WO2013107415A1 - 一种具有细胞靶向性的磁性纳米材料及其生物医学应用 - Google Patents

一种具有细胞靶向性的磁性纳米材料及其生物医学应用 Download PDF

Info

Publication number
WO2013107415A1
WO2013107415A1 PCT/CN2013/070772 CN2013070772W WO2013107415A1 WO 2013107415 A1 WO2013107415 A1 WO 2013107415A1 CN 2013070772 W CN2013070772 W CN 2013070772W WO 2013107415 A1 WO2013107415 A1 WO 2013107415A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferritin
protein
magnetic
subunit
iron
Prior art date
Application number
PCT/CN2013/070772
Other languages
English (en)
French (fr)
Inventor
潘永信
曹长乾
田兰香
蔡垚
朱日祥
Original Assignee
中国科学院地质与地球物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院地质与地球物理研究所 filed Critical 中国科学院地质与地球物理研究所
Priority to EP13739005.0A priority Critical patent/EP2805733A4/en
Priority to US14/373,083 priority patent/US20150093335A1/en
Publication of WO2013107415A1 publication Critical patent/WO2013107415A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6923Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1866Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle the nanoparticle having a (super)(para)magnetic core coated or functionalised with a peptide, e.g. protein, polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the invention belongs to the intersection of biomimetic synthesis, nanotechnology, molecular imaging and biomedicine.
  • the present invention relates to a magnetic nanomaterial having cell targeting properties and biomedical applications thereof. Background technique
  • Magnetic resonance imaging has the unique advantage of no damage and high resolution, so it is a very good imaging tool for early diagnosis of diseases.
  • its sensitivity is low, and it is not well distinguished from diseased and normal tissues.
  • the detection is not specific.
  • MRI contrast agents also called contrast agents
  • Ti longitudinal relaxation time
  • T 2 transverse relaxation time
  • the MRI contrast agent relaxation time can be divided into ⁇ contrast agent and ⁇ 2 contrast agent.
  • Contrast agent enhances signal strength by shortening ⁇ , making the target area brighter on the ⁇ weighted image.
  • Most of these contrast agents use lanthanide metal elements (Gd) or derived materials, which are now the most widely used MRI contrast agents in the clinic, but after nearly 30 years of clinical use, there have been many ritual contrast agents. Defects such as low sensitivity, short half-life and large side effects.
  • the T 2 contrast agent is mainly superparamagnetic oxide (SPIO) particles.
  • SPIO superparamagnetic oxide
  • SPIO particles Compared with traditional Gd-based contrast agents, SPIO particles have the following advantages: (1) High sensitivity: Each metal unit can change the MRI signal intensity to the greatest extent, especially on T 2 *weighted images, which can be significantly improved. Signal-to-Noise Ratio (SNR); (2) Metabolic clearance in the body: Iron can be metabolized in the body, iron of superparamagnetic magnetite can be used for iron circulation of the body; (3) Easy surface modification, can be connected differently Functional groups and ligands; (4) into the organism, it can also be observed by optical microscopy and electron microscopy; (5) They can regulate their magnetic properties and relaxation efficiency by chemical synthesis conditions to change their particle size, shape and other factors, so SPIO particles are a promising MRI contrast agent [B lte and Kraitchman, 2004 ].
  • the magnetic nanomaterial has the characteristics of large specific surface area, high loading efficiency and high magnetic susceptibility, and is therefore an excellent drug carrier, which can prolong the action time of the drug, enhance the drug effect, reduce the side effects, improve the stability of the drug, and prevent the Stabilize drug degradation. Therefore, magnetic nanomaterials have become an ideal choice for high-efficiency drug delivery systems, and are expected to overcome the drawbacks of traditional chemotherapeutic drug delivery methods such as high dose, strong side effects, low efficiency, and poor stability.
  • the physicochemically synthesized magnetic nanomaterials have no specific targeting to cells, and are easily phagocytosed by the reticuloendothelia system (RES) after entering the body, in order to achieve specificity in vivo.
  • RES reticuloendothelia system
  • traditional magnetic nanomaterials must pass complex surface modifications and ligation of ligands specific for specific cells (such as tumor cells), such as antibodies, peptides, targeted small molecules, etc. Harisinghani et al, 2003 Lin et al, 2010; McCarthy et al, 2007].
  • Biomineralization refers to the process of forming inorganic minerals under physiological conditions by regulation of genes or biological macromolecules.
  • Biomimetic synthesis refers to the understanding of biomineralization mechanisms, imitating students Inorganic materials in mineralization are synthesized by inorganic materials formed under the modulation of organic matter, so that the materials formed thereof have a uniform size, a specific assembly structure and a specific biomacromolecular film.
  • Biomimetic synthesis can simultaneously synthesize magnetic nanomaterials with uniform particle size, high dispersibility, hydrophilicity and high biocompatibility with simple steps and low energy consumption.
  • ferritin and magnetotactic bacteria Mms6 protein biomimetic synthesis superparamagnetic magnetic material is a typical representative.
  • Ferritin an important iron storage protein involved in and maintain iron metabolism in biological organisms, is widely found in animals, plants and microbial cells. They have a typical nuclear-shell nanostructure: the inner core is hydrated iron oxide particles (6-8 nm), and the outer shell is composed of 24 protein subunits self-assembled cage protein shell (12 nm). The formation of ferritin shell is highly controlled by the organism's genes, and its particle size and shape are extremely uniform. It provides a natural bio-nanoreactor for biomimetic preparation of ultrafine SPIO particles [Harrison and Arosio, 1996; Uchida et al. 2007]. More importantly, many fast-growing cells (such as tumor cells) require a lot of iron nutrients and high expression of ferritin receptors.
  • Fargion et al. used human leukemia cancer cell line K562, HL-60 cell line and small cell lung cancer cell NCI-417 to human total heavy chain ( ⁇ ) subunit ferritin, full light chain (L) subunit ferritin and their hybrids
  • the binding ferritin was subjected to a binding assay, and the results showed that ⁇ 562 cells specifically bind to human ⁇ subunit ferritin and human H, L heterozygous ferritin.
  • the binding constant K a binding to human ferritin is as high as 3 x l 0 8 M- 1 [Fargion et al, 1988].
  • human transferrin receptor 1 (TfRl) is a co-receptor of human H subunit ferritin and transferrin, which specifically binds human H subunit ferritin and It is endocytosed into inclusion bodies and lysosomes [ et a/., 2010].
  • the core of natural ferritin is hydrated iron oxide with low magnetic susceptibility (weak magnetic) and low relaxation efficiency, which severely limits its application as a magnetic nanomaterial in biomedicine. How to transform the weak magnetic core into ferromagnetic The core (such as magnetite and/or maghemite) is the key to solving ferritin applications. Magnetic ferritin with a ferromagnetic magnetite core was first synthesized by Meldmm et al. in 1992. However, due to the immature synthesis process, many iron deposits on the surface of the protein shell. This magnetic ferritin is not only easy to aggregate but also enters the body.
  • the synthesis of such human magnetic ferritin brings new ideas for the in vivo application of ferritin biomimetic magnetic nanomaterials [Cao et al, 2010; Chinese invention patent: 200910244505.1; 201010541069.7].
  • Magnetotactic bacteria are a kind of microorganisms that can orient along the direction of the magnetic field. They were found in lakes, oceans and even wet soils in the 1960s and 1970s. At present, only 10 species have been found in sediments in China. A new group of magnetotactic bacteria et a/., 201 1 ].
  • the magnetotactic bacteria are diverse in form, including cocci, vibrio, spirochetes, bacilli and multicellular aggregates, and are phylogenetically belong to Proteobacteria and Nitrospira.
  • a common feature of these microorganisms is the synthesis of nanoscale magnetite (30-120 nm) magnetosomes in a chain-like, chemically pure, biofilm-encapsulated body.
  • the magnetosomes synthesized by different types of magnetotactic bacteria have a specific crystal shape, a cubic octahedron, a pseudo hexagonal prism, and a bullet shape.
  • Mms6 protein is an important membrane protein of magnetotactic bacteria. It is closely adsorbed on the surface of magnetosomes. Both in vitro and in vivo experiments have shown that Mms6 protein can regulate the shape and size of magnetite.
  • Biomimetic biomimetic magnetic nanomaterials are often carried out under conditions of low energy consumption (low temperature, low pressure, low pH).
  • the biomimetic process is characterized by high efficiency, order, self-assembly, etc.
  • the materials obtained have uniform particle size and shape. Consistent, highly dispersible and hydrophilic, and many other material science advantages, the core problem to be solved in this field is how to optimize and apply these biomineralized protein synthesis protein-encapsulated new magnetic nanomaterials.
  • the ferritin shell has natural cell targeting properties, can bind to ferritin receptors with high expression on highly proliferating cell surfaces, and improves synthesis methods to achieve cell targeting of high-expression ferritin receptors by protein biomimetic magnetic nanomaterials.
  • the present invention aims to provide new uses of magnetic nanomaterials having cell targeting properties in the diagnosis and treatment of diseases.
  • a use of a protein shell-encapsulated magnetic nanoparticle or derivative thereof for the preparation of an imaging localization diagnostic reagent and a therapeutic substance is provided.
  • the imaging localization diagnostic reagent is selected from the group consisting of a magnetic resonance contrast agent or a molecular probe.
  • the magnetic resonance contrast agent or molecular probe contains the protein shell-encapsulated magnetic nanoparticles or derivatives.
  • the component of the inner core of the magnetic nanoparticle or its derivative is a compound containing a metal element selected from the group consisting of ritual, manganese, iron, cobalt, and/or nickel.
  • the protein shell of the protein shell-encapsulated magnetic nanoparticle or a derivative thereof can specifically bind to a receptor expressed on a tissue or cell surface; preferably, the protein shell is selected from ferritin (f err itin), chaperone protein, DNA binding protein, magnetosome membrane protein of magnetotactic bacteria or viral protein shell having a nanocavity structure; preferably the ferritin comprises natural ferritin and genetically engineered recombinant ferritin , wherein the natural ferritin is derived from a eukaryotic or prokaryotic organism, and the genetically engineered recombinant ferritin comprises a total weight of the recombinant ferritin (H) chain subunit ferritin, a full light (L) chain subunit ferritin,
  • protein shell-encapsulated magnetic nanoparticles or derivatives thereof are prepared by the following procedures:
  • a metal salt and an oxidizing agent forming a core component to a solution of recombinant human ferritin to control the pH to 7-11, controlling the temperature to 25-80 ° C, and forming a strong magnetic inside the recombinant human ferritin.
  • the concentration of the salt forming the core component is such that the ratio of the number of atoms of the metal element to the number of protein molecules per time is between 10 and 200, so that the number of metal elements added to each protein molecule can be between 100 and 15,000.
  • the concentration of the oxidizing agent is such that the ratio of the number of molecules per oxidizing agent to the number of atoms to which the metal element is added is 2:1 or 3:1; the protein concentration is >0.25 mg/ml;
  • step (e) controls the pH to 8-9.
  • step (e) controls the temperature to be 35-70 °C.
  • the metal salt forming the core component is selected from the group consisting of a ferrous salt, an iron salt, a salt, a manganese salt, a cobalt salt, and/or a nickel salt.
  • the metal element is selected from the group consisting of ritual, manganese, iron, cobalt and/or nickel.
  • the oxidizing agent is selected from the group consisting of hydrogen peroxide, oxygen, and a substance which can produce hydrogen peroxide or oxygen by reaction.
  • the number of metal elements added to each protein molecule is between 140 and 10,000.
  • each protein molecule is added at a number of 100-200, and/or the number of iron atoms added to each protein molecule is between 500 and 10,000.
  • the therapeutic substance is a substance for treating a disease expressing a ferritin receptor; preferably, the substance is linked to a protein shell encapsulating magnetic nanoparticles; more preferably, the substance is selected from the group consisting of chemotherapy Drugs, radioisotopes, cytokines, nucleic acids, anticancer or anti-inflammatory drugs.
  • the ferritin receptor-expressing disease is tumor and/or inflammation; preferably, the tumor is selected from the group consisting of liver cancer, white blood cancer, glioma, lung cancer, colon cancer, and pancreas Cancer or breast cancer.
  • the tumor is selected from the group consisting of liver cancer, white blood cancer, glioma, lung cancer, colon cancer, and pancreas Cancer or breast cancer.
  • a protein shell-encapsulated magnetic nanoparticle or derivative thereof for the preparation of a magnetic contrast agent and a molecular probe for the diagnosis of a disease which expresses a ferritin receptor.
  • the disease that expresses a ferritin receptor is a tumor, and/or inflammation; preferably, the tumor is selected from the group consisting of breast cancer, liver cancer, lung cancer, colon cancer, pancreatic cancer, and nerve glue.
  • the tumor is selected from the group consisting of breast cancer, liver cancer, lung cancer, colon cancer, pancreatic cancer, and nerve glue.
  • a tumor white blood cancer, or prostate cancer.
  • a protein shell-coated magnetic nanoparticle or a derivative thereof wherein the core of the magnetic nanoparticle or a derivative thereof is a compound containing a metal element, and the metal element is selected Self-living, manganese, iron, cobalt and/or nickel elements.
  • the component of the inner core of the magnetic nanoparticle or its derivative is a compound containing an iron element.
  • the component of the inner core of the magnetic nanoparticle or its derivative is a compound containing a ritual element.
  • the core of the magnetic nanoparticle or a derivative thereof is a compound containing an element of iron and manganese.
  • composition of the inner core of the magnetic nanoparticle or its derivative is a compound containing an iron element and a ritual element.
  • the protein shell is selected from the group consisting of ferritin, a chaperone protein, a DNA binding protein, a magnetosome membrane protein of a magnetotactic bacteria, or a viral protein shell having a nanocavity structure;
  • the protein shell of the encapsulated magnetic nanoparticle or its derivative can specifically bind to a tissue or cell surface expressed receptor;
  • the ferritin comprises natural ferritin and genetically engineered recombinant ferritin, wherein the natural ferritin From eukaryotes or prokaryotes, genetically engineered recombinant ferritin including recombinant iron Protein heavy total (H) chain subunit ferritin, all light (L) chain subunit ferritin, heavy chain and light chain of recombinant ferritin self-assembled ferritin in any ratio, and mutants of these protein subunits Or fusion protein.
  • a salt and an oxidizing agent forming a core component to a solution of recombinant human ferritin, controlling the pH to 7-11, controlling the temperature to 25-80 ° C, and forming a strong magnetic inside the recombinant human ferritin.
  • the concentration of the salt forming the core component is such that the ratio of the number of metal elements per molecule to the number of protein molecules is between 10 and 200, so that the number of metal elements added to each protein molecule is between 100 and 11,000.
  • the concentration of the oxidizing agent is 2:1 or 3:1; the protein concentration is >0.25 mg/ml;
  • step (e) controls the pH to 8-9.
  • step (e) controls the temperature to be 35-70 °C.
  • the salt forming the core component is selected from the group consisting of a ferrous salt, an iron salt, a salt, a manganese salt, a cobalt salt, and/or a nickel salt.
  • the metal element is selected from the group consisting of ritual, manganese, iron, cobalt and/or nickel. In another preferred embodiment, the metal element is an iron element.
  • the metal element is a violent element.
  • the metal element is an element.
  • the metal element is a violent element and an iron element.
  • the metal element is a gift element and an iron element.
  • the oxidizing agent is selected from the group consisting of hydrogen peroxide, oxygen, and a substance which can produce hydrogen peroxide or oxygen by reaction.
  • the number of metal elements added to each protein molecule is between 140 and 10,000.
  • each protein molecule is added at a number of 100-200, and/or the number of iron atoms added to each protein molecule is between 500 and 10,000. Accordingly, the present invention provides a novel use of magnetic nanomaterials having cell targeting properties in the diagnosis and treatment of diseases.
  • Figure 1 is a structural analysis of a human H subunit magnetic ferritin containing a magnetite (Fe 3 O 4 ) core prepared according to Example 1;
  • a electron microscopy negative staining
  • b nuclear electron micrograph
  • c nuclear particle size distribution
  • d nuclear selected area electron diffraction (SAED)
  • e circular dichroism analysis of protein conformation.
  • FIG. 2 is a magnetic nanomaterial of a ferritin shell-coated ferromanganese oxide core prepared according to Example 2; wherein, FIG. 2a, an electron micrograph of a manganese iron oxide core; b, a particle size distribution map of the core; Hysteresis loop of oxide (compared to human H subunit magnetic ferritin containing pure magnetite (Fe 3 O 4 ) core); d, energy spectrum elemental analysis of ferritin-coated manganese iron oxide core Figure.
  • Figure 3 is a magnetic nanomaterial synthesized by the application of the magnetotactic bacterial membrane protein Mms6 according to Example 3; wherein Figure 3a, prokaryotic expression and purification of the His-tagged Mms6 protein; b, biosynthesis of magnetic nanoparticles by His-Mms6 Electron micrographs; c, His-Mms6 biomimetic synthetic magnetic nanoparticles high resolution electron micrographs (lattice stripes); d, His-Mms6 biomimetic synthetic magnetic nanoparticles X-ray diffraction (XRD).
  • FIG. 4 Flow cytometry analysis Human H subunit magnetic ferritin binds specifically to a variety of cells that express ferritin receptors.
  • Figure 5 Flow cytometry analysis of specific binding and competitive inhibition of ferritin receptor-expressing cells and human H-subunit magnetic ferritin; wherein ab, Western blotting and real-time PCR were used to detect and screen for high expression of ferritin receptors. MDA-MB-231 cells and MX-1 cells that do not express ferritin receptor; c, flow analysis of specific binding of MDA-MB-231 cells to human H subunit magnetic ferritin and protein shell and ferritin receptor Competitive inhibition of antibodies; d, Flow cytometry analysis of binding of MX-1 cells to human H subunit magnetic ferritin.
  • Figure 7 Human H subunit magnetic ferritin used as a magnetic resonance contrast agent for magnetic resonance imaging of ferritin receptors expressed in vitro; a, untreated control MDA-MB-231 cells (high expression of ferritin receptor) Magnetic resonance image; b, MDA-MB-231 cell magnetic resonance image after 5.5 h of incubation; c, Prussian blue staining of control MDA-MB-231 cells; d, MDA after 5.5 h of material incubation Prussian blue staining of MB-231 cells; e, control material MX-1 cells without material (no expression of ferritin receptor) magnetic resonance images; f, magnetic resonance images of MX-1 cells after 5.5 h of incubation; g, Prussian blue staining of control MX-1 cells; h, Prussian blue staining of MX-1 cells after incubation for 5.5 h.
  • FIG. 8 Magnetic resonance imaging (MRI) analysis Human H subunit magnetic ferritin can specifically target the expression of ferritin receptors in vivo, causing significant changes in MRI image signal intensity; the material is specifically rich in tissue The set is verified by histological iron staining results;
  • Figure 8 ac is a MDA-MB-231 tumor-bearing mouse expressing ferritin receptor, ferritin-shell competitively inhibiting MDA-MB-231 tumor-bearing mice, and MX-1 tumor-bearing mice with low expression of ferritin receptor T 2 * MRI images, d, quantitative results for tumor sites on T 2 * MRI images; e, MDA-MB-231 tumor-bearing mice, ferritin shell competitive inhibition of MDA-MB-231 tumor-bearing mice, Tumor tissue iron staining results of MX-1 tumor-bearing mice with low expression of ferritin receptor, the scale is 20 m.
  • Figure 9 Fluorescence tracer assay.
  • the mechanism by which human ⁇ subunit magnetic ferritin can specifically target in vivo is by binding to TfR1, which is highly expressed on the surface of tumor cells; wherein a, MDA-MB-expressing ferritin receptor 231 fluorescence colocalization map of tumor tissue material and TfRl; b, fluorescence colocalization map of material of MX-1 tumor tissue with low expression of ferritin receptor and TfRl, scale bar is 50 ⁇ m.
  • Figure 10 Human H subunit magnetic ferritin as a tumor-targeting magnetic resonance contrast agent for early diagnosis of MDA-MB-231 human breast cancer of approximately 1 mm size;
  • Figure 10a, b is a T 2 * weighted magnetic resonance image of a nude mouse bearing MDA-MB-231 microcarcinoma;
  • Figure 8c is a quantitative analysis of the ⁇ 2 * weighted image and statistical analysis results;
  • Figure 8d-f is ⁇ 2 On the weighted magnetic resonance image, the results of quantitative analysis of its signal-to-noise ratio (SNR);
  • Figure 8g is the result of DAB-enhanced Prussian blue iron staining of the paraffin-embedded tissue of the cancer, the scale is 20 m ;
  • Figure 8h is
  • Figure 11 Human Cycl-linked magnetic ferritin H-based magnetic ferritin is used as a fluorescent molecular probe for the early diagnosis of MDA-MB-231 human breast cancer of approximately 3 mm.
  • Figure 12 Human H subunit magnetic ferritin for early diagnosis of small liver cancer; scale in the figure is 1 Mm, the lower right corner is a magnified image of the tumor site.
  • Figure 13 Human H subunit magnetic ferritin for early diagnosis of small lung cancer; the scale is 2 mm in the figure.
  • Figure 14 Distribution of human H subunit magnetic ferritin in nude mice, with a scale of 20 ⁇ m.
  • Figure 15 Ultrasound section of tumor tissue transmission electron microscopy shows that the drug-specific material is specifically enriched in tumor cells, which is a tumor cell internalization type magnetic nanomaterial; wherein, Figure 15a, tumor cell electron microscopy in tumor tissue Photo; b, electron micrograph of tumor cells and lymphocytes; c, electron micrograph of macrophages.
  • Figure 16 Human H subunit magnetic ferritin carrying chemotherapeutic drug doxorubicin hydrochloride (cytotoxicity test) for various tumor cells (measured by MTT method): wherein, Figure 16a is a color change diagram after the material is attached to the drug; b is MTT was used to determine the effect of materials after adriamycin on the survival rate of liver cancer cells, white blood cells, glioma cells, lung cancer cells, colon cancer cells and breast cancer cells.
  • Figure 17 Treatment of lung cancer with human H subunit magnetic ferritin with doxorubicin.
  • Figure 17a the volume of the tumor varies with the number of days after injection;
  • b the actual after the tumor is removed from the different treatment groups Weight;
  • c physical photos of the tumors dissected from different treatment groups.
  • 18a, 18b, 18c, and 18d are transmission electron microscopy (TEM) photographs, particle size distribution histograms, and transverse relaxation rates (r2) of magnetic ferritin synthesized by adding 1000 iron atoms per protein molecule during the reaction.
  • Figure 18e, 18f, 18g, 18h are the transmission electron microscopy (TEM) images of the magnetic ferritin synthesized by adding 3000 iron atoms per protein molecule during the reaction, Histogram of particle size distribution, measurement of transverse relaxation rate (r2) and low temperature (5K) hysteresis loop;
  • Figure 18i, 18j, 18k, 181 are the average of 5000 iron atoms per protein molecule during the reaction.
  • TEM Transmission electron microscopy
  • Fig. 18m, 18n, 18o, 18p are reactions respectively Transmission electron microscopy (TEM) photographs of magnetic iron proteins synthesized by adding 7000 iron atoms per protein molecule, determination of particle size distribution histogram and transverse relaxation rate (r2), and low temperature (5K) hysteresis Line
  • Figure 18q, 18r, 18s are transmission electron microscopy (TEM) photos, particle size distribution histograms and low temperature (5K) hysteresis loops of magnetic ferritin synthesized by adding 10,000 iron atoms per protein molecule during the reaction
  • FIGS 19a-19d are respectively T 2 weighted MRI image size of breast cancer tumors in nude mice of 3 mm approximately
  • FIG. 19e-19h are respectively T 2 * weighted MRI image about tumor size in nude mice of 3 mm (dimensions: 5mm; The tumor site is marked with a red circle);
  • Figures 19i and 19j are stereomicrographs of the tumor in situ (scale bar: 3 mm);
  • Figures 19k and 191 are respectively quantified for the T 2 weighted image and the ⁇ 2 * weighted image, respectively.
  • Analysis results (4 model statistics);
  • Figures 19m and 19n are immunohistochemical maps of tumors after magnetic resonance scanning ( ⁇ represents normal tissue, ⁇ represents tumor tissue; scale bar: 50 ⁇ ).
  • FIGS 20a-20d are respectively T 2 weighted MRI image size of breast cancer tumors in nude mice approximately of 1 mm, FIG. 20e-20h, respectively ⁇ 2 * weighted MRI images of nude mice tumor size of about l mm (dimensions: 1mm; Tumor sites were marked with red circles; Figures 20i and 20j are quantitative results for T 2 -weighted MRI images and ⁇ 2 *weighted images, respectively (4 model statistics); Figure 20k is an in situ stereomicrograph of subcutaneously transplanted breast cancer (Scale bar: 1 mm); Figure 201 is an immunohistochemical map of the tumor after magnetic resonance scanning (where N represents normal tissue, T represents tumor tissue; scale bar: 50 ⁇ ).
