WO2013108674A1 - 電力合成・分配器 - Google Patents

電力合成・分配器 Download PDF

Info

Publication number
WO2013108674A1
WO2013108674A1 PCT/JP2013/050148 JP2013050148W WO2013108674A1 WO 2013108674 A1 WO2013108674 A1 WO 2013108674A1 JP 2013050148 W JP2013050148 W JP 2013050148W WO 2013108674 A1 WO2013108674 A1 WO 2013108674A1
Authority
WO
WIPO (PCT)
Prior art keywords
coaxial
line
power combiner
peripheral
distributor
Prior art date
Application number
PCT/JP2013/050148
Other languages
English (en)
French (fr)
Inventor
篠原己拔
有住豊
Original Assignee
日本高周波株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本高周波株式会社 filed Critical 日本高周波株式会社
Priority to US14/347,387 priority Critical patent/US9419323B2/en
Publication of WO2013108674A1 publication Critical patent/WO2013108674A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/183Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers at least one of the guides being a coaxial line

Definitions

  • the present invention relates to a power combiner / distributor, for example, a power combiner / distributor used for combining or distributing power in a VHF band, a UHF band, a microwave band, and a millimeter wave band.
  • Known power combiners include those in which Wilson couplers, directional couplers, hybrid couplers, and the like are connected in multiple stages, those using radial lines, and those using conical lines.
  • the power combiner functions as a power distributor if the input terminal is used as the output terminal and the output terminal is used as the input terminal, both the “power combiner” and the “power distributor” will be described below. Is called “power combiner / distributor”.
  • Patent Document 1 discloses a power combiner / distributor using a radial line as a power combiner / distributor used for high power.
  • a power combiner / distributor using a radial line disclosed in Patent Document 1 will be described with reference to FIG.
  • FIG. 4 is a schematic configuration diagram of a power combiner / distributor using a conventional radial line (a schematic configuration diagram of a power combiner / distributor described in Patent Document 1).
  • the power combiner / distributor 100 includes a top plate 104a having a circular shape in plan view, a bottom plate 104b opposite to the top plate 104a, and a side plate 104c covering the outer periphery of the top plate 104a and the bottom plate 104b.
  • a round box-like case 104 is provided.
  • the top plate 104a is provided with a central coaxial plug (central coaxial terminal) 101a at the center thereof, and a plurality of peripheral coaxial plugs (peripheral coaxial terminals) 101b are provided at equal intervals on the outer periphery thereof.
  • a conversion element (coaxial line) 102 a extending to the bottom plate 104 b inside the case 104 is connected to the central coaxial plug 101 a.
  • a conversion element (coaxial line) 102b extending to the bottom plate 104b inside the case 104 is connected to each peripheral coaxial plug 101b.
  • a gap formed by the top plate 104 a, the bottom plate 104 b, and the side plate 104 c constituting the case 104 is a radial line 103.
  • the power combiner / distributor 100 functions as a power combiner if the central coaxial plug 101a is used as an output terminal and the peripheral coaxial plug 101b is used as an input terminal, and the peripheral coaxial is connected using the central coaxial plug 101a as an input terminal. If the plug 101b is used as an output terminal, it functions as a power distributor. For example, when the power combiner / distributor 100 functions as a power distributor, the following operation is performed. Specifically, the incident wave from the central coaxial terminal 101a is converted from the coaxial TEM mode to the radial line mode by the central conversion element 102a.
  • the wave converted into the radial line mode propagates concentrically from the center to the outside, and is similarly converted from the radial line mode to the coaxial TEM mode by the peripheral conversion element 102b, and is in phase with each peripheral coaxial plug 101b. Are output with equal amplitude.
  • the impedance Z of the radial line 103 of the power combiner / distributor 100 is inversely proportional to the distance R from the center of the radial line 103 as shown in the following (Equation 1). Further, in the power combiner-divider 100, composite number (or distribution number) N, the coaxial connector 101a, the impedance 101b and Z 0, the impedance Z of the radial line 103 is a shown in the following equation (2) expressed.
  • Non-Patent Document 1 discloses a power combiner / distributor using a conical line as a power combiner / distributor used for high power.
  • FIG. 5 is a schematic configuration diagram of a power combiner / distributor using a conventional conical line (a schematic configuration diagram of a power combiner / distributor disclosed in Non-Patent Document 1).
  • the power combiner / distributor 200 includes a main body 204 having a circular shape in plan view, and a central coaxial plug 201a is provided at the center of one surface of the main body 204.
  • a plurality of peripheral coaxial plugs 201 b are provided on the outer peripheral portion of the other surface of the main body portion 204.
  • a coaxial line 202a extending inside the main body 204 is connected to the central coaxial plug 201a.
  • a coaxial line 202b extending inside the main body 204 is connected to the peripheral coaxial plug 201b.
  • the gap indicated by reference numeral 203 in the figure is a conical line.
  • the coaxial line 202a is a “1 ⁇ 4 wavelength impedance converter”, “D1” in the figure indicates the inner diameter of the outer conductor of the coaxial line, and “D2” is the inner line of the coaxial line. The outer diameter of the conductor is shown.
  • the characteristic impedance (Z1 0 ) of the coaxial line 202a satisfies the relationship expressed by the following (Equation 3 ) between the inner diameter (D1) of the outer conductor of the coaxial line and the outer diameter (D2) of the inner conductor of the coaxial line. It is like that. Therefore, the characteristic impedance (Z1 0 ) of the coaxial line 202a is obtained from the inner diameter (D1) of the outer conductor of the coaxial line and the outer diameter (D2) of the inner conductor of the coaxial line by the following (Equation 3).
  • Patent Document 1 does not disclose an impedance converter configured in consideration of the frequency bandwidth and the like.
  • the power combiner / distributor 200 shown in FIG. 5 is provided with the impedance converter only in the coaxial line 202a.
  • the combined number or distributed number
  • the technology is difficult to design and manufacture.
  • the conical line 203 Is matched to “0.5 ⁇ ” by the logic described in Non-Patent Document 2
  • the characteristic impedance of the input end of the “1 ⁇ 4 wavelength impedance converter” is determined (the input end of the coaxial line 202a). Is determined).
  • the “outer diameter (D2)” of the “coaxial line inner conductor (D2) 6.94 mm” is obtained.
  • “20D plug” or “39D plug” having a size larger than that of the N type plug can be used instead of the N type plug.
  • the present invention has been made in view of the above technical problem, and provides a power combiner / distributor having a configuration that enables design and manufacture that can easily realize performance such as a required frequency bandwidth. Objective.
  • the present invention which has been made to solve the above technical problem, includes a main body part having a gap formed therein, a central coaxial plug provided substantially at the center of the main body part, and an outer side of the central coaxial plug.
  • a plurality of peripheral coaxial plugs arranged concentrically with the central coaxial plug and installed on the outer peripheral side of the main body, a radial line formed in a gap inside the main body, and one end of the central coaxial plug
  • a power combiner / distributor including a coaxial line, wherein the peripheral coaxial line is provided for each of the peripheral coaxial plugs, the central coaxial plug as an output terminal, and the peripheral coaxial plug When used as an input terminal, it functions as a power combiner.
  • the central coaxial plug When the central coaxial plug is an input terminal and the peripheral coaxial plug is an output terminal, it functions as a power distributor, and the radial line is provided with one or more stages of impedance conversion units,
  • the impedance converter is configured to perform impedance matching between the input terminal and the output terminal.
  • the present invention provides a power combiner / distributor in which one or a plurality of stages of impedance converters are provided on the radial line, so that the required performance can be easily realized as compared with the above-described conventional technology. And manufacturing becomes possible.
