WO2013111445A1 - 非接触放電評価方法及び装置 - Google Patents

非接触放電評価方法及び装置 Download PDF

Info

Publication number
WO2013111445A1
WO2013111445A1 PCT/JP2012/080816 JP2012080816W WO2013111445A1 WO 2013111445 A1 WO2013111445 A1 WO 2013111445A1 JP 2012080816 W JP2012080816 W JP 2012080816W WO 2013111445 A1 WO2013111445 A1 WO 2013111445A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
waveform
receiving element
light receiving
light
Prior art date
Application number
PCT/JP2012/080816
Other languages
English (en)
French (fr)
Inventor
信也 大塚
真陽 古川
裕貴 山口
Original Assignee
国立大学法人九州工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州工業大学 filed Critical 国立大学法人九州工業大学
Priority to EP12866479.4A priority Critical patent/EP2808673B1/en
Priority to US14/374,424 priority patent/US9442154B2/en
Publication of WO2013111445A1 publication Critical patent/WO2013111445A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1218Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing using optical methods; using charged particle, e.g. electron, beams or X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/67Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/58Testing
    • H01T13/60Testing of electrical properties

Definitions

  • the present invention relates to a non-contact discharge evaluation method and apparatus for evaluating a discharge of a measurement target device in a non-contact manner by optically measuring light emission based thereon.
  • the present invention can be used in the fields of high voltage such as electric power and electrical equipment, electrical insulation field, electrostatic discharge test field such as electrical and electronic equipment, and manufacturing and maintenance operation field of automobiles and electrical energy equipment.
  • partial discharge which is a phenomenon before dielectric breakdown occurs, is being evaluated and evaluated.
  • a partial discharge test is defined as one of the insulation tests for high-voltage equipment.
  • the magnitude of discharge is generally evaluated by the amount of charge (unit: Coulomb C).
  • Coulomb C the amount of charge
  • a discharge current is measured and converted into a charge amount, or a charge amount evaluation device is connected to a circuit for measurement.
  • the voltage generated by the electrostatic test machine (ESD gun) is very steep with a rise time of 1 ns or less, and it is difficult to electrically measure the occurrence of discharge in the vicinity of the test machine.
  • Evaluating the magnitude (charge amount) and energy of discharge using a non-contact method is desired in the manufacturing field and maintenance operation field of high-voltage power equipment and electrical energy equipment driven and controlled by electricity.
  • a technique for measuring the discharge current in a non-contact manner is attracting attention because it is expected to increase safety, ease of testing, and application range.
  • the UHF method (measurement of radiated electromagnetic waves in the UHF band (300 MHz to 3 GHz)) that detects the radiated electromagnetic waves of the discharge has attracted attention, and the establishment of a standard as an IEC standard is in progress.
  • electromagnetic measurement may be difficult if the electromagnetic noise environment is poor.
  • strong electromagnetic waves that become noise are radiated from these power supply devices, and measurement is performed in a poor electromagnetic noise environment.
  • Patent Document 1 a partial discharge occurrence number measuring device that discriminates and detects a partial discharge using a photomultiplier tube that detects light emission in a container has been known (see Patent Document 1). Furthermore, there is known a failure monitoring device that monitors a failure of an electrical device by detecting light emission caused by partial discharge or flashing generated at a high voltage portion of the electrical device (see Patent Document 2). In Patent Document 2, when the detection light converted into an electric signal exceeds an intensity of a certain value or more, it is determined that a failure has occurred due to light emission inside the container.
  • JP 2010-204667 A Japanese Patent No. 2707823
  • the present invention acquires the magnitude (charge amount and current peak value) and energy of discharge by optical measurement based on light emission, rather than acquiring it electrically as in radiated electromagnetic wave measurement.
  • the purpose is to evaluate.
  • the non-contact discharge evaluation method and apparatus evaluates the discharge of a measurement target device in a non-contact manner by optically measuring light emission based on the discharge.
  • the discharge source emits discharge light by applying a voltage to the discharge source from a known power source, and the intensity waveform of this discharge light emission is measured using a light receiving element.
  • the discharge current waveform is measured with a current conversion probe or current waveform detector.
  • Applied power information such as the voltage value and applied voltage polarity applied to the discharge source, or the instantaneous voltage value and the generation time (phase) at the time of discharge
  • a waveform intensity acquisition device that measures the intensity waveform of discharge luminescence generated from a measurement target device using the same or the same type of light receiving element as the light receiving element and acquires the waveform intensity
  • a waveform analysis unit for analyzing the waveform intensity acquired by the waveform intensity acquisition device, and light emission data obtained by analysis in the waveform analysis unit are recorded in the database. Comprising by comparing the over data, a comparison unit for estimating the size of the discharge as a value, and a display unit for displaying the result.
  • the magnitude of the discharge is a peak value of the discharge current, a charge amount that is an integral value of the discharge current, or a discharge energy value.
  • the magnitude of the discharge is evaluated by the measured peak value of the discharge light emission intensity waveform or the area (integrated value) of the discharge light emission intensity waveform.
  • the light receiving element is arranged spatially opposite to the discharge source, or is arranged using an optical waveguide. Increasing or decreasing the sensitivity of the light-receiving element according to the light emission intensity is adjusted by increasing or decreasing the gain of the light-receiving element itself, increasing or decreasing the distance between the light-receiving element and the light-emitting source, installing an optical filter, or using an optical waveguide To do.
  • the light receiving element and the waveform intensity acquisition device can be installed in the electromagnetic shielding box. Also, a plurality of light receiving elements can be used. In this case, the wiring distance to each light receiving element and the waveform intensity acquisition device is the same, or time correction is performed by the difference in length.
  • the magnitude (charge amount and current peak value) and energy of discharge can be obtained and evaluated by optical measurement based on light emission even in a non-contact and poor electromagnetic noise environment.
  • FIG. 4 is a detailed view of waveform analysis, comparison, and evaluation shown in FIGS. 3 (A) and 3 (B), respectively.
  • FIG. 1 is an operation explanatory diagram illustrating a non-contact discharge evaluation method according to the present invention.
  • an optical signal at least the peak value Lp of the light intensity waveform, the area Lq of the light intensity waveform
  • the light receiving element used in the corresponding target insulating system environment for example, the used insulating gas space
  • a database showing the correlation of the magnitude of discharge (discharge charge q, discharge current peak value ip, discharge energy E), applied power supply information (at least applied voltage value and polarity, instantaneous voltage and generation time when discharge light emission occurs) (Or phase)).
  • the data recorded in this database is used when estimating the magnitude of the discharge by evaluating the discharge in the measurement target apparatus having a different insulation system.
  • step S1 discharge light emission is performed by applying a voltage from a power source whose power source information is known to a test discharge source.
  • step S2 the discharge current waveform is measured using a current conversion probe CT having a frequency response up to several GHz, a current waveform detector, and the like simultaneously with the intensity waveform of the discharge light emission using the light receiving element.
  • step S3 these waveforms are analyzed.
  • step S4 the peak value Lp of the light intensity waveform of the analysis data, the area (integrated value) Lq of the light intensity waveform, and the magnitude of the discharge (discharge current peak value ip and discharge charge).
  • the relationship between the quantity q or the discharge energy E) is created for each light receiving element to be used in consideration of the applied power supply information and for each target discharge environment, and recorded in the database. This is because the discharge current waveform and the emission intensity waveform differ depending on the discharge environment.