  • Figure 21a-21d are photographs of fluorescence imaging of pre- and post-injection of Cy5.5-ferritin in nude mice with a tumor size of approximately 1 mm, respectively, at 1.5 h, 3 h, and 6 h after injection (tumor sites marked with red circles)
  • Fig. 21e and Fig. 21f are white light photographs and near-infrared fluorescence photographs of the microscopic MX-1 tumor, the MDA-MB-231 tumor and the normal muscle tissue surrounding the tumor, respectively.
  • Figure 22 is a near-infrared fluorescence imaging of Cy5.5 ferritin injected into a nude mouse model with a tumor size of about 3 mm (marked with a red circle on the tumor site), and various tissues and organs (heart, liver) dissected after 96 h. Fluorescence imaging of the spleen, lungs, kidneys, brain, stomach, intestines, bones, tumors, muscles.
  • Figures 23a-23c are ⁇ -weighted magnetic resonance scans of Gd-DTPA before and after injection of Gd-DTPA in nude mice with orthotopic glioma size of approximately 1-2 mm;
  • Figure 23d-f is T 2 weighted before and after injection of magnetic ferritin Magnetic resonance imaging (echo time 32ms).
  • Figures 23g-23i are T 2 * weighted magnetic resonance imaging (echo time 4.5ms).
  • Figures 23j-231 are ⁇ 2 * weighted magnetic resonance imaging of the second echo (echo time 12ms). (Scale bar: 2mm; tumor site marked with red circle).
  • Figures 24a-24d are T 2 -weighted and ⁇ 2 * weighted magnetic resonance imaging images of the orthotopic pancreatic cancer nude mouse model before and after injection of magnetic ferritin (scale bar: 2 mm; tumor site marked with red circle).
  • Figure 24e is an in situ view of the abdominal organs dissected from the supine position of nude mice after magnetic resonance scanning (the tumor sites in the pancreas are marked with blue circles).
  • Figure 25c is for different ritual concentrations (0-1 mM)
  • Figure 25d is the longitudinal relaxation time measured for ferritin-ritual-iron complexes with different Gd concentrations reciprocal (!
  • Figure 26a-26b are a 1-weighted magnetic resonance imaging of the orthotopic liver cancer xenograft model before and after injection of ferritin-e-iron dual-mode magnetic resonance contrast agents;
  • Figures 26c, 26d and 26e, 26f are orthotopic liver cancer, respectively.
  • T 2 weighted and ⁇ 2 * weighted magnetic resonance imaging images of the nude mouse transplantation model before and after injection of ferritin-e-iron dual-mode magnetic resonance contrast agent scale bar: 5 mm; tumor site marked with red circle).
  • Figures 27a-27b are ⁇ -weighted magnetic resonance imaging images of orthotopic glioma xenograft models before and after injection of ferritin-e-iron contrast agent; 27c-27d before and after injection of ferritin-ritual-iron contrast agent 2 *Weighted magnetic resonance imaging (scale bar: 2mm; tumor site marked with red circle).
  • Figure 28a is a schematic diagram of the process of encapsulating Gd-DTPA using human H subunit ferritin.
  • Figure 28b-28d is a weighted magnetic resonance imaging of the orthotopic glioma xenograft model before and after injection of ferritin-coated Gd-DTPA complex (scale bar: 2 mm; tumor site marked with red circle). detailed description
  • the human magnetic ferritin synthesized by genetic engineering recombinant human H subunit ferritin is used for the diagnosis and treatment of diseases with high expression of ferritin receptor.
  • the present invention has been completed.
  • Diagnosis of the disease includes in vivo imaging diagnosis based on magnetic nanomaterials or derivatives thereof and in vitro tissue and cell diagnosis. Treatment of diseases includes passive targeted therapy and active targeted therapy based on magnetic nanomaterials or derivatives thereof.
  • kernel composition refers to "strong magnetic nanoparticles” or “magnetic nanomaterials.”
  • magnetic nanomaterial is a preparation method provided by Chinese invention patent application 200910244505.1 and a magnetic nanomaterial with protein shell coating prepared by the present invention, Magnetic nanomaterials have cell targeting properties; the cell targeting is inherently cell-targeting, without the need for surface-coating, chemical modification or genetic engineering to link to targeting ligands (eg, antibodies, peptides, targeting) Small molecules, etc., the material directly binds to cells that express the ferritin receptor.
  • targeting ligands eg, antibodies, peptides, targeting
  • Ferritin and a fusion ferritin shell provide a natural targeting ligand for the material.
  • the ferritin comprises natural ferritin and genetically engineered recombinant ferritin, wherein the natural ferritin is derived from a eukaryotic or prokaryotic organism, and the genetically engineered recombinant ferritin comprises a total weight (H) chain subunit ferritin of the recombinant ferritin, Full-light (L) chain subunit ferritin, heavy chain and light chain of recombinant ferritin self-assembled ferritin in any ratio, and ferritin of these protein subunits or fusion protein and other ferritin biomimetic synthesis Cellular targeting of magnetic or non-magnetic materials.
  • H total weight
  • L Full-light
  • L heavy chain and light chain of recombinant ferritin self-assembled ferritin in any ratio
  • the cell targeting has in vitro and in vivo cell targeting, can specifically bind to cells which express the ferritin receptor and endocytose into the interior of the tumor cells; the magnetic nanomaterial of the invention binds to ferritin which is highly expressed on the cell surface Receptor to achieve cell targeting in vitro and in vivo.
  • the magnetic nanomaterial or derivative thereof provided by the invention has intact human H subunit ferritin shell and magnetite and/or maghemite, manganese iron oxide, ceramide-iron complex, Gd-DTPA core. Its outer diameter of the protein shell is 12-15nm, its height is uniform, and it is spherical.
  • the particle size of the core can synthesize magnetic ferritin of different particle sizes with the number of iron atoms added to each protein molecule.
  • the average particle size distribution range is narrow, 2-8 nm, and the shape is approximately spherical, showing good monodispersity. Sexual, water soluble.
  • the transverse relaxation efficiency (r 2 ) of the material can be varied with the synthesis of magnetic ferritin of different particle sizes, and r 2 can be controlled in the range of about 20-350 mM- 1 ⁇ s- 1 .
  • the invention further comprises a modification of the inner core to synthesize a ferritin-coated ferromanganese oxide magnetic nano material having a similar particle size (4.7 ⁇ 0.8 nm) to the magnetic ferritin originally having a magnetite core, but The saturation magnetization is improved and the coercive force is lowered.
  • the invention further improves the ferritin-ritual-iron dual-mode magnetic resonance contrast agent magnetic nano material by modifying the inner core, and has the function of magnetic resonance contrast agent, and can be used for magnetic resonance ⁇ weighted imaging to change the target site.
  • the present invention further utilizes the self-assembly function of the ferritin shell to encapsulate Gd-DTPA in the ferritin cavity to form a ferritin-coated Gd-DTPA complex as a magnetic resonance contrast agent.
  • the invention utilizes the membrane protein Mms6 protein of the magnetotactic bacteria with mineralization function for prokaryotic expression and purification, and uses the purified Mms6 protein to biomimetically synthesize a magnetite material with a shape of approximately spherical shape and a particle diameter of about 20 nm.
  • the present invention uses flow cytometry to verify that breast cancer, liver cancer, glioma, and lung cancer cells with high expression of ferritin receptor can bind a large amount of human H subunit magnetic ferritin, indicating that the material can be broadly targeted and bound.
  • a cell that expresses a ferritin receptor is a cell that expresses a ferritin receptor.
  • TfRl transferrin receptor 1
  • human H subunit magnetic ferritin can be enriched in tumor tissue in large quantities, and this in vivo tumor was confirmed by fluorescence colocalization.
  • the mechanism of tissue enrichment is to specifically target TfR1 with high expression on the surface of tumor cells.
  • Human H subunit magnetic ferritin is enriched in the tumor and can cause significant changes in the MRI image signal intensity at the tumor site.
  • the present invention uses human H subunit magnetic ferritin as a tumor-targeting magnetic resonance contrast agent to achieve early diagnosis of tumors of about 1 mm in nude mice, breast cancer, liver cancer and lung cancer models.
  • the invention uses a human H subunit magnetic ferritin, a ferritin-iron-iron complex and a ferritin-coated Gd-DTPA complex as a tumor-targeting magnetic resonance contrast agent, in situ human liver cancer in nude mice, in situ Early diagnosis of liver cancer, glioma and pancreatic cancer in human glioma and orthotopic human pancreatic cancer xenograft models. Glioma and pancreatic cancer can be clearly imaged at 1 mm and strong with surrounding normal tissues. Tissue contrast.
  • human H subunit magnetic ferritin is linked to a fluorescent molecule, and as a fluorescent molecular probe for near-infrared fluorescence imaging, human breast cancer of about 3 mm in size can be clearly detected on a nude mouse model.
  • human H-subunit ferritin is linked to a fluorescent molecule, and as a fluorescent molecular probe for near-infrared fluorescence imaging, human breast cancer of about 1 mm in size can be clearly detected in a nude mouse model.
  • intravenously injected human H subunit magnetic iron protein can enter into tumor cells with high expression of TfRl, and is a tumor cell internalized magnetic nanomaterial.
  • the invention binds the human H subunit magnetic ferritin to the chemotherapy drug doxorubicin hydrochloride, and the cytotoxic MTT assay shows that the material of the adriamycin is on the liver cancer cells, the white blood cancer cells, the glioma cells, the lung cancer cells, the colon cancer cells. Tumor cells such as breast cancer cells have a broad spectrum of inhibition.
  • the invention combines the material of the chemotherapeutic drug into the in vivo treatment of the lung cancer xenograft model, and after the intravenous injection, the tumor growth can be significantly inhibited.
  • the present invention relates to a tumor-targeting magnetic nanomaterial and a biomedical application, which is characterized by a novel biomimetic synthetic material having a protein shell-wrapped magnetic nano-core, which has inherent tumor targeting. It can be used as a tumor-targeting magnetic resonance contrast agent, molecular probe and drug carrier for the early diagnosis and treatment of tumors.
  • the protein shell-encapsulated magnetic nanoparticles are preferably prepared by a specific method, which is disclosed in Chinese Patent Application No. 200910244505.1, the entire contents of which are hereby incorporated by reference.
  • the protein shell may be selected from the group consisting of ferritin, a chaperone protein, a DNA binding protein, a magnetosome membrane protein of a magnetotactic bacteria, and a viral protein shell having a nanocavity structure.
  • the ferritin shell comprises natural ferritin and genetically engineered recombinant ferritin, wherein the natural ferritin is derived from a eukaryotic or prokaryotic organism, and the genetically engineered recombinant ferritin comprises a total weight (H) chain subunit ferritin of recombinant ferritin , all light (H) chain subunit ferritin, heavy chain and light chain of recombinant human ferritin self-assembled ferritin in any ratio, and mutants or fusion proteins of these protein subunits.
  • the ferritin shell is a genetically engineered human full heavy chain subunit ferritin.
  • the ferritin is characterized in that it is self-assembled by any ratio of 12 or 24 heavy chain subunits and light chain subunits to form a cage structure.
  • the components of the magnetic nanocore described therein include, but are not limited to, magnetic nanomaterials containing ritual, manganese, iron, cobalt, and/or nickel-based elements.
  • the composition of the magnetic nanocore is magnetite and/or maghemite, manganese iron oxide, cerium-iron composite, Gd-DTPA.
  • cell targeting refers to the intrinsic targeting that can directly target cells without surface coating, chemical modification or genetic engineering modification of targeting ligands (such as antibodies, peptides, targeting small molecules, etc.).
  • targeting ligands such as antibodies, peptides, targeting small molecules, etc.
  • intrinsic cell targeting includes the intrinsic cell targeting of ferritin shells, as well as the intrinsic cell targeting of all magnetic and non-magnetic materials based on ferritin shell synthesis.
  • intrinsic cell targeting means that the ferritin shell is capable of specifically targeting a cell that binds to a high expression of a ferritin receptor.
  • ferritin receptors include TfR1, H subunit ferritin receptor, L subunit ferritin receptor and its lactoferrin receptor.
  • the intrinsic cell-targeting properties specifically bind to cells that express the ferritin receptor and endocytosis into the interior of the cell.
  • tumor diagnostic reagents include in vitro and in vivo tumor diagnostic reagents.
  • in vitro tumor diagnostic reagents include tumor diagnostic reagents applied to tissues, cells, blood, urine, feces, and other secretions.
  • in vivo tumor diagnostic reagents involve imaging localization diagnosis of human tumors targeting ferritin receptors, including all MRI contrast agents based on ferritin shell synthesis, fluorescent probes, isotope probes, and the like.
  • tumor therapeutic reagents also relate to medicinal carriers linked by magnetic nanomaterials encapsulated by protein shells, and also to chemotherapeutic drugs, radioisotopes, cytokines, nucleic acids, anticancer, or anti-inflammatory drugs based on ferritin shell-encapsulated.
  • a pharmaceutically acceptable carrier includes any and all solvents, dispersion media, coating agents, isotonic and absorption delaying agents, and the like, which are physiologically suitable.
  • the carrier is suitable for intravenous, intramuscular, subcutaneous, parenteral, spinal or epidermal use.
  • the innovations of the present invention are as follows: (1) The magnetic ferritin having the original protein conformation is synthesized by human B subunit ferritin, and the material synthesis does not destroy the structure and function of the protein. (2) Using the recombination magnetotactic membrane protein Mms6 protein, the synthetic process is improved to synthesize a cubic octahedral crystal form with a uniform particle size similar to that of a magnetotactic bacterial magnetosome under normal temperature and pressure conditions. (3) It is revealed that the biggest difference between the magnetic ferritin synthesized by the present invention and the originally synthesized magnetic ferritin is that 1 ensures the purity of the mineral phase, so that the ferrite formed in the protein shell is ferrimagnetic, magnetized.
  • the rate is high, and the hysteresis loop can reach saturation under very low magnetic field conditions. 2 It is first discovered and proved that the magnetic ferritin synthesized by the invention has intrinsic cell targeting in vivo and in vitro without any modification. And demonstrate that the cell targeting of the material is due to its protein shell specifically binding to the ferritin receptor TfRl, which is highly expressed on the cell surface; (4) compared to the magnetic nanomaterials that modify the targeting ligand after traditional chemical synthesis.
  • the inherent cell targeting of this material does not require complex surface packs , targeted molecular chemical modification, targeted peptide genetic engineering modification; (5) magnetic nanomaterials coated with protein shells as cell-targeted magnetic resonance contrast agents, achieving tumors of about 1 mm in nude mice Magnetic resonance imaging diagnosis, which is the best early diagnosis of tumors reported in the world; (6) It is confirmed that the material can enter the tumor cells, which lays a foundation for the treatment of tumor cells; and it is modified on tumor chemotherapy drugs. It has been found to have broad-spectrum inhibition and cytotoxicity on tumor cells in vitro, and has obvious therapeutic effects on lung cancer in vivo.
  • These materials are magnetic nanomaterials based on biomimetic biosynthesis of protein biomineralization. They have unique materials such as uniformity of particle size and shape, complete protein shell, monodispersity, water solubility and high biocompatibility;
  • Such materials can be used as cell-targeted magnetic resonance imaging contrast agents, fluorescent molecular probes, and isotopic markers for early diagnosis of tumors in vivo, as magnetic resonance imaging contrast agents, and the present invention is implemented on animal models.
  • An early diagnosis of a tumor about 1 mm in size.
  • This kind of material can be used as a drug carrier for targeted therapy of tumors, to achieve intracellular drug delivery, and to broadly kill tumor cells in vitro, and has obvious tumor suppressing effect in vivo.
  • the unit of weight percent by volume in the present invention is well known to those skilled in the art and, for example, refers to the weight of the solute in a 100 ml solution.
  • the full-length cDNA of the H subunit of human ferritin was separately cloned and constructed into pETl lb plasmid (purchased from Novagen); it will contain human ferritin H subunit and L subunit.
  • the recombinant plasmid was transformed or co-transformed with bacterial BL21 (DE3) pLysS (purchased from Novagen), and IPTG (isopropyl- ⁇ -D-thiogalactoside) was added to activate the T7 promoter to induce expression;
  • the protein is separated by ultrasonication; the protein is separated and purified; the purified human H subunit ferritin is used as a template, and the ferrous salt and the oxidant H 2 O 2 are added to the solution of the recombinant human ferritin to control the pH value of 8.5.
  • the control temperature is 65 ° C, forming strong magnetic nanoparticles inside the recombinant human ferritin;
  • the concentration of ferrous salt is the ratio of the number of ferrous atoms and the number of protein molecules added each time between 10-200, and finally The number of iron atoms added to the protein molecules is 5000; after the completion of the reaction, the exclusion chromatography chromatography, centrifugation and molecular sieve purification are carried out to obtain monodisperse human H subunit magnetic ferritin particles with intact protein structure.
  • Figure la is a negative stained photograph of the resulting magnetic ferritin by transmission electron microscopy (TEM), each of which is encapsulated by intact recombinant human H subunit ferritin.
  • TEM transmission electron microscopy
  • Figure lb is a transmission electron micrograph of the obtained magnetic human ferritin core with uniform particle size, similar shape, and monodispersity.
  • Figure lc is a histogram of the particle size distribution of magnetic human ferritin. It can be seen that the magnetic nano-core has a narrow particle size distribution and an average particle size of 4.6 ⁇ 0.9 nm.
  • Figure Id is a selected area electron diffraction pattern of human H subunit magnetic ferritin, and it is known that the mineral phase component is magnetite.
  • Figure le is the circular dichroism (CD) spectrum of the material, which shows that the material does not destroy the original conformation of the ferritin shell after biomimetic synthesis.
  • the amino acid sequence of the human H subunit ferritin shell possessed by the material is as follows: ELGDHVTNLRKMGAPESG LAEYLFDKHTLGDSDNES Example 2
  • Figure 2a is an electron micrograph of a ferromanganese oxide core. It can be seen that the formed core is approximately spherical and exhibits good monodispersity.
  • Figure 2b is a particle size distribution of the core with an average particle size of 4.7 ⁇ 0.8 nm.
  • Figure 2c shows manganese. The hysteresis loop measured by iron oxide at 2K is compared with the human H subunit magnetic ferritin containing only the magnetite (Fe 3 O 4 ) core, and its saturation magnetization is 23 emu/g larger than the original human H.
  • the whole genome of the magnetotactic bacteria AMB-1 was extracted by prokaryotic expression of the magnetic resonance membrane protein Mms6, and the mms6 gene was amplified by PCR and cloned into the pET15b plasmid (purchased from Novagen). EcoR I was used. BamH I cleavage site, transforming bacteria BL21 (DE3) pLysS (purchased from Novagen) for prokaryotic expression. The His-tagged Mms6 protein was purified by nickel column affinity chromatography.
  • the His-Mms6 protein is mixed with an iron salt solution, the pH is adjusted to 7-9 with NaOH, and reacted at room temperature for 24 hours to form a hydrated iron oxide compound (ferrihydrite), and then a ferrous salt solution is added (making ferrous ions and iron) The ratio of ions was 1:2) and the reaction was continued for 24 hours until the color of the solution became completely black.
  • the obtained magnetic particles were collected by a magnet, washed three times with deoxidized water, and lyophilized for electron microscopic observation and magnetic measurement. the amount.
  • Figure 3a is a prokaryotic expression and purification map of His-tagged Mms6 protein. As shown in Lane 2, E.
  • Electrophoretic pure His-Mms6 protein (lane 3); Figure 3b is an electron micrograph of bio-synthesized magnetic nanoparticles using His-Mms6.
  • the synthesized magnetic nanoparticles have uniform particle size, similar shape, and approximately spherical shape;
  • Figure 3c is His-Mms6 bionic High-resolution electron micrographs (lattice fringes) of synthetic magnetic nanoparticles show that even under normal temperature and pressure conditions, magnetic nanoparticles synthesized by His-Mms6 biomimetic still have excellent crystal forms, no lattice defects, and their crystal forms are similar.
  • Figure 3d is the X-ray electron diffraction (XRD) pattern of the His-Mms6 biomimetic synthetic magnetic nanoparticle, which is compared with the XRD peak of the standard magnetite.
  • the composition of the magnetic nanoparticles is magnetite.
  • amino acid sequence of the Mms6 protein shell of the material is as follows:
  • the human H subunit magnetic ferritin was fluorescently labeled with the fluorescent dye Cy5.5 (ie, Cy5.5 was attached to the human H subunit magnetic ferritin by a covalent bond), and the unbound protein was removed by a desalting column.
  • the cells were in the logarithmic growth phase in the culture flask (about 60% of the cell culture flask), they were digested with 0.25% trypsin containing EDTA. The digested cells were washed three times with phosphate buffer solution (PBS, pH 7.4), and then suspended by adding an appropriate amount of PBS (cell concentration was about 1 ⁇ 10 6 cells/ml).
  • ferritin receptor-expressing MDA-MB-231 cells low-expressing MX-1 cells (purchased from ATCC, cultured in Nanjing Kaiji Biotechnology Development Co., Ltd.) were placed in a 6-well plate.
  • the serum medium was cultured for 24 h.
  • the old medium was aspirated, and human H subunit magnetic ferritin was added to 1.5 ml of fresh serum medium to a final iron concentration of 165 g/mL for 5.5 h. Thereafter, the cells were washed three times with PBS, then digested with 0.25% trypsin containing EDTA, and washed again three times with PBS.
  • Each cell was diluted with PBS in a 96-well plate to a final concentration of lx lO 6 cell/ml to a final volume of 100 ⁇ PBS, then 100 ⁇ L of 1% low melting agarose gel (Shanghai Shenggong) was added. Place in a -20 ° C refrigerator to cool and solidify.
  • the cells were placed in a small animal-specific 7 T MRI system (Bruker, Biospin MRI PharmaScan 7.0T, 300 MHz, 1H model) for magnetic resonance imaging using a rat body coil.
  • Figure 7 is a magnetic resonance imaging of in vitro cells.
  • the human H subunit magnetic ferritin has many barrier systems for the expression of ferritin receptor tissue, so the in vivo situation is far more complicated than in vitro, in order to verify human H subunit magnetic ferritin Can I target tumors in vivo, using MDA-MB-231 breast cancer cells with high binding of human H subunit magnetic ferritin and TfRl expression, and MX-1 breast cancer cells with low magnetic binding and low TfR1 expression Mouse transplant model.
  • human H subunit magnetic ferritin is injected into the tail vein (injection dose: 10 mg Fe/Kg mouse body weight).
  • the scan time was before the injection of human H subunit magnetic ferritin (Pre), 1.5 h, 3.5 h, 5.5 h after injection, and multi-slice multi-slice multi-slice multi for T 2 -weighted imaging -echo (MSME) sequence ).
  • T 2 * weighted imaging uses a multi-gradient echo (MGE) sequence.
  • FOV 3.5 cm 3.5 cm
  • matrix 256 x 256
  • TR 900 ms
  • TE 4, 10, 16, 22, 28, 34 ms, 20 layers, layer thickness 0.80 mm.
  • MRI image processing machine Bmker Paravision 5.0 software comes with the device.
  • the signal intensity of the tissue site is quantified by the signal-to-noise ratio (SNR).
  • SNR signal-to-noise ratio
  • Figure 8a-c is a T 2 * MRI image of MDA-MB-231 tumor-bearing mice, ferritin-shell competitively inhibiting MDA-MB-231 tumor-bearing mice, and MX-1 tumor-bearing mice.
  • TfRl is high.
  • the in vivo tissue targeting of human H subunit magnetic ferritin is a specific tissue-targeted MRI contrast agent that is dependent on TfR1 expression.
  • Figure 8d is a quantitative analysis of T 2 * weighted images.
  • the relative contrast change values of MDA-MB-231 cancer before (Pre), 1.5 h, 3.5 h, and 5.5 h were 41.4 ⁇ 11.8 % (mean ⁇ Standard deviation), 59.0 ⁇ 5.5 %, 56.6 ⁇ 5.5 %.
  • Figure 8e shows the histological results of paraffin sections of tumor-bearing nude mice after MRI scan. After DAB-enhanced Prussian blue staining, MDA-MB-231 tumor tissue showed significant staining positive (brown particles).
  • tissue sections were embedded with OCT (optimal cutting temperature compound, Sakura) and sectioned (thickness 5 ⁇ ) on a Leica cryostat. After the sections were dried to OCT elimination, they were fixed in acetone for 15 min in the dark, and the sections were dried and placed in a -80 °C refrigerator for storage.
  • OCT optical cutting temperature compound, Sakura
  • T 2 * weighted imaging uses a multi-gradient echo (MGE) sequence.
  • MGE multi-gradient echo
  • MRI's image processing machine is equipped with Bmker Paravision 5.0 software.
  • Figure 10a, b is a T 2 *-weighted magnetic resonance image of nude mice bearing MDA-MB-231 microcarcinoma. It can be clearly seen that the signal intensity of the cancer site before and after injection of human ⁇ subunit magnetic ferritin has Significant changes, the intensity of the signal after injection is much lower than before the injection, and the brightness on the image becomes darker. After quantitative analysis and statistical analysis of ⁇ 2 * weighted images, there was a significant difference in signal-to-noise ratio before and after injection of human ⁇ subunit magnetic ferritin (Fig. 10c).
