WO2013108791A1 - 半導体用シール組成物、半導体装置及びその製造方法、並びに、ポリマー及びその製造方法 - Google Patents

半導体用シール組成物、半導体装置及びその製造方法、並びに、ポリマー及びその製造方法 Download PDF

Info

Publication number
WO2013108791A1
WO2013108791A1 PCT/JP2013/050686 JP2013050686W WO2013108791A1 WO 2013108791 A1 WO2013108791 A1 WO 2013108791A1 JP 2013050686 W JP2013050686 W JP 2013050686W WO 2013108791 A1 WO2013108791 A1 WO 2013108791A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
nitrogen atom
semiconductor
interlayer insulating
insulating layer
Prior art date
Application number
PCT/JP2013/050686
Other languages
English (en)
French (fr)
Inventor
昇子 小野
靖剛 茅場
田中 博文
高村 一夫
鈴木 常司
三尾 茂
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to US14/372,237 priority Critical patent/US9169353B2/en
Priority to JP2013554312A priority patent/JP5931092B2/ja
Priority to CN201380005535.1A priority patent/CN104081503B/zh
Priority to KR1020147021288A priority patent/KR101638717B1/ko
Priority to IN6561DEN2014 priority patent/IN2014DN06561A/en
Priority to EP13738470.7A priority patent/EP2806454B1/en
Priority to SG11201404068QA priority patent/SG11201404068QA/en
Publication of WO2013108791A1 publication Critical patent/WO2013108791A1/ja
Priority to IL233604A priority patent/IL233604A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0206Polyalkylene(poly)amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0206Polyalkylene(poly)amines
    • C08G73/0213Preparatory process
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0206Polyalkylene(poly)amines
    • C08G73/0213Preparatory process
    • C08G73/0226Quaternisation of polyalkylene(poly)amines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J179/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
    • C09J179/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02203Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02304Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment formation of intermediate layers, e.g. buffer layers, layers to improve adhesion, lattice match or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02362Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment formation of intermediate layers, e.g. capping layers or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2190/00Compositions for sealing or packing joints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2003/1087Materials or components characterised by specific uses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a semiconductor sealing composition, a semiconductor device and a method of manufacturing the same, and a polymer and a method of manufacturing the same.
  • low-k materials various materials of low dielectric constant having a porous structure
  • various materials of low dielectric constant having a porous structure are being studied as interlayer insulating layers of semiconductors.
  • metal components such as copper embedded as a wiring material, plasma components by plasma processing (radicals and ions) Or the like, etc.
  • the dielectric constant may increase or leak current may occur.
  • metal components and plasma components may penetrate, and as in the case of the porous interlayer insulating layer, the dielectric constant may increase or leak current may occur. .
  • the pore-like surface of the groove formed by etching is sealed by using a micelle surfactant for wet cleaning after etching.
  • the technology is known (see, for example, JP-A-2009-503879).
  • the low-k material has a hydrophobic surface
  • a technique for controlling the hydrophilicity / hydrophobicity of the material by applying a polyvinyl alcohol amphiphilic polymer to the surface for example, See WO 09/012184 pamphlet.
  • a composition for polishing a semiconductor containing a cationic polymer and a surfactant is known (see, for example, JP-A-2006-352042).
  • a surfactant having no micelle structure may enter pores of the side wall surface of the groove to increase the dielectric constant. Further, the adhesion between the interlayer insulating layer and the wiring material may be lowered by the micelles.
  • a bulky layer is easily formed by hydrogen bonding between polyvinyl alcohol amphiphilic polymers, whereby the relative dielectric constant of the interlayer insulating layer is increased. In some cases, the adhesion between the interlayer insulating layer and the wiring material may be degraded.
  • the object of the present invention is to provide a semiconductor sealing composition having excellent sealing properties to an interlayer insulating layer, a semiconductor device using the semiconductor sealing composition, a method of manufacturing the same, and a polymer suitable for the semiconductor sealing composition. And a method of manufacturing the same.
  • the specific means for solving the said subject is as follows.
  • a polymer comprising a polymer having two or more cationic functional groups containing at least one of a tertiary nitrogen atom and a quaternary nitrogen atom and having a weight average molecular weight of 2000 to 1,000,000 and a branching degree of 48% or more, And the content of potassium is 10 wt ppb or less on an element basis, respectively.
  • ⁇ 3> The polymer according to ⁇ 2>, further having a structural unit derived from an alkyleneimine having 2 to 8 carbon atoms and containing a secondary nitrogen atom as a cationic functional group. It is a seal composition.
  • ⁇ 4> The polymer according to any one of ⁇ 1> to ⁇ 3>, wherein the polymer contains a primary nitrogen atom, and the ratio of the primary nitrogen atom to the total nitrogen atoms in the polymer is 33 mol% or more.
  • ⁇ 5> The semiconductor seal composition according to any one of ⁇ 1> to ⁇ 4>, wherein the degree of branching of the polymer is 55% or more.
  • ⁇ 6> The semiconductor seal composition according to any one of ⁇ 1> to ⁇ 5>, wherein the average particle diameter measured by the dynamic light scattering method is 150 nm or less.
  • ⁇ 7> The semiconductor seal composition according to any one of ⁇ 1> to ⁇ 6>, wherein the polymer is polyethyleneimine or a polyethyleneimine derivative.
  • ⁇ 8> The semiconductor seal composition according to any one of ⁇ 1> to ⁇ 7>, wherein the polymer has a cationic functional group equivalent weight of 27 to 430.
  • a method of manufacturing a semiconductor device comprising a seal composition applying step of applying the seal composition for a semiconductor according to any one of ⁇ 1> to ⁇ 8> to an interlayer insulating layer formed on a substrate. It is. ⁇ 10> The method for producing a semiconductor device according to ⁇ 9>, wherein the interlayer insulating layer contains porous silica and has silanol residues derived from the porous silica on the surface thereof.
  • the method further includes the step of forming a concave groove having a width of 10 nm to 32 nm in the interlayer insulating layer, and in the seal composition applying step, the semiconductor seal is formed on the interlayer insulating layer at least on the side surface of the concave groove. It is a manufacturing method of the semiconductor device as described in ⁇ 9> or ⁇ 10> which contacts a composition.
  • the interlayer insulating layer is preferably a porous interlayer insulating layer (that is, an interlayer insulating layer having a porous structure).
  • ⁇ 13> A polymer having at least two cationic functional groups containing at least one of a tertiary nitrogen atom and a quaternary nitrogen atom and having a weight average molecular weight of 2,000 to 1,000,000 and a degree of branching of 48% or more.
  • the polymer according to ⁇ 13> which is polyethyleneimine or a derivative of polyethyleneimine. It is a method of manufacturing the polymer as described in ⁇ 15> ⁇ 13> or ⁇ 14>, Comprising: The process which makes the compound represented by the following general formula (m-1) react with the raw material polymer containing a secondary nitrogen atom It is a manufacturing method of the polymer which it has.
  • R represents a protecting group
  • n represents an integer of 1 to 4.
  • a semiconductor seal composition having excellent sealability to an interlayer insulating layer, a semiconductor device using the semiconductor seal composition, a method of manufacturing the same, and a polymer suitable for the semiconductor seal composition and the semiconductor device A manufacturing method can be provided.
  • the semiconductor sealing composition of the present invention is used, for example, to form a polymer layer covering the surface of the interlayer insulating layer (preferably, a polymer layer covering the pores formed in the porous interlayer insulating layer).
  • a polymer layer covering the surface of the interlayer insulating layer preferably, a polymer layer covering the pores formed in the porous interlayer insulating layer.
  • Sodium and a polymer having two or more cationic functional groups containing at least one of a tertiary nitrogen atom and a quaternary nitrogen atom and having a weight average molecular weight of 2000 to 1,000,000 and a branching degree of 48% or more;
  • the content of potassium is 10 wt ppb or less on an element basis, respectively.
  • the sealing composition for a semiconductor having such a configuration is applied to an interlayer insulating layer, for example, two or more cationic functional groups possessed by the polymer are adsorbed on the interlayer insulating layer at multiple points, and the surface of the interlayer insulating layer (interlayer When the insulating layer is a porous interlayer insulating layer, the pores present in the porous interlayer insulating layer are covered with the polymer layer. Thereby, the diffusion of the metal component and the plasma component to the interlayer insulating layer (particularly, the porous interlayer insulating layer) can be suppressed (that is, excellent sealability to the interlayer insulating layer is exhibited).
  • the polymer layer formed by the polymer is a thin layer (for example, 5 nm or less), the adhesion between the interlayer insulating layer and the wiring material formed on the interlayer insulating layer via the polymer layer is excellent. A change in dielectric constant can be suppressed.
  • the two or more cationic functional groups contain at least one of a tertiary nitrogen atom and a quaternary nitrogen atom, and the degree of branching of the polymer is 48% or more.
  • the interlayer insulating layer particularly, the porous interlayer insulating layer
  • extremely excellent sealing performance can be obtained. That is, the diffusion of the metal component and the plasma component to the interlayer insulating layer (particularly, the porous interlayer insulating layer) can be significantly suppressed.
  • the two or more cationic functional groups contain at least one of a tertiary nitrogen atom and a quaternary nitrogen atom, and the degree of branching of the polymer is 48% or more.
  • heat treatment for example, heat treatment at 200 ° C. to 425 ° C. (preferably 200 ° C. to 400 ° C., more preferably 200 ° C. to 350 ° C.)
  • a polymer layer (seal layer) excellent in heat resistance can be formed in the interlayer insulating layer.
  • the seal composition for a semiconductor according to the present invention has two or more cationic functional groups containing at least one of tertiary nitrogen atom and quaternary nitrogen atom, and has a weight average molecular weight of 2000 to 1,000,000 and a branching degree of 48% or more. It contains at least one kind of a certain polymer (hereinafter, also referred to as "the polymer of the present invention").
  • the “degree of branching” refers to a value determined by the following equation 1.
  • Degree of branching (%) ((number of tertiary nitrogen atoms + number of quaternary nitrogen atoms) / (number of secondary nitrogen atoms + number of tertiary nitrogen atoms + number of quaternary nitrogen atoms)) ⁇ 100 Formula 1
  • the linear polyalkyleneimine is a polyalkyleneimine having a degree of branching of 0% because it has no tertiary nitrogen atom or quaternary nitrogen atom.
  • Polyalkyleneimines in which all nitrogen atoms contained in the end-to-end backbone moiety are tertiary nitrogen atoms (ie, maximally branched) are polyalkyleneimines having a degree of branching of 100%.
  • primary nitrogen atom refers to a nitrogen atom (eg, nitrogen contained in a primary amino group (—NH 2 group)) bonded to only two hydrogen atoms and one atom other than hydrogen atoms. Atom) or a nitrogen atom (cation) bonded to only three hydrogen atoms and one atom other than hydrogen atoms.
  • secondary nitrogen atom means a nitrogen atom bonded to only one hydrogen atom and two atoms other than hydrogen atom (for example, a nitrogen atom contained in a functional group represented by the following formula (a)) Or a nitrogen atom (cation) bonded to only two hydrogen atoms and two atoms other than hydrogen atoms.
  • tertiary nitrogen atom refers to a nitrogen atom bonded to only three atoms other than a hydrogen atom (ie, a nitrogen atom which is a functional group represented by the following formula (b)) or a hydrogen atom It refers to a nitrogen atom (cation) bound to only one and three atoms other than hydrogen atoms.
  • quaternary nitrogen atom refers to a nitrogen atom (cation) bonded to only four atoms other than hydrogen atoms.
  • the “atom other than hydrogen atom” is not particularly limited, and examples thereof include a carbon atom, a silicon atom and the like, and a carbon atom is preferable.
  • the functional group represented by the above-mentioned formula (a) may be a functional group constituting a part of a secondary amino group (-NHR a group; here, R a represents an alkyl group) Or a divalent linking group contained in the backbone of the polymer.
  • the functional group represented by the formula (b) is a tertiary amino group (—NR b R c group; wherein R b and R c are each independently alkyl It may be a functional group that constitutes a part of the group) or a trivalent linking group contained in the backbone of the polymer.
  • the degree of branching of the polymer needs to be 48% or more, but from the viewpoint of further improving the sealing property, the degree of branching is preferably 55% or more, more preferably 70% or more And particularly preferably 75% or more.
  • the upper limit of the degree of branching of the polymer is not particularly limited, but when the polymer contains a secondary nitrogen atom, the degree of branching is less than 100%. From the viewpoint of ease of synthesis, the degree of branching of the polymer is preferably 95% or less.
  • the method of adjusting the degree of branching to 48% or more is not particularly limited.
  • the method of adjusting the polymerization condition itself of the monomer at the time of synthesizing the polymer, or primary nitrogen atom or secondary nitrogen contained in the polymer There is a method of raising the degree of branching by generating a tertiary nitrogen atom or a quaternary nitrogen atom from primary nitrogen atoms or secondary nitrogen atoms by reacting other nitrogen-containing compounds or alkyl compounds with atoms. .
  • a specific example of the latter method will be described later as "a method of producing a polymer".
  • the polymer of the present invention preferably has a structural unit having a cationic functional group (a structural unit derived from a monomer having a cationic functional group).
  • the structure of the polymer may be a structure formed by linear polymerization of a monomer having a cationic functional group, or may be formed by branched polymerization of a monomer having a cationic functional group. The structure may be different.
  • the "cationic functional group” in the present invention is not particularly limited as long as it is a functional group capable of being positively charged.
  • a functional group containing a nitrogen atom (primary nitrogen atom, secondary nitrogen atom, tertiary nitrogen atom, or quaternary nitrogen atom) is preferable.
  • the term "functional group containing nitrogen atom” as used herein also includes a functional group composed of only one nitrogen atom.
  • the polymer of the present invention has two or more cationic functional groups containing at least one of a tertiary nitrogen atom and a quaternary nitrogen atom.
  • the polymer having two or more cationic functional groups containing at least one of tertiary nitrogen atoms and quaternary nitrogen atoms means at least one of tertiary nitrogen atoms and quaternary nitrogen atoms as cationic functional groups.
  • Polymers having two or more cationic functional groups ie, having two or more cationic functional groups, and at least one of the two or more cationic functional groups being a tertiary nitrogen atom and a quaternary nitrogen atom A polymer which is at least one of
  • the polymer of the present invention is preferably a polymer having at least one of tertiary nitrogen atoms and quaternary nitrogen atoms (particularly preferably tertiary nitrogen atoms) as a cationic functional group.
  • the polymer of the present invention may contain a primary nitrogen atom or a secondary nitrogen atom as a cationic functional group.
  • a primary nitrogen atom the proportion of primary nitrogen atoms in all nitrogen atoms in the polymer is preferably 33% by mole or more.
  • the polymer of the present invention contains primary nitrogen atoms (in particular, the ratio of primary nitrogen atoms is 33 mol% or more), the wettability between the polymer and the interlayer insulating film is further improved, and the thickness of the polymer layer
  • the sealability can be further improved because the uniformity of the
  • the polymer contains a primary nitrogen atom, it is preferable to make a nitrogen atom other than the primary such as a secondary nitrogen atom coexist in addition to the primary nitrogen atom.
  • the thickness of the polymer layer can be easily adjusted to an appropriate range, and the sealability can be further improved.
  • the polymer may further have an anionic functional group or a nonionic functional group, as necessary.
  • the nonionic functional group may be a hydrogen bond accepting group or a hydrogen bond donating group.
  • Examples of the nonionic functional group include a hydroxy group, a carbonyl group and an ether group (-O-).
  • the anionic functional group is not particularly limited as long as it can be negatively charged.
  • a carboxylic acid group, a sulfonic acid group, a sulfuric acid group etc. can be mentioned, for example.
  • the polymer may be one having two or more cationic functional groups containing at least one of a tertiary nitrogen atom and a quaternary nitrogen atom in one molecule, but from the viewpoint of further improving the sealability, the cation density Is preferably a high polymer.
  • the cationic functional group equivalent is preferably 27 to 430, and more preferably 43 to 200.
  • the density of the polar group on the surface It is also preferred that it is between 43 and 200 because
  • the cationic functional group equivalent means the weight average molecular weight per cationic functional group, and the weight average molecular weight (Mw) of the polymer is divided by the number (n) of cationic functional groups contained in the polymer corresponding to one molecule. Value (Mw / n) obtained by The larger the cationic functional group equivalent, the lower the density of the cationic functional group, while the smaller the cationic functional group equivalent, the higher the density of the cationic functional group.
  • the cationic functional group has at least one main chain in the specific structural unit. It may be contained as a part or as at least a part of a side chain, and may be further contained as at least a part of a main chain and at least a part of a side chain. Furthermore, when the said specific structural unit contains 2 or more of cationic functional groups, 2 or more of cationic functional groups may be same or different.
  • the cationic functional group is a ratio of the main chain length of a specific structural unit to the average distance between adsorption points (for example, silanol residues) of the cationic functional group present on the interlayer insulating layer (hereinafter referred to as “cationic It is preferable that the relative distance between functional groups be “1.6 or less”, and more preferably 0.08 to 1.0. In this aspect, the polymer is more easily adsorbed to the interlayer insulating layer more efficiently.
  • the specific structural unit preferably has a molecular weight of 30 to 500, and more preferably 40 to 200, from the viewpoint of adsorptivity to the interlayer insulating layer.
  • the molecular weight of a specific structural unit means the molecular weight of the monomer which comprises a specific structural unit.
  • the specific structural unit in the present invention preferably has a relative distance between cationic functional groups of 1.6 or less and a molecular weight of 30 to 500, from the viewpoint of the adsorptivity to the interlayer insulating layer. More preferably, the relative distance between groups is 0.08 to 1.0, and the molecular weight is 40 to 200.
  • specific structural unit structural unit having a cationic functional group
  • structural unit having a cationic functional group include a unit structure derived from a cationic functional group-containing monomer exemplified below.
  • Specific examples of the cationic functional group-containing monomer include alkyleneimine, allylamine, diallyldimethylammonium salt, vinylpyridine, lysine, methylvinylpyridine, p-vinylpyridine and the like.
  • the alkylene imine is preferably an alkylene imine having 2 to 12 carbon atoms, and more preferably an alkylene imine having 2 to 8 carbon atoms. Further, as the above-mentioned alkyleneimine having 2 to 12 carbon atoms, a substituted or unsubstituted cyclic amine having 2 to 8 carbon atoms is preferable.
  • alkyleneimine having 2 to 12 carbon atoms examples include ethyleneimine (alias: aziridine), propyleneimine (alias: 2-methylaziridine), butyleneimine, pentyleneimine, hexyleneimine, heptyleneimine, octyleneimine, Trimethylene imine (alias: azetidine), tetramethylene imine (alias: pyrrolidine), pentamethylene imine (alias: piperidine), hexamethylene imine, octamethylene imine, and the like.
  • ethyleneimine is particularly preferred.
  • the cationic functional group-containing monomer is at least one of an alkylene imine (preferably an alkylene imine having a carbon number of 2 to 8) and an allyl amine from the viewpoints of adsorption to the interlayer insulating layer and sealing property. It is preferable that it is an alkylene imine (preferably an alkylene imine having 2 to 4 carbon atoms, particularly preferably an ethylene imine).
  • the polymer of the present invention has 2 to 8 carbon atoms (more preferably carbon) as the specific structural unit (structural unit having a cationic functional group) from the viewpoint of adsorption to the interlayer insulating layer and sealing property. It is preferable that the structural unit is derived from the alkyleneimine of the formulas 2 to 4) and contains a tertiary nitrogen atom. From the viewpoint of easiness of synthesis, the polymer of the present invention is a structural unit derived from an alkyleneimine having 2 to 8 carbon atoms (more preferably 2 to 4 carbon atoms) and containing a tertiary nitrogen atom. In addition to the above, it is more preferable to include a structural unit derived from an alkyleneimine having 2 to 8 carbon atoms (more preferably 2 to 4 carbon atoms) and containing a secondary nitrogen atom.
  • a nitrogen-containing compound when reacted with at least one of a primary nitrogen atom and a secondary nitrogen atom in a polymer to introduce a cationic functional group in order to increase the degree of branching, a cationic functional group introduced into the polymer
  • a cationic functional group shown below (“*" indicates the bonding position with the nitrogen atom in the polymer backbone), aminopropyl group, diaminopropyl group, aminobutyl group, diaminobutyl group, triaminobutyl And the like.
  • an aminoethyl group is preferable from the viewpoint of decreasing the cationic functional group equivalent and increasing the cationic functional group density.
  • the polymer may further contain at least one of a unit structure containing a nonionic functional group and a unit structure containing an anionic functional group.
  • a unit structure containing a nonionic functional group include a unit structure derived from vinyl alcohol, a unit structure derived from alkylene oxide, and a unit structure derived from vinyl pyrrolidone.
  • a unit structure containing an anionic functional group specifically, a unit structure derived from styrene sulfonic acid, a unit structure derived from vinyl sulfuric acid, a unit structure derived from acrylic acid, a unit structure derived from methacrylic acid, maleic acid
  • a unit structure derived from an acid, the unit structure derived from fumaric acid, etc. can be mentioned.
  • each specific structural unit may be different in any one of the kind or number of the cationic functional group, the molecular weight and the like.
  • the two or more specific structural units may be contained as a block copolymer or as a random copolymer.
  • the polymer may further contain at least one structural unit other than the specific structural unit (hereinafter sometimes referred to as "second structural unit").
  • the polymer may be a block copolymer containing a specific structural unit and a second structural unit, or a random containing a specific structural unit and a second structural unit It may be a copolymer.
  • the second structural unit is not particularly limited as long as it is a structural unit derived from a monomer that can be polymerized with the monomer that constitutes the specific structural unit.
  • structural units derived from olefins can be mentioned.
  • the cationic functional group has a main chain It may be contained as at least a part, may be contained as at least a part of the side chain, and may be further contained as at least a part of the main chain and at least a part of the side chain.
  • a polyalkyleneimine which is a polymer of a polyalkyleneimine (for example, a polymer of an alkyleneimine having 2 to 12 carbon atoms (preferably 2 to 8 carbon atoms, more preferably 2 to 4 carbon atoms)
  • PI polyethyleneimine
  • PAA polyallylamine
  • PDDA polydiallyldimethylammonium
  • PVP polyvinylpyridine
  • PMPyV polylysine
  • PMPyV polymethylpyridylvinyl
  • R-PHPyV protonated poly
