WO2013107242A1 - 一种无机防火保温材料及其制品 - Google Patents
一种无机防火保温材料及其制品 Download PDFInfo
- Publication number
- WO2013107242A1 WO2013107242A1 PCT/CN2012/087031 CN2012087031W WO2013107242A1 WO 2013107242 A1 WO2013107242 A1 WO 2013107242A1 CN 2012087031 W CN2012087031 W CN 2012087031W WO 2013107242 A1 WO2013107242 A1 WO 2013107242A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- perlite
- fireproof
- vermiculite
- inorganic
- thermal insulation
- Prior art date
Links
- 239000012774 insulation material Substances 0.000 title claims abstract description 28
- 238000004079 fireproofing Methods 0.000 title abstract description 6
- 239000010451 perlite Substances 0.000 claims abstract description 62
- 235000019362 perlite Nutrition 0.000 claims abstract description 62
- 238000009413 insulation Methods 0.000 claims abstract description 43
- 239000010455 vermiculite Substances 0.000 claims abstract description 43
- 229910052902 vermiculite Inorganic materials 0.000 claims abstract description 43
- 235000019354 vermiculite Nutrition 0.000 claims abstract description 43
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 37
- 238000002156 mixing Methods 0.000 claims abstract description 32
- 239000000463 material Substances 0.000 claims abstract description 29
- 239000004927 clay Substances 0.000 claims abstract description 21
- 239000011230 binding agent Substances 0.000 claims abstract description 16
- 239000002245 particle Substances 0.000 claims abstract description 11
- 239000011810 insulating material Substances 0.000 claims description 31
- 239000000853 adhesive Substances 0.000 claims description 26
- 230000001070 adhesive effect Effects 0.000 claims description 26
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical group [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 26
- -1 sodium fluorosilicate Chemical group 0.000 claims description 25
- 239000008187 granular material Substances 0.000 claims description 7
- 239000004568 cement Substances 0.000 claims description 6
- 235000019353 potassium silicate Nutrition 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 230000001007 puffing effect Effects 0.000 claims 1
- 238000002485 combustion reaction Methods 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 238000003825 pressing Methods 0.000 abstract description 3
- 238000004078 waterproofing Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 17
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- 239000003063 flame retardant Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- RLQWHDODQVOVKU-UHFFFAOYSA-N tetrapotassium;silicate Chemical compound [K+].[K+].[K+].[K+].[O-][Si]([O-])([O-])[O-] RLQWHDODQVOVKU-UHFFFAOYSA-N 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 239000004567 concrete Substances 0.000 description 4
- 239000011162 core material Substances 0.000 description 4
- 230000009970 fire resistant effect Effects 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 229920002635 polyurethane Polymers 0.000 description 4
- 239000004814 polyurethane Substances 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000004321 preservation Methods 0.000 description 3
- 241000219198 Brassica Species 0.000 description 2
- 235000003351 Brassica cretica Nutrition 0.000 description 2
- 235000003343 Brassica rupestris Nutrition 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- QKSKPIVNLNLAAV-UHFFFAOYSA-N bis(2-chloroethyl) sulfide Chemical compound ClCCSCCCl QKSKPIVNLNLAAV-UHFFFAOYSA-N 0.000 description 2
- 239000011449 brick Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 235000010460 mustard Nutrition 0.000 description 2
- 238000004091 panning Methods 0.000 description 2
- 229910001562 pearlite Inorganic materials 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000011083 cement mortar Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 231100000517 death Toxicity 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229940104869 fluorosilicate Drugs 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K21/00—Fireproofing materials
- C09K21/02—Inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/02—Treatment
- C04B20/04—Heat treatment
- C04B20/06—Expanding clay, perlite, vermiculite or like granular materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/24—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
- C04B28/26—Silicates of the alkali metals
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/78—Heat insulating elements
- E04B1/80—Heat insulating elements slab-shaped
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/20—Resistance against chemical, physical or biological attack
- C04B2111/28—Fire resistance, i.e. materials resistant to accidental fires or high temperatures
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/7675—Insulating linings for the interior face of exterior walls
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
- Y10T428/259—Silicic material
Definitions
- the invention relates to a material which can be both fireproof and heat-insulating and a product composed thereof.
- the material can be used for the external wall, functions as heat insulation and fireproof, and can also be used for partitioning the interior wall and the inner wall of the building. And use in ships and other occasions.
- the exterior walls of the building are made of thermal insulation materials.
- these exterior wall insulation materials are not provided with fireproof performance and have great fire hazards.
- China is rich in perlite resources. Perlite is brittle after being puffed, easy to smash, low in strength, but has good thermal insulation properties. Vermiculite is also an excellent thermal insulation material. China is also the second largest resource country in the world. The high temperature expansion of vermiculite is also a good thermal insulation material. Although China has a large amount of mineral resources of perlite and vermiculite, it has not been well utilized, which makes the existing insulation structure of external walls more flammable materials, such as benzene board, extruded board, polyurethane and so on.
- the object of the present invention is to provide an inorganic fireproof thermal insulation material and a product thereof for overcoming the deficiencies of the prior art, which can be used for external walls, and has the functions of heat insulation and fire prevention. It can also be used for interior walls and interior walls of buildings. Use for partitions, ships, etc. To meet the requirements of both insulation and fire resistance.
- the invention relates to an inorganic fireproof heat insulating material, which comprises the following components by weight ratio: 5 parts of component A; 5. 5 - 7 parts of adhesive; 1 part; 1. 5 parts of curing agent; The granules of the granules of the granules are 0. 5 ⁇
- the toughness of perlite is 80 kg/m3 ⁇ 200 kg/m3, and the weight of meteorite is
- the binder is an inorganic binder; the material is obtained by mixing the above components and pouring them into a forming mold.
- the curing agent is sodium fluorosilicate.
- the inorganic binder is water glass.
- a further technical solution is as follows: further comprising clay, the fraction of the clay being 15% to 25% of the number of pearlite; the clay is first mixed with the perlite, and then mixed with other components for mold pressing .
- the insulating material is a perlite expanded particle which is expanded at a temperature of 850 t> ⁇ 135 CTC, and the vermiculite expanded particles and an inorganic binder which are puffed at a temperature of 700 ° C to 1250 ° C
- the curing agent is processed at a temperature of TC ⁇ 245 ° C in a cavity by pressurization to 18-50 MPa and holding for 15 to 60 minutes.
- An inorganic fireproof thermal insulation board comprises a plate body, wherein the plate body is composed of an inorganic fireproof heat insulating material.
- a further technical solution is as follows: further comprising a decorative layer disposed on the surface of the board body.
- An inorganic fireproof and thermal insulation external wall structure comprises a wall body, and the surface of the wall body is provided with a fireproof and heat insulation layer composed of an inorganic fireproof and heat insulating material.
- the wall is a wooden wall, a cement wall or a metal wall.
- the wall body is a cylindrical structure
- the fireproof and heat insulation layer is composed of two or more curved fireproof thermal insulation boards.
- the beneficial effects of the present invention compared with the prior art are as follows: after the high temperature expansion of the perlite and vermiculite, the mixture of the adhesive and the puree (ie, clay) and the curing agent is passed through 70 ° C to 245 T. The temperature is pressed and formed in a specific mold to form a fireproof and heat insulating material which has good fireproof performance and heat preservation performance, and the density thereof can be about 0.22 tons/m3, the combustion performance is A1 grade, and the thermal conductivity is 0. 035 ⁇ 0. 0664W/ (m. k) (25 V ) ; The fireproof insulation board composed of expanded perlite, vermiculite, and panning mud (ie clay) improves the strength and solves the waterproof of the outer wall.
- the fireproof and heat insulating material of the invention does not contain harmful substances, and is an all-environmental product, which is very suitable for external thermal insulation of various building structures, and can also be used for structures in buildings, such as lightweight composite partitions for building structures.
- the core material of the wall and the composite wall panel ie color steel plate
- can also be used for the core material of the cabin partition stainless steel plate).