  • the human H subunit magnetic ferritin is labeled with the near-infrared fluorescent dye Cy5.5 (ie, C5 is attached to the human H subunit magnetic ferritin via a covalent bond), and becomes a tumor-targeting Fluor Optical molecular probe.
  • Cy5.5 ie, C5 is attached to the human H subunit magnetic ferritin via a covalent bond
  • Figure 1 is a picture of in vivo fluorescence imaging after injection of human H subunit magnetic ferritin for 3 h, except for a strong fluorescence intensity distribution outside the liver bladder, and a strong fluorescence intensity distribution at the tumor site.
  • the QGY7701 liver cancer cells positive for TfRl expression (purchased from ATCC, cultured in Nanjing Kaiji Biotechnology Development Co., Ltd.) were used to establish a nude mouse human liver cancer transplantation model.
  • the human H subunit was injected into the tail vein.
  • Magnetic ferritin injection dose: 10 mg Fe/Kg mouse body weight.
  • the scanning time was before the injection of human H subunit magnetic ferritin (Pre), 5.5 h after injection, and the multi-slice multi-echo (MSME) sequence for T 2 -weighted imaging. ).
  • T 2 * weighted imaging uses a multi-gradient echo (MGE) sequence.
  • MGE multi-gradient echo
  • MRI's image processing machine is equipped with Bmker Paravision 5.0 software.
  • the signal intensity of the cancer site is quantified by the signal-to-noise ratio (SNR).
  • SNR signal-to-noise ratio
  • NCI-H460 human lung cancer cells positive for TfRl expression purchased from ATCC, cultured in Nanjing Kaiji Biotechnology Development Co., Ltd.
  • injection dose 10 mg Fe/Kg mouse body weight
  • the scan time was before (H) injection of human H subunit magnetic ferritin and 5.5 h after injection.
  • T 2 * weighted imaging was performed with multi-gradient spin echo Sequence (multi-gradient echo (MGE) sequence).
  • the paraffin sections were baked in a 60 ° C oven for 1 h, and immersed in xylene at 37 ° C for 2 times (15 min each time) for dewaxing, and then dehydrated twice with 100% alcohol (5 times each time). Min) , rehydration in 80% alcohol, deionized water (2 min each time). To remove the intrinsic peroxidase, the sections were rehydrated, placed in a methanol solution containing 3% H 2 O 2 for 30 min, and washed three times with deionized water.
  • FIG. 14 is a photograph of iron staining of muscle, heart, liver, spleen, lung, kidney, brain tissue, axillary lymph node and tumor tissue of mice after injection of human H subunit magnetic ferritin.
  • Example 15 There was a significant positive staining, and a large amount of brown particles appeared after staining in the tissue, indicating a large amount of iron particles distributed.
  • the liver has a certain positive staining, and there is a distribution of iron particles in the Kupffer cells. Lymph nodes have distinct iron particles between the cortex and the medulla. Iron staining of the spleen, heart, lung, kidney, brain, and muscle tissue was negative, indicating minimal material distribution in these tissues.
  • MDA-MB-231 breast cancer nude mice were injected intravenously with human H subunit magnetic ferritin, and nude mice were performed 24 h later. After sacrifice, the cancerous tissue was quickly removed and cut into 1 mm 3 size and fixed in 2.5% glutaraldehyde at 4 °C.
  • the procedure for making ultrathin sections of TEM is as follows: Remove the glutaraldehyde-fixed tissue and wash it three times with PBS (0.01M, pH7.4) (10 min/time) and fix it with 1% citric acid for 25 min (fixed process) In 20 minutes or so, it depends on whether the tissue is black.) Wash once with PBS, wash twice with water (10 min/time), stain with 1% uranyl acetate for 1 h, and then use 50%, 70%, 85%. 95% ethanol dehydration, each time 12 min, and then dehydrated three times with 100% ethanol for 15 min each time.
  • Doxorubicin hydrochloride is cross-linked with human H subunit magnetic ferritin using glutaraldehyde, and the G50 desalting column is used to remove doxorubicin hydrochloride which is not attached to the protein. Then, the protein concentration of human H subunit magnetic ferritin (measured by BCA method) and the concentration of doxorubicin (485 nm) were measured by a spectrophotometer, and the amount of doxorubicin attached to each material was determined to be about 48 molecules. .
  • Figure 16a is a color change diagram of the material after doxorubicin was attached. It can be seen that after the doxorubicin was attached, the material changed from the original brownish black to blackish red.
  • the tumor cells grow to logarithmic growth phase, they are added to a 100- to 96-well plate at a concentration of 5000 cells per well, and the marginal wells are filled with sterile PBS.
  • the doxorubicin-conjugated material was cultured for 72 hours at 37 ° C in a 5% CO 2 cell culture incubator according to the concentration of doxorubicin (1-20000 nM, ⁇ ⁇ a gradient).
  • Add 0.5% ⁇ 20 ⁇ L continue to culture for 4 h, terminate the culture, and carefully aspirate the culture medium in the well.
  • 150 ⁇ l of dimethyl sulfoxide was added to each well, and the mixture was shaken at a low speed for 10 min on a shaker to fully dissolve the crystals.
  • each well was measured at OD 490 nm by an enzyme-linked immunosorbent assay. Simultaneously set the zero hole (medium, MTT, dimethyl sulfoxide), control well (cell, same concentration of drug dissolution medium, culture solution, MTT, dimethyl sulfoxide).
  • Figure 16b is a MTT assay for the drug of doxorubicin against liver cancer cells QGY7701, white blood cancer cells K562, glioma cells U87MG, lung cancer cells NCI-H460, colon cancer cells HT-29, breast cancer cells MDA-MB-231 ( Purchased from The results of the cytotoxicity test of ATCC, cultivated in Nanjing Kaiji Biotechnology Development Co., Ltd., found that the doxorubicin material has obvious cytotoxicity to these cells.
  • NCI-H460 lung cancer cells with high expression of ferritin receptor were selected and subcutaneously transplanted under the armpit of nude mice. After the tumor was grown to a length of about 1 cm, the nude mice were divided into three groups: PBS control group, doxorubicin hydrochloride treatment group, and doxorubicin material treatment group, each group had 3 tumor-bearing tumors. Nude mouse. The tail vein was administered every three days, and the concentration of doxorubicin was 3 mg/Kg. The length and width of the tumor were measured with a vernier caliper before each administration. After 15 days of administration, the mice were sacrificed by cervical dislocation. , dissect the tumor, weigh the weight, and record the photo. Fig.
  • FIG. 17a is a graph showing the change of tumor volume with the number of days of administration. After 8 days of administration, the tumor treatment group of the adriamycin was significantly different from the control group, which significantly inhibited the growth of the tumor, and the doxorubicin treatment group There was only a small difference from the control group, and the inhibitory effect was not obvious.
  • Figure 17b shows the weight-weighed results after removal of the tumor. The average tumor inhibition rate of the doxorubicin-based material treatment group was 39%, while the average tumor inhibition rate of doxorubicin alone was about 23%, from the tumor of Figure 17c. Photographs, compared with the PBS control group, the material of the doxorubicin has a significant antitumor effect.
  • Example 18 Different particle sizes and different transverse relaxation rates (r 2 ) Biomimetic synthesis of magnetic ferritin
  • the ferrous salt and oxidant H 2 O 2 were added to the solution of recombinant human ferritin to control the pH value of 8-9.
  • Control temperature is 60-80 ° C, precisely control the ratio of ferrous ions and protein, accurately control the temperature and pH value, and finally the number of iron atoms added to each protein molecule is 1000, 3000, 5000, 7000 , 10000;
  • the exclusion chromatography chromatography, centrifugation and molecular sieve purification to obtain monodisperse magnetic ferritin particles with intact protein structure.
  • Figures 18a, 18b, 18c, and 18d are transmission electron microscopy (TEM) photographs, particle size distribution histograms, and transverse relaxation rates (r 2 ) of magnetic ferritin synthesized by adding 1000 iron atoms per protein molecule during the reaction.
  • TEM transmission electron microscopy
  • TEM Transmission electron microscopy
  • Figure 18i, 18j, 18k, 181 are transmission electron microscopy (TEM) photographs, particle size distribution histograms, and transverse relaxation rates (r 2 ) of magnetic ferritin synthesized by adding 5,000 iron atoms per protein molecule during the reaction.
  • the measured graph is low temperature (5 K) hysteresis loop, which shows that the average particle size is 5.2 ⁇ 1.0 nm, and its r 2 value is 224 mM-s- 1 .
  • Figure 18m, 18n, 18o, 18p are transmission electron microscopy (TEM) photographs of the magnetic ferritin synthesized by adding 7000 iron atoms per protein molecule during the reaction, particle size distribution histogram, transverse relaxation rate (r 2 )
  • the measured graph is low temperature (5 K) hysteresis loop, which shows that the average particle size is 5.4 ⁇ 1.1 nm, and its r 2 value is 321 mM- s - Figure 18q, 18r, 18s is the average protein per reaction.
  • the increase is 5.9 Am 2 /Kg total mass (1000), 15.2Am 2 /Kg (3000), 28.6 Am 2 /Kg (5000), 37.1 Am 2 /Kg (7000) , 51.8 Am 2 /Kg (10000 ), the hysteresis loops of all nuclear particle sizes are saturated at ⁇ 1T, indicating that they are soft magnetic ferrimagnetic minerals. This property is related to the previously reported magnetic ferritin (Uchida et al., 2006, Figure 7). ) The inability to saturate at 8 T (80000 Oe) (indicating that its core contains antiferromagnetic minerals) is a completely different property.
  • Equal nuclear particle size strip The saturation magnetization is four times the saturation magnetization of the originally reported magnetic particles, and the transverse relaxation rate r 2 is more than three times the relaxation rate of the originally reported magnetic particles (Uchida et al., 2006; 2008).
  • Figure 18t shows the electron energy loss spectrum (EELS) of magnetic ferritin (average particle size 5.2 nm) synthesized by adding 5000 iron atoms per protein molecule.
  • the L2 peak is at 708 ev and the L3 peak is at 722 ev. In contrast to the standard spectrum of magnetite, it is a standard stoichiometric magnetite particle.
  • the L2 peak is at 704 ev and the L3 peak is at 715 ev (Uchida et al., 2006). Therefore, the results of material identification such as comprehensive transverse relaxation rate measurement, low temperature hysteresis loop and electron energy loss spectrum indicate that the magnetic ferritin synthesized by the present invention has a different mineral phase from the previously reported magnetic ferritin nanoparticles, The magnetic properties and magnetic resonance relaxation efficiencies are typically different.
  • the magnetic ferritin (average particle size 5.2 ⁇ 1.0 nm, r 2 value 224 mM ⁇ .s" 1 ) synthesized by adding 5000 iron atoms per protein molecule during the reaction was used as a contrast agent, and TfRl expression was used.
  • the nude mice were subjected to respiratory anesthesia, and the tail vein was intravenously needled and placed in a 4.7 T MRI system to ensure that the nude mice were always at rest during the magnetic resonance scan to ensure the matching of the magnetic resonance scan images.
  • the tail vein was injected with human H subunit magnetic ferritin (injection dose: 20 mg Fe/Kg mouse body weight).
  • the scanning time was before injection of human H subunit magnetic ferritin (O h), and continuous scanning for 6 hours after injection.
  • TNR signal intensity ratio
  • FIG. 19a-d are of approximately the size of the tumor in nude mice of 3 mm-weighted MRI image
  • T 2 of FIG. 19e-h is a T 2 * weighted MRI image about tumor size in nude mice of 3 mm
  • results show, high expression of MDA-TfRl
  • the signal intensity of MB-231 tumors was significantly changed after injection of human H subunit magnetic ferritin, while the signal intensity of MX-1 tumors with negative TfR1 expression was not significantly changed, indicating that human H subunit magnetic ferritin is a tissue target in vivo.
  • Directionality is a specific tissue-targeted MRI contrast agent that is dependent on TfR1 expression.
  • Figures 19i and 19j are stereomicrographs of in situ observation of tumors, which are shown to have a tumor size of approximately 3 mm.
  • Figures 19m and 19n are immunohistochemical maps of tumors after magnetic resonance scanning.
  • MDA-MB-231 tumor tissue showed significant staining positive (brown particles), indicating a large number of Iron particles are enriched in MDA-MB-231 tumors, and iron-enriched tissue regions are highly correlated with tumor tissues with high expression of TfR1, indicating that magnetic ferritin is a specific molecular-targeting magnetic resonance contrast agent.
  • MX-1 tumor tissue did not have a specific positive staining, indicating that it may not have enriched or enriched materials. Histological iron staining results are highly consistent with MRI results, indicating that magnetic ferritin is a class of targeted molecular probes that can be used to monitor the molecular imaging of TfRl expression in vivo.
  • Magnetic ferritin is applied to the early MRI diagnosis of small breast cancer.
  • the magnetic ferritin synthesized by adding 5000 iron atoms per protein molecule in the reaction of Example 18 is used as a contrast agent, and TfRl is selected.
  • the positive expression of MDA-MB-231 breast cancer cells establishes a nude mouse transplantation model. When the tumor grows to about 1 mm, the nude mice are subjected to respiratory anesthesia, and the tail vein is intravenously needled and placed in a 4.7 T MRI system to ensure During the magnetic resonance scan, the nude mice are always at rest, ensuring the matching of the magnetic resonance scan images.
  • Human H subunit magnetic ferritin was injected into the tail vein (injection dose: 20 mg Fe/Kg mouse body weight). Scanning time was before injection of human H subunit magnetic ferritin (O h), continuous scanning for 6 hours after injection, T 2 -weighted imaging with multi-slice multi-echo echo sequence [J (multi-slice multi-echo ( MSME) sequence, 26 min), T 2 *-weighted imaging uses a multi-gradient echo (MGE) sequence, and the sequence parameters are the same as in Example 19.
  • MR image processing was performed with Bmker Paravision 4.0, which comes with the machine.
  • TNR signal intensity ratio
  • FIGS 20a-20d is approximately T 2 weighted MRI image of 1 mm tumor size in nude mice
  • FIGS. 20e-20h is T 2 * weighted MRI image of the tumor size in nude mice approximately of 1 mm
  • the results show that, in the minute injection of human tumors H
  • the signal intensity changes significantly after the subunit magnetic ferritin, especially the T 2 *weighted image appears in the specific black area of the tumor site that is distinguishable by the naked eye.
  • Figures 20i and 20j are quantitative results of ⁇ 2 weighted MRI images and ⁇ 2 * weighted images. It can be seen that after injection of magnetic ferritin, the TNR of microscopic tumors is significantly reduced.
  • Figure 20k is an in situ stereomicrograph of a subcutaneously transplanted breast cancer with a tumor length of approximately 0.6 mm.
  • Figure 201 is an immunohistochemical map of a tumor after magnetic resonance scanning. It can be seen that microscopic tumors have no obvious angiogenesis (negative CD31 staining) at less than 1 mm, but microscopic tumors can enrich a large amount of magnetic properties. Ferritin particles (significantly positive for DAB-enhanced Prussian blue staining) indicate that magnetic ferritin particles may have a function of crossing the vascular endothelial cell barrier.
  • Example 21
  • Ferritin as a fluorescent molecular probe for early diagnosis of small breast cancer
  • Imaging was performed using a near-infrared fluorescence in vivo imaging system (CRI Maestro) before injection, 1.5 h, 3 h, and 6 h after injection. Image processing was performed using software carried by the imaging system itself to inject Cy5.5-ferritin. The same nude mouse was used as a control to process the image.
  • CRI Maestro near-infrared fluorescence in vivo imaging system
  • Figures 21a-21d are photographs of fluorescence imaging before and after injection of Cy5.5-ferritin at 1.5 h, 3 h, and 6 h after injection. The results of the images clearly show high expression of TfR1 after injection of Cy5.5-ferritin.
  • the MDA-MB-231 microscopic tumor area (on the right side of nude mice) shows strong fluorescence, which is clearly distinguishable from skin and muscle background, while fluorescence imaging of MX-1 microscopic tumors with negative TfR1 expression cannot be combined with skin and muscle The background is differentiated.
  • Fig. 21e is a white light photograph of the MX-1 tumor, the MDA-MB-231 tumor, and the normal muscle tissue surrounding the tumor, and the scale is about 1 mm.
  • Figure 21f is a photomicrograph of the dissected tissue, the fluorescence intensity of MDA-MB-231 tumor is significantly larger than that of MX-1 tumor and normal muscle tissue, indicating that Cy5.5-ferritin fluorescence molecular probe under the condition of muscle fluorescence background
  • the needle can be used to diagnose small breast cancer with high expression of TfRl in near-infrared.
  • ferritin as a fluorescent molecular probe for near-infrared fluorescence in vivo imaging of pancreatic cancer
  • Cy5.5-linked human H-subunit ferritin was injected into the nude mouse pancreatic cancer transplantation model with a tumor size of about 3 mm by tail vein.
  • the tumor cells used were CFPAC-1 human pancreatic cancer cell line (purchased from ATCC, cultured in Nanjing Kaiji Biotechnology Development Co., Ltd.). Imaging was performed using a near-infrared fluorescence in vivo imaging system (CRI Maestro) before injection, 1.5 h, 6 h, 24 h, 72 h, and 96 h after injection.
  • CRI Maestro near-infrared fluorescence in vivo imaging system
  • Figure 22 is a near-infrared fluorescence image of the Cy5.5 ferritin probe injected, and various tissues and organs (heart, liver, spleen, lung, kidney, brain, stomach, intestine, bone, tumor, etc.) dissected after 96 h. Fluorescence imaging of muscle), it can be seen that human H subunit ferritin is mainly present in liver and tumor after 96 h, but because the fluorescence intensity is affected by the surface area, the liver surface area is much larger than that of tumor, and its specific distribution is still A further confirmation of the fluorescence intensity of the tissue lysate measured by unit weight is required.
  • Example 23
  • the injection dose was 0.1 mmol/Kg, and the magnetic resonance cavity was continuously scanned for 2 hours until the Gd-DTPA was completely metabolized.
  • tail vein injection of human H subunit magnetic ferritin injection dose: 20 mg Fe / Kg mouse body weight
  • continuous scanning for 3 hours then another 24 hours A scan to exclude blood interference.
  • Injection of magnetic iron The protein T 2 weighted imaging uses the MSME sequence, and the T 2 * weighted imaging uses the MGE sequence, the sequence parameters of which are substantially similar to those of Example 19, matrix : 128 X 128.
  • FIGS. 23a-23c are magnetic resonance scans before and after injection of Gd-DTPA. It can be seen that the signal intensity of the glioma region did not change significantly after injection of commercial Gd-DTPA.
  • FIGS. 23d-f is T 2 -weighted magnetic resonance imaging before and after injection of magnetic ferritin (echo time 32ms).
  • Figures 23g-23i are T 2 * weighted magnetic resonance imaging (echo time 4.5ms).
  • Figures 23j-231 are T 2 * weighted magnetic resonance imaging of the second echo (echo time 12 ms). After either T 2 or T 2 * weighted images weighted images clearly show the magnetic ferritin injected, a glioma region of 1 mm to about changed significantly visible.
  • the nude mice were perfused with heart PBS and 4% paraformaldehyde, and the brain tissue was completely removed and treated with 10%, 20%, 30% sucrose respectively.
  • Figures 24a-24b and 24c-24d are T 2 -weighted and T 2 *weighted magnetic resonance imaging images of the orthotopic pancreatic cancer xenograft model before and after injection of magnetic ferritin, respectively, whether ⁇ 2 -weighted or ⁇ 2 *weighted
  • the images clearly show that after injection of magnetic ferritin for 24 h, a significant change in the area of the orthotopic pancreatic cancer of about 1 mm occurs, which can be clearly distinguished from surrounding normal tissues.
  • the mice were sacrificed by cervical dislocation, and the abdominal cavity of the mice was dissected in the prone position.
  • Clinically applied Gd-based contrast agents can increase the signal intensity in the lesion area during ⁇ -weighted magnetic resonance imaging, showing bright areas. Since the human eye is more sensitive to bright substances, such contrast agents are more in line with the needs of human visual observation. However, clinically applied Gd-based contrast agents are not targeted, and their relaxation rate is low, which cannot meet the needs of diseases such as early diagnosis of tumors.
  • the present invention uses a ferritin shell having tumor targeting properties to form a ritual-iron oxide nanomaterial by biomimetic mineralization in its lumen.
  • the ferrous salt, salt and oxidant H 2 O 2 were added to the solution of recombinant human ferritin to control the pH value of 8.5, and the control temperature was 65 °C. Control the ratio of ferrous ions, ritual particles and proteins, precisely control the constant temperature and pH value. Finally, the theoretical number of iron atoms added per protein molecule is about 4,850, and the number of added atoms is about 150. The proportion of gifts is about 3%. After the reaction is completed, the row is discharged.
  • the magnetic resonance imaging system measures the longitudinal relaxation rate ( ri ) and transverse relaxation rate ( r 2 ) of the material.
  • the linear relationship of the reciprocal of the longitudinal relaxation time measured by the ritual-iron complex 1/T!), which can be obtained from the graph, the longitudinal relaxation rate is about 4.1 mM- ⁇ S -
  • Figure 25e is the different iron concentration
  • the T 2 -weight imaging map shows that the ferritin-li-iron complex not only has the function of ritual ⁇ contrast agent, but also enhances the signal intensity in 1 weighted imaging, the image shows bright areas, and has iron oxide 2 contrast agent function, so that the signal intensity is weakened and dark areas appear.
  • r 2 is approximately 9.0 mM - 1 ⁇ S - Example 26
  • Ferritin- ⁇ -iron dual-mode magnetic resonance contrast agent complex for specific early diagnosis of orthotopic liver cancer
  • FIG. 26a-26b is a weighted magnetic resonance imaging of a liver cancer nude mouse transplant model before and after injection of a ferritin-e-iron dual-mode magnetic resonance contrast agent. It can be seen that the tumor area shows an increase in signal intensity and shows a bright region.
  • Figures 26c-26d and 26e-26f are ⁇ 2 -weighted and ⁇ 2 *-weighted magnetic resonance imaging images of the orthotopic liver cancer xenograft model before and after injection of ferritin-e-iron-mode dual-mode magnetic resonance contrast agent, respectively. 2 weighted image or
  • Ferritin- ⁇ -iron dual-mode magnetic resonance contrast agent complex for specific early diagnosis of in situ glioma
  • Figure 27a-27b is a weighted magnetic resonance imaging of a liver cancer nude mouse transplant model before and after injection of a ferritin-e-iron dual-mode magnetic resonance contrast agent.
  • the tumor area has only a slight increase in signal intensity, showing a bright region.
  • Figure 27c-27d is a T 2 *weighted magnetic resonance imaging of the in situ glioma nude mouse transplantation model before and after injection of ferritin-e-iron dual-mode magnetic resonance contrast agent, ⁇ 2 *weighted image clearly showing the injected iron After 24 hours of protein-ritual-iron dual-mode magnetic resonance contrast agent, a significant change in the in situ glioma area of about 2 mm occurred, and the signal intensity was significantly reduced, which was clearly distinguishable from the surrounding normal tissue.
  • Example 28 Synthesis of ferritin-encapsulated Gd-DTPA complex and its application in early diagnosis of glioma in situ
  • the purified human H subunit ferritin is partially denatured or denatured using a denaturing agent such as guanidine hydrochloride (1-7 M) or urea (2-8 M) to partially depolymerize or completely decompose the subunit.
  • a denaturing agent such as guanidine hydrochloride (1-7 M) or urea (2-8 M) to partially depolymerize or completely decompose the subunit.
  • Poly, approximately 2,000 ritual atoms are added to each protein molecule with approximately commercial Gd-DTPA.
  • the denaturant is then removed by dialysis, the subunits are repolymerized to form a cage structure, Gd-DTPA is encapsulated into the protein cavity, and unrepaired ferritin is removed by centrifugation, molecular sieve chromatography or anion exchange.
  • the BCA protein quantification kit was used for protein quantification, and the number of Gd atoms encapsulated in each protein molecule was determined by ICP-MS. After assay by ICP-MS, approximately 18 Gd-DTPA molecules were encapsulated per protein molecule.
  • An in situ model of nude mice glioma was established by inoculating U87MG human glioma cells in situ in the cortex of nude mice. Magnetic resonance imaging was performed approximately 3-4 days later, and nude mice were subjected to respiratory anesthesia and veins of the tail vein. The needle is retained and placed in a 4.7 T MRI system to ensure that the nude mouse is always at rest during the magnetic resonance scan.
  • the tail vein was injected with human H subunit ferritin-encapsulated Gd-DTPA complex (the dose was quantified according to the amount of Gd, gP 0.1mmol/Kg), continuous scanning for 2 hours, then
  • Figure 28a is a schematic diagram of the process of encapsulating Gd-DTPA using human H subunit ferritin.
  • Figures 28b-28d are ⁇ -weighted magnetic resonance imaging before and after injection of ferritin-coated Gd-DTPA complex. The images clearly show that after injection of magnetic ferritin 24, the glioma area of about 1 mm is visible to the naked eye. The change shows a high signal area (bright area), which is clearly distinguished from the surrounding normal tissue.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明公开了一种具有细胞靶向性的磁性纳米材料及其生物医学应用。所述磁性纳米材料能够特异性地结合组织细胞表面高表达的铁蛋白受体,能够进入细胞内。这种材料能够广谱、特异性地结合各种高表达铁蛋白受体的组织细胞,在动物模型上能够实现高效的细胞靶向性。不仅能够作为一种磁共振造影剂和荧光分子探针用于疾病诊断,而且可以作为药物的载体,用于疾病的治疗。

