Embodiment, it is a schematic diagram for demonstrating the air flow at the time of battery cooling, and the operation state of a heat pump cycle. It is a schematic diagram which shows the temperature control fluid flow direction with respect to the cell at the time of warming-up. It is a schematic diagram which shows the temperature control fluid flow direction with respect to the cell at the time of cooling. In the battery temperature control apparatus of 2nd Embodiment, it is a schematic diagram for demonstrating the air flow at the time of battery warming-up, and the operation state of a heat pump cycle. In the battery temperature control apparatus of 2nd Embodiment, it is a schematic diagram for demonstrating the operation state of the air flow at the time of battery cooling, and a heat pump cycle. In the battery temperature control apparatus of 3rd Embodiment, it is a schematic diagram for demonstrating the air flow at the time of battery warm-up, and the operation state of each apparatus. In the battery temperature control apparatus of 3rd Embodiment, it is a schematic diagram for demonstrating the air flow at the time of battery cooling, and the operation state of each apparatus. In the battery temperature control apparatus of 4th Embodiment, it is a schematic diagram for demonstrating the operation state of the fluid flow at the time of battery warming-up, and a heat pump cycle. In the battery temperature control apparatus of 4th Embodiment, it is a schematic diagram for demonstrating the fluid flow at the time of battery cooling, and the operation state of a heat pump cycle. In the battery temperature control apparatus of 5th Embodiment, it is a schematic diagram for demonstrating the fluid state at the time of battery warming-up, and the operation state of a heat pump cycle. In the battery temperature control apparatus of 5th Embodiment, it is a schematic diagram for demonstrating the fluid flow at the time of battery cooling, and the operation state of a heat pump cycle. In the battery temperature control apparatus of 6th Embodiment, it is a schematic diagram for demonstrating the fluid flow at the time of battery warming-up, and the operation state of each apparatus. In the battery temperature control apparatus of 5th Embodiment, it is a schematic diagram for demonstrating the fluid flow at the time of battery cooling, and the operation state of each apparatus. It is a schematic diagram for demonstrating the temperature distribution which may arise on the cell surface with respect to a temperature control fluid flow regarding a prior art example.
 以下に、図面を参照しながら複数の実施形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても実施形態同士を部分的に組み合わせることも可能である。
(第1実施形態)
A plurality of embodiments will be described below with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each mode, the other modes described above can be applied to the other parts of the configuration. Not only combinations of parts that clearly show that combinations are possible in each embodiment, but also combinations of the embodiments even if they are not specified, unless there is a particular problem with the combination. Is also possible.
(First embodiment)
 電池温調装置は、例えば内燃機関と電池に充電された電力によって駆動されるモータとを組み合わせて走行駆動源とするハイブリッド自動車、モータを走行駆動源とする電気自動車、家庭用設備、工場用設備等に用いられる。また、温調される電池は、走行用のモータに電力を供給する用途の他、太陽電池パネル、商用電源等によって集電された電力を貯蔵し、必要な時に電力を使用する用途等に用いられる。当該電力は、組電池を構成する各単電池に蓄えられ、各単電池は、例えばニッケル水素二次電池、リチウムイオン二次電池、有機ラジカル電池であり、例えば、筐体内に収納された状態で自動車の座席下、後部座席とトランクルームとの間の空間、運転席と助手席の間の空間等に配置される他、エネルギー管理装置、太陽電池パネルシステム等の近傍等に配置される。 The battery temperature control device is, for example, a hybrid vehicle using a traveling drive source by combining an internal combustion engine and a motor driven by electric power charged in the battery, an electric vehicle using the motor as a traveling drive source, household equipment, and factory equipment. Used for etc. The temperature-controlled battery is used not only for supplying power to the motor for running, but also for storing power collected by solar cell panels, commercial power supplies, etc., and using the power when necessary. It is done. The electric power is stored in each single battery constituting the assembled battery, and each single battery is, for example, a nickel metal hydride secondary battery, a lithium ion secondary battery, or an organic radical battery, for example, in a state of being housed in a casing. In addition to being placed under the seat of the automobile, in the space between the rear seat and the trunk room, in the space between the driver seat and the passenger seat, etc., it is placed in the vicinity of the energy management device, solar cell panel system, and the like.
 第1実施形態について図1~5、図16を用いて説明する。図1は、第1実施形態の電池温調装置100の構成を示す斜視図である。なお、図1には、電池冷却時の温調流体の流れを矢印で示し、筐体9内に収納される組電池8、送風機7、及び熱交換器6については構成を理解しやすくするため、破線ではなく実線で示している。図2には、電池温調装置100において、電池暖機時の空気流れ及びヒートポンプサイクル1の動作状態を示している。図3には、電池温調装置100において、電池冷却時の空気流れ及びヒートポンプサイクル1の動作状態を示している。第1実施形態では、電池を温度調整するために用いられる温調流体の一例として空気を採用している。 The first embodiment will be described with reference to FIGS. 1 to 5 and FIG. FIG. 1 is a perspective view showing the configuration of the battery temperature control device 100 of the first embodiment. In FIG. 1, the flow of the temperature-controlled fluid during battery cooling is indicated by arrows, and the assembled battery 8, the blower 7, and the heat exchanger 6 housed in the housing 9 are easy to understand the configuration. This is indicated by a solid line, not a broken line. FIG. 2 shows the air flow during battery warm-up and the operating state of the heat pump cycle 1 in the battery temperature control apparatus 100. FIG. 3 shows the air flow during battery cooling and the operating state of the heat pump cycle 1 in the battery temperature control apparatus 100. In 1st Embodiment, air is employ | adopted as an example of the temperature control fluid used in order to adjust the temperature of a battery.
 電池温調装置100は、通電可能に接続された複数個の単電池80からなる組電池8と、単電池80に対して空気を送風する送風機7と、暖機モード時に空気に対して放熱して暖機用熱源装置として機能し、冷却モード時に空気から吸熱して冷却用熱源装置として機
能する熱交換器6と、熱交換器6の機能と送風機7の駆動を制御する制御装置50と、を備える。電池温調装置100は、筐体9の内部に形成された循環通路10に、組電池8、熱交換器6、及び送風機7を配置し、循環通路10を循環する空気の流通経路を構築する。
The battery temperature control device 100 includes an assembled battery 8 composed of a plurality of unit cells 80 connected to be energized, a blower 7 that blows air to the unit cells 80, and radiates heat to the air in the warm-up mode. A heat exchanger 6 that functions as a heat source device for warming up, absorbs heat from the air in the cooling mode and functions as a heat source device for cooling, a control device 50 that controls the function of the heat exchanger 6 and the drive of the blower 7; Is provided. The battery temperature control apparatus 100 arranges the assembled battery 8, the heat exchanger 6, and the blower 7 in a circulation passage 10 formed inside the housing 9, and constructs an air circulation route that circulates through the circulation passage 10. .
 循環通路10を循環する空気は、送風機7によって流動され、熱交換器6の熱交換部、単電池80の周囲を通過して、これらと熱交換する。循環通路10は外部と遮断された通路であり、送風機7によって流動される空気は、外部雰囲気に触れないで、循環通路10を循環し続ける。また、送風機7は、相反する2つの方向に空気を送風することができる風向可変式の送風装置である。制御装置50は、送風機7のファンの回転方向を正回転、逆回転に切り換えることにより、送風機7による送風方向を制御することができる。 The air circulating in the circulation passage 10 is flowed by the blower 7, passes through the heat exchange part of the heat exchanger 6 and the periphery of the unit cell 80, and exchanges heat therewith. The circulation passage 10 is a passage cut off from the outside, and the air flowing by the blower 7 continues to circulate through the circulation passage 10 without touching the external atmosphere. The blower 7 is a wind direction variable blower that can blow air in two opposite directions. The control device 50 can control the blowing direction of the blower 7 by switching the rotation direction of the fan of the blower 7 between forward rotation and reverse rotation.
 複数個の単電池80が積層された組電池8は、複数個の単電池80の充電、放電、温度調節に用いられる電子部品(図示せず)によって制御され、周囲を流通する空気によって各単電池80が冷却される。この電子部品は、リレー、充電器のインバータ等を制御する電子部品、電池監視装置、電池保護回路、各種の制御装置等である。 The assembled battery 8 in which a plurality of unit cells 80 are stacked is controlled by electronic components (not shown) used for charging, discharging, and temperature control of the plurality of unit cells 80, and each unit is controlled by air flowing around. The battery 80 is cooled. This electronic component is an electronic component that controls a relay, an inverter of a charger, a battery monitoring device, a battery protection circuit, various control devices, and the like.
 単電池80は、例えば扁平な直方体状の外装ケースを有し、厚さ方向に平行な狭い上端面82から外部へ突出する電極端子81を有する。電極端子81は、各単電池80において所定の間隔をあけて配置された正極端子及び負極端子からなる。組電池8を構成するすべての単電池80は、その積層方向の一方端部側に位置する単電池80における負極端子から始まって、隣接する単電池80の電極端子間を接続するバスバーによって、積層方向の他方端部側に位置する単電池80の正極端子に至るまで通電可能に直列接続される。 The cell 80 has, for example, a flat rectangular parallelepiped outer case, and has an electrode terminal 81 that protrudes to the outside from a narrow upper end surface 82 that is parallel to the thickness direction. The electrode terminal 81 includes a positive electrode terminal and a negative electrode terminal that are arranged at predetermined intervals in each unit cell 80. All the unit cells 80 constituting the assembled battery 8 are stacked by a bus bar that starts from the negative terminal of the unit cell 80 located on one end side in the stacking direction and connects the electrode terminals of the adjacent unit cells 80. They are connected in series so that they can be energized up to the positive terminal of the unit cell 80 located on the other end side in the direction.
 単電池80は、隣接する単電池80と対向する面に、電極端子81の突出方向に延び、当該突出方向と直交する方向に間隔をあけた複数のリブ84を備えている。リブ84は、温調流体の流れ方向に延びるレール形状であり、単電池の側面全域にわたっている。隣り合うリブ84間は、複数個の単電池80が積層された組電池8の状態で、温調流体が流通する電池間通路85を構成する。 The unit cell 80 is provided with a plurality of ribs 84 on the surface facing the adjacent unit cell 80, extending in the projecting direction of the electrode terminal 81 and spaced in a direction perpendicular to the projecting direction. The rib 84 has a rail shape extending in the flow direction of the temperature control fluid, and extends over the entire side surface of the unit cell. Between the adjacent ribs 84, in the state of the assembled battery 8 in which a plurality of single cells 80 are stacked, an inter-battery passage 85 through which the temperature control fluid flows is configured.
 組電池8を構成する複数の単電池80は、例えば、単電池80の積層方向の両端部に設置された拘束板(図示せず)がロッド(図示せず)等によって連結されることにより、当該両端部から内側に向かう外力による圧縮力を受けて、拘束されて、一体に構成される。そして、拘束装置によって各単電池80に積層方向の拘束力が作用した場合には、複数のリブ84のそれぞれは、隣合う単電池80の側面と接触して当該隣合う単電池80からの作用力を受ける。また、複数のリブ84は、隣合う単電池80の側面と接触したときに拘束力による圧縮方向の力を受ける強度を有する。また、複数のリブ84は、隣合う単電池80との間に形成される細長い直方状の電池間通路85を複数形成するとともに、単電池80の伝熱面積を拡大し得る機能を有する。 The plurality of unit cells 80 constituting the assembled battery 8 are, for example, connected by rods (not shown) or the like by connecting restraint plates (not shown) installed at both ends in the stacking direction of the unit cells 80. It is constrained by receiving a compressive force due to an external force directed inward from the both end portions, and is configured integrally. When a restraining force in the stacking direction is applied to each unit cell 80 by the restraining device, each of the plurality of ribs 84 comes into contact with the side surface of the adjacent unit cell 80 and acts from the adjacent unit cell 80. Receive power. In addition, the plurality of ribs 84 have a strength to receive a force in the compression direction due to the restraining force when contacting the side surface of the adjacent unit cell 80. Further, the plurality of ribs 84 have a function of forming a plurality of elongated rectangular battery-like passages 85 formed between adjacent unit cells 80 and expanding the heat transfer area of the unit cells 80.