  • polyalkyleneimines which are polymers of polyalkyleneimines (for example, polymers of alkyleneimines having 2 to 12 carbon atoms (preferably 2 to 8 carbon atoms, more preferably 2 to 4 carbon atoms), particularly preferably polyethyleneimines (PEI) ) Or a derivative thereof, polyallylamine (PAA), etc., and more preferably an alkyleneimine having a polyalkyleneimine (eg, 2 to 12 carbon atoms (preferably 2 to 8 carbon atoms, more preferably 2 to 4 carbon atoms) And polyalkylenimines, particularly preferably polyethyleneimine (PEI), or derivatives thereof.
  • polyalkyleneimines which are polymers of polyalkyleneimines (for example, polymers of alkyleneimines having 2 to 12 carbon atoms (preferably 2 to 8 carbon atoms, more preferably 2 to 4 carbon atoms), particularly preferably polyethyleneimines (PEI) ) Or a derivative thereof, polyallylamine (PAA), etc., and
  • Polyethyleneimine can be generally produced by polymerizing ethyleneimine by a commonly used method.
  • the polymerization catalyst, the polymerization conditions and the like can also be appropriately selected from those generally used for the polymerization of ethyleneimine. Specifically, for example, the reaction can be performed at 0 to 200 ° C. in the presence of an effective amount of an acid catalyst such as hydrochloric acid.
  • ethyleneimine may be addition polymerized based on polyethyleneimine.
  • the polyethyleneimine in the present invention may be a homopolymer of ethyleneimine or a compound copolymerizable with ethyleneimine, such as a copolymer of amines and ethyleneimine.
  • polyethyleneimine for example, JP-B-43-8828, JP-B-49-33120 and the like can be referred to.
  • the polyethylene imine may be obtained by using crude ethylene imine obtained from monoethanolamine.
  • JP-A-2001-2123958 can be referred to.
  • Polyalkylenimines other than polyethylenimine can also be produced by the same method as polyethylenimine.
  • polyethyleneimine produced as described above not only the partial structure in which ethyleneimine is ring-opened and linearly bonded, but also the partial structure in which branched and linked linear partial structures are cross-linked It has a complex skeleton with a partial structure etc.
  • Polyalkyleneimines other than polyethyleneimine also have the same structure as polyethyleneimine.
  • the polymer of the present invention is a derivative of a polyalkyleneimine which is a polymer of a polyalkyleneimine derivative (for example, a polymer of an alkyleneimine having 2 to 12 carbon atoms (preferably 2 to 8 carbon atoms, more preferably 2 to 4 carbon atoms, more preferably 2 to 4 carbon atoms) It is also preferred that it is a polyethyleneimine derivative).
  • the polyalkyleneimine derivative is not particularly limited as long as it is a compound that can be produced using the above-mentioned polyalkyleneimine.
  • polyalkyleneimine derivative obtained by introducing an alkyl group (preferably an alkyl group having 1 to 10 carbon atoms) or an aryl group into a polyalkyleneimine, or into a polyalkyleneimine.
  • alkyl group preferably an alkyl group having 1 to 10 carbon atoms
  • aryl group preferably an alkyl group having 1 to 10 carbon atoms
  • Polyalkylene imine derivatives and the like can be mentioned.
  • These polyalkyleneimine derivatives can be produced by a method commonly performed using the above-described polyalkyleneimine. Specifically, for example, it can be manufactured in accordance with the method described in Japanese Patent Application Laid-Open No. 6-018809.
  • polyalkyleneimine derivative a highly branched polyalkyleneimine obtained by improving the degree of branching of the polyalkyleneimine by reacting a cationic functional group-containing monomer with the polyalkyleneimine is also preferable.
  • a cationic functional group-containing monomer is reacted with a polyalkyleneimine having a plurality of secondary nitrogen atoms in its skeleton, and A method of substituting at least a part of the monomer with a cationic functional group-containing monomer, or reacting a cationic functional group-containing monomer with a polyalkyleneimine having a plurality of primary nitrogen atoms at the terminal, The method of substituting at least one part of atoms by a cationic functional group containing monomer is mentioned.
  • Examples of the cationic functional group introduced to improve the degree of branching include aminoethyl group, aminopropyl group, diaminopropyl group, aminobutyl group, diaminobutyl group, triaminobutyl group etc. From the viewpoint of decreasing the functional functional group equivalent and increasing the cationic functional group density, an aminoethyl group is preferred.
  • the method described in the section “Method of producing polymer” described later can be used as a method described in the section “Method of producing polymer” described later can be used.
  • polyethyleneimine and its derivative may be commercially available.
  • polyethylene imine and derivatives thereof commercially available from Nippon Shokubai Co., Ltd., BASF, etc. may be appropriately selected and used.
  • the weight average molecular weight of the polymer in the present invention is 2,000 to 1,000,000, preferably 2,000 to 600,000, more preferably 10,000 to 200,000, still more preferably 20,000 to 200,000, and 20,000 to 150,000. It is more preferable that For example, when the semiconductor sealing composition of the present invention is applied to the manufacture of a semiconductor device having a wiring interval of 32 nm or less and a pore diameter on the interlayer insulating layer of about 2 to 6 nm, the weight average molecular weight of the polymer is 1,000,000. If larger, the size of the polymer may be larger than the wiring interval, and the polymer may not enter the concave groove in which the wiring material is embedded, and the pores on the side of the groove may not be sufficiently covered.
  • the weight average molecular weight is less than 2000, the size of the polymer molecule becomes smaller than the diameter of the pore on the interlayer insulating layer, and the polymer molecules enter the pores on the interlayer insulating layer and the dielectric constant of the interlayer insulating layer May rise.
  • the weight average molecular weight is less than 2000, the polymer may not be adsorbed at multiple points.
  • a weight average molecular weight is measured using the GPC apparatus normally used for the molecular weight measurement of a polymer.
  • the polymer is also preferably a polymer having a critical micelle concentration of 1% by weight or more in an aqueous solvent or substantially not forming a micelle structure.
  • does not substantially form a micelle structure means that micelles are not formed under ordinary conditions such as in a water solvent at normal temperature, that is, the critical micelle concentration can not be measured.
  • the polymer of the present invention is preferably a polyethyleneimine having a weight average molecular weight of 2,000 to 1,000,000 and a cationic functional group equivalent weight of 27 to 430, and a weight average molecular weight of 2,000 to 600,000. More preferably, it is a polyethyleneimine having a group equivalent of 27 to 430, and particularly preferably a polyethyleneimine having a weight average molecular weight of 10000 to 150000 and a cationic functional group equivalent of 27 to 400. According to this aspect, the diffusion of the metal component and the plasma component to the interlayer insulating layer is more effectively suppressed, and the adhesion between the interlayer insulating layer and the wiring material is further improved.
  • content of the said polymer in the sealing composition for semiconductors of this invention can be 0.01-5.0 weight%, It is 0.02-0.3 weight% Is preferred.
  • the content of the polymer in the composition can also be adjusted based on the area and pore density of the surface on which the polymer layer is formed using the semiconductor sealing composition of the present invention.
  • Method of producing polymer for example, a production method having a step of reacting a monomer having a cationic functional group with a raw material polymer containing at least one of a primary nitrogen atom and a secondary nitrogen atom is suitable. . Since at least one of the tertiary nitrogen atom and the quaternary nitrogen atom can be generated from at least one of the primary nitrogen atom and the secondary nitrogen atom contained in the raw material polymer by the above reaction, the degree of branching is 48% or more. The polymers of the invention can be suitably obtained.
  • the above reaction can be carried out by heating and refluxing the raw material polymer and the monomer having a cationic functional group in a solvent such as water or alcohol.
  • the reaction time can be appropriately adjusted, but for example, 1 to 24 hours is preferable, and 2 to 12 hours is more preferable.
  • the raw material polymer in the above method is not particularly limited as long as it contains at least one of a primary nitrogen atom and a secondary nitrogen atom, but a raw material polymer containing a secondary nitrogen atom is preferable.
  • a raw material polymer containing a secondary nitrogen atom for example, polyalkyleneimine which is a polymer of alkyleneimine having 2 to 12 carbon atoms (preferably 2 to 8 carbon atoms), poly N-alkylamide, or derivatives thereof, etc. Can be mentioned.
  • specific examples of the alkyleneimine having 2 to 12 carbon atoms are as described above.
  • transduced are mentioned, for example.
  • the weight average molecular weight of the raw material polymer is not particularly limited as long as it can produce the polymer of the present invention having a weight average molecular weight of 2000 to 1,000,000 by reaction with a monomer having a cationic functional group.
  • the weight average molecular weight of the raw material polymer is preferably 1,000 to 500,000, more preferably 2,000 to 200,000, and particularly preferably 5,000 to 150,000.
  • a nitrogen-containing compound is mentioned, for example.
  • the cationic functional group in the monomer having a cationic functional group used in the above-mentioned production method is preferably bonded to a stable protective group under the reaction conditions. Thereby, since it can suppress that cationic functional group monomers react, a polymer with higher degree of branching can be manufactured.
  • a commonly used protecting group can be used as the protecting group.
  • the protective group include t-butoxycarbonyl group (Boc group), benzyloxycarbonyl group, methoxycarbonyl group, fluorenyl carbonyl group, formyl group, acetyl group, benzoyl group, phthaloyl group, allyl group and benzyl group. Etc.
  • a nitrogen-containing compound having a nitrogen atom bonded to a protective group is more preferable.
  • Specific examples of the nitrogen-containing compound having a nitrogen atom bonded to a protecting group include compounds represented by any one of the following general formulas (m-1) to (m-3).
  • R represents a protecting group
  • n represents an integer of 1 to 4.
  • the protective group represented by R may be any functional group generally used for protective groups of nitrogen atoms, and examples thereof include t-butoxycarbonyl group (Boc group), benzyloxycarbonyl group and methoxycarbonyl group. Preferred are a group, a fluorenyl carbonyl group, a formyl group, an acetyl group, a benzoyl group, a phthaloyl group, an allyl group and a benzyl group.
  • a compound represented by the above general formula (m-1) is more preferable, and a compound represented by the above general formula (m-1) Particular preference is given to compounds in which n is 1 (protected aziridines).
  • a raw material polymer containing a secondary nitrogen atom for example, a polyalkyleneimine which is a polymer of an alkyleneimine having 2 to 12 carbon atoms
  • a production method comprising the step of reacting the compound represented by
  • the method for producing the polymer may optionally have other steps such as a step of deprotecting a cationic functional group having a protective group introduced into the polymer.
  • the seal composition for a semiconductor of the present invention has a sodium and potassium content of at most 10 parts by weight on an element basis. If the content of sodium or potassium exceeds 10 parts by weight on an element basis, the electric characteristics of the semiconductor device may be adversely affected, such as malfunction of the transistor.
  • the semiconductor sealing composition of the present invention can optionally contain a solvent in addition to the polymer.
  • the solvent in the present invention is not particularly limited as long as it is a solvent in which the polymer is homogeneously dissolved and which does not easily form micelles.
  • water preferably, ultrapure water
  • a water-soluble organic solvent for example, alcohols etc.
  • the boiling point of the solvent is not particularly limited, but is preferably 210 ° C. or less, more preferably 160 ° C. or less.
  • the insulating property of the interlayer insulating layer is provided.
  • the solvent can be removed at a low temperature that does not significantly damage the seal composition and does not cause the seal composition to peel off the interlayer dielectric layer.
  • sticker composition for semiconductors of this invention may further contain cations, such as a cesium ion, as needed in the range which does not impair the effect of this invention.
  • a cation such as cesium
  • the polymer in the semiconductor sealing composition can be more easily spread on the interlayer insulating layer.
  • the semiconductor sealing composition of the present invention does not contain a compound that causes corrosion or dissolution of the interlayer insulating layer.
  • the main material of the interlayer insulating layer is an inorganic compound such as silica
  • the fluorine compound or the like is contained in the composition of the present invention, the interlayer insulating layer is dissolved and the insulation is impaired. And the dielectric constant may increase.
  • the seal composition for a semiconductor according to the present invention is a compound having a boiling point of 210 ° C. or less, preferably 160 ° C. or less, or a compound having no degradability even when heated to 250 ° C. as components other than the polymer. It is preferable to include.
  • the above-mentioned "compound having no degradability even when heated to 250 ° C” means a compound having a weight change of less than 50% after holding for 1 hour under nitrogen at 250 ° C with respect to the weight measured at 25 ° C.
  • the semiconductor sealing composition of the present invention preferably has an average particle diameter of 150 nm or less as measured by a dynamic light scattering method.
  • the average particle diameter is 150 nm or less, the adhesion to the wiring material is further improved, and the diffusion of the metal component and the plasma component to the interlayer insulating layer is further suppressed.
  • the average particle size is measured by a dynamic light scattering method using ELSZ-2 manufactured by Otsuka Electronics Co., Ltd., and is obtained as a cumulant average particle size.
  • the measurement conditions are, for example, a solution concentration of 0.1% to 1.0%, a temperature of 23 to 26 ° C., and the conditions such as 70 integrations and 3 repetitions.
  • a stable measurement can be performed by adding an electrolyte such as NaCl as necessary.
  • the average particle size exceeds 150 nm
  • micelles micelles having an average particle size of more than 150 nm
  • the composition or in the composition. This is the case where grinding of metal oxide or the like used when polishing copper to be a wiring (chemical mechanical polishing) is included.
  • the micelle having a large particle diameter is formed in the seal composition for a semiconductor, for example, when the seal composition for a semiconductor of the present invention is applied to the manufacture of a semiconductor device having a wiring width of 32 nm or less
  • the polymer constituting the composition can not sufficiently enter the concave groove in which the wiring material is embedded, and can not sufficiently cover the pores on the side surface of the groove.
  • the average particle diameter is preferably 100 nm or less, more preferably 50 nm or less, from the viewpoint of further improving the adhesion to the wiring material and further suppressing the diffusion of the metal component and the plasma component to the interlayer insulating layer. Is more preferable, 30 nm or less is more preferable, and 10 nm or less is particularly preferable.
  • the pH of the semiconductor sealing composition of the present invention is not particularly limited, but it is preferable that the pH is equal to or higher than the isoelectric point of the interlayer insulating layer from the viewpoint of the adsorptivity of the polymer to the interlayer insulating layer. Moreover, it is preferable that pH of the seal
  • the isoelectric point of the interlayer insulating layer is the isoelectric point exhibited by the compound forming the interlayer insulating layer, and, for example, when the compound forming the interlayer insulating layer is porous silica, the isoelectric point is around pH 2 (25 ° C).
  • the range of the pH in which the cationic functional group is in the cationic state means that the pH of the semiconductor sealing composition is equal to or less than pK b of the polymer containing the cationic functional group. For example, if the polymer containing cationic functional groups is polyallylamine, pK b is 8 to 9, and if it is polyethylenimine, pK b is 7 to 12.
  • the pH of the semiconductor sealing composition can be appropriately selected according to the type of compound constituting the interlayer insulating layer and the type of polymer, and is preferably pH 2 to 12, for example, pH 7 It is more preferable that it is ⁇ 11. In addition, pH (25 degreeC) is measured using the pH measuring apparatus normally used.
  • the method for manufacturing a semiconductor device of the present invention includes a seal composition applying step of applying the seal composition for a semiconductor of the present invention to an interlayer insulating layer formed on a substrate, and, if necessary, other steps Furthermore, it comprises.
  • the interlayer insulating layer in the present invention is preferably made of a low dielectric constant material.
  • the interlayer insulating layer in the present invention is preferably a porous interlayer insulating layer (that is, an interlayer insulating layer having a porous structure).
  • the pore radius (pore radius) in the porous interlayer insulating layer is not particularly limited, but from the viewpoint of more effectively achieving the sealing effect in the present manufacturing method, the pore radius is 0.5 to 4.0 nm is preferable, and 1.0 to 3.0 nm is more preferable.
  • the interlayer insulating layer preferably contains porous silica and preferably has silanol residues derived from porous silica on the surface.
  • the silanol residue interacts with the cationic functional group contained in the polymer to form a thin layer of the polymer such that the polymer covers the pores on the interlayer insulating layer.
  • porous silica generally used in an interlayer insulating layer of a semiconductor device can be used without particular limitation.
  • Porous silica etc. can be mentioned.
  • porous silica porous silica (for example, specific) described in WO 2009/123104 pamphlet (paragraphs 0009 to 0187) and WO 2010/137711 pamphlet (paragraphs 0043 to 0088) It is also preferable to use a porous silica) formed using a composition containing the siloxane compound of
  • the substrate on which the interlayer insulating layer is provided in the present manufacturing method includes semiconductor substrates such as silicon wafers, glass substrates, quartz substrates, stainless steel substrates, plastic substrates and the like.
  • the shape is also not particularly limited, and may be plate-like, plate-like or the like.
  • the method of manufacturing a semiconductor device of the present invention includes a seal composition applying step of applying the semiconductor sealing composition of the present invention to an interlayer insulating layer formed on a substrate.
  • a seal composition applying step of applying the semiconductor sealing composition of the present invention to an interlayer insulating layer formed on a substrate There is no restriction
  • the method used normally can be used.
  • the dipping method see, eg, US Pat. No. 5,208,111
  • the spray method see, eg, Schlenoff et al., Langmuir, 16 (26), 9968, 2000, Izquierdo et al., Langmuir, 21 (16), 7558, 2005.
  • spin coating see, for example, Lee et al., Langmuir, 19 (18), 7592, 2003, and J. Polymer Science, part B, polymer physics, 42, 3654, 2004).
  • the method for applying the semiconductor sealing composition by spin coating is not particularly limited.
  • the semiconductor sealing composition is formed on the interlayer insulating layer while the substrate on which the interlayer insulating layer is formed is rotated by a spin coater. It is possible to use a method in which the substrate is dropped, and then a rinse solution such as water is dropped to perform rinse processing, and then the number of rotations of the substrate is increased and dried. At this time, the dropping of the semiconductor sealing composition and the dropping of water may be repeated several times, and then dried.
  • the rotation speed is increased and dried, and after drying, it is temporarily transferred to a heat treatment device such as a hot plate to perform heat treatment, and after heat treatment, it is returned to the spin coater again, rinse treatment and drying.
  • a heat treatment device such as a hot plate to perform heat treatment
  • the above operation may be repeated several times.
  • adjustment can be made appropriately while considering the thickness of the polymer layer (seal layer) to be formed, and the like.
  • the polymer layer containing the polymer can be formed in a thin layer on the interlayer insulating layer by using the semiconductor sealing composition containing the polymer.
  • the thickness of the polymer layer is not particularly limited, and is, for example, 0.3 nm to 30 nm, preferably 0.3 nm to 10 nm, more preferably 0.3 nm to 5 nm, particularly preferably 0. 5 nm to 2 nm.
  • the interlayer insulating layer is a porous interlayer insulating layer
  • the polymer is impregnated not only in the form of the layer consisting only of the polymer but also in the pores of the porous interlayer insulating layer. It also includes the form of the layer (so-called penetration layer) that is configured.
  • the semiconductor sealing composition includes a polymer having a cationic functional group equivalent of 27 to 430, and the pH of the semiconductor sealing composition is the same as that of the interlayer insulating layer, etc.
  • the pH is preferably in the range of the electric point or higher and the cationic functional group is in the cation state, more preferably 2 to 12 and still more preferably 7 to 11. .
  • the concentration of the polymer contained in the semiconductor seal composition used in the seal composition applying step of the present invention is preferably less than the critical micelle concentration of the polymer.
  • the polymer can be applied to the interlayer insulating layer in a thin layer (for example, 5 nm or less, preferably 2 nm or less), and an increase in the dielectric constant can be suppressed.
  • the method of manufacturing a semiconductor device according to the present invention further includes the step of forming a concave groove having a width of 10 nm to 32 nm in the interlayer insulating layer, and the step of applying the seal composition includes at least interlayer insulation of the side surface of the concave groove. It is preferable that it is a process which makes the said layer contact the said semiconductor seal composition.
  • an interlayer insulating layer that constitutes the side surface of the concave groove formed in the interlayer insulating layer (if the interlayer insulating layer is a porous interlayer insulating layer, the thin layers present in this interlayer insulating layer
  • the hole can be effectively covered, and when the wiring material is embedded in the concave groove, the metal component of the wiring material can be prevented from diffusing into the interlayer insulating layer.
  • the side surface of the concave groove means a surface formed substantially orthogonal to the surface parallel to the substrate.
  • the step of forming a concave groove with a width of 10 nm to 32 nm in the interlayer insulating layer can be performed in accordance with the manufacturing process conditions of a semiconductor device which is usually used. For example, a hard mask and a photoresist are formed over the interlayer insulating layer, and a groove having a desired pattern can be formed by etching in accordance with the pattern of the photoresist.
  • the above-mentioned dipping method, spray method and spin coating method can be used as a method of bringing the seal composition for a semiconductor into contact with the interlayer insulating layer on the side surface of the concave groove.
  • a washing step and a drying step may be further provided as required.
  • the method for manufacturing a semiconductor device of the present invention may further include usual steps such as a wiring forming step after the sealing composition applying step, if necessary.
  • the wiring formation step can be performed according to known process conditions. For example, a copper wiring is formed by metal CVD, sputtering or electrolytic plating, and the film is smoothed by CMP. Next, a cap film is formed on the surface of the film. Furthermore, if necessary, a hard mask can be formed, and the above steps can be repeated to form a multilayer, whereby the semiconductor device of the present invention can be manufactured.
  • a step of forming a barrier film can be further provided after the step of applying the seal composition and before the step of forming a wiring.
  • the barrier film formation process can be performed according to the process conditions normally used.
  • a barrier film made of a titanium compound such as titanium nitride, a tantalum compound such as tantalum nitride, a ruthenium compound, or a manganese compound can be formed by vapor deposition (CVD).
  • CVD vapor deposition