  • the impedance of the radial line is related to the height (H) of the radial line and the distance (R) from the center of the radial line, and the height (H) and the distance (R) are By adjusting (designing to an appropriate value), it is possible to configure the impedance converter on the radial line.
  • the non-patent document 1 described above is used.
  • design and manufacturing do not become difficult.
  • the “1 ⁇ 4 wavelength multistage impedance converter” disclosed in Non-Patent Document 2 as the impedance converter, it is possible to design and manufacture that can easily realize the required performance.
  • the central coaxial line is provided with one or more stages of impedance converters.
  • the reason for this configuration is as follows. That is, in the power combiner / distributor, in order to obtain broadband characteristics, it is necessary to increase the number of impedance converters provided in the radial line, but when the size of the power combiner / distributor itself is limited, The number of stages of the impedance converter cannot be increased. This is because increasing the number of stages increases the size of the power combiner / distributor. For this reason, the same effect can be obtained even when the size of the power combiner / distributor is limited by disposing the impedance converter on both the radial line and the central coaxial line connected to the radial line. I am trying to do it.
  • each of the peripheral coaxial lines is provided with one or a plurality of stages of impedance conversion units.
  • the reason for this configuration is as follows. That is, the height of the radial line and the number of composites (or the number of distributions) are inversely proportional to each other. When the number of composites increases, the height of the radial line becomes very small, and the manufacturing (processing) error increases. It will affect the characteristics of. On the other hand, the height of the radial line is proportional to the impedance of the radial line.
  • an impedance converter is provided in the peripheral coaxial line, the characteristic impedance at the output end of the peripheral coaxial line is made higher than the characteristic impedance at the input end of the peripheral coaxial line, the impedance at the input end of the radial line is increased, and the radial line The height of the input end can be set higher. As a result, even when the number of combined power combiners / distributors increases, the height of the input end of the radial line can be set high, so that production (processing) errors can be prevented.
  • a high impedance portion is provided in parallel with the peripheral coaxial line at the connection portion between the peripheral coaxial line and the radial line.
  • a power combiner / distributor having a configuration capable of being designed and manufactured so that performance such as a required frequency bandwidth can be easily realized.
  • a power combiner / distributor according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2.
  • the power combiner / distributor W1 of the first embodiment is characterized by an impedance converter provided in the radial line 13, and the principle of combining and distributing power is the same as that of the conventional one. Therefore, in the following, the above features will be described in detail, and other configurations will be described in a simplified manner.
  • the power combiner / distributor W1 includes a main body 10 having a gap formed therein, and a central coaxial plug 11 provided at the center of one surface (upper surface) of the main body 10.
  • a plurality of peripheral coaxial plugs 14 installed on the outer periphery of the main body 10, a radial line 13 formed by a gap inside the main body 10, and a central coaxial line provided in the center of the main body 10 12 and a plurality of peripheral coaxial lines 15 provided on the outer peripheral portion of the main body 10.
  • the peripheral coaxial plugs 14 are arranged outside the central coaxial plug 11 and arranged at equal intervals on a concentric circle with the central portion of the central coaxial plug 11.
  • the gap inside the main body 10 is formed in a circular shape in plan view from the center to the outer periphery of the main body 10.
  • the central coaxial line 12 has one end connected to the central coaxial plug 11 and the other end connected to the central portion of the radial line 13.
  • the peripheral coaxial line 15 has one end connected to the peripheral coaxial plug 14 and the other end connected to the outer peripheral portion of the radial line 13.
  • the peripheral coaxial line 15 is provided for each peripheral coaxial plug 14, and the number thereof is the same as the number of peripheral coaxial plugs 14 (combined number N). That is, in the power combiner / distributor W1, N peripheral coaxial plugs 14 are connected in parallel.
  • the main body 10 is constituted by “a lid 10a and a box 10b” formed of a conductor.
  • the lid portion 10a is formed in a circular shape in a plan view, and a cylindrical convex portion 10a1 that protrudes to one side (upper side in FIGS. 1 and 2) is formed at the center thereof. Further, the convex portion 10a1 is closed at the upper end portion, and a central coaxial plug 11 is provided at the upper end portion. A central coaxial line 12 having one end connected to the central coaxial plug 11 is inserted through the inner cylindrical side of the cylindrical convex portion 10a1.
  • the central coaxial line 12 passing through the inner cylinder side of the convex portion 10a1 is extended to the central portion on the upper surface side of the box portion 10b.
  • the main-body part 10 is formed of the cover part 10a and the box part 10b, it is not limited to this in particular.
  • the main body unit 10 may be formed of a part that is integrally molded.
  • the box portion 10b has a circular shape in plan view (has a circular shape with the same diameter as the lid portion 10a), one surface (upper surface) is formed in a concave shape, and the other surface (lower surface) ) Is a flat bottom.
  • a step portion is formed concentrically from the center portion.
  • a circular central portion is formed at the central portion of the upper surface, and three stepped portions are formed concentrically on the outer periphery of the circular central portion.
  • a gap having a step portion is formed inside the main body portion 10 by the lower surface of the lid portion 10a and the upper surface of the box portion 10b (upper surface on which the step portion is formed). .
  • the gap having the stepped portion becomes the radial line 13 and an impedance conversion portion is formed.
  • the impedance conversion portion performs impedance matching between the peripheral coaxial plug (input end) 14 and the central coaxial plug (output end) 11. .
  • the range indicated by the symbol “L1” in FIG. 2 indicates the radial range of the radial line 13.
  • a range indicated by a symbol “L2” indicates a radial range of the impedance conversion unit provided in the radial line 13.
  • the case where the characteristic impedances of the central coaxial plug 11, the peripheral coaxial plug 14, the central coaxial line 12, and the peripheral coaxial line 15 are all “50 ⁇ ” is taken as an example.
  • the impedance of the input end of the radial line 13 becomes ((50 / N) ⁇ ). Yes.
  • the impedance of the output end of the radial line 13 is connected to the central coaxial line 12 having a characteristic impedance of 50 ⁇ , it needs to be “50 ⁇ ”.
  • the impedance converter provided in the radial line 13 is designed to convert the impedance from “(50 / N) ⁇ ” to “50 ⁇ ”.
  • the configuration of the impedance converter provided in the radial line 13 is not particularly limited, but it is desirable to use a configuration such as “Chebyshev 1 ⁇ 4 wavelength multistage type”, “Maximally flat 1 ⁇ 4 wavelength multistage type” or the like. . This is because it is possible to design so as to obtain matching conditions within a required frequency bandwidth by adopting the configuration of a quarter-wavelength multistage impedance converter.
  • the impedance conversion unit is configured with three quarter wavelengths. Since the principle of the quarter wavelength multistage type impedance converter is disclosed in Non-Patent Document 2 described above, detailed description thereof is omitted.
  • the impedance (Z) of the radial line 13 is inversely proportional to the distance R from the central part of the radial line 13 from the central part of the radial line 13 toward the outer peripheral part. Get smaller. For this reason, when a plurality of stages of impedance converters are provided on the radial line 13, the impedance is not constant within the “1 ⁇ 4 wavelength” range of each stage of the impedance converters, and the design of the impedance converters becomes complicated. The problem arises.
