WO2013105168A1 - インタフェース装置 - Google Patents

インタフェース装置 Download PDF

Info

Publication number
WO2013105168A1
WO2013105168A1 PCT/JP2012/007564 JP2012007564W WO2013105168A1 WO 2013105168 A1 WO2013105168 A1 WO 2013105168A1 JP 2012007564 W JP2012007564 W JP 2012007564W WO 2013105168 A1 WO2013105168 A1 WO 2013105168A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
conductor
conductor surface
interface device
transmission medium
Prior art date
Application number
PCT/JP2012/007564
Other languages
English (en)
French (fr)
Inventor
小林 直樹
塚越 常雄
康一郎 中瀬
福田 浩司
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US14/371,519 priority Critical patent/US20150008994A1/en
Publication of WO2013105168A1 publication Critical patent/WO2013105168A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/122Dielectric loaded (not air)

Definitions

  • the present invention relates to an interface device, and more particularly to an interface device that supplies electromagnetic waves to a communication sheet that performs communication by advancing electromagnetic waves in a region sandwiched between a mesh sheet-like conductor layer and a sheet-like conductor layer.
  • Patent Document 2 discloses an interface device that supplies electromagnetic waves from above a communication sheet via a mesh conductor layer. Since the interface device is a placement type, it has an advantage that power can be supplied from an arbitrary position regardless of the location of the communication sheet. Further, Patent Document 3 discloses an interface device that improves power feeding efficiency by reducing leakage electromagnetic waves, which is such a mounting type interface device.
  • the interface device described in Patent Document 3 although the power feeding efficiency is improved by reducing the leakage electromagnetic wave, the interface device is used to supply sufficient electromagnetic waves to the entire communication sheet by the power feeding method. It is necessary to increase the size. Increasing the size of the mounting-type interface device is not preferable because it reduces the use area of the communication sheet on the receiving device side.
  • Patent Document 4 discloses a clip type that sandwiches a communication sheet edge from above and below using two electrodes facing the mesh conductor layer and the sheet conductor layer constituting the communication sheet, and supplies electromagnetic waves from the side surface of the communication sheet.
  • An interface device is disclosed. According to the interface device, it is possible to perform power feeding with higher efficiency than the interface device of Patent Document 2.
  • Patent Document 5 discloses an interface apparatus that is a clip-type interface apparatus similar to Patent Document 4, and that can supply power more efficiently by adopting a configuration that can reduce leakage electromagnetic waves. Yes.
  • the mesh conductor layer and the sheet conductor layer are covered with a protective layer having a certain thickness so as to be in an insulating state.
  • a protective layer having a certain thickness so as to be in an insulating state.
  • the clip-type interface device of Patent Document 5 has a problem in that leakage electromagnetic waves are radiated through the protective layer when a misalignment between the communication sheet and the interface device occurs. In order to prevent leakage of the electromagnetic wave, it is necessary to strictly fix the communication sheet and the interface device, so that there is a problem that the connection position of the interface is naturally limited in addition to the limited usage. Was.
  • an object of the present invention is to provide an interface device that can supply highly efficient electromagnetic waves with suppressed leakage electromagnetic waves without limiting the usage or installation position.
  • the interface device of the present invention is an interface device that supplies electromagnetic waves to a sheet-like electromagnetic wave transmission medium that propagates electromagnetic waves, and is arranged in a state of facing the first conductor surface and the first conductor surface substantially in parallel.
  • An electromagnetic wave supply unit that supplies an electromagnetic wave to a second conductor surface, a gap region sandwiched between the first conductor surface and the second conductor surface, and a first structure provided on the first conductor surface, A first structure that reflects an electromagnetic wave supplied from the electromagnetic wave supply unit in a state in which a side edge of the electromagnetic wave transmission medium is inserted in the narrow space region, and a second structure that is provided on the second conductor surface. And a second structure that reflects the electromagnetic wave supplied from the electromagnetic wave supply unit in a state in which the side edge portion of the electromagnetic wave transmission medium is inserted into the gap region.
  • an interface device that can supply highly efficient electromagnetic waves with suppressed leakage electromagnetic waves, without limiting the usage or installation position.
  • FIG. 1 is a diagram showing a configuration of a surface communication system according to a first embodiment.
  • 3 is a cross-sectional view of an electromagnetic wave transmission medium (communication sheet) according to Embodiment 1.
  • FIG. It is a side view of the interface apparatus in the state where the electromagnetic wave transmission medium concerning Embodiment 1 was inserted.
  • 6 is a side view of an interface device according to Embodiment 2.
  • FIG. 6 is a plan view of an interface device according to Embodiment 2.
  • FIG. 10 is a side view of a modification of the interface device according to the second embodiment.
  • FIG. 10 is a plan view of a modification of the interface device according to the second embodiment.
  • FIG. 10 is a side view of a modification of the interface device according to the second embodiment.
  • FIG. 10 is a side view of a modification of the interface device according to the second embodiment.
  • FIG. 10 is a plan view of a modification of the interface device according to the second embodiment. It is a side view of the interface apparatus in the state where the electromagnetic wave transmission medium concerning Embodiment 3 was inserted. It is a top view of the interface apparatus of the state in which the electromagnetic wave transmission medium which concerns on Embodiment 3 was inserted. It is a side view of the interface apparatus of the modification in the state by which the electromagnetic wave transmission medium which concerns on Embodiment 3 was inserted. It is a top view of the interface device of the modification of the state in which the electromagnetic wave transmission medium which concerns on Embodiment 3 was inserted. It is a side view of the interface apparatus of the modification in the state by which the electromagnetic wave transmission medium which concerns on Embodiment 3 was inserted.
  • FIG. 9 is a plan view of a modified interface device in a state where an electromagnetic wave transmission medium according to a fourth embodiment is inserted. It is sectional drawing of the 2nd conductor surface of the interface apparatus which concerns on Embodiment 5.
  • FIG. 9 is a plan view of a modified interface device in a state where an electromagnetic wave transmission medium according to a fourth embodiment is inserted. It is sectional drawing of the 2nd conductor surface of the interface apparatus which concerns on Embodiment 5.
  • FIG. 10 is a bottom view of the second conductor surface of the interface device according to the fifth embodiment. It is sectional drawing of the 1st conductor surface of the interface apparatus of this invention. It is a top view of the 1st conductor surface of the interface apparatus of this invention.
  • FIG. 1 is a diagram showing a configuration of a surface communication system 1000 according to the first embodiment.
  • the surface communication system 1000 is coupled with a sheet-like electromagnetic wave transmission medium 100 that propagates an electromagnetic wave, an interface device 200 that supplies the electromagnetic wave to the electromagnetic wave transmission medium 100, and an electromagnetic wave that leaks from the surface of the electromagnetic wave transmission medium 100.
  • a receiving device 300 that receives the signal.
  • the electromagnetic wave transmission medium 100 is a communication sheet that propagates the electromagnetic wave supplied from the interface device 200 in a direction along the sheet surface, and may be referred to as an electromagnetic wave propagation sheet, an electromagnetic wave transmission sheet, or the like.
  • FIG. 2 shows a cross-sectional view of the electromagnetic wave transmission medium 100.
  • the electromagnetic wave transmission medium 100 is configured by laminating a first protective layer 110, a conductor plane layer 120, an electromagnetic wave propagation layer 130, a mesh layer 140, and a second protective layer 150.
  • the electromagnetic wave propagation layer 130 is a layer through which the electromagnetic wave supplied from the interface device 200 travels, and is specifically configured by a sheet-like dielectric substrate 131.
  • the “sheet shape” means a cloth shape, a paper shape, a foil shape, a plate shape, a film shape, a film shape, a mesh shape, or the like that has a wide surface and is thin.
  • the conductor plane layer 120 is a sheet-like sheet conductor 121 and is formed on one surface of the dielectric substrate 131.
  • the mesh layer 140 is a mesh-shaped mesh conductor 141 and is formed on one surface of the dielectric substrate 131 and facing the sheet conductor 121.
  • “mesh” means that openings smaller than the wavelength of the electromagnetic wave traveling in the electromagnetic wave propagation layer 130 are periodically provided.
  • the first protective layer 110 is a sheet-like sheet insulator 111, and is formed to make the sheet conductor 121, which is the conductor plane layer 120, non-conductive with the outside.
  • the second protective layer 150 is a sheet-like sheet insulator 151, and is formed to make the mesh conductor 141, which is the mesh layer 140, non-conductive with the outside.
  • the medium of the sheet insulator 111 and the sheet insulator 151 is a medium that has a specific permittivity and magnetic constant and does not pass a direct current.
  • FIG. 3 is a side view showing a state in which the edge portion of the electromagnetic wave transmission medium 100 is inserted and held in the interface device 200.
  • the interface device 200 includes a first electrode 210, a second electrode 220, an electromagnetic wave supply unit 230, a first electromagnetic wave suppression structure 240, and a second electromagnetic wave suppression structure 250.
  • the interface device 200 has a clip-type shape that holds the electromagnetic wave transmission medium 100 inserted therein from above and below.
  • the first electrode 210 is made of a conductor and is connected to the electromagnetic wave supply unit 230.
  • the first electrode 210 has a flat conductor surface, and the conductor surface is configured to cover a part of the surface of the electromagnetic wave transmission medium 100 inserted into the device 200.
  • the conductor surface provided on the first electrode 210 is referred to as a first conductor surface.
  • the second electrode 220 is made of a conductor and is connected to the electromagnetic wave supply unit 230.
  • the second electrode 220 has a flat conductor surface, and the conductor surface is configured to cover a part of the bottom surface of the electromagnetic wave transmission medium 100 inserted into the device 200.
  • the conductor surface provided on the second electrode 220 is referred to as a second conductor surface.
  • the first conductor surface and the second conductor surface are provided on the first electrode 210 and the second electrode 220, respectively, so as to be substantially parallel and opposed to each other.
  • the electromagnetic wave supply unit 230 supplies electromagnetic waves to a narrow region sandwiched between the first conductor surface and the second conductor surface. Specifically, the electromagnetic wave supply unit 230 connects one of the first electrode 210 and the second electrode 220 to the first voltage terminal and applies the first voltage, and connects the other to the ground terminal to ground. To do. Alternatively, both the first electrode 210 and the second electrode 220 may be connected to the ground terminal.
  • the electromagnetic wave supply unit 230 is specifically a power cable, and connects the first voltage terminal, which is a core wire, to the first electrode 210 to apply a first voltage, and the braided wire, which is a ground terminal, to the second electrode 220. Connect and ground.
  • the electromagnetic wave supplied by the electromagnetic wave supply unit 230 is supplied from the side surface of the electromagnetic wave transmission medium 100 inserted into the device 200 and travels through the electromagnetic wave propagation layer 130 to be used for communication with the receiving device 300.
  • the frequency band of the electromagnetic wave for communication may be, for example, a 900 MHz band.
  • the first electromagnetic wave suppression structure 240 is a structure provided on the first conductor surface of the first electrode 210, and a gap region where the side edge of the electromagnetic wave transmission medium 100 is sandwiched between the first conductor surface and the second conductor surface. In an inserted state, the electromagnetic wave supplied from the electromagnetic wave supply unit 230 is reflected.
  • the first electromagnetic wave suppressing structure 240 includes a rectangular plate-shaped patch conductor 241 disposed in a state of facing the first conductor surface of the first electrode 210 substantially in parallel, and the patch conductor.
  • An EBG (Electromagnetic Band-Gap) structure including a first conductor post 242 that connects 241 and a first conductor surface.
  • the term “patch” means a small piece or a fragment, and as a plate-like microstrip antenna is called a “patch antenna”, it is generally used in the above-mentioned sense in the field of electromagnetic engineering. Is the term.