Description

一种具有细胞靶向性的磁性纳米材料及其生物医学应用 技术领域
本发明属于仿生合成、 纳米技术、 分子影像、 生物医药的交叉领域。 具 体地说, 本发明涉及一种具有细胞靶向性的磁性纳米材料及其生物医学应 用。 背景技术
磁共振成像 (MRI ) 具有无伤害性、 分辨率高的独特优势, 因而是一个 非常好的影像工具来用于疾病的早期诊断。 但是其灵敏度低, 无法很好地与 区分病变组织与正常组织, 检测没有特异性, 这些都是 MRI固有的一些缺点 [7¾rre«o et a/., 2010]。 为了克服灵敏度低的这个缺点, 研究人员尝试合成各 种 MRI造影剂(contrast agent,又称对比剂)来缩短纵向弛豫时间( longitudinal relaxation time, Ti ) 或者横向弛豫时 1、司 ( transverse relaxation time, T2 ) 来 ί曾 强磁共振的灵敏度和组织对比度。 MRI造影剂弛豫时间可以划分为 Ί 造影 剂和 Τ2造影剂。 ^造影剂通过缩短 Ί 来增强信号强度, 在 ^加权图像上 使得目标区域变亮。 这类造影剂大多是利用镧系金属元素礼 ( Gd) 或者其衍 生的材料, 它们是现在临床上应用最为广泛的 MRI造影剂, 但是经过近 30 年的临床使用, 礼基造影剂出现了诸多缺陷, 如灵敏度低、 半衰期短和副作 用大。 例如, 2007 年和 2010 年美国 FDA相继发出通告, 礼基造影剂给特 定肾病患者导致致命的肾源系统性纤维化(FDA news release, FDA Requests Boxed Warning for Contrast Agents Used to Improve MRI Images , 5/23/2007; FDA news release, FDA: New warnings required on use of gadolinium-based contrast agents , 9/9/2010 ) 。 T2造影剂主要是超顺磁铁氧化物 (SPIO ) 颗粒, 当磁共振成像仪采用 T2 和 Τ2*加权成像序列时, 使得 SPIO所在的区域质子 信号降低, 在图像上表现为暗信号。 与传统的 Gd基造影剂相比, SPIO颗粒 具有以下优点: (1 ) 灵敏度高: 每个金属单元都可以最大程度地改变 MRI 信号强度, 尤其是在 T2*加权图像上, 可显著地提高信噪比 (SNR) ; ( 2 ) 体内可代谢清除: 铁在生物体内是可以代谢的, 超顺磁性磁铁矿的铁可用于 机体的铁循环; (3 ) 易于进行表面修饰, 可以连接不同的功能团和配体; ( 4 ) 进入生物体内, 它还可以通过光学显微镜以及电子显微镜进行观察; ( 5 ) 它们能够通过化学合成条件去改变粒径、 形状等因素来调控它们的磁 学性质和弛豫效能, 因而 SPIO 颗粒是一种很有发展前途的 MRI 造影剂 [B lte and Kraitchman, 2004]。
另外, 磁性纳米材料具有比表面积大、 装载效率高和磁化率高等特性, 因而是优良的药物载体, 它可延长药物作用时间, 增强药物效应, 减轻毒副 反应, 提高药物的稳定性, 防止不稳定药物降解。 因此, 磁性纳米材料已经 成为高效药物运载系统的一个理想选择, 有望克服传统的化学治疗药物给药 方式剂量大、 毒副作用强、 效率低、 稳定性差等缺陷。
然而, 传统的磁性纳米材料都是通过物理化学方法合成, 尽管合成方法 已经发展多年, 但是迄今为止没有任何一种方法能够同时合成具有粒径形状 均一、 高分散性、 亲水性和高生物相容性这些特性为一体的磁性纳米材料, 通常的磁性纳米材料合成需要剧烈的物理化学条件 (高温、 高压、 高 pH ) , 合成后需要昂贵、繁琐复杂的表面修饰, 才能保证磁性纳米材料的高分散性、 亲水性和生物相容性。 另外, 在磁性纳米材料的生物医学应用方面, 物理化 学合成的磁性纳米材料对细胞没有特异的靶向性, 进入体内后容易被网状内 皮系统 (reticuloendothelia system, RES ) 吞噬, 为了实现体内的特定细胞靶 向性, 传统的磁性纳米材料必须通过复杂的表面修饰和连接对特定细胞 (如 肿瘤细胞) 有特异性的配体, 如抗体、 肽段、 靶向性小分子等 Harisinghani et al , 2003 ; Lin et al , 2010; McCarthy et al , 2007]。 然而, 传统的依靠化学表 面修饰和偶联靶向配体的磁性纳米材料存在着诸多不足; (1 ) 修饰和连接 靶向配体歩骤复杂, 且很难定量和保证均匀性; (2 ) 磁性纳米材料经过修 饰后, 往往会改变其粒径和表面特性等特征; (3 ) 对病灶组织的靶向亲和 性低, 仍然大量被网状内皮系统吞噬 (这类材料的最大缺点) ; (4 ) 另外 进入体内后往往还存在稳定性的问题, 如磁性纳米材料表面连接的靶向多肽 进入体内后, 容易产生非特异性吸附, 被蛋白酶降解, 通常需要在其表面连 接多个靶向分子或者加入 D-氨基酸来防止降解, 因而无法实现疾病的早期诊 断禾口治疗 [By e et al , 2008; Lee et al , 2007; McCarthy et al , 2010]。
当磁性纳米材料的传统物理化学合成遇到高耗能、 难修饰等问题时, 自 然界的生物矿化作用和生物仿生合成为磁性纳米材料的合成提供了另外一 条思路。 生物矿化作用是指通过基因或生物大分子的调控在生理条件下形成 无机矿物的过程。 生物仿生合成是指在理解生物矿化机理的基础上, 模仿生 物矿化中无机物在有机物调制下形成过程的无机材料合成, 使得其所形成的 材料具有均一的尺寸、 特定的组装结构和特定的生物大分子膜所包被。 生物 仿生合成只需简单歩骤、 绿色低耗能就能够同时合成具有粒径形状均一、 高 分散性、 亲水性和高生物相容性的磁性纳米材料。 其中铁蛋白和趋磁细菌 Mms6蛋白仿生合成超顺磁磁性材料是典型代表。
铁蛋白, 是参与和维持生物有机体铁代谢的重要铁储存蛋白, 广泛存在 于动植物及微生物细胞中。 它们具有典型的核一壳型纳米结构: 内核为水合 氧化铁颗粒 (6-8 nm) , 外壳由 24个蛋白亚基自组装构成的笼状蛋白壳 ( 12 nm) 。 铁蛋白壳的形成受生物体基因高度控制, 粒径、 形状极其均一, 为仿 生制备超细 SPIO颗粒提供了天然的生物纳米反应器 [Harrison and Arosio, 1996; Uchida et al. 2007]。更为重要的是,许多快速生长的细胞 (如肿瘤细胞), 需要大量的铁元素营养, 都高表达铁蛋白受体。 Fargion等人用人白血病癌细 胞 K562、 HL-60细胞系和小细胞肺癌细胞 NCI-417对人的全重链 (Η ) 亚基 铁蛋白、 全轻链 (L ) 亚基铁蛋白以及它们的杂合体铁蛋白进行了结合实验 研究, 结果表明 Κ562细胞能特异性地结合人 Η亚基铁蛋白和人 H、 L杂合 体铁蛋白。结合人铁蛋白的结合常数 Ka 高达 3 x l 08 M- 1 [Fargion et al , 1988]。 Moss等对高度增殖的肿瘤细胞和正常细胞上的人 H亚基铁蛋白特异性受体 进行了研究, 发现肿瘤细胞上高度表达人 H亚基铁蛋白特异性受体, 而正常 细胞几乎检测不到这种受体的表达 [Mow et a/., 1992]。 最近, Li等的实验研 究发现: 人转铁蛋白受体 1 ( TfRl ) 是一个人 H亚基铁蛋白和转铁蛋白的共 受体, 能够特异性地结合人 H亚基铁蛋白, 并将其内吞进入内含体和溶酶体 [ et a/.,2010]。 当机体处于炎症过程中, 会分泌大量的炎症因子, 从而刺激 炎症细胞高表达铁蛋白受体, 以维持大量的铁源需要 [FaA _y a«i }¾w«g, 1993; Byrd and Horwitz, 2007]。
天然铁蛋白的内核是磁化率低 (弱磁性) 、 弛豫效能低的水合氧化铁, 严重地限制了其直接作为磁性纳米材料在生物医学中的应用, 如何将弱磁性 的内核转变为强磁性的内核(如磁铁矿和 /或磁赤铁矿)是解决铁蛋白应用的 关键。 具有强磁性的磁铁矿内核的磁性铁蛋白于 1992年首次被 Meldmm等 人合成, 但是由于合成工艺不成熟, 许多的铁沉积在蛋白壳表面, 这种磁性 铁蛋白不仅容易聚集, 而且进入体内不具有肿瘤靶向性, 易被网状内皮系统 Rf [ e/ rwm et al, 1992; Moskowitz et al, 1997; B lte et al, 1995]。 目前国 外最新的进展是, Uchida等人用基因工程表达的人 H亚基铁蛋白或融合 RGD 的人 H亚基铁蛋白为模板, 仿生合成了具有磁铁矿或者磁赤铁矿内核的磁性 铁蛋白, 但是其磁滞回线的数据表明, 他们合成的磁性铁蛋白在 80000高斯 ( 8 T )都未饱和(正常亚铁磁性的磁铁矿或者磁赤铁矿在 < 1 T就能饱和) , 从而表明由于合成的工艺限制, 所合成的磁性铁蛋白成分复杂, 并不仅仅含 有亚铁磁性的磁铁矿或者磁赤铁矿, 而且含有反铁磁性或顺磁性的成分 [ Uchida et al, 2006, Figure 7 而且体内外实验表明, 该材料在体内的应用仍 然与普通化学合成的磁性纳米材料一样, 应用于巨噬细胞增多的疾病诊断。 如 Terashima等用该磁性铁蛋白进行动脉粥样硬化动物模型的实验, 发现该 材料可以被血管的巨噬细胞吞噬, 作为磁共振造影剂用于动脉粥样硬化的诊 断 [ Uchida et al., 2008; Tetashima et al 201 1 ]。 迄今为止, 尚未有关于磁性 铁蛋白用于靶向诊断肿瘤的报道。 我们实验室于 2010 年在改进前人磁性铁 蛋白合成方法的基础上, 直接应用基因工程表达的空壳人 H亚基铁蛋白为纳 米反应器,只需一歩仿生矿化反应即可形成具有完整铁蛋白壳包裹的核 -壳型 磁性纳米材料, 具有粒径和形状均一、 单分散性、 水溶性等材料特性。 这种 人源磁性铁蛋白的合成为铁蛋白仿生磁性纳米材料的体内应用带来新思路 [Cao et al, 2010; 中国发明专利: 200910244505.1; 201010541069.7]。 趋磁细菌是一类能够沿着磁场方向定向运动的微生物, 发现于上世纪 60-70 年代, 广泛分布在湖泊、 海洋甚至湿土中, 目前仅在我国沉积物中就 已发现了 10余种趋磁细菌新类群 et a/.,201 1 ]。 趋磁细菌形态多样, 主要 包括球菌、 弧菌、 螺旋菌、 杆菌和多细胞聚集体等, 在系统发育上属于变形 菌门和硝化螺旋菌门。 这类微生物的共同特征是在体内合成链状排列、 化学 纯度高、 由生物膜包裹的纳米级磁铁矿 (30- 120 nm ) 磁小体。 不同种类趋磁 细菌合成的磁小体具有特定的晶体形状, 立方八面体、假六棱柱和子弹头形。 作为由天然生物膜包被的单磁畴磁性纳米材料, 磁小体在生物医学和材料学 等领域具有广阔的开发应用前景 [^ra^ ' et al, 2008]。 趋磁细菌的磁小体表 面存在大量的膜蛋白, 这些蛋白调控着纳米磁铁矿的形成。 Mms6 蛋白是趋 磁细菌的一个重要膜蛋白, 它紧密地吸附在磁小体的表面, 体外和体内实验 都证明 Mms6蛋白能够调控磁铁矿的形状和大小。 然而过去的仿生合成仍然 过多地依靠剧烈的对于蛋白变性不利的化学条件 (温度达到 90 °C或者加入 聚合凝胶来控制粒径) , 并没有发挥出趋磁细菌在常温常压就能高效控制粒 径、 形状和结晶度的优势, 因而如何改进仿生合成工艺, 实现趋磁细菌膜蛋 白仿生合成是急需解决的科学问题
Figure imgf000006_0001
et ah, 2003 ; Arakaki et al , 2007; Prozorov et al., 2007; Arakaki et al. , 2010]。
由于生物蛋白质仿生合成磁性纳米材料往往是在低耗能 (低温、 低压、 低 pH ) 条件下进行, 仿生过程具有高效、 有序、 自组装等特点, 其所得到的 材料具有粒径均一、 形状一致、 高分散性和亲水性等诸多的材料学优势, 本 领域需要解决的核心问题是, 如何优化和运用这些生物矿化蛋白合成蛋白包 裹的新型磁性纳米材料。 利用铁蛋白外壳具有天然的细胞靶向性, 能跟高度 增殖的细胞表面高表达的铁蛋白受体结合, 改进合成方法, 实现蛋白仿生磁 性纳米材料对高表达铁蛋白受体的细胞靶向性, 尤其是体内靶向性, 作为一 种新型磁共振造影剂和荧光分子探针用于疾病的早期诊断, 作为一种新型的 药物载体实现高效的药物输送, 进行靶向治疗。 从而实现蛋白包裹的磁性纳 米颗粒的三重功能: (1)蛋白的高度均一的笼形结构使得磁性纳米颗粒粒径和 形状高度均一、 高分散性、 水溶性以及生物相容性; (2 ) 外面包被的铁蛋 白壳同时实现了靶向性, 这种靶向性不同于传统的靶向性磁性纳米材料, 不 需要连接和修饰靶向配体, 是一种天然固有的细胞靶向性; (3 ) 高比表面 积的磁性纳米颗粒和蛋白壳的核壳型结构成为高效的药物输送载体。 本发明 就是基于上述研究思路开展的。 发明内容
本发明旨在提供具有细胞靶向性的磁性纳米材料在疾病的诊断和治疗 方面的新用途。 在本发明的第一方面, 提供了一种蛋白壳包裹的磁性纳米颗粒或其衍生物 在制备成像定位诊断试剂和治疗物质中的应用。
在另一优选例中, 所述成像定位诊断试剂选自磁共振造影剂或分子探针。 在另一优选例中, 所述的磁共振造影剂或分子探针含有所述蛋白壳包裹的 磁性纳米颗粒或衍生物。
在另一优选例中, 所述的磁性纳米颗粒或其衍生物的内核的成分为含有金 属元素的化合物, 所述金属元素选自礼、 锰、 铁、 钴和 /或镍元素。 在另一优选例中, 所述蛋白壳包裹的磁性纳米颗粒或其衍生物的蛋白壳可 以特异性地与组织或细胞表面表达的受体结合; 较佳地, 所述蛋白壳选自铁蛋 白 (ferritin)、 伴侣蛋白、 DNA结合蛋白、 趋磁细菌的磁小体膜蛋白或具有纳米 空腔结构的病毒蛋白壳; 较佳地所述铁蛋白包括天然铁蛋白和基因工程重组铁 蛋白, 其中天然铁蛋白来源于真核生物或原核生物, 基因工程重组铁蛋白包括 重组铁蛋白的全重 (H) 链亚基铁蛋白、 全轻 (L) 链亚基铁蛋白、 重组铁蛋白 的重链和轻链以任意比例自组装的铁蛋白、 以及这些蛋白亚基的突变体或融合 蛋白。
在另一优选例中, 所述蛋白壳包裹的磁性纳米颗粒或其衍生物通过下述 歩骤制备得到:
(a)以重组人铁蛋白为模板, 将人铁蛋白的 H亚基和 L亚基的全长 cDNA分 别克隆和构建到 pETllb质粒上;
(b)将含有人铁蛋白 H 亚基和 L 亚基的重组质粒分别转化或者共转化细胞 BL21(DE3)plysS, 加入异丙基 - β -D-硫代半乳糖苷激活 T7启动子, 诱导表达; (c)表达结束后进行超声破碎释放蛋白;
(d)对蛋白进行分离和纯化;
(e)将形成内核成分的金属盐类和氧化剂加入重组人铁蛋白的溶液中进行反 应, 控制 pH值为 7-11, 控制温度为 25-80°C, 在重组人铁蛋白内部形成强磁性 的纳米颗粒; 形成内核成分的盐类的浓度为每次加入的金属元素原子数与蛋白 分子数之比在 10-200 之间, 使每个蛋白分子加入的金属元素原子数可在 100-15000之间; 氧化剂的浓度为每次加入氧化剂的分子数与加入金属元素离子 的原子数之比为 2: 1或 3: 1 ; 蛋白浓度 >0.25mg/ml; 和
(f)排阻或离子交换层析进行分离, 离心和分子筛或阴离子交换层析纯化后 得到所述蛋白壳包裹的磁性纳米颗粒或其衍生物。
在另一优选例中, 歩骤 (e)控制 pH值为 8-9。
在另一优选例中, 歩骤 (e)控制温度为 35-70°C。
在另一优选例中, 所述形成内核成分的金属盐类选自亚铁盐、 铁盐、 礼盐、 锰盐、 钴盐和 /或镍盐。
在另一优选例中, 所述金属元素选自礼、 锰、 铁、 钴和 /或镍元素。
在另一优选例中, 所述氧化剂选自过氧化氢、 氧气以及通过反应可以产 生过氧化氢或氧气的物质。 在另一优选例中,每个蛋白分子加入的金属元素原子数在 140-10000之间。 在另一优选例中, 每个蛋白分子加入的礼原子数在 100— 200, 和 /或每个蛋 白分子加入的铁原子数在 500-10000之间。
在另一优选例中, 所述治疗物质为治疗表达铁蛋白受体的疾病的物质; 较 佳地, 所述物质连接有包裹磁性纳米颗粒的蛋白壳; 更佳地, 所述物质选自化 疗药物、 放射性同位素、 细胞因子、 核酸、 抗癌或抗炎症药物。
在另一优选例中, 所述的表达铁蛋白受体的疾病为肿瘤和 /或炎症; 较佳地, 所述的肿瘤选自肝癌、 白血癌、 神经胶质瘤、 肺癌、 结肠癌、 胰腺癌或乳腺癌。 在本发明的第二方面, 提供了一种蛋白壳包裹的磁性纳米颗粒或其衍生物 在制备用于诊断表达铁蛋白受体的疾病的磁性造影剂和分子探针中的应用。
在另一优选例中, 所述的表达铁蛋白受体的疾病为肿瘤、 和 /或炎症; 较佳 地, 所述的肿瘤选自乳腺癌、 肝癌、 肺癌、 结肠癌、 胰腺癌、 神经胶质瘤、 白 血癌、 或前列腺癌。 在本发明的第三方面, 提供了一种蛋白壳包裹的磁性纳米颗粒或其衍生 物,所述的磁性纳米颗粒或其衍生物的内核的成分为含有金属元素的化合物,所 述金属元素选自礼、 锰、 铁、 钴和 /或镍元素。
在另一优选例中, 所述的磁性纳米颗粒或其衍生物的内核的成分是为含有 铁元素的化合物。
在另一优选例中, 所述的磁性纳米颗粒或其衍生物的内核的成分是为含有 礼元素的化合物。
在另一优选例中, 所述的磁性纳米颗粒或其衍生物的内核的成分是为含有 铁元素和锰元素的化合物。
在另一优选例中, 所述的磁性纳米颗粒或其衍生物的内核的成分是为含有 铁元素和礼元素的化合物。
在另一优选例中, 所述蛋白壳选自铁蛋白 (ferritin)、 伴侣蛋白、 DNA 结 合蛋白、 趋磁细菌的磁小体膜蛋白或具有纳米空腔结构的病毒蛋白壳; 所述蛋 白壳包裹的磁性纳米颗粒或其衍生物的蛋白壳可以特异性地与组织或细胞表面 表达的受体结合; 较佳地, 所述铁蛋白包括天然铁蛋白和基因工程重组铁蛋白, 其中天然铁蛋白来源于真核生物或原核生物, 基因工程重组铁蛋白包括重组铁 蛋白的全重 (H) 链亚基铁蛋白、 全轻 (L) 链亚基铁蛋白、 重组铁蛋白的重链 和轻链以任意比例自组装的铁蛋白、 以及这些蛋白亚基的突变体或融合蛋白。 在本发明的第四方面,提供了一种如上所述的本发明提供的蛋白壳包裹的 磁性纳米颗粒或其衍生物的制备方法, 所述方法包括歩骤:
(a)以重组人铁蛋白为模板, 将人铁蛋白的 H亚基和 L亚基的全长 cDNA分 别克隆和构建到质粒 pETllb上;
(b)将含有人铁蛋白 H 亚基和 L 亚基的重组质粒分别转化或者共转化细胞 BL21(DE3)plysS, 加入异丙基 - β -D-硫代半乳糖苷激活 T7启动子, 诱导表达; (c)表达结束后进行超声破碎释放蛋白;
(d)对蛋白进行分离和纯化;
(e)将形成内核成分的盐类和氧化剂加入重组人铁蛋白的溶液中进行反应, 控制 pH值为 7-11, 控制温度为 25-80°C, 在重组人铁蛋白内部形成强磁性的纳 米颗粒; 形成内核成分的盐类的浓度为每次加入的金属元素原子数与蛋白分子 数之比在 10-200之间, 使每个蛋白分子加入的金属元素原子数在 100-11000之 间; 氧化剂的浓度为每次加入氧化剂的分子数与加入金属元素离子的原子数之 比为 2: 1或 3: 1 ; 蛋白浓度 >0.25 mg/ml; 和
(f)排阻或离子交换层析进行分离, 离心和分子筛或阴离子交换层析纯化后 得到所述蛋白壳包裹的磁性纳米颗粒或其衍生物。
在另一优选例中, 歩骤 (e)控制 pH值为 8-9。
在另一优选例中, 歩骤 (e)控制温度为 35-70°C。
在另一优选例中, 所述形成内核成分的盐类选自亚铁盐、 铁盐、 礼盐、 锰 盐、 钴盐和 /或镍盐。
在另一优选例中, 所述金属元素选自礼、 锰、 铁、 钴和 /或镍元素。 在另一优选例中, 所述金属元素是铁元素。
在另一优选例中, 所述金属元素是猛元素。
在另一优选例中, 所述金属元素是 元素。
在另一优选例中, 所述金属元素是猛元素和铁元素。
在另一优选例中, 所述金属元素是礼元素和铁元素。
在另一优选例中, 所述氧化剂选自过氧化氢、 氧气以及通过反应可以产 生过氧化氢或氧气的物质。 在另一优选例中,每个蛋白分子加入的金属元素原子数在 140-10000之间。 在另一优选例中, 每个蛋白分子加入的礼原子数在 100— 200, 和 /或每 个蛋白分子加入的铁原子数在 500-10000之间。 据此, 本发明提供具有细胞靶向性的磁性纳米材料在疾病的诊断和治疗 方面的新用途。 附图说明
图 1是按实施例 1制备的含有磁铁矿 (Fe3O4) 内核的人 H亚基磁性铁 蛋白的结构分析; 其中
a, 电镜负染照片; b, 核的电镜照片; c, 核的粒度分布图; d, 核的选 区电子衍射 (SAED ) 图; e, 圆二色光谱分析蛋白构象.
图 2 是按实施例 2 制备的铁蛋白壳包裹的锰铁氧化物核的磁性纳米材 料; 其中, 图 2a, 锰铁氧化物核的电镜照片; b, 核的粒度分布图; c,锰铁氧 化物的磁滞回线 (与单纯含有磁铁矿 (Fe3O4) 内核的人 H 亚基磁性铁蛋白 相比较) ; d, 铁蛋白壳包裹的锰铁氧化物核的能谱元素分析图。
图 3是按实施例 3应用趋磁细菌膜蛋白 Mms6仿生合成的磁性纳米材料; 其中图 3a,带 His标签的 Mms6蛋白的原核表达和纯化图; b, 利用 His-Mms6 仿生合成磁性纳米颗粒的电镜照片; c, His-Mms6仿生合成磁性纳米颗粒的高 分辨电镜照片(晶格条纹) ; d,His-Mms6仿生合成磁性纳米颗粒的 X射线电 子衍射 (XRD ) 图。
图 4 流式分析人 H 亚基磁性铁蛋白能与多种高表达铁蛋白受体的细胞 特异性结合。
图 5流式分析表达铁蛋白受体的细胞和人 H亚基磁性铁蛋白的特异性结 合和竞争性抑制; 其中 a-b, 应用 Western 免疫印记和荧光定量 PCR检测和 筛选高表达铁蛋白受体的 MDA-MB-231 细胞和不表达铁蛋白受体的 MX-1 细胞; c, 流式分析 MDA-MB-231细胞与人 H亚基磁性铁蛋白的特异性结合 和蛋白壳与铁蛋白受体抗体的竞争性抑制; d, 流式分析 MX-1 细胞与人 H 亚基磁性铁蛋白的结合。
图 6 人 H亚基磁性铁蛋白作为磁共振造影剂的弛豫效能测定; 其中 a, 人 H亚基磁性铁蛋白在不同铁浓度条件下的 T2加权图像; b, 不同铁浓度计 算得到的横向弛豫率 (R2)的拟合曲线。
图 7 人 H 亚基磁性铁蛋白作为磁共振造影剂应用于体外表达铁蛋白受 体的细胞磁共振成像检测; 其中 a, 不加材料的对照 MDA-MB-231细胞 (高 表达铁蛋白受体) 磁共振图像; b, 加材料孵育 5.5 h后的 MDA-MB-231细 胞磁共振图像; c, 对照 MDA-MB-231细胞的普鲁士蓝染色图; d, 加材料孵 育 5.5 h后的 MDA-MB-231细胞的普鲁士蓝染色图; e,不加材料的对照 MX-1 细胞 (不表达铁蛋白受体) 磁共振图像; f, 加材料孵育 5.5 h后的 MX-1细 胞磁共振图像; g, 对照 MX-1细胞的普鲁士蓝染色图; h, 加材料孵育 5.5 h 后的 MX-1细胞的普鲁士蓝染色图。
图 8磁共振成像 (MRI) 分析人 H亚基磁性铁蛋白能够在体内特异性地 靶向铁蛋白受体表达的组织, 引起 MRI图像信号强度的明显变化; 该材料在 组织内的特异性富集得到组织学铁染色结果的验证; 其中
图 8 a-c是表达铁蛋白受体的 MDA-MB-231荷瘤小鼠、 铁蛋白壳竞争性 抑制 MDA-MB-231荷瘤小鼠、低表达铁蛋白受体的 MX-1荷瘤小鼠的 T2* MRI 图像, d, 对 T2* MRI图像的肿瘤部位的定量结果; e, MDA-MB-231荷瘤小 鼠、铁蛋白壳竞争性抑制 MDA-MB-231荷瘤小鼠、低表达铁蛋白受体的 MX-1 荷瘤小鼠的肿瘤组织铁染色结果, 比例尺是 20 m。
图 9荧光示踪实验分析人 Η亚基磁性铁蛋白能够在体内特异性地靶向性 的机理是通过结合肿瘤细胞表面高表达的 TfRl ; 其中 a, 高表达铁蛋白受体 的 MDA-MB-231 肿瘤组织的材料与 TfRl 的荧光共定位图; b, 低表达铁蛋 白受体的 MX-1肿瘤组织的材料与 TfRl的荧光共定位图,比例尺是 50 μ m。
图 10人 H亚基磁性铁蛋白作为肿瘤靶向性磁共振造影剂用于约 1 mm 大小的 MDA-MB-231人乳腺癌的早期诊断; 其中
图 10a, b是荷 MDA-MB-231 微小癌灶裸鼠的 T2*加权磁共振图像; 图 8c是经过对 Τ2*加权图像的定量分析以及统计分析结果; 图 8d-f是 Τ2加权磁 共振图像上, 对其信噪比 (SNR) 进行定量分析的结果; 图 8g是癌灶的石蜡 组织切片经过 DAB增强的普鲁士蓝铁染色结果, 比例尺是 20 m; 图 8h是
