WO2013108942A1 - Composite préparé grâce à l'adhérence de nanoparticules d'étain sur des poudres métalliques et non métalliques - Google Patents

Composite préparé grâce à l'adhérence de nanoparticules d'étain sur des poudres métalliques et non métalliques Download PDF

Info

Publication number
WO2013108942A1
WO2013108942A1 PCT/KR2012/000472 KR2012000472W WO2013108942A1 WO 2013108942 A1 WO2013108942 A1 WO 2013108942A1 KR 2012000472 W KR2012000472 W KR 2012000472W WO 2013108942 A1 WO2013108942 A1 WO 2013108942A1
Authority
WO
WIPO (PCT)
Prior art keywords
tin
copper powder
sintering
nanoparticles
tin nanoparticles
Prior art date
Application number
PCT/KR2012/000472
Other languages
English (en)
Korean (ko)
Inventor
김용상
Original Assignee
Kim Young Sang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kim Young Sang filed Critical Kim Young Sang
Priority to PCT/KR2012/000472 priority Critical patent/WO2013108942A1/fr
Publication of WO2013108942A1 publication Critical patent/WO2013108942A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Definitions

  • the present invention relates to a composite material used for patterning, sintering and the like.
  • the present invention has been made focusing on the problem that the oxidation of copper prevents the oxidation of copper by the surface melting at a low temperature of nano tin.
  • Challenges in patterning lead-free solder pastes include lowering the sintering temperature and ensuring electrical conductivity after sintering.
  • the present invention significantly lowered the sintering temperature from 240 ° C to 160 ° C and significantly improved the electrical conductivity compared to the conventional lead-free solder.
  • the composite material in which tin nanoparticles were attached to the present copper powder solved this problem because the electrical conductivity of copper powder and low sintering temperature of tin nanoparticles could be realized.
  • the nanoparticles of tin were first subjected to surface melting to oxidize copper. Has the advantage of preventing the source.
  • the tin nanoparticles surface-melted at 160 ° C. or lower are attached to the copper powder surface before the tin powder is oxidized. Surface is melted to prevent oxidation of copper and oxygen.
  • the copper powder may have the tin nanoparticles acting as an adhesive between the copper powder particles without surface melting, thereby simultaneously obtaining the effect of sintering.
  • tin serves as a coating of copper.
  • the present invention can prevent the oxidation of the copper powder by coating the coating of the copper powder with tin, it is possible to lower the sintering temperature below 160 °C, the sintering temperature of the tin nanoparticles, the electrical conductivity can maintain the level of copper powder
  • innovative improvements in the electrical and electronics industries can be achieved. That is, it is possible to replace most processes using silver powder with copper, to solve the oxidation problem during sintering of copper powder, and to solve the problem of low electrical conductivity, which is a problem of lead-free solder.
  • 1 is a composite material of the present invention and a paste manufacturing process thereof.
  • 3 is an electron micrograph of the tin nanoparticles used in the composite material of the present invention.
  • step 1 shows a process for producing the composite material and the paste of the present invention.
  • step 1 relates to copper powder preparation.
  • the copper powder may be prepared at a level of 10 ⁇ m at 100 nm with small particles, and may be prepared at 10 ⁇ m or more when used for general purpose and low quality.
  • Process 2 relates to the production of tin nanoparticles.
  • the easiest way is to obtain tin nanoparticles by using tin as the cathode and anode electrodes in a reactor containing pure water, adding electrolyte solution and reducing agent, and then electrolyzing tin by direct current.
  • tin nanoparticles can be obtained by a method such as plasma or arc generation. Tin nanoparticles obtained in this manner can be obtained at the level of 1 to 20 nm.
  • a substance that does not cause oxidation when copper powder such as alcohol or MEK is added is added to the glass reactor by the volume of tin nanoparticles and copper powder, and the tin nanoparticles are first dispersed.
  • the copper powder is added to the dispersed colloidal tin nanoparticles, and the mixture is mixed with ultrasonic waves.
  • the ratio of copper powder: tin nanoparticles: solvent is 49.5: 0.5: 50 to 35:15:50. If the electrical conductivity is important according to the use of the product, increase the volume ratio of the copper powder, and attach and sinter If more quality is required, increase the volume fraction of the tin nanoparticles.
  • step 4 the colloid of step 3 mixed well is freeze-dried to obtain a composite powder in which tin nanoparticles are attached to the copper powder. At this time, care should be taken when drying at high temperature because the tin nanoparticles agglomerate and affect the sintering temperature.
  • step 5 the composite material obtained in step 4 is added with agitation of a flux suitable for the purpose, and then the composite material paste is prepared, and the material is ready for use in the field.
  • the tin nanoparticles prepared in the process (2) are mixed with copper powder and flux, and the composite material paste can be directly prepared using a paste maker.
  • the distribution of tin nanoparticles in the copper powder is slightly uneven, but there is an advantage of simplifying the manufacturing process.
  • FIG. 2 shows a photograph taken with an electron microscope of the composite material of the present invention and a conceptual diagram thereof. Substantially the same effect can be obtained by using nanoparticles of low melting point metal such as tin alloy, tin oxide, and lead instead of tin. Tin oxide can also be reduced to tin at low temperatures during sintering to achieve a similar effect.
  • low melting point metal such as tin alloy, tin oxide, and lead instead of tin.
  • Tin oxide can also be reduced to tin at low temperatures during sintering to achieve a similar effect.
  • metals such as tungsten, titanium, aluminum and stainless steel, materials with high electrical conductivity such as CNT and graphene, alumina and ceramic may be used.
  • Copper powder increases the electrical conductivity of copper, tungsten and titanium increase strength, aluminum can realize lightness and rigidity, and CNT and graphene can achieve similar effects with high conductivity like copper. Can be.
  • the advantages of metals or ceramics are nano-ized metals with low melting point, such as tin or lead, attached to the surface and sintered at a low temperature of 160 ° C to prevent surface oxidation of the metals, It is the most efficient composite material that can save.
  • the electrode was made of a rod of 40 cm in length, 3 cm in thickness, and 1 cm in thickness, and attached to the cathode and the anode.
  • a direct current of 540 volts was applied to the electrode, a few amperes of current initially flowed, and after about 10 minutes, the sodium chloride aqueous solution temperature in the electrolyzer rose, and 10 ampere currents flowed. As it boiled, it began to evaporate. The current flowed up and down from 35 amps to 45 amps. From this time, a pump for automatically supplying pure water was operated so that the water level was reduced to maintain a constant level.
  • tin nanoparticles having a particle size of 1-20 nm are added in a volume of 20 ml, followed by dispersion by applying ultrasonic waves.
  • a copper powder having a particle size of 1 to 3 ⁇ m was added to a colloid in which tin nanoparticles were dispersed in ethyl alcohol in a glass container, and then dispersed by freezing and freeze drying to prepare a composite material.
  • FIG. 3 is an electron micrograph (FE-SEM) of the tin nanoparticles obtained in Example 1 described above and photographed by an analysis request from the Daegu-Gyeongbuk Nano Parts Commercialization Center. As a result of the photo analysis, it was confirmed that the size of 95% or more of the initial particles was very uniform at 4-8 nm level.
  • FE-SEM electron micrograph