  • the leakage to the external region of the interface device 200 along the second protective layer 150 of the electromagnetic wave transmission medium 100 is attempted.
  • the electromagnetic wave to be suppressed is suppressed by the first electromagnetic wave suppression structure 240. That is, the first electromagnetic wave suppressing structure 240 transmits the electromagnetic wave traveling outward along the second protective layer 150 located between the first conductor surface of the first electrode 210 and the mesh conductor 141 of the electromagnetic wave transmission medium 100. Reflected to the electromagnetic wave supply unit 230 side, or reflected so as to be sent to the electromagnetic wave propagation layer 130 through the mesh layer 140.
  • the region between the patch conductor 241 and the mesh conductor 141 has a very high or very low characteristic impedance as a transmission line. It is preferable to be designed.
  • the first electromagnetic wave suppressing structure 240 can be realized by a structure that resonates in the vicinity of the frequency band of the electromagnetic wave supplied from the electromagnetic wave supply unit 230.
  • the second electromagnetic wave suppression structure 250 is a structure provided on the second conductor surface of the second electrode 220, and a narrow area where the side edge of the electromagnetic wave transmission medium 100 is sandwiched between the first conductor surface and the second conductor surface. In an inserted state, the electromagnetic wave supplied from the electromagnetic wave supply unit 230 is reflected.
  • the second electromagnetic wave suppressing structure 250 includes a plate-like patch conductor 251 disposed in a state of facing the second conductor surface of the second electrode 220 substantially in parallel, and the patch conductor 251. And a second conductor post 252 that connects the second conductor surface to the EBG structure.
  • the leakage to the external region of the interface device 200 along the first protective layer 110 of the electromagnetic wave transmission medium 100 is attempted.
  • the electromagnetic wave to be suppressed is suppressed by the second electromagnetic wave suppressing structure 250. That is, the second electromagnetic wave suppression structure 250 transmits the electromagnetic wave traveling outward along the first protective layer 110 positioned between the second conductor surface of the second electrode 220 and the sheet conductor 121 of the electromagnetic wave transmission medium 100. Reflected to the electromagnetic wave supply unit 230 side.
  • the second electromagnetic wave suppression structure 250 is designed such that the region between the patch conductor 251 and the sheet conductor 121 has a very high or very low characteristic impedance as a transmission line. Is preferred.
  • the electromagnetic wave interface device has the first conductor surface and the second conductor surface arranged in a state of facing the first conductor surface substantially in parallel.
  • the sheet-like electromagnetic wave transmission medium is inserted into a narrow space between the first conductor surface and the second conductor surface.
  • the electromagnetic wave interface device has an electromagnetic wave supply unit that supplies an electromagnetic wave to a narrow region sandwiched between the first conductor surface and the second conductor surface, thereby advancing electromagnetic waves inside the electromagnetic wave transmission medium.
  • a first structure is provided on the first conductor surface, and the first structure is an electromagnetic wave supplied from the electromagnetic wave supply unit in a state where a side end portion of the electromagnetic wave transmission medium is inserted into the narrow space. Reflect.
  • a second structure is provided on the second conductor surface, and the second structure is supplied from the electromagnetic wave supply unit in a state where a side end portion of the electromagnetic wave transmission medium is inserted in the narrow space. Reflects electromagnetic waves.
  • the patch conductors constituting the first electromagnetic wave suppressing structure 240 and the second electromagnetic wave suppressing structure 250 are rectangular has been described, but the present invention is not limited thereto.
  • a shape including a smooth boundary such as an arbitrary polygon or circle may be used.
  • the first electromagnetic wave suppression structure 240 and the second electromagnetic wave suppression structure 250 have been described as being mushroom type EBG structures each having a patch conductor and a conductor post.
  • the present invention is not limited thereto. is not. Any structure that reflects electromagnetic waves traveling in the direction of leakage to the external region may be used, and other EBG structures may be employed.
  • Embodiment 2 The second embodiment of the present invention will be described below with reference to the drawings. Note that a part of the description already given in Embodiment 1 is omitted for the sake of clarity.
  • FIG. 4A shows a side view of the interface device 400 according to the second embodiment.
  • FIG. 4B shows a plan view of the interface apparatus 400 according to the second embodiment.
  • 25 first electromagnetic wave suppression structures 240 of 5 columns ⁇ 5 rows are periodically two-dimensionally arranged on the first conductor surface of the first electrode 410.
  • Each first electromagnetic wave suppression structure 240 arranged periodically has a mushroom type EBG structure as in the first embodiment.
  • the first electromagnetic wave suppressing structures 240 are periodically disposed on the first conductor surface at predetermined intervals so that the patch conductors adjacent to each other do not contact each other.
  • the capacitive coupling between the adjacent patch conductors 241, the adjacent patch conductors 241 and the conductor posts 242, and the first conductor surface of the first electrode 410 that is a reference conductor are provided.
  • the parallel resonant circuit can be expressed as an equivalent circuit connected in series.
  • the series resonance circuit can be expressed as an equivalent circuit connected in parallel.
  • An equivalent circuit in which parallel resonant circuits are connected in series has a very high characteristic impedance at a specific frequency
  • an equivalent circuit in which series resonant circuits are connected in parallel has a very low characteristic impedance at a specific frequency. Therefore, by arranging a plurality of first electromagnetic wave suppression structures 240, when resonance due to the above structure occurs, most of the leaked electromagnetic waves are reflected to the electromagnetic wave supply unit 230 side or pass through the mesh layer 140. Reflected so as to sink into the electromagnetic wave propagation layer 130. The same applies to the second electromagnetic wave suppressing structure 250.
  • a plurality of first electromagnetic wave suppression structures are periodically arranged on the first conductor surface of the first electrode, and the second conductor surface of the second electrode is A plurality of second electromagnetic wave suppression structures are periodically arranged.
  • the present invention is not limited to this.
  • the multiplicity may be different depending on the direction, such as single in one direction and triple in the other direction. In general, increasing the multiplicity increases the effect of suppressing leaked electromagnetic waves. Therefore, it is preferable to provide the electromagnetic wave suppression structure with a plurality of multiplicity.
  • the plurality of electromagnetic wave suppression structures disposed on each electrode do not have to have the same physical shape. If the resonance frequency is designed to be in the vicinity of a frequency band where leakage electromagnetic waves are desired to be controlled, different physical structures are used. Can take shape.
  • the electromagnetic wave suppression structure 240 in the vicinity of the electromagnetic wave supply unit 230 is removed from the first electrode 410 provided with a plurality of electromagnetic wave suppression structures 240, and an alignment adjustment unit 460 is provided. May be.
  • the plurality of electromagnetic wave suppression structures 240 are not periodically arranged in the region on the electromagnetic wave supply unit 230 side that is inside the first boundary line, and the first boundary A plurality of electromagnetic wave suppression structures 240 are periodically arranged in a region outside the line.
  • the region on the electromagnetic wave supply unit side inside the first boundary line is set as a matching design region as the matching adjustment unit 460.
  • the matching adjustment unit 460 can be used as a matching design area, and power can be supplied more efficiently.
  • the first boundary line that divides the region where the electromagnetic wave suppressing structure 240 is periodically arranged and the region where the electromagnetic wave suppressing structure 240 is not periodically arranged in the first electrode 240 can be appropriately determined in accordance with the matching design.
  • the alignment adjustment unit 460 is formed by removing a row of electromagnetic wave suppression structures (EBGs) from the first electrode 410.
  • EBGs electromagnetic wave suppression structures
  • a matching adjustment unit 460 serving as a matching design region may be provided by removing the matrix-like EBG from the first electrode 410.
  • the matching adjustment unit 460 corresponds to a matrix-like EBG, matching design using a two-dimensional resonance phenomenon in which the corresponding cutout portion is regarded as a cavity resonator is possible.
  • the interface device 400 can be shortened, and the use area of the electromagnetic wave transmission medium 100 can be further secured.
  • the formation method of the alignment adjustment unit 460 is not limited to being provided by removing the electromagnetic wave suppression structure 240 from the first electrode 410. That is, in the second electrode 420 that is the second conductor surface, the plurality of electromagnetic wave suppression structures 250 are not periodically arranged in the region on the electromagnetic wave supply unit 230 side that is inside the second boundary line, and the second boundary. A plurality of electromagnetic wave suppression structures 250 may be periodically arranged in a region outside the line. It is also possible to use the region on the electromagnetic wave supply unit side inside the second boundary line as the matching design unit 460 as a matching design region.
  • the core wire 231 constituting the electromagnetic wave supply unit 230 is disposed so as to protrude between the first conductor surface of the first electrode 510 and the second conductor surface of the second electrode 520.
  • the protruding core portion may be referred to as the third electrode 560.
  • the third electrode 560 is protected by a dielectric 570. That is, the dielectric 570 is packed between the first conductor surface and the second conductor surface to a predetermined distance from the electromagnetic wave supply unit 230.
  • the dielectric 570 may be air.
  • One surface of the dielectric 570, which is in contact with the electromagnetic wave transmission medium 100 inserted in the device 500, is vertical, and the contact surface is matched.
  • the electromagnetic wave transmission medium 100 is inserted between the first conductor surface and the second conductor surface until it contacts the vertical surface of the dielectric 570. Note that both side portions are shielded by a conductor so that electromagnetic waves do not leak from the side portions of the dielectric 570.
  • the first electrode 510 and the second electrode 520 are both grounded by being connected to the braided wire of the electromagnetic wave supply unit 230. Accordingly, the first electrode 510 and the second electrode 520 function as shield electrodes.
  • first electromagnetic wave suppression structures 240 of 5 columns ⁇ 5 rows are periodically two-dimensionally arranged.
  • the plurality of first electromagnetic wave suppression structures 240 are in contact with the surface of the electromagnetic wave transmission medium 100, and the surface of the electromagnetic wave transmission medium 100 is Electromagnetic waves that are transmitted and leaked are reflected.
  • 25 second electromagnetic wave suppression structures 250 of 5 columns ⁇ 5 rows are periodically two-dimensionally arranged on the second conductor surface of the second electrode 520. .
  • the interface device further includes the third electrode disposed in a narrow region sandwiched between the first conductor surface and the second conductor surface.
  • the electromagnetic wave supply unit applies the first AC voltage to the third electrode and grounds the first conductor surface and the second conductor surface, thereby supplying the electromagnetic wave to the sandwiched area.
  • a third electrode serving as an internal electrode is separately provided, and the first electrode and the second electrode function as shield electrodes, so that leakage electromagnetic waves can be further suppressed.
  • a dielectric is spread around at least the third electrode in the space between the first conductor surface and the second conductor surface, and the side surface of the dielectric is shielded by the conductor.
  • the contact surface between the dielectric and the inserted electromagnetic wave transmission medium is matched, and the shield conductors arranged on both sides of the dielectric are also in contact with the electromagnetic wave transmission medium in the inserted state. Therefore, leakage electromagnetic waves from the joint portion can be suppressed.
  • the core wire 231 can be used as it is as an element for matching design, or a conductor that is separately designed for matching may be connected to the core wire 231 as a third electrode. It is also possible to use the inside of the dielectric 570 as a matching design region.
  • the electromagnetic field distribution in the resonance mode includes a shield conductor 581 on the back surface, a shield conductor 582 and a shield conductor 583 disposed on both side surfaces of the dielectric 570.
