JP2008021569A - Secondary battery system - Google Patents

Secondary battery system Download PDF

Info

Publication number
JP2008021569A
JP2008021569A JP2006193650A JP2006193650A JP2008021569A JP 2008021569 A JP2008021569 A JP 2008021569A JP 2006193650 A JP2006193650 A JP 2006193650A JP 2006193650 A JP2006193650 A JP 2006193650A JP 2008021569 A JP2008021569 A JP 2008021569A
Authority
JP
Japan
Prior art keywords
secondary battery
proximity
temperature
electrode plate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006193650A
Other languages
Japanese (ja)
Inventor
Hideki Hagiwara
英輝 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006193650A priority Critical patent/JP2008021569A/en
Publication of JP2008021569A publication Critical patent/JP2008021569A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a secondary battery system capable of improving the output characteristics of a secondary battery by efficiently heating the secondary battery. <P>SOLUTION: This secondary battery system 200 includes: the secondary battery 100; a first heating element 210 for heating a first adjacent part 110b of the secondary battery 100; a second heating element 220 for heating a second adjacent part 110c; a first temperature detection element 230 for outputting a first proximity part temperature signal according to the temperature of the first proximity part 110b; a second temperature detection element 240 for outputting a second proximity part temperature signal according to the temperature of the second proximity part 110c; and a control device 250 for controlling the heating of the first heating element 210 and the second heating element 220 based on the first proximity part temperature signal and the second proximity part temperature signal to reduce the difference between the temperature of the first proximity part 110b and that of the second proximity part 110c. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、二次電池システムに関する。   The present invention relates to a secondary battery system.

リチウムイオン二次電池などの二次電池は、ポータブル機器や携帯機器などの電源として、また、電気自動車やハイブリッド自動車などの電源として注目されている。
ところが、リチウムイオン二次電池などの二次電池には、低温時において、放電容量が低下し、良好な出力特性が得られなくなる課題がある。このため、二次電池を、例えば、電気自動車やハイブリッド自動車などの電源として用いた場合、寒冷地など気温が氷点下となる環境下では、出力が十分に得られない問題があった。
この問題を解決するために、近年、二次電池に発熱体を設けて、二次電池を加熱する技術が多数提案されている(例えば、特許文献1参照)。
Secondary batteries such as lithium ion secondary batteries are attracting attention as power sources for portable devices and portable devices, and as power sources for electric vehicles and hybrid vehicles.
However, a secondary battery such as a lithium ion secondary battery has a problem that the discharge capacity is reduced at a low temperature, and good output characteristics cannot be obtained. For this reason, when the secondary battery is used as a power source of, for example, an electric vehicle or a hybrid vehicle, there is a problem that an output cannot be sufficiently obtained in an environment where the temperature is below freezing point such as a cold district.
In order to solve this problem, in recent years, many techniques for heating a secondary battery by providing a heating element in the secondary battery have been proposed (for example, see Patent Document 1).

特開2002−260745号公報JP 2002-260745 A

特許文献1では、電池ケースの外部に突出した電極端子の端子台などに、発熱体を取付けた電池が開示されている。この電池では、発熱体の発熱により端子台などが加熱されるので、この熱が金属製の集電接続体などを介して発電要素(正極板、負極板、及びセパレータを捲回してなる電極体)の電極に円滑に伝わり、発電要素の内部を迅速に温めることができると記載されている。これにより、気温が低い場合でも、電池の出力特性を速やかに向上させることができると記載されている。   Patent Document 1 discloses a battery in which a heating element is attached to a terminal block of an electrode terminal protruding outside the battery case. In this battery, since the terminal block and the like are heated by the heat generated by the heating element, this heat is used to generate a power generation element (a positive electrode plate, a negative electrode plate, and an electrode body formed by winding a separator through a current collector connection body). ) Can be smoothly transmitted to the electrode, and the inside of the power generation element can be quickly warmed. Thus, it is described that the output characteristics of the battery can be promptly improved even when the temperature is low.

ところで、二次電池では、充放電時に、電極体のうち正極端子側の端部と負極端子側の端部とで温度差が生じることがある。例えば、リチウムイオン二次電池では、充電時に、電極体のうち正極端子側の端部に比べて、負極端子側の端部の温度が低くなりがちである。このような場合において、特許文献1のように、電極体の正極端子側と負極端子側とを同等に加熱しても、やはり電極体の正極端子側の端部と負極端子側の端部とで温度差が生じたままである。   By the way, in the secondary battery, a temperature difference may occur between the end on the positive electrode terminal side and the end on the negative electrode terminal side of the electrode body during charging and discharging. For example, in a lithium ion secondary battery, the temperature of the end portion on the negative electrode terminal side of the electrode body tends to be lower during charging than the end portion on the positive electrode terminal side. In such a case, as in Patent Document 1, even if the positive electrode terminal side and the negative electrode terminal side of the electrode body are heated equally, the end part on the positive electrode terminal side and the end part on the negative electrode terminal side of the electrode body are still The temperature difference remains.

これに対し、本発明者が検討したところ、例えば、リチウムイオン二次電池については、発熱体への供給電力量を同等としたとき、正極集電部材側の端部と負極集電部材側の端部とに温度差が生じているにも拘わらず両端部を同等に加熱する場合(特許文献1)に比べて、電極体の正極集電部材側の端部と負極集電部材側の端部の温度差が小さくなるように(例えば、両端部の温度が等しくなるように)制御して加熱するほうが、二次電池の放電容量を向上させ、出力特性を向上させることができることが判明した。   On the other hand, when the present inventors examined, for example, for a lithium ion secondary battery, when the amount of power supplied to the heating element is equal, the end on the positive electrode current collector member side and the negative electrode current collector member side Compared to the case where both ends are heated equally despite the difference in temperature between the ends (Patent Document 1), the end on the positive electrode current collector member side and the end on the negative electrode current collector member side of the electrode body It has been found that controlling and heating so that the temperature difference between the parts becomes smaller (for example, the temperatures at both ends become equal) can improve the discharge capacity of the secondary battery and improve the output characteristics. .

本発明は、かかる現状に鑑みてなされたものであって、加熱効率良く、二次電池の出力特性を向上させることができる二次電池システムを提供することを目的とする。   This invention is made | formed in view of this present condition, Comprising: It aims at providing the secondary battery system which can improve the output characteristic of a secondary battery with sufficient heating efficiency.

その解決手段は、第1端部と第2端部とを有する電極体、及び前記電極体を収容する電池ケースを備え、充電時及び放電時の少なくともいずれかに、前記電極体のうち前記第2端部の温度が、前記第1端部の温度に比べて低くなる二次電池と、前記電極体の前記第1端部及び前記第2端部のうち少なくとも前記第2端部を、直接または間接に加熱する加熱手段と、前記第1端部の温度に応じた第1信号と、前記第2端部の温度に応じた第2信号とを出力する温度検知手段と、前記第1信号と前記第2信号とに基づいて、前記加熱手段による加熱を制御し、前記第1端部と前記第2端部の温度差を小さくする制御手段と、を備える二次電池システムである。   The solution includes an electrode body having a first end and a second end, and a battery case that houses the electrode body, and at least one of charging and discharging at the time of the first of the electrode bodies. A secondary battery in which a temperature at two ends is lower than a temperature at the first end, and at least the second end of the first end and the second end of the electrode body, Alternatively, a heating means for indirectly heating, a temperature detection means for outputting a first signal corresponding to the temperature of the first end, and a second signal corresponding to the temperature of the second end, and the first signal And a control means for controlling heating by the heating means based on the second signal and reducing a temperature difference between the first end portion and the second end portion.

二次電池の中には、充電時及び放電時の少なくともいずれかに、電極体のうち第2端部の温度が、第1端部の温度に比べて低くなる二次電池がある。このような二次電池では、特に、低温動作時において、放電容量が小さくなるなど、良好な出力特性が得られなくなる虞がある。その理由は、電極体のうち温度の低い第2端部付近において、電池反応が進み難くなるためと考えられる。   Among the secondary batteries, there is a secondary battery in which the temperature of the second end of the electrode body is lower than the temperature of the first end at least during charging and discharging. In such a secondary battery, there is a possibility that good output characteristics may not be obtained, for example, the discharge capacity becomes small particularly during low temperature operation. The reason is considered to be that the battery reaction is difficult to proceed in the vicinity of the second end portion where the temperature is low in the electrode body.

これに対し、本発明の二次電池システムでは、電極体の第1端部及び第2端部のうち少なくとも第2端部を、直接または間接に加熱する加熱手段を備え、第1端部の温度に応じた第1信号と、第2端部の温度に応じた第2信号とを出力する温度検知手段を備えている。しかも、第1信号と第2信号とに基づいて、加熱手段による加熱を制御し、第1端部と第2端部の温度差を小さくする制御手段を備えている。これにより、本発明の電池システムでは、電極体の第2端部の温度を第1端部の温度に近づけ、第1端部と第2端部の温度差を小さくすることができる。   On the other hand, the secondary battery system of the present invention includes a heating unit that directly or indirectly heats at least the second end of the first end and the second end of the electrode body. Temperature detection means is provided for outputting a first signal corresponding to the temperature and a second signal corresponding to the temperature of the second end. In addition, control means for controlling the heating by the heating means based on the first signal and the second signal and reducing the temperature difference between the first end and the second end is provided. Thereby, in the battery system of this invention, the temperature of the 2nd edge part of an electrode body can be closely approached to the temperature of a 1st edge part, and the temperature difference of a 1st edge part and a 2nd edge part can be made small.

このため、本発明の二次電池システムによれば、加熱手段(例えば、発熱体など)による加熱量(例えば、供給電力量)を同等としたとき、電極体の第1端部と第2端部とに温度差が生じているにも拘わらず第1端部と第2端部とを同等に加熱する(あるいは、二次電池全体を同等に加熱する)二次電池システムに比べて、二次電池の放電容量を向上させ、出力特性を向上させることができる。つまり、本発明の二次電池システムは、従来の二次電池システムに比べて、加熱効率良く、二次電池の出力特性を向上させることができる。   Therefore, according to the secondary battery system of the present invention, when the heating amount (for example, power supply amount) by the heating means (for example, a heating element) is made equal, the first end portion and the second end of the electrode body are the same. Compared to a secondary battery system in which the first end and the second end are heated equally (or the entire secondary battery is heated equally) despite the temperature difference between the two The discharge capacity of the secondary battery can be improved and the output characteristics can be improved. That is, the secondary battery system of the present invention can improve the output characteristics of the secondary battery with higher heating efficiency than the conventional secondary battery system.

なお、電極体としては、例えば、第1電極板(例えば、正極板)と、これとは異なる電位とされる第2電極板(例えば、負極板)とを、セパレータを介して積層してなる電極体を挙げることができる。具体的には、帯状の第1電極板と第2電極板とを、両者の間にセパレータを介在させて積層して捲回してなる捲回型の電極体や、複数の第1電極板と複数の第2電極板とを、1枚ずつ両者の間にセパレータを介在させて交互に積層してなる積層型の電極体などを例示できる。   In addition, as an electrode body, for example, a first electrode plate (for example, a positive electrode plate) and a second electrode plate (for example, a negative electrode plate) having a different potential are laminated via a separator. An electrode body can be mentioned. Specifically, a wound electrode body formed by laminating a belt-shaped first electrode plate and a second electrode plate with a separator interposed therebetween, and a plurality of first electrode plates, For example, a laminated electrode body in which a plurality of second electrode plates are alternately laminated one by one with a separator interposed therebetween.