 リブ84は、単電池80の外装ケースに一体に形成されている突起としてもよいし、単電池80の外装ケースとは別部品である別個のプレート部材に形成される形態であってもよい。また、別個のプレート部材は、単電池80の側面に例えばインサート成形等の一体成形により設けることができる。リブ84が一体に形成された外装ケースは、例えば、絶縁性を有する樹脂で形成され、ポリプロピレン、ポリエチレン、ポリスチレン、塩化ビニル、フッ素系樹脂、PBT、ポリアミド、ポリアミドイミド(PAI樹脂)、ABS樹脂(アクリロニトリル、ブタジエン、スチレンの共重合合成樹脂)、ポリアセタール、ポリカーボネート、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンスルファイド、フェノール、エポキシ、アクリル等の樹脂で形成することができる。 The rib 84 may be a protrusion formed integrally with the outer case of the unit cell 80, or may be formed on a separate plate member that is a separate component from the outer case of the unit cell 80. The separate plate member can be provided on the side surface of the unit cell 80 by integral molding such as insert molding. The outer case in which the ribs 84 are integrally formed is formed of, for example, an insulating resin, such as polypropylene, polyethylene, polystyrene, vinyl chloride, fluorine resin, PBT, polyamide, polyamideimide (PAI resin), ABS resin ( (Acryliconitrile, butadiene, styrene copolymer synthetic resin), polyacetal, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, polyphenylene sulfide, phenol, epoxy, acrylic resin, and the like.
 筐体9内の循環通路10に配される熱交換器6は、例えば、空調に用いられるヒートポンプサイクル1の一機能部品である。ヒートポンプサイクル1は、電動圧縮機2、熱交換器6、膨張弁5、熱交換器4、四方弁3を配管によって環状に接続し、内部に冷媒を封入した装置である。ヒートポンプサイクル1は、四方弁3によって接続される配管を切り換えることによって、熱交換器6を放熱用熱交換器と吸熱用熱交換器の両方に機能させることが可能に構成されている。制御装置50は、電動圧縮機2の回転数等の作動、四方弁3の切り換え状態、送風機7の回転数等の作動を制御する。なお、膨張弁5は、開度が固定式の減圧器であるが、開度可変式の電子制御式膨張弁を用いてもよい。 The heat exchanger 6 disposed in the circulation passage 10 in the housing 9 is a functional part of the heat pump cycle 1 used for air conditioning, for example. The heat pump cycle 1 is an apparatus in which an electric compressor 2, a heat exchanger 6, an expansion valve 5, a heat exchanger 4, and a four-way valve 3 are connected in a ring shape by piping, and a refrigerant is sealed inside. The heat pump cycle 1 is configured to allow the heat exchanger 6 to function as both a heat-dissipating heat exchanger and a heat-absorbing heat exchanger by switching the pipe connected by the four-way valve 3. The control device 50 controls operations such as the rotational speed of the electric compressor 2, the switching state of the four-way valve 3, and the rotational speed of the blower 7. The expansion valve 5 is a decompressor with a fixed opening, but an electronically controlled expansion valve with a variable opening may be used.
 つまり、四方弁3によって、電動圧縮機2の吐出側の配管と熱交換器6側の配管とが接続され、電動圧縮機2の吸入側の配管と熱交換器4側の配管とが接続された場合には、熱交換器6は放熱用熱交換器として機能し、熱交換器4は吸熱用熱交換器として機能する。一方、四方弁3によって、電動圧縮機2の吐出側の配管と熱交換器4側の配管とが接続され、電動圧縮機2の吸入側の配管と熱交換器6側の配管とが接続された場合には、熱交換器6は吸熱用熱交換器として機能し、熱交換器4は放熱用熱交換器として機能する。このように、熱交換器6は、暖機モード時に暖機用熱源装置として機能し、冷却モード時に冷却用熱源装置として機能するように切り換え制御されて、2つの機能を発揮する単一の装置である。 That is, the four-way valve 3 connects the discharge side pipe of the electric compressor 2 and the heat exchanger 6 side pipe, and connects the suction side pipe of the electric compressor 2 and the heat exchanger 4 side pipe. In such a case, the heat exchanger 6 functions as a heat dissipation heat exchanger, and the heat exchanger 4 functions as a heat absorption heat exchanger. On the other hand, the four-way valve 3 connects the piping on the discharge side of the electric compressor 2 and the piping on the heat exchanger 4 side, and connects the piping on the suction side of the electric compressor 2 and the piping on the heat exchanger 6 side. In this case, the heat exchanger 6 functions as an endothermic heat exchanger, and the heat exchanger 4 functions as a heat radiating heat exchanger. Thus, the heat exchanger 6 functions as a warming-up heat source device in the warming-up mode, and is switched and controlled so as to function as a cooling heat source device in the cooling mode. It is.
 単電池80の温度が暖機を要する暖機モード時には、制御装置50は、電動圧縮機2を駆動し、四方弁3を電動圧縮機の吐出側と熱交換器6との配管を接続するとともに、電動圧縮機2の吸入側と熱交換器4との配管を接続するように切り換える。さらに制御装置50は、送風機7のファンの回転方向を設定して、熱交換器6を通過した空気が電極端子81の突出する上端面82(一方側)とは反対側の下端面83(他方側)から電池間通路85に流入するように、送風機7の送風方向を制御する。これにより、電動圧縮機2から吐出された冷媒は、熱交換器6で循環通路10を循環する空気に対して放熱し、膨張弁5で減圧された後、熱交換器4で気化し、電動圧縮機2に吸入される。つまり、熱交換器6は、暖機用熱源装置として機能し、熱交換器4は吸熱用熱交換器(蒸発器)として機能する。このとき、熱交換器4で冷却された空気は、車室内に冷房風として供給してもよい。 In the warm-up mode in which the temperature of the unit cell 80 requires warm-up, the control device 50 drives the electric compressor 2 and connects the four-way valve 3 to the piping between the discharge side of the electric compressor and the heat exchanger 6. Then, switching is performed so as to connect the pipe between the suction side of the electric compressor 2 and the heat exchanger 4. Further, the control device 50 sets the rotation direction of the fan of the blower 7 so that the air that has passed through the heat exchanger 6 has a lower end surface 83 (the other side) opposite to the upper end surface 82 (one side) from which the electrode terminal 81 protrudes. The air blowing direction of the blower 7 is controlled so as to flow into the inter-battery passage 85 from the side). Thus, the refrigerant discharged from the electric compressor 2 radiates heat to the air circulating in the circulation passage 10 by the heat exchanger 6, is decompressed by the expansion valve 5, is vaporized by the heat exchanger 4, and is electrically It is sucked into the compressor 2. That is, the heat exchanger 6 functions as a warm-up heat source device, and the heat exchanger 4 functions as an endothermic heat exchanger (evaporator). At this time, the air cooled by the heat exchanger 4 may be supplied to the passenger compartment as cooling air.
 図4に示すように、循環通路10を循環する空気は、熱交換器6で加熱されて温度上昇した状態で、単電池80の他方側である下端面83から電池間通路85に流入し、まず最初に電極端子81から遠い他方側部分の単電池表面に対して熱を与えて加温する。さらに単電池80の側面に接触しながら上昇して、単電池表面に熱を与え続け、最後に電極端子81から近い一方側部分の単電池表面に対して熱を与える。このとき、空気が単電池表面に与える熱量は、他方側部分から一方側部分に向かうにつれて小さくなる。したがって、暖機モードでは、他方側部分に近づく部位ほど温熱効果が高く、一方側部分に近づく部位ほど温熱効果が低くなる。 As shown in FIG. 4, the air circulating in the circulation passage 10 flows into the inter-cell passage 85 from the lower end surface 83 which is the other side of the unit cell 80 in a state where the temperature is increased by being heated by the heat exchanger 6. First, heat is applied to the surface of the unit cell on the other side far from the electrode terminal 81 to heat it. Furthermore, it rises in contact with the side surface of the unit cell 80 and continues to apply heat to the unit cell surface, and finally heat is applied to the unit cell surface at one side near the electrode terminal 81. At this time, the amount of heat given to the cell surface by the air decreases from the other side portion toward the one side portion. Therefore, in the warm-up mode, the portion closer to the other side portion has a higher thermal effect, and the portion closer to the one side portion has a lower thermal effect.
 一方、単電池80の温度が冷却を要する冷却モード時には、制御装置50は、電動圧縮機2を駆動し、四方弁3を電動圧縮機2の吐出側と熱交換器4との配管を接続するとともに、電動圧縮機2の吸入側と熱交換器6との配管を接続するように切り換える。さらに制御装置50は、送風機7のファンの回転方向を設定して、熱交換器6を通過した空気が電極端子81の突出する上端面82(一方側)から電池間通路85に流入するように、送風機7の送風方向を制御する。これにより、電動圧縮機2から吐出された冷媒は、熱交換器4で放熱し、膨張弁5で減圧された後、熱交換器6で気化して循環通路10を循環する空気を冷却する。熱交換器6で気化した冷媒は電動圧縮機2に吸入される。つまり、熱交換器6は、冷却用熱源装置(蒸発器)として機能し、熱交換器4は放熱用熱交換器として機能する。このとき、熱交換器4で加熱された空気は、車室内に暖房風として供給してもよい。 On the other hand, when the temperature of the unit cell 80 requires cooling, the control device 50 drives the electric compressor 2 and connects the four-way valve 3 to the piping between the discharge side of the electric compressor 2 and the heat exchanger 4. At the same time, switching is performed so that the piping between the suction side of the electric compressor 2 and the heat exchanger 6 is connected. Further, the control device 50 sets the rotation direction of the fan of the blower 7 so that the air that has passed through the heat exchanger 6 flows into the inter-battery passage 85 from the upper end surface 82 (one side) from which the electrode terminal 81 protrudes. The direction of the blower 7 is controlled. Thereby, the refrigerant discharged from the electric compressor 2 radiates heat by the heat exchanger 4, is decompressed by the expansion valve 5, is vaporized by the heat exchanger 6, and cools the air circulating through the circulation passage 10. The refrigerant evaporated in the heat exchanger 6 is sucked into the electric compressor 2. That is, the heat exchanger 6 functions as a cooling heat source device (evaporator), and the heat exchanger 4 functions as a heat dissipation heat exchanger. At this time, the air heated by the heat exchanger 4 may be supplied to the passenger compartment as heating air.
 図5に示すように、循環通路10を循環する空気は、熱交換器6で冷却されて温度低下した状態で、単電池80の一方側である上端面83から電池間通路85に流入し、まず最初に電極端子81に近い一方側部分の単電池表面の熱を奪って冷却する。さらに単電池80の側面に接触しながら下降して、単電池表面の熱を奪い続け、最後に電極端子81から遠い他方側部分の単電池表面の熱を奪う。このとき、空気が単電池表面から吸熱する熱量は、一方側部分から他方側部分に向かうにつれて小さくなる。したがって、冷却モードでは、一方側部分に近づく部位ほど冷却効果が高く、他方側部分に近づく部位ほど冷却効果が低くなる。 As shown in FIG. 5, the air circulating through the circulation passage 10 flows into the inter-cell passage 85 from the upper end surface 83 on one side of the unit cell 80 in a state where the temperature is lowered by being cooled by the heat exchanger 6, First, the surface of the unit cell on one side near the electrode terminal 81 is deprived of heat and cooled. Furthermore, it descends in contact with the side surface of the unit cell 80 and continues to take heat from the surface of the unit cell, and finally takes heat from the surface of the unit cell on the other side far from the electrode terminal 81. At this time, the amount of heat that the air absorbs from the surface of the unit cell decreases from the one side portion toward the other side portion. Therefore, in the cooling mode, the portion closer to the one side portion has a higher cooling effect, and the portion closer to the other side portion has a lower cooling effect.
 図16は、比較例である従来例について、温調流体の流れに対して単電池表面に生じうる温度分布を説明するための模式図である。従来例のように、単電池80に対して、電極端子81の突出方向に対して直交する方向(横方向)に温調流体が流入する場合(図16参照)、暖機モード時と冷却モード時とで、単電池表面における温度分布に以下のような傾向がある。通常、単電池80の表面温度は、発熱しやすい電極端子81に近い一方側部分(図16の上側の表面部分)が高くなり、一方側部分よりも他方側部分(図16の下側の表面部分)が低くなる。 FIG. 16 is a schematic diagram for explaining the temperature distribution that can occur on the surface of the unit cell with respect to the flow of the temperature control fluid in the conventional example which is a comparative example. When the temperature control fluid flows into the unit cell 80 in the direction (lateral direction) orthogonal to the protruding direction of the electrode terminal 81 as in the conventional example (see FIG. 16), in the warm-up mode and the cooling mode Sometimes, the temperature distribution on the cell surface has the following tendency. Usually, the surface temperature of the unit cell 80 is higher in one side portion (upper surface portion in FIG. 16) close to the electrode terminal 81 that easily generates heat, and the other side portion (lower surface in FIG. 16) than the one side portion. Part) becomes lower.