  • the height (H) of the radial line 13 is set to “the distance from the center of the radial line 13” so that the impedance of each stage becomes constant within the range of “1 ⁇ 4 wavelength”.
  • the impedance is increased in proportion to “R”, thereby simplifying the design and production of the impedance conversion section, thereby solving the above-mentioned problems.
  • the height (H1) of the first step portion adjacent to the central portion of the radial line 13 is proportional to the distance R from the central portion of the radial line 13. I try to get bigger.
  • the step portion of the second step from the central portion of the radial line 13 is also designed so that its height (H2) increases in proportion to the distance R from the central portion of the radial line 13.
  • the step portion of the third step from the central portion of the radial line 13 is also designed so that its height (H3) increases in proportion to the distance R from the central portion of the radial line 13. .
  • the factor determining the dimensions of the power combiner / distributor W1 includes the flange dimensions of the coaxial plug (peripheral coaxial plug 14) serving as the input end.
  • the coaxial connector of the power combiner / distributor W1 is generally “N type” or “SMA type”, although it depends on the input power.
  • the flange size of the “N type” coaxial plug is “25 mm”
  • the flange size of the “SMA type” coaxial plug is “13 mm”.
  • the power combiner / distributor W1 Is approximately “105 mm (210 mm)”. This is a size sufficient to provide an impedance conversion section on the radial line 13, and is not a size that makes it difficult to design and manufacture like the above-described conventional power combiner / distributor 200 (see FIG. 5). .
  • the impedance conversion unit is provided in the radial line 13, so that the required performance can be easily realized as compared with the above-described conventional technology. And can be manufactured.
  • the “height (H) of the radial line 13” and the “distance R from the center of the radial line 13” are sufficiently larger than the distance between the inner conductor and the outer conductor of the coaxial line. Therefore, unlike the above-described conventional power combiner / distributor 200 (see FIG. 5), the design and manufacture are not difficult.
  • a “1 ⁇ 4 wavelength multistage impedance converter” is configured as the impedance converter, and the impedance of each stage is constant within the range of “1 ⁇ 4 wavelength”. Since the height (H) of the radial line 13 is increased in proportion to the “distance R from the center of the radial line 13”, the design and manufacture of the impedance converter is facilitated, and the required performance. Can be realized.
  • Second Embodiment a second embodiment of the present invention will be described.
  • the same configuration (and corresponding configuration) as the first embodiment will be described using the same reference numerals.
  • the description of the second embodiment the description will focus on parts different from the first embodiment described above, and the description of the same configuration will be simplified.
  • the size of the power combiner / distributor W1 of the first embodiment increases, but there arises a problem that the size cannot be accommodated when the size of the power combiner / distributor W1 is limited.
  • the “1 ⁇ 4 wavelength multistage type impedance converter” is divided and arranged on both the radial line 13 and the central coaxial line 12 following the radial line 13. This solves the above problem.
  • the central coaxial line 12 is also provided with a “1 ⁇ 4 wavelength multistage type impedance converter”. ing. Note that the number of stages provided in each of the radial line 13 and the central coaxial line 12 depends on the size and size allowed for the power combiner / distributor W1 and the characteristic impedance of the input end of the central coaxial line 12 (that is, the central coaxial line 12). The outer diameter of the inner conductor / the inner diameter of the outer conductor) is determined.
  • the “1 ⁇ 4 wavelength multistage type impedance converter” is divided into both the radial line 13 and the central coaxial line 12 following the radial line 13, so that It is possible to cope with a case where the size of the distributor W1 is limited.
  • the height (H) of the radial line and the combined number (N) are in an inversely proportional relationship.
  • H (Z 0 ⁇ 2 ⁇ ⁇ R) / (N ⁇ ⁇ )). Therefore, when the composite number (N) increases, the height of the radial line 13 becomes very small, and a manufacturing (processing) error affects the characteristics of the radial line 13. Therefore, the power combiner / distributor W1 of the first embodiment (and the second embodiment) has a problem that extremely high processing accuracy is required when the combined number (N) increases.
  • an impedance conversion unit is provided in each of the plurality of peripheral coaxial lines 15, and the characteristic impedance at the output end of the peripheral coaxial line 15 is made higher than the characteristic impedance at the input end of the peripheral coaxial line 15. The problem is solved.
  • 3rd Embodiment is the same as 1st Embodiment (and 2nd Embodiment) about the structure except providing an impedance conversion part in each of the some periphery coaxial line 15.
  • the characteristic impedance of the peripheral coaxial line 15 connected to the input end of the radial line 13 is the input end of the peripheral coaxial line 15. It has the same value as the characteristic impedance of the peripheral coaxial plug 14 connected to the.
  • the peripheral coaxial line 15 is provided with an impedance converter (such as a quarter-wavelength multi-stage impedance converter), and the characteristic impedance at the output end of the peripheral coaxial line 15 is By making it higher than the characteristic impedance at the input end of the coaxial line 15, the impedance at the input end of the radial line 13 can be set higher, thereby eliminating the above-mentioned problem.
  • an impedance converter such as a quarter-wavelength multi-stage impedance converter
  • the same effect as that of the first embodiment described above can be obtained. Further, according to the third embodiment, the height of the input end of the radial line 13 can be set high even when the combined number (N) of the power combiners / distributors W1 is increased. Processing) Generation of errors can be prevented.
  • FIG. 3 is a schematic diagram showing a cross section of a power combiner / distributor according to the fourth embodiment of the present invention.
  • the configuration of the first embodiment is partially changed.
  • the same configuration (and corresponding configuration) as that of the first embodiment will be described using the same reference numerals. .
  • the description of the fourth embodiment the description will focus on the parts different from the first embodiment described above, and the description of the same configuration will be simplified.
  • the power combiner / distributor W2 of the fourth embodiment is in the vicinity of the outer peripheral portion of the upper surface of the box body portion 11 constituting the main body portion 10, and at the connection portion between the peripheral coaxial line 15 and the radial line 13.
  • a gap portion (high impedance portion) 17 extending from the top surface to the bottom portion is formed.
  • the configuration other than the gap 17 is the same as that of the first embodiment.
  • the height dimension (h) of the gap 17 is an odd multiple of the “1 ⁇ 4 wavelength” of microwave or millimeter wave.
  • the opening of the gap portion 17 is electrically open.
  • the radial line 13 is configured with an impedance conversion unit having three quarters of a wavelength, but the present invention is not particularly limited thereto.
  • the radial line 13 may be provided with four or more stages of impedance conversion units at a quarter wavelength, or may be provided with an impedance conversion unit of one quarter wavelength.
  • the “1 ⁇ 4 wavelength multi-stage impedance converter” is provided on the coaxial line (the central coaxial line 12 and the surrounding coaxial line 15), but the configuration of the impedance converter is only an example.
  • the impedance conversion unit may be configured in a single stage.
  • the gap portion 17 of the fourth embodiment may be added to the configuration of the second embodiment, or the gap portion 17 of the fourth embodiment may be added to the configuration of the third embodiment.
  • W1, W2 ... Power combiner / distributor 10 ... Main body 10a ... Lid (main body) 10a1 ... convex part (lid part (main part)) 10b ... Box part (main part) DESCRIPTION OF SYMBOLS 11 ... Central coaxial plug 12 ... Central coaxial line 13 ... Radial line 14 ; Peripheral coaxial plug 15 ... Peripheral coaxial line 17 ... Gap part (high impedance part)