- FIG. 1 is a schematic view showing a processing flow of a specific embodiment of an inorganic fireproof thermal insulation material according to the present invention
- FIG. 2 is a cross-sectional structural view showing a specific embodiment of an inorganic fireproof thermal insulation board according to the present invention
- FIG. 3 is a cross-sectional structural view of a first embodiment of an inorganic fireproof and heat-insulating exterior wall structure according to the present invention
- FIG. 4 is a cross-sectional structural view of a second embodiment of an inorganic fireproof and heat-insulating exterior wall structure according to the present invention.
- the invention relates to an inorganic fireproof thermal insulation material, which comprises the following components by weight ratio: 5 parts of component A; 5. 5-7 parts of adhesive; 1 ⁇ 1.5 parts of curing agent; The granules of the perlite and the vermiculite are granulated, and the granules are granulated.
- the granules are 0. 5 ⁇ Siim And 0. 5 ⁇ 20mm; the bulk density of perlite is 80 kg/m3 ⁇ 200 kg/m3, and the weight of vermiculite is 100 kg/m3 ⁇ 200 kg/m3; the adhesive is inorganic
- the material is obtained by mixing the above components and pouring them into a forming mold.
- the perlite expanded particles are expanded at a temperature of 850 ° C to 1350 ° C; the expanded particles of the vermiculite are expanded at a temperature of 700 t: ⁇ 1250 ° C and the inorganic binder and curing agent are at 7 CTC: ⁇ 245 It is processed by pressurizing to 18-50 MPa in the cavity at a temperature of ° C for 15 to 60 minutes.
- the inorganic adhesive is water glass (water glass is commonly known as saponin, chemical name is sodium silicate, sodium water glass can also be used, potassium water glass can also be used); curing agent is sodium fluorosilicate. The processing flow is shown in Figure 1.
- Example 1 was prepared by mixing the components of the following weights:
- Vermiculite 2Kg volumetric capacity 130 kg / cubic meter
- the curing agent lKg is sodium fluorosilicate.
- the forming pressure was 20 MPa, the forming time was 30 minutes, and the temperature was 200 to 245 ° C. After testing, the density of the fireproof heat insulating material finally formed was 222 Kg/m 3 .
- Example 2 was prepared by mixing the following weight components:
- Vermiculite 2Kg volumetric capacity 130 kg I cubic meters;
- the curing agent 3Kg is sodium fluorosilicate.
- the forming pressure of 20Mpa, forming time is 40 minutes, the temperature is 190 ⁇ 230 ° C, after testing, the final molded fire insulation material density of 219. 5Kg / m 3 .
- Example 5 after mixing with the following weight components to make - perlite 1. 5K g , a bulk density of 125 kg / cubic meter;
- the binder is 8. 5K g , which is sodium water glass;
- the curing agent is 0.9 K g , which is sodium fluorosilicate.
- the forming pressure is 20 MPa
- the forming time is 45 minutes
- the temperature is 210 to 245 ° C.
- the density of the fireproof and heat insulating material finally formed is 238 K g /m s .
- Example 4 was prepared by mixing the following weight components:
- Meteorite 1 5Kg, 135 kg I cubic meter; , , , ,
- the curing agent is 0.7 Kg, which is sodium fluorosilicate.
- the forming pressure was 20 MPa, the forming time was 40 minutes, and the temperature was 180 to 215 ° C. After testing, the density of the fireproof heat insulating material finally formed was 206 Kg/m 3 .
- Example 5 was prepared by mixing the following weight components:
- the curing agent IKg is sodium fluorosilicate.
- the forming pressure is 30Mpa
- the forming time is 35 minutes
- the temperature is 190 ⁇ 225 °C.
- the density of the fireproof and protective material formed is 205Kg/m 3
- the tensile strength of the 20-inch thick plate made of the same The strength and compressive strength are 123Kpa and 613Kpa, respectively.
- it may further increase the clay made 0. 75Kg new fire insulation material, having a density by 205Kg / m 3 increased to 214Kg / m 3, a tensile strength of 20mm thick plate made therefrom, and compression The intensity increased by 141. 5Kpa and 698. 8Kpa, respectively, by 15% and 14%.
- Example 6 was prepared by mixing the following weight components:
- Meteorite 6Kg bulk density 115 kg / cubic meter
- Curing agent 1 5Kg, 'sodium fluorosilicate.
- the forming pressure was 30 MPa, the forming time was 35 minutes, and the temperature was 180 - 215 ° C. After testing, the density of the fire-retardant material formed was 189 Kg/m 3 .
- Example 7 prepared by mixing the following weight components:
- Meteorite 6Kg bulk density 130 kg / cubic meter
- Adhesive lOKg is potassium water glass
- Curing agent 1 5Kg, sodium fluorosilicate.
- the density of the fire-retardant material is 213. 8Kg/m 3 .
- the density of the fire-resistant insulation material is 213. 8Kg / m 3 .
- Example 8 which was prepared by mixing the following weight components:
- Vermiculite 2Kg volumetric capacity 130 kg / cubic meter
- Adhesive 13Kg is potassium water glass
- Curing agent 1 3Kg, sodium fluorosilicate.
- the forming pressure is 30 MPa
- the forming time is 60 minutes
- the temperature is 200 to 245 ⁇ .
- the density of the fireproof and heat insulating material finally formed is 224 K g /m 3 .
- Example 9 prepared by mixing the components of the following weights:
- Vermiculite lKg with a bulk density of 150 kg/m3; 6Kg of adhesive, sodium water glass;
- the curing agent is 0.5 Kg, which is sodium fluorosilicate.
- the forming pressure is 25 MPa
- the forming time is 60 minutes
- the temperature is 200 to 245 ° C.
- the density of the fire-resistant insulating material finally formed is 271 K g /m 3 .
- Example 10 was prepared by mixing the following weight components:
- Meteorite 5Kg bulk density 150 kg. / cubic meters;
- the adhesive 15K g is sodium water glass
- Curing agent 1 5Kg, sodium fluorosilicate.
- the forming pressure was 25 MPa, the forming time was 60 minutes, and the temperature was 200 245 ° C. After testing, the density of the fire-retardant material formed was 228 Kg/V.
- Example 11 prepared by mixing the following weight components:
- Adhesive llfig sodium water glass
- the curing agent 1. 2K g is sodium fluorosilicate.
- the density of the fire-resistant insulation material is 205. 5Kg / m 3 .
- the density of the fire-resistant insulation material is 205. 5Kg / m 3 .
- Example 12 was prepared by mixing the following weight components:
- Curing agent 1 5Kg, sodium fluorosilicate.
- the forming pressure of 25Mpa, forming time is 65 minutes, the temperature is 190 ⁇ 215 ° C, the density of the fireproof insulation material is 221.5Kg / m 3 .
- Example 13 prepared by mixing the following weight components:
- Curing agent 0. 66Kg, sodium fluorosilicate.
- the forming pressure was 40 MPa, the forming time was 65 minutes, and the temperature was 220 to 245 ° C. After testing, the density of the fireproof and heat insulating material finally formed was 241 Kg/m 3 .
- Example 14 prepared by combining the following weight components:
- Curing agent 1 8Kg, sodium fluorosilicate.
- Example 15 was prepared by mixing the following weight components:
- Curing agent 1. 5Kg is sodium fluorosilicate.
- the forming pressure was 40 Mp a , the forming time was 45 minutes, and the temperature was 220 to 245 ° C. After testing, the density of the fireproof heat insulating material finally formed was 188 Kg/m 3 .
- Example 16 was prepared by mixing the following weight components:
- Vermiculite 9Kg, bulk density 120 kg I cubic meters;
- the forming pressure is 40Mp a
- the forming time is 45 minutes
- the temperature is 230 ⁇ 245 °C.
- the density of the fireproof and heat insulating material finally formed is 225Kg/m 3 .
- the tensile strength and compressive strength of the 20 mm thick plate made of the same were 119 KPa and 594 Kp £L, respectively.
- Example 17 prepared by mixing the following weight components:
- the binder is 13. 6K g , which is sodium water glass;
- the forming pressure is 44Mp a
- the forming time is 40 minutes
- the temperature is 230 ⁇ 245 °C.
- the density of the fireproof and heat insulating material formed is 223Kg/m 3 .
- Example 18 was prepared by mixing the following weight components:
- the adhesive 19.6K g is sodium water glass
- Curing agent 1. 5 is sodium fluorosilicate.