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Abstract

L'invention se rapporte à un composite préparé grâce à l'association de nanoparticules d'étain à une poudre de cuivre, ce composite étant fritté à une température inférieure à la température de frittage des nanoparticules d'étain et maintenant la conductivité électrique d'une poudre de cuivre. En particulier, lorsque le composite est fritté, la surface des nanoparticules d'étain est tout d'abord amenée à l'état fondu, de manière à bloquer le contact des particules de poudre de cuivre et de l'air, ce qui permet d'empêcher l'oxydation du cuivre lors d'un frittage à haute température. Autrement dit, il est possible d'obtenir une certaine rentabilité par le remplacement de l'argent traditionnellement utilisé, qui est un métal coûteux. De plus, il est possible d'accroître considérablement la conductivité électrique pour qu'elle atteigne celle d'une poudre de cuivre et de réduire la température de frittage pour qu'elle atteigne celle d'une pâte à souder classique dans un motif de soudure sans plomb traditionnel, ce qui représente un perfectionnement important pour l'industrie électrique et électronique. En outre, un composite préparé grâce à l'association de nanoparticules d'étain à une poudre métallique sélectionnée dans le groupe constitué par de l'or, de l'argent, du tungstène, du titane, de l'acier inoxydable, de l'aluminium, du fer et du nickel, ou issue d'une combinaison de ces métaux, au lieu d'une poudre de cuivre, peut également présenter des propriétés physiques typiques en fonction des caractéristiques d'un matériau. En d'autres termes, il est possible de développer un matériau adapté à une utilisation spécifique au moyen d'avantages, tels que le frittage, à l'aide d'étain ayant un point de fusion bas, de tungstène ayant une grande résistance à l'abrasion, et autres. En particulier, la surface de l'étain fond à une température de frittage qui peut empêcher l'oxydation du tungstène adhérant lors du frittage, ce qui permet de réaliser un frittage à l'air et d'augmenter les répercussions économiques.
PCT/KR2012/000472 2012-01-19 2012-01-19 Composite préparé grâce à l'adhérence de nanoparticules d'étain sur des poudres métalliques et non métalliques WO2013108942A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/000472 WO2013108942A1 (fr) 2012-01-19 2012-01-19 Composite préparé grâce à l'adhérence de nanoparticules d'étain sur des poudres métalliques et non métalliques

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/000472 WO2013108942A1 (fr) 2012-01-19 2012-01-19 Composite préparé grâce à l'adhérence de nanoparticules d'étain sur des poudres métalliques et non métalliques

Publications (1)

Publication Number Publication Date
WO2013108942A1 true WO2013108942A1 (fr) 2013-07-25