  • step S11 discharge light emission generated from the measurement target device is detected. In the case of no discharge, no evaluation is made and no discharge is generated.
  • INDUSTRIAL APPLICABILITY The present invention can be used for a discharge test and an electrical insulation abnormality monitoring of an electric energy device driven or controlled by electricity such as an electric power device, an electric / electronic device, an electric vehicle or an aircraft.
  • steps S12 and S13 the intensity waveform of the discharge light emission is measured by using the same or the same type of light receiving element as that used in the creation of the database, and the waveform is analyzed.
  • the light emission data obtained by this analysis is compared with the data recorded in the database in step S14, so that the peak value ip of the discharge current, the charge amount q which is the integrated value of the discharge current, and the value of the discharge energy E are obtained. Is estimated.
  • FIG. 2 is a diagram for explaining the definition of the waveform.
  • the horizontal axis indicates time.
  • the upper part of the figure shows the discharge current waveform, and the lower part shows the discharge emission intensity waveform measured simultaneously.
  • the discharge current is evaluated from the measured discharge luminescence intensity using the data recorded in the database.
  • the peak value ip of the discharge current is evaluated by the peak value Lp of the light intensity waveform.
  • the evaluation can be made by the area Lq of the light intensity waveform.
  • the charge amount q which is an integrated value of the discharge current, is evaluated by the area (integrated value) Lq of the light intensity waveform.
  • the light intensity peak Lp can be evaluated.
  • the discharge energy E is evaluated by the area (integrated value) Lq of the light intensity waveform or the light intensity peak Lp. Details of the evaluation will be described later.
  • 3A and 3B are circuit configuration diagrams of a non-contact discharge evaluation apparatus showing different examples.
  • the circuit configuration diagram shown in (B) is shown in (A) only in that the light receiving element is connected using an optical waveguide, and the light receiving element, the current measuring device, and the digital oscilloscope are arranged in an electromagnetic shielding box. It is different from the circuit configuration diagram.
  • a voltage is applied from a power source with known power source information to a test discharge source.
  • the power supply voltage is, for example, the output voltage of the ESD gun for the electrostatic discharge test, or the lightning impulse voltage for the lightning impulse test. Furthermore, AC and DC test voltages.
  • the applied voltage, the applied voltage polarity, and the instantaneous voltage and generation time (or phase) at the time of occurrence of discharge are known.
  • the discharge current is measured by a current measuring device. However, during the discharge test and maintenance operation after database creation, the discharge current is not measured, but only the emission intensity waveform is measured by the light receiving element.
  • the generated light emission is detected by using the same light receiving element or at least using the light receiving elements of the same type (that is, the same characteristics).
  • the input optical signal to each light receiving element is dimmed or the sensitivity is increased.
  • the sensitivity is increased or decreased by increasing or decreasing the distance between the light receiving element and the light emitting source, installing an optical filter, using an optical waveguide such as an optical fiber, or adjusting the gain of the light receiving element.
  • a light receiving element having high sensitivity from the ultraviolet to the visible light region is, for example, a photomultiplier tube PMT.
  • a photodiode may be used instead of the photomultiplier tube PMT. If the emission intensity is higher, a neutral density filter is used.
  • the light receiving element spatially opposes the discharge source and detects the occurrence of discharge.
  • the light receiving element can be set apart from a straight line by using an optical waveguide such as an optical fiber, and the positional relationship between the light emitting element and the light receiving element can be set apart. Thereby, the influence of the electrical noise from the power supply to a light receiving element or a discharge source can be suppressed.
  • the light receiving element When there is a particularly strong noise source that induces noise in the light receiving element used, the light receiving element is isolated from the discharge light emitting part, and a light emitting signal is transmitted between them using an optical fiber cable. At this time, since the emission signal decreases, the evaluation is performed in consideration of the attenuation of the emission intensity in the optical fiber cable. Note that an optical fiber may be used even when the amount of light is strong (the light intensity is reduced by passing through the fiber). By using an optical waveguide such as an optical fiber, the position of the light emitting part (light source) and the light receiving element can be flexibly arranged in addition to measures against electrical noise.
  • FIG. 4 is a diagram showing an example of characteristics when an optical waveguide (optical fiber) is used.
  • A shows the relationship between discharge emission intensity and discharge current
  • B shows the relationship between discharge emission integrated value and discharge charge amount. Show.
  • the emission intensity decreases, so the value of the discharge emission intensity Lp is small as shown in FIG.
  • the discharge emission intensity Lp and the discharge current peak value ip are linear in both cases with and without an optical fiber.
  • the discharge light emission integral value Lq and the discharge charge amount q both have linearity.
  • the characteristics when the optical fiber is used are standardized to the characteristics when the optical fiber is not used so that both characteristics coincide.
  • the influence of electrical noise can be further suppressed by installing the light receiving element and the digital oscilloscope in the electromagnetic shielding box.
  • the light emitting part and the light receiving element need to be on a straight line within the viewing angle of the light receiving element, but by using the optical waveguide, the light receiving element is on a straight line within the viewing angle.
  • the light receiving element can be freely installed behind the shielding object or in an electromagnetic shielding box installed at an arbitrary position.
  • it is effective to place a mesh-shaped metal wire net that does not transmit electrical noise but transmits optical signals in the electromagnetic shielding box on the entire surface of the light receiving element. Is. Also, it is desirable to arrange the current measuring device in the electromagnetic shielding shield box.
  • the above has been described for one light receiving element, but by using a plurality of light receiving elements and making the wiring distance to each light receiving element and the waveform intensity acquisition device such as the digital oscilloscope DOSC the same (if not the same, The time of waveform appearance position is corrected by the difference of the length), and when discharge occurs at multiple locations or when the generation timing is different, know the generation position and generation time difference in more detail by one experiment observation Will be able to.
  • the diameter of an optical waveguide such as an optical fiber needs to be able to sufficiently observe the magnitude of discharge light emission. It may be a thick single wire or a bundle of a plurality of single wires.
  • the installation position of the optical waveguide such as an optical fiber is arranged at a position where the discharge light emission can be received efficiently. For this purpose, a lens that can transmit the entire emission wavelength may be used to collect light.
  • the emission intensity waveform observed by the light receiving element is not only observed by a waveform acquisition device such as a digital oscilloscope DOSC, but also acquired.
  • the frequency band and sampling frequency of the digital oscilloscope need to be able to cope with changes in the emission intensity waveform.
  • the frequency band is 500 MHz or higher and the sampling frequency is 1 GS / s or higher.
  • the trigger of the digital oscilloscope DOSC uses the signal of the light receiving element itself.
  • these testers for example, ESD guns for electrostatic discharge tests or lightning impulse voltages for lightning impulse tests).
  • a drive signal of the current generator) or an output application signal thereof may be used as a trigger signal.
  • An electromagnetic wave radiated from these drive signals and output application signals may be detected by an antenna and used as a trigger signal.
  • a trigger signal is given at that time or phase.
  • a delay circuit or a pulse generator may be used.