  • the semiconductor device of the present invention has a weight average molecular weight of 2000 having an interlayer insulating layer (preferably a porous interlayer insulating layer) and at least two cationic functional groups containing at least one of tertiary nitrogen atoms and quaternary nitrogen atoms.
  • a polymer layer containing ⁇ 1,000,000 polymers and a layer made of copper have a structure arranged in this order, and may optionally include other layers.
  • the thickness of the polymer layer is preferably 0.3 nm to 5 nm. Further, in the semiconductor device of the present invention, it is preferable that a copper barrier layer (preferably, a layer composed of a ruthenium compound) is further disposed between the polymer layer and the wiring material containing the copper.
  • the semiconductor device of the present invention can be manufactured by the method of manufacturing the semiconductor device.
  • Synthesis Example 1 ⁇ Synthesis of Highly Branched Polyethyleneimine 1> (Synthesis of modified polyethyleneimine 1) Modified polyethyleneimine 1 was synthesized according to the following reaction scheme 1, using polyethyleneimine as a starting material.
  • the polymer structure in the following reaction scheme 1 and reaction scheme 2 is a structure represented schematically, and the secondary nitrogen substituted by the arrangement
  • the detailed operation of the above reaction scheme 2 was as follows.
  • the modified polyethyleneimine 1 was dissolved in 40 mL of methanol, and while stirring the obtained solution, 20 mL of 12 N hydrochloric acid was slowly added to this solution.
  • the resulting solution was heated and stirred at 50 ° C. for 4 hours, and a gummy reactant was formed in the reaction system with the evolution of gas. After gas evolution ceased, it was cooled, and after cooling, the solvent separated from the gummy reaction was removed and the remaining reaction was washed twice with 10 mL of methanol.
  • the washed reaction product was dissolved in water, and chloride ion was removed with an anion exchange polymer to obtain 8 g of highly branched polyethyleneimine 1.
  • the cationic functional group equivalent is the value of the molecular weight with respect to one cationic functional group, and can be calculated from the polymer structure.
  • the amount of primary nitrogen atoms (mol%), the amount of secondary nitrogen atoms (mol%), the amount of tertiary nitrogen atoms (mol%), the amount of quaternary nitrogen atoms (mol%), and the degree of branching ( %) was prepared by dissolving a polymer sample (hyperbranched polyethylenimine 1 in this synthesis example 1) in heavy water, and subjecting the resulting solution to a single pulse reverse gated decoupling method using an AVANCE 500 nuclear magnetic resonance apparatus manufactured by Bruker.
  • the amount of primary nitrogen atoms (mol%), the amount of secondary nitrogen atoms (mol%), the amount of tertiary nitrogen atoms (mol%), and the amount of quaternary nitrogen atoms (mol%) are respectively The amounts are represented by the following formulas A to D.
  • degree of branching was determined by the following equation E.
  • Degree of branching (%) ((amount of tertiary nitrogen atoms (mol%) + amount of quaternary nitrogen atoms (mol%)) / (amount of secondary nitrogen atoms (mol%) + amount of tertiary nitrogen atoms (mol%) ) + Amount of quaternary nitrogen atom (mol%)) ⁇ 100 ⁇
  • Degree of branching (%) ((amount of tertiary nitrogen atoms (mol%) + amount of quaternary nitrogen atoms (mol%)) / (amount of secondary nitrogen atoms (mol%) + amount of tertiary nitrogen atoms (mol%) ) + Amount of quaternary nitrogen atom (mol%)) ⁇ 100 ⁇
  • Degree of branching (%) ((amount of tertiary nitrogen atoms (mol%) + amount of quaternary nitrogen atoms (mol%)) / (amount of secondary nitrogen atoms (mol%) + amount of tert
  • Viscosity ⁇ (dl / g) (ln (sample solution outflow time (seconds) ⁇ blank outflow time (seconds)) ⁇ solution concentration (g / dl) ⁇ Formula F
  • Synthesis Example 2 ⁇ Synthesis of Highly Branched Polyethyleneimine 2> (Synthesis of modified polyethyleneimine 2)
  • Modified polyethyleneimine 2 was synthesized according to the same reaction scheme as the above reaction scheme 1. However, in the present synthesis example 2, the detailed operation was as follows. Dissolve 12.8 g of polyethyleneimine (50% aqueous solution) manufactured by MP-Biomedicals in 64 mL of isopropanol, add 4.26 g (30 mmol) of N-Boc aziridine, heat to reflux for 3 hours, The reaction liquid containing modified
  • Synthesis Example 3 ⁇ Synthesis of Highly Branched Polyethyleneimine 3> 10.0 g of polyethyleneimine P-1000 (30% aqueous solution) manufactured by Nippon Shokubai Co., Ltd. was dissolved in 30 mL of methanol, and the obtained solution was cooled to 10 ° C. or less. After the addition of 6.0 g (70 mmol) of methyl acrylate to the solution after cooling, the solution was allowed to stand at room temperature for 48 hours. A small amount of the solution after standing was sampled, and the disappearance of methyl acrylate was confirmed by 1 H-NMR. To the solution after standing was added 83.7 g (1395 mmol) of ethylenediamine, and heated under reflux for 9 hours.
  • Modified polyethyleneimine 4A was synthesized according to the above reaction scheme 1. The detailed operation is as follows. Dissolve 8.0 g of polyethyleneimine (50% aqueous solution) manufactured by MP-Biomedicals in 53 mL of isopropanol, add 13.3 g (93 mmol) of N-Boc aziridine and heat at reflux for 8 hours. Modified polyethyleneimine 4A having a structure in which a group was introduced was obtained. Thin layer chromatography (TLC) confirmed that the raw material N-Boc aziridine had disappeared, and a small amount of sample was taken to confirm the structure by 1 H-NMR.
  • TLC Thin layer chromatography
  • modified polyethyleneimine 4B was synthesized according to the above reaction scheme 1. The detailed operation is as follows.
  • the above branched polyethyleneimine 4A (9.1 g, purity about 30%) is dissolved in 31 mL of isopropanol, 7.8 g (54.4 mmol) of N-Boc aziridine is added, and the mixture is heated under reflux for 8 hours to Bocylate the polyethyleneimine.
  • Modified polyethyleneimine 4B having a structure in which an aminoethyl group was introduced was obtained.
  • modified polyethyleneimine 4C was synthesized according to the above reaction scheme 1.
  • the detailed operation is as follows.
  • the above branched polyethyleneimine 4B (4.7 g, purity about 40%) is dissolved in 22.5 mL of isopropanol, 5.6 g (39.4 mmol) of N-Boc aziridine is added, and the mixture is heated under reflux for 8 hours to give polyethyleneimine Denatured polyethyleneimine 4C having a structure in which a Boc-modified aminoethyl group was introduced was obtained.
  • hyperbranched polyethyleneimine 4 (Synthesis of hyperbranched polyethyleneimine 4; reaction scheme 2) Using the above modified polyethyleneimine 4C as a starting material, hyperbranched polyethyleneimine 4 was synthesized according to the above reaction scheme 2. The detailed operation is as follows. 9 mL of 12 N hydrochloric acid was slowly added to the isopropanol solution of the above modified polyethyleneimine 4C. The resulting solution was heated and stirred at 50 ° C. for 4 hours, paying attention to gas evolution. With the evolution of gas, a gummy reactant was formed in the reaction system. After gas evolution ceased, it was cooled, and after cooling, the solvent separated from the gummy reaction was removed and washed three times with 10 mL of methanol.
  • the cationic functional group equivalent the amount of primary nitrogen atom (mol%), the amount of secondary nitrogen atom (mol%), tertiary nitrogen
  • the amount of atoms (mol%), the amount of quaternary nitrogen atoms (mol%), and the degree of branching (%) were measured, respectively.
  • the cationic functional group equivalent is 43
  • the amount of primary nitrogen atoms is 47 mol%
  • the amount of secondary nitrogen atoms is 5 mol%
  • the amount of tertiary nitrogen atoms is 48 mol%
  • 4 The amount of grade nitrogen atoms was 0 mol%
  • the degree of branching was 90%.
  • the weight average molecular weight of the hyperbranched polyethyleneimine 4 was not measurable at present, it is considered to be within the range of 2000 to 1,000,000 in view of the above-mentioned synthesis conditions.
  • Example 1 Preparation of Seal Composition for Semiconductor>
  • the above highly branched polyethyleneimine 1 250 mg was dissolved in 100 mL of water to obtain a semiconductor seal composition (hereinafter, also referred to as "seal composition 1").
  • seal composition 1 a semiconductor seal composition
  • the content of sodium, the content of potassium, and the volume average particle size were each measured. The measurement results are shown in Table 1 below.
  • the content of sodium and the content of potassium were respectively measured by inductively coupled plasma mass spectrometry (ICP-MS).
  • the measurement lower limit in this measurement is 1 weight ppb for both the sodium content and the potassium content.
  • volume average particle size was measured by a dynamic light scattering method using ELSZ-2 manufactured by Otsuka Electronics.
  • the volume average particle size was below the detection limit ( ⁇ 10 nm).
  • measurement conditions used integration number 70 times, repetition number 1 time, and analysis conditions used histogram analysis and cumulant analysis.
  • a composition for forming porous silica was prepared using each of the following components, and an interlayer insulating film was formed using the composition for forming porous silica obtained. Details will be described below.
  • composition for forming porous silica (Preparation of composition for forming porous silica) 1.2 g of dimethyldiethoxysilane and 0.6 g of hexamethyldisiloxane were added to 218 g of the precursor solution, and the mixture was stirred at 25 ° C. for 1 hour to obtain a composition for forming porous silica.
  • the addition amounts of dimethyldiethoxysilane and hexamethyldisiloxane at this time were 10 mol% and 5 mol%, respectively, with respect to bistriethoxysilylethane.
  • interlayer insulating layer (Formation of interlayer insulating layer) After 1.0 mL of the composition for forming porous silica is dropped onto the surface of a silicon wafer and rotated at 2000 rpm for 60 seconds and applied to the surface of the silicon wafer, it is applied at 150 ° C. for 1 minute under nitrogen atmosphere and then 10 minutes at 350 ° C. Heated for a minute. Then, the interlayer insulating layer (porous silica film) was obtained by heating to 350 ° C. in a chamber equipped with a 172 nm excimer lamp and irradiating ultraviolet light for 10 minutes at an output of 14 mW / cm 2 at a pressure of 1 Pa. The pore radius of the obtained interlayer insulating film was 2.6 nm. Moreover, the dielectric constant k of the obtained interlayer insulation layer was 2.1, and the elastic modulus E was 6.2 GPa.
  • the pore radius of the interlayer insulating film was calculated from the desorption isotherm of toluene.
  • the toluene desorption isotherm was measured using an optical porosimeter (PS-1200) manufactured by SEMILAB in the same manner as in the sealability evaluation described later.
  • the calculation of the pore radius was performed using the Kelvin equation according to the method described in M. R. Baklanov, K. P. Mogilnikov, V. G. Polovinkin, and F. N. Dultsey, Journal of Vacuum Science and Technology B (2000) 18, 1385-1391.
  • the relative dielectric constant was measured by a conventional method at a frequency of 100 kHz under an atmosphere of 25 ° C.
  • the elastic modulus was measured by a conventional method using a nanoindentator (Hysitron, Triboscope) at an indentation depth of 1/10 or less of the film thickness.
  • the seal composition 1 (2.0 mL) is formed on the low-k film while rotating the silicon wafer on which the interlayer insulating layer (hereinafter referred to as “low-k film”) is formed at 600 rpm using a spin coater.
  • the solution was dropped at a constant speed over 30 seconds, dried by rotating at 2000 rpm for 10 seconds, then transferred onto a hot plate and heat-treated at 125 ° C. for 1 minute in the air.
  • the silicon wafer is returned to the spin coater, and while rotating at 600 rpm, 3.0 mL of ultrapure water is dropped at a constant speed for 30 seconds on the side of the silicon wafer on which the seal composition 1 is dropped, and then 2000 rpm And dried for 60 seconds.
  • the film forming operation of this seal layer was repeated three times.
  • a layer (seal layer) of the polymer contained in the seal composition 1 is formed on the interlayer insulation layer, and a laminate of a structure in which the silicon wafer, the interlayer insulation layer and the seal layer are sequentially laminated “Sample (Si / low-k / PEI)” was also obtained.
  • Ultrapure water Milli-Q water made by Millipore, resistance 18 M ⁇ ⁇ cm (25 ° C. or less) was used as “water”.
  • Sealability evaluation was performed using the said sample (Si / low-k / PEI). Sealability evaluation was performed by toluene adsorption characteristic measurement on the seal layer (PEI) surface of a sample (Si / low-k / PEI). In this toluene adsorption characteristic measurement, it is indicated that the smaller the amount of adsorption of toluene, the higher the sealability for preventing the penetration of the wiring material (such as copper) into the low-k film.
  • the toluene adsorption measurement was performed using an optical porosimeter (PS-1200) manufactured by SEMILAB. The measuring method was performed according to the method as described in M. R. Baklanov, K. P.
  • the refractive index change due to the adsorption and desorption of toluene on the low-k film was determined. Furthermore, using the Lorentz-Lorentz equation, the toluene gas adsorption / desorption isotherm was determined from the relative pressure characteristics of the refractive index. The toluene gas adsorption / desorption isotherm is shown in FIG. The horizontal axis in FIG.
  • the vertical axis represents the volume fraction of the amount of adsorption of toluene (the ratio of the adsorption volume of toluene at room temperature to the volume of the entire Low-k membrane).
  • the volume fraction of the amount of adsorbed toluene was determined based on the refractive index of the low-k film using the Lorentz-Lorentz equation. When the volume fraction of the amount of adsorbed toluene is the same, it means that the larger the relative pressure of toluene, the better the sealability.
  • ⁇ Measurement of seal layer thickness> In order to check the thickness (film thickness) of the seal layer (PEI) in the above sample (Si / low-k / PEI), the following measurements were performed. That is, in the above ⁇ application of the semiconductor sealing composition>, the application of the semiconductor sealing composition except that the silicon wafer on which the interlayer insulating layer is formed is changed to a silicon wafer on which the interlayer insulating layer is not formed. The same operation as in> was performed. As a result, a sample for measuring the thickness of the seal layer (hereinafter, also simply referred to as a “sample for measurement”) having a structure in which the seal layer is formed directly on the silicon wafer was obtained.
  • sample for measurement a sample for measuring the thickness of the seal layer having a structure in which the seal layer is formed directly on the silicon wafer was obtained.
  • the thickness (unit: nm) of the seal layer in the obtained measurement sample was measured by an ordinary method using an ellipsometer of an optical porosimeter (PS-1200) manufactured by SEMILAB. Table 1 shows the results of measurement of the thickness (film thickness) of the seal layer.
  • Example 2 A semiconductor seal composition was prepared in the same manner as in Example 1 except that hyperbranched polyethyleneimine 1 was changed to hyperbranched polyethyleneimine 2 of the same mass (hereinafter referred to as "seal composition 2"), Example 1 The same measurement and evaluation as in 1 were performed. The evaluation results of the sealability (toluene gas adsorption / desorption isotherm) are shown in FIG. Moreover, each measurement result about the seal
  • Example 3 By changing the weight of polyoxyethylene (20) stearyl ether to 31.3 g, the pore radius of the Low-k film is changed from 2.6 nm to 2.1 nm, and the number of deposition operations of the seal layer is made three times.
  • the seal composition for a semiconductor was applied (preparation of a sample (Si / low-k / PEI) in the same manner as in Example 1 except that the above was changed to once, and the same measurement and evaluation as in Example 1 were carried out. went.
  • the evaluation results of the sealability (toluene gas adsorption / desorption isotherm) are shown in FIG.
  • Example 4 A semiconductor sealing composition was prepared in the same manner as in Example 3 except that hyperbranched polyethyleneimine 1 was changed to hyperbranched polyethyleneimine 3 of the same mass (hereinafter referred to as "seal composition 3"), Example 1 The same measurement and evaluation as in 3 were performed. The evaluation results of the sealability (toluene gas adsorption / desorption isotherm) are shown in FIG. Moreover, each measurement result about the seal
  • Example 6 is the same as Example 1 except that hyperbranched polyethyleneimine 1 is changed to polyethyleneimine 1 of the same mass (polyethyleneimine manufactured by MP Biomedicals purified with a 10 k hollow fiber filter to remove low molecular weight components)
  • the semiconductor seal composition was prepared (hereinafter referred to as “comparative seal composition 1”), and the same measurements and evaluations as in Example 1 were performed.
  • the evaluation results of the sealability (toluene gas adsorption / desorption isotherm) are shown in FIG.
  • sticker composition 1 is shown in following Table 1.
  • Comparative Example 2 A semiconductor seal composition was prepared in the same manner as in Example 1 except that hyperbranched polyethyleneimine 1 was changed to polyethyleneimine 2 of the same mass (polyethyleneimine Lupasol WF manufactured by BASF Co., Ltd.) (hereinafter, “comparison seal composition 2) and the same measurements and evaluations as in Example 1.
  • the evaluation results of the sealability (toluene gas adsorption / desorption isotherm) are shown in FIG.
  • each measurement result about the comparison seal composition 2 is shown in the following Table 1.
  • Comparative Example 3 A semiconductor sealing composition was prepared in the same manner as in Example 1 except that hyperbranched polyethyleneimine 1 was changed to polyethyleneimine 3 of the same mass (polyethyleneimine manufactured by MP Biomedicals) (hereinafter referred to as “comparative seal composition 3 The same measurements and evaluations as in Example 1 were performed. The evaluation results of the sealability (toluene gas adsorption / desorption isotherm) are shown in FIG. Moreover, each measurement result about the comparison seal composition 3 is shown in the following Table 1.
  • Comparative Example 4 The measurement and evaluation were performed in the same manner as in Example 1 except that the hyperbranched polyethyleneimine 1 was not used (that is, the seal composition 1 was changed to water of the same mass).
  • the evaluation results of the sealability (toluene gas adsorption / desorption isotherm) are shown in FIG.
  • Comparative Example 5 A semiconductor seal composition was prepared in the same manner as in Example 3 except that hyperbranched polyethyleneimine 1 was changed to polyethyleneimine 3 of the same mass (polyethyleneimine manufactured by MP Biomedicals) (hereinafter, “comparative seal composition 3 The same measurements and evaluations as in Example 3 were performed. The evaluation results of the sealability (toluene gas adsorption / desorption isotherm) are shown in FIG.
  • FIG. 1 shows the toluene adsorption / desorption isotherms in Examples 1 and 2 and Comparative Examples 1 to 4 in which the pore radius of the low-k film is 2.6 nm and the number of times of film forming operations of the seal layer is three. It is a graph which shows the relationship between toluene relative pressure and the volume fraction of toluene adsorption amount. When the volume fraction of the amount of adsorbed toluene is the same (see, for example, the alternate long and short dash line in FIG. 1), it means that the larger the relative pressure of toluene is, the better the sealability is.
  • Example 1 in Examples 1 and 2 in which the degree of branching of the polymer is 48% or more, the sealability to the Low-k film was excellent.
  • Example 1 the volume fraction of adsorbed amount of toluene was very low over the entire range (0 to 1) of the relative pressure of toluene, and very excellent sealability was exhibited.
  • the thickness of the seal layer measured by the above-mentioned ⁇ Measurement of thickness of seal layer> was as shown in Table 1.
  • "ND" no data indicates that there is no measurement result because the measurement is omitted. From the evaluation results of the sealability shown in FIG. 1 and the results of measurement of the thickness of the seal layer shown in Table 1, the seal layer in Examples 1 and 2 has a very low thickness of about 12 nm. It was confirmed that excellent sealing performance is shown for the k film.
  • FIG. 2 shows the toluene adsorption / desorption isotherm (toluene in Examples 3 to 4 and Comparative Example 5) in which the pore radius of the low-k film is 2.1 nm and the number of film forming operations of the seal layer is one. It is a graph which shows the relationship between relative pressure and the volume fraction of the amount of adsorption of toluene. As shown in FIG. 2, in Examples 3 to 4 in which the degree of branching of the polymer is 48% or more, the sealability to the Low-k film was excellent.
  • the thickness of the seal layer measured by the above-mentioned ⁇ Measurement of thickness of seal layer> was as shown in Table 1. From the evaluation results of the sealability shown in FIG. 2 and the results of the measurement of the thickness of the seal layer shown in Table 1, the seal layer in Examples 3 to 4 has an extremely small thickness of about 4 to 5 nm. It was confirmed that excellent sealing performance was exhibited for the low-k film.
  • Example 5 The sealability of the seal layer formed through the heat treatment at 350 ° C. (heat treatment B described below) was evaluated as follows.
  • heat treatment B heat treatment B described below.
  • Example 3 by changing the weight of polyoxyethylene (20) stearyl ether to 20.9 g, the pore radius of the Low-k film is changed from 2.1 nm to 1.6 nm, and the Low-k film (pores is changed.
  • the prepared silicon wafer with low-k film (pore radius: 1.6 nm) is set in a spin coater, and after dropping the seal composition 1 (1.0 mL) on the low-k film, it is held for 23 seconds and then 4000 rpm The resultant was further rotated at 600 rpm for 30 seconds, and further dried at 2000 rpm for 10 seconds to be dried. After that, it was transferred onto a hot plate, and was subjected to heat treatment (hereinafter also referred to as “heat treatment A”) at 125 ° C. for 1 minute in the air.
  • heat treatment A heat treatment
  • Example 6 Comparative Example 6 The same measurements and evaluations as in Example 5 were carried out except that the hyperbranched polyethyleneimine 1 was changed to polyethyleneimine 3 of the same mass (polyethyleneimine manufactured by MP Biomedicals) in Example 5 (see Table 2 below).
  • the sealability evaluation results (toluene gas adsorption / desorption isotherm) are shown in FIG.
  • FIG. 3 is a toluene gas adsorption / desorption isotherm (a graph showing the relationship between the relative pressure of toluene and the volume fraction of the amount of adsorbed toluene) in Example 5 and Comparative Example 6.
  • Example 5 compared with Comparative Example 6, the sealability to the Low-k film was excellent.
  • the degree of branching of the polymer contained in the seal layer is high (ie, the polymer is bulky) as compared to Comparative Example 6, and the thermal decomposition of the polymer by heat treatment B at 350 ° C. It is presumed that because it was suppressed.
  • the seal layer in Example 5 is Low despite the extremely thin thickness of 6.0 nm. It was confirmed that excellent sealability was exhibited for the -k film.
  • Comparative Example 5 is the same as Comparative Example 5 except that the polyethyleneimine 3 (polyethyleneimine manufactured by MP Biomedicals) is changed to the same weight of the hyperbranched polyethyleneimine 4 (polyethyleneimine having a branching degree of 90%).
  • the semiconductor seal composition was prepared (hereinafter referred to as “seal composition 4”), and the same measurement as in Comparative Example 5 was performed.
  • the Na content was less than 1 weight ppb
  • the K content was less than 1 weight ppb
  • the volume average particle size was less than 10 nm.
  • a silicon wafer with a Low-k film (pore radius: 2.1 nm) was prepared.
  • the prepared silicon wafer with low-k film (pore radius: 2.1 nm) is set in a spin coater, and after dropping the seal composition 4 (1.0 mL) on the low-k film, it is held for 23 seconds and then 4000 rpm The resultant was further rotated at 600 rpm for 30 seconds, and further dried at 2000 rpm for 10 seconds to be dried. Then, it was transferred onto a hot plate and heat-treated at 125 ° C. for 1 minute in the atmosphere.
  • the silicon wafer is returned to the spin coater, and while rotating at 600 rpm, 3.0 mL of ultrapure water is dropped at a constant speed for 30 seconds on the side of the silicon wafer on which the seal composition 4 is dropped, and then 2000 rpm And dried for 60 seconds.
  • the sample (Si / low-k / PEI) of Example 6 was obtained.
  • the same measurement and evaluation as in Comparative Example 5 were performed using the sample (Si / low-k / PEI) of Example 6 described above (FIG. 4).
  • the thickness of the seal layer was 4.0 nm.
  • Example 6 The evaluation results of the sealability (toluene gas adsorption / desorption isotherm) of Example 6 are shown in FIG. As shown in FIG. 4, even in Example 6 in which the degree of branching of the polymer is 90%, the sealability to the Low-k film was excellent as in the other examples. Thus, it was confirmed that the seal layer in Example 6 exhibited excellent sealability with respect to the Low-k film despite the extremely thin thickness of 4.0 nm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Sealing Material Composition (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