MDA-MB-231微小癌灶部位的解剖出来后的照片。
图 11 连接 Cy5.5的人 H亚基磁性铁蛋白作为荧光分子探针用于约 3 mm 的 MDA-MB-231人乳腺癌的早期诊断。
图 12人 H亚基磁性铁蛋白用于微小肝癌的早期诊断; 图中比例尺为 1 mm, 右下角为肿瘤部位放大图像。
图 13人 H亚基磁性铁蛋白用于微小肺癌的早期诊断; 图中比例尺为 2 mm。
图 14人 H亚基磁性铁蛋白在裸鼠体内的组织器官分布, 比例尺是 20 μ m。
图 15 肿瘤组织透射电镜超薄切片结果显示连药物后的材料特异性地富 集在肿瘤细胞内, 是一种肿瘤细胞内化型磁性纳米材料; 其中, 图 15a,肿瘤 组织内的肿瘤细胞电镜照片; b, 肿瘤细胞和淋巴细胞的电镜照片; c, 巨噬 细胞的电镜照片。
图 16人 H亚基磁性铁蛋白携带化疗药物盐酸阿霉素 (doxorubicin ) 对 多种肿瘤细胞的细胞毒性试验 (MTT法测定) : 其中, 图 16a是材料连接药 物后的颜色变化图; b是 MTT测定连阿霉素后的材料对肝癌细胞、 白血癌 细胞、 神经胶质瘤细胞、 肺癌细胞、 结肠癌细胞和乳腺癌细胞的存活率的影 响。
图 17 携带阿霉素的人 H亚基磁性铁蛋白对体内肺癌的治疗实验初歩结 果: 其中图 17a,肿瘤的体积随着注射药物后天数的变化; b, 不同治疗组解剖 取出肿瘤后的实际重量; c, 不同治疗组解剖取出肿瘤的实物照片。
图 18a,18b,18c, 18d分别是反应过程中平均每个蛋白分子加入 1000个铁 原子所合成的磁性铁蛋白的透射电镜 (TEM ) 照片、 粒径分布柱状图、 横向 弛豫率 (r2 ) 的测定图和低温 (5K) 磁滞回线; 图 18e, 18f,18g, 18h分别是 反应过程中平均每个蛋白分子加入 3000 个铁原子所合成的磁性铁蛋白的透 射电镜 (TEM ) 照片、 粒径分布柱状图, 横向弛豫率 (r2 ) 的测定图和低温 ( 5K) 磁滞回线; 图 18i, 18j,18k, 181分别是反应过程中平均每个蛋白分子 加入 5000 个铁原子所合成的磁性铁蛋白的透射电镜 (TEM ) 照片、 粒径分 布柱状图、横向弛豫率(r2 )的测定图和低温(5K)磁滞回线;图 18m, 18n,18o, 18p分别是反应过程中平均每个蛋白分子加入 7000个铁原子所合成的磁性铁 蛋白的透射电镜 (TEM ) 照片、 粒径分布柱状图和横向弛豫率 (r2 ) 的测定 图和低温 (5K) 磁滞回线; 图 18q,18r, 18s分别是反应过程中平均每个蛋白 分子加入 10000个铁原子所合成的磁性铁蛋白的透射电镜 (TEM ) 照片、 粒 径分布柱状图和低温 (5K) 磁滞回线; 图 18t用平均每个蛋白分子加入 5000 个铁原子所合成的磁性铁蛋白 (平均粒径 5.2nm ) 所做的电子能量损失谱 ( EELS ) 。
图 19a-19d分别是肿瘤大小约 3 mm的乳腺癌裸鼠模型的 T2加权 MRI 图像, 图 19e-19h分别是肿瘤大小约 3 mm的裸鼠的 T2*加权 MRI图像(比例 尺: 5mm; 肿瘤部位用红圈标记); 图 19i和 19j分别是肿瘤原位观察的体视 显微镜照片(比例尺: 3mm); 图 19k和 191分别是对 T2加权图像和 Τ2*加权图 像分别进行的定量分析结果 (4只模型统计) ; 图 19m和 19η是磁共振扫描 后的肿瘤的免疫组化图 (图中 Ν代表正常组织, Τ代表肿瘤组织; 比例尺: 50μηι) 。
图 20a-20d分别是肿瘤大小约 1 mm的乳腺癌裸鼠模型的 T2加权 MRI 图像, 图 20e-20h分别是肿瘤大小约 l mm的裸鼠的 Τ2*加权 MRI图像 (比 例尺: 1mm; 肿瘤部位用红圈标记) ; 图 20i和 20j 分别是对 T2加权 MRI 图像和 Τ2*加权像的定量结果 (4只模型统计) ; 图 20k是皮下移植乳腺癌的 原位体视显微镜照片 (比例尺: 1mm) ; 图 201是磁共振扫描后的肿瘤的免 疫组化图 (图中 N代表正常组织, T代表肿瘤组织; 比例尺: 50μηι) 。
图 21a-21d分别是肿瘤大小约 1 mm的乳腺癌裸鼠模型注射 Cy5.5-铁蛋 白前和注射后 1.5 h、 3 h和 6 h的荧光成像后的照片(肿瘤部位用红圈标记); 图 21e和图 21f分别是将微小 MX-1肿瘤、 MDA-MB-231肿瘤及其肿瘤周围 的正常肌肉组织解剖出来后的白光照片和近红外荧光成像照片。
图 22是肿瘤大小约 3 mm的胰腺癌裸鼠模型注射 Cy5.5铁蛋白的近红外 活体荧光成像图 (肿瘤部位用红圈标记) , 以及 96 h后解剖出来的各个组织 器官 (心、 肝、 脾、 肺、 肾、 脑、 胃、 肠、 骨头、 肿瘤、 肌肉) 的荧光成像 图。
图 23a-23c分别是肿瘤大小约 1-2 mm的原位神经胶质瘤裸鼠模型注射 Gd-DTPA前后的 Ί 加权磁共振扫描图; 图 23d-f 是注射磁性铁蛋白前后的 T2加权磁共振成像(回波时间 32ms)。 图 23g-23i是 T2*加权磁共振成像(回波 时间 4.5ms )。图 23j-231是第二个回波的 Τ2*加权磁共振成像(回波时间 12ms )。 (比例尺: 2mm; 肿瘤部位用红圈标记) 。
图 24a-24d分别是原位胰腺癌裸鼠模型在注射磁性铁蛋白前后的 T2加权 和 Τ2*加权磁共振成像图 (比例尺: 2mm; 肿瘤部位用红圈标记) 。 图 24e 是磁共振扫描后裸鼠仰卧位解剖出来的腹腔器官的原位观察图 (胰腺中的肿 瘤部位用蓝圈标记) 。 图 25a是对不同礼浓度 (0-1 mM) 的商品化 Gd-DTPA (马根维显, 拜耳 公司生产)的 Ί 加权磁共振成像图 (回波时间为 TE = 8.5 ms,反转时间 TR = 300 ms ) ; 图 25b是对不同 Gd浓度 Gd-DTPA所测得的纵向弛豫时间的倒数 ( Rl = 1/T! ) 的线性关系图; 图 25c是对不同礼浓度 (0-1 mM ) 的铁蛋白- 礼-铁复合物的 ^加权成像图 (TE = 8.5 ms, TR = 300 ms ) ; 图 25d是对不 同 Gd浓度的铁蛋白-礼 -铁复合物所测得的纵向弛豫时间的倒数 (Rl = 1/T! ) 的线性关系图; 图 25e是对不同礼浓度 (0-1 mM ) 的铁蛋白-礼 -铁复合物的 T2加权成像图 (TE = 8.5 ms ) ;图 25f是对不同铁浓度的铁蛋白-礼-铁复合物 所测得的横向弛豫时间的倒数 (R2 = l/T2 ) 的线性关系图。
图 26a-26b 分别是原位肝癌裸鼠移植模型在注射铁蛋白-礼 -铁双模式磁 共振造影剂前后的 1 加权磁共振成像图; 图 26c、 26d和图 26e、 26f分别是 原位肝癌裸鼠移植模型在注射铁蛋白-礼-铁双模式磁共振造影剂前后的 T2加 权和 Τ2*加权磁共振成像图 (比例尺: 5mm; 肿瘤部位用红圈标记) 。
图 27a-27b 分别是原位神经胶质瘤裸鼠移植模型在注射铁蛋白-礼 -铁造 影剂前后的 Ί 加权磁共振成像图; 27c-27d 注射铁蛋白-礼-铁造影剂前后的 T2*加权磁共振成像图 (比例尺: 2mm; 肿瘤部位用红圈标记) 。
图 28a是利用人 H亚基铁蛋白包裹 Gd-DTPA的流程示意图。图 28b-28d 是原位神经胶质瘤裸鼠移植模型在注射铁蛋白包裹 Gd-DTPA 复合物前后的 加权磁共振成像图 (比例尺: 2mm; 肿瘤部位用红圈标记) 。 具体实施方式
发明人经过广泛而深入的研究,在中国发明专利申请 200910244505.1和
201010034208.7的基础上, 将利用基因工程重组表达的人 H亚基铁蛋白仿生 合成的人源磁性铁蛋白用于高表达铁蛋白受体的疾病的诊断和治疗。 在此基 础上, 完成了本发明。
疾病的诊断包括基于磁性纳米材料或其衍生物的活体成像诊断和体外 组织、 细胞诊断。 疾病的治疗包括基于磁性纳米材料或其衍生物的被动靶向 治疗和主动靶向治疗。
如本文所用, "内核成分"是指 "强磁性的纳米颗粒"或 "磁性纳米材料 "。 如本文所用, "磁性纳米材料"是通过中国发明专利申请 200910244505.1 提供的制备方法以及本发明制备得到的具有蛋白壳包裹的磁性纳米材料, 该 磁性纳米材料具有细胞靶向性; 所述细胞靶向性是固有的细胞靶向性, 不需 要经过表面包被、 化学修饰或基因工程修饰连接上靶向配体(如抗体、 多肽、 靶向小分子等) , 材料直接就可以与高表达铁蛋白受体的细胞特异性结合。
铁蛋白和融合铁蛋白外壳为材料提供了天然的靶向配体。 所述铁蛋白, 包括天然铁蛋白和基因工程重组铁蛋白, 其中天然铁蛋白来源于真核生物或 原核生物, 基因工程重组铁蛋白包括重组铁蛋白的全重 (H ) 链亚基铁蛋白、 全轻 (L ) 链亚基铁蛋白、 重组铁蛋白的重链和轻链以任意比例自组装的铁 蛋白、 以及这些蛋白亚基的突变体或融合蛋白的铁蛋白本身和其他铁蛋白仿 生合成磁性材料或非磁性材料的细胞靶向性。
所述细胞靶向性具有体内外细胞靶向性, 能特异性地结合高表达铁蛋白 受体的细胞并内吞进入肿瘤细胞内部; 本发明的磁性纳米材料通过结合细胞 表面高表达的铁蛋白受体而实现体内外细胞靶向性。
本发明提供的磁性纳米材料或其衍生物具有完整的人 H亚基铁蛋白壳和 磁铁矿和 /或磁赤铁矿、 锰铁氧化物、 礼 -铁复合物、 Gd-DTPA内核。 其蛋白 壳外直径为 12-15nm, 尺寸高度均一, 呈球形。 其核的粒径可随着控制每个 蛋白分子加入的铁原子数能够合成不同粒径的磁性铁蛋白, 其平均粒径分布 范围窄, 2-8 nm, 形状近似球形, 呈现良好的单分散性, 水溶性。 该材料的 横向弛豫效能 (r2 ) 可随着合成不同粒度的磁性铁蛋白而改变, r2可控制在 约 20-350 mM- 1 · s— 1范围内。
本发明进一歩通过对内核的改造, 合成铁蛋白壳包裹的锰铁氧化物磁性 纳米材料, 该材料与原来具有磁铁矿内核的磁性铁蛋白具有相似的粒径(4.7 ± 0.8 nm) , 但是饱和磁化强度得到了提高, 矫顽力降低。
本发明进一歩通过对内核的改造, 合成铁蛋白 -礼-铁双模式磁共振造影 剂磁性纳米材料, 既具有 ^磁共振造影剂的功能, 可用于磁共振 Ί 加权成 像, 使得靶向部位变亮; 又具有 Τ2磁共振造影剂的功能, 可用于磁共振 Τ2 加权成像, 使得靶向部位变暗。
本发明进一歩利用铁蛋白壳的自组装功能, 将 Gd-DTPA包裹在铁蛋白 空腔中, 形成铁蛋白包被的 Gd-DTPA复合物, 作为 ^磁共振造影剂。
本发明利用具有矿化功能的趋磁细菌的膜蛋白 Mms6蛋白进行原核表达 和纯化, 利用纯化的 Mms6蛋白仿生合成形状近似球形、 粒径大约为 20 nm 的磁铁矿材料。 本发明用流式细胞技术验证了高表达铁蛋白受体的乳腺癌、 肝癌、 神经 胶质瘤、 肺癌细胞能结合大量人 H亚基磁性铁蛋白, 表明了该材料可以广谱 地靶向结合高表达铁蛋白受体的细胞。
通过细胞与材料的特异性结合和竞争性抑制实验证明材料与细胞的结 合是特异性的结合, 通过抗人转铁蛋白受体 1 ( TfRl ) 抗体的竞争性抑制实 验表明, 人 H亚基磁性铁蛋白特异性靶向结合的铁蛋白受体是肿瘤细胞表面 高表达的 TfRl。 通过细胞磁共振成像实验表明, 人 H亚基磁性铁蛋白作为 造影剂能够明显地检测出 106 细胞 /mL 浓度的 TfRl 阳性高表达的 MDA-MB-231细胞。
利用裸鼠肿瘤移植模型、 磁共振成像 (MRI) 技术和荧光示踪技术, 从 体内验证了人 H亚基磁性铁蛋白可以大量地富集在肿瘤组织, 应用荧光共定 位证明了这种体内肿瘤组织的富集的机理是特异性地靶向肿瘤细胞表面高 表达的 TfRl。 人 H亚基磁性铁蛋白富集在肿瘤后, 可引起肿瘤部位的 MRI 图像信号强度的明显改变。
本发明将人 H亚基磁性铁蛋白作为肿瘤靶向性磁共振造影剂, 在裸鼠人 乳腺癌、 肝癌和肺癌模型上, 实现约 1 mm大小的肿瘤的早期诊断。
本发明将人 H 亚基磁性铁蛋白、 铁蛋白-礼 -铁复合物和铁蛋白包被的 Gd-DTPA复合物作为肿瘤靶向性磁共振造影剂, 在裸鼠原位人肝癌、 原位人 神经胶质瘤和原位人胰腺癌异体移植模型上实现肝癌、 神经胶质瘤和胰腺癌 的早期诊断, 神经胶质瘤和胰腺癌在 1 mm大小能够清晰成像, 与周围正常 组织具有强的组织对比度。
本发明将人 H亚基磁性铁蛋白连接上荧光分子, 作为荧光分子探针用于 近红外荧光成像, 可在裸鼠模型上明显检测出约 3 mm大小的人乳腺癌。
本发明将人 H亚基铁蛋白连接上荧光分子, 作为荧光分子探针用于近红 外荧光成像, 可在裸鼠模型上明显检测出约 1 mm大小的人乳腺癌。
利用透射电子显微镜超薄切片直接观察, 静脉注射的人 H亚基磁性铁蛋 白可以进入到高表达 TfRl 的肿瘤细胞内, 是一种肿瘤细胞内化型磁性纳米 材料。
本发明将人 H 亚基磁性铁蛋白连接上化疗药物盐酸阿霉素, 细胞毒性 MTT实验表明连阿霉素的材料对肝癌细胞、 白血癌细胞、 神经胶质瘤细胞、 肺癌细胞、 结肠癌细胞和乳腺癌细胞等肿瘤细胞具有广谱的抑制作用。 本发明将连接化疗药物的材料进行肺癌裸鼠移植模型的体内治疗, 静脉 注射后, 可以显著地抑制肿瘤的生长。
具体地, 本发明涉及一种肿瘤靶向性磁性纳米材料及生物医学应用, 其 特征是以具有蛋白壳包裹磁性纳米内核的一种新型仿生合成材料, 这种新型 仿生材料具有固有的肿瘤靶向性, 可将其作为肿瘤靶向性磁共振造影剂、 分 子探针和药物载体应用于肿瘤的早期诊断和治疗。
其中所述蛋白壳包裹磁性纳米颗粒优选通过特定的方法制备得到, 所述 特定方法在中国专利申请 200910244505.1中公开,将该公开的专利申请中的 相关内容并入本申请中。
其中所述蛋白壳可选自铁蛋白 (ferritin)、 伴侣蛋白、 DNA结合蛋白、 趋磁 细菌的磁小体膜蛋白和具有纳米空腔结构的病毒蛋白壳。
其中所述铁蛋白壳包括天然铁蛋白和基因工程重组铁蛋白, 其中天然铁 蛋白来源于真核生物或原核生物, 基因工程重组铁蛋白包括重组铁蛋白的全 重 (H) 链亚基铁蛋白、 全轻 (H) 链亚基铁蛋白、 重组人铁蛋白的重链和轻 链以任意比例自组装的铁蛋白、 以及这些蛋白亚基的突变体或融合蛋白。 优 选地, 其中所述铁蛋白壳为基因工程重组的人全重链亚基铁蛋白。
其 中 所 述 的 人 H 亚 基 铁 蛋 白 的 氨 基 酸 序 列 为
Figure imgf000017_0001
DHVTNLRKMGAPESGLAEYLFDKHTLGDSDNES包含的氨基酸序列。
其中所述的铁蛋白的特征由 12个或是 24个重链亚基和轻链亚基任意比 例自组装形成笼形结构。
其中所述的磁性纳米内核的成分包括但不限于: 含有礼、 锰、 铁、 钴和 /或镍类元素的磁性纳米材料。 优选地, 磁性纳米内核的成分为磁铁矿和 /或 磁赤铁矿、 锰铁氧化物、 礼 -铁复合物、 Gd-DTPA。
其中细胞靶向性是指不需要经过表面包被、 化学修饰或基因工程修饰连 接上靶向配体 (如抗体、 多肽、 靶向小分子等) , 直接能够靶向细胞的固有 靶向性。
其中固有细胞靶向性包括铁蛋白壳具有的固有细胞靶向性, 也包括基于 铁蛋白壳合成的所有磁性材料和非磁性材料的固有细胞靶向性。 其中固有细胞靶向性是指铁蛋白壳能够特异性地靶向结合高表达铁蛋 白受体的细胞。
其中铁蛋白受体包括 TfRl、 H亚基铁蛋白受体、 L亚基铁蛋白受体及其 乳铁蛋白受体。
其中固有的细胞靶向性能特异性地结合高表达铁蛋白受体的细胞并内 吞进入细胞内部。
其中生物医学应用, 包括所有基于铁蛋白壳和铁蛋白壳合成材料的固有 肿瘤靶向性而开发的肿瘤诊断和治疗试剂。
其中肿瘤诊断试剂, 包括体外和体内肿瘤诊断试剂。
其中体外肿瘤诊断试剂包括应用于组织、 细胞、 血液、 尿液、 粪便以及 其它一些分泌物的肿瘤诊断试剂。
其中体内肿瘤诊断试剂涉及到应用于靶向铁蛋白受体的人体肿瘤的成 像定位诊断, 包括所有基于铁蛋白壳合成的 MRI造影剂、 荧光探针、 同位素 探针等。
其中肿瘤治疗试剂, 还涉及到用蛋白壳包裹的磁性纳米材料连接的药用 载体, 还涉及到基于铁蛋白壳包裹的化疗药物、 放射性同位素、 细胞因子、 核酸、 抗癌、 或抗炎症药物。
用于本文时, 药用载体包括生理适合的任何和所有的溶剂、 分散介质、 包衣剂、 等渗和吸收延缓试剂等。 优选地, 所述载体适合于静脉内的、 肌肉 的、 皮下的、 肠胃外的、 脊柱的或表皮的使用。
本发明的创新点在于: (1 ) 利用人 H亚基铁蛋白仿生合成了具有原始蛋白 构象的磁性铁蛋白, 材料合成没有破坏蛋白的结构和功能。 (2 ) 利用重组 趋磁细菌膜蛋白 Mms6蛋白, 改进合成工艺使得在常温常压条件下就能合成 晶型类似于趋磁细菌磁小体的立方八面体晶型、 粒径均一的磁铁矿; (3 ) 揭示了本发明合成的磁性铁蛋白与原来合成的磁性铁蛋白最大的区别在于, ①保证了矿物相的纯度, 使得蛋白壳内部形成的均为亚铁磁性的磁铁矿, 磁 化率高, 磁滞回线在很低的磁场条件下就能达到饱和; ②首次发现和证明了 本发明合成的磁性铁蛋白在不需要任何修饰的条件下就具备了体内外的固 有细胞靶向性, 并且证明材料的细胞靶向性是由于其蛋白壳能够特异性地结 合细胞表面高表达的铁蛋白受体 TfRl ; ( 4 ) 与传统化学合成后修饰靶向配 体的磁性纳米材料相比, 这种材料固有的细胞靶向性不需要复杂的表面包 被、 靶向分子化学修饰、 靶向肽段基因工程修饰; (5 ) 以蛋白壳包裹的磁 性纳米材料作为细胞靶向性磁共振造影剂, 在裸鼠模型上实现了约 1 mm大 小肿瘤的磁共振成像诊断, 这是目前国际上报道的最好肿瘤早期诊断结果; ( 6 ) 证实了材料可以进入肿瘤细胞内, 为肿瘤细胞内治疗奠定了基础; 并 且将其修饰上肿瘤化疗药物, 在体外细胞模型上发现其对肿瘤细胞具有广谱 的抑制和细胞毒性, 对体内的肺癌具有明显的治疗作用。
本发明提到的上述特征, 或实施例提到的特征可以任意组合。 本案说明书 所揭示的所有特征可与任何组合物形式并用, 说明书中所揭示的各个特征, 可 以任何可提供相同、 均等或相似目的的替代性特征取代。 因此除有特别说明, 所揭示的特征仅为均等或相似特征的一般性例子。 本发明的主要优点在于:
1、 这类材料是基于蛋白生物矿化仿生合成的磁性纳米材料, 具有粒径和形 状均一、 完整的蛋白外壳、 单分散性、 水溶性、 高生物相容性等独特材料学优 势;
2、 这类材料与原来仿生合成材料以及化学合成材料的最大区别在于, 不需 要像普通磁性纳米材料需要复杂的表面包被和靶向分子化学修饰或者基因工程 修饰就已经具备细胞主动靶向性, 因此这种主动靶向性是材料天然固有的靶向 性;
3、 这类材料能够体内外特异性地靶向细胞表面高表达的铁蛋白受体, 这是 一类在各种高度增殖的细胞 (如肿瘤细胞) 都高表达的肿瘤标志物, 因而这种 细胞靶向性具有广谱性, 能够应用于多种肿瘤的靶向早期诊断和治疗;
4、 这类材料不仅可以结合高表达铁蛋白受体的细胞, 而且可以通过细胞内 吞作用进入到细胞内部, 是一种细胞内化型磁性纳米材料;
5、 这类材料可作为细胞靶向性磁共振成像造影剂、 荧光分子探针、 同位素 标记物应用于肿瘤的活体显影早期诊断, 将其作为磁共振成像造影剂, 本发明 在动物模型上实现了约 1 mm大小的肿瘤的早期诊断。
6. 这类材料可作为药物载体用于肿瘤的靶向治疗,实现细胞内的药物输送, 在体外能够广谱地杀死肿瘤细胞, 在体内具有明显的肿瘤抑制效果。
下面将结合具体实施例, 进一歩阐述本发明。 应理解, 这些实施例仅用 于说明本发明而不用于限制本发明的范围。 下列实施例中未注明具体条件的 实验方法, 通常按照常规条件, 例如 Sambrook等人, 分子克隆: 实验室手 册(New York: Cold Spring Harbor Laboratory Press, 1989)中所述的条件, 或按 照制造厂商所建议的条件。 除非另外说明, 否则所有的百分比和份数按重量 计。
本发明中的重量体积百分比中的单位是本领域技术人员所熟知的, 例如 是指在 100毫升的溶液中溶质的重量。
除非另行定义, 文中所使用的所有专业与科学用语与本领域熟练人员所 熟悉的意义相同。 此外, 任何与所记载内容相似或均等的方法及材料皆可应 用于本发明方法中。 文中所述的较佳实施方法与材料仅作示范之用。 实施例 1
具有完整蛋白壳构象的人 H亚基磁性铁蛋白的仿生合成
以重组人铁蛋白为模板,将人铁蛋白的 H亚基的全长 cDNA分别克隆和 构建到 pETl lb质粒 (购自于 Novagen公司) 上; 将含有人铁蛋白 H亚基和 L 亚基的重组质粒分别转化或者共转化细菌 BL21 (DE3) pLysS (购自于 Novagen公司) , 加入 IPTG (异丙基 -β-D-硫代半乳糖苷) 激活 T7启动子, 诱导表达; 表达结束后进行超声破碎释放蛋白; 对蛋白进行分离和纯化; 利 用纯化的人 H亚基铁蛋白为模板, 将亚铁盐和氧化剂 H2O2加入重组人铁蛋 白的溶液中进行反应, 控制 pH值为 8.5, 控制温度为 65°C, 在重组人铁蛋白内 部形成强磁性的纳米颗粒; 亚铁盐的浓度为每次加入的亚铁原子数与蛋白分子 数之比在 10-200之间, 最终每个蛋白分子加入的铁原子数为 5000; 反应完毕 后, 进行排阻层析分离, 离心和分子筛纯化后得到蛋白结构完整的单分散人 H亚基磁性铁蛋白颗粒。 图 la为所得的磁性铁蛋白的透射电镜 (TEM ) 的 负染照片, 每个磁性纳米内核都由完整的重组人 H亚基铁蛋白包裹。 图 lb 是所得磁性人铁蛋白核的透射电镜照片, 粒径均匀、 形状相似、 呈现单分散 性。图 lc是磁性人铁蛋白的粒径分布柱状图,可知磁性纳米内核粒径分布窄, 平均粒径为 4.6 ± 0.9 nm。 图 Id是人 H亚基磁性铁蛋白的选区电子衍射图, 可知其矿物相成分为磁铁矿。 图 le是材料的圆二色 (CD ) 光谱, 可知材料 仿生合成后没有破坏铁蛋白壳的原始构象。 材料所具有的人 H亚基铁蛋白壳氨基酸序列如下: ELGDHVTNLRKMGAPESG LAEYLFDKHTLGDSDNES 实施例 2
合成铁蛋白壳包裹的锰铁氧化物核的磁性纳米材料
利用纯化的人 H亚基铁蛋白为模板, 将亚铁盐、 锰盐 (铁与锰的比例为 11.5, 相当于掺入 8%的锰) 和氧化剂 H2O2加入重组人铁蛋白的溶液中进行 反应, 控制 pH值为 8.5, 控制温度为 65°C, 在重组人铁蛋白内部形成强磁性 的纳米颗粒; 最终每个蛋白分子加入的铁原子数为 4600, 锰原子数为 400; 反应完毕后, 进行排阻层析分离, 离心和分子筛纯化后得到蛋白结构完整的 磁性颗粒。 图 2a是锰铁氧化物核的电镜照片, 可见形成的核是近似球形, 呈 现良好的单分散性; 图 2b是核的粒度分布图, 其平均粒径为 4.7 ± 0.8 nm; 图 2c是锰铁氧化物在 2K测量的磁滞回线, 与单纯含有磁铁矿 (Fe3O4) 内 核的人 H亚基磁性铁蛋白相比较,其饱和磁化强度为 23 emu/g大于原来的人 H亚基磁性铁蛋白 (20 emu/g) ,其矫顽力为 20 mT, 而原来的人 H亚基磁性 铁蛋白在 2 K条件下矫顽力为 37 mT; 图 2是铁蛋白壳包裹的锰铁氧化物核 的能谱元素分析图, 由图可知内核含有锰、 铁和氧元素, 说明锰已经掺入到 核中, 形成锰铁氧化物类磁性纳米材料 (MnQ.24Fe2.76O4) 。 实施例 3
利用原核表达的趋磁细菌膜蛋白 Mms6仿生合成纳米磁性材料 提取趋磁细菌 AMB-1的全基因组, 用 PCR扩增出 mms6基因, 克隆到 pET15b质粒上 (购自于 Novagen公司) 选用 EcoR I,BamH I酶切位点, 转化 细菌 BL21 (DE3) pLysS (购自于 Novagen公司) 进行原核表达。 通过镍柱亲 和层析的方法纯化出带有 His标签的 Mms6蛋白。 将 His-Mms6蛋白与铁盐 溶液进行混合, 用 NaOH调节 pH至 7-9, 在常温下反应 24小时, 生成水合 氧化铁化合物 (ferrihydrite ) , 然后加入亚铁盐溶液 (使得亚铁离子与铁离 子的比例为 1 :2 ) , 继续反应 24小时, 直至溶液颜色完全变黑。 将得到的磁 性颗粒用磁铁进行收集, 除氧水洗涤三次, 冷冻干燥进行电镜观测和磁学测 量。 图 3a是带 His标签的 Mms6蛋白的原核表达和纯化图, 由泳道 2可知, 加入 IPTG后, 大肠杆菌能够表达 His-Mms6蛋白, 其分子量大约为 10kD, 通过镍柱亲和层析后可获得电泳纯的 His-Mms6蛋白 (泳道 3 ) ; 图 3b是利 用 His-Mms6仿生合成磁性纳米颗粒的电镜照片, 合成的磁性纳米颗粒粒径 均一, 形状相似, 近似球形; 图 3c是 His-Mms6仿生合成磁性纳米颗粒的高 分辨电镜照片 (晶格条纹) , 表明即使在常温常压条件下, 通过 His-Mms6 仿生合成的磁性纳米颗粒仍然具有优良的晶型, 没有晶格缺陷, 其晶型类似 于趋磁细菌磁小体的立方八面体晶型; 图 3d是 His-Mms6仿生合成磁性纳米 颗粒的 X射线电子衍射 (XRD ) 图, 与标准磁铁矿的 XRD峰图进行对比, 表明合成的磁性纳米颗粒的成分为磁铁矿。