  • a conductor post 561 is connected to the conductor 560 connected to the core wire 231 and short-circuited with the conductor on the bottom surface, whereby the conductor 560, the conductor post 561, the bottom conductor, A magnetic field can be generated in a region surrounded by.
  • the matching design can be facilitated by making the matching design element a short end and easily generating a magnetic field in the direction of the magnetic field in the resonance mode.
  • the dielectric 570 is a block-type dielectric, and the configuration in which the third electrode 560 is disposed in the block has been described.
  • the present invention is not limited to this.
  • the concave dielectric block is disposed so as to contact the electromagnetic wave transmission medium 100 into which the bottom surface, which is a vertical surface, is inserted, and the third electrode is disposed in the notch portion. Also good. By adopting such a configuration, the matching design area is secured and the manufacture becomes easy.
  • Embodiment 4 of the present invention will be described below with reference to the drawings. Note that a part of the description already given in Embodiments 1 to 3 is omitted for the sake of clarity.
  • the first conductor surface of the first electrode 610 includes a third electromagnetic wave suppression structure 670 in addition to the first electromagnetic wave suppression structure 240. Since the function of the first electromagnetic wave suppression structure 240 is the same as that of Embodiments 1 to 3, the third electromagnetic wave suppression structure 670 will be described in detail.
  • the third electromagnetic wave suppressing structure 670 is an EBG structure including the patch conductor 671 and the conductive posts 672 as in the first electromagnetic wave suppressing structure 240.
  • the conductor post 672 is longer than the conductor post 242, and the patch conductor 671 is located near the second conductor surface of the second electrode 220.
  • the third electromagnetic wave suppressing structure 670 is provided with an electromagnetic wave suppressing structure provided to prevent electromagnetic waves supplied from the electromagnetic wave supply unit 230 to a narrow space between the first conductor surface and the second conductor surface from leaking from the side surface direction. Is the body.
  • the third electromagnetic wave suppression structure 670 is disposed on both sides of the third electrode 560.
  • the electromagnetic wave transmission medium 100 in which the double third electromagnetic wave suppression structure 670 is inserted on each of the left and right sides of the third electrode 560 is disposed in parallel.
  • the parallel resonance circuits are connected in series. It can be expressed as an equivalent circuit. Further, when the inductive coupling by the conductor post 672 and the inductive coupling between the patch conductor 671 and the second conductor surface of the second electrode 620 become dominant, the series resonant circuit can be expressed as an equivalent circuit connected in parallel. .
  • An equivalent circuit in which parallel resonant circuits are connected in series has a very high characteristic impedance at a specific frequency, and an equivalent circuit in which series resonant circuits are connected in parallel has a very low characteristic impedance at a specific frequency.
  • the size of the patch conductor 671, the distance to the second conductor surface, the capacitance of the conductor post 672, etc. are set so that the characteristic impedance is extremely high or low at a frequency used for communication (for example, 900 MHz band).
  • a frequency used for communication for example, 900 MHz band.
  • the electromagnetic wave supplied from the electromagnetic wave supply unit 230 is confined in a resonance region sandwiched between the third electromagnetic wave suppression structures 670 disposed on both sides of the third electrode 560, and the electromagnetic wave is amplified in the resonance region that is designed for matching.
  • the electromagnetic wave path is limited to the electromagnetic wave propagation layer 130 of the electromagnetic wave transmission medium 100, and the electromagnetic wave can be efficiently supplied to the receiving device 300 via the electromagnetic wave transmission medium 100.
  • the first conductor surface is provided with the first electromagnetic wave suppressing structure and the third electromagnetic wave suppressing structure.
  • the first electromagnetic wave suppression structure is a structure that reflects an electromagnetic wave that is supplied from an electromagnetic wave supply unit in a state in which the side edge portion of the electromagnetic wave transmission medium is inserted, and that travels in a direction along the surface of the electromagnetic wave transmission medium. It is.
  • the third electromagnetic wave suppression structure is a structure that is arranged in parallel on both sides of the third electrode up to the vicinity of the electromagnetic wave transmission medium.
  • the third electromagnetic wave suppression structure is a structure that reflects an electromagnetic wave that is supplied from the electromagnetic wave supply unit in a state in which the side edge portion of the electromagnetic wave transmission medium is inserted and that travels in the side surface direction of the device itself. With this configuration, the electromagnetic wave supplied from the electromagnetic wave supply unit can be efficiently supplied to the receiving device via the electromagnetic wave transmission medium.
  • the resonance region formed by the third electromagnetic wave suppressing structure disposed on both sides of the third electrode is matched and designed so as to be in a resonance state in the frequency band of the communication electromagnetic wave because electromagnetic waves can be supplied more efficiently.
  • the third electromagnetic wave suppressing structure may be provided on the second conductor surface of the second electrode, or may be provided on both the first conductor surface and the second conductor surface as shown in FIGS. 11A and 11B. .
  • Embodiment 5 The interface device according to Embodiment 5 is characterized in that the second electromagnetic wave suppression structure disposed on the second electrode has a structure other than the mushroom-type EBG structure.
  • the second electromagnetic wave suppression structure disposed on the second electrode has a structure other than the mushroom-type EBG structure.
  • planar EBG structures are periodically arranged as second electromagnetic wave suppressing structures 750 on the second conductor surface of the second electrode 720.
  • planar EBG structure refers to an EBG structure that can be formed in plural in the same plane.
  • Each unit structure of the second electromagnetic wave suppressing structure 750 includes a patch conductor 751 and a connection wiring 752 that is a wiring for electrically connecting the adjacent patch conductors 751.
  • the connection wiring 752 is near the midpoint of the end side of the patch conductor 751, but is not limited to this, and may be provided near the corner of the short side.
  • the number of connecting wires 752 connecting adjacent patch conductors 751 is not limited to one, and the patch conductors 751 may be connected by a plurality of connecting wires 752.
  • the second electromagnetic wave suppression structure 750 shown in FIG. 12A can also reflect the electromagnetic wave traveling in the leakage direction to the electromagnetic wave supply unit 230 side based on the principle described above.
  • the second electromagnetic wave suppression structure 750 having the planar EBG structure shown in FIG. 12A can be reduced in thickness because the conductor post is not required as compared with the mushroom EBG structure.
  • the interface device is a clip-type coupler and is connected so as to sandwich the electromagnetic wave transmission medium 100 from both the upper and lower sides. However, if the thickness on the bottom side is thick, the electromagnetic wave transmission medium 100 is warped and the planarity of the electromagnetic wave transmission medium is greatly impaired. End up.
  • the second electromagnetic wave suppression structure 750 of the present embodiment has a planar EBG structure, it is possible to sufficiently reduce the thickness of the portion that wraps around the electromagnetic wave transmission medium 100 and has high planarity. Can be maintained.
  • the second electromagnetic wave suppression structure has a plurality of patch conductors arranged on the same plane as the second conductor surface and a connection wiring portion that connects the adjacent patch conductors. It is characterized by.
  • the thickness can be reduced by using the EBG structure as the second electromagnetic wave suppressing structure.
  • planar EBG structure is used for the second electromagnetic wave suppressing structure 750 .
  • planar EBG structure can be similarly used for the first electromagnetic wave suppressing structure 740.
  • the thickness of the entire interface device 700 can be reduced.
  • electromagnetic waves can be supplied to the receiving device via the electromagnetic wave communication medium with high power supply efficiency.
  • the electromagnetic wave suppressing structure provided on the first conductor surface and the second conductor surface of the interface device is not limited to the above-described EBG structure, and various EBG structures can be employed.
  • the electromagnetic wave suppressing structure includes a plurality of lower layer patch conductors 841 divided into patches arranged as reference conductors constituting the first conductor surface as shown in FIGS. 13A and 13B, and the electromagnetic wave transmission medium 100. And an upper layer patch conductor 842 to be mounted on the opposite side layer, and a conductor post 843 connecting the lower layer patch conductor 841 and the upper layer patch conductor 842.
  • the upper layer patch conductor 842 bridge-connects adjacent lower layer patch conductors 841 arranged on the first conductor surface.
  • the present invention is not limited to this.
  • the interface device of the present invention can be used not only for power supply but also for supplying signal electromagnetic waves.
  • An interface device that supplies electromagnetic waves to a sheet-like electromagnetic wave transmission medium that propagates electromagnetic waves, the first conductor surface, and a second conductor surface disposed in a state of facing substantially parallel to the first conductor surface;
  • An electromagnetic wave supply unit for supplying an electromagnetic wave to a gap region sandwiched between the first conductor surface and the second conductor surface, and a first structure provided on the first conductor surface, wherein the electromagnetic wave transmission to the gap region
  • An interface device comprising: a second structure that reflects an electromagnetic wave supplied from the electromagnetic wave supply unit in a state where a side end portion of the electromagnetic wave transmission medium is inserted.
  • the first structure body includes a plate-like patch conductor disposed in a state of facing the first conductor surface substantially parallel to the first conductor surface, and a first conductor that connects the patch conductor and the first conductor surface.
  • a plate-like patch conductor disposed in a state of facing the second conductor surface substantially in parallel with the second conductor surface, the patch conductor, and the second conductor surface.
  • Appendix 3 The interface device according to appendix 1 or 2, wherein a plurality of the first structures are periodically arranged on the first conductor surface, and a plurality of the second structures are periodically arranged on the second conductor surface. .
  • the second structure includes a plurality of plate-like patch conductors arranged in the same plane as the second conductor surface, and a connection wiring portion that connects the adjacent patch conductors to each other.
  • the interface device described. The electromagnetic wave transmission medium includes: a first protective layer that is a sheet-like electric insulator; a first conductor layer that is a sheet-like conductor; and a dielectric layer that is a sheet-like dielectric and travels electromagnetic waves.
  • the first structure reflects the supplied electromagnetic wave in a direction to send the electromagnetic wave to the dielectric layer through the second conductor layer, and the second structure transmits the supplied electromagnetic wave to the electromagnetic wave supply unit.
  • the electromagnetic wave supply unit applies the first voltage to one of the first conductor surface and the second conductor surface, and supplies the electromagnetic wave to the sandwiched region by grounding the other conductor surface.
  • the interface device according to any one of appendices 1 to 6.
  • the electrode further comprises a third electrode disposed in the intervening region, and the electromagnetic wave supply unit applies a first voltage to the electrode and grounds the first conductor surface and the second conductor surface, thereby interposing the intervening region.
  • the interface device according to any one of appendices 1 to 6, wherein an electromagnetic wave is supplied to the device.
  • a plate-like patch conductor arranged in a state of facing the first conductor surface or the second conductor at a position separated by a distance, and the patch conductor and the second conductor surface or the
  • the interface device according to appendix 8 further comprising a conductor post connecting the first conductor surface.
  • Appendix 10 10.
  • Electromagnetic wave transmission medium 110 First protective layer 111 Sheet insulator 120 Conductor plane layer 121 Sheet conductor 130 Electromagnetic wave propagation layer 131 Dielectric substrate 140 Mesh layer 141 Mesh conductor 150 Second protective layer 151 Sheet insulator 200 Interface device 210 First electrode 220 Second electrode 230 Electromagnetic wave supply unit 240 First electromagnetic wave suppression structure 241 Patch conductor 242 Conductor post 250 Second electromagnetic wave suppression structure 251 Patch conductor 252 Conductor post 300 Receiver