 そして、冷却モードでは、温調流体流れの上流側ほど冷却効果が高いため、単電池80の表面温度は、温調流体流れの上流側に相当する部分(図16の左側の表面部分)が低くなり、逆に上流側部分よりも下流側に相当する部分(図16の右側の表面部分)が高くなる。これらを合わせると、冷却モードにおいて単電池80の表面温度は、電極端子81から遠い他方側部分かつ上流側部分(図16左下のC2で指示した二点鎖線で囲む領域)が最も低温になり、電極端子81に近い一方側部分かつ下流側部分(図16右上のC1で指示した二点鎖線で囲む領域)が最も高温になる。 In the cooling mode, since the cooling effect is higher toward the upstream side of the temperature control fluid flow, the surface temperature of the unit cell 80 is lower in the portion corresponding to the upstream side of the temperature control fluid flow (the surface portion on the left side in FIG. 16). Conversely, the portion corresponding to the downstream side (the surface portion on the right side in FIG. 16) is higher than the upstream side portion. When these are combined, in the cooling mode, the surface temperature of the unit cell 80 is the lowest at the other side part far from the electrode terminal 81 and the upstream side part (area surrounded by the two-dot chain line indicated by C2 in the lower left of FIG. 16). The one side part near the electrode terminal 81 and the downstream side part (area surrounded by the two-dot chain line indicated by C1 in the upper right of FIG. 16) are the hottest.
 一方、暖機モードでは、温調流体流れの上流側ほど温熱効果が高いため、単電池80の表面温度は、温調流体流れの上流側に相当する部分(図16の左側の表面部分)が高くなり、逆に上流側部分よりも下流側に相当する部分(図16の右側の表面部分)が低くなる。これらを合わせると、暖機モードにおいて単電池80の表面温度は、電極端子81に近い一方側部分かつ上流側部分(図16左上のH1で指示した二点鎖線で囲む領域)が最も高温になり、電極端子81から遠い他方側部分かつ下流側部分(図16右下のH2で指示した二点鎖線で囲む領域)が最も低温になる。 On the other hand, in the warm-up mode, since the thermal effect is higher toward the upstream side of the temperature control fluid flow, the surface temperature of the unit cell 80 is a portion corresponding to the upstream side of the temperature control fluid flow (the surface portion on the left side in FIG. 16). Conversely, the portion corresponding to the downstream side (the surface portion on the right side of FIG. 16) is lower than the upstream portion. When these are combined, the surface temperature of the unit cell 80 in the warm-up mode is the highest in the one side portion close to the electrode terminal 81 and the upstream side portion (the region surrounded by the two-dot chain line indicated by H1 in the upper left of FIG. 16). The other side portion far from the electrode terminal 81 and the downstream side portion (region surrounded by a two-dot chain line indicated by H2 in the lower right of FIG. 16) has the lowest temperature.
 以上のように、比較例として示した図16の従来技術においては、冷却モード及び暖機モードの両方において、単電池表面の温度に問題となる顕著の温度分布が発生する。この温度分布が適正な電池温度管理を妨げる要因となっている。そこで、本実施形態の電池温調装置100は、この問題を解決する特徴を備えている。 As described above, in the prior art of FIG. 16 shown as a comparative example, a remarkable temperature distribution that causes a problem in the temperature of the unit cell surface occurs in both the cooling mode and the warm-up mode. This temperature distribution is a factor that hinders proper battery temperature management. Therefore, the battery temperature control apparatus 100 of the present embodiment has a feature that solves this problem.
 本実施形態によると、電池温調装置100は、複数個の単電池80と、温調流体を単電池80の周囲を流れるように流動させる送風機7と、暖機モード時に空気(温調流体)に対して放熱し、冷却モード時に空気(温調流体)から吸熱する熱交換器6と、暖機モード時に熱交換器6を機能させ、空気の流通経路を制御するとともに、冷却モード時に熱交換器6を機能させ、空気の流通経路を制御する制御装置50と、を備える。制御装置50は、冷却モード時に、空気を単電池80に対して電極端子81が突出する一方側から流入させて単電池80の周囲を流通させた後、他方側から流出させ、暖機モード時に、空気を冷却モード時とは反対の向きに単電池80の周囲に流通させるように空気の流通経路を制御する。 According to the present embodiment, the battery temperature control device 100 includes a plurality of single cells 80, a blower 7 that causes the temperature control fluid to flow around the single cells 80, and air (temperature control fluid) in the warm-up mode. The heat exchanger 6 that dissipates heat and absorbs heat from the air (temperature-controlled fluid) in the cooling mode and the heat exchanger 6 in the warm-up mode function to control the air flow path and exchange heat in the cooling mode. And a control device 50 that controls the air flow path. In the cooling mode, the control device 50 allows air to flow into the unit cell 80 from one side where the electrode terminal 81 protrudes and circulates around the unit cell 80, and then flows out from the other side. The air flow path is controlled so that the air flows around the unit cell 80 in the opposite direction to that in the cooling mode.
 これによれば、冷却モード時に空気は単電池80の電極端子81が突出する一方側部分の周囲から他方側部分の周囲に向けて流通する。すなわち、冷却時は発熱密度の高い部位を空気流れの上流側に配することができる。このため、空気は電極端子81側を先に冷却した後、電極端子81から遠い他方側を冷却することになる。また、暖機モード時に空気は単電池80の他方側部分の周囲から一方側部分の周囲に向けて流通する。すなわち、暖機時は発熱密度の高い部位を空気流れの下流側に配することができる。このため、空気は電極端子81から遠い他方側を先に加熱した後、電極端子81に近い一方側を加熱することになる。これにより、発熱して他の部分よりも高温になりやすい単電池80の一方側を強く冷却する効果の高い温調流体流れを形成することができるとともに、電極端子81側に比べて低温になりやすい単電池80の他方側を強く加熱する効果の高い温調流体流れを形成することができる。したがって、単電池80の一方側と他方側との温度差を低減でき、暖機時と冷却時の両方において、電池表面に大きな温度差が生じることを抑制することができる。 According to this, in the cooling mode, air flows from the periphery of the one side portion where the electrode terminal 81 of the unit cell 80 protrudes toward the periphery of the other side portion. That is, at the time of cooling, a portion having a high heat generation density can be arranged on the upstream side of the air flow. For this reason, air cools the electrode terminal 81 side first, and then cools the other side far from the electrode terminal 81. In the warm-up mode, air flows from the periphery of the other side portion of the unit cell 80 toward the periphery of the one side portion. That is, at the time of warming up, a portion having a high heat generation density can be arranged on the downstream side of the air flow. For this reason, air heats the other side far from the electrode terminal 81 first, and then heats the one side close to the electrode terminal 81. As a result, it is possible to form a temperature-controlled fluid flow that is highly effective in strongly cooling one side of the unit cell 80 that tends to generate heat and become hotter than the other parts, and at a lower temperature than the electrode terminal 81 side. It is possible to form a temperature-controlled fluid flow that has a high effect of strongly heating the other side of the unit cell 80 that is easy. Therefore, the temperature difference between the one side and the other side of the unit cell 80 can be reduced, and the occurrence of a large temperature difference on the battery surface during both warm-up and cooling can be suppressed.
 また、電池温調装置100は、制御装置50によって、暖機モード時に暖機用熱源装置として機能させ、冷却モード時に冷却用熱源装置として機能させるように切り換え制御される、単一の装置である熱交換器6を備える。これによれば、空気の調流体の流通経路制御と、単一の装置(熱交換器6)の機能を切り換える制御とを実施することによって、上記の電池表面の温度差抑制効果を得ることができる。したがって、部品点数の少ない熱源装置を採用することによって、暖機時及び冷却時の適切な電池温度制御を提供できる。 The battery temperature control device 100 is a single device that is controlled and switched by the control device 50 so as to function as a heat source device for warm-up in the warm-up mode and to function as a heat source device for cooling in the cooling mode. A heat exchanger 6 is provided. According to this, it is possible to obtain the above-described temperature difference suppression effect on the battery surface by performing the air conditioning fluid flow path control and the control for switching the function of the single device (heat exchanger 6). it can. Therefore, by adopting a heat source device with a small number of parts, it is possible to provide appropriate battery temperature control during warm-up and cooling.
 また、電池温調装置100は、温調流体として気体(空気、不活性ガス等)を採用し、当該気体は、外部に対して遮断された循環通路10を流通し、複数個の単電池80は、循環通路10に配置される。これによれば、気体は液体に比べて熱容量が小さいため、単電池表面の顕著な温度分布が生じやすい。しかしながら、上記のように、冷却モード時に単電池80の電極端子81が突出する一方側部分を先に冷却し、暖機モード時に単電池80の他方側部分を先に加熱する構成を採用することにより、単電池表面の温度差抑制について顕著な効果を奏することができる。 Moreover, the battery temperature control apparatus 100 employs a gas (air, inert gas, etc.) as the temperature control fluid, and the gas flows through the circulation passage 10 that is blocked from the outside. Is arranged in the circulation passage 10. According to this, since the gas has a smaller heat capacity than the liquid, a remarkable temperature distribution on the surface of the unit cell is likely to occur. However, as described above, a configuration in which the one side portion where the electrode terminal 81 of the unit cell 80 protrudes in the cooling mode is cooled first and the other side portion of the unit cell 80 is first heated in the warm-up mode is adopted. Thus, a remarkable effect can be obtained with respect to temperature difference suppression on the surface of the unit cell.
 さらに、電池温調装置100は、温調流体として空気を採用する。これによれば、温調流体が外気や室内の空気である場合は、空気に含まれる水分、空気とともに流れる埃等が導電部である電極端子に付着しやすい状況になる。この場合、短絡や通電不良を起こす原因となりうるが、電池温調装置100では、外部と遮断された循環通路10で空気を循環させることにより、外部からの湿気や埃の流入といった影響を受けにくいため、空気中の水分の増加や、埃が空気に混じることを防止することができる。したがって、適正に管理された循環空気を温調流体に採用することができるので、組電池8において電気的不具合の発生を抑制し、適正な継続使用によって、電池寿命を長くすることに貢献できる。
(第2実施形態)
 第2実施形態では、第1実施形態に対して他の形態である電池温調装置100Aについて図6及び図7を参照して説明する。図6は、電池温調装置100Aにおける、電池暖機時の空気流れ及びヒートポンプサイクル1の動作状態を示している。図7は、電池温調装置100Aにおける、電池冷却時の空気流れ及びヒートポンプサイクル1の動作状態を示している。各図において図2と同一の符号を付した構成要素は、同一の要素であり、その作用効果も同様である。以下、第1実施形態と異なる形態、作用等について説明する。電池温調装置100Aも、第1実施形態において図4、図5を参照して説明した作用効果を奏する。
Furthermore, the battery temperature control apparatus 100 employs air as the temperature control fluid. According to this, when the temperature control fluid is outside air or room air, moisture contained in the air, dust flowing along with the air, and the like are likely to adhere to the electrode terminal which is the conductive portion. In this case, although it may cause a short circuit or a failure in energization, the battery temperature control device 100 is less susceptible to external moisture or dust inflow by circulating air through the circulation passage 10 that is blocked from the outside. Therefore, it is possible to prevent the moisture in the air from increasing and dust from being mixed into the air. Therefore, since the appropriately controlled circulating air can be used as the temperature control fluid, it is possible to suppress the occurrence of an electrical failure in the assembled battery 8 and contribute to extending the battery life by proper continuous use.
(Second Embodiment)
In the second embodiment, a battery temperature adjustment device 100A that is another embodiment of the first embodiment will be described with reference to FIGS. 6 and 7. FIG. 6 shows the air flow during battery warm-up and the operating state of the heat pump cycle 1 in the battery temperature control apparatus 100A. FIG. 7 shows the air flow during battery cooling and the operating state of the heat pump cycle 1 in the battery temperature control apparatus 100A. In each figure, the component which attached | subjected the code | symbol same as FIG. 2 is the same element, The effect is also the same. Hereinafter, a different form, an effect | action, etc. from 1st Embodiment are demonstrated. The battery temperature control device 100A also has the effects described with reference to FIGS. 4 and 5 in the first embodiment.