また、温度検知手段としては、例えば、サーミスタや熱電対などの温度検知素子を用いることができる。
また、加熱手段(例えば、発熱体など)により、第2端部のみを加熱するようにしても良いが、第1端部と第2端部との両方を加熱したほうが、二次電池の出力特性をさらに向上させることができるので好ましい。電極体全体の温度を、第2端部のみを加熱する場合よりも、上昇させることができるからである。
Moreover, as a temperature detection means, temperature detection elements, such as a thermistor and a thermocouple, can be used, for example.
In addition, only the second end portion may be heated by a heating means (for example, a heating element), but the output of the secondary battery is more when both the first end portion and the second end portion are heated. It is preferable because the characteristics can be further improved. It is because the temperature of the whole electrode body can be raised rather than the case where only the 2nd edge part is heated.

さらに、前記の二次電池システムであって、前記制御手段は、前記第1信号と第2信号とに基づいて、前記第1端部と前記第2端部の温度が等しくなるように、前記加熱手段による加熱を制御する二次電池システムとするのが好ましい。
制御手段により第1端部と第2端部の温度が等しくなるように制御すれば、適切に、電極体の第2端部の温度を第1端部の温度とほぼ等しくすることが可能となる。これにより、二次電池の出力特性を、より一層効率良く向上させることができる。
Furthermore, in the above secondary battery system, the control means is configured to make the temperature of the first end and the second end equal based on the first signal and the second signal. A secondary battery system that controls heating by the heating means is preferable.
If the control means controls the temperature of the first end and the second end to be equal, the temperature of the second end of the electrode body can be appropriately made substantially equal to the temperature of the first end. Become. Thereby, the output characteristic of a secondary battery can be improved much more efficiently.

さらに、前記いずれかの二次電池システムであって、前記加熱手段は、前記電池ケースの外壁部のうち、前記電極体の前記第1端部に近接する部位を第1近接部、前記第2端部に近接する部位を第2近接部としたとき、前記第1近接部及び前記第2近接部のうち、少なくとも前記第2近接部を加熱する加熱手段であり、前記温度検知手段は、前記第1近接部の温度に対応した第1近接部温度信号と、前記第2近接部の温度に対応した第2近接部温度信号とを出力する温度検知手段であり、前記制御手段は、前記第1近接部温度信号と前記第2近接部温度信号とに基づいて、前記加熱手段による加熱を制御し、前記第1近接部と前記第2近接部の温度差を小さくする制御手段である二次電池システムとすると良い。   Furthermore, in any one of the above secondary battery systems, the heating means includes a first proximity portion, a second proximity portion of the outer wall portion of the battery case that is close to the first end portion of the electrode body, and the second proximity portion. When the part close to the end is the second proximity part, it is a heating means for heating at least the second proximity part among the first proximity part and the second proximity part, and the temperature detection means is Temperature detecting means for outputting a first proximity part temperature signal corresponding to the temperature of the first proximity part and a second proximity part temperature signal corresponding to the temperature of the second proximity part, wherein the control means A secondary control unit that controls heating by the heating unit based on the first proximity unit temperature signal and the second proximity unit temperature signal and reduces a temperature difference between the first proximity unit and the second proximity unit. A battery system is recommended.

本発明の二次電池システムでは、加熱手段により、電池ケースの外壁部の第1近接部及び第2近接部のうち、少なくとも第2近接部を加熱する。これにより、電極体の第1端部及び第2端部のうち少なくとも第2端部を、第2近接部を通じて適切に加熱することができる。さらに、温度検知手段により、第1近接部の温度に対応した第1近接部温度信号と、第2近接部の温度に対応した第2近接部温度信号とを出力すると共に、制御手段により、第1近接部温度信号と第2近接部温度信号とに基づいて、加熱手段による加熱を制御し、第1近接部と第2近接部の温度差を小さくする。これにより、電極体の第2端部の温度を、適切に、第1端部の温度に近づけることができる。   In the secondary battery system of the present invention, the heating means heats at least the second proximity portion of the first proximity portion and the second proximity portion of the outer wall portion of the battery case. Accordingly, at least the second end portion of the first end portion and the second end portion of the electrode body can be appropriately heated through the second proximity portion. Further, the temperature detecting means outputs a first proximity portion temperature signal corresponding to the temperature of the first proximity portion and a second proximity portion temperature signal corresponding to the temperature of the second proximity portion, and the control means outputs the first proximity portion temperature signal. Based on the 1 proximity part temperature signal and the 2nd proximity part temperature signal, the heating by a heating means is controlled and the temperature difference of a 1st proximity part and a 2nd proximity part is made small. Thereby, the temperature of the 2nd edge part of an electrode body can be closely approached to the temperature of a 1st edge part appropriately.

さらに、前記の二次電池システムであって、前記制御手段は、前記第1近接部温度信号と第2近接部温度信号とに基づいて、前記第1近接部と前記第2近接部の温度が等しくなるように、前記加熱手段による加熱を制御する二次電池システムとするのが好ましい。
制御手段により第1近接部と第2近接部の温度が等しくなるように制御すれば、適切に、電極体の第2端部の温度を第1端部の温度とほぼ等しくすることが可能となる。これにより、二次電池の出力特性を、より一層効率良く向上させることができる。
Furthermore, in the above secondary battery system, the control unit is configured to control the temperature of the first proximity part and the second proximity part based on the first proximity part temperature signal and the second proximity part temperature signal. It is preferable that the secondary battery system controls heating by the heating means so as to be equal.
By controlling the temperature of the first proximity portion and the second proximity portion to be equal by the control means, the temperature of the second end portion of the electrode body can be appropriately made substantially equal to the temperature of the first end portion. Become. Thereby, the output characteristic of a secondary battery can be improved much more efficiently.

さらに、前記いずれかの二次電池システムであって、前記加熱手段として、前記電極体の前記第1端部を、直接または間接に加熱する第1加熱手段と、前記電極体の前記第2端部を、直接または間接に加熱する第2加熱手段と、を備える二次電池システムとすると良い。   Furthermore, in any one of the secondary battery systems, as the heating means, first heating means for directly or indirectly heating the first end portion of the electrode body, and the second end of the electrode body. The unit may be a secondary battery system including a second heating unit that directly or indirectly heats the unit.

本発明の二次電池システムでは、第1加熱手段により電極体の第1端部を直接または間接に加熱すると共に、第2加熱手段により電極体の第2端部を直接または間接に加熱する。このため、電極体の第2端部のみを加熱する場合に比べて、二次電池の出力特性をさらに向上させることができる。第2端部のみを加熱する場合よりも、電極体全体の温度を上昇させることができるからである。
なお、第1加熱手段により電極体の第1端部を間接に加熱する場合とは、例えば、電池ケースの第1近接部を加熱する場合である。第2加熱手段により電極体の第2端部を間接に加熱する場合とは、例えば、電池ケースの第2近接部を加熱する場合である。
In the secondary battery system of the present invention, the first end of the electrode body is directly or indirectly heated by the first heating means, and the second end of the electrode body is directly or indirectly heated by the second heating means. For this reason, compared with the case where only the 2nd edge part of an electrode body is heated, the output characteristic of a secondary battery can be improved further. It is because the temperature of the whole electrode body can be raised rather than the case where only a 2nd edge part is heated.
The case where the first end portion of the electrode body is indirectly heated by the first heating means is, for example, a case where the first proximity portion of the battery case is heated. The case where the second end portion of the electrode body is indirectly heated by the second heating means is, for example, a case where the second proximity portion of the battery case is heated.

他の解決手段は、第1電極基材を有する第1電極板と、前記第1電極基材に比べて電気抵抗が小さい第2電極基材を有し、前記第1電極板とは異なる電位とされる第2電極板と、セパレータとを備え、前記第1電極板と前記第2電極板とを、前記セパレータを介して積層してなる電極体、前記第1電極板の電荷を集電する第1集電部材、前記第2電極板の電荷を集電する第2集電部材、及び前記電極体と前記第1集電部材と前記第2集電部材とを内部に収容する電池ケース、を備える二次電池であって、前記電極体が、前記第1電極板、前記第2電極板、及び前記セパレータを積層してなる積層部と、前記積層部から、前記第1電極板、前記第2電極板、及び前記セパレータのうち前記第1電極板の一部のみが突出してなる第1端部であって、前記第1集電部材に接合されてなる第1端部と、前記積層部から、前記第1電極板、前記第2電極板、及び前記セパレータのうち前記第2電極板の一部のみが突出してなる第2端部であって、前記第2集電部材に接合されてなる第2端部と、を有する二次電池と、前記電池ケースの外壁部のうち、前記電極体の前記第1端部に近接する部位を第1近接部、前記第2端部に近接する部位を第2近接部としたとき、前記第1近接部及び前記第2近接部のうち、少なくとも前記第2近接部に固着されてなる発熱体と、前記第1近接部の温度に対応した第1近接部温度信号を出力する第1温度検知素子と、前記第2近接部の温度に対応した第2近接部温度信号を出力する第2温度検知素子と、前記第1近接部温度信号と前記第2近接部温度信号とに基づいて、前記発熱体への通電を制御し、前記第1近接部と前記第2近接部の温度差を小さくする制御手段と、を備える二次電池システムである。   Another solution includes a first electrode plate having a first electrode substrate and a second electrode substrate having a lower electrical resistance than the first electrode substrate, and a potential different from that of the first electrode plate. A second electrode plate and a separator, and an electrode body formed by laminating the first electrode plate and the second electrode plate with the separator interposed therebetween, and collects electric charges of the first electrode plate A first current collecting member, a second current collecting member for collecting electric charges of the second electrode plate, and a battery case that accommodates the electrode body, the first current collecting member, and the second current collecting member therein The electrode body comprises a laminated portion formed by laminating the first electrode plate, the second electrode plate, and the separator, and the first electrode plate from the laminated portion, Of the second electrode plate and the separator, only a part of the first electrode plate protrudes from the first end. Only a part of the second electrode plate out of the first electrode plate, the second electrode plate, and the separator protrudes from the first end portion joined to the first current collecting member and the stacked portion. A secondary battery having a second end portion joined to the second current collecting member, and an outer wall portion of the battery case, wherein the first end of the electrode body is included in the second end portion. When the part close to the end is the first proximity part and the part close to the second end is the second proximity part, at least the second proximity part of the first proximity part and the second proximity part A heating element fixed to the first proximity detecting element, a first temperature sensing element that outputs a first proximity part temperature signal corresponding to the temperature of the first proximity part, and a second proximity part temperature corresponding to the temperature of the second proximity part. A second temperature detecting element that outputs a signal, the first proximity part temperature signal, and the second proximity part temperature signal; Zui and to control the power supply to the heating element, and a control means for reducing the temperature difference between the second proximate portion and the first proximity unit is a rechargeable battery system comprising a.