  • the emission intensity waveform acquired by a waveform acquisition device such as a digital oscilloscope DOSC is subjected to waveform analysis by a waveform analysis unit.
  • a waveform analysis unit When creating the database, the relationship between the peak value Lp of the light intensity waveform in the analysis data, the area Lq of the light intensity waveform, the peak value ip of the discharge current waveform, and the discharge charge q or discharge energy E, which is the integrated value of the discharge current waveform
  • the applied power supply information applied voltage and polarity, instantaneous voltage at the time of discharge and its generation time (or phase)
  • the comparison unit compares the emission data obtained by the analysis with the data recorded in the database, thereby determining the magnitude of the discharge (current peak value, discharge charge amount, and discharge energy). ) And display the result.
  • FIG. 5 is a diagram for explaining the influence of the difference in the light receiving element.
  • the example of the result of having measured the same discharge light emission with the photomultiplier tube PMT of a different kind is shown. Although it can be seen that the emission intensity differs for each element (photomultiplier tube PMT) used, the magnitude of discharge can be quantitatively evaluated by creating a database for each element used.
  • FIG. 6 is a detailed view of waveform analysis, comparison, and evaluation shown in FIGS. 3 (A) and 3 (B), respectively.
  • the values of the discharge light emission intensity waveform and the discharge current waveform are led from the digital oscilloscope DOSC to the integration circuit and peak detection circuit of the waveform analysis unit.
  • the integrating circuit calculates the integrated value Lq of the light receiving element output waveform and the integrated value q of the output waveform of the current conversion probe CT or current waveform detector, and the peak detecting circuit calculates the peak value Lp and current of the light receiving element output waveform.
  • the peak value ip of the output waveform of the conversion probe CT or current waveform detector is calculated.
  • the calculation circuit calculates the discharge energy E by the product of the output q from the integration circuit and the voltage value V at the time of light emission as the applied power source information.
  • the peak value ip of the discharge current waveform, the discharge charge amount q that is the area (time integral value), and the discharge energy E are evaluated based on the peak value Lp and the integral value Lq of the light receiving element output waveform.
  • the peak value ip of the discharge current waveform is evaluated by the peak value Lp of the light receiving element output waveform, and the discharge charge amount q is evaluated by the integrated value Lq. Since the discharge energy E is not so different between the peak value Lp and the integral value Lq, either one may be evaluated.
  • FIG. 7 is a diagram for explaining the estimation of the discharge current peak ip from Lp and Lq by measuring the emission signal such as the peak value Lp of the emission intensity waveform and the integrated value Lq of the emission intensity simultaneously with the discharge current peak value.
  • the plot in the figure shows an example of actual measurement, and the line in the figure is an approximate characteristic line corrected for database creation. Each point on the characteristic line of this graph is recorded in the database as a table.
  • the peak value Lp of the output waveform corresponds more linearly than the integrated value Lq.
  • the peak value ip can be estimated based on the relationship of the approximate characteristic line even when it is not linearly proportional, but the output peak value ip relative to the input peak value Lp or the integral value Lq can be estimated based on the relationship in the above table.
  • the approximate characteristic line is formulated to obtain this function, and the output peak value ip with respect to the input value of the peak value Lp and the integral value Lq is obtained.
  • the emission signal such as the peak value Lp of the emission intensity waveform and the integrated value Lq of the emission intensity is measured simultaneously with the discharge charge amount, and the discharge charge is calculated from the peak value Lp and the integration value Lq based on this characteristic.
  • a plot in a figure shows an example of actual measurement, and a line in a figure is an approximate characteristic line corrected for database preparation. Each point on the characteristic line of this graph is recorded in the database as a table.
  • the integral value Lq has a linear correspondence than the peak value Lp. Further, from the physical point of view, it is preferable to use the integral value Lq for estimating the discharge charge amount q.
  • the discharge charge amount q can be estimated based on the relationship of the approximate characteristic line, but the output charge amount based on the relationship of the above table or the input integral value Lq or peak value Lp This function is obtained by formulating the approximate characteristic line of q, and the output charge amount q with respect to the input value of the integral value Lq or the peak value Lp is obtained.
  • emission signals such as the peak value Lp and the integrated emission intensity Lq of the emission intensity waveform are measured simultaneously with the discharge energy, and the estimation of the discharge energy E from this characteristic will be described.
  • the plot in the figure shows an example of actual measurement, and the line in the figure is an approximate characteristic line modified for database creation. Each point on the characteristic line of this graph is recorded in the database as a table.
  • the integral value Lq has a linear correspondence with the peak value Lp. Further, from the physical point of view, it is preferable to use the integrated value Lq for the estimation of the discharge energy E.
  • the discharge energy E can be estimated based on the relationship of the approximate characteristic line even when it is not linearly proportional
  • the output discharge energy E relative to the input peak value Lp or the integral value Lq can be estimated based on the relationship in the above table.
  • the approximate characteristic line is formulated to obtain this function, and the output discharge energy E with respect to the input value of the peak value Lp and the integral value Lq is obtained.
  • FIG. 10 is a diagram for explaining a different example of an insulating gas type as an example of a different insulating system. It is a graph which shows the discharge current peak value ip with respect to the discharge light emission peak value Lp for every insulating gas kind. Since the above evaluation differs depending on the discharge environment (gas insulator or liquid insulator being used), it is necessary to acquire data for each target insulating gas type in advance. Although the relationship between the discharge light emission peak value Lp and the discharge current peak value ip is shown here, the relationship between the discharge light emission integral value Lq and the discharge charge amount q or the discharge energy E also differs depending on the discharge environment. It is necessary to obtain data for each insulation system to be obtained in advance. FIG. 10 shows an example in which characteristics differ depending on the type of insulating medium (in this example, insulating gas). In addition to this, when the discharge mode changes greatly, the discharge amount can be evaluated in more detail by preparing data for each discharge mode.
  • the discharge current peak value ip with respect to the discharge
  • the optical signal intensity depends on the distance d from the light emitting position to the sensor position (the optical signal intensity decreases as the distance d increases). Therefore, correction is performed in consideration of this distance d dependency. That is, since the light emission intensity is inversely proportional to the square of the distance d, correction for increasing or decreasing the light emission intensity is performed based on this relationship in consideration of the distance d from the light emission position.
  • the discharge generation site is known because it is the electrode position.
  • the location where the discharge occurs is unknown, so a position location technique is required.
  • the light emission signal attenuates in inverse proportion to the square of the distance from the generation position to the light receiving element, so the data recorded in the database (the distance between the generation source and the light receiving element is created with a certain length). It is necessary to correct the distance. Even if distance correction is not possible, by using a relationship in which linearity is recognized such as the relationship between the discharge light emission peak value Lp and the discharge current peak value ip and the relationship between the discharge light emission integral value Lq and the discharge charge amount q, The change in relative discharge magnitude can be evaluated.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Relating To Insulation (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