 本発明では、3級窒素原子及び4級窒素原子の少なくとも一方を含む2以上のカチオン性官能基を有し重量平均分子量が2000~1000000であり分岐度が48%以上であるポリマーを含有し、ナトリウムおよびカリウムの含有量がそれぞれ元素基準で10重量ppb以下である、半導体用シール組成物が提供される。

Description

半導体用シール組成物、半導体装置及びその製造方法、並びに、ポリマー及びその製造方法
 本発明は、半導体用シール組成物、半導体装置及びその製造方法、並びに、ポリマー及びその製造方法に関する。
 微細化が進む半導体装置の分野において、半導体の層間絶縁層として多孔質構造を有する低誘電率の材料(以下、「low-k材料」ということがある)が種々検討されている。
 このような多孔質構造を有する半導体層間絶縁層においては、誘電率をさらに低下させるために空隙率を大きくすると、配線材料として埋め込まれる銅などの金属成分や、プラズマ処理によるプラズマ成分(ラジカル及びイオンの少なくとも1種。以下同じ。)などが半導体層間絶縁層中の細孔に入り込みやすくなり、誘電率が上昇したり、リーク電流が発生したりする場合があった。
 また、多孔質でない層間絶縁層においても、金属成分やプラズマ成分などが浸透する場合があり、多孔質の層間絶縁層と同様に、誘電率が上昇したり、リーク電流が発生する場合があった。
 一方、多孔質低誘電率材料を用いた半導体装置の製造方法において、エッチング後の湿式洗浄にミセル状の界面活性剤を用いることで、エッチングによって形成された溝の側壁面の細孔をシールする技術が知られている(例えば、特表2009-503879号公報参照)。
 また、low-k材料が疎水性の表面を有する場合に、ポリビニルアルコール系両親媒性ポリマーをその表面に付与することで材料の親水性・疎水性を制御する技術が知られている(例えば、国際公開第09/012184号パンフレット参照)。
 さらに、カチオン性ポリマーと界面活性剤を含む半導体研磨用組成物が知られている(例えば、特開2006-352042号公報参照)。
 上記特表2009-503879号公報に記載の技術では、ミセル構造をとっていない界面活性剤が溝の側壁面の細孔に入り込んで比誘電率が上昇する場合があった。またミセルによって層間絶縁層と配線材料の密着性が低下する場合があった。
 また、上記国際公開第09/012184号パンフレットに記載の技術では、ポリビニルアルコール系両親媒性ポリマー間の水素結合により、嵩高い層が形成されやすく、これにより、層間絶縁層の比誘電率が上昇する場合や、層間絶縁層と配線材料の密着性の低下が発生する場合があった。
 また、層間絶縁層に対し更に優れたシール性を有する半導体用シール組成物が求められる場合がある。
 従って、本発明の課題は、層間絶縁層に対するシール性に優れた半導体用シール組成物、該半導体用シール組成物を用いた半導体装置及びその製造方法、並びに該半導体用シール組成物に好適なポリマー及びその製造方法を提供することである。
 本発明者らは鋭意検討した結果、特定のポリマーにおける分岐度をある値以上となるように調整することで、層間絶縁層に対するシール性が格段に向上することを見出し、本発明を完成した。
 即ち、前記課題を解決するための具体的手段は以下のとおりである。
<1> 3級窒素原子及び4級窒素原子の少なくとも一方を含む2以上のカチオン性官能基を有し重量平均分子量が2000~1000000であり分岐度が48%以上であるポリマーを含有し、ナトリウムおよびカリウムの含有量がそれぞれ元素基準で10重量ppb以下である、半導体用シール組成物である。
<2> 前記ポリマーは、炭素数2~8のアルキレンイミンに由来する構造単位であってカチオン性官能基として3級窒素原子を含む構造単位を有する、<1>に記載の半導体用シール組成物である。
<3> 前記ポリマーは、更に、炭素数2~8のアルキレンイミンに由来する構造単位であってカチオン性官能基として2級窒素原子を含む構造単位を有し、<2>に記載の半導体用シール組成物である。
<4> 前記ポリマーは1級窒素原子を含み、前記ポリマー中の全窒素原子に占める1級窒素原子の割合が33モル%以上である、<1>~<3>のいずれか1項に記載の半導体シール用組成物である。
<5> 前記ポリマーの分岐度が55%以上である、<1>~<4>のいずれか1項に記載の半導体用シール組成物である。
<6> 動的光散乱法で測定された平均粒子径が150nm以下である、<1>~<5>のいずれか1項に記載の半導体用シール組成物である。
<7> 前記ポリマーは、ポリエチレンイミンまたはポリエチレンイミン誘導体である、<1>~<6>のいずれか1項に記載の半導体用シール組成物である。
<8> 前記ポリマーは、カチオン性官能基当量が27~430である、<1>~<7>のいずれか1項に記載の半導体用シール組成物である。
<9> <1>~<8>のいずれか1項に記載の半導体用シール組成物を、基板上に形成された層間絶縁層に付与するシール組成物付与工程を含む、半導体装置の製造方法である。
<10> 前記層間絶縁層は、多孔質シリカを含み、その表面に前記多孔質シリカに由来するシラノール残基を有する、<9>に記載の半導体装置の製造方法である。
<11> 前記層間絶縁層に10nm~32nm幅の凹状の溝が形成される工程をさらに含み、前記シール組成物付与工程は、少なくとも前記凹状の溝の側面の層間絶縁層に、前記半導体用シール組成物を接触させる、<9>または<10>に記載の半導体装置の製造方法である。
<12> 層間絶縁層と;3級窒素原子及び4級窒素原子の少なくとも一方を含む2以上のカチオン性官能基を有し重量平均分子量が2000~1000000であり分岐度が48%以上であるポリマーを含むポリマー層と;銅からなる層と;がこの順で配置された構造を備える、半導体装置である。<12>に係る半導体装置においては、前記ポリマー層と前記銅からなる層との間に、銅バリア層がさらに配置されていることが好ましい。また、<12>に係る半導体装置において、層間絶縁層は、多孔質の層間絶縁層(即ち、多孔質構造を有する層間絶縁層)であることが好ましい。
<13> 3級窒素原子及び4級窒素原子の少なくとも一方を含む2以上のカチオン性官能基を有し重量平均分子量が2000~1000000であり分岐度が48%以上である、ポリマーである。
<14> ポリエチレンイミンまたはポリエチレンイミンの誘導体である、<13>に記載のポリマーである。
<15> <13>または<14>に記載のポリマーを製造する方法であって、2級窒素原子を含む原料ポリマーに、下記一般式(m-1)で表される化合物を反応させる工程を有する、ポリマーの製造方法である。
Figure JPOXMLDOC01-appb-C000002
〔一般式(m-1)中、Rは保護基を表し、nは1~4の整数を表す。〕
 本発明によれば、層間絶縁層に対するシール性に優れた半導体用シール組成物、該半導体用シール組成物を用いた半導体装置及びその製造方法、並びに該半導体用シール組成物に好適なポリマー及びその製造方法を提供することができる。
実施例1~2及び比較例1~4におけるトルエンガス吸着脱離等温線である。 実施例3~4及び比較例5におけるトルエンガス吸着脱離等温線である。 実施例5及び比較例6におけるトルエンガス吸着脱離等温線である。 実施例6及び比較例5におけるトルエンガス吸着脱離等温線である。
<半導体用シール組成物>
 本発明の半導体用シール組成物は、例えば、層間絶縁層の表面を被覆するポリマー層(好ましくは、多孔質の層間絶縁層に形成された細孔を被覆するポリマー層)を形成するために用いられ、3級窒素原子及び4級窒素原子の少なくとも一方を含む2以上のカチオン性官能基を有し重量平均分子量が2000~1000000であり分岐度が48%以上であるポリマーを含有し、ナトリウムおよびカリウムの含有量がそれぞれ元素基準で10重量ppb以下である。
 かかる構成の半導体用シール組成物を層間絶縁層に付与すると、例えば、前記ポリマーが有する2以上のカチオン性官能基が前記層間絶縁層上に多点吸着して、前記層間絶縁層の表面(層間絶縁層が多孔質の層間絶縁層である場合には、該多孔質の層間絶縁層に存在する細孔(ポア))がポリマー層によって被覆される。これにより層間絶縁層(特に多孔質の層間絶縁層)への金属成分やプラズマ成分の拡散を抑制することができる(即ち、層間絶縁層に対する優れたシール性が発現する)。さらに、前記ポリマーが形成するポリマー層は薄層(例えば、5nm以下)であるため、層間絶縁層と、ポリマー層を介して層間絶縁層上に形成された配線材料との密着性に優れ、比誘電率の変化を抑制することができる。
 特に、本発明の半導体用シール組成物では、前記2以上のカチオン性官能基が3級窒素原子及び4級窒素原子の少なくとも一方を含み、前記ポリマーの分岐度が48%以上であることにより、層間絶縁層(特に多孔質の層間絶縁層)に対し、際立って優れたシール性が得られる。即ち、層間絶縁層(特に多孔質の層間絶縁層)への金属成分やプラズマ成分の拡散を顕著に抑制することができる。
 この理由は明らかではないが、前記ポリマーの分岐度が高いと、分岐構造を有する分子鎖同士が絡み合って分子鎖間の間隙が小さくなり、分子鎖間を金属成分やプラズマ成分などが透過するのを効率よく防ぐことができるため、と推定される。
 更に、本発明の半導体用シール組成物では、前記2以上のカチオン性官能基が3級窒素原子及び4級窒素原子の少なくとも一方を含み、前記ポリマーの分岐度が48%以上であることにより、層間絶縁層に付与され、その後、熱処理(例えば200℃~425℃(好ましくは200℃~400℃、より好ましくは200℃~350℃)の熱処理)が施された場合であっても、層間絶縁層に対する優れたシール性が維持される。即ち、本発明の半導体用シール組成物によれば、層間絶縁層に、耐熱性に優れたポリマー層(シール層)を形成することができる。
 この理由は明らかではないが、前記ポリマーの分岐度が高いこと、即ち、前記ポリマーが嵩高いことにより、前記ポリマーの熱分解及びこの熱分解によるシール性の低下が抑制されるためと推測される。
[ポリマー]
 本発明の半導体用シール組成物は、3級窒素原子及び4級窒素原子の少なくとも一方を含む2以上のカチオン性官能基を有し重量平均分子量が2000~1000000であり分岐度が48%以上であるポリマー(以下、「本発明のポリマー」ともいう)の少なくとも1種を含む。
 本発明において、「分岐度」は、下記式1によって求められる値を指す。
 分岐度(%) = ((3級窒素原子の個数+4級窒素原子の個数)/(2級窒素原子の個数+3級窒素原子の個数+4級窒素原子の個数))×100  ・・・ 式1
 従って、例えば、本発明のポリマーがポリアルキレンイミンである場合、直鎖状のポリアルキレンイミンは、3級窒素原子や4級窒素原子を有していないので分岐度0%のポリアルキレンイミンであり、末端を除いた骨格部分に含まれる全ての窒素原子が3級窒素原子である(即ち、最大限に分岐している)ポリアルキレンイミンは、分岐度100%のポリアルキレンイミンである。
 本発明において、「1級窒素原子」とは、水素原子2つ及び水素原子以外の原子1つのみに結合している窒素原子(例えば、1級アミノ基(-NH基)に含まれる窒素原子)、又は、水素原子3つ及び水素原子以外の原子1つのみに結合している窒素原子(カチオン)を指す。
 また、「2級窒素原子」とは、水素原子1つ及び水素原子以外の原子2つのみに結合している窒素原子(例えば、下記式(a)で表される官能基に含まれる窒素原子)、又は、水素原子2つ及び水素原子以外の原子2つのみに結合している窒素原子(カチオン)を指す。
 また、「3級窒素原子」とは、水素原子以外の原子3つのみに結合している窒素原子(即ち、下記式(b)で表される官能基である窒素原子)、又は、水素原子1つ及び水素原子以外の原子3つのみに結合している窒素原子(カチオン)を指す。
 また、「4級窒素原子」とは、水素原子以外の原子4つのみに結合している窒素原子(カチオン)を指す。
 上記において、「水素原子以外の原子」としては特に限定はないが、例えば、炭素原子、ケイ素原子等が挙げられ、炭素原子が好ましい。
Figure JPOXMLDOC01-appb-C000003
 式(a)及び式(b)において、*は、水素原子以外の原子との結合位置を示す。
 ここで、前記式(a)で表される官能基は、2級アミノ基(-NHR基;ここで、Rはアルキル基を表す)の一部を構成する官能基であってもよいし、ポリマーの骨格中に含まれる2価の連結基であってもよい。
 また、前記式(b)で表される官能基(即ち、3級窒素原子)は、3級アミノ基(-NR基;ここで、R及びRは、それぞれ独立に、アルキル基を表す)の一部を構成する官能基であってもよいし、ポリマーの骨格中に含まれる3価の連結基であってもよい。
 前記ポリマーの分岐度は48%以上であることが必要であるが、シール性をより向上させる観点からは、前記分岐度は55%以上であることが好ましく、70%以上であることがより好ましく、75%以上であることが特に好ましい。
 前記ポリマーの分岐度の上限は特に限定はないが、前記ポリマーが2級窒素原子を含む場合には、前記分岐度は100%未満となる。合成容易性の観点からは、前記ポリマーの分岐度は95%以下であることが好ましい。
 前記分岐度を48%以上に調整する方法には特に限定はないが、例えば、ポリマーを合成する際のモノマーの重合条件自体によって調整する方法や、ポリマーに含まれる1級窒素原子や2級窒素原子に対し、他の窒素含有化合物や、アルキル化合物を反応させることにより1級窒素原子や2級窒素原子から3級窒素原子や4級窒素原子を生成して分岐度を上昇させる方法が挙げられる。後者の方法の具体例については「ポリマーの製造方法」として後述する。
 また、本発明のポリマーは、カチオン性官能基を有する構造単位(カチオン性官能基を有するモノマーに由来する構造単位)を有することが好ましい。この場合、前記ポリマーの構造は、カチオン性官能基を有するモノマーが鎖状に重合して形成された構造であってもよいし、カチオン性官能基を有するモノマーが分岐状に重合して形成された構造であってもよい。
 本発明における「カチオン性官能基」は、正電荷を帯びることができる官能基であれば特に制限はない。
 前記カチオン性官能基としては、窒素原子(1級窒素原子、2級窒素原子、3級窒素原子、又は4級窒素原子)を含む官能基が好ましい。ここでいう「窒素原子を含む官能基」には、窒素原子1つのみから構成される官能基も含まれる。
 本発明のポリマーは、3級窒素原子及び4級窒素原子の少なくとも一方を含む2以上のカチオン性官能基を有する。
 本発明において、3級窒素原子及び4級窒素原子の少なくとも一方を含む2以上のカチオン性官能基を有するポリマーとは、カチオン性官能基として3級窒素原子及び4級窒素原子の少なくとも一方を含む2以上のカチオン性官能基を有するポリマー(即ち、2つ以上のカチオン性官能基を有し、かつ、2つ以上のカチオン性官能基のうちの少なくとも1つが3級窒素原子及び4級窒素原子の少なくとも一方であるポリマー)を意味する。
 本発明のポリマーは、カチオン性官能基として、3級窒素原子及び4級窒素原子の少なくとも一方(特に好ましくは3級窒素原子)を2つ以上有するポリマーが好ましい。
 本発明のポリマーは、カチオン性官能基として、1級窒素原子や2級窒素原子を含んでいてもよい。
 本発明のポリマーが1級窒素原子を含む場合には、前記ポリマー中の全窒素原子中に占める1級窒素原子の割合が33モル%以上であることが好ましい。本発明のポリマーが1級窒素原子を含むと(特に、1級窒素原子の比率が33モル%以上であると)、ポリマーと層間絶縁膜との濡れ性がより向上し、ポリマー層の厚さの均一性がより向上するので、シール性をより向上させることができる。
 また、前記ポリマーが1級窒素原子を含む場合、1級窒素原子以外にも2級窒素原子などの1級以外の窒素原子を共存させることが好ましい。これにより、ポリマー層の厚さを適切な範囲に調整し易く、シール性をより向上させることができる。
 また、前記ポリマーは、必要に応じて、アニオン性官能基やノニオン性官能基をさらに有していてもよい。
 前記ノニオン性官能基は、水素結合受容基であっても、水素結合供与基であってもよい。前記ノニオン性官能基としては、例えば、ヒドロキシ基、カルボニル基、エーテル基(-O-)、等を挙げることができる。
 前記アニオン性官能基は、負電荷を帯びることができる官能基であれば特に制限はない。前記アニオン性官能基としては、例えば、カルボン酸基、スルホン酸基、硫酸基等を挙げることができる。
 前記ポリマーは、1分子中に、3級窒素原子及び4級窒素原子の少なくとも一方を含む2以上のカチオン性官能基を有するものであればよいが、シール性をより向上させる観点から、カチオン密度が高いポリマーであることが好ましい。具体的には、カチオン性官能基当量が、27~430であることが好ましく、43~200であることがより好ましい。
 さらに層間絶縁層の表面を公知の方法、例えば、国際公開第04/026765号パンフレット、国際公開第06/025501号パンフレットなどに記載の方法で疎水化処理した場合は、前記表面の極性基の密度が減少するので、43~200であることもまた好ましい。
 ここでカチオン性官能基当量とは、カチオン性官能基当たりの重量平均分子量を意味し、ポリマーの重量平均分子量(Mw)を、1分子に相当するポリマーが含むカチオン性官能基数(n)で除して得られる値(Mw/n)である。このカチオン性官能基当量が大きいほどカチオン性官能基の密度が低く、一方、カチオン性官能基当量が小さいほどカチオン性官能基の密度が高い。
 本発明のポリマーが、カチオン性官能基を有する構造単位(以下、「特定構造単位」ということがある)を有するものである場合、前記カチオン性官能基は、特定構造単位において、主鎖の少なくとも一部として含まれていても、側鎖の少なくとも一部として含まれていてもよく、さらに、主鎖の少なくとも一部および側鎖の少なくとも一部として含まれていてもよい。
 さらに前記特定構造単位がカチオン性官能基を2以上含む場合、2以上のカチオン性官能基は同一であっても異なっていてもよい。
 また前記カチオン性官能基は、層間絶縁層上に存在するカチオン性官能基の吸着点(例えば、シラノール残基)間の平均距離に対する、特定構造単位の主鎖長の比(以下、「カチオン性官能基間の相対距離」ということがある)が、1.6以下となるように含まれていることが好ましく、0.08~1.0となるように含まれていることがより好ましい。かかる態様であることでポリマーが層間絶縁層上に、より効率的に多点吸着しやすくなる。
 前記特定構造単位は、層間絶縁層への吸着性の観点から、分子量が30~500であることが好ましく、40~200であることがより好ましい。尚、特定構造単位の分子量とは、特定構造単位を構成するモノマーの分子量を意味する。
 本発明における特定構造単位は、層間絶縁層への吸着性の観点から、カチオン性官能基間の相対距離が1.6以下であって、分子量が30~500であることが好ましく、カチオン性官能基間の相対距離が0.08~1.0であって、分子量が40~200であることがより好ましい。
 前記特定構造単位(カチオン性官能基を有する構造単位)として、具体的には、以下に例示するカチオン性官能基含有モノマーに由来する単位構造が挙げられる。
 前記カチオン性官能基含有モノマーとして、具体的には、アルキレンイミン、アリルアミン、ジアリルジメチルアンモニウム塩、ビニルピリジン、リジン、メチルビニルピリジン、p-ビニルピリジン等が挙げられる。
 前記アルキレンイミンとしては、炭素数2~12のアルキレンイミンが好ましく、炭素数2~8のアルキレンイミンがより好ましい。
 また、前記炭素数2~12のアルキレンイミンとしては、炭素数2~8の置換又は無置換の環状アミンが好ましい。
 前記炭素数2~12のアルキレンイミンとして、具体的には、エチレンイミン(別名:アジリジン)、プロピレンイミン(別名:2-メチルアジリジン)、ブチレンイミン、ペンチレンイミン、ヘキシレンイミン、ヘプチレンイミン、オクチレンイミン、トリメチレンイミン(別名:アゼチジン)、テトラメチレンイミン(別名:ピロリジン)、ペンタメチレンイミン(別名:ピペリジン)、ヘキサメチレンイミン、オクタメチレンイミン、等が挙げられる。中でも、エチレンイミンが特に好ましい。
 前記カチオン性官能基含有モノマーとしては、上記のうち、層間絶縁層への吸着性の観点やシール性の観点から、アルキレンイミン(好ましくは、炭素数2~8のアルキレンイミン)およびアリルアミンの少なくとも一方であることが好ましく、アルキレンイミン(好ましくは炭素数2~4のアルキレンイミン、特に好ましくはエチレンイミン)がより好ましい。
 また、本発明のポリマーは、層間絶縁層への吸着性の観点やシール性の観点から、前記特定構造単位(カチオン性官能基を有する構造単位)として、炭素数2~8(より好ましくは炭素数2~4)のアルキレンイミンに由来する構造単位であって3級窒素原子を含む構造単位を含むことが好ましい。
 合成容易性の観点からは、本発明のポリマーは、前記「炭素数2~8(より好ましくは炭素数2~4)のアルキレンイミンに由来する構造単位であって3級窒素原子を含む構造単位」に加え、炭素数2~8(より好ましくは炭素数2~4)のアルキレンイミンに由来する構造単位であって2級窒素原子を含む構造単位を含むことがより好ましい。
 また、分岐度を高めるために、ポリマー中の1級窒素原子及び2級窒素原子の少なくとも一方に窒素含有化合物を反応させてカチオン性官能基を導入する場合、ポリマーに導入されるカチオン性官能基としては、以下に示すカチオン性官能基(「*」は、ポリマー骨格中の窒素原子との結合位置を示す)や、アミノプロピル基、ジアミノプロピル基、アミノブチル基、ジアミノブチル基、トリアミノブチル基、等を挙げることができる。
Figure JPOXMLDOC01-appb-C000004
 ポリマーに導入されるカチオン性官能基の中でも、カチオン性官能基当量を小さくしカチオン性官能基密度を大きくする観点から、アミノエチル基が好ましい。
 また前記ポリマーは、ノニオン性官能基を含む単位構造およびアニオン性官能基を含む単位構造の少なくとも1種をさらに含んでいてもよい。
 前記ノニオン性官能基を含む単位構造として、具体的には、ビニルアルコールに由来する単位構造、アルキレンオキシドに由来する単位構造、ビニルピロリドンに由来する単位構造等を挙げることができる。
 さらにアニオン性官能基を含む単位構造として、具体的には、スチレンスルホン酸に由来する単位構造、ビニル硫酸に由来する単位構造、アクリル酸に由来する単位構造、メタクリル酸に由来する単位構造、マレイン酸に由来する単位構造、フマル酸に由来する単位構造等を挙げることができる。
 本発明において前記ポリマーが特定構造単位を2種以上含む場合、それぞれの特定構造単位は、含有するカチオン性官能基の種類または数、分子量等のいずれかが異なっていればよい。また前記2種以上の特定構造単位は、ブロックコポリマーとして含まれていても、ランダムコポリマーとして含まれていてもよい。
 また前記ポリマーは前記特定構造単位以外の構造単位(以下、「第2の構造単位」ということがある)の少なくとも1種をさらに含んでいてもよい。前記ポリマーが第2の構造単位を含む場合、前記ポリマーは、特定構造単位と第2の構造単位とを含むブロックコポリマーであってもよいし、特定構造単位と第2の構造単位とを含むランダムコポリマーであってもよい。
 前記第2の構造単位としては、前記特定構造単位を構成するモノマーと重合可能なモノマーに由来する構造単位であれば特に制限はない。例えば、オレフィンに由来する構造単位等を挙げることができる。
 また本発明のポリマーが、特定の構造単位を持たず、ポリマーを構成するモノマーが分岐的に重合して形成されるランダムな構造を有するものである場合、前記カチオン性官能基は、主鎖の少なくとも一部として含まれていても、側鎖の少なくとも一部として含まれていてもよく、さらに、主鎖の少なくとも一部および側鎖の少なくとも一部として含まれていてもよい。
 本発明のポリマーとして具体的には、ポリアルキレンイミン(例えば、炭素数2~12(好ましくは炭素数2~8、より好ましくは炭素数2~4)のアルキレンイミンの重合体であるポリアルキレンイミン、特に好ましくはポリエチレンイミン(PEI))、ポリアリルアミン(PAA)、ポリジアリルジメチルアンモニウム(PDDA)、ポリビニルピリジン(PVP)、ポリリジン、ポリメチルピリジルビニル(PMPyV)、プロトン化ポリ(p-ピリジルビニレン)(R-PHPyV)、およびこれらの誘導体を挙げることができる。中でも、ポリアルキレンイミン(例えば、炭素数2~12(好ましくは炭素数2~8、より好ましくは炭素数2~4)のアルキレンイミンの重合体であるポリアルキレンイミン、特に好ましくはポリエチレンイミン(PEI))またはその誘導体、ポリアリルアミン(PAA)などが好ましく、より好ましくはポリアルキレンイミン(例えば、炭素数2~12(好ましくは炭素数2~8、より好ましくは炭素数2~4)のアルキレンイミンの重合体であるポリアルキレンイミン、特に好ましくはポリエチレンイミン(PEI))またはその誘導体である。
 ポリエチレンイミン(PEI)は、一般にはエチレンイミンを通常用いられる方法で重合することにより製造することができる。重合触媒、重合条件なども、エチレンイミンの重合に一般的に用いられるものから適宜選択することができる。具体的には例えば、有効量の酸触媒、例えば塩酸の存在下に0~200℃で反応させることができる。さらにポリエチレンイミンをベースにしてエチレンイミンを付加重合させてもよい。また本発明におけるポリエチレンイミンは、エチレンイミンの単独重合体であっても、エチレンイミンと共重合可能な化合物、例えばアミン類とエチレンイミンとの共重合体であってもよい。このようなポリエチレンイミンの製造方法については、例えば、特公昭43-8828号公報、特公昭49-33120号公報等を参照することができる。
 また、前記ポリエチレンイミンは、モノエタノールアミンから得られる粗エチレンイミンを用いて得られたものであってもよい。具体的には例えば特開2001-2123958号公報等を参照することができる。
 なお、ポリエチレンイミン以外のポリアルキレンイミンについても、ポリエチレンイミンと同様の方法により製造できる。
 上記のようにして製造されるポリエチレンイミンは、エチレンイミンが開環して直鎖状に結合した部分構造のみならず、分岐状に結合した部分構造、直鎖状の部分構造同士が架橋連結された部分構造等を有する複雑な骨格を有している。ポリエチレンイミン以外のポリアルキレンイミンについても、ポリエチレンイミンと同様の構造を有する。
 かかる構造のカチオン性官能基を有するポリマーを用いることで、ポリマーがより効率的に多点吸着される。さらにポリマー間の相互作用により、より効果的に被覆層が形成される。
 本発明のポリマーはポリアルキレンイミン誘導体(例えば、炭素数2~12(好ましくは炭素数2~8、より好ましくは炭素数2~4)のアルキレンイミンの重合体であるポリアルキレンイミンの誘導体、特に好ましくはポリエチレンイミン誘導体)であることもまた好ましい。ポリアルキレンイミン誘導体としては、上記ポリアルキレンイミンを用いて製造可能な化合物であれば特に制限はない。具体的には、ポリアルキレンイミンにアルキル基(好ましくは炭素数1~10のアルキル基)やアリール基を導入したポリアルキレンイミン誘導体、ポリアルキレンイミンに水酸基等の架橋性基を導入して得られるポリアルキレンイミン誘導体等を挙げることができる。
 これらのポリアルキレンイミン誘導体は、上記ポリアルキレンイミンを用いて通常行われる方法により製造することができる。具体的には例えば、特開平6―016809号公報等に記載の方法に準拠して製造することができる。
 また、ポリアルキレンイミン誘導体としては、ポリアルキレンイミンに対してカチオン性官能基含有モノマーを反応させることにより、ポリアルキレンイミンの分岐度を向上させて得られた高分岐型のポリアルキレンイミンも好ましい。
 高分岐型のポリアルキレンイミンを得る方法としては、例えば、骨格中に複数の2級窒素原子を有するポリアルキレンイミンに対してカチオン性官能基含有モノマーを反応させ、前記複数の2級窒素原子のうちの少なくとも1部をカチオン性官能基含有モノマーによって置換する方法や、末端に複数の1級窒素原子を有するポリアルキレンイミンに対してカチオン性官能基含有モノマーを反応させ、前記複数の1級窒素原子のうちの少なくとも1部をカチオン性官能基含有モノマーによって置換する方法、が挙げられる。