本発明の二次電池システムは、第1電極基材を有する第1電極板と、第1電極基材に比べて電気抵抗が小さい第2電極基材を有する第2電極板とを、セパレータを介して積層してなる電極体を備える二次電池を有している。さらに、この二次電池は、積層部から第1電極板の一部のみが突出してなる第1端部であって、第1集電部材に接合されてなる第1端部と、積層部から第2電極板の一部のみが突出してなる第2端部であって、第2集電部材に接合されてなる第2端部とを有している。このような二次電池は、充電時及び放電時の少なくともいずれかに、電極体のうち第2端部の温度が、第1端部の温度に比べて低くなる傾向にある。従って、電極体の積層部のうち、第2端部の付近に位置する部位の温度が、第1端部の付近に位置する部位の温度に比べて低くなりがちである。このため、特に、低温動作時において、放電容量が小さくなるなど、良好な出力特性が得られなくなる虞がある。   The secondary battery system of the present invention includes a first electrode plate having a first electrode substrate, a second electrode plate having a second electrode substrate having a lower electrical resistance than the first electrode substrate, and a separator. And a secondary battery including an electrode body laminated. Further, the secondary battery includes a first end portion in which only a part of the first electrode plate protrudes from the laminated portion, a first end portion joined to the first current collecting member, and the laminated portion. It has a second end formed by projecting only a part of the second electrode plate, and a second end joined by the second current collecting member. In such a secondary battery, the temperature of the second end portion of the electrode body tends to be lower than the temperature of the first end portion at least during charging and discharging. Therefore, the temperature of the portion located near the second end portion of the stacked portion of the electrode body tends to be lower than the temperature of the portion located near the first end portion. For this reason, there is a possibility that good output characteristics cannot be obtained, for example, the discharge capacity becomes small, especially during low-temperature operation.

これに対し、本発明の二次電池システムでは、電池ケースの外壁部の第1近接部及び第2近接部のうち少なくとも第2近接部に発熱体を備え、第1近接部の温度に応じた第1近接部温度信号を出力する第1温度検知素子と、第2近接部の温度に応じた第2近接部温度信号を出力する第2温度検知素子とを備えている。しかも、第1近接部温度信号と第2近接部温度信号とに基づいて発熱体への通電を制御し、第1近接部と第2近接部の温度差を小さくする制御手段を備えている。これにより、本発明の電池システムでは、電極体の第2端部の温度を第1端部の温度に近づけ、第1端部及びその付近と第2端部及びその付近の温度差を小さくすることができる。   On the other hand, in the secondary battery system of the present invention, a heating element is provided in at least the second proximity portion among the first proximity portion and the second proximity portion of the outer wall portion of the battery case, and the temperature is in accordance with the temperature of the first proximity portion. A first temperature detection element that outputs a first proximity part temperature signal; and a second temperature detection element that outputs a second proximity part temperature signal corresponding to the temperature of the second proximity part. In addition, control means is provided for controlling energization to the heating element based on the first proximity part temperature signal and the second proximity part temperature signal and reducing the temperature difference between the first proximity part and the second proximity part. Thereby, in the battery system of the present invention, the temperature of the second end of the electrode body is brought close to the temperature of the first end, and the temperature difference between the first end and its vicinity and the second end and its vicinity is reduced. be able to.

このため、本発明の二次電池システムによれば、発熱体への供給電力量を同等としたとき、電極体の第1端部と第2端部とに温度差が生じているにも拘わらず第1端部と第2端部とを同等に加熱する(あるいは、二次電池全体を同等に加熱する)二次電池システムに比べて、二次電池の放電容量を向上させ、出力特性を向上させることができる。つまり、本発明の二次電池システムは、従来の二次電池システムに比べて、加熱効率良く、二次電池の出力特性を向上させることができる。   Therefore, according to the secondary battery system of the present invention, when the amount of power supplied to the heating element is made equal, a temperature difference is generated between the first end and the second end of the electrode body. Compared to a secondary battery system in which the first end and the second end are heated equally (or the entire secondary battery is heated equally), the discharge capacity of the secondary battery is improved and the output characteristics are improved. Can be improved. That is, the secondary battery system of the present invention can improve the output characteristics of the secondary battery with higher heating efficiency than the conventional secondary battery system.

なお、第1電極板と第2電極板とを、セパレータを介して積層してなる電極体としては例えば、帯状の第1電極板と第2電極板とを、両者の間にセパレータを介在させて積層して捲回してなる捲回型の電極体を挙げることができる。また、複数の第1電極板と複数の第2電極板とを1枚ずつ、両者の間にセパレータを介在させて交互に積層してなる積層型の電極体としても良い
また、第1温度検知素子としては、第1近接部の温度に応じた第1近接部温度信号を出力するものであればいずれでも良いが、例えば、サーミスタや熱電対などを用いることができる。第2温度検知素子についても、第1温度検知素子と同様である。
In addition, as an electrode body formed by laminating the first electrode plate and the second electrode plate via a separator, for example, a strip-shaped first electrode plate and a second electrode plate are interposed with a separator interposed therebetween. A wound electrode body obtained by laminating and winding can be given. Alternatively, a plurality of first electrode plates and a plurality of second electrode plates may be stacked one by one with a separator interposed therebetween, and may also be a stacked electrode body. Any element may be used as long as it outputs a first proximity part temperature signal corresponding to the temperature of the first proximity part. For example, a thermistor or a thermocouple can be used. The second temperature detection element is the same as the first temperature detection element.

さらに、前記の二次電池システムであって、前記制御手段は、前記第1近接部温度信号と第2近接部温度信号とに基づいて、前記第1近接部と前記第2近接部の温度が等しくなるように、前記発熱体への通電を制御する二次電池システムとするのが好ましい。
制御手段により第1近接部と第2近接部の温度が等しくなるように制御すれば、適切に、電極体の第2端部の温度を第1端部の温度とほぼ等しくすることが可能となる。これにより、二次電池の出力特性を、より一層効率良く向上させることができる。
Furthermore, in the above secondary battery system, the control unit is configured to control the temperature of the first proximity part and the second proximity part based on the first proximity part temperature signal and the second proximity part temperature signal. It is preferable that the secondary battery system controls the energization of the heating element so as to be equal.
By controlling the temperature of the first proximity portion and the second proximity portion to be equal by the control means, the temperature of the second end portion of the electrode body can be appropriately made substantially equal to the temperature of the first end portion. Become. Thereby, the output characteristic of a secondary battery can be improved much more efficiently.

さらに、前記いずれかの二次電池システムであって、前記二次電池は、前記第1電極板、前記第2電極板、及び前記セパレータが、ぞれぞれ帯状をなし、前記電極体が、前記帯状の第1電極板、第2電極板、及びセパレータを積層して捲回されてなり、前記第1端部では、前記第1電極板の一部のみが渦巻状に重なり、前記第2端部では、前記第2電極板の一部のみが渦巻状に重なってなる二次電池である二次電池システムとすると良い。   Furthermore, in any one of the secondary battery systems, the secondary battery includes the first electrode plate, the second electrode plate, and the separator, each having a belt shape, and the electrode body, The strip-shaped first electrode plate, the second electrode plate, and the separator are laminated and wound, and at the first end, only a part of the first electrode plate overlaps in a spiral shape, and the second At the end, a secondary battery system that is a secondary battery in which only a part of the second electrode plate overlaps in a spiral shape may be used.

本発明の二次電池システムでは、二次電池が、電極体として、帯状の第1電極板、第2電極板、及びセパレータを積層して捲回してなる電極体を有している。本発明の二次電池システムでは、捲回型の電極体を有する二次電池についても、加熱効率良く、二次電池の出力特性を向上させることができる。   In the secondary battery system of the present invention, the secondary battery has an electrode body formed by laminating and winding a strip-shaped first electrode plate, a second electrode plate, and a separator as an electrode body. In the secondary battery system of the present invention, the output characteristics of the secondary battery can be improved with good heating efficiency even for the secondary battery having a wound electrode body.

さらに、前記いずれかの二次電池システムであって、前記発熱体として、前記電池ケースの前記第1近接部に固着された第1発熱体と、前記電池ケースの前記第2近接部に固着された第2発熱体と、を備える二次電池システムとすると良い。   Further, in any one of the secondary battery systems, the heating element is fixed to the first heating element fixed to the first proximity part of the battery case and to the second proximity part of the battery case. In addition, the secondary battery system may include a second heating element.

本発明の二次電池システムでは、第1発熱体により、電池ケースの第1近接部を通じて電極体の第1端部を加熱すると共に、第2発熱体により、電池ケースの第2近接部を通じて電極体の第2端部を加熱することができる。このため、電池ケースの第2近接部を通じて電極体の第2端部のみを加熱する場合に比べて、二次電池の出力特性をさらに向上させることができる。第2端部のみを加熱する場合よりも、電極体全体の温度を迅速に上昇させることができるからである。   In the secondary battery system of the present invention, the first heating element heats the first end of the electrode body through the first proximity part of the battery case, and the second heating element causes the electrode to pass through the second proximity part of the battery case. The second end of the body can be heated. For this reason, compared with the case where only the 2nd edge part of an electrode body is heated through the 2nd proximity | contact part of a battery case, the output characteristic of a secondary battery can be improved further. This is because the temperature of the entire electrode body can be increased more quickly than when only the second end is heated.

さらに、前記いずれかの二次電池システムであって、前記二次電池は、前記第1電極基材が、アルミニウムからなり、前記第2電極基材が、銅からなるリチウムイオン二次電池である二次電池システムとすると良い。   Furthermore, in any one of the secondary battery systems, the secondary battery is a lithium ion secondary battery in which the first electrode base material is made of aluminum and the second electrode base material is made of copper. A secondary battery system is preferable.

本発明の二次電池システムは、二次電池として、アルミニウム製の第1電極基材と、銅製の第2電極基材とを有するリチウムイオン二次電池を備えている。このリチウムイオン二次電池では、充電時に、電極体の第1端部に比べて、第2端部の温度が低くなりがちである。これに対し、本発明の二次電池システムでは、前述のように、電極体の第2端部の温度を第1端部の温度に近づけ、第1端部と第2端部の温度差を小さくすることができる。従って、本発明の二次電池システムによれば、リチウムイオン二次電池について、加熱効率良く、その出力特性を向上させることができる。   The secondary battery system of the present invention includes a lithium ion secondary battery having a first electrode base made of aluminum and a second electrode base made of copper as a secondary battery. In this lithium ion secondary battery, the temperature of the second end tends to be lower than that of the first end of the electrode body during charging. In contrast, in the secondary battery system of the present invention, as described above, the temperature of the second end of the electrode body is brought close to the temperature of the first end, and the temperature difference between the first end and the second end is set. Can be small. Therefore, according to the secondary battery system of the present invention, the output characteristics of the lithium ion secondary battery can be improved with good heating efficiency.

(実施例1)
次に、本発明の実施例1について、図面を参照しつつ説明する。
まず、本実施例1にかかる二次電池100について説明する。本実施例1の二次電池100は、図1に示すように、直方体形状の電池ケース110と、安全弁140と、正極端子120と、負極端子130と、電極体150とを備える角形密閉式のリチウムイオン二次電池である。
(Example 1)
Next, Example 1 of the present invention will be described with reference to the drawings.
First, the secondary battery 100 according to the first embodiment will be described. As shown in FIG. 1, the secondary battery 100 of the first embodiment includes a rectangular sealed battery case 110 including a rectangular battery case 110, a safety valve 140, a positive electrode terminal 120, a negative electrode terminal 130, and an electrode body 150. It is a lithium ion secondary battery.