 放電の大きさ(電荷量)やエネルギーを、発光に基づく光学測定により取得して評価する。放電源に、既知の電源より放電源に電圧を印加することにより放電発光させ、この放電発光の強度波形を受光素子を用いて測定し、同時に放電電流波形を電流変換プローブや電流波形検出器で測定して、それらの波形を解析した解析データとの関係を、印加電源情報を考慮して記録したデータベースを作成する。測定対象機器から発生した放電発光の強度波形を、受光素子を用いて測定して、その波形を解析することにより求められた発光データを、データベースに記録されているデータと比較することにより、放電の大きさを値として推定する。

Description

非接触放電評価方法及び装置
 本発明は、測定対象機器の放電を、それに基づく発光を光学測定することにより非接触で評価する非接触放電評価方法及び装置に関する。本発明は、電力や電気機器などの高電圧、電気絶縁分野、電気電子機器などの静電気放電試験分野および自動車や電気エネルギー機器の製造および保守運用分野で用いることができる。
 電気絶縁異常の検出、評価として、絶縁破壊が発生する前の現象である部分放電の検出や評価が行われている。高電圧機器の絶縁試験の一つとして、部分放電試験が規定されている。放電の大きさは、電荷量(単位:クーロンC)で評価されるのが一般的である。従来は、放電電流を測定し電荷量換算するか、あるいは回路に電荷量評価装置を接続して測定していた。また、静電気放電試験では、静電気試験機(ESDガン)の発する電圧は立ち上がり時間が1ns以下と非常に急峻であり、放電発生をその試験機近傍で電気的に測定することは困難である。
 放電の大きさ(電荷量)およびエネルギーを非接触手法で評価することが、高電圧電力機器や電気で駆動や制御される電気エネルギー機器の製造現場や保守運用分野で望まれている。放電電流の測定を非接触で測定する技術が、安全性や試験の容易さ、適用範囲の拡大が見込まれる点から注目されている。放電の非接触検出として、放電の放射電磁波を検出するUHF法(UHF帯(300MHz~3GHz)の放射電磁波測定)が注目されており、IEC規格として規格制定が進められている。
 一方で、電磁波計測は電磁ノイズ環境が悪いと電気的な計測が困難なこともある。特に、雷インパルス試験や静電気放電試験では、それら電源装置からノイズとなる強い電磁波が放射されており、劣悪な電磁ノイズ環境での計測となる。
 また、従来、容器内での発光を検知する光電子増倍管を用いて、部分放電を判別して検出する部分放電発生回数測定装置が知られている(特許文献1参照)。さらに、電気機器の高電圧部で発生する部分放電又は閃絡による発光を検出することによってこの電気機器の故障を監視する故障監視装置が知られている(特許文献2参照)。特許文献2は、電気信号に変換された検出光が一定値以上の強度を越えたとき容器内部で発光があり故障が発生したと判定するものである。
 しかし、光と放電エネルギーの関係は明確でない。放電発生回数とか発光そのものを検出するだけでなく、放電の大きさやエネルギーを光学測定により評価する技術が求められている。
特開2010-204067号公報 特許第2707823号公報
 上記のような背景から、本発明は、放電の大きさ(電荷量や電流ピーク値)やエネルギーを、放射電磁波測定のように電気的に取得するのではなく、発光に基づく光学測定により取得して評価することを目的としている。
 本発明に基づく非接触放電評価方法及び装置は、測定対象機器の放電を、それに基づく発光を光学測定することにより非接触で評価する。放電源に、既知の電源より放電源に電圧を印加することにより放電発光させ、この放電発光の強度波形を受光素子を用いて測定し、同時に放電電流波形を電流変換プローブや電流波形検出器で測定して、それらの波形を解析した解析データとの関係を、前記放電源に印加した電圧値や印加電圧極性、あるいは放電発生時の電圧瞬時値やその発生時間(位相)などの印加電源情報を考慮して記録したデータベースと、測定対象機器から発生した放電発光の強度波形を、前記受光素子と同一若しくは同一種の受光素子を用いて測定して、その波形強度を取得する波形強度取得装置と、この波形強度取得装置により取得した波形強度を解析する波形解析部と、この波形解析部での解析により求められた発光データを、データベースに記録されているデータと比較することにより、放電の大きさを値として推定する比較部と、その結果を表示する表示部と、を備える。
 使用する受光素子毎、及び対象とする真空を含む空気やSF6ガスなどの絶縁ガス、あるいは絶縁油やシリコーン油などの絶縁液体などの絶縁系で生じる放電環境毎に、データベースを作成し、かつ、放電の大きさの推定を行う。放電の大きさは、放電電流のピーク値、放電電流の積分値である電荷量、或いは放電エネルギー値である。放電の大きさは、測定した放電発光強度波形のピーク値或いは放電発光強度波形の面積(積分値)で評価する。
 受光素子は、放電源に対して空間的に対向して配置し、或いは、光導波路を用いて配置する。発光強度に応じた受光素子の感度の増減は、受光素子自体のゲインの増減、又はその受光素子と発光源の距離を増減し、又は光学フィルタを設置し、あるいは光導波路を使用することにより調整する。受光素子及び波形強度取得装置を電磁遮蔽シールドボックス内へ設置することができる。また、複数の受光素子を用いることができ、この場合、各受光素子と波形強度取得装置までの配線距離を同一とするか、又は、その長さの差分だけ時間補正を行う。
 本発明によれば、放電の大きさ(電荷量や電流ピーク値)やエネルギーを、非接触で電磁ノイズ環境の悪いところでも、発光に基づく光学測定により取得して評価することができる。
本発明に基づく非接触放電評価方法を例示する動作説明図である。 波形の定義を説明する図である。 (A)(B)は、互いに異なる例を示す非接触放電評価装置の回路構成図である。 光導波路(光ファイバー)使用時の特性例を示す図である。 受光素子の相違による影響を説明する図である。 図3(A)(B)にそれぞれ示されている波形解析、比較、評価の詳細図である。 放電電流ピーク値ipの推定を説明する図であり、図中プロットは実測例を示し、かつ、図中ラインはデータベース作成用に修正した近似特性線である。 放電電荷量qの推定を説明する図であり、図中プロットは実測例を示し、かつ、図中ラインはデータベース作成用に修正した近似特性線である。 放電エネルギーEの推定を説明する図であり、図中プロットは実測例を示し、かつ、図中ラインはデータベース作成用に修正した近似特性線である。 絶縁ガス種の相違例を説明する図である。
 以下、例示に基づき本発明を説明する。図1は、本発明に基づく非接触放電評価方法を例示する動作説明図である。本発明は、最初に、対応する対象絶縁系環境(例えば、使用絶縁ガス空間)で使用する受光素子毎に、光信号(少なくとも、光強度波形のピーク値Lp、光強度波形の面積Lq)と放電の大きさ(放電電荷量qや放電電流ピーク値ip、放電エネルギーE)の相関を示すデータベースを、印加電源情報(少なくとも、印加電圧値や極性、放電発光の発生時の瞬時電圧や発生時間(あるいは位相))を考慮して作成する。絶縁系が異なる測定対象機器における放電を評価して、放電の大きさを推定する際には、このデータベースに記録されているデータを用いる。