Landscapes

  • Coupling Device And Connection With Printed Circuit (AREA)

Abstract

 内部に空隙が形成された本体部10と、本体部10の略中央に設けられた中央同軸接栓11と、中央同軸接栓11を中心にした同心円上に並べられ、本体部10に設置される複数の周辺同軸接栓14と、本体部10の内部の空隙に形成されたラジアル線路13と、一端が中央同軸接栓11に接続され且つ他端がラジアル線路13の中央部に接続された中央同軸線路12と、一端が周辺同軸接栓14に接続され且つ他端がラジアル線路13の外周部に接続された周辺同軸線路15とを備えた電力合成・分配器W1であって、ラジアル線路13に1又は複数段のインピーダンス変換部が設けられている。

Description

電力合成・分配器
 本発明は、電力合成・分配器に関し、例えば、VHF帯、UHF帯、マイクロ波帯、ミリ波帯において、電力の合成或いは分配に用いられる電力合成・分配器に関する。
 電力合成器として、ウィルソン型結合器、方向性結合器、ハイブリッド結合器等を多段接続したものや、或いは、ラジアル線路を用いたものや、コニカル線路を用いたものが知られている。なお、電力合成器は、入力端を出力端とし且つ出力端を入力端として用いれば、電力分配器として機能するものであるため、以下では、「電力合成器」及び「電力分配器」の両者を「電力合成・分配器」という。
 例えば、特許文献1には、大電力用として使用される電力合成・分配器として、ラジアル線路を用いた電力合成・分配器が開示されている。ここで、特許文献1に開示されているラジアル線路を用いた電力合成・分配器について、図4を参照しながら説明する。なお、図4は、従来技術のラジアル線路を用いた電力合成・分配器の概略構成図である(特許文献1に記載された電力合成・分配器の概略構成図である)。
 図示するように、電力合成・分配器100は、平面視円形の天板104aと、天板104aに相対向する底板104bと、天板104a及び底板104bの外周を被う側板104cとにより形成された円形箱状のケース104を備えている。また、天板104aは、その中央部に中央同軸接栓(中央同軸端子)101aが設けられ、その外周部に周辺同軸接栓(周辺同軸端子)101bが等間隔で複数設けられている。また、中央同軸接栓101aには、ケース104内部の底板104bまで延びる変換素子(同軸線路)102aが接続されている。また、各周辺同軸接栓101bには、ケース104内部の底板104bまで延びる変換素子(同軸線路)102bが接続されている。また、ケース104を構成する天板104a、底板104b及び側板104cにより形成される空隙部分が、ラジアル線路103となっている。
 また、電力合成・分配器100は、中央同軸接栓101aを出力端子として、周辺同軸接栓101bを入力端子として用いれば電力合成器として機能し、中央同軸接栓101aを入力端子として、周辺同軸接栓101bを出力端子として用いれば電力分配器として機能するようになっている。そして、例えば、電力合成・分配器100が電力分配器として機能する場合、以下のような動作を行う。具体的には、中央同軸端子101aからの入射波は、同軸のTEMモードから中央の変換素子102aによってラジアルラインモードに変換される。ラジアルラインモードに変換された波は中心から外側に向かって同心円状に伝搬し、周辺の変換素子102bによって同様にラジアルラインモードから同軸のTEMモードに変換され、各周辺同軸接栓101bに同位相、等振幅で出力される。
 なお、電力合成・分配器100のラジアル線路103のインピーダンスZは、下記の(数1)に示すように、ラジアル線路103の中心部からの距離Rに反比例するようになっている。また、電力合成・分配器100において、合成数(或いは分配数)をN、同軸接栓101a、101bのインピーダンスをZとすると、ラジアル線路103のインピーダンスZは、下記に示す(数2)で表される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 また、例えば、非特許文献1には、大電力用として使用される電力合成・分配器として、コニカル線路を用いた電力合成・分配器が開示されている。
 ここで、非特許文献1で開示されているコニカル線路を用いた電力合成・分配器の概略について、図5を参照しながら説明する。なお、図5は、従来技術のコニカル線路を用いた電力合成・分配器の概略構成図である(非特許文献1に開示されている電力合成・分配器の概略構成図である)。
 図示するように、電力合成・分配器200は、平面視円形の本体部204を備え、本体部204の一方面の中心部に、中央同軸接栓201aが設けられている。また、本体部204の他方面の外周部に、複数の周辺同軸接栓201bが設けられている。また、中央同軸接栓201aには、本体部204の内部に延びる同軸線路202aが接続されている。また、周辺同軸接栓201bには、本体部204の内部に延びる同軸線路202bが接続されている。また、図中の符号203で示す空隙部がコニカル線路となっている。この電力合成・分配器200は、同軸線路202aが「1/4波長インピーダンス変換器」になっており、図中の「D1」が同軸線路外導体の内径を示し、「D2」が同軸線路内導体の外径を示している。
 なお、同軸線路202aの特性インピーダンス(Z1)は、同軸線路外導体の内径(D1)及び同軸線路内導体の外径(D2)との間において、下記の(数3)に示す関係を満たすようになっている。そのため、同軸線路202aの特性インピーダンス(Z1)は、下記(数3)により、同軸線路外導体の内径(D1)及び同軸線路内導体の外径(D2)から求められるようになっている。
Figure JPOXMLDOC01-appb-M000003
特開平5-175712号公報の段落0002~0003、図6 Dirk L L.de Villiers、他2名、「Design of a Ten-Way Conical Transmission Line Power Combiner」、IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES VOL55, N0.2、(米国)、2007年2月、p.302-308 小口文一著、日本電信電話公社電気通信研究所編、「通研叢書1 マイクロ波およびミリ波回路」、丸善株式会社、1964年、p.318-325
 ところで、上述した従来技術の電力合成・分配器において、必要とする周波数帯域幅等の性能が容易に実現できる設計や製造を可能とする構成のものがあれば、製品コストを低下させることができ、非常に有用である。しかしながら、上述した従来技術の電力合成・分配器は、前述のような設計や製造を可能とする構成になっていない。
 具体的には、図4に示した電力合成・分配器100では、ラジアル線路103の入力端側のインピーダンスが入力端側より見て、上述した「Z((数1)、(数2)参照)」の値となるような構成のインピーダンス変換器を設ける必要がある。しかし、特許文献1には、周波数帯域幅等を考慮した構成のインピーダンス変換器の開示はなされていない。
 また、図5に示した電力合成・分配器200は、同軸線路202aにだけインピーダンス変換器が設けられているが、合成数(或いは分配数)が多くなると、設計や製造が困難になるという技術的課題を有している。例えば、上記の電力合成・分配器200において、「1/4波長インピーダンス変換器」の出力端の特性インピーダンスを50Ωに整合する値とし、「合成数(N=100)」とすると、コニカル線路203のインピーダンスは、非特許文献2に記載されている論理により「0.5Ω」に整合され、「1/4波長インピーダンス変換器」の入力端の特性インピーダンスが決定される(同軸線路202aの入力端の特性インピーダンスが決まる)。
 そして、電力合成・分配器200ではN型接栓が用いられており、「同軸線路外導体の内径(D1)=7mm」となっているので、上記(数3)により、「同軸線路内導体の外径(D2)」を求めると、「同軸線路内導体の外径(D2)=6.94mm」となる。この場合、同軸線路202aの内導体と外導体との間隔((D1-D2)/2)が「0.03mm」となり、実質的に製作不可能となる。すなわち、電力合成・分配器200は、合成数を多くすると(例えば、N=100にすると)、同軸線路202aの内導体と外導体との間隔((D1-D2)/2)が非常に小さくなり、実質的に製作不可能になる。
 なお、電力合成・分配器200において、N型接栓に代わりに、N型接栓よりも寸法が大きい「20D接栓」や、「39D接栓」を利用することもできるが、この場合も製造の困難性は解消されない。例えば、両者(20D接栓、39D接栓)のうち、寸法が大きい39D接栓を用いたとしても、同軸線路202aの入力端の特性インピーダンスを「0.5Ω」とすると、「外導体の内径(D1)=38.79mm」に対して、「内導体の外径(D2)=38.47mm」となる。この場合も、外導体の内径(D1)と内導体の外径(D2)の間隔((D1-D2)/2)が「0.16mm」となり、製造が非常に困難である。
 本発明は、上記技術的課題に鑑みてなされたものであり、必要とする周波数帯域幅等の性能が容易に実現できる設計や製造を可能とする構成の電力合成・分配器を提供することを目的とする。
 上記技術的課題を解決するためになされた本発明は、内部に空隙が形成された本体部と、前記本体部の略中央に設けられた中央同軸接栓と、前記中央同軸接栓の外側に該中央同軸接栓と同心円上に並べられ且つ前記本体部の外周部側に設置される複数の周辺同軸接栓と、前記本体部の内部の空隙に形成されたラジアル線路と、一端が前記中央同軸接栓に接続され且つ他端が前記ラジアル線路の中央部に接続された中央同軸線路と、一端が前記周辺同軸接栓に接続され且つ他端が前記ラジアル線路の外周部に接続された周辺同軸線路と、を備えた電力合成・分配器であって、前記周辺同軸線路は、前記周辺同軸接栓毎に設けられており、前記中央同軸接栓を出力端子とし且つ前記周辺同軸接栓を入力端子とした場合に電力合成器として機能し、前記中央同軸接栓を入力端子とし且つ前記周辺同軸接栓を出力端子とした場合に電力分配器として機能するようになっており、前記ラジアル線路に1又は複数段のインピーダンス変換部が設けられ、当該インピーダンス変換部が前記入力端子及び前記出力端子のインピーダンス整合を行うようになっていることを特徴とする。