電池ケース110は、金属からなり、直方体形状の収容空間をなす角形収容部111と、金属製の蓋部112とを有している。電池ケース110の内部には、電極体150、正極集電部材122、負極集電部材132、図示しない電解液などが収容されている。正極集電部材122及び負極集電部材132は、細長板形状の金属部材であり、それぞれ、正極端子120及び負極端子130に接続されている。電解液としては、例えば、EC(エチレンカーボネート)とDEC(ジエチルカーボネート)との混合有機溶媒に、溶質としてLiPF6を添加した有機電解液を用いることができる。 The battery case 110 is made of metal, and includes a rectangular housing portion 111 that forms a rectangular parallelepiped housing space, and a metal lid portion 112. The battery case 110 contains an electrode body 150, a positive current collector 122, a negative current collector 132, an electrolyte solution (not shown), and the like. The positive electrode current collecting member 122 and the negative electrode current collecting member 132 are elongated plate-shaped metal members, and are connected to the positive electrode terminal 120 and the negative electrode terminal 130, respectively. As the electrolytic solution, for example, an organic electrolytic solution obtained by adding LiPF 6 as a solute to a mixed organic solvent of EC (ethylene carbonate) and DEC (diethyl carbonate) can be used.

蓋部112には、貫通孔112bが形成されている。この貫通孔112bは、円盤状をなす金属製の安全弁140により、電池ケース110の外側から封止されている。具体的には、安全弁140が、貫通孔112bを封止するように、蓋部112の外側面112f上に溶接されている。これにより、電池ケース110の内圧が所定の開弁圧を超えると、安全弁140が開裂することで電池ケース110の封止が開放され、電池ケース110内のガスを外部に排出することができる。   A through hole 112 b is formed in the lid portion 112. The through-hole 112b is sealed from the outside of the battery case 110 by a disc-shaped metal safety valve 140. Specifically, the safety valve 140 is welded onto the outer surface 112f of the lid portion 112 so as to seal the through hole 112b. As a result, when the internal pressure of the battery case 110 exceeds a predetermined valve opening pressure, the safety valve 140 is cleaved to open the seal of the battery case 110, and the gas in the battery case 110 can be discharged to the outside.

電極体150は、断面長円状をなし、帯状の正極板155、負極板156、及びセパレータ157を捲回してなる扁平型の捲回体である。具体的には、正極板155と負極板156とをセパレータ157を介して積層した帯状の積層体を、断面扁平型に捲回して、電極体150を形成している。この電極体150は、正極板155、負極板156、及びセパレータ157が渦巻状に重なる積層部151と、その軸線方向(図1において左右方向)の一方端側(図1において右側)に位置し、正極板155の一部のみが渦巻状に重なる正極捲回部155bと、他方端側(図1において左側)に位置し、負極板156の一部のみが渦巻状に重なる負極捲回部156bとを有している。   The electrode body 150 is an oblong cross section, and is a flat wound body formed by winding a belt-like positive electrode plate 155, a negative electrode plate 156, and a separator 157. Specifically, the electrode body 150 is formed by winding a strip-shaped laminated body in which a positive electrode plate 155 and a negative electrode plate 156 are laminated via a separator 157 into a flat cross section. The electrode body 150 is positioned on the laminated portion 151 in which the positive electrode plate 155, the negative electrode plate 156, and the separator 157 overlap each other in a spiral shape and on one end side (right side in FIG. 1) in the axial direction (left-right direction in FIG. 1). The positive electrode winding part 155b in which only a part of the positive electrode plate 155 overlaps in a spiral shape and the negative electrode winding part 156b in the other end side (left side in FIG. 1) and only a part of the negative electrode plate 156 overlaps in a spiral shape. And have.

このうち、正極板155は、アルミニウム箔からなる正極基材155cと、この正極基材155cの表面のうち正極捲回部155bを除く部位に塗布された正極合材とを有している。正極合材は、正極活物質(例えば、LiCoO2など)と、導電化材(例えば、アセチレンブラックなど)と、バインダ樹脂(例えば、PVDF)とを含んでなる。なお、図1に示すように、正極板155のうち正極合材が塗布されていない正極捲回部155bに、正極集電部材122が溶接されている。 Among these, the positive electrode plate 155 has the positive electrode base material 155c which consists of aluminum foil, and the positive electrode compound material apply | coated to the site | part except the positive electrode winding part 155b among the surfaces of this positive electrode base material 155c. The positive electrode mixture includes a positive electrode active material (for example, LiCoO 2 ), a conductive material (for example, acetylene black), and a binder resin (for example, PVDF). As shown in FIG. 1, the positive electrode current collector 122 is welded to the positive electrode winding portion 155b of the positive electrode plate 155 where the positive electrode mixture is not applied.

負極板156は、銅箔からなる負極基材156cと、この負極基材156cの表面のうち負極捲回部156bを除く部位に塗布された負極合材とを有している。負極合材は、負極活物質(例えば、黒鉛など)と、バインダ樹脂(例えば、PVDFなど)とを含んでなる。なお、図1に示すように、負極板156のうち負極合材が塗布されていない負極捲回部156bに、負極集電部材132が溶接されている。
セパレータ157としては、例えば、PE(ポリエチレン)とPP(ポリプロピレン)とからなる樹脂フィルムを用いることができる。
The negative electrode plate 156 includes a negative electrode base material 156c made of copper foil, and a negative electrode mixture applied to a portion of the surface of the negative electrode base material 156c excluding the negative electrode winding portion 156b. The negative electrode mixture includes a negative electrode active material (for example, graphite) and a binder resin (for example, PVDF). As shown in FIG. 1, the negative electrode current collecting member 132 is welded to the negative electrode winding part 156 b of the negative electrode plate 156 to which the negative electrode mixture is not applied.
As the separator 157, for example, a resin film made of PE (polyethylene) and PP (polypropylene) can be used.

このような二次電池100では、アルミニウム箔からなる正極基材155cに比べて、銅箔からなる負極基材156cの電気抵抗が小さいことから、充電時に、電極体150のうち負極捲回部156bの温度が、正極捲回部155bの温度に比べて低くなる傾向にある。従って、電極体150の積層部151のうち、負極捲回部156bの付近に位置する第2積層端部151cの温度が、正極捲回部155bの付近に位置する第1積層端部151bの温度に比べて低くなりがちである。   In such a secondary battery 100, since the electrical resistance of the negative electrode base material 156c made of copper foil is smaller than that of the positive electrode base material 155c made of aluminum foil, the negative electrode winding portion 156b of the electrode body 150 is charged during charging. Tends to be lower than the temperature of the positive electrode winding portion 155b. Therefore, in the stacked portion 151 of the electrode body 150, the temperature of the second stacked end portion 151c located near the negative electrode wound portion 156b is equal to the temperature of the first stacked end portion 151b located near the positive electrode wound portion 155b. It tends to be lower than

なお、本実施例1では、正極板155が第1電極板に、負極板156が第2電極板に、正極基材155cが第1電極基材に、負極基材156cが第2電極基材に、正極捲回部155bが第1端部に、負極捲回部156bが第2端部に相当する。
また、電池ケース110(角形収容部111及び蓋部112)の外壁部110dうち、電極体150の正極捲回部155b(第1端部)に近接する部位を第1近接部110b、負極捲回部156b(第2端部)に近接する部位を第2近接部110cとする。具体的には、図1において、電池ケース110の外壁部110dうち、第1境界線L1よりも右側に位置する部位が第1近接部110b、第2境界線L2よりも左側に位置する部位が第2近接部110cに相当する。
In Example 1, the positive electrode plate 155 is the first electrode plate, the negative electrode plate 156 is the second electrode plate, the positive electrode substrate 155c is the first electrode substrate, and the negative electrode substrate 156c is the second electrode substrate. Further, the positive electrode winding portion 155b corresponds to the first end portion, and the negative electrode winding portion 156b corresponds to the second end portion.
Further, in the outer wall portion 110d of the battery case 110 (the square housing portion 111 and the lid portion 112), a portion close to the positive electrode winding portion 155b (first end) of the electrode body 150 is defined as the first proximity portion 110b and the negative electrode winding. A part close to the part 156b (second end) is defined as a second proximity part 110c. Specifically, in FIG. 1, in the outer wall part 110d of the battery case 110, a part located on the right side of the first boundary line L1 is a part located on the left side of the first proximity part 110b and the second boundary line L2. It corresponds to the second proximity portion 110c.

次に、本実施例1にかかる二次電池システム200について説明する。本実施例1の二次電池システム200は、図2に示すように、二次電池100と、第1発熱体210と、第2発熱体220と、第1温度検知素子230と、第2温度検知素子240と、制御装置250と、電源装置260とを備えている。なお、第1発熱体210、第2発熱体220、第1温度検知素子230、及び第2温度検知素子240は、ぞれぞれ、制御装置250の第1端子251、第2端子252、第3端子253、及び第4端子254に、電気的に接続されている。   Next, the secondary battery system 200 according to the first embodiment will be described. As shown in FIG. 2, the secondary battery system 200 of the first embodiment includes a secondary battery 100, a first heating element 210, a second heating element 220, a first temperature detection element 230, and a second temperature. A detection element 240, a control device 250, and a power supply device 260 are provided. The first heating element 210, the second heating element 220, the first temperature detection element 230, and the second temperature detection element 240 are respectively the first terminal 251, the second terminal 252, and the second temperature detection element 240 of the control device 250. The third terminal 253 and the fourth terminal 254 are electrically connected.

このうち、第1発熱体210は、公知の発熱体であり、電池ケース110の第1近接部110bの外面に固着されている。従って、第1発熱体210により、電池ケース110の第1近接部110bを加熱することで、第1近接部110bを通じて、電極体150のうち正極捲回部155bを加熱することができる。これにより、電極体150の積層部151のうち、正極捲回部155bの付近に位置する第1積層端部151bの温度を高めることができる。   Among these, the first heating element 210 is a known heating element, and is fixed to the outer surface of the first proximity portion 110 b of the battery case 110. Therefore, by heating the first proximity part 110b of the battery case 110 by the first heating element 210, the positive electrode winding part 155b of the electrode body 150 can be heated through the first proximity part 110b. Thereby, the temperature of the 1st lamination | stacking edge part 151b located in the vicinity of the positive electrode winding part 155b among the lamination | stacking parts 151 of the electrode body 150 can be raised.

第2発熱体220は、第1発熱体210と同等の発熱体であり、電池ケース110の第2近接部110cの外面に固着されている。従って、第2発熱体220により、電池ケース110の第2近接部110cを加熱することで、第2近接部110cを通じて、電極体150のうち負極捲回部156bを加熱することができる。これにより、電極体150の積層部151のうち、負極捲回部156bの付近に位置する第2積層端部151cの温度を高めることができる。   The second heating element 220 is a heating element equivalent to the first heating element 210, and is fixed to the outer surface of the second proximity portion 110 c of the battery case 110. Therefore, by heating the second proximity part 110c of the battery case 110 by the second heating element 220, the negative electrode winding part 156b of the electrode body 150 can be heated through the second proximity part 110c. Thereby, the temperature of the 2nd lamination | stacking edge part 151c located in the vicinity of the negative electrode winding part 156b among the lamination | stacking parts 151 of the electrode body 150 can be raised.

第1温度検知素子230は、公知の熱電対であり、電池ケース110の第1近接部110bの外面に固着されている。従って、第1温度検知素子230により、電池ケース110の第1近接部110bの温度に応じた第1近接部温度信号を出力することができる。
また、第2温度検知素子240は、第1温度検知素子230と同等の熱電対であり、電池ケース110の第2近接部110cの外面に固着されている。従って、第2温度検知素子240により、電池ケース110の第2近接部110cの温度に応じた第2近接部温度信号を出力することができる。
The first temperature detection element 230 is a known thermocouple, and is fixed to the outer surface of the first proximity portion 110 b of the battery case 110. Therefore, the first temperature detection element 230 can output a first proximity portion temperature signal corresponding to the temperature of the first proximity portion 110b of the battery case 110.
The second temperature detection element 240 is a thermocouple equivalent to the first temperature detection element 230, and is fixed to the outer surface of the second proximity portion 110 c of the battery case 110. Accordingly, the second temperature detection element 240 can output a second proximity portion temperature signal corresponding to the temperature of the second proximity portion 110c of the battery case 110.