- the forming pressure is 32 MPa
- the forming time is 41 minutes
- the temperature is 210-240 ° C.
- the density of the fire-retardant material formed is 214 K g /m 3 .
- Example 19 was prepared by mixing the following weight components:
- Perlite 10. 65Kg, weight 130kg / cubic meter;
- Curing agent 2. 1 sodium fluorosilicate
- the forming pressure is 26 Mp a
- the forming time is 45 minutes
- the temperature is 210 to 240 ° C.
- the density of the fireproof and heat insulating material finally formed is 218 K g /m 3 .
- the tensile strength and compressive strength of the 20mm thick plate made of it are respectively
- a new fireproof thermal insulation material can be added by adding 1.65Kg of clay, the density of which is increased from 218Kg/in 3 to 227Kg/m 3 , and the tensile strength and compression resistance of the 20mm thick plate made of the same are made.
- the intensity increased by 156. 9Kpa and 825Kpa, respectively, by 718% and 18.2%.
- Example 20 was prepared by mixing the following weight components:
- Curing agent 1 3Kg, which is sodium fluorosilicate
- the forming pressure was 20 MPa, the forming time was 50 minutes, and the temperature was 200 to 220 ° C. After testing, the density of the fire-retardant heat-insulating material finally formed was 217 Kg/m 3 .
- the tensile strength and compressive strength of the 20 mm thick plate made of the same were 136 Kpa and 671 Kpa, respectively.
- Example 21 was prepared by mixing the following weight components:
- Curing agent 2 5Kg, sodium fluorosilicate.
- the forming pressure was 31 MPa, the forming time was 45 minutes, and the temperature was 210 to 235 ° C. After testing, the density of the fireproof heat insulating material finally formed was 22.5 Kg/m 3 .
- Example 22 was prepared by mixing the following weight components:
- Adhesive 24Kg sodium water glass
- the curing agent 2. 2K g is sodium fluorosilicate.
- the forming pressure is lOMpa
- the forming time is 55 minutes
- the temperature is 200 to 220 ° C.
- the density of the fireproof and heat insulating material finally formed is 217 Kg/in 3 .
- Example 23 was prepared by mixing the following weight components:
- Curing agent 3. 3 is sodium fluorosilicate.
- the forming pressure was 18 MPa, the forming time was 60 minutes, and the temperature was 230 to 245 ° C. After testing, the density of the fireproof and heat insulating material finally formed was 239 Kg/m 3 .
- the ratio of the binder is the fraction of the solvent (ie, the weight component ratio of the water glass solvent, and in each of the examples, the water content in the water glass is about 40%), and the examples are obtained.
- the density of the material ie specific gravity or bulk density
- 035 ⁇ The heat-insulating coefficient is 0. 035 ⁇ / v . ' p a ,
- the clay is also added, and the fraction of the clay is the number of pearlite.
- the clay is first mixed with perlite, and then mixed with other components and then pressed by the mold.
- the purpose is to block the fine pores on the perlite by using clay, and increase the strength of the perlite, thereby increasing the material of the present invention.
- the strength of the material of the present invention increased by 15% to 21% due to the addition of clay.
- the density of the perlite is small, the density of the material of the present invention can be significantly reduced when the amount thereof is increased; while the density of the vermiculite is moderate, the density of the binder is large, and when the amount thereof is increased, Both will result in an increase in the density of the material of the invention.
- the fireproof and heat insulating material of the present invention when used for building exterior wall decoration, when low density is required, the proportion of perlite is increased as much as possible to reduce the density of the material of the present invention, and the low density outer wall material is more advantageous for installation.
- Low-volume perlite and high-heavy-weight vermiculite are used together, and high-capacity perlite is used in combination with low-density vermiculite to minimize the specific gravity of the material of the invention, which is beneficial to its use and installation; Moreover, it can make full use of perlite and vermiculite with different bulk density, improve the utilization rate of raw materials, and help to reduce costs.
- the lower the bulk density of perlite and vermiculite the larger the particle size of the particles.
- the higher the bulk density of perlite and vermiculite the smaller the particle size of the particles.
- high-capacity perlite is used in combination with low-density vermiculite to form the same type of fireproof material, but the former is relatively light and brittle, while the latter is relatively heavy and has high strength.
- the main body ie, the plate body 1
- the main body is made of a fireproof heat insulating material composed of vermiculite and expanded vermiculite, and the surface of the main body may be coated with a decorative layer. 2, such as a high temperature resistant fire retardant coating layer, or other bonding layer, such as a metal layer (such as aluminum foil, copper foil, etc.) that is pressed together with the body. Since the body is composed of granular perlite and vermiculite, the surface is uneven. In order to have a better decorative effect.
- the invention relates to an inorganic fireproof and thermal insulation external wall structure, comprising a wall body (i.e., a plane wall body 4), and a surface of the wall body is provided with a fireproof and heat insulating layer composed of an inorganic fireproof heat insulating material.
- the flat wall 4 can be a wooden wall, a cement wall or a metal wall.
- FIG. 4 it is another implementation structure of an inorganic fireproof and thermal insulation exterior wall structure according to the present invention.
- the wall body is a cylindrical structure, that is, a cylindrical building body 6, and the fireproof and heat insulating layer is composed of three curved fireproof thermal insulation boards. 5 composition.
- the fireproof and heat insulating material of the invention can be applied to the external wall thermal insulation of various building structures; the shape can be changed according to the shape of the outer wall.
- the shape and size of the thermal insulation material can be processed according to the shape of the building wall in a special shape and size. Since the original surface of each building wall base is not necessarily a complete plane, it is necessary to add a leveling layer for some walls (the leveling material should be made of flexible water-resistant putty).
- the specific requirements are as follows: (1) In addition to the aerated concrete wall, the outer side of the base wall should have a cement sand screed leveling layer, and the bonding strength should meet the relevant requirements. The thickness of the cement sand screed layer can be based on the base wall surface. The flatness is determined, but should not be less than 12mm; (2)
- the base wall is a concrete wall, autoclaved lime sand + ⁇ ⁇ 1 _ ⁇ ⁇ , .
- the surface should be coated with a special interface agent; or a thin layer cement mortar screed with a thickness of 10 mm can be made after applying the special interface agent.
- connection between the thermal insulation material and the wall substrate is mainly adhesive bonding (ie, the splicing layer), and the anchor bolt (ie, the coupling member) is supplemented by the bonding method.
- the anchor bolt should not be less than 3 per square meter;
- the anchor bolt shall be encrypted at the corner of the wall, the horizontal and vertical directions of the edge of the door and window, and the spacing shall be no more than 300mm.
- the anchor bolt shall be not less than 60mm from the edge of the base wall.
- the present invention expands the perlite and vermiculite after high temperature expansion.
- the fireproof insulation board composed of mud (that is, clay) has improved the strength and solved the requirements of waterproofing, fireproofing and heat preservation of the external wall. It has the characteristics of environmental protection, low carbon, energy saving and regenerability.