 分岐度を向上するために導入されるカチオン性官能基としては、アミノエチル基、アミノプロピル基、ジアミノプロピル基、アミノブチル基、ジアミノブチル基、トリアミノブチル基等を挙げることができるが、カチオン性官能基当量を小さくしカチオン性官能基密度を大きくする観点から、アミノエチル基が好ましい。
 高分岐型のポリアルキレンイミンを得る方法としては、例えば、後述する「ポリマーの製造方法」の項で説明する方法を用いることができる。
 またさらに前記ポリエチレンイミンおよびその誘導体は、市販のものであってもよい。例えば、(株)日本触媒、BASF社等から市販されているポリエチレンイミンおよびその誘導体から、適宜選択して用いることもできる。
 本発明における前記ポリマーの重量平均分子量は、2000~1000000であるが、2000~600000であることが好ましく、10000~200000であることが好ましく、20000~200000であることがさらに好ましく、20000~150000であることがより好ましい。
 例えば、本発明の半導体用シール組成物を、配線間隔が32nm以下で層間絶縁層上の細孔直径が2~6nm程度である半導体装置の製造に適用する場合、前記ポリマーの重量平均分子量が1000000よりも大きいと、ポリマーの大きさが配線間隔よりも大きくなり、ポリマーが、配線材料が埋め込まれる凹状の溝に入り込めず、溝の側面の細孔が十分に被覆されない場合がある。また、重量平均分子量が2000未満であると、層間絶縁層上の細孔直径よりもポリマー分子の大きさが小さくなり、ポリマー分子が層間絶縁層上の細孔に入り込んで層間絶縁層の誘電率が上昇する場合がある。また、重量平均分子量が2000未満であると、前記ポリマーが多点で吸着しない場合がある。
 尚、重量平均分子量は、ポリマーの分子量測定に通常用いられるGPC装置を用いて測定される。
 また前記ポリマーは、水溶媒中における臨界ミセル濃度が1重量%以上であるか、実質的にミセル構造を形成しないポリマーであることもまた好ましい。ここで実質的にミセル構造を形成しないとは、常温の水溶媒中等の通常の条件下ではミセルを形成しない、すなわち臨界ミセル濃度が測定できないことをいう。かかるポリマーであることにより、厚さが分子レベルの薄いポリマー層(例えば、5nm以下)をより効果的に形成することができ、層間絶縁層の誘電率の上昇をより効果的に抑制することができる。さらに層間絶縁層と配線材料との密着性がより効果的に向上する。
 さらに本発明のポリマーは、重量平均分子量が2000~1000000であって、カチオン性官能基当量が27~430のポリエチレンイミンであることが好ましく、重量平均分子量が2000~600000であって、カチオン性官能基当量が27~430のポリエチレンイミンであることがより好ましく、重量平均分子量が10000~150000であって、カチオン性官能基当量が27~400のポリエチレンイミンであることが特に好ましい。かかる態様であることにより、層間絶縁層への金属成分やプラズマ成分の拡散がより効果的に抑制され、層間絶縁層と配線材料との密着性がより向上する。
 本発明の半導体用シール組成物における前記ポリマーの含有量には、特に制限はなく、例えば0.01~5.0重量%とすることができ、0.02~0.3重量%であることが好ましい。また本発明の半導体用シール組成物を用いてポリマー層を形成する面の面積および細孔密度に基づいて、前記組成物における前記ポリマーの含有量を調整することもできる。
[ポリマーの製造方法]
 本発明のポリマーを製造する方法としては、例えば、1級窒素原子及び2級窒素原子の少なくとも一方を含む原料ポリマーに、カチオン性官能基を有するモノマーを反応させる工程を有する製造方法が好適である。
 上記反応により、原料ポリマーに含まれる1級窒素原子及び2級窒素原子の少なくとも一方から3級窒素原子及び4級窒素原子の少なくとも一方を生成することができるので、分岐度48%以上である本発明のポリマーを好適に得ることができる。
 上記反応は、水やアルコール等の溶剤中で、原料ポリマーとカチオン性官能基を有するモノマーとを合わせ、加熱還流することにより行うことができる。
 反応時間は適宜調整できるが、例えば、1~24時間が好ましく、2~12時間がより好ましい。
 上記方法における原料ポリマーとしては、1級窒素原子及び2級窒素原子の少なくとも一方を含んでいれば特に限定はないが、2級窒素原子を含む原料ポリマーが好ましい。
 2級窒素原子を含む原料ポリマーとしては、例えば、炭素数2~12(好ましくは炭素数2~8)のアルキレンイミンの重合体であるポリアルキレンイミン、ポリN-アルキルアミド、又はこれらの誘導体等が挙げられる。ここで、炭素数2~12のアルキレンイミンの具体例については前述のとおりである。また、前記誘導体としては、例えば、アニオン性官能基が導入されたポリアルキレンイミン等が挙げられる。
 前記原料ポリマーの重量平均分子量としては、カチオン性官能基を有するモノマーとの反応により、重量平均分子量が2000~1000000である本発明のポリマーを製造し得る重量平均分子量であれば特に限定はない。
 例えば、前記原料ポリマーの重量平均分子量は、1000~500000が好ましく、2000~200000がより好ましく、5000~150000が特に好ましい。
 また、上記の製造方法に用いるカチオン性官能基を有するモノマーとしては、例えば、窒素含有化合物が挙げられる。
 また、上記の製造方法に用いるカチオン性官能基を有するモノマ-におけるカチオン性官能基は、反応条件下で安定な保護基と結合していることが好ましい。
 これにより、カチオン性官能基モノマー同士が反応することを抑制できるため、より分岐度の高いポリマーを製造することができる。
 前記保護基としては、一般的に用いられる保護基を用いることができる。
 前記保護基としては、例えば、t-ブトキシカルボニル基(Boc基)、ベンジルオキシカルボニル基、メトキシカルボニル基、フルオレニルカルボニル基、ホルミル基、アセチル基、ベンゾイル基、フタロイル基、アリル基、ベンジル基等が挙げられる。
 保護基と結合しているカチオン性官能基を有するモノマーとしては、保護基と結合している窒素原子を有する窒素含有化合物がより好ましい。
 保護基と結合している窒素原子を有する窒素含有化合物として、具体的には、下記一般式(m-1)~(m-3)のいずれか1つで表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 上記式(m-1)~(m-3)中、Rは保護基を表し、nは1~4の整数を表す。
 Rで表される保護基としては、一般的に窒素原子の保護基に用いられる官能基であれば何れでも良いが、例えば、t-ブトキシカルボニル基(Boc基)、ベンジルオキシカルボニル基、メトキシカルボニル基、フルオレニルカルボニル基、ホルミル基、アセチル基、ベンゾイル基、フタロイル基、アリル基、ベンジル基が好ましい。
 保護基と結合している窒素原子を有する窒素含有化合物(モノマー)としては、上記一般式(m-1)で表される化合物が更に好ましく、上記一般式(m-1)で表される化合物であってnが1である化合物(保護化アジリジン)が特に好ましい。
 また、本発明のポリマーを製造する方法としては、2級窒素原子を含む原料ポリマー(例えば、炭素数2~12のアルキレンイミンの重合体であるポリアルキレンイミン)に、上記一般式(m-1)で表される化合物を反応させる工程を有する製造方法が特に好ましい。
 また、前記ポリマーの製造方法は、必要に応じ、ポリマーに導入された、保護基を有するカチオン性官能基を脱保護する工程など、その他の工程を有していてもよい。
[その他の成分]
 本発明の半導体用シール組成物は、ナトリウムおよびカリウムの含有量がそれぞれ元素基準で10重量ppb以下である。ナトリウムまたはカリウムの含有量がそれぞれ元素基準で10重量ppbを越えると、トランジスタの動作不良など半導体装置の電気特性に不都合を生じる場合がある。
 本発明の半導体用シール組成物は、前記ポリマーに加えて必要に応じて溶媒を含むことができる。本発明における溶媒としては、前記ポリマーが均一に溶解し、ミセルを形成しにくい溶媒であれば特に限定されない。例えば、水(好ましくは、超純水)、水溶性有機溶剤(例えば、アルコール類等)等を挙げることができる。本発明においては、ミセル形成性の観点から、水、または水と水溶性有機溶剤との混合物を溶媒として用いることが好ましい。
 また前記溶媒の沸点は特に制限されないが、210℃以下であることが好ましく、160℃以下がさらに好ましい。溶媒の沸点が前記範囲であることで、例えば、後述する本願発明の半導体用シール組成物を層間絶縁層に接触させる工程の後、洗浄工程や乾燥工程を設けた場合、層間絶縁層の絶縁性を大きく損なうことなく、また前記シール組成物を前記層間絶縁層から剥離させることがない低い温度で、前記溶媒を除去することができる。
 さらに本発明の半導体用シール組成物は、本発明の効果を損なわない範囲で、必要に応じてセシウムイオン等の陽イオンをさらに含んでいてもよい。セシウム等の陽イオンを含むことで、半導体用シール組成物中のポリマーがより均一に層間絶縁層上に拡がりやすくなる。
 さらに本発明の半導体用シール組成物は、層間絶縁層を腐食や溶解させる化合物を含有しないことが好ましい。具体的には例えば、特に層間絶縁層の主材がシリカなどの無機化合物である場合、フッ素化合物等が本発明の組成物中に含まれると、前記層間絶縁層が溶解して絶縁性が損なわれ、比誘電率が増加する場合がある。
 本発明の半導体用シール組成物は、前記ポリマー以外の成分としては、210℃以下、好ましくは160℃以下の沸点を有する化合物か、250℃まで加熱しても分解性を有さない化合物のみを含むことが好ましい。
 なお前記「250℃まで加熱しても分解性を有さない化合物」とは、25℃で測定した重量に対する、250℃、窒素下で1時間保持した後の重量の変化が50%未満の化合物のことをいう。
 本発明の半導体用シール組成物は、動的光散乱法で測定された平均粒子径が150nm以下であることが好ましい。
 平均粒子径が150nm以下であると、配線材料との密着性がより向上し、層間絶縁層への金属成分やプラズマ成分の拡散がより抑制される。
 本発明において平均粒子径は、大塚電子社製ELSZ-2を用いた動的光散乱法により測定され、キュムラント平均粒径として得られる。測定条件は、例えば溶液濃度0.1%から1.0%、温度23から26℃において、積算回数70回、繰り返し回数3回などの条件により行われる。必要に応じてNaClなどの電解質を添加することで安定した測定を行うことができる。
 尚、本発明において平均粒子径が150nmを超える場合とは、具体的には、前記組成物中でミセル(平均粒子径が150nmを超えるミセル)が形成されている場合や、前記組成物中に配線となる銅を研磨する際(ケミカルメカニカルポリッシング)に用いられる金属酸化物などの研粒などが含まれている場合等である。
 半導体用シール組成物中に粒子径の大きいミセルが形成されていると、例えば、本発明の半導体用シール組成物を配線幅が32nm以下である半導体装置の製造に適用する場合に、半導体用シール組成物を構成するポリマーが、配線材料が埋め込まれる凹状の溝に充分に入り込むことができず、溝の側面の細孔を充分に被覆できない場合がある。
 前記平均粒子径は、配線材料との密着性をより向上させ、層間絶縁層への金属成分やプラズマ成分の拡散をより抑制する観点から、100nm以下であることがより好ましく、50nm以下であることがより好ましく、30nm以下であることが更に好ましく、10nm以下であることが特に好ましい。
 本発明の半導体用シール組成物のpHには特に制限はないが、ポリマーの層間絶縁層への吸着性の観点から、pHが層間絶縁層の等電点以上であることが好ましい。また、本発明の半導体用シール組成物のpHは、前記カチオン性官能基がカチオンの状態であるpHの範囲であることが好ましい。前記半導体用シール組成物がかかるpHであることにより、層間絶縁層とポリマーとの静電相互作用により、前記ポリマーが層間絶縁層上により効率的に吸着する。
 前記層間絶縁層の等電点は、層間絶縁層を構成する化合物が示す等電点であり、例えば、層間絶縁層を構成する化合物が多孔質シリカの場合、等電点は、pH2付近(25℃)となる。
 また、前記カチオン性官能基がカチオンの状態であるpHの範囲とは、半導体用シール組成物のpHが、カチオン性官能基を含むポリマーのpK以下であることをいう。例えば、カチオン性官能基を含むポリマーがポリアリルアミンである場合、pKは8~9であり、ポリエチレンイミンである場合、pKは7~12である。
 すなわち、本発明において半導体用シール組成物のpHは、層間絶縁層を構成する化合物種類と、ポリマーの種類とに応じて適宜選択することができ、例えば、pH2~12であることが好ましく、pH7~11であることがより好ましい。
 尚、pH(25℃)は通常用いられるpH測定装置を用いて測定される。
<半導体装置の製造方法>
 本発明の半導体装置の製造方法は、前記本発明の半導体用シール組成物を、基板上に形成された層間絶縁層に付与するシール組成物付与工程を含み、必要に応じて、その他の工程をさらに含んで構成される。
 本発明における層間絶縁層は、低誘電率材料から構成されることが好ましい。また、本発明における層間絶縁層は、多孔質の層間絶縁層(即ち、多孔質構造を有する層間絶縁層)であることが好ましい。
 前記多孔質の層間絶縁層における細孔半径(ポア半径)には特に限定はないが、本製造方法におけるシール性の効果をより効果的に奏する観点から、前記細孔半径は、0.5~4.0nmが好ましく、1.0~3.0nmがより好ましい。
 また、前記層間絶縁層は、多孔質シリカを含み、表面に多孔質シリカに由来するシラノール残基を有することが好ましい。この場合、前記シラノール残基が、前記ポリマーに含まれるカチオン性官能基と相互作用することにより、前記ポリマーが層間絶縁層上の細孔を被覆するように前記ポリマーからなる薄層が形成される。
 前記多孔質シリカとしては、半導体装置の層間絶縁層に通常用いられる多孔質シリカを特に制限なく用いることができる。例えば、WO91/11390パンフレットに記載されたシリカゲルと界面活性剤等とを用いて、密封した耐熱性容器内で水熱合成する有機化合物と無機化合物との自己組織化を利用した均一なメソ細孔を持つ酸化物や、Nature誌、1996年、379巻(703頁)またはSupramolecular Science誌、1998年、5巻(247頁等)に記載されたアルコキシシラン類の縮合物と界面活性剤とから製造される多孔質シリカ等を挙げることができる。
 また、前記多孔質シリカとしては、国際公開第2009/123104号パンフレット(段落0009~0187)や国際公開第2010/137711号パンフレット(段落0043~0088)に記載された、多孔質シリカ(例えば、特定のシロキサン化合物を含む組成物を用いて形成された多孔質シリカ)を用いることも好ましい。
 本製造方法おいて層間絶縁層が設けられる基板には特に限定はなく、例えば、シリコンウエハ等の半導体基板、ガラス基板、石英基板、ステンレス基板、プラスチック基板等を挙げることができる。その形状も特に制限されず、板状、皿状等のいずれであってもよい。
 本発明の半導体装置の製造方法は、本発明の半導体用シール組成物を、基板上に形成された層間絶縁層に付与するシール組成物付与工程を含む。
 前記層間絶縁層に、本発明の半導体用シール組成物を付与する方法としては特に制限はなく、通常用いられる方法を用いることができる。例えば、ディッピング法(例えば、米国特許第5208111号明細書参照)、スプレー法(例えば、Schlenoffら、Langmuir, 16(26), 9968, 2000や、Izquierdoら、Langmuir, 21(16), 7558, 2005参照)、および、スピンコート法(例えば、Leeら、Langmuir, 19(18), 7592, 2003や、J. Polymer Science, part B, polymer physics, 42, 3654, 2004参照)などを用いることができる。
 前記スピンコート法による半導体用シール組成物の付与方法としては特に限定はなく、例えば、層間絶縁層が形成された基板をスピンコーターで回転させながら、該層間絶縁層上に半導体用シール組成物を滴下し、次いで水などのリンス液を滴下してリンス処理を行い、次いで基板の回転数を上げて乾燥させる方法を用いることができる。このとき、半導体用シール組成物の滴下及び水の滴下を複数回繰り返した後、乾燥させてもよい。また、半導体用シール組成物を滴下後、回転数を上げて乾燥させ、乾燥後に一旦ホットプレート等の加熱処理器に移して加熱処理を行い、加熱処理後に再びスピンコーターに戻し、リンス処理及び乾燥を行ってもよい(以上の操作を複数回繰り返してもよい)。
 前記スピンコート法による半導体用シール組成物の付与方法において、基板の回転数、半導体用シール組成物の滴下量及び滴下時間、乾燥時の基板の回転数、リンス液の滴下量及び滴下時間、などの諸条件については特に制限はなく、形成するポリマー層(シール層)の厚みなどを考慮しながら適宜調整できる。
 本発明の半導体装置の製造方法においては、前記ポリマーを含む半導体用シール組成物を用いることで、前記ポリマーを含むポリマー層を層間絶縁層上に薄層状に形成することができる。前記ポリマー層の厚さには特に制限はないが、例えば、0.3nm~30nmであり、好ましくは0.3nm~10nmであり、より好ましくは0.3nm~5nmであり、特に好ましくは0.5nm~2nmである。
 なお、ここでいうポリマー層は、層間絶縁層が多孔質の層間絶縁層である場合には、ポリマーのみからなる層の形態だけでなく、多孔質の層間絶縁層の細孔にポリマーが染み込んだ構成となっている層(いわゆる染み込み層)の形態も含む。
 本発明の半導体装置の製造方法において、前記半導体用シール組成物は、カチオン性官能基等量が27~430であるポリマーを含み、前記半導体用シール組成物のpHが、前記層間絶縁層の等電点以上であり、かつ前記カチオン性官能基がカチオンの状態であるpHの範囲であることが好ましく、pHが2~12であることがより好ましく、pHが7~11であることがさらに好ましい。かかる半導体用シール組成物を前記層間絶縁層に接触させることで、前記ポリマーが層間絶縁層上により効率的に吸着する。
 前記層間絶縁層の等電点、および前記カチオン性官能基がカチオンの状態であるpHの範囲については、既述の通りである。
 さらに本発明のシール組成物付与工程に用いる半導体用シール組成物に含まれる前記ポリマーの濃度は、前記ポリマーの臨界ミセル濃度未満であることが好ましい。これにより、前記ポリマーを薄層状(例えば、5nm以下、好ましくは2nm以下)に層間絶縁層に付与することができ、誘電率の上昇を抑制することができる。
 本発明の半導体装置の製造方法は、前記層間絶縁層に10nm~32nm幅の凹状の溝が形成される工程をさらに含み、前記シール組成物付与工程は、少なくとも前記凹状の溝の側面の層間絶縁層に、前記半導体用シール組成物を接触させる工程であることが好ましい。
 かかる態様であることで、層間絶縁層に形成された凹状の溝の側面を構成する層間絶縁層(層間絶縁層が多孔質の層間絶縁層である場合には、この層間絶縁層に存在する細孔)を効果的に被覆することができ、前記凹状の溝に配線材料を埋め込む場合に、配線材料を構成する金属成分が層間絶縁層中に拡散することを抑制することができる。
 尚、凹状の溝の側面とは、基板と平行な面に対してほぼ直交するように形成された面を意味する。
 前記層間絶縁層に10nm~32nm幅の凹状の溝を形成する工程は、通常用いられる半導体装置の製造プロセス条件に従って行うことができる。例えば、層間絶縁層上に、ハードマスクとフォトレジストとを形成し、フォトレジストのパターン通りにエッチングすることで、所望のパターンを有する溝を形成することができる。
 また前記凹状の溝の側面の層間絶縁層に、前記半導体用シール組成物を接触させる方法としては、上記したディッピング法、スプレー法、スピンコート法を用いることができる。
 本発明においては、前記半導体用シール組成物を層間絶縁層に接触させた後、必要に応じて洗浄工程や乾燥工程をさらに設けてもよい。
 本発明の半導体装置の製造方法においては、前記シール組成物付与工程の後、必要に応じて配線形成工程等の通常行われる工程をさらに含んでいてもよい。
 配線形成工程は、公知のプロセス条件に従って行うことができる。例えば、メタルCVD法、スパッタリング法または電解メッキ法により銅配線を形成し、CMPにより膜を平滑化する。次いでその膜の表面にキャップ膜を形成する。さらに必要であれば、ハードマスクを形成し、上記の工程を繰り返すことで多層化することができ、本発明の半導体装置を製造することができる。
 さらに本発明の半導体装置の製造方法においては、前記シール組成物付与工程後であって、配線形成工程前にバリア膜(銅バリア層)形成工程をさらに設けることができる。バリア膜を形成することで層間絶縁層への金属成分の拡散をより効果的に抑制することができる。
 前記バリア膜形成工程は、通常用いられるプロセス条件に従って行うことができる。前記シール組成物付工程後に、例えば、気相成長法(CVD)により、窒化チタン等のチタン化合物や窒化タンタル等のタンタル化合物、ルテニウム化合物、マンガン化合物からなるバリア膜を形成することができる。本発明においては、ルテニウム化合物からなるバリア膜を形成することが好ましい。
<半導体装置>
 本発明の半導体装置は、層間絶縁層(好ましくは多孔質の層間絶縁層)と、3級窒素原子及び4級窒素原子の少なくとも一方を含む2以上のカチオン性官能基を有する重量平均分子量が2000~1000000のポリマーを含むポリマー層と、銅からなる層と、がこの順で配置された構造を備え、必要に応じてその他の層を含んで構成される。層間絶縁層と配線材料との間に、特定のポリマーを含むポリマー層が配置されていることで32nm以下の微細な回路構成であってもリーク電流等の発生が抑制され、良好な特性を示すことができる。
 本発明の半導体装置において、上記ポリマー層の厚さは0.3nm~5nmであることが好ましい。
 また、本発明の半導体装置においては、前記ポリマー層と前記銅を含む配線材料との間に、銅バリア層(好ましくは、ルテニウム化合物からなる層)がさらに配置されていることが好ましい。
 尚、本発明の半導体装置は、前記半導体装置の製造方法によって製造することができる。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
〔合成例1〕
<高分岐ポリエチレンイミン1の合成>
(変性ポリエチレンイミン1の合成)
 下記反応スキーム1に従い、ポリエチレンイミンを出発物質とし、変性ポリエチレンイミン1を合成した。
 なお、下記反応スキーム1及び反応スキーム2におけるポリマー構造は模式的に表した構造であり、3級窒素原子及び2級窒素原子の配置や、後述するBoc化アミノエチル基により置換される2級窒素原子の割合については、合成条件により種々変化するものである。
Figure JPOXMLDOC01-appb-C000006
 上記反応スキーム1中、*は結合位置を表す。
 本合成例1では、上記反応スキーム1の詳細の操作を以下の通りとした。
 MP-Biomedicals社製ポリエチレンイミン(50%水溶液)10.5gをイソプロパノール70mL中に溶解し、N-t-ブトキシカルボニル(本実施例において、t-ブトキシカルボニル基を「Boc」ともいう)アジリジン17.5g(122mmol)を加え、10時間加熱還流を行い、ポリエチレンイミンにBoc化アミノエチル基が導入された構造の変性ポリエチレンイミン1を得た。薄層クロマトグラフィー(TLC)で原料のN-Bocアジリジンがなくなったことを確認し、溶媒を減圧濃縮してH-NMRで構造を確認した。H-NMRより、ポリエチレンイミンに対するBoc化アミノエチル基の導入率は95%と算出された。
 H-NMR(CDOD);δ3.3-3.0(br.s,2),2.8-2.5(Br.s,6.2),1.45(s,9)
(高分岐ポリエチレンイミン1の合成)
 上記変性ポリエチレンイミン1を出発物質とし、下記反応スキーム2に従って高分岐ポリエチレンイミン1を合成した。
Figure JPOXMLDOC01-appb-C000007
 本合成例1では、上記反応スキーム2の詳細な操作は以下の通りとした。
 上記変性ポリエチレンイミン1をメタノール40mLに溶解し、得られた溶液を撹拌しながら、この溶液に12N塩酸20mLをゆっくり加えた。得られた溶液を50℃で4時間加熱撹拌し、ガスの発生と共に、反応系内にガム状の反応物が生成した。ガスの発生が終了した後に冷却し、冷却後、このガム状の反応物から分離した溶媒を除き、残った反応物をメタノール10mLで2回洗浄した。洗浄後の反応物を水に溶解し、陰イオン交換ポリマーで塩素イオンを取り除き、高分岐ポリエチレンイミン1を8g得た。
 H-NMR(DO);δ2.8-2.4(br.m)
 13C-NMR(DO);δ(積分比) 57.2(1.0),54.1(0.38),52.2(2.26),51.6(0.27),48.5(0.07),46.7(0.37),40.8(0.19),38.8(1.06)
 上記高分岐ポリエチレンイミン1について、重量平均分子量、分子量分布、カチオン性官能基(1級窒素原子、2級窒素原子、3級窒素原子、及び4級窒素原子)当量、1級窒素原子の量(mol%)、2級窒素原子の量(mol%)、3級窒素原子の量(mol%)、4級窒素原子の量(mol%)、分岐度(%)、及び粘度η(dl/g)をそれぞれ測定した。測定結果を後述の表1に示す。
 ここで、カチオン性官能基当量は、カチオン性官能基1つに対する分子量の値であり、ポリマー構造より算出することができる。
 また、1級窒素原子の量(mol%)、2級窒素原子の量(mol%)、3級窒素原子の量(mol%)、4級窒素原子の量(mol%)、及び分岐度(%)は、ポリマーサンプル(本合成例1では高分岐ポリエチレンイミン1)を重水に溶解し、得られた溶液について、ブルカー製AVANCE500型核磁気共鳴装置でシングルパルス逆ゲート付デカップリング法により、80℃で13C-NMRを測定した結果より、それぞれの炭素原子が何級のアミン(窒素原子)に結合しているかを解析し、その積分値を元に算出した。帰属については、European Polymer Journal, 1973, Vol. 9, pp. 559などに記載がある。
 重量平均分子量と分子量分布は、分析装置Shodex GPC-101を使用しカラムAsahipak GF-7M HQを用い測定し、ポリエチレングリコールを標準品として算出した。ただし、Mark-Houwink-Sakurada式で知られているように、分岐度が大きくなるとGPCの検量線も変わることから、表1の重量平均分子量と分子量分布はあくまでポリエチレングリコール換算の数値である。
 ここで、1級窒素原子の量(mol%)、2級窒素原子の量(mol%)、3級窒素原子の量(mol%)、及び4級窒素原子の量(mol%)は、それぞれ、下記式A~Dで表される量である。
 1級窒素原子の量(mol%) = (1級窒素原子のmol数/(1級窒素原子のmol数+2級窒素原子のmol数+3級窒素原子のmol数+4級窒素原子のmol数))×100 ・・・ 式A
 2級窒素原子の量(mol%) = (2級窒素原子のmol数/(1級窒素原子のmol数+2級窒素原子のmol数+3級窒素原子のmol数+4級窒素原子のmol数))×100 ・・・ 式B
 3級窒素原子の量(mol%) = (3級窒素原子のmol数/(1級窒素原子のmol数+2級窒素原子のmol数+3級窒素原子のmol数+4級窒素原子のmol数))×100 ・・・ 式C
 4級窒素原子の量(mol%) = (4級窒素原子のmol数/(1級窒素原子のmol数+2級窒素原子のmol数+3級窒素原子のmol数+4級窒素原子のmol数))×100 ・・・ 式D
 また、分岐度は、下記式Eにより求めた。
 分岐度(%) = ((3級窒素原子の量(mol%)+4級窒素原子の量(mol%))/(2級窒素原子の量(mol%)+3級窒素原子の量(mol%)+4級窒素原子の量(mol%))×100  ・・・ 式E
 また、粘度η(dl/g)は、高分岐ポリエチレンイミン1を0.5重量%含有する水溶液について、ウベローデ粘度管を用いて試料溶液流出時間(秒)及びブランク流出時間(秒)を測定し、下記式Fにより求めた。
 粘度η(dl/g)= (ln(試料溶液流出時間(秒)÷ブランク流出時間(秒)))÷溶液濃度(g/dl)  ・・・ 式F
〔合成例2〕
<高分岐ポリエチレンイミン2の合成>
(変性ポリエチレンイミン2の合成)
