WO2013105201A1 - 車両用空調装置 - Google Patents

車両用空調装置 Download PDF

Info

Publication number
WO2013105201A1
WO2013105201A1 PCT/JP2012/008379 JP2012008379W WO2013105201A1 WO 2013105201 A1 WO2013105201 A1 WO 2013105201A1 JP 2012008379 W JP2012008379 W JP 2012008379W WO 2013105201 A1 WO2013105201 A1 WO 2013105201A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
vehicle
heat exchanger
flow path
outside
Prior art date
Application number
PCT/JP2012/008379
Other languages
English (en)
French (fr)
Inventor
圭俊 野田
智裕 寺田
勝志 谷口
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013105201A1 publication Critical patent/WO2013105201A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00835Damper doors, e.g. position control
    • B60H1/00849Damper doors, e.g. position control for selectively commanding the induction of outside or inside air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H1/00035Air flow details of HVAC devices for sending an air stream of uniform temperature into the passenger compartment
    • B60H1/00057Air flow details of HVAC devices for sending an air stream of uniform temperature into the passenger compartment the air being heated and cooled simultaneously, e.g. using parallel heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/0015Temperature regulation
    • B60H2001/00178Temperature regulation comprising an air passage from the HVAC box to the exterior of the cabin

Definitions

  • the present invention relates to a vehicle air conditioner mounted on a vehicle.
  • a vehicle air conditioner that is mounted on a vehicle and adjusts the temperature in the passenger compartment.
  • a vehicle air conditioner generally uses a heat pump to adjust the temperature in the passenger compartment.
  • Patent Document 1 discloses a vehicle air conditioner that uses a heat pump to cool a vehicle interior and uses engine heat to heat the vehicle interior.
  • a heater core that transmits engine heat is provided on the downstream side of the evaporator of the heat pump, and a cross-flow fan is further provided on the downstream side to stir the air cooled by the evaporator and the air heated by the heater core.
  • Patent Document 2 discloses a vehicle air conditioner that switches between cooling and heating in a vehicle interior by reversing the refrigerant flow of a heat pump.
  • a vehicle air conditioner that heats the interior of a vehicle using the heat of the engine has a problem that the heat of the heating becomes insufficient in an engine vehicle or an electric vehicle with a small amount of exhaust heat when it is cold. There is.
  • Patent Document 2 in an air conditioner that switches between cooling and heating by reversing the flow of refrigerant in the heat pump, it is necessary to stably reverse the flow of refrigerant having a pressure difference in the heat pump. . Therefore, in such an air conditioner, there is a problem that it takes time to switch between the cooling operation and the heating operation, or the mechanism of the refrigerant piping and valves is complicated in order to stably reverse the refrigerant flow. Challenges arise.
  • Patent Document 2 an operation is performed in which air dehumidified by a heat pump is warmed by engine heat or the like in order to prevent the windows from being clouded. At that time, a dedicated space for mixing the dehumidified air and the warmed air was required.
  • An object of the present invention is to enable heating without the heat of the engine, to quickly switch between cooling and heating, and further to air cooled in a small space even when heating and dehumidification are necessary. It is to provide a vehicle air conditioner capable of mixing the air and warmed air and sending them to the passenger compartment.
  • a vehicle air conditioner includes a first heat exchanger that exchanges heat between a decompressed refrigerant and ambient air, and heat between the compressed refrigerant and ambient air.
  • a second heat exchanger to be exchanged a flow path for guiding the air that has passed through the first heat exchanger into the vehicle interior, a flow path for guiding the air that has passed through the second heat exchanger into the vehicle interior, and the two One of the flow paths is a first flow path, the other is a second flow path, a first blower that is arranged in the middle of the first flow path and flows air to the first flow path, and the second flow path
  • An on-off valve capable of sending air from the flow path to the intake side of the first blower in the first flow path is employed.
  • the air that has passed through the second heat exchanger can be sent to the vehicle interior to heat the vehicle interior. Moreover, it can switch to heating from air_conditioning
  • the block diagram which shows a heat pump among the vehicle air conditioners of embodiment of this invention The block diagram which shows a ventilation apparatus among the vehicle air conditioners of embodiment of this invention
  • the figure showing the state of the heating operation in the vehicle air conditioner of embodiment of this invention The figure showing the state of the air_conditionaing
  • the figure showing the state of the dehumidification heating operation in the vehicle air conditioner of embodiment of this invention The figure showing the state of the exhaust heat recovery heating operation in the vehicle air conditioner of embodiment of this invention
  • FIG. 1 is a configuration diagram showing a heat pump in a vehicle air conditioner according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram (schematic cross-sectional view in which the internal flow path is visible) showing the air blower of the vehicle air conditioner according to the embodiment of the present invention.
  • the vehicle air conditioner of this embodiment includes the configuration of the heat pump shown in FIG. 1 and the configuration of the blower shown in FIG.
  • the heat pump includes an expansion valve 2 for decompressing the refrigerant, an evaporator (also referred to as an evaporator) 3 for exchanging heat between the decompressed refrigerant and the surrounding air, a compressor 4 for compressing the refrigerant, and a compressor. And a condenser (also referred to as a condenser) 5 for exchanging heat between the refrigerant and the surrounding air.
  • the evaporator 3 corresponds to the first heat exchanger
  • the condenser 5 corresponds to the second heat exchanger
  • the blower includes an indoor duct 11, a first indoor blow door 14, a first outdoor discharge door 15, a first duct 16, a first fan 17, a first outside air introduction door 18, an inside air return duct 19, and a first inside air introduction door 20.
  • the outside air introduction door 22 and the second inside air introduction door 21 correspond to first to eighth switching sections, respectively.
  • the inter-duct door 28 corresponds to an on-off valve.
  • the first fan 17 corresponds to the first blower
  • the second fan 23 corresponds to the second blower.
  • the downstream side of the evaporator 3 in the first duct 16 corresponds to the first flow path
  • the downstream side of the capacitor 5 in the second duct 24 corresponds to the second flow path.
  • the indoor duct 11 is directly connected to the downstream ends of the first duct 16 and the second duct 24, and is provided with an air outlet (DEF), an upper air outlet (VENT), and a foot outlet (FOOT) for preventing fogging in the passenger compartment. It is a duct that leads to).
  • the first duct 16 is provided with the evaporator 3 in the middle of the upstream side and the first fan 17 in the middle of the downstream side.
  • an outside air introduction port that leads to the outside of the passenger compartment and an inside air introduction port that leads to the inside air return duct 19 are provided.
  • the first outside air introduction door 18 is a valve that opens and closes this outside air introduction port
  • the first inside air introduction door 20 is a valve that opens and closes this inside air introduction port.
  • the 1st indoor ventilation door 14 is a valve which opens and closes this indoor ventilation opening
  • the 1st outdoor discharge door 15 is a valve which opens and closes this outdoor discharge opening.
  • the air in the first duct 16 flows from upstream to downstream by the action of the first fan 17 and passes through the evaporator 3 on the way to be cooled and dehumidified.
  • limit especially as the 1st fan 17 The cross-flow fan is employ
  • the condenser 5 is arranged in the middle of the upstream side, and the second fan 23 is arranged in the middle of the downstream side.
  • the second outside air introduction door 22 is a valve that opens and closes this outside air introduction port