 まず、データベースを作成するために、ステップS1において、試験用の放電源に、電源情報が既知の電源より電圧を印加することにより放電発光させる。ステップS2において、受光素子を用いて放電発光の強度波形と同時に、数GHzまでの周波数応答を有する電流変換プローブCTや電流波形検出器などを用いて放電電流波形を測定する。ステップS3において、それらの波形を解析し、ステップS4において、解析データの光強度波形のピーク値Lpや光強度波形の面積(積分値)Lqと放電の大きさ(放電電流ピーク値ipや放電電荷量q、あるいは放電エネルギーE)の関係を、印加電源情報を考慮して使用する受光素子毎、及び対象とする放電環境毎に作成して、データベースに記録する。なぜなら、放電環境により、放電電流波形と発光強度波形は異なるからである。
 次に、データベースに記録されているデータを用いて、測定した発光データから放電の大きさ(電流ピーク値や放電電荷量、および放電エネルギー)の評価を行ない、それらの値を推定する。ステップS11において、測定対象機器から発生した放電発光を検出する。放電なしの場合は、評価はせず、放電発生がないことを表示する。本発明は、電力機器や電気電子機器、あるいは電気自動車や航空機などの電気で駆動や制御される電気エネルギー機器の放電試験や電気絶縁異常のモニタリングに使用することができる。ステップS12,S13においては、データベース作成の際に用いた受光素子と同一若しくは同一種の受光素子を用いて放電発光の強度波形を測定して、その波形を解析する。この解析により求められた発光データを、ステップS14において、データベースに記録されているデータと比較することにより、放電電流のピーク値ip、放電電流の積分値である電荷量q、放電エネルギーEの値を推定する。
 図2は、波形の定義を説明する図である。横軸は時間を示している。図中の上側には、放電電流波形を、また、下側には同時に測定した放電発光強度波形をそれぞれ示している。本発明は、データベースに記録されているデータを用いて、測定した放電発光強度から、放電電流を評価する。具体的には、放電電流のピーク値ipを、光強度波形のピーク値Lpで評価する。あるいは光強度波形の面積Lqでも評価できる。また、放電電流の積分値である電荷量qは、光強度波形の面積(積分値)Lqで評価する。あるいは光強度ピークLpでも評価できる。また、放電エネルギーEは、光強度波形の面積(積分値)Lqで、あるいは光強度ピークLpで評価する。その評価の詳細は後述する。
 図3(A)(B)は、互いに異なる例を示す非接触放電評価装置の回路構成図である。(B)に示す回路構成図は、受光素子を光導波路を用いて接続し、かつ、受光素子と電流測定装置及びデジタルオシロスコープを電磁遮蔽シールドボックス内に配置した点でのみ、(A)に示す回路構成図とは相違している。
 上述したように、データベース作成の際には、試験用の放電源に対して、電源情報が既知の電源より電圧を印加する。電源電圧は、例えば静電気放電試験であればESDガンの出力電圧であったり、雷インパルス試験であれば雷インパルス電圧である。更に、交流や直流試験電圧である。いずれの場合も、印加電圧や印加電圧極性および放電発生時の瞬時電圧や発生時間(あるいは位相)は既知である。放電電流は、電流測定装置によって測定する。但し、データベース作成後の放電試験や保守運用時には、放電電流は測定せずに受光素子による発光強度波形の測定のみとなる。
 データベース作成の際、或いは測定対象機器の放電評価の際、同一の受光素子を用いるか、少なくとも同一種(即ち、同一特性)の受光素子を用いて、発生した発光を検出する。発光強度に応じて、各受光素子への入力光信号を減光したり、感度を増加させることを行う。感度の増減には、受光素子と発光源の距離を増減したり、光学フィルタを設置すること、あるいは光ファイバーなどの光導波路を使用したり、受光素子のゲインを調整することで行う。紫外から可視光領域に高い感度を有する受光素子は、例えば光電子増倍管PMTである。発光強度が強い場合は、光電子増倍管PMTの代わりにフォトダイオードでもよい。更に発光強度が強い場合は、減光フィルタを使用する。
 受光素子は、図3(A)に示すように、放電源に対して空間的に対向して放電発生を検出する。或いは、受光素子は、図3(B)に示すように、光ファイバーなどの光導波路を用いることにより、放電源と受光素子の位置関係を直線以外にも設定でき、離隔できる。これにより、受光素子への電源や放電源からの電気的ノイズの影響を抑制できる。
 使用する受光素子自体にノイズが誘起されるような特に強いノイズ源がある場合は、受光素子を放電発光部位から隔離し、その間を光ファイバーケーブルを用いて発光信号を伝送する。この際、発光信号は低下するために、光ファイバーケーブルでの発光強度の減衰を考慮して評価することになる。なお、光量が強い場合にも光ファイバーを使用してもよい(ファイバー通過により光強度は低下する)。光ファイバーなどの光導波路の使用により、電気的ノイズ対策としてだけでなく、発光部位(光源)と受光素子の位置を柔軟に配置することができる。
 図4は、光導波路(光ファイバー)使用時の特性例を示す図であり、(A)は放電発光強度と放電電流の関係を示し、(B)は放電発光積分値と放電電荷量の関係を示している。光ファイバー(石英ファイバーのバンドル仕様)を用いた場合の方が、発光強度は低下するため、図4(A)に示すように、放電発光強度Lpの値は小さくなっている。しかし、放電発光強度Lpと放電電流ピーク値ipは光ファイバー有り無し何れも線形性が認められる。同様に、図4(B)に示すように、放電発光積分値Lqと放電電荷量qは何れも線形性が認められる。光ファイバー使用時には、両特性が一致するように、光ファイバーを用いた場合の特性を用いない場合の特性に規格化する。
 さらに、図3(B)に示すように、受光素子及びデジタルオシロスコープを電磁遮蔽シールドボックス内へ設置することで、さらに電気的ノイズの影響を抑制できる。例えば、光導波路がなければ、発光部位と受光素子は受光素子の視野角内の直線上にあることが必要であるが、光導波路を用いることで、受光素子は視野角内の直線上との制約なく、受光素子は遮蔽物の背後や任意の位置に設置した電磁遮蔽シールドボックス内などに自由に設置できる。なお、受光素子への電気的ノイズをより抑制するには、受光素子全面の電磁遮蔽シールドボックスには、電気的ノイズを透過させず光信号を透過させるメッシュ状の金属金網を配置することが効果的である。また、電流測定装置も、電磁遮蔽シールドボックス内に配置することが望ましい。
 以上は、一つの受光素子を対象に説明したが、複数の受光素子を用い、各受光素子とデジタルオシロスコープDOSC等の波形強度取得装置までの配線距離を同一とすることで(同一でない場合は、その長さの差分だけ波形出現位置の時間補正を行う)、複数の場所で放電発生する場合やその発生タイミングが異なる場合には、一度の実験観測で発生位置や発生時間差をより詳細に知ることができるようになる。光ファイバーなどの光導波路の直径は、放電発光の大きさが十分観測できる必要がある。なお、太い単線でも、複数の単線をバンドルしたものでもよい。光ファイバーなどの光導波路の設置位置は、放電発光を効率よく受光できる位置に配置する。そのために、発光波長全域を透過できるレンズ等を用い、集光してもよい。