電源装置260は、二次電池100の正極端子120及び負極端子130に電気的に接続されており、二次電池100に充電を施す。さらに、この電源装置260は、制御装置260にも電気的に接続されており、制御装置260を作動させると共に、制御装置160を通じて第1発熱体210及び第2発熱体220へ電力を供給する。   The power supply device 260 is electrically connected to the positive terminal 120 and the negative terminal 130 of the secondary battery 100, and charges the secondary battery 100. Further, the power supply device 260 is also electrically connected to the control device 260, operates the control device 260, and supplies power to the first heating element 210 and the second heating element 220 through the control device 160.

制御装置250は、図示しないROM、RAM、CPUなどを有し、第1温度検知素子230から出力される第1近接部温度信号と、第2温度検知素子240から出力される第2近接部温度信号とに基づいて、電池ケース110の第1近接部110bの温度T1と第2近接部110cの温度T2とが等しくなるように、第1発熱体210及び第2発熱体220への通電を制御する。また、この制御装置250は、二次電池100の電池電圧を検出して、二次電池100の充電状態を検知することができる。   The control device 250 includes a ROM, a RAM, a CPU, and the like (not shown), a first proximity part temperature signal output from the first temperature detection element 230, and a second proximity part temperature output from the second temperature detection element 240. Based on the signal, the energization to the first heating element 210 and the second heating element 220 is controlled so that the temperature T1 of the first proximity part 110b of the battery case 110 is equal to the temperature T2 of the second proximity part 110c. To do. Further, the control device 250 can detect the battery voltage of the secondary battery 100 and detect the state of charge of the secondary battery 100.

ここで、本実施例1の二次電池システム200(制御装置250)の加熱制御について、図3を参照しつつ説明する。二次電池100への充電が開始されると、図3に示すように、ステップS1において、第1温度検知素子230から出力される第1近接部温度信号と、第2温度検知素子240から出力される第2近接部温度信号とを検出する。次いで、ステップS2に進み、電池ケース110の第1近接部110bの温度T1が、第2近接部110cの温度T2よりも高いかどうか(T1>T2?)を判定する。ステップS2において、T1>T2(YES)と判定された場合は、ステップS3に進み、第2発熱体220への通電をONとし、第2近接部110cを加熱する。一方、ステップS2において、NO(T1≦T2)と判定された場合は、ステップS4に進み、第1発熱体210への通電をONとし、第1近接部110bを加熱する。   Here, the heating control of the secondary battery system 200 (control device 250) of the first embodiment will be described with reference to FIG. When charging of the secondary battery 100 is started, as shown in FIG. 3, the first proximity temperature signal output from the first temperature detection element 230 and the output from the second temperature detection element 240 are output in step S <b> 1. The second proximity portion temperature signal to be detected is detected. Subsequently, it progresses to step S2 and it is determined whether the temperature T1 of the 1st proximity part 110b of the battery case 110 is higher than the temperature T2 of the 2nd proximity part 110c (T1> T2?). If it is determined in step S2 that T1> T2 (YES), the process proceeds to step S3, the energization of the second heating element 220 is turned on, and the second proximity portion 110c is heated. On the other hand, when it is determined NO (T1 ≦ T2) in step S2, the process proceeds to step S4, the energization to the first heating element 210 is turned on, and the first proximity portion 110b is heated.

次いで、ステップS5に進み、二次電池100への充電が終了したか否かを確認する。具体的には、二次電池100の電池電圧を検出し、電池電圧が所定値(予め設定した、充電終了時の電池電圧の値)に達した場合に、充電が終了したと判定する。充電中(NO)と判定された場合には、ステップS2に戻り、上述のステップS2〜S5の処理を繰り返す。その後、ステップS5において、充電終了(YES)と判定された場合には、ステップS6に進み、第1発熱体210及び第2発熱体220への通電をOFFとし、通電制御を終了する。このようにして、本実施例1の二次電池システム200では、二次電池100の充電中、第1近接部110bと第2近接部110cの温度が等しくなるように、第1発熱体210及び第2発熱体220への通電を制御する。   Subsequently, it progresses to step S5 and it is confirmed whether charge to the secondary battery 100 was complete | finished. Specifically, the battery voltage of the secondary battery 100 is detected, and when the battery voltage reaches a predetermined value (a preset value of the battery voltage at the end of charging), it is determined that charging has ended. When it determines with charging (NO), it returns to step S2 and repeats the process of the above-mentioned step S2-S5. Thereafter, if it is determined in step S5 that charging is complete (YES), the process proceeds to step S6, the energization of the first heating element 210 and the second heating element 220 is turned off, and the energization control is terminated. In this way, in the secondary battery system 200 of the first embodiment, the first heating element 210 and the second proximity part 110c and the second proximity part 110c are equalized during charging of the secondary battery 100. The energization to the second heating element 220 is controlled.

ところで、本実施例1の二次電池100は、前述のように、充電時に、電極体150のうち負極捲回部156bの温度が、正極捲回部155bの温度に比べて低くなる傾向にある。このため、電極体150の積層部151のうち、負極捲回部156bの付近に位置する第2積層端部151cの温度が、正極捲回部155bの付近に位置する第1積層端部151bの温度に比べて低くなりがちである。このような二次電池では、特に、低温動作時において、放電容量が小さくなるなど、良好な出力特性が得られなくなる虞がある。   By the way, as described above, in the secondary battery 100 of Example 1, the temperature of the negative electrode winding part 156b in the electrode body 150 tends to be lower than the temperature of the positive electrode winding part 155b during charging. . For this reason, the temperature of the 2nd lamination | stacking edge part 151c located in the vicinity of the negative electrode winding part 156b among the lamination | stacking parts 151 of the electrode body 150 is the temperature of the 1st lamination | stacking edge part 151b located in the vicinity of the positive electrode winding part 155b. It tends to be lower than the temperature. In such a secondary battery, there is a possibility that good output characteristics may not be obtained, for example, the discharge capacity becomes small particularly during low temperature operation.

これに対し、本実施例1の二次電池システム200では、上述のように、二次電池100の充電中、第1近接部110bと第2近接部110cの温度が等しくなるように、第1発熱体210及び第2発熱体220への通電を行う。これにより、電極体150の負極捲回部156bと正極捲回部155bの温度を高めつつ、正極捲回部155bと負極捲回部156bの温度をほぼ等しくすることができる。   On the other hand, in the secondary battery system 200 of the first embodiment, as described above, the first proximity unit 110b and the second proximity unit 110c are equal in temperature while the secondary battery 100 is being charged. Energization of the heating element 210 and the second heating element 220 is performed. Thereby, the temperature of the positive electrode winding part 155b and the negative electrode winding part 156b can be made substantially equal, while raising the temperature of the negative electrode winding part 156b and the positive electrode winding part 155b of the electrode body 150.

(放電容量の測定試験)
次に、本実施例1の二次電池システム200について、−25℃の低温環境下における二次電池100の放電容量を測定した。
具体的には、まず、本実施例1の二次電池システム200を、−25℃の恒温槽内に配置する。次いで、電源装置260により、二次電池100について、電池電圧が4.1Vになるまで、定電流−定電圧で1.5時間充電を施した。二次電池100の充電中、前述のように、ステップS1〜S6の処理により、第1近接部110bと第2近接部110cの温度が等しくなるように、第1発熱体210及び第2発熱体220への通電制御を行った。
(Discharge capacity measurement test)
Next, for the secondary battery system 200 of Example 1, the discharge capacity of the secondary battery 100 in a low temperature environment of −25 ° C. was measured.
Specifically, first, the secondary battery system 200 of the first embodiment is placed in a thermostatic bath at −25 ° C. Subsequently, the secondary battery 100 was charged with a constant current-constant voltage for 1.5 hours by the power supply device 260 until the battery voltage became 4.1V. While the secondary battery 100 is being charged, as described above, the first heating element 210 and the second heating element are set so that the temperatures of the first proximity part 110b and the second proximity part 110c become equal by the processing of steps S1 to S6. The energization control to 220 was performed.

なお、二次電池100の充電中、第1発熱体220及び第2発熱体220への供給電力量は、合計45.0Whであった。また、充電後の二次電池100について、第1近接部110bと第2近接部110cの温度を検出したところ、それぞれ、−3.5℃と−3.4℃となり、ほぼ等しい温度になっていた。その後、二次電池100について、電池電圧が3Vになるまで、1Cの電流値で放電を行った。このときの放電容量を測定したところ、10.23Ahであった。この結果を表1に示す。   During charging of the secondary battery 100, the amount of power supplied to the first heating element 220 and the second heating element 220 was 45.0 Wh in total. Moreover, when the temperature of the 1st proximity part 110b and the 2nd proximity part 110c was detected about the secondary battery 100 after charge, it became -3.5 degreeC and -3.4 degreeC, respectively, and has become the substantially equal temperature. It was. Thereafter, the secondary battery 100 was discharged at a current value of 1 C until the battery voltage reached 3V. When the discharge capacity at this time was measured, it was 10.23 Ah. The results are shown in Table 1.

Figure 2008021569
Figure 2008021569

(実施例2)
次に、実施例2にかかる二次電池システム300について説明する。本実施例2の二次電池システム300は、図4に示すように、実施例1の二次電池システム200と比較して、第1発熱体210を設けていない点と、制御装置250に代えて制御装置350を設けた点が異なり、その他の部分については同様である。本実施例2では、実施例1と異なり、制御装置350が、二次電池100の充電中、第2発熱体220のみへ電力を供給して、電池ケース110の第1近接部110bの温度と第2近接部110cの温度が等しくなるように制御する。
(Example 2)
Next, the secondary battery system 300 according to Example 2 will be described. As shown in FIG. 4, the secondary battery system 300 of the second embodiment is different from the secondary battery system 200 of the first embodiment in that the first heating element 210 is not provided and the control device 250 is replaced. The control device 350 is provided, and the other parts are the same. In the second embodiment, unlike the first embodiment, the control device 350 supplies power only to the second heating element 220 while the secondary battery 100 is being charged, and the temperature of the first proximity portion 110b of the battery case 110 is determined. It controls so that the temperature of the 2nd proximity part 110c may become equal.

具体的には、二次電池100への充電が開始されると、図5に示すように、ステップU1において、第1温度検知素子230から出力される第1近接部温度信号と、第2温度検知素子240から出力される第2近接部温度信号とを検出する。次いで、ステップU2に進み、電池ケース110の第1近接部110bの温度T1が、第2近接部110cの温度T2よりも高いかどうか(T1>T2?)を判定する。ステップU2において、T1>T2(YES)と判定された場合は、ステップU3に進み、第2発熱体220への通電をONとし、第2近接部110cを加熱する。   Specifically, when charging of the secondary battery 100 is started, as shown in FIG. 5, in step U1, the first proximity portion temperature signal output from the first temperature detecting element 230 and the second temperature are displayed. The second proximity portion temperature signal output from the sensing element 240 is detected. Next, the process proceeds to step U2, and it is determined whether the temperature T1 of the first proximity portion 110b of the battery case 110 is higher than the temperature T2 of the second proximity portion 110c (T1> T2?). If it is determined in step U2 that T1> T2 (YES), the process proceeds to step U3, the energization of the second heating element 220 is turned on, and the second proximity portion 110c is heated.