  • the second inside air introduction door 21 is a valve that opens and closes this inside air introduction port.
  • the second outside air introduction door 22 employs a flapper door that can open and close a large-area channel by a plurality of parallel small doors.
  • the 2nd indoor ventilation door 26 is a valve which opens and closes this indoor ventilation opening
  • the 2nd outdoor discharge door 25 is a valve which opens and closes this outdoor discharge opening.
  • the second outdoor discharge door 25 employs a flapper door that can open and close a large flow path by a plurality of small doors arranged in parallel.
  • the air in the second duct 24 flows from upstream to downstream by the action of the second fan 23 and is warmed by passing through the condenser 5 on the way.
  • a duct capable of sending air from the downstream side of the second fan 23 and the condenser 5 in the second duct 24 to the intake side of the first fan 17 of the first duct 16.
  • An inter-opening is provided.
  • the inter-duct door 28 is a valve that opens and closes the inter-duct opening.
  • the inside air return duct 19 is a duct for returning the air in the vehicle interior to the upstream side of the first duct 16 and the upstream side of the second duct 24, the upstream end opening into the vehicle interior, and the downstream end being the first duct 16 and the first duct.
  • the two ducts 24 are connected to a part of the upstream end.
  • each door can open and close the passage of air, and the flow rate of air in this passage can be switched to zero or a finite flow rate.
  • each door is comprised so that the opening degree of each air passage can be switched continuously or in multiple steps, and thereby the flow rate of air can be switched continuously or in multiple steps.
  • each door is electrically controlled by a control unit (not shown).
  • This control unit opens and closes each door to a predetermined opening based on a user button operation or the like.
  • each door is good also as a structure which transmits the motive power of a user's lever operation via hydraulic pressure or a wire, and opens and closes.
  • the vehicle air conditioner of this embodiment includes at least an evaporator 3, a condenser 5, a first indoor blower door 14, a first outdoor discharge door 15, a first duct 16, a first fan 17, a first outdoor air introduction door 18, Inside air return duct 19, first inside air introduction door 20, second inside air introduction door 21, second outside air introduction door 22, second fan 23, second duct 24, second outdoor discharge door 25, second indoor ventilation door 26, And the door 28 between ducts is comprised by integrating (it is also called unitization).
  • the indoor duct 11 is arranged in the vehicle interior, and the unitized configuration is arranged outside the vehicle interior.
  • the evaporator 3 and the condenser 5 are disposed in the vicinity of the passenger compartment, and the first duct 16 and the second duct 24 are configured to have a short flow path length.
  • the vehicle air conditioner of this embodiment is mounted on an electric vehicle.
  • an engine vehicle in order to reduce the influence of engine exhaust heat, it is necessary to arrange a heat pump condenser in the vicinity of the radiator at the head of the vehicle, but there is no such arrangement restriction in an electric vehicle. Therefore, in the vehicle air conditioner of this embodiment, the condenser 5 of the heat pump can be disposed in the blower.
  • FIG. 3 is a diagram illustrating a heating operation state in the vehicle air conditioner according to the embodiment of the present invention.
  • the flow of air is indicated by a band-shaped arrow
  • air introduced from the outside is “FRE (Fresh air)”
  • air returned from the passenger compartment is “REC (Recirculated air). ) ”.
  • the refrigerant flow of the heat pump is in the same direction regardless of switching of operation such as heating or cooling.
  • the first indoor air blowing door 14 is closed and the second indoor air blowing door 26 is opened. Further, the first outdoor discharge door 15 is opened, and the second outdoor discharge door 25 is closed. Further, the first outside air introduction door 18, the second outside air introduction door 22, and the second inside air introduction door 21 are opened, and the first inside air introduction door 20 is closed. Further, the inter-duct door 28 is closed. Then, the first fan 17 and the second fan 23 are driven.
  • the evaporator 3 performs heat exchange for transferring heat from the air (outside air) introduced from the outside to the refrigerant, and the cooled air after the heat exchange is discharged out of the passenger compartment. Is done. Further, in the condenser 5, heat exchange is performed in which heat is transferred from the refrigerant to the air introduced from the outside (outside air) and the air introduced from the vehicle interior (inside air), and the heated air after the heat exchange is converted into the indoor duct 11 Sent to.
  • the ratio of the outside air and the inside air introduced into the condenser 5 is controlled to, for example, 7: 3 by the opening degree of the second outside air introduction door 22 and the second inside air introduction door 21.
  • the reason why the air introduced into the condenser 5 includes outside air is that if the inside air is 100%, the humidity in the passenger compartment cannot be lowered and the window may be clouded. Note that the ratio between the outside air and the inside air introduced into the capacitor 5 can be changed to about “1: 9” to “9: 1” depending on the humidity and temperature.
  • the air heated by the condenser 5 is sent to the vehicle interior via the indoor duct 11 and the vehicle interior is heated.
  • FIG. 4 is a diagram illustrating a cooling operation state in the vehicle air conditioner according to the embodiment of the present invention.
  • the first indoor air blowing door 14 is opened and the second indoor air blowing door 26 is closed. Further, the first outdoor discharge door 15 is closed, and the second outdoor discharge door 25 is opened. Further, the first outside air introduction door 18 and the second inside air introduction door 21 are closed, and the first inside air introduction door 20 and the second outside air introduction door 22 are opened. Further, the inter-duct door 28 is closed. Then, the first fan 17 and the second fan 23 are driven.
  • the evaporator 3 performs heat exchange for transferring heat from the air introduced from the passenger compartment to the refrigerant, and the cooled air after the heat exchange is sent to the indoor duct 11. .
  • condenser 5 heat exchange which transfers a heat
  • the air cooled by the evaporator 3 is sent to the vehicle interior via the indoor duct 11 to cool the vehicle interior.
  • FIG. 5 is a diagram illustrating a state of the dehumidifying and heating operation in the vehicle air conditioner according to the embodiment of the present invention.
  • the direction in which the refrigerant of the heat pump flows is the same direction as the heating operation and the cooling operation.
  • the first indoor blower door 14 and the second indoor blower door 26 are opened. Further, the first outdoor discharge door 15 is opened, and the second outdoor discharge door 25 is closed. In addition, the first outside air introduction door 18, the first inside air introduction door 20, the second outside air introduction door 22, and the second inside air introduction door 21 are opened together. Further, the inter-duct door 28 is slightly opened. Then, the first fan 17 and the second fan 23 are driven.
  • the ratio of the outside air and the inside air sent to the evaporator 3 is controlled to, for example, 8: 2 by the opening degrees of the first outside air introduction door 18 and the first inside air introduction door 20. Further, the ratio between the outside air and the inside air sent to the condenser 5 is controlled to, for example, 2: 8 by the opening degree of the second outside air introduction door 22 and the second inside air introduction door 21.
  • the condenser 5 performs heat exchange in which heat is transferred from the refrigerant to the outside air and the inside air, and warmed air after the heat exchange is sent to the indoor duct 11. Further, part of the warmed air after heat exchange is sent from the duct opening / closing opening to the air intake opening of the first fan 17.