材料所具有的 Mms6蛋白壳氨基酸序列如下:
Figure imgf000022_0001
实施例 4
人 H亚基磁性铁蛋白对多种表达铁蛋白受体的细胞靶向性
首先用荧光染料 Cy5.5对人 H亚基磁性铁蛋白进行荧光标记 (即通过共 价键将 Cy5.5连接在人 H亚基磁性铁蛋白上) , 通过脱盐柱除去未结合蛋白 的荧光分子。 待细胞在培养瓶中处于对数生长期时 (约铺满 60%的细胞培养 瓶) , 用含 EDTA的 0.25%的胰酶进行消化。 消化后的细胞用磷酸缓冲溶液 ( PBS , pH 7.4 ) 洗三次, 然后再加入适量的 PBS进行悬浮 (细胞浓度约为 约 l x lO6 cell/ml) 。取 100 μ PBS悬浮的细胞放入 1.5 ml 离心管内, 用 2 Cy5.5新标记好的人 Η亚基磁性铁蛋白 (1 mg/mL) 与细胞在冰浴中避光孵 育 40 min, 每个细胞的对照加入同样体积的 PBS, 孵育完后用 PBS洗三次洗 去未结合细胞的材料,最后用 500 μL PBS悬浮细胞,用流式细胞仪 BD FACS CantoTM Flow Cytometer来进行细胞的荧光定量分析。 图 4是各种表达铁蛋 白受体的细胞的流式分析图, 结果表明, 11株细胞有 10株能够与人 H亚基 磁性铁蛋白特异性结合, 分别属于乳腺癌、 神经胶质瘤、 肝癌、 肺癌, 表明 该材料能够广谱地结合各种肿瘤细胞 (细胞购自于 ATCC, 培养在南京凯基 生物科技发展有限公司) 。 实施例 5
人 H亚基磁性铁蛋白与体外表达铁蛋白受体的细胞的靶向性机理 为了研究材料与细胞的作用机理,选用材料高结合的 MDA-MB-231细胞 和材料进行特异性结合和竞争性抑制实验。 在加入 Cy5.5新标记好的人 H亚 基磁性铁蛋白之前用 100倍量的铁蛋白壳提前孵育 30 min, 然后观察结合材 料的情况。 用 500 g/mL鼠抗人 TfRl单克隆抗体提前孵育 30 min, 然后观 察结合材料的情况, 用流式细胞仪 BD FACS Canto™ Flow Cytometer来进行 细胞的荧光定量分析。图 5是流式分析结果,结果表明,材料与 MDA-MB-231 的结合 50%以上能够被 100倍量的铁蛋白壳进行抑制, 说明材料与细胞的结 合是依赖于其蛋白壳的。 另外结合 50%以上也能被抗 TfRl的抗体进行抑制, 说明这种结合是受 TfRl介导, 另外与材料结合极低的 MX-1细胞, TfRl表 达呈阴性, 进一歩证明人 H亚基磁性铁蛋白与表达铁蛋白受体的细胞的特异 性、 靶向性相互作用。 实施例 6
人 H亚基磁性铁蛋白的横向弛豫率 (r2) 的测定
首先用融化的 1%的低熔点琼脂糖凝胶 (上海生工) 将材料稀释至铁终 浓度为 0-0.4 mM, 然后迅速放入 -20 °C 冰箱中冷却凝固后放入 MRI 系统 ( Bruker, Biospin MRI PharmaScan 7.0T, 300 MHz, 1H model ) 中进行测定。 材料 R2值的测定使用 multi-slice multi-echo (MSME) 序列进行 T2加权成像, 具体参数为: field of view: 3.5 cm, matrix: 256 x 256, repetition time: 5000 ms,l echoes, TE: 1 1 ms, 1 slice, slice thickness: 1 mm。 R2=l/T2值的计算用机 器自带的 Bruker Paravision 5.0软件进行计算, 然后将不同铁浓度的 R2值线 性拟合即可求出样品的横向弛豫率 r2值。图 6是不同铁浓度的人 H亚基磁性 铁蛋白的横向弛豫 (R2 ) 的测定值及其拟合曲线, 通过拟合可得到该材料在 1 %的低熔点琼脂糖凝胶中, 7 T MRI 条件下测得的横向弛豫率 r2值为 54 实施例 7
体外表达铁蛋白受体的细胞靶向性磁共振成像
首先取约 106铁蛋白受体高表达的 MDA-MB-231细胞、 低表达的 MX-1 细胞 (购自于 ATCC , 培养在南京凯基生物科技发展有限公司) 放入 6孔板 中的血清培养基培养 24 h, 待细胞几乎完全贴壁后, 吸去旧培养基, 用新鲜 的血清培养基 1.5 ml加入人 H亚基磁性铁蛋白至铁终浓度为 165 g/mL, 培 养 5.5 h后, PBS洗三次, 然后用含 EDTA的 0.25%的胰酶进行消化后再次用 PBS洗三次。 将各个细胞在 96孔板中用 PBS稀释至终浓度为 l x lO6 cell/ml 至 PBS终体积为 100 μί, 然后再加入 100 μL 1 %的低熔点琼脂糖凝胶 (上海 生工) , 迅速放入 -20°C冰箱中冷却凝固。 将细胞放入小动物专用的 7 T MRI 系统 ( Bruker, Biospin MRI PharmaScan 7.0T, 300 MHz, 1H model ) 中使用大 鼠体线圈进行细胞磁共振成像。 图 7是体外细胞磁共振成象, 可见与材料孵 育后, TfRl表达阳性的 MDA-MB-231细胞 MRI图像信号强度发生了明显降 低, 而 TfRl表达阴性的 MX-1细胞 MRI图像信号强度没有明显改变, 结果 表明这种成像是一种分子靶向性磁共振成像。 实施例 8
体内实验中,人 H亚基磁性铁蛋白对表达铁蛋白受体组织靶向性的证明 体内存在许多的屏障系统, 所以体内的情况比体外远远要复杂, 为了验 证人 H亚基磁性铁蛋白能否体内靶向肿瘤, 选用人 H亚基磁性铁蛋白高结合 和 TfRl 表达阳性的 MDA-MB-231 乳腺癌细胞, 以及磁性铁蛋白低结合和 TfRl表达阴性的 MX-1乳腺癌细胞建立裸鼠移植模型。 待肿瘤长到 2-3 mm 时, 尾静脉注射人 H亚基磁性铁蛋白 (注射剂量: 10 mg Fe/Kg小鼠体重) 。 扫描时间分别是注射人 H亚基磁性铁蛋白之前 (Pre ) , 注射后 1.5 h, 3.5 h, 5.5 h四个时间点, T2-加权成像用多层多自旋回波序列(multi-slice multi-echo (MSME) sequence ) 。 使用的参数如下: field of view (FOV) = 3.5 cm 3.5 cm, matrix = 256 x 256, repetition time (TR ) = 3,000 ms, 6 echoes with echo time (TE) = 15, 30, 45, 60, 75, 90 ms, 20 层, 层厚为 0.80 mm。 T2*加权成像用的 是多梯度自旋回波序列 ( multi-gradient echo (MGE) sequence ) 。 使用的参数 如下: FOV = 3.5 cm 3.5 cm, matrix = 256 x 256, TR = 900 ms, 6 echoes with
TE = 4, 10, 16, 22, 28, 34 ms, 20 层, 层厚为 0.80 mm。 MRI的图像处理用机 器附带的 Bmker Paravision 5.0软件来进行。 组织部位的信号强度用信噪比 ( signalt-to-noise ratio, SNR) 来定量。 信噪比的公式是 SNR = SI 肿瘤 /SD 肌肉, SI 是癌灶部位的平均信号强度, SD 是癌灶附近肌肉部位平均信号强度 的标准差。 注射人 H亚基磁性铁蛋白之后的某个时间 t的组织相对对比度增 强 (CE) 用下面公式计算: CE (%) = (SNRpre— SNRt) / SNRpre [Buerke et al., 2008; Tsumsaki et al., 2008]。 图 8a-c是 MDA-MB-231荷瘤小鼠、铁蛋白壳竞 争性抑制 MDA-MB-231荷瘤小鼠、 MX-1荷瘤小鼠的 T2* MRI图像, 结果表 明, TfRl高表达的 MDA-MB-231肿瘤 (n = 5 ) 注射人 H亚基磁性铁蛋白之 后信号强度发生明显改变, 而用铁蛋白壳进行受体饱和后的 MDA-MB-231 肿瘤 (n = 4 ) 信号强度只有少量变化, TfR低表达的 MX-1肿瘤信号强度也 只有少量变化 (n = 5 ) 。 从而表明人 H亚基磁性铁蛋白这种体内的组织靶向 性是一种特异的、 是依赖于 TfRl表达的组织主动靶向性 MRI造影剂。 图 8d 是对 T2*加权图像进行定量分析, MDA-MB-231癌灶在注射前(Pre) 、 1.5 h、 3.5 h、 5.5 h的相对对比度改变值分别为 41.4 ± 11.8 % (平均值 ± 标准差), 59.0 ± 5.5 %, 56.6 ± 5.5 % 。 图 8e是将 MRI扫描后的荷癌裸鼠处死后, 其肿 瘤石蜡切片组织学结果表明,经过 DAB增强的普鲁士蓝染色, MDA-MB-231 癌灶组织呈现出明显的染色阳性 (棕色颗粒) , 表明有大量的铁颗粒富集在 MDA-MB-231癌灶内。 而人 H亚基铁蛋白竞争性抑制的 MDA-MB-231癌灶 和 MX-1癌灶组织没有特异性的阳性染色, 表明其可能没有富集或者富集较 少的材料。 组织学上的铁染色结果与 MRI结果高度一致。
表 1 在静脉注射人 H亚基磁性铁蛋白之前和之后的 TfRl表达阳性的 MDA-MB-23 1 乳腺癌细胞 (n = 5),人铁蛋白壳抑制 MDA-MB-23 1肿瘤 (n = 4)和 MX- 1乳腺癌细胞 (n = 5) 的 T2和 Τ MRI图像的信噪比
Figure imgf000025_0001
5.5 h 14.89 ± 4.6 0.031 9.68 ± 2.5 0.031 人铁蛋白壳 注射前 19.06 ± 3.8 17.23 ± 2.9
抑制 注射后
MDA-MB-23 1.5 h 18.88 ± 3.9 0.438 16.37 ± 3.7 0.125
1肿瘤 3.5 h 18.97 ± 3.4 0.563 13.6 ± 4.2 0.063
5.5 h 18.88 ± 3.5 0.563 12.72 ± 3.2 0.063
MX-1 肿瘤 注射前 19.55 ± 3.0 23.81 ± 2.2
注射后
1.5 h 19.54 ± 2.3 0.500 23.19 ± 3.0 0.219
3.5 h 18.83 ± 1.8 0.156 22.18士 2.3 0.031
5.5 h 18.71 ± 2.5 0.156 21.14 ± 3.1 0.031 注: 信噪比取自平均数士 s.d., 使用 Wilcoxon试验检验信噪比的差异的显著性。 P < 0.05表示有显著差异。 实施例 9
人 H亚基磁性铁蛋白体内肿瘤靶向性分子机理
为了研究人 H亚基磁性铁蛋白对组织的特异性、 靶向性机理, 我们进行 了体内荧光示踪实验和体外免疫荧光实验。 首先用荧光染料罗丹明 B将人 H 亚基磁性铁蛋白进行荧光标记(即通过共价键将罗丹明连接在人 H亚基磁性 铁蛋白上) , 然后将罗丹明 B标记的材料分别尾静脉注射入荷 MDA-MB-231 肿瘤裸鼠 (n = 3) , 荷 MX-1肿瘤裸鼠 (n = 3) 体内, 在避光的暗室条件下 培养 3h后用 PBS进行心脏灌注, 然后迅速取出癌灶组织, 用锡箔纸包好, 避光液氮保存过夜。组织切片用 OCT( optimum cutting temperature compound, Sakura) 包埋, 在 Leica冰冻切片机上避光进行切片 (厚度 5μηι) 。 切片干 燥至 OCT消除后, 避光放入丙酮中固定 15 min, 待切片干燥后放入 -80 °C冰 箱中进行储存。 为了进行荧光观察, 将切片用 PBS洗三次, 加入 10%的牛血 清白蛋白 (BSA) 37°C孵育 30min防止荧光非特异性吸附, 再用 FITC标记 的抗转铁蛋白受体 1的抗体 (anti-TfRl) 进行染色 (37°C, 1.5 h) , 用 PBS 洗去非特异性吸附的 anti-TfRl, 用抗淬灭的封片剂进行封片。 图 9是体内荧 光示踪实验和体外免疫荧光的染色结果。 结果表明, 人 H亚基磁性铁蛋白的 红色荧光和 TfRl抗体的绿色荧光很好地重叠在一起, 表明人 H亚基磁性铁 蛋白体内组织特异性、 靶向性分子机理是依靠其结合组织上表达的 TfRl。 实施例 10
人 H亚基磁性铁蛋白用于微小乳腺癌的早期诊断
待 MDA-MB-231肿瘤在裸鼠上长到约 1 mm时, 尾静脉注射人 H亚基 磁性铁蛋白 (注射剂量: 10 mg Fe/Kg小鼠体重) 。 扫描时间分别是注射人 H 亚基磁性铁蛋白之前 (Pre ) , 注射后 5.5 h, T2-加权成像用多层多自旋回波 序歹 [J ( multi-slice multi-echo (MSME) sequence ) 。 使用的参数如下: field of view (FOV) = 3.5 cm x 3.5 cm, matrix = 256 x 256, repetition time (TR ) = 3,000 ms, 6 echoes with echo time (TE) = 15, 30, 45, 60, 75, 90 ms, 20 层, 层 厚为 0.80 mm。 T2*加权成像用的是多梯度自旋回波序列 ( multi-gradient echo (MGE) sequence ) 。 使用的参数如下: FOV = 3.5 cm x 3.5 cm, matrix = 256 x 256, TR = 900 ms, 6 echoes with TE = 4, 10, 16, 22, 28, 34 ms, 20 层, 层厚为 0.80 mm。 MRI的图像处理用机器附带的 Bmker Paravision 5.0软件来进行。
图 10a, b是荷 MDA-MB-231微小癌灶裸鼠的 T2*加权磁共振图像, 图中 可以明显地看出在注射人 Η亚基磁性铁蛋白前后, 癌灶部位的信号强度具有 明显的变化, 注射后要比注射前的信号强度低得多, 在图像上亮度变暗。 经 过对 Τ2*加权图像的定量分析以及统计分析, 注射人 Η亚基磁性铁蛋白前后 的信噪比值具有显著性的差异 (图 10c ) 。 在 T2加权磁共振图像上, 信号强 度变化不是很明显, 但是对其信噪比进行进行定量分析可看出注射材料前后 的明显差异 (图 10d-f) 。 癌灶的石蜡组织切片经过 DAB增强的普鲁士蓝铁 染色后具有明显的棕色颗粒阳性结果, 表明人 H亚基磁性铁蛋白已经富集于 微小癌灶内 (图 10g)。图 10h是 MDA-MB-231微小癌灶部位的解剖出来后的 照片, 可以看出所检测的癌灶直径大约为 1 mm, 对其进行天平称量, 重量 大约为 2 mg。 实施例 11
人 H亚基磁性铁蛋白作为荧光分子探针用于肿瘤的早期诊断
将人 H亚基磁性铁蛋白利用近红外荧光染料 Cy5.5标记 (即通过共价键 将 Cy5.5连接在人 H亚基磁性铁蛋白上) 后, 就成为了一种肿瘤靶向性的荧 光分子探针。 待 MDA-MB-231肿瘤长到约 3 mm大小, 尾静脉注射 100 μδ Cy5.5标记的人 Η亚基磁性铁蛋白, 用活体荧光成像系统 CRI Metro™进行 扫描观察在生物体内的相对分布。图 1 1是注射人 H亚基磁性铁蛋白 3 h后的 活体荧光成像图片, 除了在肝脏膀胱外有很强的荧光强度分布, 在肿瘤部位 有明显的较强荧光强度分布。 实施例 12
人 H亚基磁性铁蛋白用于微小肝癌的早期诊断
将 TfRl表达阳性的 QGY7701肝癌细胞 (购自于 ATCC , 培养在南京凯 基生物科技发展有限公司) 建立裸鼠人肝癌移植模型, 待肿瘤长到约 1 mm 大小时, 尾静脉注射人 H亚基磁性铁蛋白 (注射剂量: 10 mg Fe/Kg小鼠体 重) 。 扫描时间分别是注射人 H亚基磁性铁蛋白之前 (Pre ) , 注射后 5.5 h 两个时间点, T2-加权成像用多层多自旋回波序列 ( multi-slice multi-echo (MSME) sequence ) 。 使用的参数如下: field of view (FOV) = 3.5 cm 3.5 cm, matrix = 256 x 256, repetition time (TR ) = 3,000 ms, 6 echoes with echo time (TE) = 15, 30, 45, 60, 75, 90 ms, 20 层, 层厚为 0.80 mm。 T2*加权成像用的 是多梯度自旋回波序列 ( multi-gradient echo (MGE) sequence ) 。 使用的参数 如下: FOV =3.5 cm χ 3.5 cm, matrix = 256 χ 256, TR = 900 ms, 6 echoes with TE = 4, 10, 16, 22, 28, 34 ms, 20 层, 层厚为 0.80 mm。 MRI的图像处理用机 器附带的 Bmker Paravision 5.0软件来进行。 癌灶部位的信号强度用信噪比 ( signalt-to-noise ratio, SNR) 来定量。 结果见图 12。 结果表明, 在 T2*图像 上, 肿瘤部位(红色圆圈部分) 的信号强度与注射前相比发生了明显的改变。 实施例 13
人 Η亚基磁性铁蛋白用于微小肺癌的早期诊断
将 TfRl表达阳性的 NCI-H460人肺癌细胞 ( (购自于 ATCC , 培养在南 京凯基生物科技发展有限公司) 建立裸鼠人肺癌移植模型, 尾静脉注射人 H 亚基磁性铁蛋白 (注射剂量: 10 mg Fe/Kg小鼠体重) 。 扫描时间分别是注 射人 H亚基磁性铁蛋白之前 (Pre ) , 注射后 5.5 h两个时间点。 T2*加权成 像用的是多梯度自旋回波序列 ( multi-gradient echo (MGE) sequence ) 。 使用 的参数如下: FOV = 3.50 cm, matrix = 256 256, TR = 900 ms, 6 echoes with TE = 4, 10, 16, 22, 28, 34 ms, 20 层, 层厚为 0.80 mm。 MRI的图像处理用机 器附带的 Bmker Paravision 5.0软件来进行。 癌灶部位的信号强度用信噪比 ( signalt-to-noise ratio, SNR) 来定量。 结果见图 13。 结果表明, 在 T2*图像 上, 肿瘤部位(红色圆圈部分) 的信号强度与注射前相比发生了明显的改变。 实施例 14
人 Η亚基磁性铁蛋白在裸鼠体内的组织器官分布
将注射材料 (10 mg Fe/Kg) 体重的荷 MDA-MB-231 (购自于 ATCC, 培 养在南京凯基生物科技发展有限公司) 裸鼠在注射材料 6 h后进行处死, 取 出肌肉、 心脏、 肝脏、 脾脏、 肾脏、 大脑、 腋下淋巴结、 肿瘤进行石蜡切片, 利用 DAB增强的普鲁士蓝铁染色检测人 H亚基磁性铁蛋白在体内组织器官 内的分布。首先将石蜡切片在 60°C烘箱中烘 lh, 并在 37 °C的二甲苯中浸泡 2次 (每次 15 min) 进行脱蜡, 然后分别放入 100%酒精进行脱水两次 (每次 5 min) , 在 80%酒精、 去离子水中进行复水 (每次 2 min) 。 为了去除内在 过氧化物酶, 将切片复水后放入含 3% H2O2的甲醇溶液中处理 30 min, 用去 离子水洗三次。 铁染色的过程为: 首先用普鲁士蓝染液 (10%亚铁氰化钾和 20%盐酸新鲜配制) 染色 20 min, 去离子水洗三次 (每次 5 min) , 然后用含 0.05% DAB 的 PBS溶液(pH 7.4 )染色 10 min,再用含 0.033% H202和 0.05% DAB的 PBS溶液染色 15 min。 最后用苏木素、 伊红染液分别进行细胞核和 细胞质的染色。 图 14是经注射人 H亚基磁性铁蛋白之后的小鼠的肌肉、 心 脏、 肝脏、 脾脏、 肺脏、 肾脏、 脑组织、 腋下淋巴结和肿瘤组织的铁染色照 片, 从图中可以看出肿瘤具有明显的阳性染色, 组织内染色后呈现大量的棕 色颗粒, 表明有大量的材料的铁颗粒分布。 肝脏有一定的阳性染色, 在枯否 氏细胞内有铁颗粒的分布。 淋巴结在皮质和髓质之间具有明显的铁颗粒的存 在。 而脾脏、 心脏、 肺脏、 肾脏、 脑和肌肉组织的铁染色结果为阴性, 表明 在这些组织中材料分布极少。 实施例 15
材料在肿瘤组织和细胞内的生物分布
为了观察人 H 亚基磁性铁蛋白在癌组织和细胞内的分布, 将荷
MDA-MB-231乳腺癌裸鼠静脉注射人 H亚基磁性铁蛋白, 24 h后将裸鼠进行 处死, 快速取出癌灶组织并将其切成 1 mm3 大小, 放入 2.5%的戊二醛中 4°C 进行固定。 透射电镜超薄切片的制作程序如下: 取出戊二醛固定好的组织用 PBS ( 0.01M, pH7.4 ) 清洗三次 (lO min/次) , 再用 1%锇酸固定 25 min (固 定过程中在 20 min左右要看组织是否变黑) , PBS清洗一次, 重蒸水洗 2次 ( 10 min/次) , 用 1%的乙酸双氧铀染色 1 h, 再用 50%、 70%、 85%、 95% 乙醇脱水, 每次 12 min, 再用 100%乙醇脱水三次, 每次 15 min。 用乙醇与 环氧树脂包埋液 (乙醇和包埋液的比例为 1 : 1 ) 进行浸透三次, 每次 2 h, 再 用纯的环氧树脂包埋液浸透过夜, 换一次新的纯包埋液 2 h后进行包埋 (烘 箱 60°C, 24 h) 。 超薄切片的观察使用 JEM-1400型透射电镜, 加速电压是 120 kV。 图 15是注射材料后的肿瘤组织的透射电镜超薄切片图, 可见癌细胞 内出现大量的电子高密度铁颗粒, 这表明癌细胞内已经进入大量的人 H亚基 磁性铁蛋白, 而癌组织内的淋巴细胞和巨噬细胞未见有大量电子高密度物质 的铁颗粒出现。 材料在肿瘤细胞内的分布为肿瘤的治疗带来了契机。 实施例 16
连阿霉素的人 H亚基磁性铁蛋白对肿瘤细胞的细胞毒性实验
将盐酸阿霉素与人 H 亚基磁性铁蛋白利用戊二醛进行交联, 利用 G50 脱盐柱除去没有连接到蛋白上面的盐酸阿霉素。 然后用分光光度计分别测量 人 H亚基磁性铁蛋白的蛋白浓度(BCA法测定),和阿霉素的浓度(485 nm), 确定每个材料上连接的阿霉素量大约为 48个分子。图 16a是连接阿霉素后材 料的颜色变化图, 可见连接阿霉素后, 材料由原来的棕黑色转变为黑红色。
待肿瘤细胞长到对数生长期后,加入 100 到 96孔板中,浓度为 5000 细胞每孔, 边缘孔用无菌 PBS填充。 将连接阿霉素的材料按照不同阿霉素的 浓度 ( 1-20000 nM, ^ ^一个梯度) 与细胞在 37°C,5% CO2细胞培养箱中培养 72小时。 加入 0.5% ΜΤΤ 20 μ L,继续培养 4 h, 终止培养, 小心吸去孔内培 养液。 每孔加入 150 μ 1二甲基亚砜, 置摇床上低速振荡 10 min, 使结晶物 充分溶解。 在酶联免疫检测仪 OD 490 nm处测量各孔的吸光值。 同时设置 调零孔 (培养基、 MTT、 二甲基亚砜) , 对照孔 (细胞、 相同浓度的药物溶 解介质、 培养液、 MTT、 二甲基亚砜) 。 图 16b是 MTT测定连阿霉素的材 料对肝癌细胞 QGY7701 , 白血癌细胞 K562, 神经胶质瘤细胞 U87MG, 肺癌 细胞 NCI-H460 , 结肠癌细胞 HT-29 , 乳腺癌细胞 MDA-MB-231 (购自于 ATCC, 培养在南京凯基生物科技发展有限公司) 的细胞毒性的实验结果, 发现连阿霉素材料对这些细胞都具有明显的细胞毒性。 实施例 17
连阿霉素的人 H亚基磁性铁蛋白对体内肺癌的初步治疗实验
选用高表达铁蛋白受体的 NCI-H460肺癌细胞, 在裸鼠腋下进行皮下移 植。 待肿瘤长到长度约为 1 cm 左右进行给药治疗, 将裸鼠分为三组: PBS 对照组、 盐酸阿霉素治疗组、 连阿霉素的材料治疗组, 每组为 3只荷瘤裸鼠。 每三天进行一次尾静脉给药, 给药阿霉素浓度为 3 mg/Kg体重, 每次给药前 用游标卡尺测量肿瘤的长度和宽度, 待给药 15天后, 将小鼠进行脱颈处死, 解剖取出肿瘤, 称取重量, 记录照片。 图 17a是肿瘤体积随着给药天数的变 化图, 肿瘤在给药 8天后,连阿霉素的材料治疗组与对照组具有明显的差异, 能够显著抑制肿瘤的生长, 而阿霉素治疗组与对照组只有少量的差异, 抑制 效果不明显。 图 17b是将肿瘤取出后的重量称量结果, 连阿霉素的材料治疗 组平均抑瘤率为 39%, 而单纯阿霉素的平均抑瘤率约为 23%, 从图 17c的肿 瘤实物照片, 与 PBS对照组相比, 连阿霉素的材料具有明显的抑瘤效果。 实施例 18 不同粒径和不同横向弛豫率 (r2 ) 磁性铁蛋白的仿生合成
