WO2013104117A1 - 电磁传动装置及其制造方法和控制方法 - Google Patents

电磁传动装置及其制造方法和控制方法 Download PDF

Info

Publication number
WO2013104117A1
WO2013104117A1 PCT/CN2012/070226 CN2012070226W WO2013104117A1 WO 2013104117 A1 WO2013104117 A1 WO 2013104117A1 CN 2012070226 W CN2012070226 W CN 2012070226W WO 2013104117 A1 WO2013104117 A1 WO 2013104117A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive
transmission
driving
plate
electronic control
Prior art date
Application number
PCT/CN2012/070226
Other languages
English (en)
French (fr)
Inventor
王兆宇
邢子义
李殿赟
Original Assignee
龙口中宇机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 龙口中宇机械有限公司 filed Critical 龙口中宇机械有限公司
Priority to EP12865416.7A priority Critical patent/EP2803878B1/en
Priority to EA201491338A priority patent/EA026539B1/ru
Priority to PCT/CN2012/070226 priority patent/WO2013104117A1/zh
Priority to BR112014017149A priority patent/BR112014017149A8/pt
Priority to CA2860992A priority patent/CA2860992C/en
Priority to US14/371,523 priority patent/US9476464B2/en
Publication of WO2013104117A1 publication Critical patent/WO2013104117A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/14Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D43/00Automatic clutches
    • F16D43/02Automatic clutches actuated entirely mechanically
    • F16D43/04Automatic clutches actuated entirely mechanically controlled by angular speed
    • F16D43/14Automatic clutches actuated entirely mechanically controlled by angular speed with centrifugal masses actuating the clutching members directly in a direction which has at least a radial component; with centrifugal masses themselves being the clutching members
    • F16D43/18Automatic clutches actuated entirely mechanically controlled by angular speed with centrifugal masses actuating the clutching members directly in a direction which has at least a radial component; with centrifugal masses themselves being the clutching members with friction clutching members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D11/00Clutches in which the members have interengaging parts
    • F16D11/16Clutches in which the members have interengaging parts with clutching members movable otherwise than only axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/10Friction clutches with clutching members co-operating with the periphery of a drum, a wheel-rim, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/10Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings
    • F16D27/102Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with radially movable clutching members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2250/00Manufacturing; Assembly
    • F16D2250/0084Assembly or disassembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/01Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with permanent magnets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor

Definitions

  • Electromagnetic transmission device manufacturing method and control method thereof
  • the present invention relates to electromagnetic transmissions primarily used on vehicles, and more particularly to electromagnetic fan clutches and air pump devices, as well as methods of manufacture and control thereof. Background technique
  • the electromagnetic fan clutch used in the automobile controls the rotation speed of the fan according to the change of the water temperature of the engine, so that the automobile engine maintains the optimum state during the operation. Specifically, by controlling the electrification or power-off of the coil on the electromagnet core, the suction and separation of the suction disc and the drive disc on the magnet fixing disc or the fan fixing disc are controlled, thereby controlling the rotation speed of the fan on the fan fixing disc. Allows the fan to cool the engine at a suitable speed.
  • the existing electromagnetic fan clutch (takes a three-speed electromagnetic fan clutch as an example) as shown in Fig. 1, including the main shaft 1 ', the drive plate 2', the electromagnet core 3', the outer coil 4a', the inner coil 4b', and the fan fixed Disk 9', magnet fixing plate 10', small spring piece 12', small suction plate 13', large spring piece 34', large suction plate 35' and safety plate 36', wherein the transmission is made of a magnetically permeable material
  • the disc 2 is fixedly mounted on the main shaft by a semi-circular key 19'.
  • the side of the driving disc 2' is provided with a plurality of sets of magnetic isolation slots 23', and the inner cavity of the driving disc 2' is provided with an electromagnet core 3', and the electromagnet core 3'
  • the bearing 5' is mounted on the main shaft, and the inner and outer coils are respectively provided with the inner and outer coil inlay grooves, and the inner and outer coil slots have the same magnetic opening direction as the main shaft axial direction and are directed to the drive plate 2'.
  • the inner and outer coils are respectively provided with inner and outer coils 4b', 4a' in the inner and outer coil inlay grooves, and the fan fixing disc 9' and the magnet fixing disc 10' are mounted on the main shaft through bearings 8', 1 respectively, wherein
  • the magnet fixing plate 10' is located in the inner cavity of the fan fixing plate 9', in the magnet On one end surface of the fixed disk 10', a plurality of fixing holes are uniformly distributed around the circumference for inlaying the soft magnet 15', and the soft magnet 15' is attracted with the permanent magnet 14', and the fan fixing plate 9' and the permanent magnet 14'
  • the corresponding end surface is inlaid with a soft magnet 16', and the annular end surface of the magnet fixing plate 10' opposite to the inner coil 4b' is supported by a small spring piece 12' to be connected with a small suction disk 13', and the fan fixing plate 9' is
  • the opposite end faces of the outer coil 4a' are supported by a large spring plate 34' to be connected with a large
  • the specific working process of the above three-speed electromagnetic fan clutch is: when the engine temperature has not reached the lower set temperature value of the three-speed electromagnetic fan clutch (for example, set to 82 ° C), the inner and outer coils in the electromagnet core 3 '4b',4a' are not energized, the drive plate 2' will not attract the small suction plate 13' on the magnet fixing plate 10', and does not attract the large on the fan fixed plate 9'
  • the suction plate 35', the fan fixing plate 9' is free to slide through the bearing 8', and the magnet fixing plate 10' is free to slide through the bearing 1; when the engine temperature reaches a lower set temperature value (82 ° C) and lower than
  • the high set temperature value for example, set to 88 ° C
  • the inner coil 4b' is energized, and the magnetic disk core 3' magnetic effect causes the drive plate 2' to suck the small suction plate 13', so that the small suction plate 13 'Synchronous rotation with the drive plate 2', the
  • the original design structure of the electromagnetic fan clutch usually has a safety plate 36' and a corresponding locking hole and a matching hole for use with the emergency locking bolt carried by the vehicle, and the driver can malfunction in the power supply system of the electromagnetic fan clutch.
  • the emergency locking bolt into the locking hole on the safety plate 36' and the matching hole on the drive plate 2', so that the fan fixing plate 9' rotates synchronously with the driving plate 2', so that the fan is at full speed. Rotate to cool the engine. If the driver knows that the power supply system is faulty during driving, he can use the emergency locking bolt to fix the fan fixing plate 9' and the driving plate 2' after stopping, so that the fan can rotate at full speed; however, the driver often cannot ensure that it can The first time to know the fault condition, so it is impossible to stop using the emergency locking bolt in time, and it is also troublesome to install the emergency locking bolt.
  • the large suction cup 35 ' fixedly connected with the fan fixing plate 9' is sucked onto the driving plate 2', and can drive the fan fixing plate 9' to rotate at the same speed as the driving plate 2', so that the engine needs the outer coil 4a' provides continuous power, which not only consumes more power, but also increases the loss of engine power, making the engine that is already in a high temperature state more overloaded, reducing the service life of the engine.
  • the air pump device used in the brake system of the vehicle controls the operation of the air pump by using the energization or de-energization of the electromagnetic clutch during the running of the vehicle.
  • the pressure in the air pump is lower than the pressure required for the operation of the brake system (for example, 6-8).
  • the power supply system of the electromagnetic clutch is powered, and the suction force of the electromagnet core drives the components of the rotary shaft of the air pump and the rotating skin.
  • the pulley (the pulley is driven by the engine) is connected to make the air pump shaft and the pulley run synchronously, so as to achieve the purpose of working the air pump; when the pressure inside the air pump reaches or exceeds the pressure value required for the brake system to work (for example, 6-8 kg)
  • the power supply system of the electromagnetic clutch is powered off, the air pump shaft is separated from the pulley, and the air pump stops working.
  • the electromagnetic clutch cannot control the operation of the air pump, affecting the function of the air pump, resulting in the braking system.
  • the present invention provides an electromagnetic transmission device having a fail-safe device, high practicability, safety and reliability.
  • the purpose is to realize that the electromagnetic transmission device can still work and realize the transmission function in the case of failure or sudden power failure of the electromagnetic clutch power supply system, which is safe and reliable, and prevents a series of disadvantages caused by the failure of the electromagnetic clutch. as a result of.