 受光素子により観測される発光強度波形は、デジタルオシロスコープDOSCなどの波形取得装置で、波形観測するだけでなく、そのデータを取得する。この際、デジタルオシロスコープの周波数帯域とサンプリング周波数は、発光強度波形の変化に十分対応できることが必要である。例えば、周波数帯域では、500MHz以上、サンプリング周波数では1GS/s以上が望まれる。デジタルオシロスコープDOSCのトリガは、受光素子自身の信号を用いる。但し、静電気放電試験や雷インパルス試験においては、単発電圧あるいは単発電流印加による試験であるため、それら試験器(例えば静電気放電試験であればESDガンであったり、雷インパルス試験であれば雷インパルス電圧あるいは電流発生器)の駆動信号あるいはその出力印加信号をトリガ信号として使用してもよい。これら駆動信号や出力印加信号から放射される電磁波をアンテナで検出し、トリガ信号として使用してもよい。更に、交流や直流試験、あるいは、上記雷インパルス試験においても、特定の時間内や交流信号であれば特定の位相での観察を対象とする場合は、その時間や位相でトリガ信号を与えるような、遅延回路やパルス発生器を用いてもよい。
 デジタルオシロスコープDOSCなどの波形取得装置により取得された発光強度波形は、波形解析部で波形解析される。データベース作成の際、解析データの光強度波形のピーク値Lpや光強度波形の面積Lqと放電電流波形のピーク値ipや放電電流波形の積分値である放電電荷量qあるいは放電エネルギーEの関係を、印加電源情報(印加電圧や極性、放電発生時の瞬時電圧やその発生時間(あるいは位相))を考慮して、使用する受光素子毎、及び対象とする絶縁系の放電環境毎に作成して、データベースに記録する。そして、放電評価の際に、比較部では、解析により求められた発光データを、データベースに記録されているデータと比較することにより、放電の大きさ(電流ピーク値や放電電荷量、および放電エネルギー)を推定し、その結果を表示する。
 図5は、受光素子の相違による影響を説明する図である。同一放電発光を異なる種類の光電子増倍管PMTで測定した結果例を示している。使用する素子(光電子増倍管PMT)毎に発光強度が異なっていることがわかるが、使用する素子毎にデータベースを作成することで放電の大きさを定量的に評価できる。
 図6は、図3(A)(B)にそれぞれ示されている波形解析、比較、評価の詳細図である。放電発光強度波形や放電電流波形の値は、デジタルオシロスコープDOSCから、波形解析部の積分回路と、ピーク検出回路に導かれる。積分回路は、受光素子出力波形の積分値Lqや電流変換プローブCTあるいは電流波形検出装置の出力波形の積分値qを算出し、かつ、ピーク検出回路は、受光素子出力波形のピーク値Lpや電流変換プローブCTあるいは電流波形検出装置の出力波形のピーク値ipを算出する。さらに演算回路で、積分回路からの出力qと印加電源情報としての発光発生時の電圧値Vとの積により放電エネルギーEを算出する。本発明は、この受光素子出力波形のピーク値Lpや積分値Lqにより、放電電流波形のピーク値ip、その面積(時間積分値)である放電電荷量q、および放電エネルギーEを評価する。特に、放電電流波形のピーク値ipは受光素子出力波形のピーク値Lpで、放電電荷量qは積分値Lqで評価する。放電エネルギーEはピーク値Lpと積分値Lqのどちらでもそれほど相違はないため、どちらで評価してもよい。
 図7は、発光強度波形のピーク値Lpや発光強度積分値Lqなどの発光信号を放電電流ピーク値と同時に測定して、この特性からLpやLqから放電電流ピークipの推定を説明する図であり、図中プロットは実測例を示し、かつ、図中ラインはデータベース作成用に修正した近似特性線である。このグラフの特性線上の各点が、表にしてデータベースに記録されている。放電電流波形のピーク値ipに対しては、出力波形のピーク値Lpの方が積分値Lqよりも線形的な対応となる。さらに物理的観点からも、放電電流波形のピーク値ipの推定には出力波形のピーク値Lpを使用する方が好ましい。なお、線形的に比例していない場合でも、近似特性線の関係に基づきピーク値ipの推定は行えるが、前記の表の関係に基づき、あるいは入力ピーク値Lpや積分値Lqに対する出力ピーク値ipの近似特性線を定式化してこの関数を求め、ピーク値Lpや積分値Lqの入力値に対する出力ピーク値ipが得られる。
 図8は、図7と同様に、発光強度波形のピーク値Lpや発光強度積分値Lqなどの発光信号を放電電荷量と同時に測定して、この特性からピーク値Lpや積分値Lqから放電電荷量qの推定を説明する図であり、図中プロットは実測例を示し、かつ、図中ラインはデータベース作成用に修正した近似特性線である。このグラフの特性線上の各点が、表にしてデータベースに記録されている。放電電荷量qに対しては、積分値Lqの方がピーク値Lpよりも線形的な対応となる。さらに物理的観点からも、放電電荷量qの推定には積分値Lqを使用する方が好ましい。なお、線形的に比例していない場合でも、近似特性線の関係に基づき放電電荷量qの推定は行えるが、前記の表の関係に基づき、あるいは入力積分値Lqやピーク値Lpに対する出力電荷量qの近似特性線を定式化してこの関数を求め、積分値Lqやピーク値Lpの入力値に対する出力電荷量qが得られる。
 図9は、図7や図8と同様に、発光強度波形のピーク値Lpや発光強度積分値Lqなどの発光信号を放電エネルギーと同時に測定して、この特性から放電エネルギーEの推定を説明する図であり、図中プロットは実測例を示し、かつ、図中ラインはデータベース作成用に修正した近似特性線である。このグラフの特性線上の各点が、表にしてデータベースに記録されている。放電エネルギーEに対しては、積分値Lqの方がピーク値Lpよりも線形的な対応となる。さらに物理的観点からも、放電エネルギーEの推定には積分値Lqを使用する方が好ましい。なお、線形的に比例していない場合でも、近似特性線の関係に基づき放電エネルギーEの推定は行えるが、前記の表の関係に基づき、あるいは入力ピーク値Lpや積分値Lqに対する出力放電エネルギーEの近似特性線を定式化してこの関数を求め、ピーク値Lpや積分値Lqの入力値に対する出力放電エネルギーEが得られる。
 図10は、異なる絶縁系の例として、絶縁ガス種の相違例を説明する図である。絶縁ガス種毎の放電発光ピーク値Lpに対する放電電流ピーク値ipを示すグラフである。上記の評価は、放電環境(使用しているガス絶縁体や液体絶縁物)により異なるため、対象となる絶縁ガス種毎のデータを事前に取得しておく必要がある。なお、ここでは、放電発光ピーク値Lpと放電電流ピーク値ipの関係を示したが、同様に放電発光積分値Lqと放電電荷量qあるいは放電エネルギーEとの関係も放電環境により異なるため、対象となる絶縁系毎のデータを事前に取得しておく必要がある。図10は、絶縁媒体(この例は絶縁ガス)の種類により特性が異なる例を示している。この他にも、放電形態が大きく変化するものは、放電形態毎のデータを用意しておくとより詳細に放電量を評価できる。
 光信号強度は、発光位置からセンサ位置の距離d依存性がある(距離dが大きくなるほど光信号強度は低下する)。そのため、この距離d依存性を考慮した補正をする。即ち、発光強度は距離dの二乗に反比例するため、この関係に基づき発光位置との距離dを考慮して発光強度を増減させる補正を行う。
 放電試験の場合、放電発生部位は電極位置となるため既知である。一方、保守診断では、放電発生部位は不明であるため、位置標定技術が必要となる。位置標定において、発光信号は、発生位置から受光素子までの距離の2乗に反比例して減衰するため、データベースに記録するデータ(発生源と受光素子の距離は、ある特定の長さで作成しておく)を距離補正する必要がある。なお、距離補正ができなくても、放電発光ピーク値Lpと放電電流ピーク値ipの関係や放電発光積分値Lqと放電電荷量qの関係など両者に線形性が認められる関係を用いることで、相対的な放電の大きさの変化は評価できる。
 以上、本開示にて幾つかの実施の形態を単に例示として詳細に説明したが、本発明の新規な教示及び有利な効果から実質的に逸脱せずに、その実施の形態には多くの改変例が可能である。