 電池温調装置100Aは、組電池8と、単電池80に対して空気を送風する送風機7Aと、空気の流通経路を切り換えるドア11,12と、暖機モード時に暖機用熱源装置として機能し冷却モード時に冷却用熱源装置として機能する熱交換器6と、熱交換器6の機能、送風機7Aの駆動、ドア11,12の位置を制御する制御装置50Aと、を備える。電池温調装置100Aは、筐体9Aの内部に形成された循環通路10Aに、組電池8、熱交換器6、及び送風機7Aを配置し、ドア11,12の位置を制御することによって、外部と遮断された循環通路10Aを循環する空気の流通経路を構築する。 The battery temperature control device 100A functions as a warm-up heat source device in the warm-up mode, the assembled battery 8, the blower 7A that blows air to the unit cell 80, the doors 11 and 12 that switch the air flow path, and the warm-up mode. A heat exchanger 6 that functions as a cooling heat source device in the cooling mode, and a controller 50A that controls the function of the heat exchanger 6, the drive of the blower 7A, and the positions of the doors 11 and 12 are provided. The battery temperature control device 100A is arranged by arranging the assembled battery 8, the heat exchanger 6, and the blower 7A in a circulation passage 10A formed inside the housing 9A, and controlling the positions of the doors 11 and 12, thereby A flow path for air circulating through the closed circulation passage 10A is constructed.
 ドア11は、熱交換器6を通過した空気が、単電池80の一方側の上端面82から電池間通路85に流入する流れと、単電池80の他方側の下端面83から電池間通路85に流入する流れと、に切り換えることができる。暖機モードでは、ドア11が図6に示す位置、すなわち、電極端子81とは反対側の下端面83に隣接する非端子側通路10A2と熱交換器6とを接続する位置に制御され、熱交換器6を通過した空気は、単電池80の他方側から電池間通路85に流入する。このドア11の位置に伴って、ドア12は、電極端子81と隣接する端子側通路10A1と送風機7Aの吸込部とを接続する位置(図6に示す位置)に制御される。 In the door 11, the air that has passed through the heat exchanger 6 flows into the inter-cell passage 85 from the upper end surface 82 on one side of the unit cell 80, and the inter-battery passage 85 from the lower end surface 83 on the other side of the unit cell 80. The flow can be switched between In the warm-up mode, the door 11 is controlled to the position shown in FIG. 6, that is, the position where the non-terminal-side passage 10A2 adjacent to the lower end surface 83 opposite to the electrode terminal 81 is connected to the heat exchanger 6. The air that has passed through the exchanger 6 flows into the inter-cell passage 85 from the other side of the unit cell 80. Along with the position of this door 11, the door 12 is controlled to a position (position shown in FIG. 6) that connects the terminal side passage 10A1 adjacent to the electrode terminal 81 and the suction portion of the blower 7A.
 一方、冷却モードでは、ドア11が図7に示す位置、すなわち、端子側通路10A1と熱交換器6とを接続する位置に制御され、熱交換器6を通過した空気は、単電池80の一方側から電池間通路85に流入する。このドア11の位置に伴って、ドア12は、非端子側通路10A2と送風機7Aの吸込部とを接続する位置(図7に示す位置)に制御される。 On the other hand, in the cooling mode, the door 11 is controlled to the position shown in FIG. 7, that is, the position where the terminal side passage 10 </ b> A <b> 1 and the heat exchanger 6 are connected. Flows into the inter-battery passage 85 from the side. With the position of the door 11, the door 12 is controlled to a position (position shown in FIG. 7) that connects the non-terminal side passage 10A2 and the suction portion of the blower 7A.
 暖機モード時には、制御装置50Aは、電動圧縮機2を駆動し、四方弁3を電動圧縮機の吐出側と熱交換器6との配管を接続するとともに、電動圧縮機2の吸入側と熱交換器4との配管を接続するように切り換える。さらに制御装置50Aは、送風機7Aのファンを駆動するとともに、ドア11,12を上記のように図6に示す位置に設定する。これにより、熱交換器6は、暖機用熱源装置として機能し、熱交換器4は吸熱用熱交換器として機能する。送風機7Aによって送風される空気は、熱交換器6を通過する際に加熱されて温度上昇し、非端子側通路10A2を通り、単電池80の下端面83(単電池80の他方側)から電池間通路85に流入して単電池80を加温し、上端面82(単電池80の一方側)から流出する。端子側通路10A1に流れ出た空気は、さらに流下して送風機7Aに吸い込まれ、循環通路10Aを循環し続けて単電池80を暖機する。 In the warm-up mode, the control device 50A drives the electric compressor 2, connects the four-way valve 3 to the discharge side of the electric compressor and the heat exchanger 6, and heats the suction side of the electric compressor 2 and heat. It switches so that piping with the exchanger 4 may be connected. Further, the control device 50A drives the fan of the blower 7A and sets the doors 11 and 12 to the positions shown in FIG. 6 as described above. Thereby, the heat exchanger 6 functions as a heat source device for warm-up, and the heat exchanger 4 functions as a heat exchanger for heat absorption. The air blown by the blower 7A is heated when passing through the heat exchanger 6 and rises in temperature, passes through the non-terminal-side passage 10A2, and passes from the lower end surface 83 of the unit cell 80 (the other side of the unit cell 80) to the battery. The battery 80 flows into the inter-passage 85 to heat the cell 80 and flows out from the upper end surface 82 (one side of the cell 80). The air flowing out to the terminal side passage 10A1 further flows down and is sucked into the blower 7A, and continues to circulate through the circulation passage 10A to warm up the unit cell 80.
 一方、冷却モード時には、制御装置50Aは、電動圧縮機2を駆動し、四方弁3を電動圧縮機2の吐出側と熱交換器4との配管を接続するとともに、電動圧縮機2の吸入側と熱交換器6との配管を接続するように切り換える。さらに制御装置50Aは、送風機7Aのファンを駆動するとともに、ドア11,12を上記のように図7に示す位置に設定する。これにより、熱交換器6は、冷却用熱源装置として機能し、熱交換器4は放熱用熱交換器として機能する。送風機7Aによって送風される空気は、熱交換器6を通過する際に冷却されて温度低下し、端子側通路10A1を通り、単電池80の上端面82(単電池80の一方側)から電池間通路85に流入して単電池80を冷却し、下端面83(単電池80の他方側)から流出する。非端子側通路10A2に流れ出た空気は、さらに流下して送風機7Aに吸い込まれ、循環通路10Aを循環し続けて単電池80を冷却する。
(第3実施形態)
 第3実施形態では、第1実施形態に対して他の形態である電池温調装置100Bについて図8及び図9を参照して説明する。図8は、電池温調装置100Bにおける、電池暖機時の空気流れ及び各機器の動作状態を示している。図9は、電池温調装置100Bにおける、電池冷却時の空気流れ及び各機器の動作状態の動作状態を示している。各図において図2と同一の符号を付した構成要素は、同一の要素であり、その作用効果も同様である。以下、第1実施形態と異なる形態、作用等について説明する。電池温調装置100Bも、第1実施形態において図4、図5を参照して説明した作用効果を奏する。
On the other hand, in the cooling mode, the control device 50A drives the electric compressor 2 to connect the four-way valve 3 to the discharge side of the electric compressor 2 and the pipe of the heat exchanger 4, and to the suction side of the electric compressor 2. And switching to connect the piping of the heat exchanger 6. Further, the control device 50A drives the fan of the blower 7A and sets the doors 11 and 12 to the positions shown in FIG. 7 as described above. Thereby, the heat exchanger 6 functions as a cooling heat source device, and the heat exchanger 4 functions as a heat dissipation heat exchanger. The air blown by the blower 7A is cooled when passing through the heat exchanger 6 and drops in temperature, passes through the terminal-side passage 10A1, and passes from the upper end surface 82 of the unit cell 80 (one side of the unit cell 80) to between the cells. The battery 80 flows into the passage 85 to cool the unit cell 80 and flows out from the lower end surface 83 (the other side of the unit cell 80). The air flowing out to the non-terminal side passage 10A2 further flows down and is sucked into the blower 7A, and continues to circulate through the circulation passage 10A to cool the unit cell 80.
(Third embodiment)
In 3rd Embodiment, the battery temperature control apparatus 100B which is another form with respect to 1st Embodiment is demonstrated with reference to FIG.8 and FIG.9. FIG. 8 shows the air flow during battery warm-up and the operating state of each device in battery temperature control apparatus 100B. FIG. 9 shows the operating state of the air flow during battery cooling and the operating state of each device in the battery temperature control device 100B. In each figure, the component which attached | subjected the code | symbol same as FIG. 2 is the same element, The effect is also the same. Hereinafter, a different form, an effect | action, etc. from 1st Embodiment are demonstrated. The battery temperature control device 100B also has the effects described with reference to FIGS. 4 and 5 in the first embodiment.
 電池温調装置100Bは、組電池8と、単電池80に対して空気を送風する送風機7と、暖機モード時に暖機用熱源装置として機能する電気ヒータ13と、冷凍サイクル1Bの蒸発器であり、冷却モード時に冷却用熱源装置として機能する熱交換器6Bと、電気ヒータ13、電動圧縮機2、及び送風機7の作動を制御する制御装置50Bと、を備える。電池温調装置100Bは、筐体9Bの内部に形成された循環通路10Bに、組電池8、熱交換器6B、電気ヒータ13、及び送風機7を配置し、電気ヒータ13及び電動圧縮機2を制御することによって、暖機モードと冷却モードの両方を実施できる。 The battery temperature control device 100B includes an assembled battery 8, a blower 7 that blows air to the unit cell 80, an electric heater 13 that functions as a warm-up heat source device in the warm-up mode, and an evaporator of the refrigeration cycle 1B. And a heat exchanger 6B that functions as a cooling heat source device in the cooling mode, and a control device 50B that controls the operation of the electric heater 13, the electric compressor 2, and the blower 7. The battery temperature control apparatus 100B arranges the assembled battery 8, the heat exchanger 6B, the electric heater 13, and the blower 7 in the circulation passage 10B formed inside the housing 9B, and connects the electric heater 13 and the electric compressor 2 to each other. By controlling, both warm-up mode and cooling mode can be implemented.
 暖機モード時には、制御装置50Bは、電気ヒータ13を運転して発熱させるとともに、送風機7のファンの回転方向を設定して、電気ヒータ13を通過した空気が単電池80の下端面83(他方側)から電池間通路85に流入するように、送風機7の送風方向を制御する。これにより、電気ヒータ13は、暖機用熱源装置として機能する。送風機7によって送風される空気は、電気ヒータ13を通過する際に加熱されて温度上昇し、単電池80の下端面83(単電池80の他方側)から電池間通路85に流入して単電池80を加温し、上端面82(単電池80の一方側)から流出する。電池間通路85を流れ出た空気は、さらに流下して送風機7に吸い込まれ、循環通路10Bを循環し続けて単電池80を暖機する。 In the warm-up mode, the control device 50B operates the electric heater 13 to generate heat, sets the rotation direction of the fan of the blower 7, and the air that has passed through the electric heater 13 has the lower end surface 83 (the other side) of the unit cell 80. The air blowing direction of the blower 7 is controlled so as to flow into the inter-battery passage 85 from the side). Thereby, the electric heater 13 functions as a warm-up heat source device. The air blown by the blower 7 is heated and increases in temperature when passing through the electric heater 13, and flows into the inter-cell passage 85 from the lower end surface 83 of the unit cell 80 (the other side of the unit cell 80). 80 is heated and flows out from the upper end surface 82 (one side of the unit cell 80). The air flowing out of the inter-battery passage 85 further flows down and is sucked into the blower 7, and continues to circulate through the circulation passage 10B to warm up the unit cell 80.
 一方、冷却モード時には、制御装置50Bは、電動圧縮機2を駆動するとともに、送風機7のファンの回転方向を設定して、熱交換器6Bを通過した空気が単電池80の上端面82(一方側)から電池間通路85に流入するように、送風機7の送風方向を制御する。熱交換器6Bは、内部で冷媒が気化することにより冷却用熱源装置として機能する。送風機7によって送風される空気は、熱交換器6Bを通過する際に冷却されて温度低下し、単電池80の上端面82(単電池80の一方側)から電池間通路85に流入して単電池80を冷却し、下端面83(単電池80の他方側)から流出する。電池間通路85を流れ出た空気は、さらに流下して送風機7に吸い込まれ、循環通路10Bを循環し続けて単電池80を冷却する。
(第4実施形態)
 第4実施形態では、第1実施形態に対して他の形態である電池温調装置100Cについて図10及び図11を参照して説明する。図10は、電池温調装置100Cにおける、電池暖機時の温調流体流れ及びヒートポンプサイクル1Cの動作状態を示している。図11は、電池温調装置100Cにおける、電池冷却時の温調流体流れ及びヒートポンプサイクル1Cの動作状態を示している。ヒートポンプサイクル1Cは、第1実施形態で説明したヒートポンプサイクル1と同様の働きをする。各図において図2と同一の符号を付した構成要素は、同一の要素であり、その作用効果も同様である。以下、第1実施形態と異なる形態、作用等について説明する。電池温調装置100Cも、第1実施形態において図4、図5を参照して説明した作用効果を奏する。