- Containing no harmful substances it is an all-environmental product, which is very suitable for exterior insulation of various building structures, and can also be used for construction in buildings, such as core materials for lightweight composite partition walls for building structures and Composite wall panels (ie color steel plates) can also be used for the core material of the cabin bulk (stainless steel plate).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Thermal Sciences (AREA)
- Acoustics & Sound (AREA)
- Electromagnetism (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Building Environments (AREA)
- Dispersion Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
Abstract
本发明公开了一种无机防火保温材料及其制品,该材料包括以下重量比的组份:A组份5份;粘接剂5.5〜7份;固化剂1〜1.5份;其中的A组份包括珍珠岩和蛭石,珍珠岩和蛭石的重量比为1:4至4:1;珍珠岩和蛭石均为膨化之后的颗粒状,粘接剂为无机粘接剂;该材料是通过将上述各组份混合之后倒入成形模具压制而成。本发明具有良好的防火性能和保温性能,其密度可达到0.22吨/立方米左右,燃烧性能为A1级,导热系数低;膨化后的珍珠岩、蛭石,及淘洗泥(即陶土)混合构成的防火保温板提高了强度,解决了外墙的防水、防火、保温的要求,它具有环保、低碳、节能和可再生的特点。不含有害物质,是一个全环保的产品,十分适合用于各种建筑结构的外墙外保温。
Description
—种无机防火保温材料及其制品 技术领域
本发明涉及一种既可以防火又可以保温的材料及由其构成的制品,该材料可以用 于外墙,起到隔热保温和防火的作用,还可以用于建筑内墙和内墙隔断,及船舶等等场合使 用。
'景技术
现有技术中,在建筑的外墙.,屋顶,或者其它一些特殊建筑上面,为了阻止外界对 建筑内部的影响,通常都采用聚氨酯、苯板、挤塑板之类的有机材料进行保温。 但由于这些 建筑外墙的保温材料防火性能太差,很容易引起火灾。 例如, 2010年 11月在上海静安区发 生的教师楼着火事件,就是因为大楼的外墙采用的是易燃的聚氨酯保温材料,导致这一场 大火中有 42人死亡。 上个世纪 80年代,我国曾颁发了一个民用建筑节能保温的标准—— 节能 30.%,要求在建筑原有的基础上,增加外墙保温。 1995年,国家又下发了一个民用建筑 节能保温标准,要求节能 50 %。 直到 2003年,该标准被强制性地在各北方地区的新建建筑 中推行。 但是据了解,传统的外墙保温材料大多数采用的是苯板、挤塑板、聚氨酯等易燃烧 的材料。 2009年国内连续发生的央视新大楼北配楼火灾、中央美院南区宿舍火灾、中国科技 馆新馆火灾等都与外墙保温材料有关,而且新疆也不断发生外墙保温^料火灾案例。 此类 火^的频繁发生,原因就在于保温材料不具有防火性能,而且在燃烧过程中产生大量的有 毒气体。尤其是北方,建筑外墙都采用了隔热保温材料,然而这些外墙保温材料都不具备有 防火性能,带有极大的火灾隐患。
我国具有丰富的珍珠岩资源,珍珠岩经过膨化之后很脆,容易粉碎,强度低,但具 有较好的保温性能。蛭石也是一种极好的保温材料,我国也是世界上蛭石第二大资源国,蛭 石经过高温膨化也是一种很好的保温隔热材料。我国虽然具有大量的珍珠岩和蛭石的矿产 资源,却未得到很好的利用,这使得现有的外墙的保温结构多般为易燃材料,比如苯板、挤 塑板、聚氨酯等。
基于上述现有技术中的状况,本发明人开发一种无机防火保温材料,可以用于外 墙,起到隔热保温和防火的作用,还可以用于建筑内墙和内墙隔断,及船舶等等场合使用。 以满足既需要保温防火又需要防水的要求。 发明内容
本发明的目的在于为克服现有技术的不足而提供一种无机防火保温材料及其制 品,可以用于外墙,起到隔热保温和防火的作用 '还可以用于建筑内墙和内墙隔断,及船舶 等等场合使用。 以满足既需要保温防火又需要防水的要求。
为实现上述目的,本发明的技术方案为:
一种无机防火保温材料,该材料包括以下重量比的组份: A组份 5份;粘接剂 5. 5 - 7份;固化剂 1〜; 1. 5份;其中的 A组份包括珍珠岩和蛭石,珍珠岩和蛭石的重量比 为 1 : 4至 4 : 1;所述的珍珠岩和蛭石均为膨化之后的颗粒状,它们的粒度分别为 0. 5〜
;珍珠岩的容重为 80公斤 /立方米〜 200公斤 /立方米,蛭石的容重为
100公斤 /立方米〜 200公斤 /立方米;所述的粘接剂为无机粘接剂;该材料是通过将上述 各组份混合之后倒入成形模具压制而成。
其进一步技术方案为:所述固化剂为氟硅酸钠。
其进一步技术方案为:所述的无机粘接剂为水玻璃。
其进一步技术方案为:还包括陶土,所述陶土的份数为珍珠岩份数的 15 %〜25 %; 所述的陶土是先与珍珠岩混合之后,再和其它组份混合后进行模具压制。
其进一步技术方案为:所述的保温材料是将在 850t>〜 135CTC温度下膨化出来的 珍珠岩膨胀颗粒、在 700 °C ~ 1250 °C温度下膨化出来的蛭石膨胀颗粒和无机粘接剂、固化 剂于 7(TC ~ 245 °C的温度下在模腔内通过加压至 18-50Mpa并保持 15〜 60分钟加工而成。
一种无机防火保温板,包括板体,所述的板体由无机防火保温材料构成。 其进一步技术方案为:还包括设于板体表面的装饰层。
一种无机防火保温外墙结构,包括墙体,所述墙体表面设有由无机防火保温材料 构成的防火保温层。
其进一步技术方案为:所述的墙体为木质墙体、水泥墙体或金属墙体。
其进一步技术方案为:所述的墙体为圆柱体结构,所述的防火保温层由二块以上 的曲面防火保温板材构成。
本发明与现有技术相比的有益效果是:本发明将珍珠岩和蛭石高温膨化后经过粘 接剂和淘洗泥(即陶土)及固化剂的混合后,通过 70 °C〜 245 T的温度在特定的模具内压 制成形 从而形成一种同时具有良好的防火性能和保温性能的防火保温材料,其密度可达 到 0. 22吨 /立方米左右,燃烧性能为 A1级,导热系数为 0. 035〜 0. 0664W/ (m. k) (25 V ) ; 膨化后的珍珠岩、蛭石,及淘洗泥(即陶土)混合构成的防火保温板提高了强度,解决了外 墙的防水、防火、保温的要求,它具有环保、低碳、节能和可再生的特点。在其生产过程中 通 过添加陶土可以改善其强度,通过改性硅油的加入可以加快生产速度,以提高生产效率,降 低生产成本,有利于本发明材料的产业化。本发明防火保温材料不含有害物质,是一个全环 保的产品,十分适合用于各种建筑结构的外墙外保温,也可以用于建筑内的构造,比如用于 建筑结构的轻质复合隔断墙的芯材和复合墙板(即彩钢板),也可以用于船舱隔板(不锈钢 板)的芯材。
下面结合附图和具体实施例对本发明作进一步描述。 附图说明
图 1为本发明一种无机防火保温材料具体实施例的加工制作流程示意图; 图 2为本发明一种无机防火保温板具体实施例的剖面结构图;
图 3为本发明一种无机防火保温外墙结构具体实施例一的剖面结构图; 图 4为本发明一种无机防火保温外墙结构具体实施例二的剖面结构图。 附图标识
板体 装饰层
防火保温层 平面墙体
曲面防火保温板 圆柱形建筑体
具体实施方式
为了更充分理解本发明的技术内容,下面结合具体实施例对本发明的技术方案进 一步介绍和说明,但不局限于此。