次いで、ステップU5に進み、二次電池100への充電が終了したか否かを確認する。充電中(NO)と判定された場合には、ステップU2に戻り、再び、電池ケース110の第1近接部110bの温度T1が、第2近接部110cの温度T2よりも高いかどうか(T1>T2?)を判定する。ステップU2において、T1>T2(YES)と判定された場合は、ステップU3に進み、第2発熱体220への通電をONの状態で維持する。一方、ステップU2において、NO(T1≦T2)と判定された場合は、ステップU4に進み、第2発熱体220への通電をOFFにする。   Subsequently, it progresses to step U5 and it is confirmed whether the charge to the secondary battery 100 was complete | finished. If it is determined that charging is in progress (NO), the process returns to step U2, and again whether or not the temperature T1 of the first proximity part 110b of the battery case 110 is higher than the temperature T2 of the second proximity part 110c (T1> T2?) Is determined. If it is determined in step U2 that T1> T2 (YES), the process proceeds to step U3, and energization of the second heating element 220 is maintained in an ON state. On the other hand, when it is determined NO (T1 ≦ T2) in step U2, the process proceeds to step U4, and the energization to the second heating element 220 is turned off.

その後、上述のステップS1〜S6の処理を繰り返し、ステップU5において、充電終了(YES)と判定された場合には、ステップU6に進み、第2発熱体220への通電をOFFとし、通電制御を終了する。このようにして、本実施例2の二次電池システム200では、二次電池100の充電中、第1近接部110bと第2近接部110cの温度が等しくなるように、第2発熱体220への通電を制御する。   Thereafter, the processes in steps S1 to S6 described above are repeated. If it is determined in step U5 that the charging is completed (YES), the process proceeds to step U6, the energization to the second heating element 220 is turned off, and the energization control is performed. finish. In this way, in the secondary battery system 200 of the second embodiment, during charging of the secondary battery 100, the second heating element 220 is supplied so that the temperatures of the first proximity portion 110b and the second proximity portion 110c become equal. Control energization.

本実施例2の二次電池システム300についても、実施例1と同様にして、−25℃の低温環境下における二次電池100の放電容量の測定試験を行った。本実施例2では、二次電池100の放電容量が、10.23Ahとなった。なお、本実施例2では、二次電池100の充電中、第2発熱体220への供給電力量は、12.0Whであった。また、充電後の二次電池100について、第1近接部110bと第2近接部110cの温度を検出したところ、それぞれ、−16.5℃と−16.3℃となり、ほぼ等しい温度になっていた。この結果を表1に示す。   For the secondary battery system 300 of Example 2, the discharge capacity measurement of the secondary battery 100 in a low temperature environment of −25 ° C. was performed in the same manner as Example 1. In the present Example 2, the discharge capacity of the secondary battery 100 was 10.23 Ah. In Example 2, during the charging of the secondary battery 100, the amount of power supplied to the second heating element 220 was 12.0 Wh. Moreover, when the temperature of the 1st proximity part 110b and the 2nd proximity part 110c was detected about the secondary battery 100 after charge, it became -16.5 degreeC and -16.3 degreeC, respectively, and has become the substantially equal temperature. It was. The results are shown in Table 1.

(比較例1)
比較例1として、二次電池100の充電中、第1発熱体210及び第2発熱体220による二次電池100の加熱を施すことなく、実施例1,2と同様にして、−25℃の低温環境下における二次電池100の放電容量の測定試験を行った。本比較例1では、二次電池100の放電容量が、7.64Ahとなった。なお、本比較例1では、充電後の二次電池100について、第1近接部110bと第2近接部110cの温度を検出したところ、それぞれ、−16.4℃と−20.0℃となり、3.6℃の温度差が生じていた。この結果を表1に示す。
(Comparative Example 1)
As Comparative Example 1, during the charging of the secondary battery 100, the secondary battery 100 was not heated by the first heating element 210 and the second heating element 220 in the same manner as in Examples 1 and 2, at −25 ° C. A measurement test of the discharge capacity of the secondary battery 100 in a low temperature environment was performed. In Comparative Example 1, the discharge capacity of the secondary battery 100 was 7.64 Ah. In Comparative Example 1, when the temperatures of the first proximity part 110b and the second proximity part 110c were detected for the charged secondary battery 100, they were -16.4 ° C and -20.0 ° C, respectively. A temperature difference of 3.6 ° C. occurred. The results are shown in Table 1.

(比較例2)
比較例2では、二次電池100の充電中、第1近接部110bの温度T1及び第2近接部110cの温度T2を制御することなく、第1発熱体210と第2発熱体220とに等しく電力を供給することで、第1近接部110bと第2近接部110cとを等しく加熱した。本比較例2でも、実施例1,2と同様にして、−25℃の低温環境下における二次電池100の放電容量の測定試験を行ったところ、二次電池100の放電容量が、7.91Ahとなった。なお、本比較例1では、二次電池100の充電中、第1発熱体210及び第2発熱体220への供給電力量の合計を、実施例2と同様に12.0Whとしている。また、充電後の二次電池100について、第1近接部110bと第2近接部110cの温度を検出したところ、それぞれ、−14.1℃と−17.9℃となり、3.8℃の温度差が生じていた。この結果を表1に示す。
(Comparative Example 2)
In the comparative example 2, during the charging of the secondary battery 100, the first heating element 210 and the second heating element 220 are equal to each other without controlling the temperature T1 of the first proximity part 110b and the temperature T2 of the second proximity part 110c. By supplying electric power, the 1st proximity part 110b and the 2nd proximity part 110c were heated equally. Also in this comparative example 2, when the measurement test of the discharge capacity of the secondary battery 100 in a low temperature environment of −25 ° C. was performed in the same manner as in Examples 1 and 2, the discharge capacity of the secondary battery 100 was 7. It was 91 Ah. In the first comparative example, during the charging of the secondary battery 100, the total amount of power supplied to the first heating element 210 and the second heating element 220 is set to 12.0 Wh as in the second embodiment. Moreover, when the temperature of the 1st proximity part 110b and the 2nd proximity part 110c was detected about the secondary battery 100 after charge, it became -14.1 degreeC and -17.9 degreeC, respectively, and the temperature of 3.8 degreeC There was a difference. The results are shown in Table 1.

ここで、実施例1,2及び比較例1,2の結果について、表1を参照しつつ検討する。
比較例1の結果より、本実施例1,2にかかる二次電池100は、充電を施すと、第1近接部110bの温度T1に比べて第2近接部110cの温度T2が低くなることがわかる。このことから、二次電池100では、充電時に、電極体150の積層部151のうち、負極捲回部156bの付近に位置する第2積層端部151cの温度が、正極捲回部155bの付近に位置する第1積層端部151bの温度に比べて低くなると考えられる。このため、比較例1では、放電容量が7.91Ahと小さくなり、良好な出力特性が得られなかった。
Here, the results of Examples 1 and 2 and Comparative Examples 1 and 2 will be examined with reference to Table 1.
From the result of Comparative Example 1, when the secondary battery 100 according to Examples 1 and 2 is charged, the temperature T2 of the second proximity part 110c is lower than the temperature T1 of the first proximity part 110b. Recognize. Therefore, in the secondary battery 100, during charging, the temperature of the second stacked end portion 151c located in the vicinity of the negative electrode winding portion 156b in the stacked portion 151 of the electrode body 150 is in the vicinity of the positive electrode winding portion 155b. It is considered that the temperature is lower than the temperature of the first laminated end portion 151b located at the position. For this reason, in Comparative Example 1, the discharge capacity was as small as 7.91 Ah, and good output characteristics could not be obtained.

比較例2では、比較例1と異なり、充電中に、二次電池100の第1近接部110b及び第2近接部110cを加熱することで、比較例1に比べて、充電後の第1近接部110bの温度T1及び第2近接部110cの温度T2を共に高めることができた。但し、比較例2では、二次電池100の充電中、第1近接部110bの温度T1と第2近接部110cの温度T2の温度を制御することなく、第1近接部110bと第2近接部110cとを同等に加熱したため、充電後、T1に比べてT2が3.8℃も低くなった。しかも、比較例2では、比較例1に比べて、充電後のT1とT2の温度差が0.2℃拡張していた。この比較例2では、放電容量が7.64Ahとなり、比較例1に比べて放電容量を0.27Ahだけ高めることができた。   In the comparative example 2, unlike the comparative example 1, the first proximity after charging is compared with the comparative example 1 by heating the first proximity part 110b and the second proximity part 110c of the secondary battery 100 during charging. Both the temperature T1 of the part 110b and the temperature T2 of the second proximity part 110c could be increased. However, in the comparative example 2, during the charging of the secondary battery 100, the first proximity portion 110b and the second proximity portion are not controlled without controlling the temperature T1 of the first proximity portion 110b and the temperature T2 of the second proximity portion 110c. Since 110c was heated equally, T2 was 3.8 ° C. lower than T1 after charging. Moreover, in Comparative Example 2, the temperature difference between T1 and T2 after charging was extended by 0.2 ° C. compared with Comparative Example 1. In Comparative Example 2, the discharge capacity was 7.64 Ah, which was higher than that of Comparative Example 1 by 0.27 Ah.

これに対し、実施例2では、二次電池100の充電中、比較例2と等しい電力量を発熱体に供給したにも拘わらず、放電容量が8.38Ahとなり、比較例1に比べて放電容量を0.74Ahも高めることができた。すなわち、実施例2と比較例2では、二次電池100の充電中に等しい電力量を発熱体に供給したにも拘わらず、比較例2では、比較例1に比べて放電容量を0.27Ahだけ高めることができたのに対し、実施例2では、比較例1に比べて放電容量を0.74Ahも高めることができた。   On the other hand, in Example 2, during the charging of the secondary battery 100, the discharge capacity was 8.38 Ah even though the same amount of electric power as that in Comparative Example 2 was supplied to the heating element, and compared with Comparative Example 1. The capacity could be increased by 0.74 Ah. That is, in Example 2 and Comparative Example 2, although the same amount of electric power was supplied to the heating element during charging of the secondary battery 100, in Comparative Example 2, the discharge capacity was 0.27 Ah compared to Comparative Example 1. However, in Example 2, the discharge capacity could be increased by 0.74 Ah compared to Comparative Example 1.

この結果より、加熱手段(第2発熱体220など)による加熱量(供給電力量)を同等としたとき、二次電池100の第1近接部110bの温度T1と第2近接部110cの温度T2とに差が生じているにも拘わらず、第1近接部110bと第2近接部110cとを同等に加熱する場合に比べて、T1とT2の温度差を小さくする(実施例2では、T1とT2とを等しくする)ように第2近接部110cを加熱したほうが、二次電池の放電容量を向上させることができるといえる。すなわち、実施例2にかかる二次電池システム300は、比較例2に比べて、加熱効率良く、二次電池100の出力特性を向上させることができるといえる。   From this result, when the heating amount (power supply amount) by the heating means (second heating element 220 or the like) is made equal, the temperature T1 of the first proximity portion 110b and the temperature T2 of the second proximity portion 110c of the secondary battery 100 are equal. However, the temperature difference between T1 and T2 is made smaller than in the case where the first proximity portion 110b and the second proximity portion 110c are heated equally (in the second embodiment, T1 It can be said that the discharge capacity of the secondary battery can be improved by heating the second proximity portion 110c so that T2 is equal to T2. That is, it can be said that the secondary battery system 300 according to Example 2 can improve the output characteristics of the secondary battery 100 with higher heating efficiency than the comparative example 2.