Landscapes

  • Near-Field Transmission Systems (AREA)

Abstract

 電磁波を伝搬するシート状の電磁波伝達媒体に電磁波を供給するインタフェース装置であって、使用用途や設置位置を限定することなく、漏洩電磁波を抑えた高効率な給電を可能とする電磁波インタフェース装置を提供することを課題とする。本発明のインタフェース装置(200)は、第1導電体面と、第1導電体面に対して略平行に対向する状態で配置される第2導電体面と、第1導電体面と第2導電体面とに挟まれる狭間領域に電磁波を供給する電磁波供給部(230)と、第1導電体面に設けられる第1構造体であって、狭間領域に電磁波伝達媒体の辺端部が挿入されている状態において電磁波供給部より供給される電磁波を反射する第1構造体(240)と、第2導電体面に設けられる第2構造体であって、狭間領域に電磁波伝達媒体の辺端部が挿入されている状態において電磁波供給部より供給される電磁波を反射する第2構造体(250)と、を具備する。

Description

インタフェース装置
 本発明はインタフェース装置に関し、特にメッシュシート状の導電体層とシート状の導電体層とに挟まれる領域に電磁波を進行させて通信を行う通信シートに電磁波を供給するインタフェース装置に関する。
 近年、メッシュシート状の導電体層(メッシュ導電体層)とシート状の導電体層(シート導電体層)とに挟まれる領域を伝送路として電磁波を進行させ、メッシュ導電体層より漏れ出した浸出領域の電磁波と結合させることで通信を可能とさせる電磁波伝達媒体の開発が進められている(例えば特許文献1)。上記電磁波伝達媒体(以下、通信シートと称す)のメッシュ電導体層より漏れ出した電磁波であるエバネッセント波と結合させて通信を行う通信方式は、サーフェイス通信と呼ばれている。
 上記通信シートに電磁波を供給するインタフェース装置についても様々な開発がすすめられている。例えば、特許文献2には、通信シート上方よりメッシュ導電体層を介して電磁波を供給するインタフェース装置が開示されている。当該インタフェース装置は、載置型であるため、通信シートの場所を選ばずに任意の位置から給電できるという利点を有している。また、このような載置型のインタフェース装置であって漏洩電磁波を低減することにより給電効率を向上させたインタフェース装置が特許文献3に開示されている。
 ここで、特許文献3に記載のインタフェース装置では、漏洩電磁波を低減することで給電効率の向上を図っているものの、当該給電方式で通信シート全体に十分な電磁波を供給するためにはインタフェース装置を大型化する必要がある。載置型のインタフェース装置を大型化することは、通信シートにおける受信装置側の利用面積を狭めることになり好ましくない。
 そこで、通信シートの側面から電磁波を供給するインタフェース装置の開発が進められている。特許文献4には、通信シートを構成するメッシュ導電体層とシート導電体層にそれぞれ対向する2つの電極を用いて通信シート端辺を上下から挟みこみ、通信シート側面から電磁波を供給するクリップ型のインタフェース装置が開示されている。当該インタフェース装置によれば、特許文献2のインタフェース装置と比較して高効率に給電を行うことが可能となる。
 また、特許文献5には、特許文献4と同様のクリップ型インタフェース装置であって、漏洩電磁波を低減可能とする構成とすることで更に高効率に給電を行うことができるインタフェース装置が開示されている。
国際公開第2007/032049号 特開2007―82178号公報 国際公開第2011/052361号 特開2010―16592号公報 特開2011―9801号公報
 実際の通信シートでは、メッシュ導電体層及びシート導電体層を絶縁状態とするために一定の厚みを有する保護層で覆われている。ここで、特許文献4のクリップ型インタフェース装置を用いて通信シート側面より給電すると、保護層内部を伝って電磁波が外部に放射され、漏洩電磁波となるという問題が存在していた。
 また、特許文献5のクリップ型インタフェース装置においても、通信シートとインタフェース装置の位置ずれが生じた場合に保護層をパスとして漏洩電磁波が放射されてしまうという課題を有していた。当該電磁波の漏洩を防止するためには、通信シートとインタフェース装置の厳密な固定が必要となるため、使用用途が限られることに加えて、インタフェースの接続位置もおのずと限定されてしまうという問題が残存していた。
 本発明は、上記課題を鑑み、使用用途や設置位置を限定することなく、漏洩電磁波を抑えた高効率な電磁波の供給を可能とするインタフェース装置を提供することを目的とする。
 本発明のインタフェース装置は、電磁波を伝搬するシート状の電磁波伝達媒体に電磁波を供給するインタフェース装置であって、第1導電体面と、前記第1導電体面に対して略平行に対向する状態で配置される第2導電体面と、前記第1導電体面と第2導電体面とに挟まれる狭間領域に電磁波を供給する電磁波供給部と、前記第1導電体面に設けられる第1構造体であって、前記狭間領域に前記電磁波伝達媒体の辺端部が挿入されている状態において前記電磁波供給部より供給される電磁波を反射する第1構造体と、前記第2導電体面に設けられる第2構造体であって、前記狭間領域に前記電磁波伝達媒体の辺端部が挿入されている状態において前記電磁波供給部より供給される電磁波を反射する第2構造体と、を具備する。
 本発明によれば、使用用途や設置位置を限定することなく、漏洩電磁波を抑えた高効率な電磁波の供給を可能とするインタフェース装置を提供することが可能となる。
実施の形態1に係るサーフェイス通信システムの構成を示す図である。 実施の形態1に係る電磁波伝達媒体(通信シート)の断面図である。 実施の形態1に係る電磁波伝達媒体が挿入された状態のインタフェース装置の側面図である。 実施の形態2に係るインタフェース装置の側面図である。 実施の形態2に係るインタフェース装置の平面図である。 実施の形態2に係るインタフェース装置の変形例の側面図である。 実施の形態2に係るインタフェース装置の変形例の平面図である。 実施の形態2に係るインタフェース装置の変形例の側面図である。 実施の形態2に係るインタフェース装置の変形例の平面図である。 実施の形態3に係る電磁波伝達媒体が挿入された状態のインタフェース装置の側面図である。 実施の形態3に係る電磁波伝達媒体が挿入された状態のインタフェース装置の平面図である。 実施の形態3に係る電磁波伝達媒体が挿入された状態の変形例のインタフェース装置の側面図である。 実施の形態3に係る電磁波伝達媒体が挿入された状態の変形例のインタフェース装置の平面図である。 実施の形態3に係る電磁波伝達媒体が挿入された状態の変形例のインタフェース装置の側面図である。 実施の形態3に係る電磁波伝達媒体が挿入された状態の変形例のインタフェース装置の平面図である。 実施の形態4に係る電磁波伝達媒体が挿入された状態のインタフェース装置の側面図である。 実施の形態4に係る電磁波伝達媒体が挿入された状態のインタフェース装置の平面図である。 実施の形態4に係る電磁波伝達媒体が挿入された状態の変形例のインタフェース装置の側面図である。 実施の形態4に係る電磁波伝達媒体が挿入された状態の変形例のインタフェース装置の平面図である。 実施の形態5に係るインタフェース装置の第2導電体面の断面図である。 実施の形態5に係るインタフェース装置の第2導電体面の底面図である。 本発明のインタフェース装置の第1導電体面の断面図である。 本発明のインタフェース装置の第1導電体面の平面図である。
 本発明の実施の形態について以下に図面を参照して説明する。以下の説明は、本発明の好適な実施の形態を示すものであって、本発明の範囲が以下の実施の形態に限定されるものではない。以下の説明において、同一の符号が付されたものは実質的に同様の内容を示している。
 (実施の形態1)
 以下、図面を参照して本発明の実施の形態について説明する。図1は、本実施の形態1に係るサーフェイス通信システム1000の構成を示す図である。サーフェイス通信システム1000は、電磁波を伝搬するシート状の電磁波伝達媒体100と、電磁波伝達媒体100に電磁波を供給するインタフェース装置200と、前記電磁波伝達媒体100表面より漏れ出した電磁波と結合することで信号を受信する受信装置300と、を含んで構成される。ここで、電磁波伝達媒体100は、インタフェース装置200より供給された電磁波をシート面に沿った方向に伝搬させる通信シートであり、電磁波伝搬シート、電磁波伝送シート、などと呼ばれることがある。
 図2は、電磁波伝達媒体100の断面図を示している。電磁波伝達媒体100は、第1保護層110、導電体プレーン層120、電磁波伝播層130、メッシュ層140、第2保護層150、が積層されて構成される。
 ここで、電磁波伝播層130が、インタフェース装置200より供給される電磁波が進行する層であり、具体的にはシート状の誘電体基板131で構成される。ここで、「シート状」とは、布状、紙状、箔状、板状、膜状、フィルム状、メッシュ状等、面としての広がりを持ち、厚さが薄いものを意味する。
 導電体プレーン層120は、シート状のシート導電体121であり、誘電体基板131の一面に形成される。
 メッシュ層140は、メッシュ状のメッシュ導電体141であり、誘電体基板131の一面であって、シート導電体121に対向する一面に形成される。ここで、「メッシュ状」とは、電磁波伝播層130内を進行する電磁波の波長より小さい開口が周期的に設けられていることを意味する。
 第1保護層110は、シート状のシート絶縁体111であり、導電体プレーン層120であるシート導電体121を外部と非導通とするために形成される。
 第2保護層150は、シート状のシート絶縁体151であり、メッシュ層140であるメッシュ導電体141を外部と非導通とするために形成される。シート絶縁体111及びシート絶縁体151の媒質としては、特定の誘電率、磁性率を有し、直流電流を通さない媒質である。