利用纯化的人 H亚基铁蛋白为模板 (蛋白浓度 0.5- 1 mg/ml ) , 将亚铁盐 和氧化剂 H2O2加入重组人铁蛋白的溶液中进行反应, 控制 pH值为 8-9, 控制 温度为 60-80°C, 精确控制亚铁离子和蛋白的配比关系, 精确控制温度和 pH 值的恒定, 最终每个蛋白分子加入的铁原子数分别为 1000,3000, 5000, 7000, 10000; 反应完毕后, 进行排阻层析分离, 离心和分子筛纯化后得到蛋白结 构完整的单分散磁性铁蛋白颗粒。 弛豫时间的测定在 4.7 T MRI系统 ( Bruker ), PBS溶液,常温条件下测得,使用多层多自旋回波序列 (multi-slice multi-echo (MSME) sequence) ,使用的参数如下: field of view (FOV) = 5 cm
5 cm, matrix = 196 x 196, repetition time (TR) = 3000 ms, 10 echoes with echo time (TE) = 8.5, 17, 25.5, 34, 42.5, 51, 59.5, 68, 76.5, 85 ms.
图 18a,18b, 18c, 18d为反应过程中平均每个蛋白分子加入 1000个铁原子 所合成的磁性铁蛋白的透射电镜 (TEM) 照片、 粒径分布柱状图、 横向弛豫 率 (r2) 的测定图和低温(5 K)磁滞回线, 由图可知其平均粒径为 2.7 士 0.6 nm, 其 r2值为 23 mM- s— 图 18e,18f, 18g, 18h为反应过程中平均每个蛋白 分子加入 3000个铁原子所合成的磁性铁蛋白的透射电镜 (TEM) 照片、 粒径 分布柱状图、 横向弛豫率 (r2) 的测定图和低温 (5 K) 磁滞回线, 由图可知 其平均粒径为 3.3 士 0.8 nm, 其 r2值为 63 mM^.s— 1。 图 18i,18j, 18k, 181为反 应过程中平均每个蛋白分子加入 5000个铁原子所合成的磁性铁蛋白的透射 电镜 (TEM) 照片、 粒径分布柱状图、 横向弛豫率 (r2) 的测定图低温 (5 K) 磁滞回线, 由图可知其平均粒径为 5.2 士 1.0 nm, 其 r2值为 224 mM- s—1。 图 18m, 18n,18o, 18p为反应过程中平均每个蛋白分子加入 7000个铁原子所合成 的磁性铁蛋白的透射电镜 (TEM) 照片、 粒径分布柱状图、 横向弛豫率 (r2) 的测定图低温 (5 K) 磁滞回线, 由图可知其平均粒径为 5.4 士 1.1 nm, 其 r2值为 321 mM- s— 图 18q, 18r,18s为反应过程中平均每个蛋白分子加入 10000个铁原子所合成的磁性铁蛋白的透射电镜 (TEM) 照片、 粒径分布柱 状图低温 (5 K) 磁滞回线, 由图可知其平均粒径为 7.1 士 1.4 nm。 从 18d, 18h, 181, 18p, 18s所测得的不同粒度磁性铁蛋白的低温 (5K) 的磁滞回线 结果可以看出, 随着核粒径的增加, 其饱和磁化强度 Ms明显地得到了提高, 分别为 5.9 Am2/Kg总质量(1000), 15.2Am2/Kg(3000), 28.6 Am2/Kg(5000), 37.1 Am2/Kg (7000) , 51.8 Am2/Kg(10000),所有核粒径的磁滞回线都在 <1T 就能达到饱和, 表明其为软磁性的亚铁磁性矿物, 这种性质与原来所报道的 磁性铁蛋白 (Uchidaetal.,2006, Figure 7) 在 8 T (80000 Oe) 条件下都不能 饱和 (表明其核含有反铁磁性的矿物) 是完全不同的性质。 在同等核粒径条 件下, 其饱和磁化强度是原来报道的磁性颗粒的饱和磁化强度的 4倍, 其横 向弛豫率 r2是原来报道磁性颗粒的弛豫率 3倍多 (Uchida et al., 2006;2008 ) 。 图 18t用平均每个蛋白分子加入 5000个铁原子所合成的磁性铁蛋白(平均粒径 5.2nm)所做的电子能量损失谱(EELS ),其 L2峰位于 708 ev, L3峰位于 722 ev, 与磁铁矿的标准谱相对比, 是标准化学计量的磁铁矿颗粒。 而是先前报道的 铁蛋白合成磁性纳米粒子的电子能量损失谱 (EELS ) 其 L2峰位于 704 ev, L3 峰位于 715 ev ( Uchida et al., 2006 ) 。 因此, 综合横向弛豫率测量、 低温磁 滞回线以及电子能量损失谱等材料学鉴定的结果, 表明本发明合成的磁性铁 蛋白与原先报道的磁性铁蛋白纳米粒子具有不同的矿物相, 其磁学性质和磁 共振弛豫效能具有典型的区别。 实施例 19
高弛豫率 (r2 ) 磁性铁蛋白在乳腺癌分子影像中的应用
利用反应过程中平均每个蛋白分子加入 5000个铁原子所合成的磁性铁 蛋白 (平均粒径为 5.2 士 1.0 nm, r2值为 224 mM^.s"1 ) 作为造影剂, 选用 TfRl表达阳性的 MDA-MB-231乳腺癌细胞 (荷瘤于后背部的右侧) 和 TfRl表 达阴性的 MX-1乳腺癌细胞(荷瘤于后背部的左侧)建立裸鼠移植模型。 待肿 瘤长到 2-3 mm时, 将裸鼠进行呼吸麻醉, 尾静脉进行静脉针滞留, 放入 4.7 T MRI系统中以保证在磁共振扫描过程中, 裸鼠始终处于静止状态, 保证磁共 振扫描图片的匹配。尾静脉注射人 H亚基磁性铁蛋白(注射剂量: 20 mg Fe/Kg 小鼠体重) 。 扫描时间分别是注射人 H亚基磁性铁蛋白之前 (O h) , 注射后 连续扫描 6个小时, T2-加权成像用多层多自旋回波序列 (multi-slice multi-echo (MSME) sequence, 26 min), 使用的参数如下: FOV = 4 cm 4 cm, matrix = 256 256, TR = 3,000 ms, TE = 16, 32, 48, 64, 80, 96 ms, 20层, 层厚为 0.80 mm. T2*-加权成像用的是多梯度自旋回波序列 (multi-gradient echo (MGE) sequence ) 。 使用的参数如下: FOV = 4 cm 4 cm, matrix = 256 256, TR = 950 ms, 6 echoes with TE = 4.5, 11.95, 19.4, 26.85, 34.3, 41.75 ms, 20 层, 层 厚为 0.80 mm。 MR 图像处理用机器自带的 Bmker Paravision 4.0进行处理. 肿瘤的 MR信号改变利用肿瘤与周围正常肌肉的信号强度比值(TNR)进行定 量分析, TNR = SItumor I SImuscle, SItumor 是肿瘤部位的平均信号强度, SImuscle 是正常肌肉的平均信号强度. 相对 TNR的降低值用以下公式进行计算: TNR reduction (%) = (TNRpre -TNRt) I (TNR pre)。
图 19a-d是肿瘤大小约 3 mm的裸鼠的 T2加权 MRI图像, 图 19e-h是肿瘤大 小约 3 mm的裸鼠的 T2*加权 MRI图像, 结果表明, TfRl高表达的 MDA-MB-231 肿瘤注射人 H亚基磁性铁蛋白之后信号强度发生明显改变, 而 TfRl表达阴性 的 MX-1肿瘤信号强度没有明显的改变, 从而表明人 H亚基磁性铁蛋白这种体 内的组织靶向性是一种特异的、 是依赖于 TfRl表达的组织主动靶向性 MRI造 影剂。 图 19i和 19j是肿瘤原位观察的体视显微镜照片, 由图可知其肿瘤大小 约为 3 mm。 图 19k和 191是对 T2加权图像和 T2*加权图像进行定量分析(4只模 型统计) , MDA-MB-231肿瘤的 TNR降低值与 MX-1肿瘤的 TNR降低值具有明 显的差异 (Ρ = 0.029 ) 。 图 19m和 19η是磁共振扫描后的肿瘤的免疫组化图, 由图可知经过 DAB增强的普鲁士蓝染色, MDA-MB-231肿瘤组织呈现出明显 的染色阳性(棕色颗粒) , 表明有大量的铁颗粒富集在 MDA-MB-231肿瘤内, 铁富集的组织区域与 TfRl高表达的肿瘤组织高度对应, 表明磁性铁蛋白是一 种特异性的分子靶向性磁共振造影剂。而 MX-1肿瘤组织没有特异性的阳性染 色,表明其可能没有富集或者富集较少的材料。组织学上的铁染色结果与 MRI 结果高度一致, 表明磁性铁蛋白是一类具有靶向性的分子探针, 可用于监测 TfRl在体内表达情况的分子影像学。 实施例 20
高横向弛豫率 (r2) 磁性铁蛋白应用于微小乳腺癌的早期 MRI诊断 利用实施例 18反应过程中平均每个蛋白分子加入 5000个铁原子所合成 的磁性铁蛋白作为造影剂, 选用 TfRl表达阳性的 MDA-MB-231乳腺癌细胞建 立裸鼠移植模型, 当肿瘤长到大约 1 mm左右, 将裸鼠进行呼吸麻醉, 尾静脉 进行静脉针滞留, 放入 4.7 T MRI系统中以保证在磁共振扫描过程中, 裸鼠始 终处于静止状态, 保证磁共振扫描图片的匹配。 尾静脉注射人 H亚基磁性铁 蛋白 (注射剂量: 20 mg Fe/Kg小鼠体重) 。 扫描时间分别是注射人 H亚基磁 性铁蛋白之前 (O h) , 注射后连续扫描 6个小时, T2-加权成像用多层多自旋 回波序歹 [J (multi-slice multi-echo (MSME) sequence, 26 min), T2*-加权成像用 的是多梯度自旋回波序列 ( multi-gradient echo (MGE) sequence ) , 序列参数 与实施例 19相同。 MR 图像处理用机器自带的 Bmker Paravision 4.0进行处理. 肿瘤的 MR信号改变利用肿瘤与周围正常肌肉的信号强度比值(TNR)进行定 量分析, TNR = SItumor I SImuscle, SItumor 是肿瘤部位的平均信号强度, SImuscle 是正常肌肉的平均信号强度. 相对 TNR的降低值用以下公式进行计算: TNR reduction (%) = (TNRpre -TNRt) I (TNR pre)。
图 20a-20d是肿瘤大小约 1 mm的裸鼠的 T2加权 MRI图像, 图 20e-20h是肿 瘤大小约 1 mm的裸鼠的 T2*加权 MRI图像, 结果表明, 微小肿瘤在注射人 H亚 基磁性铁蛋白之后信号强度发生明显改变,尤其是 T2*加权像在肿瘤部位出现 肉眼可分辨的特定黑色区域。 图 20i和 20j是对 Τ2加权 MRI图像和 Τ2*加权像的 定量结果, 可见注射磁性铁蛋白后, 微小肿瘤的 TNR发生了明显的降低。 图 20k是皮下移植乳腺癌的原位体视显微镜照片, 肿瘤的长度大约为 0.6 mm。 图 201是磁共振扫描后的肿瘤的免疫组化图, 由图可知,微小肿瘤在小于 1 mm 没有明显的血管新生(CD31染色阴性) , 但是微小肿瘤能够富集大量的磁性 铁蛋白颗粒 (DAB增强的普鲁士蓝染色呈明显阳性) , 表明磁性铁蛋白颗粒 可能具有穿越血管内皮细胞屏障的功能。 实施例 21
铁蛋白作为荧光分子探针应用于微小乳腺癌的早期诊断
将纯化的人 H亚基铁蛋白与 NHs-Cy5.5荧光分子按照每个蛋白 24个分子 的比例进行孵育过夜, 从而铁蛋白外壳连接上大约 6-7个 Cy5.5荧光分子 (利 用荧光分光光度计鉴定连接的荧光分子数) , 将其尾静脉注射进入肿瘤大小 约 lmm的裸鼠乳腺癌移植模型, 裸鼠模型的左侧荷有 TfRl表达阴性的 MX-1 肿瘤, 而右侧荷有高表达 TfRl的 MDA-MB-231肿瘤。 分别在注射前、 注射后 1.5 h、 3 h和 6 h利用近红外荧光活体成像系统 (CRI Maestro ) 进行成像, 图 像处理利用成像系统自身携带的软件进行处理, 以注射 Cy5.5-铁蛋白前的同 一只裸鼠作为对照来处理图像。
图 21a-21d是注射 Cy5.5-铁蛋白注射前和注射后 1.5 h、 3 h和 6 h的荧光成 像后的照片, 图像结果明显地显示了注射 Cy5.5-铁蛋白后, TfRl高表达的 MDA-MB-231微小肿瘤区域 (裸鼠的右侧) 显示强的荧光, 能够与皮肤以及 肌肉背景明显地进行区分,而 TfRl表达阴性的 MX-1微小肿瘤的荧光成像不能 与皮肤和肌肉背景进行区分。 图 21e是将 MX-1肿瘤、 MDA-MB-231肿瘤及其 肿瘤周围的正常肌肉组织解剖出来后的白光照片, 由比例尺可知, 肿瘤大小 约 lmm。 图 21f是解剖出来组织的荧光照片, 其荧光强度 MDA-MB-231肿瘤明 显大于 MX-1肿瘤和正常的肌肉组织, 表明在具有肌肉荧光背景的条件下, Cy5.5-铁蛋白荧光分子探针可应用于近红外诊断高表达 TfRl的微小乳腺癌。 实施例 22
铁蛋白作为荧光分子探针应用于胰腺癌的近红外荧光活体成像
将 Cy5.5连接的人 H亚基铁蛋白通过尾静脉注射进入肿瘤大小约 3 mm的 裸鼠胰腺癌移植模型, 所用肿瘤细胞为 CFPAC-1人胰腺癌细胞系 (购自于 ATCC , 培养在南京凯基生物科技发展有限公司) 。 分别在注射前、 注射后 1.5 h、 6 h、 24 h、 72 h、 96 h利用近红外荧光活体成像系统 (CRI Maestro ) 进行成像。
图 22是注射 Cy5.5铁蛋白探针的近红外活体荧光成像图, 以及 96 h后解剖 出来的各个组织器官 (心、 肝、 脾、 肺、 肾、 脑、 胃、 肠、 骨头、 肿瘤、 肌 肉) 的荧光成像图, 由图可知 96 h后人 H亚基铁蛋白主要存在于肝脏和肿瘤, 但是由于荧光强度受表面积大小的影响, 肝脏表面积要远远大于肿瘤, 其具 体的分布量还需进一歩测量单位重量的组织裂解液的荧光强度进行进一歩 证明。 实施例 23
磁性铁蛋白应用于原位神经胶质瘤的早期 MRI诊断
将约 106个 U87MG人神经胶质瘤细胞(购自于 ATCC, 培养在南京凯基生 物科技发展有限公司) 稍微偏离大脑正中线原位穿透颅骨及其鼓膜接种于裸 鼠大脑的皮质, 大约 3-4天后开始进行磁共振成像, 将裸鼠进行呼吸麻醉, 尾 静脉进行静脉针滞留, 放入 4.7 T MRI系统中以保证在磁共振扫描过程中, 裸 鼠始终处于静止状态。首先尾静脉注射商品化的 Gd-DTPA造影剂(马根维显, 拜耳公司生产) 作为对照, 注射剂量为 0.1mmol/Kg, 在磁共振腔内连续扫描 2个小时, 待 Gd-DTPA完全代谢排出后, 尾静脉注射人 H亚基磁性铁蛋白 (注 射剂量: 20 mg Fe/Kg小鼠体重) , 连续扫描 3个小时, 然后 24小时再进行一 次扫描以排除血液的干扰。 注射 Gd-DTPA采用 MSME ^加权成像, 其所用的 参数如下: FOV = 2 cm 2 cm, matrix = 128 128, TR = 3,000 ms, TE = 350 ms, 20层, 层厚为 0.80 mm.注射磁性铁蛋白 T2加权成像采用 MSME序列, T2* 加权成像采用 MGE序列, 其序列参数与实施例 19基本相似, matrix : 128 X 128。
图 23a-23c是注射 Gd-DTPA前后的磁共振扫描图,可见注射商品化的 Gd-DTPA之后神经胶质瘤区域的信号强度并没有发生明显的改变。 图 23d-f 是注射磁性铁蛋白前后的 T2加权磁共振成像(回波时间 32ms)。 图 23g-23i是 T2* 加权磁共振成像 (回波时间 4.5ms ) 。 图 23j-231是第二个回波的 T2*加权磁共 振成像(回波时间 12ms ) 。 无论是 T2加权像还是 T2*加权像都清楚地显示了注 射磁性铁蛋白之后, 约 1 mm的神经胶质瘤区域发生了肉眼可见的明显变化。 24 h后, 排除了血液中的干扰, 肿瘤仍然能够清楚地显示低信号, 与注射前 相比, 其信号强度明显降低, 与周围正常组织拥有良好的组织对比度, 能够 明显地进行肿瘤组织区分。 为了验证磁共振成像的检测结果, 注射 24 h磁共 振扫描后, 对裸鼠进行心脏 PBS和 4%多聚甲醛灌注, 完整地取出大脑组织, 分别用 10%、 20%、 30%的蔗糖进行脱水, 用 OCT进行包埋于冰冻组织切片机 上进行横向切片 (20 μ ηι层厚) , 分别进行 Η&Ε染色来病理识别肿瘤组织, DAB-增强的普鲁士蓝染色染铁颗粒, 抗 TfRl抗体染 TfRl的表达。 实施例 24
磁性铁蛋白应用于原位胰腺癌的早期 MRI诊断
在裸鼠左侧胰腺部位剖开裸鼠腹腔, 将约 106个 CFPAC-1人胰腺癌细胞 (购自于 ATCC , 培养在南京凯基生物科技发展有限公司) 原位接种于脾脏 下面的裸鼠胰腺组织, 大约 3-4天后开始注射人 H亚基磁性铁蛋白, 进行丁2加 权和 T2*加权磁共振成像。 图 24a-24b和图 24c-24d分别是原位胰腺癌裸鼠移植 模型在注射磁性铁蛋白前后的 T2加权和 T2*加权磁共振成像图, 无论是 Τ2加权 像还是 Τ2*加权像都清楚地显示了注射磁性铁蛋白 24 h之后,约 1 mm的原位胰 腺癌区域发生了肉眼可见的明显变化, 能够明显地与周围正常组织区分。 注 射后 24 h和磁共振扫描后, 立即脱颈处死小鼠, 以俯卧位剖开小鼠腹腔, 沿 食管去除所有腹腔的组织器官, 将脾脏和胰腺暴露, 观察肿瘤在胰腺的生长 部位 (图 24e) 。 为进一歩验证肿瘤组织所在的部位, 将脾脏和胰腺组织共同 取出, 4%多聚甲醛固定, 分别用 10%、 20%、 30%的蔗糖进行脱水, 用 OCT 进行包埋于冰冻组织切片机上进行横向切片 (20 μ ηι层厚) , 分别进行 Η&Ε 染色来病理识别肿瘤组织, DAB-增强的普鲁士蓝染色染铁颗粒, 抗 TfRl抗 体染 TfRl的表达。 实施例 25
仿生合成铁蛋白-钆-铁双模式磁共振造影剂复合物
临床应用的 Gd类造影剂在 Ί 加权磁共振成像过程中, 能够使得病灶区域 信号强度得到提高, 显示出明亮区域。 由于人的肉眼对亮物质更加敏感, 因 而这类造影剂更加符合人们肉眼观察的需要。但是临床应用的 Gd类造影剂并 不具有靶向性, 而且其弛豫率低, 无法满足疾病如肿瘤早期诊断的需要。 本 发明使用具有肿瘤靶向性的铁蛋白外壳, 在其内腔中通过仿生矿化作用形成 礼-铁氧化物纳米材料。 利用纯化的人 H亚基铁蛋白为模板, 将亚铁盐、 礼盐 和氧化剂 H2O2加入重组人铁蛋白的溶液中进行反应, 控制 pH值为 8.5, 控制 温度为 65 °C, 精确控制亚铁离子、 礼粒子和蛋白的配比关系, 精确控制温度 和 pH值的恒定, 最终每个蛋白分子理论加入的铁原子数大约为 4850个, 加入 礼原子数大约为 150个, 理论掺入礼的比例大约为 3%。 反应完毕后, 进行排 阻层析分离,离心和分子筛纯化后得到蛋白结构完整的单分散铁蛋白-礼铁氧 化物纳米颗粒, , 利用电感耦合等离子体质谱测定蛋白壳内的铁原子数与礼 原子数, 利用 4.7 T磁共振成像系统对材料的纵向弛豫率 (ri ) 和横向弛豫率 ( r2 ) 进行测定。
通过 ICP-MS测定之后, 平均每个蛋白壳内大约装入 1140个铁原子和 31 个礼原子。
图 25a是对不同礼浓度 (0-1 mM ) 的商品化 Gd-DTPA (马根维显, 拜耳公 司生产)的^加权磁共振成像图 (回波时间为 TE = 8.5 ms,反转时间 TR = 300 ms ) 。 图 25b是对不同 Gd浓度 Gd-DTPA所测得的纵向弛豫时间的倒数 = 1/ )的线性关系图, 由图可求得在 4.7 T场强下 ,PBS溶液中所求得的纵向弛 豫率 ^大约为 5.9 mM- 1 · S— 1 。 图 25c是对不同礼浓度 (0-1 mM ) 的铁蛋白- 礼-铁复合物的1 加权成像图 (TE = 8.5 ms; TR = 300 ms ) , 图 25d是对不同 Gd浓度的铁蛋白-礼 -铁复合物所测得的纵向弛豫时间的倒数 = 1/T! ) 的 线性关系图, 由图可求得其纵向弛豫率 大约为 4.1 mM- ^ S— 图 25e是不同 铁浓度的 T2加权成像图, 由图可见铁蛋白-礼-铁复合物不仅具有礼类 Ί 造影 剂的功能, 在1 加权成像中使得信号强度增强, 图像显示明亮区域, 而且具 有铁氧化物的 Τ2造影剂功能, 使得信号强度减弱, 出现黑暗区域。 图 25f是对 不同铁浓度的铁蛋白-礼 -铁复合物所测得的横向弛豫时间的倒数 (R2 = 1/T2 ) 的线性关系图, 由图可求得其横向弛豫率 r2大约为 9.0 mM-1 · S— 实施例 26
铁蛋白-钆 -铁双模式磁共振造影剂复合物应用于特异性地早期诊断原位 肝癌
沿腹中线剖开裸鼠腹腔,将约 106个 QGY7701人肝癌细胞(购自于 ATCC, 培养在南京凯基生物科技发展有限公司) 原位接种于裸鼠的左侧肝脏组织包 膜内, 大约 3-4天后开始进行 Ί 加权、 T2加权和 T2*加权磁共振成像。图 26a-26b 是位肝癌裸鼠移植模型在注射铁蛋白-礼-铁双模式磁共振造影剂前后的 ^加 权磁共振成像图, 可见肿瘤区域表现出信号强度增高, 显示出明亮区域。 图 26c-26d和图 26e-26f分别是原位肝癌裸鼠移植模型在注射铁蛋白-礼-铁双模 式磁共振造影剂前后的 τ2加权和 τ2*加权磁共振成像图, 无论是 τ2加权像还是
Τ2*加权像都清楚地显示了注射磁性铁蛋白 96 h之后,约 5 mm的原位肝癌区域 发生了肉眼可见的明显变化, 能够明显地与周围正常组织区分。 实施例 27
铁蛋白-钆 -铁双模式磁共振造影剂复合物应用于特异性地早期诊断原位 神经胶质瘤
将约 106个 U87MG人神经胶质瘤细胞(购自于 ATCC , 培养在南京凯基生 物科技发展有限公司) 稍微偏离大脑正中线原位穿透颅骨及其鼓膜接种于裸 鼠大脑的皮质, 大约 3-4天后开始进行磁共振成像, 将裸鼠进行呼吸麻醉, 尾 静脉进行静脉针滞留, 放入 4.7 T MRI系统中以保证在磁共振扫描过程中, 裸 鼠始终处于静止状态。 分别进行1 加权和 T2*加权磁共振成像。 图 27a-27b是 位肝癌裸鼠移植模型在注射铁蛋白 -礼-铁双模式磁共振造影剂前后的^加权 磁共振成像图, 肿瘤区域只有稍微的信号强度增高, 显示出明亮区域。 图 27c-27d是原位神经胶质瘤裸鼠移植模型在注射铁蛋白-礼 -铁双模式磁共振造 影剂前后 T2*加权磁共振成像图, Τ2*加权像清楚地显示了注射铁蛋白-礼-铁 双模式磁共振造影剂 24h之后, 约 2 mm的原位神经胶质瘤区域发生了肉眼可 见的明显变化, 信号强度明显降低, 能够明显地与周围正常组织区分。 实施例 28 合成铁蛋白包裹 Gd-DTPA的复合物及其在原位神经胶质瘤早期诊断中 的应用
将纯化的人 H亚基铁蛋白使用盐酸胍 (1-7 M) 或者尿素 (2-8 M) 等变 性剂将铁蛋白进行部分变性或全部变性, 使得其亚基进行部分解聚或完全解 聚, 每个蛋白分子大约加入商品化的 Gd-DTPA约为 2000个礼原子。 然后进行 透析除去变性剂, 使其亚基重新聚合形成笼形结构, 将 Gd-DTPA包裹进入蛋 白空腔中, 利用离心、分子筛层析或阴离子交换的方法除去未复性的铁蛋白。 利用 BCA蛋白定量试剂盒进行蛋白定量, 利用 ICP-MS 测定每个蛋白分子所 包裹的 Gd原子数。通过 ICP-MS测定后,每个蛋白分子大约包裹 18个 Gd-DTPA 分子。利用 U87MG人神经胶质瘤细胞原位接种于裸鼠大脑的皮质建立裸鼠神 经胶质瘤原位模型,大约 3-4天后开始进行磁共振成像,将裸鼠进行呼吸麻醉, 尾静脉进行静脉针滞留, 放入 4.7 T MRI系统中以保证在磁共振扫描过程中, 裸鼠始终处于静止状态。 尾静脉注射人 H亚基铁蛋白包裹 Gd-DTPA的复合物 (注射剂量按照 Gd量进行定量, gP 0.1mmol/Kg ) , 连续扫描 2个小时, 然后
24小时再进行一次扫描以排除血液的干扰。 图 28a是利用人 H亚基铁蛋白包裹 Gd-DTPA的流程示意图。图 28b-28d 是注射铁蛋白包裹 Gd-DTPA复合物前后的 Ί 加权磁共振成像,图像清楚地显 示了注射磁性铁蛋白 24之后,约 1 mm大小的神经胶质瘤区域发生了肉眼可 见的明显变化,显示出高信号区域 (明亮区域) , 与周围正常组织进行明显区 分。 在本发明提及的所有文献都在本申请中引用作为参考, 就如同每一篇文 献被单独引用作为参考那样。 此外应理解, 在阅读了本发明的上述讲授内容 之后, 本领域技术人员可以对本发明作各种改动或修改, 这些等价形式同样 落于本申请所附权利要求书所限定的范围。