 このように、本発明は、電力合成・分配器において、ラジアル線路に1又は複数段のインピーダンス変換部を設けているため、上述した従来技術と比べて、必要とする性能が容易に実現できる設計や製造が可能となる。具体的には、ラジアル線路のインピーダンスは、ラジアル線路の高さ(H)と、ラジアル線路の中心からの距離(R)とに関係しており、この高さ(H)及び距離(R)を調整(適切な値に設計)することにより、ラジアル線路にインピーダンス変換部を構成することができる。そして、この高さ(H)及び距離(R)は、同軸線路の内導体と外導体との間隔と比べて、充分に大きい寸法であるため、本発明によれば、上述した非特許文献1に記載の電力合成・分配器200のように、設計や製造が困難になることがない。特に、インピーダンス変換部として、非特許文献2に開示されている「1/4波長多段型インピーダンス変換部」を構成することで、必要とする性能が容易に実現できる設計や製造が可能となる。
 また、前記中央同軸線路には、1又は複数段のインピーダンス変換部が設けられていることが望ましい。
 このように構成したのは以下の理由による。すなわち、電力合成・分配器において、広帯域特性を得るためには、ラジアル線路に設けるインピーダンス変換部の段数を多くする必要があるが、電力合成・分配器自体の大きさ寸法が制限される場合、インピーダンス変換部の段数を増加させることができない。これは、前記段数を増加させると、電力合成・分配器の大きさ寸法が大きくなってしまうためである。そのため、インピーダンス変換部をラジアル線路と、ラジアル線路に接続される中央同軸線路の両方に配置することで、電力合成・分配器の大きさ寸法が制限される場合にも、上記同様の効果を得られるようにしている。
 また、前記周辺同軸線路の各々には、1又は複数段のインピーダンス変換部が設けられていることが望ましい。
 このように構成したのは以下の理由による。すなわち、ラジアル線路の高さと、合成数(或いは分配数)とは反比例の関係になっており、合成数が大きくなると、ラジアル線路の高さが非常に小さくなり、製作(加工)誤差がラジアル線路の特性に影響を与えるようになる。一方、ラジアル線路の高さと、ラジアル線路のインピーダンスとは比例関係にある。そのため、周辺同軸線路に、インピーダンス変換部を設け、周辺同軸線路の出力端の特性インピーダンスを、周辺同軸線路の入力端の特性インピーダンスより高くし、ラジアル線路の入力端のインピーダンスを高め、ラジアル線路の入力端の高さをより高く設定できるようにした。これにより、電力合成・分配器の合成数が大きくなった場合にも、ラジアル線路の入力端の高さを高く設定することができるため、製作(加工)誤差の発生を防止することできる。
 また、前記周辺同軸線路と前記ラジアル線路との接続部には、該周辺同軸線路と並列に高インピーダンス部が設けられていることが望ましい。
 上記のように高インピーダンス部を設けることにより、不要なリアクタンスが生じることを防止することができ、その結果、製造誤差により生じる影響(性能のバラツキ等)を抑えることができる。
 本発明によれば、必要とする周波数帯域幅等の性能が容易に実現できる設計や製造を可能とする構成の電力合成・分配器を提供することができる。
本発明の第1実施形態の電力合成・分配器の断面を示した模式図である。 本発明の第1実施形態の電力合成・分配器の大きさ寸法を説明するための模式図である。 本発明の第4実施形態の電力合成・分配器の断面を示した図である。 従来技術のラジアル線路を用いた電力合成・分配器の概略構成図である。 従来技術のコニカル線路を用いた電力合成・分配器の概略構成図である。
 以下、本発明の実施形態の電力合成・分配器を図面に基づいて説明する。なお、本実施形態では、説明の便宜上、電力合成・分配器を電力合成器として用いた場合を例にする。また、本実施形態の説明において、上述した従来技術で説明した数式、高さ、距離等を示す符号は同じものを用いる。
《第1実施形態》
 先ず、本発明の第1実施形態の電力合成・分配器について、図1及び図2に基づいて説明する。なお、第1実施形態の電力合成・分配器W1は、ラジアル線路13に設けられたインピーダンス変換部に特徴があり、電力の合成や分配の原理は従来のものと同じである。そのため、以下では、上記特徴を詳細に説明し、それ以外の構成は簡略化して説明する。
 図示するように、第1実施形態の電力合成・分配機W1は、内部に空隙が形成された本体部10と、本体部10の一方面(上面)中央部に設けられた中央同軸接栓11と、本体部10の外周部に設置された複数の周辺同軸接栓14と、本体部10の内部の空隙により形成されたラジアル線路13と、本体部10の中心部に設けられた中央同軸線路12と、本体部10の外周部に設けられた複数の周辺同軸線路15とを備えている。なお、周辺同軸接栓14は、中央同軸接栓11の外側であって、当該中央同軸接栓11の中心部と同心円上に等間隔で並べられて配置されている。また、本体部10の内部の空隙は、本体部10の中心部から外周部にかけて平面視円状に形成されている。
 また、中央同軸線路12は、一端が中央同軸接栓11に接続され且つ他端がラジアル線路13の中央部に接続されている。また、周辺同軸線路15は、一端が周辺同軸接栓14に接続され且つ他端がラジアル線路13の外周部に接続されている。なお、周辺同軸線路15は、周辺同軸接栓14毎に設けられており、その数が、周辺同軸接栓14の数(合成数N)と同数になっている。すなわち、電力合成・分配機W1では、周辺同軸接栓14が、N個並列に接続されている。
 また、本体部10は、導体により形成された「蓋体部10a及び箱体部10b」により構成されている。また、蓋体部10aは、平面視円形状に形成され、その中心部に一方側(図1、2において上方側)に突出する円筒状の凸部10a1が形成されている。また、凸部10a1は、上端部が塞がれており、その上端部に中央同軸接栓11が設けられている。また、円筒状の凸部10a1の内筒側には、中央同軸接栓11に一端を接続した中央同軸線路12が挿通している。また、凸部10a1の内筒側を通った中央同軸線路12は、箱体部10bの上面側中心部まで延設されている。なお、本実施形態では、蓋体部10a及び箱体部10bにより本体部10が形成されているが、特にこれに限定されるものではない。例えば、本体部10が一体成形された部品で構成されていても良い。
 また、箱体部10bは、平面視円形状になされており(蓋体部10aと同径の円形状になされており)、一方面(上面)が凹状に凹んで形成され、他方面(下面)が平坦に形成された底部となっている。この凹状の上面には、中心部から同心円状に段差部が形成されている。本実施形態では、前記上面の中心部に円状中心部が形成され、その円状中心部の外周に同心円状に3段の段差部が形成されている。
 そして、箱体部10bの上面と、蓋体部10aの下面とを相対向させ、且つ箱体部10bの上面に蓋体10aを載置・固定することにより平面視円形箱状の本体部10が形成され、蓋体部10aの下面と、箱体部10bの上面(段差部が形成された上面)とにより、本体部10の内部に段差部を有する空隙が形成されるようになっている。この段差部を有する空隙がラジアル線路13になると共に、インピーダンス変換部が形成され、当該インピーダンス変換部が周辺同軸接栓(入力端)14及び中央同軸接栓(出力端)11のインピーダンス整合を行う。なお、図2の符号「L1」で示す範囲が、ラジアル線路13の径方向の範囲を示している。また、符号「L2」で示す範囲が、ラジアル線路13に設けられたインピーダンス変換部の径方向の範囲を示している。
 また、本実施形態では、中央同軸接栓11、周辺同軸接栓14、中央同軸線路12及び周辺同軸線路15の特性インピーダンスが、いずれも「50Ω」である場合を例にする。そして、本実施形態では、特性インピーダンス「50Ω」の周辺同軸線路15が合成数Nと同数並列接続されているので、ラジアル線路13の入力端のインピーダンスが((50/N)Ω)となっている。
 一方、ラジアル線路13の出力端のインピーダンスは、特性インピーダンス50Ωの中央同軸線路12と接続しているため「50Ω」にする必要がある。
 このように、本実施形態では、ラジアル線路13に設けられたインピーダンス変換部は、「(50/N)Ω」から「50Ω」にインピーダンスを変換する設計になっている。
 また、ラジアル線路13に設けるインピーダンス変換部の構成について特に限定しないが、「チェビシェフ1/4波長多段型」、「マキシマリー・フラット1/4波長多段型」等の構成のものを用いることが望ましい。これは、1/4波長多段型のインピーダンス変換部の構成を採用することにより、必要とする周波数帯域幅内における整合条件が得られるように設計することができるためである。なお、本実施形態では、1/4波長3段でインピーダンス変換部を構成している。この1/4波長多段型のインピーダンス変換部の原理は、上述した非特許文献2に開示されているため、詳細な説明を省略する。
 なお、上述した(数1)に示すように、ラジアル線路13のインピーダンス(Z)は、ラジアル線路13の中心部より外周部に向かって、ラジアル線路13の中心部からの距離Rに反比例して小さくなる。そのため、ラジアル線路13に複数段のインピーダンス変換部を設ける場合、インピーダンス変換部の各段共にその「1/4波長」の範囲内においてインピーダンスが一定にならず、インピーダンス変換部の設計が複雑になるという課題が生じる。
 そのため、本実施形態では、各段のインピーダンスが「1/4波長」の範囲内において一定になるように、「ラジアル線路13の高さ(H)」を「ラジアル線路13の中心部からの距離R」に比例して大きくなるようにして、インピーダンス変換部の設計及び製作の簡素化を図り、上記課題を解消している。