On the other hand, in the cooling mode, the control device 50B drives the electric compressor 2, sets the rotation direction of the fan of the blower 7, and the air that has passed through the heat exchanger 6B passes through the upper end surface 82 (one side) of the unit cell 80. The air blowing direction of the blower 7 is controlled so as to flow into the inter-battery passage 85 from the side). The heat exchanger 6B functions as a heat source device for cooling when the refrigerant evaporates inside. The air blown by the blower 7 is cooled when passing through the heat exchanger 6 </ b> B, and its temperature is lowered. The air flows from the upper end surface 82 of the unit cell 80 (one side of the unit cell 80) into the inter-cell passage 85. The battery 80 is cooled and flows out from the lower end surface 83 (the other side of the unit cell 80). The air that has flowed out of the inter-battery passage 85 further flows down and is sucked into the blower 7, and continues to circulate through the circulation passage 10B to cool the unit cell 80.
(Fourth embodiment)
In the fourth embodiment, a battery temperature adjustment device 100C that is another embodiment of the first embodiment will be described with reference to FIGS. 10 and 11. FIG. 10 shows the temperature control fluid flow during battery warm-up and the operating state of the heat pump cycle 1C in the battery temperature control apparatus 100C. FIG. 11 shows the temperature control fluid flow during battery cooling and the operation state of the heat pump cycle 1C in the battery temperature control apparatus 100C. The heat pump cycle 1C functions in the same manner as the heat pump cycle 1 described in the first embodiment. In each figure, the component which attached | subjected the code | symbol same as FIG. 2 is the same element, The effect is also the same. Hereinafter, a different form, an effect | action, etc. from 1st Embodiment are demonstrated. The battery temperature control device 100C also has the effects described with reference to FIGS. 4 and 5 in the first embodiment.
 電池温調装置100Cは、組電池8と、単電池80と熱交換する温調流体が流れる循環回路10Cと、温調流体を循環回路10Cで循環させるポンプ7Cと、温調流体の流通経路を切り換える切換弁14,15と、暖機モード時に暖機用熱源装置として機能し冷却モード時に冷却用熱源装置として機能する熱交換器6Cと、熱交換器6Cの機能、ポンプ7Cの駆動、切換弁14,15の切り換え動作を制御する制御装置50Cと、を備える。熱交換器6Cは、ヒートポンプサイクル1Cの一部である冷媒通路と、循環回路10Cの一部である温調流体通路と、を備え、これらの通路を流れる冷媒同士が熱交換する装置である。電池温調装置100Cは、循環回路10Cに、電池間通路85、熱交換器6C、及びポンプ7Cを配置し、切換弁14,15の切り換え動作を制御することによって、循環回路10Cを循環する温調流体の流通経路を構築する。本実施形態では、温調流体として水、LLCを用いる。 The battery temperature control device 100C includes a battery pack 8, a circulation circuit 10C in which a temperature adjustment fluid that exchanges heat with the unit cells 80, a pump 7C that circulates the temperature adjustment fluid in the circulation circuit 10C, and a distribution path of the temperature adjustment fluid. Switching valves 14 and 15 for switching, a heat exchanger 6C that functions as a heat source device for warm-up in the warm-up mode and functions as a heat source device for cooling in the cooling mode, functions of the heat exchanger 6C, driving of the pump 7C, switching valve And a control device 50C for controlling the switching operation between the fourteen and fifteen. The heat exchanger 6C is a device that includes a refrigerant passage that is a part of the heat pump cycle 1C and a temperature adjusting fluid passage that is a part of the circulation circuit 10C, and heat exchange between the refrigerants flowing through these passages. The battery temperature control device 100C includes a battery passage 85, a heat exchanger 6C, and a pump 7C in the circulation circuit 10C, and controls the switching operation of the switching valves 14 and 15 to thereby circulate the circulation circuit 10C. Establish a distribution channel for conditioning fluid. In this embodiment, water and LLC are used as the temperature control fluid.
 切換弁14は、熱交換器6Cを通過した水が、単電池80の一方側の上端面82から電池間通路85に流入する流れと、単電池80の他方側の下端面83から電池間通路85に流入する流れと、に切り換えることができる。暖機モードでは、切換弁14が図10に示す位置、すなわち、電極端子81とは反対側の下端面83側に接続される非端子側通路10C2と熱交換器6Cとを接続するように制御され、熱交換器6Cを通過した水は、単電池80の他方側から電池間通路85に流入する。この切換弁14の切り換え動作に伴って、切換弁15は、上端面82側に接続される端子側通路10C1とポンプ7Cの吸入部とを接続するように(図10参照)制御される。 The switching valve 14 is configured such that the water that has passed through the heat exchanger 6C flows into the inter-cell passage 85 from the upper end surface 82 on one side of the unit cell 80, and the inter-battery passage from the lower end surface 83 on the other side of the unit cell 80. The flow can be switched between the flow flowing into 85. In the warm-up mode, the switching valve 14 is controlled so as to connect the non-terminal side passage 10C2 connected to the position shown in FIG. 10, that is, the lower end face 83 side opposite to the electrode terminal 81, to the heat exchanger 6C. Then, the water that has passed through the heat exchanger 6C flows into the inter-cell passage 85 from the other side of the unit cell 80. With the switching operation of the switching valve 14, the switching valve 15 is controlled so as to connect the terminal side passage 10C1 connected to the upper end face 82 side and the suction portion of the pump 7C (see FIG. 10).
 一方、冷却モードでは、切換弁14が図11に示す位置、すなわち、端子側通路10C1と熱交換器6Cとを接続するように制御され、熱交換器6Cを通過した水は、単電池80の一方側から電池間通路85に流入する。この切換弁14の切り換え動作に伴って、切換弁15は、非端子側通路10C2とポンプ7Cの吸入部とを接続するように(図11参照)に制御される。 On the other hand, in the cooling mode, the switching valve 14 is controlled to connect the position shown in FIG. 11, that is, the terminal side passage 10 </ b> C <b> 1 and the heat exchanger 6 </ b> C, and the water that has passed through the heat exchanger 6 </ b> C It flows into the inter-battery passage 85 from one side. With the switching operation of the switching valve 14, the switching valve 15 is controlled so as to connect the non-terminal side passage 10C2 and the suction portion of the pump 7C (see FIG. 11).
 暖機モード時には、制御装置50Cは、電動圧縮機2を駆動し、四方弁3を電動圧縮機の吐出側と熱交換器6Cとの配管を接続するとともに、電動圧縮機2の吸入側と熱交換器4との配管を接続するように切り換える。さらに制御装置50Cは、ポンプ7Cを駆動するとともに、切換弁14,15を上記のように図10に示すように制御する。これにより、熱交換器6Cは、暖機用熱源装置として機能し、熱交換器4は吸熱用熱交換器として機能する。ポンプ7Cによって循環される水は、熱交換器6Cを通過する際に冷媒の熱によって加熱されて温度上昇し、非端子側通路10C2を通り、単電池80の下端面83(単電池80の他方側)から電池間通路85に流入して単電池80を加温し、上端面82(単電池80の一方側)から流出する。端子側通路10C1に流れ出た水は、さらに流下してポンプ7Cに吸入され、循環回路10Cを循環し続けて単電池80を暖機する。 In the warm-up mode, the control device 50C drives the electric compressor 2, connects the four-way valve 3 to the discharge side of the electric compressor and the heat exchanger 6C, and heats the suction side of the electric compressor 2 and heat. It switches so that piping with the exchanger 4 may be connected. Further, the control device 50C drives the pump 7C and controls the switching valves 14 and 15 as shown in FIG. 10 as described above. Thus, the heat exchanger 6C functions as a warm-up heat source device, and the heat exchanger 4 functions as a heat absorption heat exchanger. The water circulated by the pump 7C is heated by the heat of the refrigerant when passing through the heat exchanger 6C, rises in temperature, passes through the non-terminal side passage 10C2, passes through the lower end surface 83 of the unit cell 80 (the other side of the unit cell 80). From the side) to the inter-battery passage 85 to heat the unit cell 80 and out of the upper end surface 82 (one side of the unit cell 80). The water flowing out to the terminal side passage 10C1 further flows down and is sucked into the pump 7C, and continues to circulate through the circulation circuit 10C to warm up the unit cell 80.
 一方、冷却モード時には、制御装置50Cは、電動圧縮機2を駆動し、四方弁3を電動圧縮機2の吐出側と熱交換器4との配管を接続するとともに、電動圧縮機2の吸入側と熱交換器6Cとの配管を接続するように切り換える。さらに制御装置50Cは、ポンプ7Cを駆動するとともに、切換弁14,15を上記のように図10に示すように制御する。これにより、熱交換器6Cは、冷却用熱源装置として機能し、熱交換器4は放熱用熱交換器として機能する。ポンプ7Cによって循環される水は、熱交換器6Cを通過する際に冷媒から吸熱されて温度低下し、端子側通路10C1を通り、単電池80の上端面82(単電池80の一方側)から電池間通路85に流入して単電池80を冷却し、下端面83(単電池80の他方側)から流出する。非端子側通路10C2に流れ出た水は、さらに流下してポンプ7Cに吸入され、循環回路10Cを循環し続けて単電池80を冷却する。
(第5実施形態)
 第5実施形態では、第1実施形態に対して他の形態である電池温調装置100Dについて図12及び図13を参照して説明する。図12は、電池温調装置100Dにおける、電池暖機時の温調流体流れ及びヒートポンプサイクル1Cの動作状態を示している。図13は、電池温調装置100Dにおける、電池冷却時の温調流体流れ及びヒートポンプサイクル1Cの動作状態を示している。ヒートポンプサイクル1Cは、第4実施形態で説明したものと同一である。各図において図2及び図10と同一の符号を付した構成要素は、同一の要素であり、その作用効果も同様である。以下、第1実施形態と異なる形態、作用等について説明する。電池温調装置100Dも、第1実施形態において図4、図5を参照して説明した作用効果を奏する。
On the other hand, in the cooling mode, the control device 50C drives the electric compressor 2, connects the four-way valve 3 to the discharge side of the electric compressor 2 and the heat exchanger 4, and the suction side of the electric compressor 2. And switching to connect the piping of the heat exchanger 6C. Further, the control device 50C drives the pump 7C and controls the switching valves 14 and 15 as shown in FIG. 10 as described above. Accordingly, the heat exchanger 6C functions as a cooling heat source device, and the heat exchanger 4 functions as a heat dissipation heat exchanger. When the water circulated by the pump 7C passes through the heat exchanger 6C, it is absorbed by the refrigerant to lower the temperature, passes through the terminal-side passage 10C1, and passes from the upper end surface 82 (one side of the unit cell 80) of the unit cell 80. The battery 80 flows into the inter-battery passage 85, cools the battery 80, and flows out from the lower end surface 83 (the other side of the battery 80). The water flowing out to the non-terminal side passage 10C2 further flows down and is sucked into the pump 7C, and continues to circulate through the circulation circuit 10C to cool the unit cell 80.
(Fifth embodiment)
In the fifth embodiment, a battery temperature control device 100D that is another embodiment of the first embodiment will be described with reference to FIGS. 12 and 13. FIG. 12 shows the temperature control fluid flow during battery warm-up and the operating state of the heat pump cycle 1C in the battery temperature control apparatus 100D. FIG. 13 shows the temperature control fluid flow during battery cooling and the operating state of the heat pump cycle 1C in the battery temperature control apparatus 100D. The heat pump cycle 1C is the same as that described in the fourth embodiment. In each figure, the component which attached | subjected the code | symbol same as FIG.2 and FIG.10 is the same element, The effect is also the same. Hereinafter, a different form, an effect | action, etc. from 1st Embodiment are demonstrated. The battery temperature control device 100D also has the effects described with reference to FIGS. 4 and 5 in the first embodiment.
 電池温調装置100Dは、組電池8と、単電池80と熱交換する温調流体が流れる循環回路10Dと、ポンプ7Dと、暖機モード時に暖機用熱源装置として機能し冷却モード時に冷却用熱源装置として機能する熱交換器6Cと、熱交換器6Cの機能、ポンプ7Dの駆動を制御する制御装置50Dと、を備える。電池温調装置100Dは、循環回路10Dに、電池間通路85、熱交換器6C、及びポンプ7Dを配置する。また、ポンプ7Dは、相反する2つの方向に温調流体を流すことができる流れ方向変式の装置である。制御装置50Dは、例えば、ポンプ7Dの回転方向を正回転、逆回転に切り換えることにより、ポンプ7Dによる流体流れ方向を制御することができる。本実施形態では、温調流体として水、LLCを用いる。 The battery temperature control device 100D functions as a heat source device for warm-up in the warm-up mode and for cooling in the cooling mode. A heat exchanger 6C that functions as a heat source device, a function of the heat exchanger 6C, and a control device 50D that controls driving of the pump 7D are provided. Battery temperature control apparatus 100D arranges passage 85 between batteries, heat exchanger 6C, and pump 7D in circulation circuit 10D. Further, the pump 7D is a flow direction variable device capable of flowing a temperature control fluid in two opposite directions. For example, the control device 50D can control the direction of fluid flow by the pump 7D by switching the rotation direction of the pump 7D between forward rotation and reverse rotation. In this embodiment, water and LLC are used as the temperature control fluid.