本发明一种无机防火保温材料,该材料包括以下重量比的组份: A组份 5份;粘接 剂 5. 5 ~ 7份;固化剂 1〜 1. 5份;其中的 A组份包括珍珠岩和蛭石,珍珠岩和蛭石的重量比 为 1 : 4至 4 : 1;所述的琰珠岩和蛭石均为膨化之后的颗粒状,它们的粒度分别为 0. 5 ~ Siim和 0. 5〜 20mm;珍珠岩的容重为 80公斤 /立方米〜 200公斤 /立方米,蛭石的容重为 100公斤 /立方米〜 200公斤 /立方米;所述的粘接剂为无机粘接剂;该材料是通过将上述 各组份混合之后倒入成形模具压制而成。 其中的珍珠岩膨胀颗粒是在 850°C〜 1350°C温度 下膨化出来的;蛭石膨胀颗粒在 700t:〜 1250°C温度下膨化出来的和无机粘接剂、固化剂 于 7CTC:〜 245 °C的温度下在模腔内通过加压至 18-50Mpa并保持 15〜 60分钟加工而成。无 机粘接剂为水玻璃(水玻璃俗称为泡花碱,化学名为硅酸钠,可以采用钠水玻璃,也可以采 用钾水玻璃) ;固化剂为氟硅酸钠。 加工流程如图 1所示。
以下为几个实施例,以此来更深入地了解本发明材料的特点:
实施例 1,采用以下重量的组份混合之后而制成:
珍珠岩 3Kg,容重 130公斤 /立方米;
蛭石 2Kg,容重 130公斤 /立方米;
粘接剂 5. 5Kg,为钠水玻璃;
固化剂 lKg,为氟硅酸钠。
成形压力 20Mpa,成形时间为 30分钟,温度为 200〜 245 °C,经测试,最后成型出来 的防火保温材料的密度为 222Kg/m3。
实施例 2,采用以下重量的组份混合之后而制成:
珍珠岩 8Kg,容重 110公斤 I立方米;
蛭石 2Kg,容重 130公斤 I立方米;
粘接剂 14Kg,为钠水玻璃;
固化剂 3Kg,为氟硅酸钠。
成形压力 20Mpa,成形时间为 40分钟,温度为 190〜230°C,经测试,最后成型出来 的防火保温材料的密度为 219. 5Kg/m3。
实施例 3,采用以下重量的组份混合之后而制成 - 珍珠岩 1. 5Kg,容重 125公斤 /立方米;
蛭石 6Kg,容重 150公斤!立方米;
粘接剂 8. 5Kg,为钠水玻璃;
固化剂 0. 9Kg,为氟硅酸钠。
成形压力 20Mpa,成形时间为 45分钟,温度为 210〜 245 °C,经测试,最后成型出来 的防火保温材料的密度为 238Kg/ms。
实施例 4,采用以下重量的组份混合之后而制成:
珍珠岩 5. 5Kg,容重 115公斤 I立方米;
蛭石 1. 5Kg,容重 135公斤 I立方米;
, , ,
固化剂 0. 7Kg,为氟硅酸钠。
成形压力 20Mpa,成形时间为 40分钟,温度为 180〜 215 °C,经测试,最后成型出来 的防火保温材料的密度为 206Kg/m3。
实施例 5,采用以下重量的组份混合之后而制成:
珍珠岩 5¾,容重 100公斤 1立方米;
蛭石 3Kg,容重 170公斤 I立方米;
粘接剂 10Kg,为钾水玻璃;
固化剂 IKg,为氟硅酸钠。
成形压力 30Mpa,成形时间为 35分钟,温度为 190〜 225 °C,经测试,最后成型出来 的防火保溘材料的密度为 205Kg/m3,由其制成的 20匪厚的板材的抗拉强度、抗压强度分别 为 123Kpa、613Kpa。
本实施例中,还可以增加陶土 0. 75Kg制成新的防火保温材料,其密度则由 205Kg/ m3增加为 214Kg/m3,由其制成的 20mm厚板材的抗拉强度、抗压强度分别增加为 141. 5Kpa、 698. 8Kpa,分别增加了 15 %、14 %。
实施例 6,采用以下重量的组份混合之后而制成:
珍珠岩 7Kg,容重 110公斤 I立方米;
蛭石 6Kg,容重 115公斤 /立方米;
粘接剂 15Kg,为钾水玻璃;
固化剂 1. 5Kg,为'氟硅酸钠。
成形压力 30Mpa,成形时间为 35分钟,温度为 180 - 215 °C,经测试,最后成型出来 的防火保温材料的密度为 189Kg/m3。
实施例 7,采用以下重量的组份混合之后而制成:
珍珠岩 3 ,容重 120公斤 I立方米;
蛭石 6Kg,容重 130公斤 /立方米;
粘接剂 lOKg,为钾水玻璃;
固化剂 1. .5Kg,为氟硅酸钠。
成形压力 30Mpa,成形时间为 45分钟,温度为 200〜 245 °C,经测试,最后成型出来 的防火保温材料的密度为 213. 8Kg/m3。
实施例 8,采用以下重量的组份混合之后而制成:
珍珠岩 7Kg,容重 120公斤 /立方米;
蛭石 2Kg,容重 130公斤 /立方米;
粘接剂 13Kg,为钾水玻璃;
固化剂 1. 3Kg,为氟硅酸钠。
成形压力 30Mpa,成形时间为 60分钟,温度为 200〜 245 Ό,经测试,最后成型出来 的防火保温材料的密度为 224Kg/m3。
实施例 9,采用以下重量的组份混合之后而制成:
珍珠岩 3Kg,容重 150公斤 /立方米;
蛭石 lKg,容重 150公斤 /立方米;
粘接剂 6Kg,为钠水玻璃;
固化剂 0. 5Kg,为氟硅酸钠。
成形压力 25Mpa,成形时间为 60分钟,温度为 200〜 245 °C,经测试,最后成型出来 的防火保温材料的密度为 271Kg/m3。
实施例 10,采用以下重量的组份混合之后而制成:
珍珠岩 8Kg,容重 1.30公斤 /立方米;
蛭石 5Kg,容重 150公斤 ./立方米;
粘接剂 15Kg,为钠水玻璃;
固化剂 1. 5Kg,为氟硅酸钠。
成形压力 25Mpa,成形时间为 60.分钟,温度为 200 245 °C,经测试,最后成型出来 的防火保温材料的密度为 228Kg/V。
实施例 11,采用以下重量的组份混合之后而制成:
珍珠岩 3. 2Kg,容重 120公斤 /立方米;
蛭石 . 9Kg,容重 110公斤 /立方米;
粘接剂 llfig,为钠水玻璃;
固化剂 1. 2Kg,为氟硅酸钠。
成形压力 25Mpa,成形时间为 55分钟,温度为 200〜 245°C,经测试,最后成型出来 的防火保温材料的密度为 205. 5Kg/m3。
实施例 12,采用以下重量的组份混合之后而制成:
珍珠岩 8Kg,容重 130公斤 /立方米;
蛭石 3Kg,容重 110公斤 I立方米;
粘接剂 15Kg,为钠水玻璃;
固化剂 1. 5Kg,为氟硅酸钠。
成形压力 25Mpa,成形时间为 65分钟,温度为 190〜 215°C,经测试,最后成型出来 的防火保温材料的密度为 221. 5Kg/m3。
实施例 13,采用以下重量的组份混合之后而制成:
珍珠岩 3. 7Kg,容重 140公斤 /立方米;
蛭石 2, 9Kg,容重 150公斤 I立方米;
粘接剂 8Kg,为钠水玻璃;
固化剂 0. 66Kg,为氟硅酸钠。
成形压力 40Mpa,成形时间为 65分钟,温度为 220〜 245°C,经测试,最后成型出来 的防火保温材料的密度为 241Kg/m3。
实施例 14,采用以下重量的组份馄合之后而制成:
珍珠岩 8. 8Kg,容重 135公斤 /立方米;
蛭石 6. 95KgT容重 120公斤 I立方米;
粘接剂 20Kg,为钠水玻璃;
固化剂 1. 8Kg,为氟硅酸钠。
成形压力 40Mpa,成形时间为 35分钟,温度为 205 225°C,经测试,最后成型出来 的防火保温材料的密度为 221Kg/m3。
实施例 15,采用以下重量的组份混合之后而制成:
珍珠岩 3. 7 g,容重 100公斤 /立方米;
蛭石 6. 95Kg,容重 115公斤 /立方米;
粘接剂 12. 5Kg,为钠水玻璃;
固化剂 1. 5Kg 为氟硅酸钠。
成形压力 40Mpa,成形时间为 45分钟,温度为 220〜 245 °C,经测试,最后成型出来 的防火保温材料的密度为 188Kg/m3。
实施例 16,采用以下重量的组份混合之后而制成:
珍珠岩 8. 8Kg,容重 135公斤 /立方米;
蛭石 2. 9Kg,容重 120公斤 I立方米;
粘接剂 15Kg,为钠水玻璃;
固化剂 1. 2Kg,为氟硅酸钠。