Claims

M ^ ^
l. 一种蛋白壳包裹的磁性纳米颗粒或其衍生物在制备成像定位诊断试剂和 治疗物质中的应用。
2. 如权利要求 1所述的应用, 其特征在于, 所述成像定位诊断试剂选自磁 共振造影剂或分子探针。
3. 如权利要求 2所述的应用, 其特征在于, 所述的磁共振造影剂或分子探 针含有所述蛋白壳包裹的磁性纳米颗粒或衍生物。
4. 如权利要求 1所述的蛋白壳包裹的磁性纳米颗粒或其衍生物, 其特征在 于, 所述的磁性纳米颗粒或其衍生物的内核的成分为含有金属元素的化合物, 所述金属元素选自礼、 锰、 铁、 钴和 /或镍元素。
5. 如权利要求 1所述的应用, 其特征在于, 所述蛋白壳包裹的磁性纳米颗 粒或其衍生物的蛋白壳可以特异性地与组织或细胞表面表达的受体结合。
6. 如权利要求 5所述的应用,其特征在于,所述蛋白壳选自铁蛋白( ferritin), 伴侣蛋白、 DNA结合蛋白、 趋磁细菌的磁小体膜蛋白或具有纳米空腔结构的病 毒蛋白壳。
7. 如权利要求 6所述的应用, 其特征在于, 所述铁蛋白包括天然铁蛋白和 基因工程重组铁蛋白, 其中天然铁蛋白来源于真核生物或原核生物, 基因工程 重组铁蛋白包括重组铁蛋白的全重 (H) 链亚基铁蛋白、 全轻 (L) 链亚基铁蛋 白、 重组铁蛋白的重链和轻链以任意比例自组装的铁蛋白、 以及这些蛋白亚基 的突变体或融合蛋白。
8. 如权利要求 1所述的应用, 其特征在于, 所述蛋白壳包裹的磁性纳米 颗粒或其衍生物通过下述歩骤制备得到:
(a)以重组人铁蛋白为模板, 将人铁蛋白的 H亚基和 L亚基的全长 cDNA分 别克隆和构建到 pETllb质粒上;
(b)将含有人铁蛋白 H 亚基和 L 亚基的重组质粒分别转化或者共转化细胞 BL21(DE3)plysS, 加入异丙基 - β -D-硫代半乳糖苷激活 T7启动子, 诱导表达;
(c)表达结束后进行超声破碎释放蛋白;
(d)对蛋白进行分离和纯化;
(e)将形成内核成分的金属盐类和氧化剂加入重组人铁蛋白的溶液中进行反 应, 控制 pH值为 7-11, 控制温度为 25-80°C, 在重组人铁蛋白内部形成强磁性 的纳米颗粒; 形成内核成分的盐类的浓度为每次加入的金属元素原子数与蛋白 分子数之比在 10-200 之间, 使每个蛋白分子加入的金属元素原子数可在 100-15000之间; 氧化剂的浓度为每次加入氧化剂的分子数与加入金属元素离子 的原子数之比为 2: 1或 3: 1 ; 蛋白浓度 >0.25mg/ml;
(f)排阻或离子交换层析进行分离, 离心和分子筛或阴离子交换层析纯化后 得到所述蛋白壳包裹的磁性纳米颗粒或其衍生物。
9.如权利要求 8所述的应用, 其特征在于, 歩骤 (e)控制 pH值为 8-9。
10. 如权利要求 8所述的应用, 其特征在于, 歩骤 (e)控制温度为 35-70°C。
11. 如权利要求 8所述的应用, 其特征在于, 所述形成内核成分的金属盐 类选自亚铁盐、 铁盐、 礼盐、 锰盐、 钴盐和 /或镍盐。
12. 如权利要求 8所述的应用, 其特征在于, 所述金属元素选自礼、 锰、 铁、 钴和 /或镍元素。
13. 如权利要求 8所述的应用, 其特征在于, 所述氧化剂选自过氧化氢、 氧气、 或通过反应可以产生过氧化氢或氧气的物质。
14. 如权利要求 8所述的应用, 其特征在于, 每个蛋白分子加入的金属元 素原子数在 140-10000之间。
15. 如权利要求 8所述的应用, 其特征在于, 每个蛋白分子加入的礼原子 数在 100— 200, 和 /或每个蛋白分子加入的铁原子数在 500-10000之间。
16.如权利要求 1所述的应用, 其特征在于, 所述治疗物质为治疗表达铁蛋 白受体的疾病的物质。
17. 如权利要求 16所述的应用, 其特征在于, 所述物质连接有包裹磁性纳 米颗粒的蛋白壳。
18.如权利要求 16所述的应用, 其特征在于, 所述物质选自化疗药物、 放射 性同位素、 细胞因子、 核酸、 抗癌或抗炎症药物。
19.如权利要求 16-18任一所述的应用, 其特征在于, 所述的表达铁蛋白受 体的疾病为肿瘤和 /或炎症。
20.如权利要求 19所述的应用,所述的肿瘤选自肝癌、白血癌、神经胶质瘤、 肺癌、 结肠癌、 胰腺癌或乳腺癌。
21. 一种蛋白壳包裹的磁性纳米颗粒或其衍生物在制备用于诊断表达铁蛋 白受体的疾病的磁性造影剂和分子探针中的应用。
22. 如权利要求 21所述的应用, 其特征在于, 所述的表达铁蛋白受体的疾 病为肿瘤、 和 /或炎症。
23. 如权利要求 22所述的应用, 其特征在于, 所述的肿瘤选自乳腺癌、 肝 癌、 肺癌、 结肠癌、 胰腺癌、 神经胶质瘤、 白血癌、 或前列腺癌。
24. 一种蛋白壳包裹的磁性纳米颗粒或其衍生物,其特征在于, 所述的磁性 纳米颗粒或其衍生物的内核的成分为含有金属元素的化合物, 所述金属元素选 自礼、 锰、 铁、 钴和 /或镍元素。
25. 如权利要求 24所述的蛋白壳包裹的磁性纳米颗粒或其衍生物,其特征 在于, 所述的磁性纳米颗粒或其衍生物的内核的成分是为含有铁元素的化合物。
26. 如权利要求 24所述的蛋白壳包裹的磁性纳米颗粒或其衍生物,其特征 在于, 所述的磁性纳米颗粒或其衍生物的内核的成分是为含有礼元素的化合物。
27. 如权利要求 24所述的蛋白壳包裹的磁性纳米颗粒或其衍生物, 其特征 在于, 所述的磁性纳米颗粒或其衍生物的内核的成分是为含有铁元素和锰元素 的化合物。
28. 如权利要求 24所述的蛋白壳包裹的磁性纳米颗粒或其衍生物, 其特 征在于, 所述的磁性纳米颗粒或其衍生物的内核的成分是为含有铁元素和礼元 素的化合物。
29. 如权利要求 24-28任一所述的蛋白壳包裹的磁性纳米颗粒或其衍生物, 其特征在于, 所述蛋白壳选自铁蛋白 (ferritin 伴侣蛋白、 DNA结合蛋白、 趋 磁细菌的磁小体膜蛋白或具有纳米空腔结构的病毒蛋白壳; 所述蛋白壳包裹的 磁性纳米颗粒或其衍生物的蛋白壳可以特异性地与组织或细胞表面表达的受体
^口 口 。
30. 如权利要求 29所述的蛋白壳包裹的磁性纳米颗粒或其衍生物, 其特征 在于, 所述铁蛋白包括天然铁蛋白和基因工程重组铁蛋白, 其中天然铁蛋白来 源于真核生物或原核生物, 基因工程重组铁蛋白包括重组铁蛋白的全重(H)链 亚基铁蛋白、 全轻 (L) 链亚基铁蛋白、 重组铁蛋白的重链和轻链以任意比例自 组装的铁蛋白、 以及这些蛋白亚基的突变体或融合蛋白。
31. 一种如权利要求 24-30 任一所述的蛋白壳包裹的磁性纳米颗粒或其 衍生物的制备方法, 其特征在于, 所述方法包括歩骤:
(a)以重组人铁蛋白为模板, 将人铁蛋白的 H亚基和 L亚基的全长 cDNA分 别克隆和构建到质粒 pETllb上; (b)将含有人铁蛋白 H 亚基和 L 亚基的重组质粒分别转化或者共转化细胞
BL21(DE3)plysS, 加入异丙基 - β -D-硫代半乳糖苷激活 T7启动子, 诱导表达;
(c)表达结束后进行超声破碎释放蛋白;
(d)对蛋白进行分离和纯化;
(e)将形成内核成分的盐类和氧化剂加入重组人铁蛋白的溶液中进行反应, 控制 pH值为 7-11, 控制温度为 25-80°C, 在重组人铁蛋白内部形成强磁性的纳 米颗粒; 形成内核成分的盐类的浓度为每次加入的金属元素原子数与蛋白分子 数之比在 10-200之间, 使每个蛋白分子加入的金属元素原子数在 100-11000之 间; 氧化剂的浓度为每次加入氧化剂的分子数与加入金属元素离子的原子数之 比为 2 : 1或 3 : 1 ; 蛋白浓度 >0.25 mg/ml;
(f)排阻或离子交换层析进行分离, 离心和分子筛或阴离子交换层析纯化后 得到所述蛋白壳包裹的磁性纳米颗粒或其衍生物。
32.如权利要求 31 所述的制备方法, 其特征在于, 歩骤 (e)控制 pH值为
8-9。
33. 如权利要求 31 所述的制备方法, 其特征在于, 歩骤 (e)控制温度为
35-70°C。
34. 如权利要求 31所述的制备方法, 其特征在于, 所述形成内核成分的 盐类选自亚铁盐、 铁盐、 礼盐、 锰盐、 钴盐和 /或镍盐。
35. 如权利要求 31所述的制备方法,其特征在于,所述金属元素选自礼、 锰、 铁、 钴和 /或镍元素。
36. 如权利要求 35 所述的制备方法, 其特征在于, 所述金属元素是铁 元素。
37. 如权利要求 35 所述的制备方法, 其特征在于, 所述金属元素是锰 元素。
38. 如权利要求 35 所述的制备方法, 其特征在于, 所述金属元素是礼 元素。
39. 如权利要求 35 所述的制备方法, 其特征在于, 所述金属元素是锰 元素禾口铁元素。
40. 如权利要求 35 所述的制备方法, 其特征在于, 所述金属元素是礼 元素和铁元素。
41. 如权利要求 31所述的制备方法, 其特征在于, 所述氧化剂选自过氧 化氢、 氧气、 或通过反应可以产生过氧化氢或氧气的物质。
42. 如权利要求 31所述的制备方法, 其特征在于, 每个蛋白分子加入的 金属元素原子数在 140-10000之间。
43. 如权利要求 31所述的制备方法, 其特征在于, 每个蛋白分子加入的 礼原子数在 100— 200, 和 /或每个蛋白分子加入的铁原子数在 500- 10000 之 间。
PCT/CN2013/070772 2012-01-19 2013-01-21 一种具有细胞靶向性的磁性纳米材料及其生物医学应用 WO2013107415A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13739005.0A EP2805733A4 (en) 2012-01-19 2013-01-21 MAGNETIC CELL-RELATED NANOMATERIAL AND BIOMEDICAL USES THEREOF
US14/373,083 US20150093335A1 (en) 2012-01-19 2013-01-21 Cell-targeted magnetic nano-material and biomedical uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210018276.3 2012-01-19
CN201210018276 2012-01-19

Publications (1)

Publication Number Publication Date
WO2013107415A1 true WO2013107415A1 (zh) 2013-07-25

Family

ID=48798671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070772 WO2013107415A1 (zh) 2012-01-19 2013-01-21 一种具有细胞靶向性的磁性纳米材料及其生物医学应用

Country Status (4)

Country Link
US (1) US20150093335A1 (zh)
EP (1) EP2805733A4 (zh)
CN (1) CN103212093B (zh)
WO (1) WO2013107415A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015135597A1 (en) * 2014-03-12 2015-09-17 Cic Nanogune - Asociación Centro De Investigación Cooperativa En Nanociencias Uses and methods for delivery to the nucleus
CN114990022A (zh) * 2022-06-23 2022-09-02 中南大学 一种利用嗜中高温嗜酸古菌合成磁性纳米材料的方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104013599B (zh) * 2014-05-28 2016-11-23 中国科学院生物物理研究所 一种肿瘤特异性靶向给药的药物载体及其应用
CN105288666B (zh) * 2015-11-03 2018-10-12 中国科学院高能物理研究所 一种水溶性蛋白包覆的磁性纳米颗粒及其制备方法
WO2017153996A1 (en) * 2016-03-08 2017-09-14 The National Institute for Biotechnology in the Negev Ltd. Peptides derived from magnetotactic bacteria and use thereof
RU2659949C1 (ru) * 2017-11-09 2018-07-04 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ получения препарата на основе магнитных наночастиц (МНЧ) оксида железа для МРТ-диагностики новообразований
CN110237047B (zh) * 2018-03-07 2021-12-21 昆山新蕴达生物科技有限公司 铁蛋白包载药物的方法及其产物
CN110237262B (zh) * 2018-03-07 2021-06-08 昆山新蕴达生物科技有限公司 HFn包载铂类药物的方法及其产物
CN110237263B (zh) * 2018-03-07 2022-06-17 昆山新蕴达生物科技有限公司 HFn包载阿霉素的方法及其产物
CN108478810B (zh) * 2018-04-11 2020-10-30 江苏省人民医院(南京医科大学第一附属医院) 一种多模态铁蛋白纳米造影剂及其制备方法和应用
CN110179997B (zh) * 2018-08-08 2020-02-14 昆山新蕴达生物科技有限公司 一种用于糖尿病治疗的纳米药物载体及其组合药物
CN109319891B (zh) * 2018-10-22 2021-03-26 苏州大学 一种磁性纳米材料及其制备方法与在放射性元素处理中的应用
CN109486827A (zh) * 2018-12-04 2019-03-19 南京林业大学 一种肿瘤归巢穿膜肽tLyP-1修饰的去铁蛋白纳米笼及其制备方法
CN110272500B (zh) * 2019-07-09 2020-07-14 中国科学院地质与地球物理研究所 一种展示抗体的铁蛋白纳米材料及其制备方法和应用
CN110819651A (zh) * 2019-11-27 2020-02-21 中国科学院地质与地球物理研究所 一种耐热型铁蛋白的制备方法及应用
CN111099662B (zh) * 2019-12-17 2021-02-05 中国农业大学 利用磁小体制备哑铃型复合纳米材料的方法
US20230203111A1 (en) * 2020-05-19 2023-06-29 Kunshan Xinyunda Biotech Co., Ltd. Ferritin Heavy Chain Subunit-Based Conjugates and Application Thereof
CN113018462B (zh) * 2021-03-22 2021-12-14 中国科学院化学研究所 一种基于趋磁细菌的高效肿瘤靶向性t1-t2双模成像造影剂的制备方法和应用
CN113501883A (zh) * 2021-07-05 2021-10-15 北京理工大学 一种金属离子递送载体及其制备方法和应用
CN113567538B (zh) * 2021-07-27 2022-06-21 四川大学华西医院 一种Au-Pd/wtE.coli纳米材料的代谢组学分析方法
CN113533409B (zh) * 2021-08-04 2024-01-05 东南大学 一种用于定量检测液体生物样本中特定组分的弛豫核磁共振方法
CN114042172B (zh) * 2021-11-11 2023-02-03 上海市第一人民医院 pH响应性T1-T2双激活纳米探针及其制备方法和应用
CN115014835B (zh) * 2022-06-10 2023-04-18 河北农业大学 一种大白菜茎尖冷冻切片的制备方法
CN118178689A (zh) * 2024-05-17 2024-06-14 中国科学院自动化研究所 一种磁性铁蛋白用于制备基因激活型磁粒子成像示踪剂的用途

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102115746A (zh) * 2009-12-30 2011-07-06 中国科学院地质与地球物理研究所 一种单分散性磁性人铁蛋白的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8217143B2 (en) * 2006-07-13 2012-07-10 National Institute Of Aerospace Associates Fabrication of metal nanoshells
GB0706217D0 (en) * 2007-03-29 2007-05-09 Univ Bristol Functional protein crystals

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102115746A (zh) * 2009-12-30 2011-07-06 中国科学院地质与地球物理研究所 一种单分散性磁性人铁蛋白的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
REN, SHUNLIN ET AL: "Transferrin receptors in human malignant tumors", TUMOR, vol. 7, no. 5, September 1987 (1987-09-01), pages 200 - 202, XP008174643 *
SAMBROOK ET AL.: "Molecular Cloning: Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
See also references of EP2805733A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015135597A1 (en) * 2014-03-12 2015-09-17 Cic Nanogune - Asociación Centro De Investigación Cooperativa En Nanociencias Uses and methods for delivery to the nucleus
CN114990022A (zh) * 2022-06-23 2022-09-02 中南大学 一种利用嗜中高温嗜酸古菌合成磁性纳米材料的方法

Also Published As

Publication number Publication date
US20150093335A1 (en) 2015-04-02
EP2805733A4 (en) 2015-08-26
CN103212093A (zh) 2013-07-24
CN103212093B (zh) 2016-09-28
EP2805733A1 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
WO2013107415A1 (zh) 一种具有细胞靶向性的磁性纳米材料及其生物医学应用
Colombo et al. Biological applications of magnetic nanoparticles
Figuerola et al. From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications
Dave et al. Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: a versatile and evolving technology
Cho et al. Cetuximab-conjugated magneto-fluorescent silica nanoparticles for in vivo colon cancer targeting and imaging
Xie et al. Iron oxide nanoparticle platform for biomedical applications
Zhang et al. In Vivo MR Imaging of Glioma Recruitment of Adoptive T‐Cells Labeled with NaGdF4‐TAT Nanoprobes
AU2004244811B9 (en) Magnetic nanoparticles linked to a ligand
Lee et al. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents
Liu et al. PEGylated FePt@ Fe2O3 core-shell magnetic nanoparticles: potential theranostic applications and in vivo toxicity studies
JP2009531296A (ja) 造影剤、知能型造影剤、同時診断及び治療のための薬物伝達体及び/又はタンパク質分離用磁性ナノ複合体
Chen et al. Improving sensitivity of magnetic resonance imaging by using a dual-targeted magnetic iron oxide nanoprobe
Nandwana et al. Theranostic magnetic nanostructures (MNS) for cancer
KR20090119867A (ko) 산화망간 나노입자를 포함하는 자기공명영상 티1 조영제
KR101047422B1 (ko) 형광 자성 실리카 나노입자, 그 제조방법 및 상기를포함하는 생물의학적 조성물
KR101244140B1 (ko) 양전하성의 초상자성 산화철 나노입자, 이를 이용한 조영제 및 그 제조방법
Mandal et al. Collagen based magnetic nanobiocomposite as MRI contrast agent and for targeted delivery in cancer therapy
CN106880846B (zh) 一种肿瘤靶向多功能纳米递药系统及制备方法和用途
WO2010060212A1 (en) Single-domain antibody targeted formulations with superparamagnetic nanoparticles
Bai et al. Modular design of Bi-specific nanoplatform engaged in malignant lymphoma immunotherapy
CN109620972B (zh) 一种用于肺癌诊断的t1-t2双模态靶向成像造影剂及制备方法
KR101233439B1 (ko) 파이렌 고분자를 이용한 자극 감응형 자성 나노복합체 및 상기 나노복합체를 포함하는 조영제 조성물
CN112870387B (zh) 一种磁性纳米药物载体及其制备方法和应用
KR20080071463A (ko) 산화망간 나노입자를 포함하는 자기공명영상 티1 조영제
Cao et al. Bioinspired magnetic nanoparticles for biomedical applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13739005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013739005

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14373083

Country of ref document: US