 次にインタフェース装置200の構成について詳しく説明する。図3は、インタフェース装置200に電磁波伝達媒体100の辺端部が挿入されて保持されている状態を示す側面図である。インタフェース装置200は、第1電極210と、第2電極220と、電磁波供給部230と、第1電磁波抑制構造体240と、第2電磁波抑制構造体250と、を備える。図3からもわかるように、インタフェース装置200は、内部に挿入される電磁波伝達媒体100を上下から挟みこむように保持するクリップ型の形状を有している。
 第1電極210は、導電体で構成され、電磁波供給部230に接続されている。第1電極210は、平坦な導電体面を有しており、当該導電体面が自装置200に挿入される電磁波伝達媒体100の表面の一部を覆うように構成されている。以下の説明では第1電極210に設けられる当該導電体面のことを第1導電体面と称する。
 第2電極220は、導電体で構成され、電磁波供給部230に接続されている。第2電極220は、平坦な導電体面を有しており、当該導電体面が自装置200に挿入される電磁波伝達媒体100の底面の一部を覆うように構成されている。以下の説明では第2電極220に設けられる当該導電体面のことを第2導電体面と称する。ここで、第1導電体面と第2導電体面は、略平行で対向する状態となるようにそれぞれ第1電極210及び第2電極220に設けられている。
 電磁波供給部230は、第1導電体面と第2導電体面とに挟まれる狭間領域に電磁波を供給する。具体的には、電磁波供給部230は、第1電極210又は第2電極220のいずれか片方を第1電圧端子に接続して第1の電圧を印加し、他方をグランド端子に接続して接地する。もしくは、第1電極210、第2電極220のいずれもグランド端子に接続してもよい。
 電磁波供給部230は、具体的には電源ケーブルであり、芯線である第1電圧端子を第1電極210に接続して第1電圧を印加し、グランド端子である編組線を第2電極220に接続して接地する。電磁波供給部230によって供給される電磁波は、自装置200内部に挿入される電磁波伝達媒体100の側面より供給されて電磁波伝播層130を進行することで受信装置300との通信に利用される。ここで、当該通信用の電磁波の周波数帯域としては例えば900MHz帯域とすることができる。
 第1電磁波抑制構造体240は、第1電極210の第1導電体面に設けられる構造体であり、電磁波伝達媒体100の辺端部が第1導電体面と第2導電体面とに挟まれる狭間領域に挿入されている状態において、電磁波供給部230より供給される電磁波を反射する。
 具体的には、第1電磁波抑制構造体240は、第1電極210の第1導電体面に対して略平行に対向する状態で配置される矩形プレート状のパッチ導電体241と、当該パッチ導電体241と第1導電体面とを接続する第1導電体ポスト242と、を備えるEBG(Electromagnetic Band-Gap)構造体である。ここで「パッチ」とは、小片、もしくは断片と言う意味であり、板状のマイクロストリップアンテナが「パッチアンテナ」とよばれているように、電磁波工学の分野では上述の意味で一般的に使用される用語である。
 図3の破線矢印で模式的に示すように、電磁波供給部230より供給される電磁波のうち、電磁波伝達媒体100の第2保護層150に沿ってインタフェース装置200の外部領域に漏洩していこうとする電磁波は、第1電磁波抑制構造体240によって抑制される。すなわち、第1電磁波抑制構造体240は、第1電極210の第1導電体面と電磁波伝達媒体100のメッシュ導電体141の間に位置する第2保護層150に沿って外部方向へ進行する電磁波を、電磁波供給部230側に反射し、又は、メッシュ層140を通って電磁波伝播層130に送りこむように反射する。
 このように、第1電磁波抑制構造体240によって電磁波の外部漏洩を抑制するためには、パッチ導電体241とメッシュ導電体141の間の領域が伝送線路として極めて高い若しくは極めて低い特性インピーダンスを有するように設計されることが好ましい。具体的には、第1電磁波抑制構造体240を電磁波供給部230より供給される電磁波の周波数帯域近辺で共振する構造とすることにより実現することができる。
 第2電磁波抑制構造体250は、第2電極220の第2導電体面に設けられる構造体であり、電磁波伝達媒体100の辺端部が第1導電体面と第2導電体面とに挟まれる狭間領域に挿入されている状態において、電磁波供給部230より供給される電磁波を反射する。
 具体的には、第2電磁波抑制構造体250は、第2電極220の第2導電体面に対して略平行に対向する状態で配置される板状のパッチ導電体251と、当該パッチ導電体251と第2導電体面とを接続する第2導電体ポスト252と、を備えるEBG構造体である。
 図3の破線矢印で模式的に示すように、電磁波供給部230より供給される電磁波のうち、電磁波伝達媒体100の第1保護層110に沿ってインタフェース装置200の外部領域に漏洩していこうとする電磁波は、第2電磁波抑制構造体250によって抑制される。すなわち、第2電磁波抑制構造体250は、第2電極220の第2導電体面と電磁波伝達媒体100のシート導電体121の間に位置する第1保護層110に沿って外部方向へ進行する電磁波を、電磁波供給部230側に反射する。
 第2電磁波抑制構造体250も第1電磁波抑制構造体240と同様、パッチ導電体251とシート導電体121の間の領域が伝送線路として極めて高い若しくは極めて低い特性インピーダンスを有するように設計されることが好ましい。
 以上説明したように、本実施の形態1の電磁波インタフェース装置は、第1導電体面と、前記第1導電体面に対して略平行に対向する状態で配置される第2導電体面と、を有し、前記第1導電体面と第2導電体面とに挟まれる狭間領域にシート状の電磁波伝達媒体が挿入される構成をとる。電磁波インタフェース装置は、前記第1導電体面と第2導電体面とに挟まれる狭間領域に電磁波を供給する電磁波供給部を有することで、上記電磁波伝達媒体内部に電磁を進行させる。前記第1導電体面には第1構造体が設けられ、当該第1構造体は、前記狭間領域に前記電磁波伝達媒体の辺端部が挿入されている状態において前記電磁波供給部より供給される電磁波を反射する。また、前記第2導電体面には第2構造体が設けられ、当該第2構造体は、前記狭間領域に前記電磁波伝達媒体の辺端部が挿入されている状態において前記電磁波供給部より供給される電磁波を反射する。
 電磁波を伝搬するシート状の電磁波伝達媒体に電磁波を供給するインタフェース装置をこのように構成することで、インタフェース装置と電磁波伝達媒体との隙間から漏洩する電磁波を抑制することができ、給電効率を向上させることができる。
 なお、上記説明では、第1電磁波抑制構造体240及び第2電磁波抑制構造体250を構成するパッチ導電体の形状が矩形である場合について説明したがこれに限るものではない。例えば任意の多角形や円等の滑らかな境界を含む形状としても良い。また、切り欠きや開口を有する導電体で構成しても良い。
 また、上記説明では、第1電磁波抑制構造体240及び第2電磁波抑制構造体250は、それぞれパッチ導電体と導電体ポストを有するマッシュルーム型EBG構造である場合について説明したがこれに限定されるものではない。外部領域に漏洩する方向で進行する電磁波を反射する構造体であれば良く、その他のEBG構造を採用することも可能である。
 (実施の形態2)
 以下、図面を参照して本発明の実施の形態2について説明する。なお、実施の形態1で既に説明した部分については発明の明確化のために一部説明を省略する。
 図4Aは、本実施の形態2に係るインタフェース装置400の側面図を示している。図4Bは、本実施の形態2に係るインタフェース装置400の平面図を示している。インタフェース装置400において、第1電極410の第1導電体面には、5列×5行の25個の第1電磁波抑制構造体240が周期的に2次元配列されている。
 周期配列された各々の第1電磁波抑制構造体240は実施の形態1と同様マッシュルーム型EBG構造である。互いに隣接するパッチ導電体は接触しないよう、所定の間隔で周期的に第1電磁波抑制構造体240が第1導電体面に配置されている。
 第1電磁波抑制構造体240において、隣接するパッチ導電体241間の容量結合と、隣接するパッチ導電体241と導電体ポスト242、さらには基準導電体である第1電極410の第1導電体面を流れるループ電流に起因する誘導結合が支配的となった場合、並列共振回路が直列に連結された等価回路として表せる。更に、導電体ポスト242による誘導結合と、パッチ導電体241と電磁波伝達媒体100のメッシュ層140との誘導結合が支配的となった場合、直列共振回路が並列に連結された等価回路として表せる。並列共振回路が直列に連結された等価回路は特定の周波数で極めて高い特性インピーダンスを有し、直列共振回路が並列に連結された等価回路は特定の周波数で極めて低い特性インピーダンスを有する。従って、第1電磁波抑制構造体240を複数配置することで、上記構造に起因する共振が生じた場合、漏洩電磁波の大半は、電磁波供給部230側へ反射されるか、メッシュ層140を通り抜けて電磁波伝播層130に潜り込むように反射される。第2電磁波抑制構造体250についても同様である。
 このように、本実施の形態2に係るインタフェース装置において、第1電極の第1導電体面には、複数の第1電磁波抑制構造体が周期配列され、第2電極の第2導電体面には、複数の第2電磁波抑制構造体が周期配列される。このように電磁波抑制構造体が繰り返し配置される構成とすることで、漏洩電磁波を更に抑制することができ、給電効率を向上させることが可能となる。
 なお、上記説明では、各電極において縦横の両方向に同数の5重の電磁波抑制構造体が設けられる構成について説明したが、これに限るものではない。例えば一方向に1重、他方向に3重と言うように、方向によって多重度が異なっていても良い。一般に多重度を上げる方が漏洩電磁波の抑制効果が高まるため、複数の多重度で電磁波抑制構造体が設けられることが好ましい。
 また、各電極に配置される複数の電磁波抑制構造体は、同一の物理的形状である必要はなく、上記共振周波数が漏洩電磁波を抑制したい周波数帯域の近辺となるように設計すれば異なる物理的形状をとることができる。