 暖機モード時には、制御装置50Dは、電動圧縮機2を駆動し、四方弁3を電動圧縮機の吐出側と熱交換器6Cとの配管を接続するとともに、電動圧縮機2の吸入側と熱交換器4との配管を接続するように切り換える。さらに制御装置50Dは、ポンプ7Dの回転方向を設定して、熱交換器6Cを通過した水が単電池80の下端面83(他方側)から電池間通路85に流入するように、ポンプ7Dによる流体流れ方向を制御する。これにより、熱交換器6Cは、暖機用熱源装置として機能し、熱交換器4は吸熱用熱交換器として機能する。ポンプ7Dによって循環される水は、熱交換器6Cを通過する際に冷媒の熱によって加熱されて温度上昇し、単電池80の他方側から電池間通路85に流入して単電池80を加温し、単電池80の一方側から流出する。電池間通路85を流れ出た水は、さらに流下してポンプ7Dに吸入され、循環回路10Dを循環し続けて単電池80を暖機する。 In the warm-up mode, the control device 50D drives the electric compressor 2, connects the four-way valve 3 to the discharge side of the electric compressor and the heat exchanger 6C, and heats the suction side of the electric compressor 2 and the heat. It switches so that piping with the exchanger 4 may be connected. Further, the control device 50D sets the rotation direction of the pump 7D, and the pump 7D causes the water that has passed through the heat exchanger 6C to flow into the inter-cell passage 85 from the lower end surface 83 (the other side) of the unit cell 80. Control the direction of fluid flow. Thus, the heat exchanger 6C functions as a warm-up heat source device, and the heat exchanger 4 functions as a heat absorption heat exchanger. The water circulated by the pump 7D is heated by the heat of the refrigerant when passing through the heat exchanger 6C and rises in temperature, flows into the inter-cell passage 85 from the other side of the unit cell 80, and warms the unit cell 80. And flows out from one side of the unit cell 80. The water flowing out of the inter-battery passage 85 further flows down and is sucked into the pump 7D, and continues to circulate through the circulation circuit 10D to warm up the unit cell 80.
 一方、冷却モード時には、制御装置50Dは、電動圧縮機2を駆動し、四方弁3を電動圧縮機2の吐出側と熱交換器4との配管を接続するとともに、電動圧縮機2の吸入側と熱交換器6Cとの配管を接続するように切り換える。さらに制御装置50Dは、ポンプ7Dの回転方向を設定して、熱交換器6Cを通過した水が単電池80の上端面82(一方側)から電池間通路85に流入するように、ポンプ7Dによる流体流れ方向を制御する。これにより、熱交換器6Cは、冷却用熱源装置として機能し、熱交換器4は放熱用熱交換器として機能する。ポンプ7Dによって循環される水は、熱交換器6Cを通過する際に冷媒から吸熱されて温度低下し、単電池80の一方側から電池間通路85に流入して単電池80を冷却し、単電池80の他方側から流出する。電池間通路85を流れ出た水は、さらに流下してポンプ7Dに吸入され、循環回路10Dを循環し続けて単電池80を冷却する。
(第6実施形態)
 第6実施形態では、第1実施形態に対して他の形態である電池温調装置100Eについて図14及び図15を参照して説明する。図14は、電池温調装置100Eにおける、電池暖機時の温調流体流れ及び各機器の動作状態を示している。図15は、電池温調装置100Dにおける、電池冷却時の温調流体流れ及び各機器の動作状態を示している。各図において図2及び図12と同一の符号を付した構成要素は、同一の要素であり、その作用効果も同様である。以下、第1実施形態と異なる形態、作用等について説明する。電池温調装置100Eも、第1実施形態において図4、図5を参照して説明した作用効果を奏する。
On the other hand, in the cooling mode, the control device 50D drives the electric compressor 2, connects the four-way valve 3 to the discharge side of the electric compressor 2 and the pipe of the heat exchanger 4, and the suction side of the electric compressor 2 And switching to connect the piping of the heat exchanger 6C. Further, the control device 50D sets the rotation direction of the pump 7D, and the pump 7D causes the water that has passed through the heat exchanger 6C to flow into the inter-cell passage 85 from the upper end surface 82 (one side) of the unit cell 80. Control the direction of fluid flow. Accordingly, the heat exchanger 6C functions as a cooling heat source device, and the heat exchanger 4 functions as a heat dissipation heat exchanger. When the water circulated by the pump 7D passes through the heat exchanger 6C, the water is absorbed by the refrigerant to lower the temperature, and flows into the inter-cell passage 85 from one side of the unit cell 80 to cool the unit cell 80. The battery 80 flows out from the other side. The water flowing out of the inter-battery passage 85 further flows down and is sucked into the pump 7D, and continues to circulate through the circulation circuit 10D to cool the unit cell 80.
(Sixth embodiment)
In the sixth embodiment, a battery temperature control apparatus 100E that is another form of the first embodiment will be described with reference to FIGS. 14 and 15. FIG. 14 shows the temperature control fluid flow and the operating state of each device during battery warm-up in the battery temperature control apparatus 100E. FIG. 15 shows the temperature control fluid flow and the operating state of each device during battery cooling in the battery temperature control apparatus 100D. In each figure, the component which attached | subjected the code | symbol same as FIG.2 and FIG.12 is the same element, The effect is also the same. Hereinafter, a different form, an effect | action, etc. from 1st Embodiment are demonstrated. The battery temperature control device 100E also has the effects described with reference to FIGS. 4 and 5 in the first embodiment.
 電池温調装置100Eは、組電池8と、単電池80と熱交換する温調流体が流れる循環回路10Eと、ポンプ7Dと、暖機モード時に暖機用熱源装置として機能する電気ヒータ16と、冷却モード時に冷却用熱源装置として機能する熱交換器6Eと、電気ヒータ16、電動圧縮機2、及びポンプ7Dの作動を制御する制御装置50Eと、を備える。熱交換器6Eは、冷凍サイクル1Eの一部である冷媒通路と、循環回路10Eの一部である温調流体通路と、を備え、これらの通路を流れる冷媒同士が熱交換する装置である。電池温調装置100Eは、循環回路10Eに、電池間通路85、熱交換器6E、電気ヒータ16、及びポンプ7Dを配置し、電気ヒータ16及び電動圧縮機2を制御することによって、暖機モードと冷却モードの両方を実施できる。本実施形態では、温調流体として水、LLCを用いる。 The battery temperature adjustment device 100E includes an assembled battery 8, a circulation circuit 10E through which a temperature adjustment fluid that exchanges heat with the unit cell 80, a pump 7D, an electric heater 16 that functions as a heat source device for warm-up in the warm-up mode, A heat exchanger 6E that functions as a cooling heat source device in the cooling mode, and a control device 50E that controls the operation of the electric heater 16, the electric compressor 2, and the pump 7D are provided. The heat exchanger 6E is a device that includes a refrigerant passage that is a part of the refrigeration cycle 1E and a temperature adjustment fluid passage that is a part of the circulation circuit 10E, and heat exchange is performed between the refrigerants flowing through these passages. The battery temperature control device 100E includes a battery passage 85, a heat exchanger 6E, an electric heater 16, and a pump 7D in the circulation circuit 10E, and controls the electric heater 16 and the electric compressor 2 so that a warm-up mode is achieved. And cooling mode can be implemented. In this embodiment, water and LLC are used as the temperature control fluid.
 暖機モード時には、制御装置50Dは、電気ヒータ16を運転して発熱させるとともに、ポンプ7Dの回転方向を設定して、電気ヒータ16を通過した水が単電池80の下端面83(他方側)から電池間通路85に流入するように、ポンプ7Dによる流体流れ方向を制御する。これにより、電気ヒータ16は、暖機用熱源装置として機能する。ポンプ7Dによって循環される水は、電気ヒータ16を通過する際に加熱されて温度上昇し、単電池80の下端面83(単電池80の他方側)から電池間通路85に流入して単電池80を加温し、上端面82(単電池80の一方側)から流出する。電池間通路85を流れ出た水は、さらに流下してポンプ7Dに吸入され、循環回路10Eを循環し続けて単電池80を暖機する。 In the warm-up mode, the control device 50D operates the electric heater 16 to generate heat, sets the rotation direction of the pump 7D, and water passing through the electric heater 16 has a lower end surface 83 (the other side) of the unit cell 80. The fluid flow direction by the pump 7D is controlled so as to flow into the inter-battery passage 85 from the pump 7D. Thereby, the electric heater 16 functions as a warm-up heat source device. The water circulated by the pump 7D is heated and increases in temperature when passing through the electric heater 16, and flows into the inter-cell passage 85 from the lower end surface 83 of the unit cell 80 (the other side of the unit cell 80). 80 is heated and flows out from the upper end surface 82 (one side of the unit cell 80). The water flowing out of the inter-battery passage 85 further flows down and is sucked into the pump 7D, and continues to circulate through the circulation circuit 10E to warm up the unit cell 80.
 一方、冷却モード時には、制御装置50Eは、電動圧縮機2を駆動するとともに、ポンプ7Dの回転方向を設定して、熱交換器6Eを通過した水が単電池80の上端面82(一方側)から電池間通路85に流入するように、ポンプ7Dによる流体流れ方向を制御する。これにより、熱交換器6Eは、内部で冷媒が気化することにより冷却用熱源装置として機能する。ポンプ7Dによって循環される水は、熱交換器6Eを通過する際に冷媒から吸熱されて温度低下し、単電池80の一方側から電池間通路85に流入して単電池80を冷却し、単電池80の他方側から流出する。電池間通路85を流れ出た水は、さらに流下してポンプ7Dに吸入され、循環回路10Eを循環し続けて単電池80を冷却する。 On the other hand, in the cooling mode, the control device 50E drives the electric compressor 2, sets the rotation direction of the pump 7D, and the water that has passed through the heat exchanger 6E passes through the upper end surface 82 (one side) of the unit cell 80. The fluid flow direction by the pump 7D is controlled so as to flow into the inter-battery passage 85 from the pump 7D. Thereby, the heat exchanger 6E functions as a cooling heat source device by the vaporization of the refrigerant inside. When the water circulated by the pump 7D passes through the heat exchanger 6E, it absorbs heat from the refrigerant and drops in temperature, and flows into the inter-cell passage 85 from one side of the unit cell 80 to cool the unit cell 80. The battery 80 flows out from the other side. The water flowing out of the inter-battery passage 85 further flows down and is sucked into the pump 7D, and continues to circulate through the circulation circuit 10E to cool the unit cell 80.
 上述の実施形態の変形例について説明する。本開示は上述した実施形態に何ら制限されることなく、本開示の主旨を逸脱しない範囲において種々変形して実施することが可能である。上記実施形態の構造は、あくまで例示であって、本開示の範囲はこれらの記載の範囲に限定されるものではない。 A modification of the above embodiment will be described. The present disclosure is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present disclosure. The structure of the said embodiment is an illustration to the last, Comprising: The range of this indication is not limited to the range of these description.
 上記の実施形態において、組電池8を構成する単電池80は、扁平な直方体状の外装ケースを有するが、本開示を適用できる単電池はこのような形状に限定するものではない。例えば、当該単電池は、円筒状の外装ケースを有するものであってもよい。 In the above embodiment, the unit cell 80 constituting the assembled battery 8 has a flat rectangular parallelepiped outer case, but the unit cell to which the present disclosure can be applied is not limited to such a shape. For example, the unit cell may have a cylindrical outer case.
 上記の実施形態において、単電池80の電極端子81は、上端面82において上方に向けて突出する形態であるが、本開示を適用できる電極端子81の突出方向は、上方に突出することに限定されない。例えば、電極端子81の突出方向が、下方、水平方向、斜め上方、斜め下方のいずれかとなるような状態で組電池8が設置されてもよい。 In the above embodiment, the electrode terminal 81 of the unit cell 80 is configured to protrude upward on the upper end surface 82, but the protruding direction of the electrode terminal 81 to which the present disclosure can be applied is limited to protrude upward. Not. For example, the assembled battery 8 may be installed in a state where the protruding direction of the electrode terminal 81 is any one of the downward direction, the horizontal direction, the diagonally upward direction, and the diagonally downward direction.
 上記の実施形態において、暖機用熱源装置及び吸熱用熱交換器として機能しうる熱交換器6を採用しているが、熱交換器6の代わりにペルチェ素子を用いて、発熱、吸熱を制御することにより、暖機用熱源装置及び冷却用熱源装置として機能させるように構成することもできる。 In the above embodiment, the heat exchanger 6 that can function as a heat source device for warm-up and a heat exchanger for heat absorption is adopted, but heat generation and heat absorption are controlled using a Peltier element instead of the heat exchanger 6. By doing so, it can also be configured to function as a warm-up heat source device and a cooling heat source device.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on an embodiment, it is understood that the present disclosure is not limited to the embodiment or the structure. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (4)