 具体的には、図2に示すように、ラジアル線路13の中心部に隣接する一段目の段差部において、その高さ(H1)が、ラジアル線路13の中心部からの距離Rに比例して大きくなるようにしている。また、ラジアル線路13の中心部から2段目の段差部も、その高さ(H2)が、ラジアル線路13の中心部からの距離Rに比例して大きくなるように設計している。同様に、また、ラジアル線路13の中心部から3段目の段差部も、その高さ(H3)が、ラジアル線路13の中心部からの距離Rに比例して大きくなるように設計している。このように、本実施形態では、各段毎に、距離(R)に対応させて高さ(H)を設定することにより、上記課題を解消している。
 なお、インピーダンス変換部の寸法は、周波数(波長)に依存し、例えば、マイクロ波帯(3GHz:1、波長=100mm)の場合は「75mm」となり、ミリ波帯(9GHz:1、波長=33.3mm)の場合は「25mm」となる。
 また、電力合成・分配器W1の寸法が決まる要因として、周波数(波長)以外にも、入力端となる同軸接栓(周辺同軸接栓14)のフランジ寸法が挙げられる。電力合成・分配器W1の同軸接栓は、入力電力にもよるが、一般的に「N型」や「SMA型」のものが用いられる。なお、「N型」の同軸接栓のフランジ寸法は、「25mm」であり、「SMA型」の同軸接栓のフランジ寸法は、「13mm」である。
 そして、例えば、合成数Nを「50(100)」とすると、「N型」の同軸接栓(周辺同軸接栓14)を連続して同一円周上に配置すると、電力合成・分配器W1の半径は、大凡「200mm(400mm)」となる。また、合成数Nを「50(100)」とすると、「SMA型」の同軸接栓(周辺同軸接栓14)を連続して同一円周上に配置すると、電力合成・分配器W1の半径は、大凡「105mm(210mm)」となる。これは、ラジアル線路13にインピーダンス変換部を設けるために充分な寸法であり、上述した従来技術の電力合成・分配器200(図5参照)のように、設計や製造が困難になる寸法ではない。
 以上説明したように、本発明の第1実施形態によれば、ラジアル線路13にインピーダンス変換部を設けるようにしているため、上述した従来技術と比べて、必要とする性能が容易に実現できる設計や製造を可能とすることができる。具体的には、「ラジアル線路13の高さ(H)」及び「ラジアル線路13の中心部からの距離R」は、同軸線路の内導体と外導体との間隔と比べて、充分に大きい寸法であるため、上述した従来技術の電力合成・分配器200(図5参照)のように、設計や製造が困難になることがない。特に、第1実施形態では、インピーダンス変換部として、「1/4波長多段型インピーダンス変換部」を構成し、各段のインピーダンスが「1/4波長」の範囲内において一定になるように、「ラジアル線路13の高さ(H)」を「ラジアル線路13の中心部からの距離R」に比例して大きくなるようにしているため、インピーダンス変換部の設計や製造が容易となり、必要とする性能が実現できる。
《第2実施形態》
 次に本発明の第2実施形態について説明する。尚、第2実施形態は、第1実施形態の構成を一部変更したものであるため、説明の便宜上、第1実施形態と同じ構成(及び相当する構成)には同じ符号を用いて説明する。また、第2実施形態の説明では、上述した第1実施形態と異なる部分を中心に説明し、同様の構成の説明を簡略化する。
 上述した第1実施形態において、広帯域特性を得るためには、ラジアル線路13に設ける「1/4波長多段型のインピーダンス変換部」の段数を多くする必要がある。この場合、第1実施形態の電力合成・分配器W1の大きさ寸法が大きくなるが、電力合成・分配器W1の大きさ寸法が制限される場合に対応できないという課題が生じる。
 そのため、第2実施形態では、電力合成・分配器W1において、「1/4波長多段型のインピーダンス変換部」をラジアル線路13と、ラジアル線路13に続く中央同軸線路12の両方に分けて配置することにより、上記課題を解消している。
 具体的には、第2実施形態の電力合成・分配器W1は、第1実施形態の構成に加え、さらに、中央同軸線路12にも「1/4波長多段型のインピーダンス変換部」が設けられている。なお、ラジアル線路13及び中央同軸線路12の各々に設けられる段数は、電力合成・分配器W1に許容される大きさ寸法や、中央同軸線路12の入力端の特性インピーダンス(即ち、中央同軸線路12の内導体の外径寸法/外導体の内径寸法)等を勘案して決定される。
 このように、第2実施形態によれば、上述した第1実施形態と同様の効果が得られる。また、第2実施形態によれば、「1/4波長多段型のインピーダンス変換部」をラジアル線路13と、ラジアル線路13に続く中央同軸線路12の両方に分けて配置することにより、電力合成・分配器W1の大きさ寸法が制限される場合等にも対応することができる。
 《第3実施形態》
 次に本発明の第3実施形態について説明する。なお、第3実施形態は、第1実施形態或いは第2実施形態の構成を一部変更したものであるため、説明の便宜上、第1実施形態と同じ構成(及び相当する構成)には同じ符号を用いて説明する。また、第3実施形態の説明では、上述した第1実施形態と異なる部分を中心に説明し、同様の構成の説明を簡略化する。
 ラジアル線路を用いた電力合成・分配器(例えば、第1実施形態の電力合成・分配器W1)では、当該ラジアル線路の高さ(H)と、合成数(N)とが反比例の関係になっている(H=(Z・2π・R)/(N・η))。したがって、合成数(N)が大きくなると、ラジアル線路13の高さが非常に小さくなり、製作(加工)誤差がラジアル線路13の特性に影響を与えるようになる。そのため、第1実施形態(及び第2実施形態)の電力合成・分配器W1は、合成数(N)が大きくなった場合に、極めて高い加工精度が求められるという課題を有している。
 第3実施形態では、複数の周辺同軸線路15の各々に、インピーダンス変換部を設け、周辺同軸線路15の出力端の特性インピーダンスを、周辺同軸線路15の入力端の特性インピーダンスより高くすることで上記課題を解消している。なお、第3実施形態は、複数の周辺同軸線路15の各々に、インピーダンス変換部を設ける以外の構成については、第1実施形態(及び第2実施形態)と同じである。
 具体的には、第1実施形態(及び第2実施形態)の電力合成・分配器W1では、ラジアル線路13の入力端に接続する周辺同軸線路15の特性インピーダンスが、周辺同軸線路15の入力端に接続する周辺同軸接栓14の特性インピーダンスと同じ値になっている。これに対して、第3実施形態では、周辺同軸線路15に、インピーダンス変換部(1/4波長多段型のインピーダンス変換部等)を設けて、周辺同軸線路15の出力端の特性インピーダンスを、周辺同軸線路15の入力端の特性インピーダンスより高くすることで、ラジアル線路13の入力端のインピーダンスを高く設定できるようにして、上記課題を解消している。
 このように構成するのは、上述した(数1)に示すようにラジアル線路13の高さ(H)と、ラジアル線路のインピーダンス(Z)とが比例関係にあるためである。すなわち、第3実施形態の構成により、ラジアル線路13の入力端の高さをより高くすることができ、製作(加工)誤差がラジアル線路13の特性に影響しないようにすることができる。
 このように、第3実施形態によれば、上述した第1実施形態と同様の効果が得られる。また、第3実施形態によれば、電力合成・分配器W1の合成数(N)が大きくなった場合にも、ラジアル線路13の入力端の高さを高く設定することができるため、製作(加工)誤差の発生を防止することできる。
《第4実施形態》
 次に本発明の第4実施形態について図3を参照しながら説明する。尚、図3は、本発明の第4実施形態の電力合成・分配器の断面を示した模式図である。また、第4実施形態は、第1実施形態の構成を一部変更したものであるため、説明の便宜上、第1実施形態と同じ構成(及び相当する構成)には同じ符号を用いて説明する。また、第4実施形態の説明では、上述した第1実施形態と異なる部分を中心に説明し、同様の構成の説明を簡略化する。
 図示するように、第4実施形態の電力合成・分配器W2は、本体部10を構成する箱体部11上面の外周部近傍であって、周辺同軸線路15とラジアル線路13との接続部に、上面から底部に向けて延びる間隙部(高インピーダンス部)17が形成されている。なお、第4実施形態では、間隙部17以外の構成は、第1実施形態と同じである。
 具体的には、第4実施形態の電力合成・分配器W2では、間隙部17の高さ寸法(h)が、マイクロ波又はミリ波の「1/4波長」の奇数倍になっている。また、間隙部17は、その開口部が電気的に開放状態になっている。このように間隙部17を構成することで、ラジアル線路13との接続部分において、接地部のインピーダンスが無視できるような高インピーダンス部が設けられ、その開口部が電気的に開放状態になっていることで、不要なリアクタンスが生じることを防止することができる。そのため、第4実施形態によれば、製造誤差により生じる影響(性能のバラツキ)を抑制することができる。
 なお、本発明は、上述した実施形態(第1実施形~第4実施形態)に限定されるものではなく、その要旨の範囲内において種々の変更が可能である。
 例えば、本実施形態では、ラジアル線路13に、1/4波長3段でインピーダンス変換部を構成しているが特にこれに限定するものではない。例えば、ラジアル線路13に、1/4波長で4段以上のインピーダンス変換部が設けられていてもいいし、1/4波長1段のインピーダンス変換部が設けられていてもよい。また、本実施形態では、同軸線路(中央同軸線路12、周囲同軸線路15)に「1/4波長多段型のインピーダンス変換部」を設けているが、インピーダンス変換部の構成は一例に過ぎない。例えば、前記インピーダンス変換部が一段で構成されていてもよい。
 また、例えば、第2実施形態の構成に、第4実施形態の間隙部17を付加するようにしても良いし、第3実施形態の構成に、第4実施形態の間隙部17を付加するようにしても良い。
W1、W2…電力合成・分配器
10…本体部
10a…蓋体部(本体部)
10a1…凸部(蓋体部(本体部))
10b…箱体部(本体部)
11…中央同軸接栓
12…中央同軸線路
13…ラジアル線路
14…周辺同軸接栓
15…周辺同軸線路
17…間隙部(高インピーダンス部)