 上記反応スキーム1と同様の反応スキームにより、変性ポリエチレンイミン2を合成した。但し、本合成例2では、詳細な操作は以下のとおりとした。
 MP-Biomedicals社製ポリエチレンイミン(50%水溶液)12.8gをイソプロパノール64mL中に溶解し、N-Bocアジリジン4.26g(30mmol)を加え、3時間加熱還流を行い、ポリエチレンイミンにBoc化アミノエチル基が導入された構造の変性ポリエチレンイミン2を含む反応液を得た。TLCで原料のN-Bocアジリジンがなくなったことを確認し、上記反応液から少量をサンプリングしてNMRで構造を確認した。H-NMRより、ポリエチレンイミンに対するBoc化アミノエチル基の導入率は20%と算出された。
 H-NMR(CDOD);δ3.3-3.0(br.s,2),2.8-2.5(Br.s,23),1.45(s,9)
(高分岐ポリエチレンイミン2の合成)
 上記反応スキーム2と同様の反応スキームにより、高分岐ポリエチレンイミン2を合成した。但し、本合成例2では、詳細な操作は以下のとおりとした。
 上記変性ポリエチレンイミン2を含む反応液を撹拌しながら、この反応液に12N塩酸14.9mLをゆっくり加えた。得られた溶液を50℃で3時間加熱撹拌し、ガスの発生と共に、反応系内にガム状の反応物が生成した。ガスの発生が終了した後に冷却し、冷却後、このガム状の反応物から分離した溶媒を除き、残った反応物をメタノール10mLで3回洗浄した。洗浄後の反応物を水に溶解し、陰イオン交換ポリマーで塩素イオンを取り除き、高分岐ポリエチレンイミン2を10.5g得た。
 H-NMR(DO);δ2.8-2.4(br.m)
 13C-NMR(DO);δ(積分比) 57.1(1.0),54.1(1.61),52.2(2.75),51.5(0.82),48.5(1.07),46.6(1.67),40.7(0.79),38.8(1.04)
 上記高分岐ポリエチレンイミン2について、上記高分岐ポリエチレンイミン1と同様にして、重量平均分子量、分子量分布、カチオン性官能基当量、1級窒素原子の量(mol%)、2級窒素原子の量(mol%)、3級窒素原子の量(mol%)、4級窒素原子の量(mol%)、分岐度(%)、及び粘度η(dl/g)をそれぞれ測定した。測定結果を後述の表1に示す。
〔合成例3〕
<高分岐ポリエチレンイミン3の合成>
 日本触媒社製ポリエチレンイミンP-1000(30%水溶液)10.0gをメタノール30mL中に溶解し、得られた溶液を10℃以下に冷却した。冷却後の溶液にアクリル酸メチル6.0g(70mmol)を滴下後、室温で48時間放置した。放置後の溶液から少量サンプリングし、H-NMRでアクリル酸メチルの消失を確認した。放置後の溶液にエチレンジアミン83.7g(1395mmol)を加え、9時間加熱還流を行った。還流後の溶液から反応溶媒と過剰のエチレンジアミンとを減圧留去し、残渣をメタノール25mLに溶解した。得られた溶液に酢酸エチルを加えてポリマーを析出させた後、溶媒を除去し、残渣を酢酸エチルで洗浄した。洗浄後の残渣に水を加えた後、減圧濃縮することで高分岐ポリエチレンイミン3を8.55g得た。
 H-NMR(DO);δ3.3-3.1(br.s,1),2.9-2.2(Br.m,6)
 上記高分岐ポリエチレンイミン3について、上記高分岐ポリエチレンイミン1と同様にして、重量平均分子量、分子量分布、カチオン性官能基当量、1級窒素原子の量(mol%)、2級窒素原子の量(mol%)、3級窒素原子の量(mol%)、4級窒素原子の量(mol%)、分岐度(%)、及び粘度η(dl/g)をそれぞれ測定した。測定結果を後述の表1に示す。
〔合成例4〕
<高分岐ポリエチレンイミン4の合成>
 上記反応スキーム1及び2に示す反応を3回繰り返すことにより、分岐度が90%の高分岐ポリエチレンイミン4を合成した。以下、詳細を説明する。
(変性ポリエチレンイミン4Aの合成;反応スキーム1)
 上記反応スキーム1に従い、変性ポリエチレンイミン4Aを合成した。詳細な操作は以下の通りである。
 MP-Biomedicals社製ポリエチレンイミン(50%水溶液)8.0gをイソプロパノール53mL中に溶解し、N-Bocアジリジン13.3g(93mmol)を加え、8時間加熱還流を行い、ポリエチレンイミンにBoc化アミノエチル基が導入された構造の変性ポリエチレンイミン4Aを得た。薄層クロマトグラフィー(TLC)で原料のN-Bocアジリジンがなくなったことを確認し、少量サンプリングしてH-NMRで構造を確認した。H-NMRより、ポリエチレンイミンに対するBoc化アミノエチル基の導入率は95%と算出された。
 H-NMR(CDOD);δ3.3-3.0(br.s,2),2.8-2.5(Br.s,6.2),1.45(s,9)
(分岐ポリエチレンイミン4Aの合成;反応スキーム2)
 上記変性ポリエチレンイミン4Aを出発物質とし、上記反応スキーム2に従って分岐ポリエチレンイミン4Aを合成した。詳細な操作は以下の通りである。
 上記変性ポリエチレンイミン4Aのイソプロパノール溶液に12N塩酸18mLをゆっくり加えた。得られた溶液を、ガスの発生に注意しながら50℃で3時間加熱撹拌した。ガスの発生と共に、反応系内にガム状の反応物が生成した。ガスの発生が終了した後に冷却し、冷却後、このガム状の反応物から分離した溶媒を除き、メタノール15mLで4回洗浄した。残った反応物を水に溶解し、陰イオン交換ポリマーで塩素イオンを取り除き、分岐ポリエチレンイミン4Aを26g(純度約30%)得た。
 H-NMR(DO);δ2.8-2.4(br.m)
(変性ポリエチレンイミン4Bの合成;反応スキーム1)
 上記分岐ポリエチレンイミン4Aを出発物質とし、上記反応スキーム1に従って変性ポリエチレンイミン4Bを合成した。詳細な操作は以下の通りである。
 上記分岐ポリエチレンイミン4A(9.1g、純度約30%)をイソプロパノール31mL中に溶解し、N-Bocアジリジン7.8g(54.4mmol)を加え、8時間加熱還流を行い、ポリエチレンイミンにBoc化アミノエチル基が導入された構造の変性ポリエチレンイミン4Bを得た。薄層クロマトグラフィー(TLC)で原料のN-Bocアジリジンがなくなったことを確認し、少量サンプリングしてH-NMRで構造を確認した。H-NMRより、ポリエチレンイミンに対するBoc化アミノエチル基の導入率は90%と算出された。
 H-NMR(CDOD);δ3.3-3.0(br.s,2),2.8-2.5(Br.s,6.2),1.45(s,9)
(分岐ポリエチレンイミン4Bの合成;反応スキーム2)
 上記変性ポリエチレンイミン4Bを出発物質とし、上記反応スキーム2に従って分岐ポリエチレンイミン4Bを合成した。詳細な操作は以下の通りである。
 上記変性ポリエチレンイミン4Bのイソプロパノール溶液に12N塩酸13mLをゆっくり加えた。得られた溶液を、ガスの発生に注意しながら50℃で4時間加熱撹拌した。ガスの発生と共に、反応系内にガム状の反応物が生成した。ガスの発生が終了した後に冷却し、冷却後、このガム状の反応物から分離した溶媒を除き、メタノール10mLで3回洗浄した。残った反応物を水に溶解し、陰イオン交換ポリマーで塩素イオンを取り除き、分岐ポリエチレンイミン4Bを11.29g(純度約40%)得た。
 H-NMR(DO);δ2.8-2.4(br.m)
(変性ポリエチレンイミン4Cの合成;反応スキーム1)
 上記分岐ポリエチレンイミン4Bを出発物質とし、上記反応スキーム1に従って変性ポリエチレンイミン4Cを合成した。詳細な操作は以下の通りである。
 上記分岐ポリエチレンイミン4B(4.7g、純度約40%)をイソプロパノール22.5mL中に溶解し、N-Bocアジリジン5.6g(39.4mmol)を加え、8時間加熱還流を行い、ポリエチレンイミンにBoc化アミノエチル基が導入された構造の変性ポリエチレンイミン4Cを得た。薄層クロマトグラフィー(TLC)で原料のN-Bocアジリジンがなくなったことを確認し、少量サンプリングしてH-NMRで構造を確認した。H-NMRより、ポリエチレンイミンに対するBoc化アミノエチル基の導入率は90%と算出された。
 H-NMR(CDOD);δ3.3-3.0(br.s,2),2.8-2.5(Br.s,6.2),1.45(s,9)
(高分岐ポリエチレンイミン4の合成;反応スキーム2)
 上記変性ポリエチレンイミン4Cを出発物質とし、上記反応スキーム2に従って高分岐ポリエチレンイミン4を合成した。詳細な操作は以下の通りである。
 上記変性ポリエチレンイミン4Cのイソプロパノール溶液に12N塩酸9mLをゆっくり加えた。得られた溶液を、ガスの発生に注意しながら50℃で4時間加熱撹拌した。ガスの発生と共に、反応系内にガム状の反応物が生成した。ガスの発生が終了した後に冷却し、冷却後、このガム状の反応物から分離した溶媒を除き、メタノール10mLで3回洗浄した。残った反応物を水に溶解し、陰イオン交換ポリマーで塩素イオンを取り除き、超高分岐ポリエチレンイミン4を8.4g(純度約40%)得た。
 H-NMR(DO);δ2.8-2.4(br.m)
 上記高分岐ポリエチレンイミン4について、上記高分岐ポリエチレンイミン1と同様にして、カチオン性官能基当量、1級窒素原子の量(mol%)、2級窒素原子の量(mol%)、3級窒素原子の量(mol%)、4級窒素原子の量(mol%)、及び分岐度(%)をそれぞれ測定した。
 その結果、カチオン性官能基当量は43であり、1級窒素原子の量は47mol%であり、2級窒素原子の量は5mol%であり、3級窒素原子の量は48mol%であり、4級窒素原子の量は0mol%であり、分岐度は90%であった。
 高分岐ポリエチレンイミン4の重量平均分子量は現状では測定不能であったが、上述した合成条件からみて2000~1000000の範囲内であると考えられる。
〔実施例1〕
<半導体用シール組成物の調製>
 上記高分岐ポリエチレンイミン1(250mg)を100mLの水に溶解させ、半導体用シール組成物(以下、「シール組成物1」ともいう)を得た。
 得られたシール組成物1について、ナトリウムの含有量、カリウムの含有量、体積平均粒子径をそれぞれ測定した。
 測定結果を下記表1に示す。
 ここで、ナトリウムの含有量及びカリウムの含有量は、それぞれ、誘電結合プラズマ質量分析装置(ICP-MS)により測定した。この測定における測定下限は、ナトリウムの含有量、カリウムの含有量とも、1重量ppbである。
 また、ミセル形成性を確認するために、大塚電子製ELSZ-2を用いて動的光散乱法により体積平均粒子径を測定した。体積平均粒子径は検出限界未満(<10nm)であった。
 尚、測定条件は、積算回数70回、繰り返し回数1回、解析条件は、ヒストグラム解析、キュムラント解析を用いた。
<層間絶縁膜の形成>
 下記の各成分を用いて多孔質シリカ形成用組成物を調製し、得られた多孔質シリカ形成用組成物を用いて層間絶縁膜を形成した。
 以下、詳細を説明する。
(多孔質シリカ形成用組成物の成分)
-アルコキシシラン化合物-
 ビストリエトキシシリルエタン(Gelest製、(CO)SiCHCHSi(OC)を蒸留精製したものである。
 ジメチルジエトキシシラン(山中セミコンダクター社製、電子工業グレード、((CHSi(OC))。
-界面活性剤-
 ポリオキシエチレン(20)ステアリルエーテル(シグマケミカル社製、商品名:Brij78、C1837(CHCHO)20H)を、電子工業用エタノールに溶解した後、イオン交換ポリマーを用いて10ppb以下まで脱金属処理を施したものである。
-ジシリル化合物-
 ヘキサメチルジシロキサン(アルドリッチ製、((CHSi)O)を蒸留精製したものである。
-水-
 脱金属処理された抵抗値18MΩ以上の純水。
-有機溶媒-
 エタノール(和光純薬製、電子工業グレード、COH)
 1-プロピルアルコール(関東化学製、電子工業グレード、CHCHCHOH)
 2-ブチルアルコール(関東化学製、電子工業グレード、CH(C)CHOH)。
(前駆体溶液の調製)
 77.4gのビストリエトキシシリルエタンと70.9gのエタノールを室温下で混合攪拌した後、1mol/Lの硝酸80mLを添加し、50℃で1時間撹拌した。次に、41.7gのポリオキシエチレン(20)ステアリルエーテルを280gのエタノールで溶解した溶液を滴下混合した。混合後、30℃で4時間撹拌した。得られた溶液を25℃、30hPaの減圧下、123gになるまで濃縮した。濃縮後、1-プロピルアルコールと2-ブチルアルコールを体積で2:1に混合した溶液を添加し、前駆体溶液1280gを得た。
(多孔質シリカ形成用組成物の調製)
 前駆体溶液218gにジメチルジエトキシシラン1.2g、ヘキサメチルジシロキサン0.6gを添加し、25℃で1時間撹拌し、多孔質シリカ形成用組成物を得た。この時のジメチルジエトキシシラン、ヘキサメチルジシロキサンの添加量は、ビストリエトキシシリルエタンに対してそれぞれ10モル%、5モル%であった。
(層間絶縁層の形成)
 多孔質シリカ形成用組成物1.0mLをシリコンウエハ表面上に滴下し、2000rpmで60秒間回転させて、シリコンウエハ表面に塗布した後、窒素雰囲気下150℃で1分間、次いで、350℃で10分間加熱処理した。その後、172nmエキシマランプを装備したチャンバー内で350℃まで加熱し、圧力1Paで出力14mW/cmにより、紫外線を10分間照射することにより、層間絶縁層(多孔質シリカ膜)を得た。
 得られた層間絶縁膜のポア半径は、2.6nmであった。
 また、得られた層間絶縁層の、比誘電率kは2.1、弾性率Eは6.2GPaであった。
 層間絶縁膜のポア半径は、トルエンの脱離等温線から計算により求めた。ここで、トルエン脱離等温線測定は、後述するシール性評価と同様の手法により、SEMILAB社製光学式ポロシメータ(PS-1200)を用いて行った。ポア半径の計算は、 M. R. Baklanov, K. P. Mogilnikov, V. G. Polovinkin, and F. N. Dultsey, Journal of Vacuum Science and Technology B (2000) 18, 1385-1391 に記載された手法に従って、ケルビン式を用いて行った。
 また比誘電率は、水銀プローブ装置(SSM5130)を用い、25℃、相対湿度30%の雰囲気下、周波数100kHzにて常法により比誘電率を測定した。
 また弾性率は、ナノインデンテーター(Hysitron社、Triboscope)により、膜厚の1/10以下の押し込み深さで常法により弾性率を測定した。
<半導体用シール組成物の付与>
 上記層間絶縁層(以下「low-k膜」ということがある)が形成されたシリコンウエハをスピンコーターを用いて600rpmで回転させながら、low-k膜上に前記シール組成物1(2.0mL)を30秒間かけて一定速度で滴下した後、2000rpmで10秒間回転させて乾燥させ、その後、ホットプレート上に移し、大気中、125℃で1分間加熱処理した。次いで、シリコンウエハをスピンコーターに戻し、600rpmで回転させながら、シリコンウエハのシール組成物1が滴下された側の面に、超純水3.0mLを30秒間一定速度で滴下し、次いで、2000rpmで60秒間回転させ乾燥させた。このシール層の成膜操作を3回繰り返した。
 以上により、層間絶縁層上に、前記シール組成物1に含まれるポリマーの層(シール層)を形成し、シリコンウエハと層間絶縁層とシール層とが順次積層された構造の積層体(以下、「試料(Si/low-k/PEI)」ともいう)を得た。
 尚、「水」としては、超純水(Millipore社製Milli-Q水、抵抗18MΩ・cm(25℃)以下)を使用した。
<シール性評価>
 上記試料(Si/low-k/PEI)を用い、シール性評価を行った。
 シール性評価は、試料(Si/low-k/PEI)のシール層(PEI)表面におけるトルエン吸着特性測定により行った。このトルエン吸着特性測定では、トルエン吸着量が少ないほど、Low-k膜中への配線材料(銅など)の侵入を防ぐシール性が高いことを表す。
 トルエン吸着測定は、SEMILAB社製光学式ポロシメータ(PS-1200)を用いて行った。
 測定方法は、M. R. Baklanov, K. P. Mogilnikov, V. G. Polovinkin, and F. N. Dultsey, Journal of Vacuum Science and Technology B (2000) 18, 1385-1391に記載の手法に従って行った。
 具体的には、温度範囲23~26℃において、試料(Si/low-k/PEI)の入ったサンプル室を5mTorrまで排気した後、トルエンガスをサンプル室に十分にゆっくり導入した。各圧力において、low-k膜の屈折率をエリプソメータ装置によりその場測定した。この操作を、サンプル室内圧力がトルエンの飽和蒸気圧に達するまで行った。同様に、サンプル室内雰囲気を徐々に排気しつつ、各圧力にて屈折率の測定を行った。以上の操作により、low-k膜へのトルエンの吸着および脱離による屈折率変化を求めた。更に、ローレンツ-ローレンツ式を用いて、屈折率の相対圧力特性からトルエンガス吸着脱離等温線を求めた。
 図1に、トルエンガス吸着脱離等温線を示す。
 図1中の横軸は、トルエン相対圧(P/P;ここで、Pはトルエンの室温での分圧を表し、Pはトルエンの室温での飽和蒸気圧を表す。)であり、縦軸は、トルエン吸着量の体積分率(Low-k膜全体の体積に対するトルエンの室温での吸着体積の比率)である。トルエン吸着量の体積分率は、ローレンツ・ローレンツ式を用いてlow-k膜の屈折率に基づいて求めた。
 トルエン吸着量の体積分率が同じ場合、トルエン相対圧が大きいほどシール性に優れることを意味する。
<シール層の厚さ測定>
 上記試料(Si/low-k/PEI)におけるシール層(PEI)の厚さ(膜厚)を調べるために、以下の測定を行った。
 即ち、上記<半導体用シール組成物の付与>において、層間絶縁層が形成されたシリコンウエハを、層間絶縁層が形成されていないシリコンウエハに変更したこと以外は上記<半導体用シール組成物の付与>と同様の操作を行った。これにより、シリコンウエハ上に直接シール層が形成された構造の、シール層の厚さ測定用サンプル(以下、単に「測定用サンプル」ともいう)を得た。
 得られた測定用サンプルにおけるシール層の厚さ(単位:nm)を、SEMILAB社製光学式ポロシメータ(PS-1200)のエリプソメーターを使用して常法により測定した。
 シール層の厚さ(膜厚)測定の結果を表1に示す。
〔実施例2〕
 高分岐ポリエチレンイミン1を同質量の高分岐ポリエチレンイミン2に変更したこと以外は実施例1と同様にして半導体用シール組成物を調製し(以下、「シール組成物2」とする)、実施例1と同様の測定及び評価を行った。
 シール性の評価結果(トルエンガス吸着脱離等温線)を図1に示す。
 また、シール組成物2についての各測定結果を下記表1に示す。
〔実施例3〕
 ポリオキシエチレン(20)ステアリルエーテルの重量を31.3gに変更することにより、Low-k膜のポア半径を2.6nmから2.1nmに変更し、シール層の成膜操作の回数を3回から1回に変更したこと以外は実施例1と同様にして半導体用シール組成物の付与(試料(Si/low-k/PEI)の作製)を行い、実施例1と同様の測定及び評価を行った。
 シール性の評価結果(トルエンガス吸着脱離等温線)を図2に示す。
〔実施例4〕
 高分岐ポリエチレンイミン1を同質量の高分岐ポリエチレンイミン3に変更したこと以外は実施例3と同様にして半導体用シール組成物を調製し(以下、「シール組成物3」とする)、実施例3と同様の測定及び評価を行った。
 シール性の評価結果(トルエンガス吸着脱離等温線)を図2に示す。
 また、シール組成物3についての各測定結果を下記表1に示す。
〔比較例1〕
 高分岐ポリエチレンイミン1を同質量のポリエチレンイミン1(MP Biomedicals社製ポリエチレンイミンを10kの中空糸フィルターで精製し、低分子量成分を除去したもの)に変更したこと以外は実施例1と同様にして半導体用シール組成物を調製し(以下、「比較シール組成物1」とする)、実施例1と同様の測定及び評価を行った。
 シール性の評価結果(トルエンガス吸着脱離等温線)を図1に示す。
 また、比較シール組成物1についての各測定結果を下記表1に示す。
〔比較例2〕
 高分岐ポリエチレンイミン1を同質量のポリエチレンイミン2(BASF社製ポリエチレンイミンLupasol WF)に変更したこと以外は実施例1と同様にして半導体用シール組成物を調製し(以下、「比較シール組成物2」とする)、実施例1と同様の測定及び評価を行った。
 シール性の評価結果(トルエンガス吸着脱離等温線)を図1に示す。
 また、比較シール組成物2についての各測定結果を下記表1に示す。
〔比較例3〕
 高分岐ポリエチレンイミン1を同質量のポリエチレンイミン3(MP Biomedicals社製ポリエチレンイミン)に変更したこと以外は実施例1と同様にして半導体用シール組成物を調製し(以下、「比較シール組成物3」とする)、実施例1と同様の測定及び評価を行った。
 シール性の評価結果(トルエンガス吸着脱離等温線)を図1に示す。
 また、比較シール組成物3についての各測定結果を下記表1に示す。
〔比較例4〕
 高分岐ポリエチレンイミン1を用いなかったこと(即ち、シール組成物1を同質量の水に変更したこと)以外は実施例1と同様にして測定及び評価を行った。
 シール性の評価結果(トルエンガス吸着脱離等温線)を図1に示す。
〔比較例5〕
 高分岐ポリエチレンイミン1を同質量のポリエチレンイミン3(MP Biomedicals社製ポリエチレンイミン)に変更したこと以外は実施例3と同様にして半導体用シール組成物を調製し(以下、「比較シール組成物3」とする)、実施例3と同様の測定及び評価を行った。
 シール性の評価結果(トルエンガス吸着脱離等温線)を図2に示す。
Figure JPOXMLDOC01-appb-T000008
 図1は、low-k膜のポア半径が2.6nmでありシール層の成膜操作の回数が3回である、実施例1~2及び比較例1~4におけるトルエンガス吸着脱離等温線(トルエン相対圧とトルエン吸着量の体積分率との関係を示すグラフ)である。
 トルエン吸着量の体積分率が同じ場合(例えば、図1中の一点鎖線参照)、トルエン相対圧が大きいほどシール性に優れることを意味する。
 図1に示すように、ポリマーの分岐度が48%以上である実施例1~2では、Low-k膜に対するシール性に優れていた。特に、実施例1では、トルエン相対圧の全範囲(0~1)にわたって、トルエン吸着量の体積分率が非常に低く、極めて優れたシール性を示した。
 また、実施例1~2及び比較例1~3において、前述の<シール層の厚さ測定>によって測定されたシール層の厚さは、表1に示すとおりであった。
 なお、表1において、「N.D.」(no data)は、測定を省略したために測定結果が無いことを示している。
 図1に示すシール性の評価結果及び表1に示すシール層の厚さ測定の結果より、実施例1~2におけるシール層は、12nm程度という極めて薄い厚さであるにも関わらず、Low-k膜に対して優れたシール性を示すことが確認された。
 図2は、low-k膜のポア半径が2.1nmでありシール層の成膜操作の回数が1回である、実施例3~4及び比較例5におけるトルエンガス吸着脱離等温線(トルエン相対圧とトルエン吸着量の体積分率との関係を示すグラフ)である。
 図2に示すように、ポリマーの分岐度が48%以上である実施例3~4では、Low-k膜に対するシール性に優れていた。
 また、実施例3~4及び比較例5において、前述の<シール層の厚さ測定>によって測定されたシール層の厚さは、表1に示すとおりであった。
 図2に示すシール性の評価結果及び表1に示すシール層の厚さ測定の結果より、実施例3~4におけるシール層は、4~5nm程度という極めて薄い厚さであるにも関わらず、Low-k膜に対して優れたシール性を示すことが確認された。
〔実施例5〕
 以下のようにして、350℃の加熱処理(下記加熱処理B)を経て形成されたシール層のシール性評価を行った。
 実施例3において、ポリオキシエチレン(20)ステアリルエーテルの重量を20.9gに変更することにより、Low-k膜のポア半径を2.1nmから1.6nmに変更し、Low-k膜(ポア半径1.6nm)付きシリコンウエハを準備した。
 準備したLow-k膜(ポア半径1.6nm)付きシリコンウエハをスピンコーターにセットし、low-k膜上に前記シール組成物1(1.0mL)を滴下した後23秒間保持し、次いで4000rpmで1秒間回転させ、更に600rpmで30秒間回転させた後、更に2000rpmで10秒間回転させて乾燥させた。その後、ホットプレート上に移し、大気中、125℃で1分間加熱処理(以下、「加熱処理A」ともいう)した。次いで、シリコンウエハをスピンコーターに戻し、600rpmで回転させながら、シリコンウエハのシール組成物1が滴下された側の面に、超純水3.0mLを30秒間一定速度で滴下し、次いで、2000rpmで60秒間回転させ乾燥させた。次に、窒素雰囲気中、350℃、2分間の加熱処理(以下、「加熱処理B」ともいう)を行い、実施例5の試料(Si/low-k/PEI)を得た。
 得られた実施例5の試料(Si/low-k/PEI)を用い、実施例3と同様の測定及び評価を行った(下記表2参照)。
 シール性評価結果(トルエンガス吸着脱離等温線)を図3に示す。
〔比較例6〕
 実施例5において、高分岐ポリエチレンイミン1を同質量のポリエチレンイミン3(MP Biomedicals社製ポリエチレンイミン)に変更したこと以外は実施例5と同様の測定及び評価を行った(下記表2参照)。
 シール性評価結果(トルエンガス吸着脱離等温線)を図3に示す。
Figure JPOXMLDOC01-appb-T000009
 図3は、実施例5及び比較例6におけるトルエンガス吸着脱離等温線(トルエン相対圧とトルエン吸着量の体積分率との関係を示すグラフ)である。
 図3に示すように、実施例5では、比較例6と比較して、Low-k膜に対するシール性に優れていた。
 この理由は、実施例5では、比較例6と比較して、シール層に含まれるポリマーの分岐度が高い(即ち、ポリマーが嵩高い)ことにより、350℃の加熱処理Bによるポリマーの熱分解が抑制されたため、と推測される。
 また、図3に示すシール性の評価結果及び表2に示すシール層の厚さ測定の結果より、実施例5におけるシール層は、6.0nmという極めて薄い厚さであるにも関わらず、Low-k膜に対して優れたシール性を示すことが確認された。
〔実施例6〕
 上記比較例5において、ポリエチレンイミン3(MP Biomedicals社製ポリエチレンイミン)を、同質量の上記高分岐ポリエチレンイミン4(分岐度90%のポリエチレンイミン)に変更したこと以外は比較例5と同様にして半導体用シール組成物を調製し(以下、「シール組成物4」とする)、比較例5と同様の測定を行った。このシール組成物4において、Na含有量は1重量ppb未満であり、K含有量は1重量ppb未満であり、体積平均粒子径は10nm未満であった。
 次に、上記比較例5と同様にしてLow-k膜(ポア半径2.1nm)付きシリコンウエハを準備した。準備したLow-k膜(ポア半径2.1nm)付きシリコンウエハをスピンコーターにセットし、low-k膜上に前記シール組成物4(1.0mL)を滴下した後23秒間保持し、次いで4000rpmで1秒間回転させ、更に600rpmで30秒間回転させた後、更に2000rpmで10秒間回転させて乾燥させた。その後、ホットプレート上に移し、大気中、125℃で1分間加熱処理した。次いで、シリコンウエハをスピンコーターに戻し、600rpmで回転させながら、シリコンウエハのシール組成物4が滴下された側の面に、超純水3.0mLを30秒間一定速度で滴下し、次いで、2000rpmで60秒間回転させ乾燥させた。以上により、実施例6の試料(Si/low-k/PEI)を得た。
 上記実施例6の試料(Si/low-k/PEI)を用い、比較例5と同様の測定及び評価を行った(図4)。
 また、比較例5と同様にしてシール層の厚さを測定したところ、シール層の厚さは4.0nmであった。
 実施例6のシール性の評価結果(トルエンガス吸着脱離等温線)を図4に示す。
 図4に示すように、ポリマーの分岐度が90%である実施例6でも、他の実施例と同様に、Low-k膜に対するシール性に優れていた。
 このように、実施例6におけるシール層は、4.0nmという極めて薄い厚さであるにも関わらず、Low-k膜に対して優れたシール性を示すことが確認された。
 日本出願2012-007151の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (15)