  1.  外部に突出する電極端子(81)をそれぞれ有し、通電可能に接続される複数個の単電池(80)と、
     前記複数個の単電池(80)の温度を調節する温調流体を前記複数個の単電池(80)の周囲を流れるように流動させる流体流動装置(7,7A,7C,7D)と、
     前記複数個の単電池(80)を暖機する暖機モード時に温調流体に対して放熱する暖機用熱源装置(6,13,6C,16)と、
     前記複数個の単電池(80)を冷却する冷却モード時に温調流体から吸熱する冷却用熱源装置(6,6B,6C,6E)と、
     前記暖機モード時に前記暖機用熱源装置(6,13,6C,16)を機能させ、前記温調流体の流通経路を制御するとともに、前記冷却モード時に前記冷却用熱源装置(6,6B,6C,6E)を機能させ、前記温調流体の流通経路を制御する制御装置(50,50A,50B,50C,50D,50E)と、を備え、
     前記制御装置(50,50A,50B,50C,50D,50E)は、前記冷却モード時に、前記温調流体を前記複数個の単電池(80)に対して前記電極端子(81)が突出する一方側から流入させて前記複数個の単電池(80)の周囲を流通させた後、他方側から流出させ、前記暖機モード時に、前記温調流体を前記冷却モード時とは反対の向きに前記複数個の単電池(80)の周囲に流通させるように前記温調流体の流通経路を制御することを特徴とする電池温調装置。
    A plurality of unit cells (80) each having an electrode terminal (81) projecting to the outside and connected to be energized;
    A fluid flow device (7, 7A, 7C, 7D) for causing a temperature control fluid for adjusting the temperature of the plurality of unit cells (80) to flow around the plurality of unit cells (80);
    A warm-up heat source device (6, 13, 6C, 16) for radiating heat to the temperature-controlled fluid during a warm-up mode for warming up the plurality of single cells (80);
    A cooling heat source device (6, 6B, 6C, 6E) that absorbs heat from the temperature-controlled fluid in the cooling mode for cooling the plurality of single cells (80);
    The warm-up heat source device (6, 13, 6C, 16) is caused to function during the warm-up mode, the flow path of the temperature control fluid is controlled, and the cooling heat source device (6, 6B, 6C, 6E), and a control device (50, 50A, 50B, 50C, 50D, 50E) for controlling the flow path of the temperature control fluid,
    In the control device (50, 50A, 50B, 50C, 50D, 50E), in the cooling mode, the electrode terminal (81) protrudes from the temperature control fluid with respect to the plurality of single cells (80). After flowing from the side and circulating around the plurality of single cells (80), it flows out from the other side, and in the warm-up mode, the temperature control fluid is in the opposite direction to that in the cooling mode. A battery temperature control device for controlling a flow path of the temperature control fluid so as to flow around a plurality of single cells (80).
  2.  前記暖機用熱源装置(6,13,6C,16)の機能と前記冷却用熱源装置(6,6B,6C,6E)の機能を有する単一の装置(6,6C)を備え、
     前記制御装置(50,50C,50D)は、前記単一の装置(6,6C)を、前記暖機モード時に前記暖機用熱源装置(6,13,6C,16)として機能させ、前記冷却モード時に前記冷却用熱源装置(6,6B,6C,6E)として機能させるように切り換え制御することを特徴とする請求項1に記載の電池温調装置。
    A single device (6, 6C) having the function of the warm-up heat source device (6, 13, 6C, 16) and the function of the cooling heat source device (6, 6B, 6C, 6E);
    The control device (50, 50C, 50D) causes the single device (6, 6C) to function as the warm-up heat source device (6, 13, 6C, 16) in the warm-up mode, and The battery temperature control device according to claim 1, wherein switching control is performed so that the cooling heat source device (6, 6B, 6C, 6E) functions in a mode.
  3.  前記温調流体は、気体であり、
     当該気体は、外部に対して遮断された循環通路(10,10A,10B)を流通し、
     前記複数個の単電池(80)は、当該循環通路(10,10A,10B)に配置されることを特徴とする請求項1または請求項2に記載の電池温調装置。
    The temperature control fluid is a gas,
    The gas flows through the circulation passage (10, 10A, 10B) blocked from the outside,
    The battery temperature control device according to claim 1 or 2, wherein the plurality of single cells (80) are arranged in the circulation passage (10, 10A, 10B).
  4.  前記温調流体は、空気であることを特徴とする請求項3に記載の電池温調装置。
     