  • the evaporator 3 heat exchange is performed to transfer heat from outside air and inside air to the refrigerant. Then, the cooled and dehumidified air after the heat exchange is mixed and stirred by the first fan 17 with the warm air supplied from the opening and closing port between the ducts, and becomes dehumidified air at a medium temperature. A part of the air is discharged to the outside, and a part is sent to the indoor duct 11.
  • the air warmed by the condenser 5 is sent out to the vehicle interior via the indoor duct 11.
  • the air heated by the condenser 5 and the air dehumidified by the evaporator 3 are mixed by the first fan 17, and a part thereof is sent into the vehicle interior via the indoor duct 11.
  • the ratio between the outside air and the inside air introduced into the evaporator 3 is not limited to 8: 2.
  • the ratio of the outside air and the inside air introduced into the condenser 5 is not limited to 2: 8. These ratios are adjusted by the temperature and humidity inside and outside the vehicle interior.
  • FIG. 6 is a diagram illustrating a state of the exhaust heat recovery heating operation in the vehicle air conditioner according to the embodiment of the present invention.
  • the direction in which the refrigerant of the heat pump flows is the same direction as the heating operation and the cooling operation.
  • the first indoor air blowing door 14 is closed and the second indoor air blowing door 26 is opened. Further, the first outdoor discharge door 15 is opened, and the second outdoor discharge door 25 is closed. Further, the first outside air introduction door 18, the first inside air introduction door 20, the second outside air introduction door 22, and the second inside air introduction door 21 are opened. Further, the inter-duct door 28 is closed. Then, the first fan 17 and the second fan 23 are driven.
  • the ratio of outside air and inside air sent to the evaporator 3 is controlled to, for example, 3: 7 by the opening degree of the first outside air introduction door 18 and the first inside air introduction door 20. Further, the ratio between the outside air and the inside air sent to the condenser 5 is controlled to, for example, 7: 3 by the opening degrees of the second outside air introduction door 22 and the second inside air introduction door 21.
  • the evaporator 3 By switching the air flow path, the evaporator 3 performs heat exchange for transferring heat from the outside air and the inside air to the refrigerant, and the cooled air after the heat exchange is discharged to the outside. Further, in the condenser 5, heat exchange is performed in which heat is transferred from the refrigerant to the outside air and the inside air, and the warmed air after the heat exchange is sent to the indoor duct 11.
  • the air heated by the condenser 5 is sent into the vehicle interior via the indoor duct 11 and the vehicle interior is heated. Further, warm inside air passes through the evaporator 3 and is discharged to the outside. During this passage, the heat of the inside air is transferred to the refrigerant through the evaporator 3. That is, the inside air is discharged to the outside. The heat of the inside air is recovered through the refrigerant and used as heat for warming the air in the condenser 5.
  • This exhaust heat recovery heating operation can be used when the outside air temperature is very low and high heating performance is required.
  • the exhaust heat recovery heating operation applies the inside air having a high humidity to the evaporator 3, so that the evaporator 3 may be frosted.
  • the heating operation described above can prevent the evaporator 3 from frosting.
  • the ratio of the outside air and the inside air introduced into the evaporator 3 is not limited to 3: 7, and the same effect can be obtained if the inside air is a ratio of half or more. Further, in the exhaust heat recovery heating operation, the ratio of the outside air and the inside air introduced into the condenser 5 is not limited to 7: 3, and the same effect can be obtained if the outside air is a ratio of more than half. These ratios are adjusted by the temperature and humidity outside the vehicle interior.
  • the vehicle air conditioner of the present embodiment it is possible to heat the passenger compartment using a heat pump. Therefore, even when there is no engine heat, the vehicle interior can be heated with low energy with high efficiency. Moreover, according to the vehicle air conditioner of the present embodiment, the heating operation and the cooling operation can be switched by switching the form of the air flow path without reversing the refrigerant flow of the heat pump. Therefore, compared with the air conditioner which reverses the refrigerant
  • the configuration for reversing the flow of the refrigerant of the heat pump is unnecessary, so that the number of parts and the part cost can be reduced.
  • the operation content can be appropriately switched to the above-described heating operation, cooling operation, dehumidifying heating operation, and exhaust heat recovery heating operation. Therefore, by switching these operation details, the temperature and humidity in the passenger compartment can be efficiently adjusted as appropriate according to the temperature and humidity between the outside air and the inside air.
  • the air dehumidified and cooled by the evaporator 3 and the air warmed by the condenser 5 are mixed and stirred during the dehumidifying and heating operation to enter the vehicle interior. Sent. Therefore, it is avoided that cold air is directly blown into the room during heating.
  • the first fan 17 has both a function of flowing air in the first duct 16 and a function of mixing and stirring air during the dehumidifying heating operation. Therefore, the vehicle air conditioner can be made more compact than a case where a dedicated space for mixing and stirring air is provided.
  • the vehicle air conditioner of the present embodiment most of the evaporator 3, the condenser 5, and the blower are integrally configured and unitized. Therefore, the vehicle air conditioner can be easily mounted on the vehicle. Further, since the unitized configuration is arranged outside the vehicle compartment and only the indoor duct 11 is arranged in the vehicle interior, the space inside the vehicle compartment can be widened.
  • the condenser 5 is arranged in the blower, the influence of salt damage on the condenser 5 can be reduced as compared with the case where the condenser 5 is arranged in front of the vehicle radiator. Therefore, it is possible to reduce the cost of the capacitor 5 by setting the resistance of the capacitor 5 to salt damage low.
  • the condenser 5 is arranged in the blower, the refrigerant pipes before and after the condenser 5 can be shortened as compared with the case where the condenser 5 is arranged in front of the vehicle radiator. Therefore, it is possible to reduce the cost of the refrigerant piping and the refrigerant pressure loss.
  • the pressure loss of the duct can be reduced, and the air blowing efficiency can be increased. Can do.
  • the configuration of the open / close door has been described as an example of the means for switching the air flow rate of each flow path.
  • various types of valves can be similarly applied.
  • the structure which switches the air flow rate of each flow path by switching the air pressure of each flow path using a plurality of fans or the wind pressure during traveling without using a valve may be employed.
  • the configuration of the switching unit that adjusts the air flow rate of each flow path has been described as an example of a configuration in which the air flow rate can be switched continuously or in a plurality of stages.
  • the configuration in which the first fan 17 of the first duct 16 performs the function of mixing and stirring the air that has passed through the evaporator 3 and the air that has passed through the condenser 5 has been described as an example.
  • this function may be realized by the second fan 23 of the second duct 24.
  • the second fan 23 is arranged away from the condenser 5, and the cooled air is sent from the first duct 16 to the intake side of the second fan 23 of the second duct 24 by opening a valve between the ducts. What is necessary is just composition.
  • the vehicle air conditioner according to the present invention may have a configuration in which the indoor duct 11 is omitted from the vehicle air conditioner of the above embodiment. Further, the arrangement and form of the first duct 16, the second duct 24, and the inside air return duct 19 can be appropriately changed from those of the above-described embodiment.
  • the present invention is useful for a vehicle air conditioner mounted on an electric vehicle.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