  1.  3級窒素原子及び4級窒素原子の少なくとも一方を含む2以上のカチオン性官能基を有し重量平均分子量が2000~1000000であり分岐度が48%以上であるポリマーを含有し、ナトリウムおよびカリウムの含有量がそれぞれ元素基準で10重量ppb以下である、半導体用シール組成物。
  2.  前記ポリマーは、炭素数2~8のアルキレンイミンに由来する構造単位であってカチオン性官能基として3級窒素原子を含む構造単位を有する、請求項1に記載の半導体用シール組成物。
  3.  前記ポリマーは、更に、炭素数2~8のアルキレンイミンに由来する構造単位であってカチオン性官能基として2級窒素原子を含む構造単位を有する、請求項2に記載の半導体用シール組成物。
  4.  前記ポリマーは1級窒素原子を含み、前記ポリマー中の全窒素原子に占める1級窒素原子の割合が33モル%以上である、請求項1~請求項3のいずれか1項に記載の半導体シール用組成物。
  5.  前記ポリマーの分岐度が55%以上である、請求項1~請求項3のいずれか1項に記載の半導体用シール組成物。
  6.  動的光散乱法で測定された平均粒子径が150nm以下である、請求項1~請求項3のいずれか1項に記載の半導体用シール組成物。
  7.  前記ポリマーは、ポリエチレンイミンまたはポリエチレンイミンの誘導体である、請求項1~請求項3のいずれか1項に記載の半導体用シール組成物。
  8.  前記ポリマーは、カチオン性官能基当量が27~430である、請求項1~請求項3のいずれか1項に記載の半導体用シール組成物。
  9.  請求項1~請求項3のいずれか1項に記載の半導体用シール組成物を、基板上に形成された層間絶縁層に付与するシール組成物付与工程を含む、半導体装置の製造方法。
  10.  前記層間絶縁層は、多孔質シリカを含み、その表面に前記多孔質シリカに由来するシラノール残基を有する、請求項9に記載の半導体装置の製造方法。
  11.  前記層間絶縁層に10nm~32nm幅の凹状の溝が形成される工程をさらに含み、
     前記シール組成物付与工程は、少なくとも前記凹状の溝の側面の層間絶縁層に、前記半導体用シール組成物を接触させる、請求項9に記載の半導体装置の製造方法。
  12.  層間絶縁層と;
     3級窒素原子及び4級窒素原子の少なくとも一方を含む2以上のカチオン性官能基を有し重量平均分子量が2000~600000であり分岐度が48%以上であるポリマーを含むポリマー層と;
     銅からなる層と;
    がこの順で配置された構造を備える、半導体装置。
  13.  3級窒素原子及び4級窒素原子の少なくとも一方を含む2以上のカチオン性官能基を有し重量平均分子量が2000~1000000であり分岐度が48%以上である、ポリマー。
  14.  ポリエチレンイミンまたはポリエチレンイミンの誘導体である、請求項13に記載のポリマー。
  15.  請求項13または請求項14に記載のポリマーを製造する方法であって、2級窒素原子を含む原料ポリマーに、下記一般式(m-1)で表される化合物を反応させる工程を有する、ポリマーの製造方法。
    Figure JPOXMLDOC01-appb-C000001