成形压力 40Mpa,成形时间为 45分钟,温度为 230 ~ 245 °C,经测试,最后成型出来 的防火保温材料的密度为 225Kg/m3。 由其制成的 20mm厚板材的抗拉强度、抗压强度分别为 119Kpa、594Kp£L。
本实施例中,还可以增加陶土 2. 2Kg制成新的防火保温材料,其密度则由 225Kg/m3 增加为 245. 5 g/m3.,由其制成的 20M 厚板材的抗拉强度、抗压强度分别增加为 139, 2Kpa、 693. 8Kpa,分别增加了 17 %、16. 8 %。
实施例 17,采用以下重量的组份混合之后而制成:
珍珠岩 4. 5Kg,容重 110公斤 /立方米;
蛭石 Ί. 15Kg,容重 150公斤 /立方米;
粘接剂 13. 6Kg,为钠水玻璃;
固化剂 1. 2Kg,为氟硅酸钠。
成形压力 44Mpa,成形时间为 40分钟,温度为 230 ~ 245 °C,经测试,最后成型出来 的防火保温材料的密度为 223Kg/m3。
实施例 18,采用以下重量的组份混合之后而制成:
珍珠岩 9. 96Kg,容重 110公斤 /立方米;
蛭石 4. l5Kg,容重 130公斤 /立方米;
粘接剂 19. 6Kg,为钠水玻璃;
固化剂 1. 5 ,为氟硅酸钠。
成形压力 32Mpa,成形时间为 41分钟,温度为 210 ~ 240°C,经测试,最后成型出来 的防火保温材料的密度为 214Kg/m3。
实施例 19,采用以下重量的组份混合之后而制成:
珍珠岩 10. 65Kg,容重 130公斤 /立方米;
蛭石— 9. 76Kg?容重 140公斤 /立方米;
粘接剂 22Kg,为钠水玻璃;
固化剂 2. 1 ,为氟硅酸钠;
成形压力 26Mpa,成形时间为 45分钟,温度为 210〜 240°C,经测试,最后成型出来 的防火保温材料的密度为 218Kg/m3。 由其制成的 20mm厚板材的抗拉强度、抗压强度分别为
本实施例中,还可以增加陶土 1. 65Kg制成新的防火保温材料,其密度则由 218Kg/ in3增加为 227Kg/m3,由其制成的 20mm厚板材的抗拉强度、抗压强度分别增加为 156. 9Kpa、 825Kpa,分别增加 7 18 %、 18. 2 %。
实施例 20,采用以下重量的组份混合之后而制成:
珍珠岩 6. 61Kg,容重 150公斤 /立方米;
蛭石 5. 8Kg,容重 110公斤 I立方米;
粘接剂 15Kg,为钠水玻璃;
固化剂 1. 3Kg,为氟硅酸钠;
成形压力 20Mpa,成形时间为 50分钟,温度为 200〜 220°C,经测试,最后成型出来 的防火保温材料的密度为 217Kg/m3。 由其制成的 20mm厚板材的抗拉强度、抗压强度分别为 136Kpa、671Kpa。
本实施例中若增加陶土 1. 3K.g 其密度则由 217Kg/m3增加为 228Kg/V,由其制成 的 20imn厚板材的抗拉强度、抗压强度分别增加为 164. 6Kpa、805. 9Kpa,分别增加了 21 %、 20. 1 %。
实施例 21,采用以下重量的组份混合之后而制成:
珍珠岩 12. 6Kg,容重 105公斤 /立方米;
蛭石 11. 8Kg,容重 200公斤 /立方米;
粘接剂 28Kg,为钠水玻璃;
固化剂 2. 5Kg,为氟硅酸钠。
成形压力 31Mpa,成形时间为 45分钟,温度为 210〜 235 °C,经测试,最后成型出来 的防火保温材料的密度为 22.5Kg/m3。
实施例 22 ,采用以下重量的组份混合之后而制成:
珍珠岩 8. 6Kg,容重 190公斤 I立方米;
蛭石 12. 9Kg,容重 110公斤 I立方米;
粘接剂 24Kg,为钠水玻璃;
固化剂 2. 2Kg,为氟硅酸钠。
成形压力 lOMpa,成形时间为 55分钟,温度为 200〜 220°C,经测试,最后成型出来 的防火保温材料的密度为 217Kg/in3。
实施例 23,采用以下重量的组份混合之后而制成:
珍珠岩 15. 6Kg,容重 150公斤 /立方米;
蛭石 12. 9Kg,容重 140公斤 /立方米;
粘接剂 32Kg,为钠水玻璃;
固化剂 3. 3 ,为氟硅酸钠。
成形压力 18Mpa,成形时间为 60分钟,温度为 230〜 245 °C,经测试,最后成型出来 的防火保温材料的密度为 239Kg/m3。
上述各实施例中,粘接剂的比例为溶剂的份数(:即水玻璃溶剂的重量组份比,各 个实施例中,水玻璃中的水份约为 40 % ),各实施例得出的材料的密度(即比重或容重) 在 220KgvV左右。 本发明防火保温材料的燃烧性能均达到 A1级,导热系数为 0. 035〜
. / v . ' pa,
130Kpa。 上述实施例 5、16、19、20中还增加了陶土,陶土的份数为珍珠岩份数的
25 %;陶土是先与珍珠岩混合之后,再和其它组份混合后进行模具压制,其目的是利用陶土 堵住珍珠岩上的细小微孔,并能增加珍珠岩的强度,进而增加本发明材料的强度,在实施例 5、16、19、20中,本发明材料由于增加了陶土,其强度增加了 15 %〜21 %。 由上述各实施例 可以看出,由于珍珠岩的密度小,它的份量增加时,可以明显降低本发明材料的密度;而蛭 石的密度适中,粘接剂的密度大,它们的份量增加时,均会导致本发明材料的密度增大。 因 此当本发明防火保温材料用于建筑外墙装饰时,需要低密度时,尽量增加珍珠岩的比例,以 降低本发明材料的密度,低密度的外墙材料更有利于安装。
[01 73] 通过生产实践,还得出这样一个技术决窍:在上述各实施例中,尤其是在实施例 5、16、19、20中,在各组份材料的混合料中,还可以加入 A组份重量(即珍珠岩和蛭石的总 量) 的 2 ~ 3 %的改性硅油,在混合时能改善各组份的混合效果,并有利于后期的加温加压 后的快速成形,缩短成形时间。
其中,各组份材料的 K方技巧为 -
1低容重的珍珠岩和高容重的蛭石组合在一起使用,高容重的珍珠岩与低容重的 蛭石组合在一起使用,以尽量减少本发明材料的比重,有利于它的使用与安装;并且可以充 分利用不同容重的珍珠岩和蛭石,提高原材料的利用率,有利于降低成本。 其中,珍珠岩、 蛭石的容重越低 其颗粒的粒度越大,珍珠岩、蛭石的容重越高,其颗粒的粒度越小,所以, 低容重的珍珠岩和高容重的蛭石组合在一起使用,高容重的珍珠岩与低容重的蛭石组合在 一起使用,可以形成相同样式的防火材料,但前者相对较轻,较脆,而后者相对较重,强度较 高。
2由于珍珠岩和蛭石的不同特性,可依建筑外墙的实际需要配出不同的材料,比如 外墙结构的强度要求较高时,可以增加蛭石的比例,降低珍珠岩的比例,外墙结构要求比重 较轻时,可以增加珍珠岩的比例,降低蛭石的比例。
如图 2所示,为本发明一种防火保温板的剖面结构图;其主体(即板体 1)采用由 蛭石和膨胀蛭石构成的防火保温材料,主体的表面可以涂设有一种装饰层 2,比如耐高温防 火的涂料层,或者其它粘接层,比如和本体压合在一起的金属层(例如铝箔、铜箔等)。由于 本体是由颗粒状的珍珠岩和蛭石等材料构成,其表面是不平整的。为了具更好的装饰效果。
如图 3所示,本发明一种无机防火保温外墙结构,包括墙体(即平面墙体 4),墙体 表面设有由无机防火保温材料构成的防火保温层 3。平面墙体 4可以是木质墙体、水泥墙体 或金属墙体。
如图 4所示,为本发明一种无机防火保温外墙结构的另外一种实施结构,墙体为 圆柱体结构,即圆柱形建筑体 6,防火保温层由三块的曲面防火保温板 .5构成。
本发明防火保温材料可以应用于各种建筑结构的外墙保温防火;其形状可依外墙 的形状而变化。 保温防火材料的形状、大小均可以按照建筑墙体的形状可特殊形状态和大 小的加工。 由于每个建筑墙基体的原表面不一定是完整的平面,所以针对某些墙体需要增 加一个找平层(找平材料应采用柔性耐水腻子)。 具体要求为:(1)、除加气混凝土墙外, 基层墙体的外側应有水泥砂漦找平层,其粘结强度应符合相关要求,水泥砂桨找平层的厚 度可根据基层墙面的平整度确定,但不应小于 12mm; (2)、基层墙体为混凝土墙、蒸压灰砂
+ π ^ 1 _ α ^ , .