Claims (12)

  1. 測定対象機器の放電を、それに基づく発光を光学測定することにより非接触で評価する非接触放電評価方法において、
     放電源に、既知の電源より放電源に電圧を印加することにより放電発光させ、この放電発光の強度波形を受光素子を用いて測定し、同時に放電電流波形を電流変換プローブや電流波形検出器で測定して、それらの波形を解析した解析データとの関係を、前記放電源に印加した印加電源情報に基づいて記録したデータベースを作成し、
     測定対象機器から発生した放電発光の強度波形を、前記受光素子と同一若しくは同一種の受光素子を用いて測定して、その波形を解析することにより求められた発光データを、前記データベースに記録されているデータと比較することにより、放電の大きさを値として推定する、
    ことから成る非接触放電評価方法。
  2. 使用する受光素子毎、及び対象とする絶縁系で生じる放電環境毎に、前記データベースを作成し、かつ、前記放電の大きさの推定を行う請求項1に記載の非接触放電評価方法。
  3. 前記放電の大きさは、放電電流のピーク値、放電電流の積分値である電荷量、或いは放電エネルギー値である請求項1に記載の非接触放電評価方法。
  4. 前記放電の大きさを、測定した光強度波形のピーク値或いは光強度波形の面積で評価する請求項1に記載の非接触放電評価方法。
  5. 測定対象機器の放電を、それに基づく発光を光学測定することにより非接触で評価する非接触放電評価装置において、
     放電源に、既知の電源より放電源に電圧を印加することにより放電発光させ、この放電発光の強度波形を受光素子を用いて測定し、同時に放電電流波形を電流変換プローブや電流波形検出器で測定して、それらの波形を解析した解析データとの関係を、前記放電源に印加した印加電源情報に基づいて記録したデータベースと、
     測定対象機器から発生した放電発光の強度波形を、前記受光素子と同一若しくは同一種の受光素子を用いて測定して、その波形強度を取得する波形強度取得装置と、
     前記波形強度取得装置により取得した波形強度を解析する波形解析部と、
     前記波形解析部での解析により求められた発光データを、前記データベースに記録されているデータと比較することにより、放電の大きさを値として推定する比較部と、
     推定した結果を表示する表示部と、
    から成る非接触放電評価装置。
  6. 使用する受光素子毎、及び対象とする絶縁系で生じる放電環境毎に、前記データベースを作成し、かつ、前記放電の大きさの推定を行う請求項5に記載の非接触放電評価装置。
  7. 前記放電の大きさは、放電電流のピーク値、放電電流の積分値である電荷量、或いは放電エネルギー値である請求項5に記載の非接触放電評価装置。
  8. 前記放電の大きさを、測定した光強度波形のピーク値或いは光強度波形の面積で評価する請求項5に記載の非接触放電評価装置。
  9. 前記受光素子は、放電源に対して空間的に対向して配置し、或いは、光導波路を用いて配置した請求項5に記載の非接触放電評価装置。
  10. 発光強度に応じた前記受光素子の感度の増減は、前記受光素子自体のゲインの増減、又はその受光素子と発光源の距離を増減し、又は光学フィルタを設置し、あるいは光導波路を使用することにより調整する請求項5に記載の非接触放電評価装置。
  11. 前記受光素子及び前記波形強度取得装置を電磁遮蔽シールドボックス内へ設置した請求項5に記載の非接触放電評価装置。
  12. 複数の受光素子を用い、各受光素子と前記波形強度取得装置までの配線距離を同一とするか、又は、その長さの差分だけ時間補正を行う請求項5に記載の非接触放電評価装置。
     
PCT/JP2012/080816 2012-01-25 2012-11-29 非接触放電評価方法及び装置 WO2013111445A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12866479.4A EP2808673B1 (en) 2012-01-25 2012-11-29 Non-contact discharge evaluation method and non-contact discharge evaluation apparatus
US14/374,424 US9442154B2 (en) 2012-01-25 2012-11-29 Non-contact discharge evaluation method and non-contact discharge evaluation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012013305A JP5854468B2 (ja) 2012-01-25 2012-01-25 非接触放電評価方法及び装置
JP2012-013305 2012-06-05

Publications (1)

Publication Number Publication Date
WO2013111445A1 true WO2013111445A1 (ja) 2013-08-01

Family

ID=48873186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080816 WO2013111445A1 (ja) 2012-01-25 2012-11-29 非接触放電評価方法及び装置

Country Status (4)