 暖房と除湿とが必要なときに少ないスペースで冷却された空気と暖められた空気とを混合して車室内へ送ることが可能な車両用空調装置を提供すること。この車両用空調装置は、減圧された冷媒と周囲の空気との間で熱を交換する第1熱交換器と、圧縮された冷媒と周囲の空気との間で熱を交換する第2熱交換器と、前記第1熱交換器を通過した空気を車室内へ導く流路と、前記第2熱交換器を通過した空気を車室内へ導く流路と、前記2つの流路の何れか一方を第1流路とし、他方を第2流路として、前記第1流路の途中に配置されて前記第1流路に空気を流す第1送風器と、前記第2流路から前記第1流路における前記第1送風器の吸気側へ空気を送出可能な開閉弁と、を具備する。

Description

車両用空調装置
 本発明は、車両に搭載される車両用空調装置に関する。
 従来、車両に搭載されて車室内の気温を調整する車両用空調装置がある。車両用空調装置は、特許文献1、2に示されるように、ヒートポンプを用いて車室内の気温調整を行うものが一般的である。
 特許文献1には、ヒートポンプを用いて車室内の冷房を行う一方、エンジンの熱を利用して車室内の暖房を行う車両用空調装置が開示されている。また、特許文献1には、ヒートポンプのエバポレータの下流側にエンジンの熱が伝えられるヒータコアを設け、さらに下流側に貫流ファンを設け、エバポレータで冷やされた空気とヒータコアで暖められた空気とを攪拌して送出する構成が開示されている。特許文献2には、ヒートポンプの冷媒の流れを逆転させて車室内の冷房と暖房とを切り替える車両用空調装置が開示されている。
特開2002-166720号公報 特開2005-306300号公報
 特許文献1に示されるように、エンジンの熱を利用して車室内の暖房を行う車両用空調装置は、排熱量の少ないエンジン車または電気自動車等において、寒冷時に暖房の熱が足りなくなるという課題がある。
 また、特許文献2に示されるように、ヒートポンプの冷媒の流れを逆転させて冷房と暖房とを切り替える空調装置では、ヒートポンプの中で圧力差のある冷媒の流れを安定的に反転させる必要がある。よって、このような空調装置では、冷房運転と暖房運転との切り替えに時間がかかるという課題、または、冷媒の流れを安定的に反転させるために冷媒の配管および弁類の機構が複雑になるという課題が生じる。
 車両では、車室内の温度および湿度の変動が激しく、状況によっては窓がくもることもあるため、冷房と暖房とを素早く切り替えられることが要求される。冷媒の流れを逆転させて冷房と暖房とを切り替える空調装置では、冷媒の安定的な逆転に相当時間を要するため、この要求に応じるのが困難であった。
 また、特許文献2では、窓がくもることを防止するためヒートポンプにより除湿された空気をエンジン熱等により温める運転を行っている。その際、除湿された空気と暖められた空気とを混合する専用スペースが必要であった。
 本発明の目的は、エンジンの熱がなくても暖房が可能であり、冷房と暖房とを素早く切り替えることが可能であり、さらに、暖房と除湿とが必要なときでも少ないスペースで冷却された空気と暖められた空気とを混合して車室内へ送ることが可能な車両用空調装置を提供することである。
 本発明の一態様に係る車両用空調装置は、減圧された冷媒と周囲の空気との間で熱を交換する第1熱交換器と、圧縮された冷媒と周囲の空気との間で熱を交換する第2熱交換器と、前記第1熱交換器を通過した空気を車室内へ導く流路と、前記第2熱交換器を通過した空気を車室内へ導く流路と、前記2つの流路の何れか一方を第1流路とし、他方を第2流路として、前記第1流路の途中に配置されて前記第1流路に空気を流す第1送風器と、前記第2流路から前記第1流路における前記第1送風器の吸気側へ空気を送出可能な開閉弁と、を具備する構成を採る。
 本発明によれば、エンジンの熱がなくても第2熱交換器を通過した空気を車室内に送って車室内を暖房できる。また第1熱交換器を通過した空気を車室内に送ることで暖房から冷房に速やかに切り替えることができる。さらに、暖気と冷気の混合用の専用スペースを設けることなく、開閉弁を開くことにより、第1熱交換器で冷やされた空気と第2熱交換器で暖められた空気とを第1送風器で混合して車室内へ送ることができる。
本発明の実施の形態の車両用空調装置のうちヒートポンプを示す構成図 本発明の実施の形態の車両用空調装置のうち送風装置を示す構成図 本発明の実施の形態の車両用空調装置における暖房運転の状態を表わす図 本発明の実施の形態の車両用空調装置における冷房運転の状態を表わす図 本発明の実施の形態の車両用空調装置における除湿暖房運転の状態を表わす図 本発明の実施の形態の車両用空調装置における排熱回収暖房運転の状態を表わす図
 以下、本発明の各実施の形態について図面を参照して詳細に説明する。
 図1は、本発明の実施の形態の車両用空調装置のうちヒートポンプを示す構成図である。図2は、本発明の実施の形態の車両用空調装置の送風装置を示す構成図(内部流路が見えるようにした概略断面図)である。
 この実施の形態の車両用空調装置は、図1に示すヒートポンプの構成と、図2に示す送風装置の構成とを備えている。
 ヒートポンプには、冷媒を減圧する膨張弁2と、減圧された冷媒と周囲の空気との間で熱交換を行うエバポレータ(蒸発器とも言う)3と、冷媒を圧縮する圧縮機4と、圧縮された冷媒と周囲の空気との間で熱交換を行うコンデンサ(凝縮器とも言う)5とが設けられている。
 上記構成のうち、エバポレータ3は第1熱交換器、コンデンサ5は第2熱交換器に、それぞれ相当する。
 送風装置は、室内ダクト11、第1室内送風扉14、第1室外排出扉15、第1ダクト16、第1ファン17、第1外気導入扉18、内気戻りダクト19、第1内気導入扉20、第2内気導入扉21、第2外気導入扉22、第2ファン23、第2ダクト24、第2室外排出扉25、第2室内送風扉26、および、ダクト間扉28を備えている。
 これらの構成のうち、第1室内送風扉14、第1室外排出扉15、第2室内送風扉26、第2室外排出扉25、第1外気導入扉18、第1内気導入扉20、第2外気導入扉22、第2内気導入扉21が、第1~第8切替部にそれぞれ相当する。また、ダクト間扉28が開閉弁に相当する。また、第1ファン17が第1送風器に、第2ファン23が第2送風器にそれぞれ相当する。また、第1ダクト16のエバポレータ3の下流側が第1流路に相当し、第2ダクト24のコンデンサ5の下流側が第2流路に相当する。
 室内ダクト11は、第1ダクト16と第2ダクト24の下流端に直接的に接続されて、車室内の曇り止め用の吹出口(DEF)、上側吹出口(VENT)および足元吹出口(FOOT)まで通じるダクトである。
 第1ダクト16には、上流側の途中にエバポレータ3が、下流側の途中に第1ファン17が配置されている。
 第1ダクト16の上流端には、車室外に通じる外気導入口と、内気戻りダクト19に通じる内気導入口とが設けられている。第1外気導入扉18は、この外気導入口を開閉する弁であり、第1内気導入扉20は、この内気導入口を開閉する弁である。
 第1ダクト16の下流端には、室内ダクト11に通じる室内送風口と、車室外に通じる室外排出口とが設けられている。第1室内送風扉14は、この室内送風口を開閉する弁であり、第1室外排出扉15は、この室外排出口を開閉する弁である。
 第1ダクト16の空気は、第1ファン17の作用により上流から下流へ流れ、途中でエバポレータ3を通過して冷却および除湿される。第1ファン17としては、特に制限されないが、貫流ファンを採用している。
 第2ダクト24には、上流側の途中にコンデンサ5が、下流側の途中に第2ファン23が配置されている。
 第2ダクト24の上流端には、車室外に通じる外気導入口と、室内ダクトに通じる内気導入口とが設けられている。第2外気導入扉22は、この外気導入口を開閉する弁であり、第2内気導入扉21は、この内気導入口を開閉する弁である。特に制限されないが、第2外気導入扉22には、並列された複数の小扉により大きな面積の流路を開閉できるフラッパードアを採用している。
 第2ダクト24の下流端には、室内ダクト11に通じる室内送風口と、車室外に通じる室外排出口とが設けられている。第2室内送風扉26は、この室内送風口を開閉する弁であり、第2室外排出扉25は、この室外排出口を開閉する弁である。特に制限されないが、第2室外排出扉25には、並列された複数の小扉により大きな面積の流路を開閉できるフラッパードアを採用している。