 また、図5A,図5Bに示すように複数の電磁波抑制構造体240が設けられる第1電極410から、電磁波供給部230近辺の電磁波抑制構造体240が取り除かれて、整合調整部460が設けられていても良い。
 すなわち、第1導電体面である第1電極410において、第1の境界線の内側である前記電磁波供給部230側の領域には複数の電磁波抑制構造体240は周期配列されず、第1の境界線の外側の領域には複数の電磁波抑制構造体240が周期配列されていることを特徴とする。当該第1の境界線の内側である前記電磁波供給部側の領域を整合設計用の領域として整合調整部460とする。
 当該整合調整部460を整合設計用領域として使用することができ、より効率良く給電することが可能となる。第1電極240において電磁波抑制構造体240が周期配列される領域と周期配列されない領域を区切る第1の境界線は、整合設計を行う関係で適宜決定することができる。
 例えば、図5A、図5Bに示すインタフェース装置400では、一列の電磁波抑制構造体(EBG)が第1電極410より取り除かれることで整合調整部460を形成している。このように、整合調整部460が、一列のEBGの有限個に相当する場合、該当する切り抜き部分の一次元的な共振現象を利用した整合設計が可能となる。
 一方、図6A,図6Bに示すように、行列状のEBGを第1電極410より取り除くことで整合設計用領域としての整合調整部460を設けても良い。整合調整部460が、行列状のEBGに相当する場合、該当する切り抜き部分を空洞共振器と見立てた2次元的な共振現象を利用した整合設計が可能となる。当該空洞共振器の共振モードを励起させる整合設計用領域を設けることでインタフェース装置400の長さを短くとることが可能となり、電磁波伝達媒体100の利用面積をより確保することができる。
 ここで、整合調整部460の形成方法としては、第1電極410より電磁波抑制構造体240を取り除くことで設けられることに限定されるものではない。すなわち、第2導電体面である第2電極420において、第2の境界線の内側である前記電磁波供給部230側の領域には複数の電磁波抑制構造体250は周期配列されず、第2の境界線の外側の領域には複数の電磁波抑制構造体250が周期配列される構成としても良い。当該第2の境界線の内側である前記電磁波供給部側の領域を整合設計用の領域として整合調整部460とすることも可能である。
 (実施の形態3)
 以下、図面を参照して本発明の実施の形態3について説明する。なお、実施の形態1、2で既に説明した部分については発明の明確化のために一部説明を省略する。
 図7A、図7Bは、本実施の形態3に係るインタフェース装置500の側面図及び平面図を示している。インタフェース装置500において、電磁波供給部230を構成する芯線231が第1電極510の第1導電体面と第2電極520の第2導電体面との間に突き出す形で配置されている。以下の説明では当該突き出した芯線部分を第3電極560と呼ぶことがある。
 第3電極560は、誘電体570で保護されている。すなわち、第1導電体面と第2導電体面との間であって電磁波供給部230から所定の距離まで誘電体570が詰められている。尚、誘電体570は空気であってもよい。誘電体570の一面であって、自装置500に挿入される電磁波伝達媒体100と接する面は垂直となっており接触面での整合が取れている。電磁波伝達媒体100は、第1導電体面と第2導電体面との間であって誘電体570の垂直面に接触するまで挿入される構成となっている。なお、誘電体570の側面部分から電磁波が漏洩しないように、当該両側面部分は導電体でシールドされている。
 第1電極510と第2電極520は、共に電磁波供給部230の編組線に接続されることで接地されている。従って、第1電極510と第2電極520はシールド電極として機能する。
 第1電極510の第1導電体面には、5列×5行の25個の第1電磁波抑制構造体240が周期的に2次元配列されている。誘電体570の垂直面まで電磁波伝達媒体100が挿入された状態において、当該電磁波伝達媒体100の表面に複数の第1電磁波抑制構造体240が接する状態となっており、電磁波伝達媒体100の表面を伝って漏洩しようとする電磁波が反射される。
 第2電極520の第2導電体面にも、第1電極510の第1導電体面と同様、5列×5行の25個の第2電磁波抑制構造体250が周期的に2次元配列されている。
 以上のように、本実施の形態に係るインタフェース装置は、第1導電体面と第2導電体面とに挟まれる狭間領域に配置される第3電極を更に具備する。そして電磁波供給部は、当該第3電極に第1の交流電圧を印加し、前記第1導電体面及び第2導電体面を接地することで前記挟間領域に電磁波を供給する。当該構成とすることで、内部電極となる第3電極を別途設け、第1電極と第2電極をシールド電極として機能させるため、漏洩電磁波を更に抑制することができる。
 また、第1導電体面と第2導電体面に挟まれる狭間領域において少なくとも第3電極の周りに誘電体が敷き詰められ、当該誘電体の側面が導電体でシールドされる。当該誘電体と挿入される電磁波伝達媒体との接触面は整合が取れており、上記誘電体の両側面に配置されたシールド導電体も挿入された状態の電磁波伝達媒体と整合が取れる形で接触しているため、当該接合部分からの漏洩電磁波を抑えることができる。
 なお、芯線231を整合設計用素子としてそのまま使用することも可能であるし、別途整合設計された導電体を第3電極として芯線231に接続する構成であっても良い。また、誘電体570内部を整合設計用領域として使用することも可能である。
 例えば、誘電体570を空洞共振器と見立てた場合、共振モードの電磁界分布として、背面のシールド導電体581と、誘電体570の両側面に配置されたシールド導電体582及びシールド導電体583に沿う形で磁界が周回する分布がある。そこで、図8A、図8Bに示すように芯線231に接続された導電体560に導体ポスト561を接続し底面の導電体とショートさせることで当該導電体560と導電体ポスト561と底面導電体とで囲まれる領域に磁場を発生させることができる。このように、整合設計用素子をショート端とし、上記共振モードの磁界の向きに磁界を発生しやすくすることで、整合設計を容易にすることが可能となる。
 また、上記説明では、誘電体570はブロック型の誘電体であり、当該ブロック内に第3電極560が配置される構成について説明したがこれに限るものではない。例えば図9A、図9Bに示すように、凹型の誘電体ブロックを垂直面である底面が挿入される電磁波伝達媒体100と接触するように配置し、当該切り欠き部分に第3電極を配置しても良い。当該構成とすることで整合設計領域が確保されて製造が容易となる。
 (実施の形態4)
 以下、図面を参照して本発明の実施の形態4について説明する。なお、実施の形態1~3で既に説明した部分については発明の明確化のために一部説明を省略する。
 図10A、図10Bは、本実施の形態4に係るインタフェース装置600の側面図及び平面図を示している。インタフェース装置600において、第1電極610の第1導電体面は第1電磁波抑制構造体240に加えて第3電磁波抑制構造体670を有することを特徴とする。第1電磁波抑制構造体240の機能は実施の形態1~3と同様であるため、第3電磁波抑制構造体670について詳しく説明する。
 第3電磁波抑制構造体670は、第1電磁波抑制構造体240と同じくパッチ導電体671と導電体ポスト672で構成されるEBG構造である。導電体ポスト672は、導電体ポスト242より長くとられ、パッチ導電体671は第2電極220の第2導電体面近くに位置する。
 当該第3電磁波抑制構造体670は、電磁波供給部230より第1導電体面と第2導電体面との間の狭間領域に供給される電磁波が側面方向から漏洩することを防ぐために設けられる電磁波抑制構造体である。
 第3電磁波抑制構造体670は、第3電極560の両側に配置される。図10A、図10Bでは、第3電極560の左右それぞれに2重の第3電磁波抑制構造体670が挿入される電磁波伝達媒体100の位置近くまで並列に配置されている。
 当該並列に配置された第3電磁波抑制構造体670は、基準導電体である第1電極610を流れるループ電流に起因する誘導結合が支配的となった場合、並列共振回路が直列に連結された等価回路として表せる。更に、導電体ポスト672による誘導結合と、パッチ導電体671と第2電極620の第2導電体面との誘導結合が支配的となった場合、直列共振回路が並列に連結された等価回路として表せる。並列共振回路が直列に連結された等価回路は特定の周波数で極めて高い特性インピーダンスを有し、直列共振回路が並列に連結された等価回路は特定の周波数で極めて低い特性インピーダンスを有する。ここで、通信用に用いられる周波数(例えば900MHz帯)において極めて高い又は低い特性インピーダンスとなるようにパッチ導電体671のサイズや第2導電体面までの距離、導電体ポスト672の静電容量等を設計することで当該第3電磁波抑制構造体670を通り抜けて自装置側面方向に進行しようとする電磁波を反射させることができる。
 従って電磁波供給部230より供給される電磁波が、第3電極560の両側に配置された第3電磁波抑制構造体670で挟まれる共振領域に閉じ込められ、整合設計された当該共振領域で電磁波が増幅される。当該電磁波のパスは、電磁波伝達媒体100の電磁波伝播層130だけとなり、電磁波伝達媒体100を介して効率良く電磁波を受信装置300に供給することが可能となる。
 このように、本実施の形態4に係るインタフェース装置において、第1導電体面には、第1電磁波抑制構造体と第3電磁波抑制構造体を備える。第1電磁波抑制構造体は、電磁波伝達媒体の辺端部が挿入されている状態において電磁波供給部より供給される電磁波をであって電磁波伝達媒体表面に沿う方向で進行する電磁波を反射する構造体である。一方、第3電磁波抑制構造体は、第3電極の両側に電磁波伝達媒体近辺まで並列に配置された構造体である。第3電磁波抑制構造体は、電磁波伝達媒体の辺端部が挿入されている状態において電磁波供給部より供給される電磁波であって自装置の側面方向に進行する電磁波を反射する構造体である。このように構成することで、電磁波供給部より供給される電磁波を効率良く電磁波伝達媒体を介して受信装置に供給することが可能となる。