砖及硅醱盈砖娜体 W,基层墙体墙层与水泥砂漦找平层之间应用混凝土芥囬刑作芥囬层;
(3)、基层墙体为加气混凝土砌体或外墙体时,其表面应涂刷专用界面剂;也可在涂刷专用 界面剂后做厚度 10mm的薄层水泥砂桨找平层。
保温防火材料与墙基体的连接以胶粘剂粘结为主(即眹接层),锚栓(即联接件) 为辅的粘钉结合的方式 正常情况下锚栓每平方米不宜少于 3个;锚栓在墙转角、门窗洞口 边缘的水平、垂直方向应加密,其间距不大于 300mm,锚栓距基层墙体边缘应不小于 60mm 综上所述,本发明将珍珠岩和蛭石高温膨化后经过粘接剂和淘洗泥(即陶土)及 固化剂的混合后,通过一定温度在特定的模具内压制成形,从而形成一种同时具有良好的 防火性能和保温性能的防火保温材料,其密度可达到 0. 22吨 /立方米以下,燃烧性能为 A1 级,导热系数为 0. 035 0. 0664W/ (m. k) (25 °C ) ;膨化后的珍珠岩、蛭石,及淘洗泥(即陶 土)混合构成的防火保温板提高了强度,解决了外墙的防水、防火、保温的要求.它具有环 保、低碳、节能和可再生的特点。不含有害物质,是一个全环保的产品,十分适合用于各种建 筑结构的外墙外保温,也可以用于建筑内的构造,比如用于建筑结构的轻质复合隔断墙的 芯材和复合墙板(即彩钢板),也可以用于船舱隔板(不锈钢板)的芯材。
以上所述仅以实施例来进一步说明本发明的技术内容,以便于读者更容易理解, 但不代表本发明的实施方式仅限于此,任何依本发明所做的技术延伸或再创造,均受本发 明的保护。
Claims
1. 一种无机防火保温材料,该材料包括以下重量比的组份 - A组份 5份;
粘接剂 5. 5〜 7份;
固化剂 1〜; 1. 5份;
其中的 A组份包括珍珠岩和蛭石,珍珠岩和蛭石的重量比为 1 : 4至 4 : 1 ;所述的珍 珠岩和蛭石均为膨化之后的颗粒状,它们的粒度分别为 0. 5〜 8mm和 0. 5〜 20mm;珍珠岩 的容重为 80公斤 /立方米〜 200公斤 /立方米,蛭石的容重为 100公斤 /立方米〜 200公 斤 /立方米;所述的粘接剂为无机粘接剂;该材料是通过将上述各组份混合之后倒入成形 模具压制而成。
2. 根据权利要求 1所述的一种无机防火保温材料,其特征在于所述固化剂为氟硅酸 钠。
3. 根据权利要求 1所述的一种无机防火保温材料,其特征在于所述的无机粘接剂为水 玻璃。
4. 根据权利要求 1所述的一种无机防火保温材料 其特征在于还包括陶土,所述陶土 的份数为珍珠岩份数的 15 %'〜 25 %;所述的陶土是先与珍珠岩混合之后,再和其它组份混 合后进行模具压制。
5.根据权利要求 1、2或 3所述的一种无机防火保温材料,其特征在于所述的保温材料 是将在 850°C〜 135CTC温度下膨化出来的珍珠岩膨胀颗粒、在 700°C〜 1250°C温度下膨化 出来的蛭石膨胀颗粒和无机粘接剂、固化剂于 70 V〜 245 V的温度下在模腔内通过加压至 18-50Mp 并保持 15〜 60分钟加工而成。
6. 一种无机防火保温板,包括板体,其特征在于所述的板体由无机防火保温材料构成。
7.根据权利要求 6所述的一种无机防火保温板,其特征在于还包括设于板体表面的装 饰层。
S. —种无机防火保温外墙结构,包括墙体,其特征在于所述墙体表面设有由无机防火 保温材料构成的防火保温层。
9.根据权利要求 8所述的一种无机防火保温外墙结构,其特征在于所述的墙体为木质 墙体、水泥墙体或金属墙体。
10. 根据权利要求 8所述的一种无机防火保温外墙结构,其特征在于所述的墙体为圆 柱体结构,所述的防火保温层由二块以上的曲面防火保温板材构成。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/371,454 US9708536B2 (en) | 2012-01-19 | 2012-12-20 | Inorganic fireproof and heat-insulating material and article thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210017916.9 | 2012-01-19 | ||
CN201210017916.9A CN102584163B (zh) | 2012-01-19 | 2012-01-19 | 一种无机防火保温材料及其制品 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013107242A1 true WO2013107242A1 (zh) | 2013-07-25 |
Family
ID=46473504
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/087031 WO2013107242A1 (zh) | 2012-01-19 | 2012-12-20 | 一种无机防火保温材料及其制品 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9708536B2 (zh) |
CN (1) | CN102584163B (zh) |
WO (1) | WO2013107242A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114804792A (zh) * | 2022-05-26 | 2022-07-29 | 山东海瑞林装饰工程有限公司 | 一种外墙防火保温板及其生产方法 |
CN115536425A (zh) * | 2022-10-17 | 2022-12-30 | 淄博锦昊陶瓷有限公司 | 保温陶瓷砖及其制备方法 |
CN115611603A (zh) * | 2022-09-19 | 2023-01-17 | 湖南诚友绿色建材科技有限公司 | 一种防火保温材料及其制备方法 |
CN117125940A (zh) * | 2023-08-25 | 2023-11-28 | 仪征河海工程建设有限公司 | 一种建筑工程外墙保温材料 |
CN117962426A (zh) * | 2024-04-02 | 2024-05-03 | 潍坊市中鼎钢结构有限公司 | 一种箱房防火板材及其制备方法 |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102584163B (zh) * | 2012-01-19 | 2014-01-29 | 周国富 | 一种无机防火保温材料及其制品 |
CN105601191A (zh) * | 2015-12-29 | 2016-05-25 | 慈溪卡希尔密封材料有限公司 | 一种保温板及制备方法 |
CN105523738A (zh) * | 2015-12-29 | 2016-04-27 | 慈溪卡希尔密封材料有限公司 | 一种保温板及制备方法 |
CN105481311A (zh) * | 2015-12-29 | 2016-04-13 | 慈溪卡希尔密封材料有限公司 | 一种保温板及制备方法 |
GR1009142B (el) * | 2016-06-30 | 2017-10-20 | Χρυσανθιδης, Γεωργιος Ευσταθιου | Μεθοδος θερμομονωσης-ηχομονωσης-πυροπροστασιας κτιριων και περιβαλλοντος χωρου αυτων, δια της θερμικης αδρανειας, με βαση το διογκωμενο περλιτη |
US10246934B2 (en) | 2016-12-23 | 2019-04-02 | Plastpro 2000, Inc. | Door comprising vermiculite-containing core, and method of making the same |
CN106587785B (zh) * | 2016-12-29 | 2020-06-09 | 中民筑友科技投资有限公司 | 混凝土装饰板及其制备方法 |
CN107459325A (zh) * | 2017-09-01 | 2017-12-12 | 陆宇皇金建材(河源)有限公司 | 一种隔音材料及隔音板和机车车厢的隔断结构 |
CN107445579A (zh) * | 2017-09-01 | 2017-12-08 | 陆宇皇金建材(河源)有限公司 | 防火材料及防火板和应用于隧道的防火墙结构及施工方法 |
CN107933019A (zh) * | 2017-11-14 | 2018-04-20 | 广西吉顺能源科技有限公司 | 一种无机复合铝合金饰面防火保温板及其制造方法 |
CN107746241A (zh) * | 2017-11-14 | 2018-03-02 | 广西吉顺能源科技有限公司 | 一种用于建筑物外墙的无机防火保温板及其制造方法 |
CN107986703B (zh) * | 2017-11-27 | 2020-04-28 | 安徽省润乾节能建材科技股份有限公司 | 一种耐风化高抗压强度的加气砖及其制备方法 |
CN109467374A (zh) * | 2018-12-28 | 2019-03-15 | 海南鑫申绿色建筑科技有限公司 | 一种抗震建筑板及其制备方法 |
CN111018550A (zh) * | 2019-12-31 | 2020-04-17 | 江苏润美新材料有限公司 | 一种用于高温炉的密封保温填充料 |
CN112062536A (zh) * | 2020-09-04 | 2020-12-11 | 上海晶柏新材料科技有限公司 | 一种用于制备防火型材的防火材料及其制备防火型材方法 |
CN112940443B (zh) * | 2021-01-14 | 2024-04-02 | 国网浙江省电力有限公司绍兴供电公司 | 一种电力用密封堵料及制备方法及应用 |
CN113860817B (zh) * | 2021-10-14 | 2022-08-12 | 成都虹润制漆有限公司 | 一种外墙保温用高分子聚合物材料 |