 第2ダクト24の空気は、第2ファン23の作用により上流から下流へ流れ、途中でコンデンサ5を通過して温められる。第2ファン23としては、特に制限されないがプロペラファンを採用している。
 第1ダクト16および第2ダクト24の途中には、第2ダクト24における第2ファン23およびコンデンサ5の下流側から、第1ダクト16の第1ファン17の吸気側へ空気を送出可能なダクト間開口部が設けられている。ダクト間扉28は、このダクト間開口部を開閉する弁である。
 内気戻りダクト19は、車室内の空気を第1ダクト16の上流側および第2ダクト24の上流側へ戻すダクトであり、上流端が車室内に開口し、下流端が第1ダクト16および第2ダクト24の上流端の一部に接続されている。
 第1室内送風扉14、第1室外排出扉15、第1外気導入扉18、第1内気導入扉20、第2内気導入扉21、第2外気導入扉22、第2室外排出扉25、第2室内送風扉26、および、ダクト間扉28は、電気モータにより開閉駆動されるように構成されている。各扉は、空気の通り路を開閉して、この通り路の空気の流量をゼロ又は有限の流量に切り替え可能である。また、各扉は、各空気の通り路の開度を連続的または複数段階に切り替え可能に構成され、それにより空気の流量を連続的又は複数段階に切り替えることができる。
 各扉の開閉は、図示略の制御部により電気的に制御される。この制御部はユーザのボタン操作等に基づいて各扉を所定の開度に開閉駆動する。なお、各扉は、ユーザのレバー操作の動力を油圧又はワイヤーを介して伝達して開閉する構成としてもよい。
 この実施の形態の車両用空調装置は、少なくとも、エバポレータ3、コンデンサ5、第1室内送風扉14、第1室外排出扉15、第1ダクト16、第1ファン17、第1外気導入扉18、内気戻りダクト19、第1内気導入扉20、第2内気導入扉21、第2外気導入扉22、第2ファン23、第2ダクト24、第2室外排出扉25、第2室内送風扉26、および、ダクト間扉28が、一体化(ユニット化とも言う)されて構成されている。
 そして、室内ダクト11が車室内に配置され、上記ユニット化された構成が車室外に配置されている。エバポレータ3およびコンデンサ5は車室の近傍に配置され、第1ダクト16および第2ダクト24は、流路長が短く構成されている。
 この実施の形態の車両用の空調装置は、電気自動車に搭載されるものである。エンジン自動車では、エンジン排熱の影響を軽減させるため、ヒートポンプのコンデンサを車両先頭のラジエータの近傍に配置する必要があるが、電気自動車ではこのような配置制限がない。そのため、この実施の形態の車両用空調装置では、ヒートポンプのコンデンサ5を送風装置内に配置することが可能になっている。
 また、エンジン自動車では、エンジンルーム内が非常に高温になることから、エンジンルームと車室との間に断熱性のある仕切りを設けて、送風装置を仕切りより車室側に配置する必要があった。しかし、電気自動車では、このような配置制限がない、このため、この実施の形態の車両用空調装置では、送風装置を車室外に配置して、車室内のスペースを広くすることが可能になっている。
 以下には、上記構成の車両用空調装置の複数種類の運転動作について説明する。
<暖房運転>
 図3は、本発明の実施の形態の車両用空調装置における暖房運転の状態を表わす図である。図中、空気の流れを帯状の矢印で表わし、外部から導入される空気(外気とも呼ぶ)を「FRE(Fresh air)」、車室内から戻される空気(内気とも呼ぶ)を「REC(Recirculated air)」と記している。
 この実施の形態の車両用空調装置では、暖房または冷房等の運転の切り替えに拘わらずに、ヒートポンプの冷媒の流れは同一方向である。
 暖房運転では、図3に示すように、第1室内送風扉14が閉じられ、第2室内送風扉26が開かれる。また、第1室外排出扉15が開かれ、第2室外排出扉25が閉じられる。また、第1外気導入扉18と、第2外気導入扉22と、第2内気導入扉21とが開かれ、第1内気導入扉20が閉じられる。また、ダクト間扉28が閉じられる。そして、第1ファン17と第2ファン23とが駆動される。
 このような空気の流路の切り替えにより、エバポレータ3では、外部から導入した空気(外気)から冷媒へ熱を移動する熱交換が行われて、熱交換後の冷却された空気が車室外に排出される。また、コンデンサ5では、外部から導入した空気(外気)および車室内から導入した空気(内気)へ冷媒から熱を移動する熱交換が行われて、熱交換後の温められた空気が室内ダクト11へ送られる。コンデンサ5へ導入される外気と内気との割合は、第2外気導入扉22と第2内気導入扉21との開度によって、例えば7:3に制御される。
 なお、コンデンサ5へ導入する空気に外気を含めている理由は、この空気を内気100%とすると、車室内の湿度を下げることができずに、窓にくもりが生じる恐れがあるからである。なお、コンデンサ5へ導入する外気と内気との割合は、湿度および温度によって、「1:9」~「9:1」程度に変更可能である。
 このような暖房運転により、コンデンサ5で温められた空気が室内ダクト11を介して車室内へ送出されて車室内が暖房される。
<冷房運転>
 図4は、本発明の実施の形態の車両用空調装置における冷房運転の状態を表わす図である。
 冷房運転では、図4に示すように、第1室内送風扉14が開かれ、第2室内送風扉26が閉じられる。また、第1室外排出扉15が閉じられ、第2室外排出扉25が開かれる。また、第1外気導入扉18と第2内気導入扉21とが閉じられ、第1内気導入扉20と第2外気導入扉22とが開かれる。また、ダクト間扉28が閉じられる。そして、第1ファン17と第2ファン23とが駆動される。
 このような空気の流路の切り替えにより、エバポレータ3では、車室内から導入した空気から冷媒へ熱を移動する熱交換が行われて、熱交換後の冷却された空気が室内ダクト11へ送られる。また、コンデンサ5では、外部から導入した空気へ冷媒から熱を移動する熱交換が行われて、熱交換後の温められた空気が外部へ排出される。
 このような冷房運転により、エバポレータ3で冷却された空気が室内ダクト11を介して車室内へ送出されて車室内が冷房される。
<除湿暖房運転>
 図5は、本発明の実施の形態の車両用空調装置における除湿暖房運転の状態を表わす図である。
 除湿暖房運転においても、ヒートポンプの冷媒が流れる方向は、暖房運転および冷房運転と同一方向である。
 除湿暖房運転では、図5に示すように、第1室内送風扉14と第2室内送風扉26とが開かれる。また、第1室外排出扉15が開かれ、第2室外排出扉25が閉じられる。また、第1外気導入扉18と、第1内気導入扉20と、第2外気導入扉22と、第2内気導入扉21とが共に開かれる。また、ダクト間扉28が少し開かれる。そして、第1ファン17と第2ファン23とが駆動される。
 エバポレータ3へ送られる外気と内気との割合は、第1外気導入扉18と第1内気導入扉20との開度によって、例えば8:2に制御される。また、コンデンサ5へ送られる外気と内気との割合は、第2外気導入扉22と第2内気導入扉21との開度によって、例えば2:8に制御される。
 このような空気の流路の切り替えにより、コンデンサ5では、外気と内気とへ冷媒から熱を移動する熱交換が行われて、熱交換後の温められた空気が室内ダクト11へ送られる。さらに、熱交換後の温められた空気の一部がダクト間開閉口から第1ファン17の吸気口へ送られる。
 一方、エバポレータ3では、外気と内気とから冷媒へ熱を移動する熱交換が行われる。そして、この熱交換後の冷却および除湿された空気が、ダクト間開閉口から供給される温かい空気と第1ファン17により混合および撹拌されて、中程度の温度で除湿された空気となる。そして、この空気の一部が外部に排出され、一部が室内ダクト11へ送られる。
 このような除湿暖房運転により、コンデンサ5で温められた空気が室内ダクト11を介して車室内に送出される。と同時に、コンデンサ5で温められた空気とエバポレータ3で除湿された空気とが第1ファン17で混合され、その一部が室内ダクト11を介して車室内に送出される。