 なお、第3電極両側に配置される第3電磁波抑制構造体で作られる共振領域を通信用電磁波の周波数帯で共振状態となるように整合設計すると更に効率良く電磁波を供給できるため好ましい。
 また、上記説明では第3電磁波抑制構造体が第1電極の第1導電体面に設けられる構成について説明したがこれに限るものではない。第2電極の第2導電体面に第3電磁波抑制構造体が設けられても良いし、図11A、図11Bに示すように第1導電体面と第2導電体面の両方に設けられていても良い。
 (実施の形態5)
 本実施の形態5に係るインタフェース装置は、第2電極に配置される第2電磁波抑制構造体がマッシュルーム型EBG構造以外の構造をとることを特徴とする。以下、図面を参照して本発明の実施の形態5について説明する。なお、実施の形態1~4で既に説明した部分については発明の明確化のために一部説明を省略する。
 図12A、図12Bは、それぞれ本実施の形態5に係るインタフェース装置700の第2電極720の第2導電体面の断面図と底面図とを示している。第2電極720の第2導電体面には、複数の平面型EBG構造体が第2電磁波抑制構造体750として周期配列されている。ここで、平面型EBG構造体とは、同一平面内に複数形成可能なEBG構造体を言う。
 第2電磁波抑制構造体750の各単位構造は、パッチ導電体751と隣接するパッチ導電体751間を電気的に接続する配線である接続配線752とを備える。なお、図12A、図12Bでは、接続配線752はパッチ導電体751の端部辺の中点付近にあるがこれに限定されるものではなく、短部辺の隅付近に設けられても良い。また、隣接するパッチ導電体751間を結ぶ接続配線752は1本である場合に限定されず、複数の接続配線752でパッチ導電体751同士が接続されていても良い。
 図12Aに示す第2電磁波抑制構造体750も上述した原理に基づいて漏洩方向に進む電磁波を電磁波供給部230側に反射させることができる。
 ここで図12Aに示す平面型EBG構造である第2電磁波抑制構造体750は、マッシュルーム型EBG構造と比較して導電体ポストを必要としない分、厚さを薄くすることが可能となる。インタフェース装置はクリップ型カプラであり、上下両側から電磁波伝達媒体100を挟み込むようにして接続するが、底面側の厚みが厚いと電磁波伝達媒体100を反らせてしまい、電磁波伝達媒体の平面性を大きく損なってしまう。一方、本実施の形態の第2電磁波抑制構造体750は、平面型EBG構造であるため、電磁波伝達媒体100の下側に回り込む部分の厚さを充分薄くすることが可能であり、高い平面性を維持することができる。
 このように、本実施の形態に係る第2電磁波抑制構造体は、第2導電体面と同一平面に配置される複数のパッチ導電体と、隣接するパッチ導電体を接続する接続配線部を有することを特徴とする。当該EBG構造を第2電磁波抑制構造体とすることで厚みを薄くすることができる。
 なお、上記説明では、平面型EBG構造を第2電磁波抑制構造体750に用いる場合について説明したが、第1電磁波抑制構造体740にも同様に用いることが可能となる。第1電磁波抑制構造体740に用いることでインタフェース装置700全体の厚みを薄くすることが可能となる。
 以上各実施の形態で説明したように、本発明のインタフェース装置によれば、高い給電効率で電磁波通信媒体を介して受信装置に電磁波を供給することができる。
 なお、インタフェース装置の第1導電体面及び第2導電体面に設けられる電磁波抑制構造体としては上述したEBG構造に限定されるものではなく、様々なEBG構造を採用することができる。
 例えば、電磁波抑制構造体は、図13A、図13Bに示すように第1導電体面を構成する基準導電体として配置されるパッチ状に分割された複数の下層パッチ導電体841と、電磁波伝達媒体100と逆側の層に実装させる上層パッチ導電体842と、下層パッチ導電体841と上層パッチ導電体842とを接続する導電体ポスト843と、を備える構成であっても良い。上層パッチ導電体842は、第1導電体面に配置されている互いに隣接する下層パッチ導電体841同士をブリッジ接続する。このようなEBG構造体を複数配列することで第1又は第2電磁波抑制構造体として用いることも可能である。
 また、以上各実施の形態では、インタフェース装置を用いて給電を行う場合について説明したがこれに限定されるものではない。本発明のインタフェース装置は、給電に限らず信号用電磁波の供給に用いることが可能である。
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、以下の構造をとることも可能である。
(付記1)
 電磁波を伝搬するシート状の電磁波伝達媒体に電磁波を供給するインタフェース装置であって、第1導電体面と、前記第1導電体面に対して略平行に対向する状態で配置される第2導電体面と、前記第1導電体面と第2導電体面とに挟まれる狭間領域に電磁波を供給する電磁波供給部と、前記第1導電体面に設けられる第1構造体であって、前記狭間領域に前記電磁波伝達媒体の辺端部が挿入されている状態において前記電磁波供給部より供給される電磁波を反射する第1構造体と、前記第2導電体面に設けられる第2構造体であって、前記狭間領域に前記電磁波伝達媒体の辺端部が挿入されている状態において前記電磁波供給部より供給される電磁波を反射する第2構造体と、を具備するインタフェース装置。
(付記2)
 前記第1構造体は、前記第1導電体面に対して略平行に対向する状態で配置される板状のパッチ導電体と、前記パッチ導電体と前記第1導電体面とを接続する第1導電体ポストと、を備え、前記第2構造体は、前記第2導電体面に対して略平行に対向する状態で配置される板状のパッチ導電体と、前記パッチ導電体と前記第2導電体面とを接続する第2導電体ポストと、を備える、付記1に記載のインタフェース装置。
(付記3)
 前記第1導電体面には、複数の前記第1構造体が周期配列され、前記第2導電体面には、複数の前記第2構造体が周期配列される、付記1又は2に記載のインタフェース装置。
(付記4)
 前記第2構造体は、前記第2導電体面と同一平面に配置される複数の板状のパッチ導電体と、隣接する前記パッチ導電体同士を接続する接続配線部と、を備える、付記1に記載のインタフェース装置。
(付記5)
 前記電磁波伝達媒体は、シート状の絶電体である第1保護層と、シート状の導電体である第1導電体層と、シート状の誘電体であって、電磁波が進行する誘電体層と、メッシュシート状の導電体である第2導電体層と、シート状の絶縁体である第2保護層と、が積層されて構成される、付記1乃至4のいずれかに記載のインタフェース装置。
(付記6)
 前記第1構造体は、前記供給される電磁波を前記第2導電体層を介して前記誘電体層に送りこむ方向に反射し、前記第2構造体は、前記供給される電磁波を前記電磁波供給部側に反射する、付記5に記載のインタフェース装置。
(付記7)
 前記電磁波供給部は、前記第1導電体面又は前記第2導電体面のいずれか片方の導電体面に第1の電圧を印加し、他方の導電体面を接地することで前記挟間領域に電磁波を供給する、付記1乃至6のいずれか1項に記載のインタフェース装置。
(付記8)
 前記挟間領域に配置される第3電極を更に具備し、前記電磁波供給部は、前記電極に第1の電圧を印加し、前記第1導電体面及び第2導電体面を接地することで前記挟間領域に電磁波を供給する、付記1乃至6のいずれか1項に記載のインタフェース装置。
(付記9)
 前記第3電極の両側に配置される前記電磁波供給部より供給される電磁波を反射する第3構造体を更に備え、前記第3構造体は、前記第1導電体面又は前記第2導電体から所定の距離離れた位置に前記第1導電体面又は前記第2導電体に対して略平行に対向する状態で配置される板状のパッチ導電体と、前記パッチ導電体と前記第2導電体面又は前記第1導電体面とを接続する導電体ポストと、を備える付記8に記載のインタフェース装置。
(付記10)
 前記第1構造体及び前記第2構造体の少なくとも一方を設けない整合調整部を前記電磁波供給部近傍に設けたことを特徴とする請求項3乃至9のいずれか1項に記載のインタフェース装置。
(付記11)
 前記第1導電体面において、第1の境界線の内側である前記電磁波供給部側の領域には複数の前記第1構造体が周期配列されず、前記第1の境界線の外側の領域に前記複数の前記第1構造体が周期配列されていることを特徴とする、請求項3乃至10のいずれか1項に記載のインタフェース装置。
(付記12)
 前記第2導電体面において、第2の境界線の内側である前記電磁波供給部側の領域には複数の前記第1構造体が周期配列されず、前記第2の境界線の外側の領域に前記複数の前記第2構造体が周期配列されていることを特徴とする、請求項3乃至10のいずれか1項に記載のインタフェース装置。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2012年1月12日に出願された日本出願特願2012-004001を基礎とする優先権を主張し、その開示の全てをここに取り込む。
100  電磁波伝達媒体          110 第1保護層
111  シート絶縁体           120 導電体プレーン層
121  シート導電体           130 電磁波伝播層
131  誘電体基板            140 メッシュ層
141  メッシュ導電体          150 第2保護層
151  シート絶縁体           200 インタフェース装置
210  第1電極             220 第2電極
230  電磁波供給部           240 第1電磁波抑制構造体
241  パッチ導電体           242 導電体ポスト
250  第2電磁波抑制構造体       251 パッチ導電体
252  導電体ポスト           300 受信装置