Family

ID=48799357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000472 WO2013108942A1 (fr) 2012-01-19 2012-01-19 Composite préparé grâce à l'adhérence de nanoparticules d'étain sur des poudres métalliques et non métalliques

Country Status (1)

Country Link
WO (1) WO2013108942A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105643148A (zh) * 2016-03-07 2016-06-08 上海和伍复合材料有限公司 一种银钎焊膏及其制备方法
WO2017050284A1 (fr) * 2015-09-25 2017-03-30 天津大学 Procédé de préparation pour soudure composite sans plomb au graphène à l'argent à base d'étain
CN109014221A (zh) * 2018-09-05 2018-12-18 新疆烯金石墨烯科技有限公司 一种石墨烯铝合金粉末的制备方法
CN114293051A (zh) * 2021-12-23 2022-04-08 北京科大京都高新技术有限公司 一种抗高温软化高强高导铜基复合材料成型件的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080010691A (ko) * 2006-07-27 2008-01-31 주식회사 엘지화학 은, 구리, 및 주석을 포함하는 합금 나노입자 및 그제조방법
KR20100019867A (ko) * 2008-08-11 2010-02-19 삼성전기주식회사 주석-구리-은 합금나노입자, 이의 제조 방법 및 상기 합금나노입자를 이용한 잉크 또는 페이스트
JP2011162879A (ja) * 2010-02-04 2011-08-25 Robert Bosch Gmbh 導電性材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080010691A (ko) * 2006-07-27 2008-01-31 주식회사 엘지화학 은, 구리, 및 주석을 포함하는 합금 나노입자 및 그제조방법
KR20100019867A (ko) * 2008-08-11 2010-02-19 삼성전기주식회사 주석-구리-은 합금나노입자, 이의 제조 방법 및 상기 합금나노입자를 이용한 잉크 또는 페이스트
JP2011162879A (ja) * 2010-02-04 2011-08-25 Robert Bosch Gmbh 導電性材料

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017050284A1 (fr) * 2015-09-25 2017-03-30 天津大学 Procédé de préparation pour soudure composite sans plomb au graphène à l'argent à base d'étain
CN105643148A (zh) * 2016-03-07 2016-06-08 上海和伍复合材料有限公司 一种银钎焊膏及其制备方法
CN109014221A (zh) * 2018-09-05 2018-12-18 新疆烯金石墨烯科技有限公司 一种石墨烯铝合金粉末的制备方法
CN114293051A (zh) * 2021-12-23 2022-04-08 北京科大京都高新技术有限公司 一种抗高温软化高强高导铜基复合材料成型件的制备方法

Similar Documents

Publication Publication Date Title
Mizuguchi et al. A highly stable nonaqueous suspension for the electrophoretic deposition of powdered substances
JP6224933B2 (ja) 銀被覆銅合金粉末およびその製造方法
WO2013108942A1 (fr) Composite préparé grâce à l'adhérence de nanoparticules d'étain sur des poudres métalliques et non métalliques
TW201302347A (zh) 具有樹枝狀結晶之銅粉
CN103273056A (zh) 一种片状铜粉及其制备方法
JP2018168445A (ja) 塩化銀被覆粒子
CN102969082B (zh) Ag包覆Ni复合纳米粉体导电浆料的制备方法
CN108360025B (zh) 一种水溶液电解固态金属硫化物制备金属的方法
KR20120082972A (ko) 금속과 비금속 파우더에 나노 주석을 부착하여 제조한 복합소재
CN100570011C (zh) 一种由复合化合物制备金属材料的方法
CN103422122B (zh) 一种二氧化钛直接制备金属钛的方法
WO2013185539A1 (fr) Anode en alliage inerte utilisée pour l'électrolyse d'aluminium et procédé de préparation associé
CN105127414B (zh) 一种核壳结构银包镍纳米粉体材料的制备方法
JP2015021137A (ja) 銀被覆銅合金粉末およびその製造方法
CN107723748B (zh) 常压空心等离子电极在熔盐电解中的应用
CN110205651A (zh) 一种低温电化学还原钒氧化物制备金属钒的方法
CN108193110A (zh) 一种镁合金阳极材料的制备方法
CN110073037A (zh) 电解铝箔的制造方法和制造装置
KR20190071116A (ko) 고체 산화물 멤브레인용 복합체, 이의 제조방법 및 이를 포함하는 고체 산화물 멤브레인
CN103484895B (zh) 一种电解铝用惰性合金阳极及其制备方法
KR101274979B1 (ko) 알루미늄 합금에 탄소나노튜브를 포함하는 코팅층을 형성하는 방법 및 이에 의해 형성된 코팅층을 갖는 알루미늄 합금
CN107083510B (zh) 一种镍基金属氧化物陶瓷惰性阳极、制备方法及应用
CN116453737B (zh) 基于铜包覆洋葱富勒烯导电相的太阳能电池用导电浆料
CN104505145B (zh) 一种含镍微粉的导电银浆
JPH1192805A (ja) 銅合金粉末およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865916

Country of ref document: EP

Kind code of ref document: A1