Claims (8)

  1.  内部に空隙が形成された本体部と、
     前記本体部の略中央に設けられた中央同軸接栓と、
     前記中央同軸接栓の外側に該中央同軸接栓と同心円上に並べられ且つ前記本体部の外周部側に設置される複数の周辺同軸接栓と、
     前記本体部の内部の空隙に形成されたラジアル線路と、
     一端が前記中央同軸接栓に接続され且つ他端が前記ラジアル線路の中央部に接続された中央同軸線路と、
     一端が前記周辺同軸接栓に接続され且つ他端が前記ラジアル線路の外周部に接続された周辺同軸線路と、を備えた電力合成・分配器であって、
     前記周辺同軸線路は、前記周辺同軸接栓毎に設けられており、
     前記中央同軸接栓を出力端子とし且つ前記周辺同軸接栓を入力端子とした場合に電力合成器として機能し、前記中央同軸接栓を入力端子とし且つ前記周辺同軸接栓を出力端子とした場合に電力分配器として機能するようになっており、
     前記ラジアル線路に1又は複数段のインピーダンス変換部が設けられ、当該インピーダンス変換部が前記入力端子及び前記出力端子のインピーダンス整合を行うようになっていることを特徴とする電力合成・分配器。
  2.  前記中央同軸線路には、1又は複数段のインピーダンス変換部が設けられていることを特徴とする請求項1に記載の電力合成・分配器。
  3.  前記周辺同軸線路の各々には、1又は複数段のインピーダンス変換部が設けられていることを特徴とする請求項1に記載の電力合成・分配器。
  4.  前記周辺同軸線路の各々には、1又は複数段のインピーダンス変換部が設けられていることを特徴とする請求項2に記載の電力合成・分配器。
  5.  前記周辺同軸線路と前記ラジアル線路との接続部には、該周辺同軸線路と並列に高インピーダンス部が設けられていることを特徴とする請求項1に記載の電力合成・分配器。
  6.  前記周辺同軸線路と前記ラジアル線路との接続部には、該周辺同軸線路と並列に高インピーダンス部が設けられていることを特徴とする請求項2に記載の電力合成・分配器。
  7.  前記周辺同軸線路と前記ラジアル線路との接続部には、該周辺同軸線路と並列に高インピーダンス部が設けられていることを特徴とする請求項3に記載の電力合成・分配器。
  8.  前記周辺同軸線路と前記ラジアル線路との接続部には、該周辺同軸線路と並列に高インピーダンス部が設けられていることを特徴とする請求項4に記載の電力合成・分配器。
PCT/JP2013/050148 2012-01-19 2013-01-09 電力合成・分配器 WO2013108674A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/347,387 US9419323B2 (en) 2012-01-19 2013-01-09 Power combiner/divider of a radial line type impedance matched between a center connector and peripheral outer connectors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-008921 2012-01-19
JP2012008921A JP5630916B2 (ja) 2012-01-19 2012-01-19 電力合成・分配器