 この除湿暖房運転によれば、エバポレータ3で冷却された空気の一部が車室内へ送られるので、暖房能力が少し低下するが、湿度が高くて窓がくもりやすいときに、車室内の温度を余り低下させずに湿度を低くすることができる。
 なお、除湿暖房運転において、エバポレータ3へ導入される外気と内気との割合は8:2に制限されない。また、除湿暖房運転において、コンデンサ5へ導入される外気と内気との割合は2:8に制限されない。これらの割合は、車室内外の温度および湿度によって調整されるものである。
<排熱回収暖房運転>
 図6は、本発明の実施の形態の車両用空調装置における排熱回収暖房運転の状態を表わす図である。
 排熱回収暖房運転においても、ヒートポンプの冷媒が流れる方向は、暖房運転および冷房運転と同一方向である。
 排熱回収暖房運転では、図6に示すように、第1室内送風扉14が閉じられ、第2室内送風扉26が開かれる。また、第1室外排出扉15が開かれ、第2室外排出扉25が閉じられる。また、第1外気導入扉18と、第1内気導入扉20と、第2外気導入扉22と、第2内気導入扉21とが開かれる。また、ダクト間扉28が閉じられる。そして、第1ファン17と第2ファン23とが駆動される。
 エバポレータ3へ送られる外気と内気との割合は、第1外気導入扉18と第1内気導入扉20との開度によって、例えば3:7に制御される。また、コンデンサ5へ送られる外気と内気との割合は、第2外気導入扉22と第2内気導入扉21との開度によって、例えば7:3に制御される。
 このような空気の流路の切り替えにより、エバポレータ3では、外気と内気とから冷媒へ熱を移動する熱交換が行われて、熱交換後の冷却された空気が外部に排出される。また、コンデンサ5では、外気と内気とへ冷媒から熱を移動する熱交換が行われて、熱交換後の温められた空気が室内ダクト11へ送られる。
 このような排熱回収暖房運転により、コンデンサ5で温められた空気が室内ダクト11を介して車室内に送出されて車室内が暖房される。また、温かい内気がエバポレータ3を通過して外部に排出されるが、この通過の際にエバポレータ3を介して内気の熱が冷媒に移される。すなわち、内気が外部に排出されるが、この内気の熱は冷媒を介して回収されて、コンデンサ5において空気を温める熱として利用される。この排熱回収暖房運転は、外気温が非常に低くなって高い暖房性能が必要な時に利用できる。なお、外気と内気との温度および湿度によっては、排熱回収暖房運転は湿度の高い内気をエバポレータ3に当てるため、エバポレータ3の着霜を誘発する場合もある。このような場合には、上述した暖房運転のほうがエバポレータ3の着霜を防止することができる。
 なお、この排熱回収暖房運転においては、エバポレータ3へ導入される外気と内気との割合は3:7に制限されず、内気が半分以上の割合であれば同様の作用が得られる。また、排熱回収暖房運転において、コンデンサ5へ導入される外気と内気との割合は7:3に制限されず、外気が半分以上の割合であれば同様の作用が得られる。これらの割合は車室内外の温度および湿度により調整されるものである。
 以上のように、本実施の形態の車両用空調装置によれば、ヒートポンプを利用した車室内の暖房を行うことができる。よって、エンジンの熱がない場合でも少ないエネルギーで車室内を高効率に暖房することができる。また、本実施の形態の車両用空調装置によれば、ヒートポンプの冷媒の流れを逆転させずに、空気の流路の形態を切り替えることで暖房運転と冷房運転とを切り替えることができる。従って、冷媒の流れを逆転して冷暖房を切り替える空調装置と比較して、車室内の暖房と冷房とを素早く切り替えることができる。よって、例えば、暖房運転で窓のくもりが発生した場合に、速やかに冷房運転を行って窓のくもりを除去することが可能となる。
 また、本実施の形態の車両用空調装置によれば、ヒートポンプの冷媒の流れを逆転させる構成が不要なので部品点数および部品コストの低減を図ることができる。
 また、本実施の形態の車両用空調装置によれば、運転内容を、上述した暖房運転、冷房運転、除湿暖房運転および排熱回収暖房運転に適宜切り替えることができる。従って、これらの運転内容の切り替えにより、外気と内気との温度および湿度に応じて、効率的に車室内の温度および湿度を適宜調整することができる。
 また、本実施の形態の車両用空調装置によれば、除湿暖房運転の際に、エバポレータ3で除湿および冷却された空気と、コンデンサ5で温められた空気とが混合および撹拌されて車室内へ送られる。よって、暖房中に冷たい空気が直接に室内へ送風されることが回避される。また、本実施の形態の車両用空調装置によれば、第1ファン17は、第1ダクト16の空気を流す機能と、除湿暖房運転時の空気の混合および撹拌の機能とを兼ねる。従って、空気の混合および撹拌の専用空間を設ける場合と比較して、車両空調装置のコンパクト化を図ることができる。
 また、本実施の形態の車両用空調装置によれば、エバポレータ3、コンデンサ5、および送風装置の大半が一体的に構成されてユニット化されている。よって、車両用空調装置を車両へ容易に搭載することができる。また、ユニット化された構成が車室外に配置され、室内ダクト11のみが車室内に配置される構成なので、車室内のスペースを広くすることができる。
 また、コンデンサ5が送風装置の中に配置されているので、車両のラジエータの手前に配置される場合と比較して、コンデンサ5の塩害の影響を少なくすることができる。よって、コンデンサ5の塩害に対する耐性を低く設定して、コンデンサ5のコスト低減を図ることができる。
 また、コンデンサ5が送風装置の中に配置されているので、車両のラジエータの手前に配置される場合と比較して、コンデンサ5の前後の冷媒配管を短くすることができる。よって、冷媒配管のコスト低減および冷媒圧損の低減を図ることができる。
 また、エバポレータ3から車室内までのダクトの長さ、コンデンサ5から車室内までのダクトの長さが、共に短い構成なので、ダクトの圧力損失を小さくすることができ、送風の効率も高くすることができる。
 以上、本発明の各実施の形態について説明した。
 なお、上記実施の形態では、各流路の空気の流量を切り替える手段として、開閉扉の構成を例にとって説明したが、様々な形態のバルブを同様に適用できることは明らかである。また、バルブを用いずに、複数のファンまたは走行中の風圧を利用して各流路の気圧を切り替えることにより、各流路の空気の流量を切り替える構成を採用することもできる。
 また、上記実施の形態では、各流路の空気の流量を調整する切替部の構成として、空気の流量を連続的にまたは複数段階に切り替えられる構成を例にとって説明したが、流量をゼロか有限量にのみ切り替えられる構成を採用しても良い。すなわち、1つの流路の入口又は出口に、2つの扉(切替部)を設けて、1つの扉を開、もう1つの扉を閉として、一方の扉にのみ空気が流れる構成としてもよい。また、両方の扉を所定の割合で開けて、両方に所定の割合で空気が流れる構成としてもよい。
 また、上記実施の形態では、エバポレータ3を通過した空気と、コンデンサ5を通過した空気とを混合および撹拌する機能を、第1ダクト16の第1ファン17により担わせる構成を例にとって説明した。しかし、この機能を、第2ダクト24の第2ファン23により実現させる構成としてもよい。この場合、第2ファン23をコンデンサ5から離して配置し、ダクト間の弁の開放により、第1ダクト16から第2ダクト24の第2ファン23の吸気側へ、冷却された空気を送出する構成とすればよい。
 また、本発明に係る車両用空調装置は、上記実施の形態の車両用空調装置から室内ダクト11を省いた構成としてもよい。また、第1ダクト16、第2ダクト24および内気戻りダクト19の配置および形態は、上記実施の形態のものから適宜変更可能である。
 2012年01月12日出願の特願2012-003679の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本発明は、電気自動車に搭載される車両用空調装置に有用である。
 3 エバポレータ
 5 コンデンサ
 14 第1室内送風扉
 15 第1室外排出扉
 16 第1ダクト
 17 第1ファン
 18 第1外気導入扉
 19 内気戻りダクト
 20 第1内気導入扉
 21 第2内気導入扉
 22 第2外気導入扉
 23 第2ファン
 24 第2ダクト
 25 第2室外排出扉
 26 第2室内送風扉
 28 ダクト間扉
 