Country Link
US (1) US9442154B2 (ja)
EP (1) EP2808673B1 (ja)
JP (1) JP5854468B2 (ja)
WO (1) WO2013111445A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111983361A (zh) * 2020-08-24 2020-11-24 Oppo(重庆)智能科技有限公司 测试治具及控制方法、电子设备及控制方法和测试系统
CN113361091A (zh) * 2021-06-01 2021-09-07 杭州电力设备制造有限公司 一种esd强度估计方法和系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6345803B2 (ja) * 2015-07-31 2018-06-20 株式会社日立製作所 部分放電検出装置及び部分放電検出方法
CN105372562B (zh) * 2015-10-21 2017-07-14 国网新疆电力公司检修公司 一种利用设定指标检测紫外放电程度的方法及系统
KR102449873B1 (ko) * 2015-12-11 2022-10-04 삼성전자주식회사 플래시를 포함하는 촬상 장치를 제어하는 방법 및 촬상장치
DE102018217335A1 (de) * 2018-10-10 2020-04-16 Robert Bosch Gmbh Verfahren zum Betreiben eines Verbrennungsmotors, Steuergerät zur Durchführung des Verfahrens
JP7149049B2 (ja) 2018-11-07 2022-10-06 株式会社Subaru 放電探知システム及び放電探知方法
JP2021139847A (ja) 2020-03-09 2021-09-16 株式会社Subaru 引火性スパーク評価システム及び引火性スパーク評価方法
DE102020119012B4 (de) * 2020-07-17 2022-05-19 Hochschule Für Technik Und Wirtschaft Berlin Vorrichtung und Verfahren zum Bestimmen einer Ladungsstärke einer Teilentladung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2707823B2 (ja) 1989-10-13 1998-02-04 富士電機株式会社 電気機器の故障監視装置
JP2008268083A (ja) * 2007-04-23 2008-11-06 Toyota Motor Corp 絶縁検査装置および絶縁検査方法
JP2008304357A (ja) * 2007-06-08 2008-12-18 Mitsubishi Electric Corp 部分放電計測装置
JP2010101671A (ja) * 2008-10-22 2010-05-06 Kyushu Institute Of Technology 部分放電発光検出方法及び装置
JP2010204067A (ja) 2009-03-06 2010-09-16 Ehime Univ 部分放電発生回数測定装置
JP2011099775A (ja) * 2009-11-06 2011-05-19 Toshiba Industrial Products Manufacturing Corp 部分放電電流計測システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6476396B1 (en) * 1999-04-09 2002-11-05 Keith W. Forsyth Electro-optical, non-contact measurement of electrical discharges
US20090015814A1 (en) * 2007-07-11 2009-01-15 Carl Zeiss Smt Ag Detector for registering a light intensity, and illumination system equipped with the detector
KR101028884B1 (ko) * 2008-12-30 2011-04-12 한국전기안전공사 유브이 센서어레이를 이용한 부분 방전량 측정 장치 및 방법
CN102959410B (zh) * 2009-12-11 2015-02-18 阿尔斯通技术有限公司 电弧检测方法及其设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2707823B2 (ja) 1989-10-13 1998-02-04 富士電機株式会社 電気機器の故障監視装置
JP2008268083A (ja) * 2007-04-23 2008-11-06 Toyota Motor Corp 絶縁検査装置および絶縁検査方法
JP2008304357A (ja) * 2007-06-08 2008-12-18 Mitsubishi Electric Corp 部分放電計測装置
JP2010101671A (ja) * 2008-10-22 2010-05-06 Kyushu Institute Of Technology 部分放電発光検出方法及び装置
JP2010204067A (ja) 2009-03-06 2010-09-16 Ehime Univ 部分放電発生回数測定装置
JP2011099775A (ja) * 2009-11-06 2011-05-19 Toshiba Industrial Products Manufacturing Corp 部分放電電流計測システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BENDJAMIN J ET AL.: "Remote Sensing of ESD through Optical and Magnetic Radiation Fields", IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, vol. 6, no. 6, December 1999 (1999-12-01), pages 896 - 899, XP055081091 *
RYUICHI ISHINO: "Hoden Bubun no Hakko Menseki o Mochiita More Denryu Suitei Shuho no Kaihatsu (sono 2) -Shiryohen no Sokutei Kekka ni Motozuku Haiden'yo Kobunshi Gaishi no More Denryu Suitei", CENTRAL RESEARCH INSTITUTE OF ELECTRIC POWER INDUSTRY, SYSTEM ENGINEER RESEARCH LABORATORY KENKYU HOKOKU, vol. R05008, May 2006 (2006-05-01), XP008174459 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111983361A (zh) * 2020-08-24 2020-11-24 Oppo(重庆)智能科技有限公司 测试治具及控制方法、电子设备及控制方法和测试系统
CN111983361B (zh) * 2020-08-24 2023-03-21 Oppo(重庆)智能科技有限公司 测试治具及控制方法、电子设备及控制方法和测试系统
CN113361091A (zh) * 2021-06-01 2021-09-07 杭州电力设备制造有限公司 一种esd强度估计方法和系统
CN113361091B (zh) * 2021-06-01 2022-05-17 杭州电力设备制造有限公司 一种esd强度估计方法和系统

Also Published As

Publication number Publication date
EP2808673B1 (en) 2019-10-30
US9442154B2 (en) 2016-09-13
JP5854468B2 (ja) 2016-02-09
EP2808673A4 (en) 2015-11-04
US20140361789A1 (en) 2014-12-11
EP2808673A1 (en) 2014-12-03
JP2013152155A (ja) 2013-08-08

Similar Documents

Publication Publication Date Title
JP5854468B2 (ja) 非接触放電評価方法及び装置
JP6103353B2 (ja) 非接触放電試験方法及び装置
US10012688B2 (en) Discharge occurrence status evaluation device and evaluation method
JP6284425B2 (ja) 空間電荷分布測定における電荷密度の校正方法
JP2010518412A (ja) 静電気放電現象を検出するシステム、方法、及びコンピュータプログラム
JP2009115505A (ja) 巻線の検査装置及び検査方法
KR20140120331A (ko) 부분 방전의 분석 및 위치파악 시스템
JP2010085366A (ja) 高電圧電気機器の絶縁異常診断装置
JP6231110B2 (ja) 部分放電計測法およびそれを用いて検査した高電圧機器
CN102650654A (zh) 一种电力变压器铁芯、夹件接地电流监测装置运行性能在线测评方法
EP2209014A1 (en) Partial corona discharge detection
Rohani et al. Classification of partial discharge detection technique in high voltage power component: A review
Habel et al. Fibre-optic Sensors for Early Damage Detection in Plastic Insulations of High Voltage Facilities
De Macedo et al. Partial discharge estimation based on radiometric and classical measurements
Neuhold On site tests of GIS
Hussain et al. Detection of multiple partial discharge faults in switchgear and power cables
Gortschakow et al. Electro-Optical Diagnostics of Single Partial Discharges
Shafiq et al. Identifcation and Location of Partial Discharge Defects in Medium Voltage AC Cables
Bas Calopa Partial discharges in low-pressure atmosphere: an experimental approach to improving electrical protection
Xie et al. Study on optical-electrical signal characteristics of partial discharge of gas-insulated electric equipment
Nugraha et al. Investigation of DC corona discharge properties using UHF method
Seltzer-grant et al. On-Line PD Spot Testing and Continuous Monitoring for In Service Power Cables–Techniques and Field Experiences
EP2778695A1 (en) Assessment of electromagnetic screening
Palitó et al. Acoustic detection of single and multiple air-gap partial discharges with piezoelectrets transducers
Govender et al. Partial discharge detection using RFI measurements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866479

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14374424

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012866479

Country of ref document: EP