Publications (1)

Publication Number Publication Date
WO2013108674A1 true WO2013108674A1 (ja) 2013-07-25

Family

ID=48799101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050148 WO2013108674A1 (ja) 2012-01-19 2013-01-09 電力合成・分配器

Country Status (3)

Country Link
US (1) US9419323B2 (ja)
JP (1) JP5630916B2 (ja)
WO (1) WO2013108674A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015528672A (ja) * 2012-08-27 2015-09-28 シーメンス リサーチ センター リミテッド ライアビリティ カンパニーSiemens Research Center Limited Liability Company 高次高調波フィルタとして機能するrf電力結合器
CN107104258A (zh) * 2017-05-25 2017-08-29 东莞质研工业设计服务有限公司 3dB电桥
CN114976556A (zh) * 2022-05-23 2022-08-30 赛莱克斯微系统科技(北京)有限公司 一种mems微同轴功分器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5749841B1 (ja) 2014-08-12 2015-07-15 日本高周波株式会社 導波管型電力合成・分配器
JP6795382B2 (ja) * 2016-11-10 2020-12-02 新日本無線株式会社 電力合成・分配器
US10770775B2 (en) 2018-06-08 2020-09-08 SAAB Defense and Security USA LLC t/a Sensor System Radial combiner
US11522262B1 (en) * 2022-01-25 2022-12-06 Werlatone, Inc. Waveguide combiner/divider having plural input/output ports with longitudinal extent
JP7300120B1 (ja) 2022-08-01 2023-06-29 日本高周波株式会社 電力合成・分配器
US11764454B1 (en) 2022-10-19 2023-09-19 Werlatone, Inc. Compact impedance transforming combiner/divider and method of making

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199913A (ja) * 1996-01-11 1997-07-31 Nec Eng Ltd 導波管・同軸変換器
JPH10270915A (ja) * 1997-03-21 1998-10-09 Mitsubishi Electric Corp 電力合成器
JP2007180655A (ja) * 2005-12-27 2007-07-12 New Japan Radio Co Ltd 帯域阻止フィルタ内蔵伝送モード変換器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4035746A (en) * 1976-09-07 1977-07-12 The Bendix Corporation Concentric broadband power combiner or divider
GB2157504B (en) * 1984-03-21 1987-05-28 Plessey Co Plc Radially fed microwave signal combiner/distributor apparatus
US4684874A (en) * 1985-02-05 1987-08-04 Trw Inc. Radial wave power divider/combiner and related method
FR2628894B1 (fr) * 1988-03-18 1990-03-23 Thomson Csf Combineur diviseur multivoie
US5142253A (en) * 1990-05-02 1992-08-25 Raytheon Company Spatial field power combiner having offset coaxial to planar transmission line transitions
JPH05175712A (ja) 1991-12-24 1993-07-13 Mitsubishi Electric Corp 電力合成・分配器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199913A (ja) * 1996-01-11 1997-07-31 Nec Eng Ltd 導波管・同軸変換器
JPH10270915A (ja) * 1997-03-21 1998-10-09 Mitsubishi Electric Corp 電力合成器
JP2007180655A (ja) * 2005-12-27 2007-07-12 New Japan Radio Co Ltd 帯域阻止フィルタ内蔵伝送モード変換器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015528672A (ja) * 2012-08-27 2015-09-28 シーメンス リサーチ センター リミテッド ライアビリティ カンパニーSiemens Research Center Limited Liability Company 高次高調波フィルタとして機能するrf電力結合器
US9735457B2 (en) 2012-08-27 2017-08-15 Ooo Siemens RF power combiner functioning as higher-order harmonics filter
CN107104258A (zh) * 2017-05-25 2017-08-29 东莞质研工业设计服务有限公司 3dB电桥
CN107104258B (zh) * 2017-05-25 2019-09-06 潘浩然 3dB电桥
CN114976556A (zh) * 2022-05-23 2022-08-30 赛莱克斯微系统科技(北京)有限公司 一种mems微同轴功分器

Also Published As

Publication number Publication date
US9419323B2 (en) 2016-08-16
JP5630916B2 (ja) 2014-11-26
US20140225679A1 (en) 2014-08-14
JP2013150143A (ja) 2013-08-01

Similar Documents

Publication Publication Date Title
JP5630916B2 (ja) 電力合成・分配器
US9287605B2 (en) Passive coaxial power splitter/combiner
Gomez-Garcia et al. RF reflectionless filtering power dividers
JP5749841B1 (ja) 導波管型電力合成・分配器
US9293801B2 (en) Power combiner
JP5816768B1 (ja) 導波管型電力合成・分配器
US9698750B2 (en) Circuit
US20140049338A1 (en) Electromagnetic resonance coupler
US10658727B1 (en) Combiner/divider having tapered waveguides stacked in their E-planes
Beukman et al. A quadraxial feed for ultra-wide bandwidth quadruple-ridged flared horn antennas
JP2019029815A (ja) 導波管−伝送線路変換器
US7541887B2 (en) Balun
CN109828330B (zh) 具有多级渐变波导结构的太赫兹片上集成天线过渡结构
JP5339086B2 (ja) 導波管−マイクロストリップ線路変換器および導波管−マイクロストリップ線路変換器の製造方法
JP6049438B2 (ja) ループ方向性結合器
Jin et al. Vertically‐integrated differential filtering patch antenna excited by a balun bandpass filter
KR101713769B1 (ko) 동축 도파관 기반의 공간 전력 결합기
US20150084827A1 (en) Enhanced Connected Tiled Array Antenna
US20190157758A1 (en) Modular antenna systems and related methods of manufacture
JP2011199353A (ja) H面t分岐導波管
JP7300120B1 (ja) 電力合成・分配器
JP6125886B2 (ja) 不平衡平衡変換器
JP5776625B2 (ja) 電力分配合成器
CN114335956B (zh) 一种四进四出电桥结构和多系统合路平台
JP2012178754A (ja) 電力合成器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738887

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14347387

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13738887

Country of ref document: EP

Kind code of ref document: A1