さらに、実施例1では、実施例2と同様に、二次電池100の第1近接部110bの温度T1と第2近接部110cの温度T2の温度が等しくなるように加熱制御しているが、実施例1と異なり、第2近接部110cのみならず第1近接部110bも加熱している。これにより、T1,T2を大きく上昇させることができ、放電容量を10.23Ahにまで向上させることができた。比較例1の放電容量と比較すると、2.59Ahも高めることができた。この結果より、二次電池100の第1近接部110bの温度T1と第2近接部110cの温度T2の温度差を小さくする(実施例1では、T1とT2とを等しくする)ように、第1近接部110bと第2近接部110cとを加熱することで、二次電池の放電容量をより一層向上させることができるといえる。   Further, in Example 1, as in Example 2, heating control is performed so that the temperature T1 of the first proximity part 110b of the secondary battery 100 and the temperature T2 of the second proximity part 110c are equal. Unlike Example 1, not only the 2nd proximity part 110c but the 1st proximity part 110b is heated. As a result, T1 and T2 can be greatly increased, and the discharge capacity can be improved to 10.23 Ah. Compared with the discharge capacity of Comparative Example 1, it could be increased by 2.59 Ah. From this result, the temperature difference between the temperature T1 of the first proximity portion 110b and the temperature T2 of the second proximity portion 110c of the secondary battery 100 is reduced (in Example 1, T1 and T2 are made equal). It can be said that the discharge capacity of the secondary battery can be further improved by heating the first proximity portion 110b and the second proximity portion 110c.

さらに、実施例1と比較例2とについて、比較例1に対する単位供給電力量あたりの放電容量の上昇率X(Ah/Wh)を比較する。比較例2では、12.0Whの電力量を第1発熱体210及び第2発熱体220に供給することで、比較例1に対し、0.27Ahだけ放電容量を高めることができた。従って、比較例2の上昇率Xは、約0.023(Ah/Wh)となる。   Furthermore, the increase rate X (Ah / Wh) of the discharge capacity per unit supply electric power with respect to Comparative Example 1 is compared between Example 1 and Comparative Example 2. In Comparative Example 2, by supplying a power amount of 12.0 Wh to the first heating element 210 and the second heating element 220, the discharge capacity could be increased by 0.27 Ah compared to Comparative Example 1. Therefore, the increase rate X of Comparative Example 2 is about 0.023 (Ah / Wh).

これに対し、実施例1では、45.0Whの電力量を第1発熱体210及び第2発熱体220に供給することで、比較例1に対し、放電容量を2.59Ah高めることができた。従って、実施例1の上昇率Xは、約0.058(Ah/Wh)となり、比較例2に比べて約2.6倍と大きくなった。この結果より、実施例1にかかる二次電池システム200は、比較例2に比べて、加熱効率良く、二次電池100の出力特性を向上させることができるといえる。   On the other hand, in Example 1, it was possible to increase the discharge capacity by 2.59 Ah compared to Comparative Example 1 by supplying the power amount of 45.0 Wh to the first heating element 210 and the second heating element 220. . Therefore, the rate of increase X in Example 1 was about 0.058 (Ah / Wh), which was about 2.6 times that of Comparative Example 2. From this result, it can be said that the secondary battery system 200 according to Example 1 can improve the output characteristics of the secondary battery 100 with higher heating efficiency than the comparative example 2.

以上において、本発明を実施例1,2に即して説明したが、本発明は前記実施例に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。   In the above, the present invention has been described with reference to the first and second embodiments. However, the present invention is not limited to the above-described embodiments, and it can be applied as appropriate without departing from the scope of the present invention. Nor.

例えば、実施例1,2の二次電池100では、電極体として、帯状の正極板155、負極板156、セパレータ157積層して捲回した、捲回型の電極体150を用いた。しかしながら、電極体の形態はいずれの形態でも良く、例えば、複数の正極板155と複数の負極板156とを1枚ずつセパレータ157を介して交互に積層した、積層型の電極体としても良い。   For example, in the secondary batteries 100 of Examples 1 and 2, a wound electrode body 150 in which a belt-like positive electrode plate 155, a negative electrode plate 156, and a separator 157 are stacked and wound is used as the electrode body. However, the form of the electrode body may be any form, for example, a stacked electrode body in which a plurality of positive plates 155 and a plurality of negative plates 156 are alternately stacked via separators 157 one by one.

また、実施例1,2では、二次電池100としてリチウムイオン二次電池を用いた二次電池システム200を例示した。しかしながら、本発明は、充電時及び放電時の少なくともいずれかに、電極体のうち第2端部の温度が第1端部の温度に比べて低くなる二次電池であれば、いずれの二次電池についても適用することができる。なお、放電時に、第2端部の温度が第1端部の温度に比べて低くなる二次電池については、放電時に、少なくとも第2端部(第2近接部)を加熱するのが好ましい。   In the first and second embodiments, the secondary battery system 200 using the lithium ion secondary battery as the secondary battery 100 is illustrated. However, the present invention is not limited to any secondary battery as long as it is a secondary battery in which the temperature of the second end of the electrode body is lower than the temperature of the first end at least during charging and discharging. The present invention can also be applied to a battery. For a secondary battery in which the temperature of the second end is lower than the temperature of the first end during discharge, it is preferable to heat at least the second end (second proximity portion) during discharge.

また、実施例1,2の二次電池システム200,300では、電池ケース110の第1近接部110bの温度T1と第2近接部110cの温度T2とが等しくなるように、第1発熱体210及び第2発熱体220のうち少なくとも第2発熱体220への通電を制御した。しかしながら、第1近接部110bの温度T1と第2近接部110cの温度T2とが等しくなるように通電制御することなく、第1近接部110bの温度T1と第2近接部110cの温度T2の温度差が小さくなるように通電制御しても良い。T1とT2の温度差を小さくした分、二次電池の放電容量を向上させることができる。   In the secondary battery systems 200 and 300 of the first and second embodiments, the first heating element 210 is configured such that the temperature T1 of the first proximity portion 110b of the battery case 110 is equal to the temperature T2 of the second proximity portion 110c. In addition, energization of at least the second heating element 220 among the second heating elements 220 was controlled. However, the temperature T1 of the first proximity part 110b and the temperature T2 of the second proximity part 110c are not controlled so that the temperature T1 of the first proximity part 110b is equal to the temperature T2 of the second proximity part 110c. The energization control may be performed so that the difference becomes small. As the temperature difference between T1 and T2 is reduced, the discharge capacity of the secondary battery can be improved.

実施例1,2にかかる二次電池100の断面図である。1 is a cross-sectional view of a secondary battery 100 according to Examples 1 and 2. FIG. 実施例1にかかる二次電池システム200の構成を示す図である。1 is a diagram showing a configuration of a secondary battery system 200 according to Example 1. FIG. 実施例1の加熱制御の流れを示すフローチャートである。3 is a flowchart illustrating a flow of heating control according to the first embodiment. 実施例2にかかる二次電池システム300の構成を示す図である。6 is a diagram showing a configuration of a secondary battery system 300 according to Example 2. FIG. 実施例2の加熱制御の流れを示すフローチャートである。6 is a flowchart illustrating a flow of heating control according to the second embodiment.

符号の説明Explanation of symbols

100 二次電池
110 電池ケース
110b 第1近接部
110c 第2近接部
110d 外壁部
122 正極集電部材(第1集電部材)
132 負極集電部材(第2集電部材)
150 電極体
151 積層部
155 正極板(第1電極板)
155b 正極捲回部(第1端部)
155c 正極基材(第1電極基材)
156 負極板(第2電極板)
156b 負極捲回部(第2端部)
156c 負極基材(第2電極基材)
157 セパレータ
200 二次電池システム
210 第1発熱体(第1加熱手段)
220 第2発熱体(第2加熱手段)
230 第1温度検知素子(温度検知手段)
240 第2温度検知素子(温度検知手段)
250 制御装置(制御手段)
100 Secondary Battery 110 Battery Case 110b First Proximity Part 110c Second Proximity Part 110d Outer Wall Part 122 Positive Current Collector (First Current Collector)
132 Negative electrode current collector (second current collector)
150 Electrode body 151 Lamination | stacking part 155 Positive electrode plate (1st electrode plate)
155b Positive electrode winding part (first end)
155c Positive electrode base material (first electrode base material)
156 Negative electrode plate (second electrode plate)
156b Negative electrode winding part (second end part)
156c Negative electrode substrate (second electrode substrate)
157 Separator 200 Secondary battery system 210 First heating element (first heating means)
220 Second heating element (second heating means)
230 1st temperature detection element (temperature detection means)
240 Second temperature detection element (temperature detection means)
250 Control device (control means)

Claims (7)