Claims (9)

  1.  減圧された冷媒と周囲の空気との間で熱を交換する第1熱交換器と、
     圧縮された冷媒と周囲の空気との間で熱を交換する第2熱交換器と、
     前記第1熱交換器を通過した空気を車室内へ導く流路と、
     前記第2熱交換器を通過した空気を車室内へ導く流路と、
     前記2つの流路の何れか一方を第1流路とし、他方を第2流路として、前記第1流路の途中に配置されて前記第1流路に空気を流す第1送風器と、
     前記第2流路から前記第1流路における前記第1送風器の吸気側へ空気を送出可能な開閉弁と、
     を具備する車両用空調装置。
  2.  前記第1流路から車室内へ送られる空気の流量を調整可能な第1切替部と、
     前記第1流路から車室外へ排出する空気の流量を調整可能な第2切替部と、
     前記第2流路から車室内へ送られる空気の流量を調整可能な第3切替部と、
     前記第2流路から車室外へ排出する空気の流量を調整可能な第4切替部と、
     を具備する請求項1記載の車両用空調装置。
  3.  前記第1~第4切替部および前記開閉弁は、
     空気の流路を、
     前記第1熱交換器を通過した空気が車室内へ送られ、且つ、前記第2熱交換器を通過した空気が車室外へ排出される冷房形態と、
     前記第2熱交換器を通過した空気が車室内へ送られ、且つ、前記第1熱交換器を通過した空気が車室外へ排出される暖房形態と、
     前記開閉弁が開くことで前記第1熱交換器を通過した空気と前記第2熱交換器を通過した空気とが前記第1送風器で混合されて、混合された空気の少なくとも一部が車室内へ送られる除湿暖房形態と、
     に切替可能である、
     請求項2記載の車両用空調装置。
  4.  車室外から前記第1熱交換器へ導入される空気の流量を調整可能な第5切替部と、
     車室内から前記第1熱交換器へ導入される空気の流量を調整可能な第6切替部と、
     車室外から前記第2熱交換器へ導入される空気の流量を調整可能な第7切替部と、
     車室内から前記第2熱交換器へ導入される空気の流量を調整可能な第8切替部と、
     をさらに具備する請求項2記載の車両用空調装置。
  5.  前記第1~第8切替部および前記開閉弁は、
     空気の流路を、
     車室外から前記第1熱交換器を通過した空気が車室外へ排出され、且つ、車室外および車室内から導入されて前記第2熱交換器を通過した空気が車室内へ送られる第1形態と、
     車室内から前記第1熱交換器を通過した空気が車室内へ送られ、且つ、車室外から前記第2熱交換器を通過した空気が車室外へ排出される第2形態と、
     に切替可能である、
     請求項4記載の車両用空調装置。
  6.  前記第1~第8切替部および前記開閉弁は、
     空気の流路を、
     車室外と車室内とから前者の方が大きな割合で導入されて前記第1熱交換器を通過した空気と、車室外と車室内とから後者の方が大きな割合で導入されて前記第2熱交換器を通過した空気の一部とが、前記開閉弁が開くことで前記第1送風器で混合されて、混合された空気の一部が車室内へ一部が車室外へ送られ、且つ、車室外と車室内とから後者の方が大きな割合で導入されて前記第2熱交換器を通過した空気の残りが車室内へ送られる第3形態に切替可能である、
     請求項4記載の車両用空調装置。
  7.  前記第1~第8切替部および前記開閉弁は、
     空気の流路を、
     車室外と車室内とから後者の方が大きな割合で導入された空気が前記第1熱交換器を通過して車室外に送られ、且つ、車室外と車室内とから前者の方が大きな割合で導入された空気が前記第2熱交換器を通過して車室内へ送られる第4形態に切替可能である、
     請求項6記載の車両用空調装置。
  8.  前記第2流路に空気を流す第2送風器をさらに具備し、
     前記第1熱交換器、前記第2熱交換器、前記第1流路、前記第2流路、前記第1~第8切替部、前記開閉弁、前記第1送風器および前記第2送風器が一体化されている、
     請求項4記載の車両用空調装置。
  9.  前記第1流路および前記第2流路の下流端が車室内に配置される室内ダクトに直接的に接続される、
     請求項8記載の車両用空調装置。
     