CN114181554A (zh) * | 2021-11-16 | 2022-03-15 | 江苏海龙核科技股份有限公司 | 一种非膨胀型钢结构防火涂料及其制备方法 |
CN114412130A (zh) * | 2022-01-25 | 2022-04-29 | 陆宇皇金建材(河源)有限公司 | 一种防火板材及通风管道 |
CN114853442B (zh) * | 2022-05-17 | 2023-06-06 | 石家庄易辰防火保温材料有限公司 | 一种不同类型和粒径蛭石级配制成的钢结构防火保护板 |
CN115159943B (zh) * | 2022-07-04 | 2023-10-03 | 中国建筑第五工程局有限公司 | 防火型轻质保温材料及其制备方法与应用 |
CN116553921B (zh) * | 2023-02-27 | 2024-06-25 | 河南三元光电科技有限公司 | 一种耐高温隔热复合材料及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1149525A (zh) * | 1995-11-07 | 1997-05-14 | 承德天工建材厂 | 多功能膨胀珍珠岩装饰吸声板及其制造工艺 |
CN1693255A (zh) * | 2005-04-14 | 2005-11-09 | 郑州祥通耐火陶瓷有限公司 | 珍珠岩与蛭石的多层复合隔热材料及其用途 |
CN101775882A (zh) * | 2010-01-29 | 2010-07-14 | 王春莉 | 一种环保、耐燃的装饰材料及其制备工艺 |
CN102584163A (zh) * | 2012-01-19 | 2012-07-18 | 周国富 | 一种无机防火保温材料及其制品 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3015626A (en) * | 1959-09-29 | 1962-01-02 | John C Kingsbury | Insulating composition |
DE1252835B (de) * | 1964-05-21 | 1967-10-26 | Farbwerke Hoechst Aktiengesellschaft vormals Meister Lucius &. Brüning, Frankfurt/M | Verwendung von kondensierten Aluminiumphosphaten zum Härten von Wasserglaskitten |
CN85106105A (zh) * | 1985-08-09 | 1987-04-01 | 谷祖贤 | 膨润土膨胀珍珠岩制品 |
CN101229967A (zh) * | 2008-01-16 | 2008-07-30 | 章建德 | 一种不定型复合保温材料及其制备方法 |
CN101781112B (zh) * | 2009-01-19 | 2012-11-21 | 龙岩闽中远新型建材有限公司 | 一种加气硅酸钠珍珠岩保温材料 |
CN102180639B (zh) * | 2011-02-24 | 2013-04-24 | 卢清友 | 一种环保轻质隔热材料 |
-
2012
- 2012-01-19 CN CN201210017916.9A patent/CN102584163B/zh active Active
- 2012-12-20 US US14/371,454 patent/US9708536B2/en active Active
- 2012-12-20 WO PCT/CN2012/087031 patent/WO2013107242A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1149525A (zh) * | 1995-11-07 | 1997-05-14 | 承德天工建材厂 | 多功能膨胀珍珠岩装饰吸声板及其制造工艺 |
CN1693255A (zh) * | 2005-04-14 | 2005-11-09 | 郑州祥通耐火陶瓷有限公司 | 珍珠岩与蛭石的多层复合隔热材料及其用途 |
CN101775882A (zh) * | 2010-01-29 | 2010-07-14 | 王春莉 | 一种环保、耐燃的装饰材料及其制备工艺 |
CN102584163A (zh) * | 2012-01-19 | 2012-07-18 | 周国富 | 一种无机防火保温材料及其制品 |
Non-Patent Citations (1)
Title |
---|
CHEN, BAOSHENG ET AL., HANDBOOK OF BUILDING FIREPROOF DECORATION MATERIALS AND STRUCTURES, EDITION 1, November 1993 (1993-11-01), TONGJI UNIVERSITY PRESS, pages 72 - 88 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114804792A (zh) * | 2022-05-26 | 2022-07-29 | 山东海瑞林装饰工程有限公司 | 一种外墙防火保温板及其生产方法 |
CN115611603A (zh) * | 2022-09-19 | 2023-01-17 | 湖南诚友绿色建材科技有限公司 | 一种防火保温材料及其制备方法 |
CN115611603B (zh) * | 2022-09-19 | 2023-07-14 | 湖南诚友绿色建材科技有限公司 | 一种防火保温材料及其制备方法 |
CN115536425A (zh) * | 2022-10-17 | 2022-12-30 | 淄博锦昊陶瓷有限公司 | 保温陶瓷砖及其制备方法 |
CN117125940A (zh) * | 2023-08-25 | 2023-11-28 | 仪征河海工程建设有限公司 | 一种建筑工程外墙保温材料 |
CN117125940B (zh) * | 2023-08-25 | 2024-03-26 | 仪征河海工程建设有限公司 | 一种建筑工程外墙保温材料 |
CN117962426A (zh) * | 2024-04-02 | 2024-05-03 | 潍坊市中鼎钢结构有限公司 | 一种箱房防火板材及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102584163A (zh) | 2012-07-18 |
US9708536B2 (en) | 2017-07-18 |
US20150010750A1 (en) | 2015-01-08 |
CN102584163B (zh) | 2014-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013107242A1 (zh) | 一种无机防火保温材料及其制品 | |
CN102838375B (zh) | 一种无机泡沫保温材料及其制备方法 | |
CN103265262B (zh) | 一种无机复合保温板及其制备方法 | |
CN104311108B (zh) | 一种憎水型无机纳米保温板及其制备方法 | |
CN103342578B (zh) | 利用铁尾矿制备的多孔保温装饰材料及其制备方法 | |
CN105601323A (zh) | 一种泡沫混凝土复合轻质隔墙条板及其制备方法 | |
CN104016624B (zh) | 高强度低密度阻燃无机墙体保温材料及其制备方法 | |
CN102838374A (zh) | 一种外墙用发泡水泥保温材料及其制备方法 | |
CN101333111A (zh) | 一种可耐高温、高效保温墙体材料及其制造方法 | |
CN102173717B (zh) | 一种高强轻质环保保温防火板的生产方法 | |
CN102557540A (zh) | 一种无机防火保温板材 | |
CN104612263A (zh) | 一种stp超薄真空绝热板及施工工艺 | |
CN111794397A (zh) | 一种防火复合保温板及其制备方法和应用 | |
WO2019042106A1 (zh) | 防火材料及防火板和应用于隧道的防火墙结构及施工方法 | |
CN102503336A (zh) | 复合料保温防火吸音生态石膏板 | |
CN204001391U (zh) | 一种轻质保温隔墙板 | |
CN103967194B (zh) | 一种复合保温砖 | |
CN106082884B (zh) | 一种含有固废煤渣的轻质保温墙板及制备工艺 | |
CN105370001A (zh) | 一种et复合保温板的生产工艺 | |
CN102767263B (zh) | 一种屋面保温隔热板及其生产方法与应用 | |
CN106626599B (zh) | 一种二氧化硅气凝胶夹心石膏板及其制作方法 | |
CN110920173A (zh) | 多层复合型保温隔热板及其制备方法 | |
CN104909678A (zh) | 一种ky无机活性保温砂浆及其制备方法 | |
CN103711273A (zh) | 一种复合保温节能装饰板 | |
CN113526916A (zh) | 一种全无机材料的保温板及其生产工艺、全无机材料的复合装饰板的生产工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12866250 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14371454 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12866250 Country of ref document: EP Kind code of ref document: A1 |