     
    The battery temperature adjusting device according to claim 3, wherein the temperature adjusting fluid is air.

PCT/JP2013/000118 2012-01-24 2013-01-15 Battery temperature adjustment device WO2013111529A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012012280A JP2013152821A (en) 2012-01-24 2012-01-24 Battery temperature control apparatus
JP2012-012280 2012-01-24

Publications (1)

Publication Number Publication Date
WO2013111529A1 true WO2013111529A1 (en) 2013-08-01

Family

ID=48873263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000118 WO2013111529A1 (en) 2012-01-24 2013-01-15 Battery temperature adjustment device

Country Status (2)

Country Link
JP (1) JP2013152821A (en)
WO (1) WO2013111529A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016153276A (en) * 2015-02-20 2016-08-25 三菱自動車工業株式会社 Vehicle controller
CN109962187A (en) * 2017-12-25 2019-07-02 郑州宇通客车股份有限公司 A kind of power battery box, electrokinetic cell system and charging method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6127867B2 (en) * 2013-09-23 2017-05-17 株式会社デンソー Battery pack
JP6297922B2 (en) * 2014-05-23 2018-03-20 株式会社デンソー Battery pack
JP6196650B2 (en) * 2015-10-15 2017-09-13 三菱電機株式会社 Power supply system
FR3091790B1 (en) * 2019-01-10 2021-06-11 Faurecia Systemes Dechappement Electric vehicle battery
US20220320631A1 (en) * 2021-04-06 2022-10-06 Rheem Manufacturing Company Battery-integrated heat pump systems and methods thereto

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021569A (en) * 2006-07-14 2008-01-31 Toyota Motor Corp Secondary battery system
JP2008052997A (en) * 2006-08-23 2008-03-06 Toyota Motor Corp Power system
JP2009110829A (en) * 2007-10-31 2009-05-21 Toyota Motor Corp Thermal conditioning apparatus of battery
JP2011044275A (en) * 2009-08-20 2011-03-03 Sanyo Electric Co Ltd Power supply device, and vehicle using the same
WO2012160922A1 (en) * 2011-05-23 2012-11-29 三菱自動車工業株式会社 Air-conditioning control device for battery pack
WO2012172751A1 (en) * 2011-06-13 2012-12-20 株式会社デンソー Temperature adjustment apparatus for vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4963902B2 (en) * 2006-08-31 2012-06-27 三洋電機株式会社 Power supply
JP5022316B2 (en) * 2008-07-04 2012-09-12 本田技研工業株式会社 Secondary battery device
JP5375651B2 (en) * 2010-02-17 2013-12-25 株式会社デンソー Laminated cell battery structure
JP2011210582A (en) * 2010-03-30 2011-10-20 Sanyo Electric Co Ltd Battery pack
JP5464168B2 (en) * 2010-06-04 2014-04-09 株式会社デンソー Power supply

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021569A (en) * 2006-07-14 2008-01-31 Toyota Motor Corp Secondary battery system
JP2008052997A (en) * 2006-08-23 2008-03-06 Toyota Motor Corp Power system
JP2009110829A (en) * 2007-10-31 2009-05-21 Toyota Motor Corp Thermal conditioning apparatus of battery
JP2011044275A (en) * 2009-08-20 2011-03-03 Sanyo Electric Co Ltd Power supply device, and vehicle using the same
WO2012160922A1 (en) * 2011-05-23 2012-11-29 三菱自動車工業株式会社 Air-conditioning control device for battery pack
WO2012172751A1 (en) * 2011-06-13 2012-12-20 株式会社デンソー Temperature adjustment apparatus for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016153276A (en) * 2015-02-20 2016-08-25 三菱自動車工業株式会社 Vehicle controller
CN109962187A (en) * 2017-12-25 2019-07-02 郑州宇通客车股份有限公司 A kind of power battery box, electrokinetic cell system and charging method

Also Published As

Publication number Publication date
JP2013152821A (en) 2013-08-08

Similar Documents

Publication Publication Date Title
WO2013111529A1 (en) Battery temperature adjustment device
US8647763B2 (en) Battery coolant jacket
US20110300421A1 (en) Electric power source device
JP5938115B2 (en) Battery module, battery temperature management system, and vehicle including the system
US8448696B2 (en) Coolant de-aeration reservoir
JP5078463B2 (en) Power supply for vehicle
JP5137480B2 (en) Power supply for vehicle
US20120129020A1 (en) Temperature-controlled battery system ii
US20140138042A1 (en) Battery pack and vehicle heating apparatus
US20120291987A1 (en) System for a motor vehicle for heating and/or cooling a battery and a vehicle interior
WO2013132756A1 (en) Temperature adjustment device
WO2012118015A1 (en) Electrical power supply and vehicle using forced-cooling stacked storage cell
WO2012133711A1 (en) Method for producing power source device, power source device, and vehicle provided with power source device
JP2010277863A (en) Vehicular battery system and vehicle loading the same
JP2010050000A (en) Power source device for vehicle
US10886581B2 (en) Battery pack
JP2015015151A (en) Battery temperature control device
WO2020003693A1 (en) Battery temperature adjustment device and control device
WO2019058805A1 (en) Device temperature control device
JP2016091691A (en) Battery pack for vehicle
JP6245065B2 (en) Battery pack
JP2014026814A (en) Power supply temperature adjusting device
JP2014203622A (en) Battery cooler
WO2020022065A1 (en) Heat-retaining device
WO2020129491A1 (en) Battery heating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13740669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13740669

Country of ref document: EP

Kind code of ref document: A1