    〔一般式(m-1)中、Rは保護基を表し、nは1~4の整数を表す。〕
PCT/JP2013/050686 2012-01-17 2013-01-16 半導体用シール組成物、半導体装置及びその製造方法、並びに、ポリマー及びその製造方法 WO2013108791A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US14/372,237 US9169353B2 (en) 2012-01-17 2013-01-16 Sealing composition for semiconductor, semiconductor device and method of producing the same, and polymer and method of producing the same
JP2013554312A JP5931092B2 (ja) 2012-01-17 2013-01-16 半導体用シール組成物、半導体装置及びその製造方法、並びに、ポリマー及びその製造方法
CN201380005535.1A CN104081503B (zh) 2012-01-17 2013-01-16 半导体用密封组合物、半导体装置及其制造方法、以及聚合物及其制造方法
KR1020147021288A KR101638717B1 (ko) 2012-01-17 2013-01-16 반도체용 시일 조성물, 반도체 장치 및 그의 제조 방법, 및 폴리머 및 그의 제조 방법
IN6561DEN2014 IN2014DN06561A (ja) 2012-01-17 2013-01-16
EP13738470.7A EP2806454B1 (en) 2012-01-17 2013-01-16 Semiconductor sealing composition and method for producing a semiconductor device
SG11201404068QA SG11201404068QA (en) 2012-01-17 2013-01-16 Semiconductor sealing composition, semiconductor device and method for producing same, and polymer and method for producing same
IL233604A IL233604A (en) 2012-01-17 2014-07-10 Semiconductor sealant, semiconductor device and method of manufacture, and polymer and method of manufacture thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012007151 2012-01-17
JP2012-007151 2012-01-17

Publications (1)

Publication Number Publication Date
WO2013108791A1 true WO2013108791A1 (ja) 2013-07-25

Family

ID=48799216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050686 WO2013108791A1 (ja) 2012-01-17 2013-01-16 半導体用シール組成物、半導体装置及びその製造方法、並びに、ポリマー及びその製造方法

Country Status (10)

Country Link
US (1) US9169353B2 (ja)
EP (1) EP2806454B1 (ja)
JP (1) JP5931092B2 (ja)
KR (1) KR101638717B1 (ja)
CN (1) CN104081503B (ja)
IL (1) IL233604A (ja)
IN (1) IN2014DN06561A (ja)
SG (1) SG11201404068QA (ja)
TW (1) TWI577714B (ja)
WO (1) WO2013108791A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021648A1 (ja) * 2014-08-08 2016-02-11 三井化学株式会社 シール組成物、及び半導体装置の製造方法
CN105452340A (zh) * 2013-08-07 2016-03-30 株式会社日本触媒 乙撑亚胺聚合物及其制造方法
WO2016059728A1 (ja) * 2014-10-17 2016-04-21 株式会社日本触媒 エチレンイミン重合体、およびその製造方法
KR20170077222A (ko) * 2014-12-17 2017-07-05 미쓰이 가가쿠 가부시키가이샤 기판 중간체, 관통 비어 전극 기판 및 관통 비어 전극 형성 방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6499001B2 (ja) 2015-04-20 2019-04-10 東京エレクトロン株式会社 多孔質膜をエッチングする方法
KR102015404B1 (ko) * 2016-12-08 2019-08-28 삼성에스디아이 주식회사 실리카 막 형성용 조성물, 실리카 막의 제조방법 및 실리카 막을 포함하는 전자소자
CN110724259B (zh) * 2019-10-16 2021-11-23 南京林业大学 一种聚季铵盐的合成方法

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933120B1 (ja) 1968-06-21 1974-09-04
WO1991011390A2 (en) 1990-01-25 1991-08-08 Mobil Oil Corp Synthetic porous crystalline material its synthesis and use
US5208111A (en) 1990-08-25 1993-05-04 Bayer Aktiengesellschaft One- or multi-layered layer elements applied to supports and their production
JPH0616809A (ja) 1991-09-21 1994-01-25 Hoechst Ag アルキル化ポリエチレンイミン誘導体およびその製造方法
JP2001213958A (ja) 2000-02-03 2001-08-07 Nippon Shokubai Co Ltd エチレンイミン重合体およびその製造方法
JP2002513047A (ja) * 1998-04-27 2002-05-08 ザ ユニバーシティ オブ アクロン 超分子構造体及びその製法
WO2004026765A1 (ja) 2002-09-09 2004-04-01 Mitsui Chemicals, Inc. 多孔質フィルムの改質方法及び改質された多孔質フィルム並びにその用途
JP2005350640A (ja) * 2003-09-24 2005-12-22 Nippon Shokubai Co Ltd ポリアルキレンイミンアルキレンオキシド共重合体
WO2006025501A1 (ja) 2004-09-02 2006-03-09 Rohm Co., Ltd. 半導体装置の製造方法およびこれを用いて形成された半導体装置
JP2006352042A (ja) 2005-06-20 2006-12-28 Nitta Haas Inc 半導体研磨用組成物
JP2008045024A (ja) * 2006-08-15 2008-02-28 Dainippon Ink & Chem Inc 金属ナノ粒子分散体を用いて得られる成形加工物、金属積層板及び塗膜
WO2009012184A1 (en) 2007-07-13 2009-01-22 Intermolecular, Inc. Surface modification of low-k dielectric materials
JP2009503879A (ja) 2005-08-05 2009-01-29 フリースケール セミコンダクター インコーポレイテッド 多孔質低誘電率構造のポアシーリング及びクリーニング
WO2009123104A1 (ja) 2008-04-02 2009-10-08 三井化学株式会社 組成物及びその製造方法、多孔質材料及びその形成方法、層間絶縁膜、半導体材料、半導体装置、並びに低屈折率表面保護膜
JP2010118168A (ja) * 2008-11-11 2010-05-27 Dic Corp 導電性成形加工物の製造方法、導電性成形加工物、及びこれに用いる銀ペースト
WO2010137711A1 (ja) 2009-05-29 2010-12-02 三井化学株式会社 半導体用シール組成物、半導体装置および半導体装置の製造方法
JP2012007151A (ja) 2010-05-28 2012-01-12 Sanyo Chem Ind Ltd 吸収性樹脂の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236323A (ja) * 1985-08-12 1987-02-17 Mitsubishi Rayon Co Ltd 抗血液凝固剤
DE10322401A1 (de) * 2003-05-16 2004-12-02 Basf Ag Verfahren zur Herstellung von dendrimeren oder hyperverzweigten Polyurethanen
CN1330685C (zh) 2003-09-24 2007-08-08 株式会社日本触媒 聚烯化亚胺氧化烯共聚物
DE102007027470A1 (de) * 2007-06-14 2008-12-24 Construction Research & Technology Gmbh Polymervergütete Baustofftrockenmischungen
US20110180764A1 (en) 2008-06-26 2011-07-28 Dic Corporation Silver-containing powder, method for producing the same, conductive paste using the same, and plastic substrate
EP2313465B1 (en) * 2008-08-12 2015-07-15 Delsper LP Polymeric compositions comprising per(phenylethynyl) arene derivatives
ES2392674T3 (es) * 2008-11-11 2012-12-12 Basf Se Poliamidas estabilizadas

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933120B1 (ja) 1968-06-21 1974-09-04
WO1991011390A2 (en) 1990-01-25 1991-08-08 Mobil Oil Corp Synthetic porous crystalline material its synthesis and use
US5208111A (en) 1990-08-25 1993-05-04 Bayer Aktiengesellschaft One- or multi-layered layer elements applied to supports and their production
JPH0616809A (ja) 1991-09-21 1994-01-25 Hoechst Ag アルキル化ポリエチレンイミン誘導体およびその製造方法
JP2002513047A (ja) * 1998-04-27 2002-05-08 ザ ユニバーシティ オブ アクロン 超分子構造体及びその製法
JP2001213958A (ja) 2000-02-03 2001-08-07 Nippon Shokubai Co Ltd エチレンイミン重合体およびその製造方法
WO2004026765A1 (ja) 2002-09-09 2004-04-01 Mitsui Chemicals, Inc. 多孔質フィルムの改質方法及び改質された多孔質フィルム並びにその用途
JP2005350640A (ja) * 2003-09-24 2005-12-22 Nippon Shokubai Co Ltd ポリアルキレンイミンアルキレンオキシド共重合体
WO2006025501A1 (ja) 2004-09-02 2006-03-09 Rohm Co., Ltd. 半導体装置の製造方法およびこれを用いて形成された半導体装置
JP2006352042A (ja) 2005-06-20 2006-12-28 Nitta Haas Inc 半導体研磨用組成物
JP2009503879A (ja) 2005-08-05 2009-01-29 フリースケール セミコンダクター インコーポレイテッド 多孔質低誘電率構造のポアシーリング及びクリーニング
JP2008045024A (ja) * 2006-08-15 2008-02-28 Dainippon Ink & Chem Inc 金属ナノ粒子分散体を用いて得られる成形加工物、金属積層板及び塗膜
WO2009012184A1 (en) 2007-07-13 2009-01-22 Intermolecular, Inc. Surface modification of low-k dielectric materials
WO2009123104A1 (ja) 2008-04-02 2009-10-08 三井化学株式会社 組成物及びその製造方法、多孔質材料及びその形成方法、層間絶縁膜、半導体材料、半導体装置、並びに低屈折率表面保護膜
JP2010118168A (ja) * 2008-11-11 2010-05-27 Dic Corp 導電性成形加工物の製造方法、導電性成形加工物、及びこれに用いる銀ペースト
WO2010137711A1 (ja) 2009-05-29 2010-12-02 三井化学株式会社 半導体用シール組成物、半導体装置および半導体装置の製造方法
JP2012007151A (ja) 2010-05-28 2012-01-12 Sanyo Chem Ind Ltd 吸収性樹脂の製造方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
EUROPEAN POLYMER JOURNAL, vol. 9, 1973, pages 559
IZQUIERDO ET AL., LANGMUIR, vol. 21, no. 16, 2005, pages 7558
J. POLYMER SCIENCE, vol. 42, 2004, pages 3654
LEE ET AL., LANGMUIR, vol. 19, no. 18, 2003, pages 7592
M. R. BAKLANOV; K. P. MOGILNIKOV; V. G. POLOVINKIN; F. N. DULTSEY, JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY B, vol. 18, 2000, pages 1385 - 1391
NATURE, vol. 379, 1996, pages 703
SCHLENOFF ET AL., LANGMUIR, vol. 16, no. 26, 2000, pages 9968
SCIENCE, vol. 5, 1998, pages 247
See also references of EP2806454A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105452340A (zh) * 2013-08-07 2016-03-30 株式会社日本触媒 乙撑亚胺聚合物及其制造方法
EP3031842B1 (en) * 2013-08-07 2023-08-09 Nippon Shokubai Co., Ltd. Ethyleneimine polymer and production method for same
WO2016021648A1 (ja) * 2014-08-08 2016-02-11 三井化学株式会社 シール組成物、及び半導体装置の製造方法
CN106537564A (zh) * 2014-08-08 2017-03-22 三井化学株式会社 密封组合物以及半导体装置的制造方法
JPWO2016021648A1 (ja) * 2014-08-08 2017-04-27 三井化学株式会社 シール組成物、及び半導体装置の製造方法
EP3159917A4 (en) * 2014-08-08 2018-03-07 Mitsui Chemicals, Inc. Seal composition and production method for semiconductor device
US10580639B2 (en) 2014-08-08 2020-03-03 Mitsui Chemicals, Inc. Sealing composition and method of manufacturing semiconductor device
WO2016059728A1 (ja) * 2014-10-17 2016-04-21 株式会社日本触媒 エチレンイミン重合体、およびその製造方法
JPWO2016059728A1 (ja) * 2014-10-17 2017-08-03 株式会社日本触媒 エチレンイミン重合体、およびその製造方法
US10370494B2 (en) 2014-10-17 2019-08-06 Nippon Shokubai Co., Ltd Ethleneimine polymer and method for producing same
KR20170077222A (ko) * 2014-12-17 2017-07-05 미쓰이 가가쿠 가부시키가이샤 기판 중간체, 관통 비어 전극 기판 및 관통 비어 전극 형성 방법
KR101898404B1 (ko) 2014-12-17 2018-09-12 미쓰이 가가쿠 가부시키가이샤 기판 중간체, 관통 비어 전극 기판 및 관통 비어 전극 형성 방법

Also Published As

Publication number Publication date
EP2806454A1 (en) 2014-11-26
IL233604A0 (en) 2014-08-31
IN2014DN06561A (ja) 2015-05-22
TW201331261A (zh) 2013-08-01
CN104081503A (zh) 2014-10-01
US9169353B2 (en) 2015-10-27
EP2806454B1 (en) 2016-09-14
EP2806454A4 (en) 2015-09-09
JP5931092B2 (ja) 2016-06-08
KR101638717B1 (ko) 2016-07-11
KR20140121414A (ko) 2014-10-15
SG11201404068QA (en) 2014-10-30
TWI577714B (zh) 2017-04-11
IL233604A (en) 2017-12-31
US20140367868A1 (en) 2014-12-18
CN104081503B (zh) 2016-06-29
JPWO2013108791A1 (ja) 2015-05-11

Similar Documents

Publication Publication Date Title
WO2013108791A1 (ja) 半導体用シール組成物、半導体装置及びその製造方法、並びに、ポリマー及びその製造方法
KR101682836B1 (ko) 반도체 장치 및 그의 제조 방법, 및 린스액
JPWO2017086360A1 (ja) 半導体用膜組成物、半導体用膜組成物の製造方法、半導体用部材の製造方法、半導体用工程材の製造方法及び半導体装置
JP2010533966A (ja) 低誘電率の誘電性材料の表面調整
EP2357664A1 (en) Composition for sealing semiconductor, semiconductor device, and process for manufacturing semiconductor device
KR20130029123A (ko) 반도체 장치의 제조 방법 및 린스액
KR20150120510A (ko) 복합체의 제조 방법 및 조성물
US10580639B2 (en) Sealing composition and method of manufacturing semiconductor device
US10950532B2 (en) Substrate intermediary body, through-hole via electrode substrate, and through-hole via electrode formation method
KR20100109939A (ko) 트렌치 아이솔레이션의 형성 방법
JP5840042B2 (ja) 半導体用シール強化組成物、半導体装置および半導体装置の製造方法
JP6049432B2 (ja) 多孔質低屈折率材料用のシール組成物、低屈折率部材及びその製造方法。

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738470

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 233604

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2013554312

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14372237

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147021288

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013738470

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013738470

Country of ref document: EP