第1端部と第2端部とを有する電極体、及び前記電極体を収容する電池ケースを備え、充電時及び放電時の少なくともいずれかに、前記電極体のうち前記第2端部の温度が、前記第1端部の温度に比べて低くなる
二次電池と、
前記電極体の前記第1端部及び前記第2端部のうち少なくとも前記第2端部を、直接または間接に加熱する
加熱手段と、
前記第1端部の温度に応じた第1信号と、前記第2端部の温度に応じた第2信号とを出力する
温度検知手段と、
前記第1信号と前記第2信号とに基づいて、前記加熱手段による加熱を制御し、前記第1端部と前記第2端部の温度差を小さくする
制御手段と、を備える
二次電池システム。
An electrode body having a first end portion and a second end portion, and a battery case that houses the electrode body, and at least one of charging and discharging, the temperature of the second end portion of the electrode body. A secondary battery that is lower than the temperature of the first end,
Heating means for directly or indirectly heating at least the second end portion of the first end portion and the second end portion of the electrode body;
A temperature detection means for outputting a first signal corresponding to the temperature of the first end and a second signal corresponding to the temperature of the second end;
A secondary battery system comprising: control means for controlling heating by the heating means based on the first signal and the second signal and reducing a temperature difference between the first end portion and the second end portion. .
請求項1に記載の二次電池システムであって、
前記加熱手段は、
前記電池ケースの外壁部のうち、前記電極体の前記第1端部に近接する部位を第1近接部、前記第2端部に近接する部位を第2近接部としたとき、前記第1近接部及び前記第2近接部のうち、少なくとも前記第2近接部を加熱する加熱手段であり、
前記温度検知手段は、
前記第1近接部の温度に対応した第1近接部温度信号と、前記第2近接部の温度に対応した第2近接部温度信号とを出力する温度検知手段であり、
前記制御手段は、
前記第1近接部温度信号と前記第2近接部温度信号とに基づいて、前記加熱手段による加熱を制御し、前記第1近接部と前記第2近接部の温度差を小さくする制御手段である
二次電池システム。
The secondary battery system according to claim 1,
The heating means includes
Of the outer wall portion of the battery case, when the portion close to the first end of the electrode body is the first proximity portion and the portion close to the second end is the second proximity portion, the first proximity A heating means for heating at least the second proximity portion of the first proximity portion and the second proximity portion,
The temperature detecting means includes
Temperature detecting means for outputting a first proximity portion temperature signal corresponding to the temperature of the first proximity portion and a second proximity portion temperature signal corresponding to the temperature of the second proximity portion;
The control means includes
Control means for controlling heating by the heating means on the basis of the first proximity part temperature signal and the second proximity part temperature signal to reduce a temperature difference between the first proximity part and the second proximity part. Secondary battery system.
請求項1または請求項2に記載の二次電池システムであって、
前記加熱手段として、
前記電極体の前記第1端部を、直接または間接に加熱する第1加熱手段と、
前記電極体の前記第2端部を、直接または間接に加熱する第2加熱手段と、を備える
二次電池システム。
The secondary battery system according to claim 1 or 2,
As the heating means,
First heating means for directly or indirectly heating the first end of the electrode body;
A secondary battery system comprising: a second heating unit that directly or indirectly heats the second end of the electrode body.
第1電極基材を有する第1電極板と、前記第1電極基材に比べて電気抵抗が小さい第2電極基材を有し、前記第1電極板とは異なる電位とされる第2電極板と、セパレータとを備え、前記第1電極板と前記第2電極板とを、前記セパレータを介して積層してなる電極体、
前記第1電極板の電荷を集電する第1集電部材、
前記第2電極板の電荷を集電する第2集電部材、及び
前記電極体と前記第1集電部材と前記第2集電部材とを内部に収容する電池ケース、を備える
二次電池であって、
前記電極体が、
前記第1電極板、前記第2電極板、及び前記セパレータを積層してなる積層部と、
前記積層部から、前記第1電極板、前記第2電極板、及び前記セパレータのうち前記第1電極板の一部のみが突出してなる第1端部であって、前記第1集電部材に接合されてなる第1端部と、
前記積層部から、前記第1電極板、前記第2電極板、及び前記セパレータのうち前記第2電極板の一部のみが突出してなる第2端部であって、前記第2集電部材に接合されてなる第2端部と、を有する
二次電池と、
前記電池ケースの外壁部のうち、前記電極体の前記第1端部に近接する部位を第1近接部、前記第2端部に近接する部位を第2近接部としたとき、前記第1近接部及び前記第2近接部のうち、少なくとも前記第2近接部に固着されてなる
発熱体と、
前記第1近接部の温度に対応した第1近接部温度信号を出力する第1温度検知素子と、
前記第2近接部の温度に対応した第2近接部温度信号を出力する第2温度検知素子と、
前記第1近接部温度信号と前記第2近接部温度信号とに基づいて、前記発熱体への通電を制御し、前記第1近接部と前記第2近接部の温度差を小さくする
制御手段と、を備える
二次電池システム。
A second electrode having a first electrode plate having a first electrode substrate and a second electrode substrate having a lower electrical resistance than the first electrode substrate, and having a potential different from that of the first electrode plate. An electrode body comprising a plate and a separator, wherein the first electrode plate and the second electrode plate are laminated via the separator,
A first current collecting member for collecting electric charges of the first electrode plate;
A secondary battery comprising: a second current collecting member that collects charges of the second electrode plate; and a battery case that accommodates the electrode body, the first current collecting member, and the second current collecting member therein. There,
The electrode body is
A laminated portion formed by laminating the first electrode plate, the second electrode plate, and the separator;
A first end portion of the first electrode plate, the second electrode plate, and the separator that protrudes from a part of the first electrode plate, the first current collecting member being A first end joined,
A second end part of the first electrode plate, the second electrode plate, and the separator that protrudes from a part of the first electrode plate, the second electrode plate, and the separator. A secondary battery having a second end joined together;
Of the outer wall portion of the battery case, when the portion close to the first end of the electrode body is the first proximity portion and the portion close to the second end is the second proximity portion, the first proximity A heating element that is fixed to at least the second proximity portion among the first proximity portion and the second proximity portion;
A first temperature sensing element that outputs a first proximity portion temperature signal corresponding to the temperature of the first proximity portion;
A second temperature sensing element that outputs a second proximity portion temperature signal corresponding to the temperature of the second proximity portion;
Control means for controlling energization to the heating element based on the first proximity part temperature signal and the second proximity part temperature signal and reducing a temperature difference between the first proximity part and the second proximity part; A secondary battery system.
請求項4に記載の二次電池システムであって、
前記二次電池は、
前記第1電極板、前記第2電極板、及び前記セパレータが、ぞれぞれ帯状をなし、
前記電極体が、前記帯状の第1電極板、第2電極板、及びセパレータを積層して捲回されてなり、
前記第1端部では、前記第1電極板の一部のみが渦巻状に重なり、
前記第2端部では、前記第2電極板の一部のみが渦巻状に重なってなる
二次電池である
二次電池システム。
The secondary battery system according to claim 4,
The secondary battery is
The first electrode plate, the second electrode plate, and the separator each have a strip shape,
The electrode body is wound by laminating the strip-shaped first electrode plate, second electrode plate, and separator,
At the first end, only a part of the first electrode plate overlaps in a spiral shape,
A secondary battery system which is a secondary battery in which only a part of the second electrode plate overlaps in a spiral shape at the second end.
請求項4または請求項5に記載の二次電池システムであって、
前記発熱体として、
前記電池ケースの前記第1近接部に固着された第1発熱体と、
前記電池ケースの前記第2近接部に固着された第2発熱体と、を備える
二次電池システム。
The secondary battery system according to claim 4 or 5, wherein
As the heating element,
A first heating element fixed to the first proximity portion of the battery case;
A secondary battery system comprising: a second heating element fixed to the second proximity portion of the battery case.
請求項1〜請求項6のいずれか一項に記載の二次電池システムであって、
前記二次電池は、
前記第1電極基材が、アルミニウムからなり、
前記第2電極基材が、銅からなる
リチウムイオン二次電池である
二次電池システム。
The secondary battery system according to any one of claims 1 to 6,
The secondary battery is
The first electrode substrate is made of aluminum;
A secondary battery system, wherein the second electrode base material is a lithium ion secondary battery made of copper.
JP2006193650A 2006-07-14 2006-07-14 Secondary battery system Withdrawn JP2008021569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006193650A JP2008021569A (en) 2006-07-14 2006-07-14 Secondary battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006193650A JP2008021569A (en) 2006-07-14 2006-07-14 Secondary battery system

Publications (1)

Publication Number Publication Date
JP2008021569A true JP2008021569A (en) 2008-01-31

Family

ID=39077375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006193650A Withdrawn JP2008021569A (en) 2006-07-14 2006-07-14 Secondary battery system

Country Status (1)

Country Link
JP (1) JP2008021569A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113861A (en) * 2008-11-05 2010-05-20 Toyota Motor Corp Battery pack
US20110042058A1 (en) * 2007-03-06 2011-02-24 Toyota Jidosha Kabushiki Kaisha Cooling apparatus and cooling method for electrical equipment
WO2011135702A1 (en) * 2010-04-28 2011-11-03 トヨタ自動車株式会社 Cell temperature measurement device, cell temperature measurement method, and cell production method
CN102361065A (en) * 2011-10-24 2012-02-22 丁振荣 Battery core and drying method thereof
JP5035429B2 (en) * 2009-04-17 2012-09-26 トヨタ自動車株式会社 Battery system, vehicle and battery-equipped equipment
JP2012221776A (en) * 2011-04-11 2012-11-12 Panasonic Corp Battery heater device
WO2013111529A1 (en) * 2012-01-24 2013-08-01 株式会社デンソー Battery temperature adjustment device
US9252402B2 (en) 2011-02-02 2016-02-02 Gs Yuasa International Ltd. Battery system
WO2017191679A1 (en) 2016-05-02 2017-11-09 株式会社 東芝 Lithium ion battery pack
JP2019021512A (en) * 2017-07-18 2019-02-07 株式会社デンソー Temperature adjusting device and secondary battery system
JP2021522656A (en) * 2018-04-25 2021-08-30 バイエリシエ・モトーレンウエルケ・アクチエンゲゼルシヤフト How to operate lithium-ion batteries, lithium-ion batteries and automobiles

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8733430B2 (en) * 2007-03-06 2014-05-27 Toyota Jidosha Kabushiki Kaisha Cooling apparatus and cooling method for electrical equipment
US20110042058A1 (en) * 2007-03-06 2011-02-24 Toyota Jidosha Kabushiki Kaisha Cooling apparatus and cooling method for electrical equipment
JP2010113861A (en) * 2008-11-05 2010-05-20 Toyota Motor Corp Battery pack
JP5035429B2 (en) * 2009-04-17 2012-09-26 トヨタ自動車株式会社 Battery system, vehicle and battery-equipped equipment
WO2011135702A1 (en) * 2010-04-28 2011-11-03 トヨタ自動車株式会社 Cell temperature measurement device, cell temperature measurement method, and cell production method
US9252402B2 (en) 2011-02-02 2016-02-02 Gs Yuasa International Ltd. Battery system
JP2012221776A (en) * 2011-04-11 2012-11-12 Panasonic Corp Battery heater device
CN102361065A (en) * 2011-10-24 2012-02-22 丁振荣 Battery core and drying method thereof
JP2013152821A (en) * 2012-01-24 2013-08-08 Denso Corp Battery temperature control apparatus
WO2013111529A1 (en) * 2012-01-24 2013-08-01 株式会社デンソー Battery temperature adjustment device
WO2017191679A1 (en) 2016-05-02 2017-11-09 株式会社 東芝 Lithium ion battery pack
JP2019021512A (en) * 2017-07-18 2019-02-07 株式会社デンソー Temperature adjusting device and secondary battery system
JP2021522656A (en) * 2018-04-25 2021-08-30 バイエリシエ・モトーレンウエルケ・アクチエンゲゼルシヤフト How to operate lithium-ion batteries, lithium-ion batteries and automobiles

Similar Documents

Publication Publication Date Title
JP2008021569A (en) Secondary battery system
JP6506429B2 (en) Power storage unit
JP5752151B2 (en) Battery pack system for improving operating performance using internal battery resistance
JP5637878B2 (en) Secondary battery system
JP6453854B2 (en) Storage battery having multiple resistance levels
JP5337842B2 (en) Secondary battery system
JP6551749B2 (en) Secondary battery capacity recovery method and capacity recovery system
WO2007142041A1 (en) Charging circuit, charging system, and charging method
JP6037166B2 (en) Secondary battery control method and secondary battery control device
JP6344245B2 (en) Battery module
JP2013019709A (en) Secondary battery system and vehicle
US10971767B2 (en) Charge voltage controller for energy storage device, energy storage apparatus, battery charger for energy storage device, and charging method for energy storage device
JP2010198759A (en) Battery system and vehicle
JP2010086911A (en) Performance detection device and control device of battery pack
KR20130089376A (en) Secondary battery having temperature sensor
JP6617982B2 (en) Non-aqueous electrolyte storage element deterioration detector, power storage device, non-aqueous electrolyte storage element deterioration detection system, and non-aqueous electrolyte storage element deterioration detection method
JP5644722B2 (en) Battery system
US20230102083A1 (en) Secondary battery, electronic device, and electric tool
JP6365820B2 (en) Secondary battery abnormality determination device
JP2011192425A (en) Memory effect reducing circuit, battery power supply device, battery utilization system, and memory effect reducing method
KR20140089455A (en) Secondary Battery Assembly
JP2015220038A (en) Lithium ion secondary battery system and method for charging lithium ion secondary battery
JP2010063279A (en) Method of charging secondary battery, secondary battery system and vehicle
JP2011190690A (en) Battery control device and on-vehicle power source device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091006