Claims (10)

  1.  電磁波を伝搬するシート状の電磁波伝達媒体に電磁波を供給するインタフェース装置であって、
     第1導電体面と、
     前記第1導電体面に対して略平行に対向する状態で配置される第2導電体面と、
     前記第1導電体面と第2導電体面とに挟まれる狭間領域に電磁波を供給する電磁波供給手段と、
     前記第1導電体面に設けられる第1構造体であって、前記狭間領域に前記電磁波伝達媒体の辺端部が挿入されている状態において前記電磁波供給手段より供給される電磁波を反射する第1構造体と、
     前記第2導電体面に設けられる第2構造体であって、前記狭間領域に前記電磁波伝達媒体の辺端部が挿入されている状態において前記電磁波供給手段より供給される電磁波を反射する第2構造体と、
    を具備するインタフェース装置。
  2.  前記第1構造体は、
     前記第1導電体面に対して略平行に対向する状態で配置される板状のパッチ導電体と、
     前記パッチ導電体と前記第1導電体面とを接続する第1導電体ポストと、
    を備え、
     前記第2構造体は、
     前記第2導電体面に対して略平行に対向する状態で配置される板状のパッチ導電体と、
     前記パッチ導電体と前記第2導電体面とを接続する第2導電体ポストと、
    を備える、
    請求項1に記載のインタフェース装置。
  3.  前記第1導電体面には、複数の前記第1構造体が周期配列され、
     前記第2導電体面には、複数の前記第2構造体が周期配列される、
    請求項1又は2に記載のインタフェース装置。
  4.  前記第2構造体は、
     前記第2導電体面と同一平面に配置される複数の板状のパッチ導電体と、
     隣接する前記パッチ導電体同士を接続する接続配線部と、
     を備える、
    請求項1に記載のインタフェース装置。
  5.  前記電磁波伝達媒体は、
     シート状の絶電体である第1保護層と
     シート状の導電体である第1導電体層と、
     シート状の誘電体であって、電磁波が進行する誘電体層と、
     メッシュシート状の導電体である第2導電体層と、
     シート状の絶縁体である第2保護層と、
    が積層されて構成される、
    請求項1乃至4のいずれか1項に記載のインタフェース装置。
  6.  前記第1構造体は、前記供給される電磁波を前記第2導電体層を介して前記誘電体層に送りこむ方向に反射し、
     前記第2構造体は、前記供給される電磁波を前記電磁波供給手段側に反射する、
     請求項5に記載のインタフェース装置。
  7.  前記電磁波供給手段は、前記第1導電体面又は前記第2導電体面のいずれか片方の導電体面に第1の電圧を印加し、他方の導電体面を接地することで前記挟間領域に電磁波を供給する、
    請求項1乃至6のいずれか1項に記載のインタフェース装置。
  8.  前記挟間領域に配置される第3電極を更に具備し、
     前記電磁波供給手段は、前記電極に第1の電圧を印加し、前記第1導電体面及び第2導電体面を接地することで前記挟間領域に電磁波を供給する、
    請求項1乃至6のいずれか1項に記載のインタフェース装置。
  9.  前記第3電極の両側に配置される前記電磁波供給手段より供給される電磁波を反射する第3構造体を更に備え、
     前記第3構造体は、前記第1導電体面又は前記第2導電体から所定の距離離れた位置に前記第1導電体面又は前記第2導電体に対して略平行に対向する状態で配置される板状のパッチ導電体と、
     前記パッチ導電体と前記第2導電体面又は前記第1導電体面とを接続する導電体ポストと、
     を備える請求項8に記載のインタフェース装置。
  10.  前記第1構造体及び前記第2構造体の少なくとも一方を設けない整合調整手段を前記電磁波供給手段近傍に設けたことを特徴とする請求項3乃至9のいずれか1項に記載のインタフェース装置。
PCT/JP2012/007564 2012-01-12 2012-11-26 インタフェース装置 WO2013105168A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/371,519 US20150008994A1 (en) 2012-01-12 2012-11-26 Interface apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-004001 2012-01-12
JP2012004001 2012-01-12

Publications (1)

Publication Number Publication Date
WO2013105168A1 true WO2013105168A1 (ja) 2013-07-18

Family

ID=48781147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007564 WO2013105168A1 (ja) 2012-01-12 2012-11-26 インタフェース装置

Country Status (3)

Country Link
US (1) US20150008994A1 (ja)
JP (1) JPWO2013105168A1 (ja)
WO (1) WO2013105168A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219496A (ja) * 2012-04-06 2013-10-24 Nec Engineering Ltd 二次元通信用電力供給装置並びに通信シート及びコネクタ
GB2516763A (en) * 2013-07-02 2015-02-04 Roke Manor Research A guiding medium
JP2016123013A (ja) * 2014-12-25 2016-07-07 株式会社イトーキ アンテナユニット

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013124935A1 (ja) * 2012-02-24 2013-08-29 日本電気株式会社 受電装置、給電装置、通信装置
KR102252382B1 (ko) * 2014-07-22 2021-05-14 엘지이노텍 주식회사 레이더 장치
CN104577287B (zh) * 2015-01-23 2018-06-19 广东顺德中山大学卡内基梅隆大学国际联合研究院 谐波抑制宽带贴片耦合器及其调整功分比的方法、同时实现宽带和二次谐波抑制的方法
JP6666608B2 (ja) * 2016-02-12 2020-03-18 国立研究開発法人情報通信研究機構 2次元通信シートへの電力供給システム、給電ポート
CN116130903B (zh) * 2023-03-16 2023-12-01 南京航空航天大学 一种基于间隙波导的亚毫米波波导法兰

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009015517A (ja) * 2007-07-03 2009-01-22 Toshiba Tec Corp 無線タグリーダライタ
JP2011009801A (ja) * 2009-06-23 2011-01-13 Serukurosu:Kk 高効率な電磁波インターフェース装置と電磁波伝送システム
WO2011052361A1 (ja) * 2009-10-30 2011-05-05 日本電気株式会社 サーフェイス通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009015517A (ja) * 2007-07-03 2009-01-22 Toshiba Tec Corp 無線タグリーダライタ
JP2011009801A (ja) * 2009-06-23 2011-01-13 Serukurosu:Kk 高効率な電磁波インターフェース装置と電磁波伝送システム
WO2011052361A1 (ja) * 2009-10-30 2011-05-05 日本電気株式会社 サーフェイス通信装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219496A (ja) * 2012-04-06 2013-10-24 Nec Engineering Ltd 二次元通信用電力供給装置並びに通信シート及びコネクタ
GB2516763A (en) * 2013-07-02 2015-02-04 Roke Manor Research A guiding medium
JP2016123013A (ja) * 2014-12-25 2016-07-07 株式会社イトーキ アンテナユニット

Also Published As

Publication number Publication date
JPWO2013105168A1 (ja) 2015-05-11
US20150008994A1 (en) 2015-01-08

Similar Documents

Publication Publication Date Title
WO2013105168A1 (ja) インタフェース装置
KR101744605B1 (ko) 어레이 안테나
JP5644769B2 (ja) サーフェイス通信装置
JP5952233B2 (ja) アンテナ装置
JP5408160B2 (ja) 水平方向放射アンテナ
JP5170232B2 (ja) 電磁シールド構造およびそれを用いた無線装置、電磁シールドの製造方法
JP2009135797A (ja) アンテナ装置
KR102554581B1 (ko) 안테나 구조 및 고주파 다중 대역 무선 통신 단말
KR20150104509A (ko) 안테나 장치 및 그를 구비하는 전자 장치
US20150188239A1 (en) Antenna configuration for use in a mobile communication device
CN110854548B (zh) 天线结构及具有该天线结构的无线通信装置
CN109845031B (zh) 天线单元中的集成带阻滤波
US20130193772A1 (en) Surface communication device
WO2015122203A1 (ja) プリント基板
JP6052276B2 (ja) 受電装置、給電装置、通信装置
US20130306363A1 (en) Structure
US10153553B2 (en) Antenna device having patch antenna
US20130214613A1 (en) Surface communication device
JP6146801B2 (ja) 配線基板、及び電子装置
WO2011027497A1 (ja) 通信システム及び通信装置
JP2020174284A (ja) アンテナ装置
US11973278B2 (en) Antenna structure and electronic device
CN117501537A (zh) 用于产生毫米波频率辐射的双极化天线振子
KR102099162B1 (ko) 안테나 장치
CN114600315A (zh) 双极化天线模块及包括所述天线模块的电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865292

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013553103

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14371519

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865292

Country of ref document: EP

Kind code of ref document: A1