     
PCT/JP2012/008379 2012-01-12 2012-12-27 車両用空調装置 WO2013105201A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-003679 2012-01-12
JP2012003679A JP2013141931A (ja) 2012-01-12 2012-01-12 車両用空調装置

Publications (1)

Publication Number Publication Date
WO2013105201A1 true WO2013105201A1 (ja) 2013-07-18

Family

ID=48781180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008379 WO2013105201A1 (ja) 2012-01-12 2012-12-27 車両用空調装置

Country Status (2)

Country Link
JP (1) JP2013141931A (ja)
WO (1) WO2013105201A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017017029A1 (en) * 2015-07-24 2017-02-02 Valeo Klimasysteme Gmbh Vehicle air conditioner and method for heating a vehicle inner space using such a vehicle air conditioner
CN107848372A (zh) * 2016-01-18 2018-03-27 翰昂汽车零部件有限公司 车辆用空调系统
CN111315603A (zh) * 2017-12-27 2020-06-19 翰昂汽车零部件有限公司 车辆空调装置
CN115122870A (zh) * 2022-07-26 2022-09-30 董胜龙 一种电动汽车的能量回收装置
WO2023191323A1 (ko) * 2022-03-28 2023-10-05 한온시스템 주식회사 차량용 공조장치

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102203686B1 (ko) * 2014-12-10 2021-01-15 한온시스템 주식회사 차량용 공조장치 및 그 제어 방법
KR102326343B1 (ko) * 2015-04-10 2021-11-16 한온시스템 주식회사 차량용 히트 펌프 시스템
KR102456814B1 (ko) * 2016-01-18 2022-10-24 한온시스템 주식회사 차량용 공조 시스템
KR102456818B1 (ko) * 2016-01-18 2022-10-24 한온시스템 주식회사 차량용 공조 시스템
KR102613353B1 (ko) * 2016-06-29 2023-12-15 한온시스템 주식회사 차량용 공조장치
KR102536578B1 (ko) * 2016-07-25 2023-05-26 한온시스템 주식회사 차량용 공조 시스템
KR102418657B1 (ko) * 2017-10-25 2022-07-08 현대모비스 주식회사 전기차용 공기조화장치
KR102644208B1 (ko) * 2019-01-11 2024-03-07 한온시스템 주식회사 차량용 공조장치
CN113226811A (zh) * 2018-12-27 2021-08-06 翰昂汽车零部件有限公司 车辆用空调装置
KR102526551B1 (ko) * 2021-03-24 2023-04-26 인하대학교 산학협력단 공기의 대류 현상을 이용한 차량의 실내온도제어장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08238919A (ja) * 1995-03-07 1996-09-17 Calsonic Corp 電気自動車用冷暖房装置
JP2010013044A (ja) * 2008-07-07 2010-01-21 Calsonic Kansei Corp 車両用空気調和システム
JP2011202811A (ja) * 2010-03-24 2011-10-13 Honda Motor Co Ltd ヒートポンプ式空調装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08238919A (ja) * 1995-03-07 1996-09-17 Calsonic Corp 電気自動車用冷暖房装置
JP2010013044A (ja) * 2008-07-07 2010-01-21 Calsonic Kansei Corp 車両用空気調和システム
JP2011202811A (ja) * 2010-03-24 2011-10-13 Honda Motor Co Ltd ヒートポンプ式空調装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017017029A1 (en) * 2015-07-24 2017-02-02 Valeo Klimasysteme Gmbh Vehicle air conditioner and method for heating a vehicle inner space using such a vehicle air conditioner
CN107848367A (zh) * 2015-07-24 2018-03-27 法雷奥空调系统有限责任公司 车辆空调和利用这样的车辆空调加热车辆内部空间的方法
JP2018520939A (ja) * 2015-07-24 2018-08-02 ヴァレオ クリマジステーメ ゲーエムベーハー 車両用空調機、及び当該車両用空調機を用いて車内空間を加熱するための方法
CN107848372A (zh) * 2016-01-18 2018-03-27 翰昂汽车零部件有限公司 车辆用空调系统
EP3406469A4 (en) * 2016-01-18 2020-01-08 Hanon Systems VEHICLE AIR CONDITIONING SYSTEM
US11052726B2 (en) 2016-01-18 2021-07-06 Hanon Systems Vehicle air-conditioning system
CN111315603A (zh) * 2017-12-27 2020-06-19 翰昂汽车零部件有限公司 车辆空调装置
US11446981B2 (en) * 2017-12-27 2022-09-20 Hanon Systems Vehicle air conditioner
CN111315603B (zh) * 2017-12-27 2023-06-13 翰昂汽车零部件有限公司 车辆空调装置
WO2023191323A1 (ko) * 2022-03-28 2023-10-05 한온시스템 주식회사 차량용 공조장치
CN115122870A (zh) * 2022-07-26 2022-09-30 董胜龙 一种电动汽车的能量回收装置
CN115122870B (zh) * 2022-07-26 2023-05-05 董胜龙 一种电动汽车的能量回收装置

Also Published As

Publication number Publication date
JP2013141931A (ja) 2013-07-22

Similar Documents

Publication Publication Date Title
WO2013105201A1 (ja) 車両用空調装置
WO2013105202A1 (ja) 車両用空調装置
WO2013105200A1 (ja) 車両用空調装置
US9931905B2 (en) Air conditioning device for vehicle
JP5967403B2 (ja) 車両用空調装置
JP4505510B2 (ja) 車両用空調システム
WO2013105203A1 (ja) 車両用空調装置
JP5750797B2 (ja) 車両用空気調和装置
JP2014088093A (ja) 車両用空調装置およびその運転方法
JPH07232547A (ja) 車両用空気調和装置
JP6203490B2 (ja) 電気自動車用空調装置およびその運転方法
JPH0596940A (ja) 電気駆動自動車用空気調和装置
JP6079477B2 (ja) 車両用空調装置
JP5851696B2 (ja) 車両用空気調和装置
CN111038210A (zh) 车辆的加热、通风和空调系统
KR101836767B1 (ko) 차량용 공조시스템
JPH10244827A (ja) 自動車用空調装置
JP2009184494A (ja) 車両用空気調和システム
US10882380B2 (en) Air conditioning unit for a vehicle
JP2004042758A (ja) 自動車用空気調和装置
CN112543855A (zh) 复合阀及使用该复合阀的车用空调装置
KR20240039913A (ko) 전기버스의 냉난방 시스템
JP2017074833A (ja) 車両用空調装置
JPH06206433A (ja) 車両用ヒートポンプ式空調装置
KR100303821B1 (ko) 자동차용공기조화장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865323

Country of ref document: EP

Kind code of ref document: A1