  • Another technical object of the present invention is to provide a method of manufacturing the above-described electromagnetic transmission device having an anti-failure safety device. It is still another technical object of the present invention to provide a control method of the above-described electromagnetic transmission device having an anti-failure safety device.
  • An electromagnetic transmission device comprising a drive plate, further comprising a first transmission device, a second transmission device and a first electronic control device, wherein when the first electronic control device is powered, the first electronic control device is driven The first transmission device separates the second transmission device from the drive plate; when the first electronic control device is powered off, the first electronic control device drives the first transmission device such that the A second transmission engages the drive plate.
  • the electromagnetic transmission device of the invention adopts a structure in which the second transmission device is separated from the transmission disk when the first electric control device is powered, and the second transmission device is combined with the transmission plate when the first electronic control device is powered off, so that the electromagnetic transmission device
  • the device ensures that the transmission can be controlled by controlling the power-off of the first electronic control device, and ensures that the drive plate can drive the second transmission device when the first electronic control device is suddenly powered off, thereby effectively preventing
  • the transmission failure of the first electronic control unit in case of accidental power failure ensures that the use of the transmission device is safer and more reliable.
  • the present invention is designed to: when the first electronic control device is powered off, the drive plate can transmit power to the second transmission device, thereby achieving the effect of the transmission without consuming excessive electric energy, saving power and extending the power supply. The life of the system and the power supply line.
  • An electromagnetic transmission device of the present invention further includes a passive device, and the second transmission device is fixedly coupled to the passive device.
  • a passive device is added, and the passive device is fixedly connected with the second transmission device, so that the electromagnetic transmission device of the present invention can drive the second transmission device through the transmission disk to drive the passive device into the working state, and can be used according to different passive devices.
  • the transmission is applied to different equipments and is highly practical.
  • An electromagnetic transmission device of the present invention further includes a transmission shaft, the passive device is a fan fixing plate, the transmission disk is fixedly mounted on the transmission shaft, and the fan fixing plate is mounted on the transmission shaft through a first bearing on.
  • the above structure is to apply the electromagnetic transmission device of the present invention to a single-speed electromagnetic fan clutch, and to ensure that the full-speed rotation or free-slip of the fan fixed disk can be controlled by controlling the power-off and power-off of the first electronic control device, It is ensured that the drive disc can drive the fan fixed disc to rotate at full speed during the sudden power failure of the first electronic control device, and cool the engine, effectively preventing the transmission failure of the first electronic control device in case of accidental power failure, and ensuring that the transmission device is applied.
  • the single-speed electromagnetic fan clutch is safer and more reliable, ensuring a good running condition of the car.
  • An electromagnetic transmission device of the present invention further includes a transmission shaft and a magnet fixing plate, wherein the passive device is a fan fixing plate, and the driving plate is fixedly mounted on the transmission shaft, and the fan fixing plate is mounted on the first bearing through the first bearing
  • the magnet fixing plate is fixedly mounted on the transmission shaft, and the magnet fixing plate is configured to drive the fan fixing plate to differentially follow the rotation by a magnetic effect.
  • the above structure is to apply the electromagnetic transmission device of the invention to the two-speed electromagnetic fan clutch, so that the two-speed electromagnetic fan clutch can control the fan fixed disk to rotate at different speeds according to different temperatures of the engine to cool the engine, ensuring that the engine remains the most. Good working condition; At the same time, ensure that the fan can rotate at full speed to cool the engine when the power supply system is powered off, to prevent the engine from being unable to dissipate heat in time due to sudden power failure of the power supply system.
  • An electromagnetic transmission device of the present invention further includes a transmission shaft, a magnet fixing plate and a second electric control device, wherein the passive device is a fan fixing plate, and the driving plate is fixedly mounted on the transmission shaft, and the fan fixing plate Mounted on the transmission shaft by a first bearing, the magnet fixing disc is mounted on the transmission shaft through a third bearing, and the magnet fixing disc is used to drive the fan fixed disc to follow the differential speed by a magnetic effect.
  • the second electronic control device is powered, the drive plate is engaged with the magnet fixed disk; when the second electronic control device is powered off, the drive plate is separated from the magnet fixed plate.
  • the above structure is to apply the electromagnetic transmission device of the invention to the three-speed electromagnetic fan clutch, so that the three-speed electromagnetic fan clutch can control the fan fixed disk to rotate at different speeds according to different temperatures of the engine to cool the engine to keep the engine Best working condition; At the same time, ensure that the fan can rotate at full speed to cool the engine when the power supply system is powered off, to prevent the engine from being unable to dissipate heat in time due to sudden power failure of the power supply system.
  • An electromagnetic transmission device wherein the passive device is a gas pump shaft, and the transmission disk is mounted on a gas pump shaft through a bearing.
  • the above structure is to apply the electromagnetic transmission device of the present invention to the air pump, and ensure that the first electric control device is suddenly broken while controlling the rotation of the air pump shaft by controlling the power-off of the first electronic control device.
  • the drive plate can drive the rotation of the air pump shaft to provide pressure to the vehicle brake system, prevent the transmission failure of the first electric control device in case of accidental power failure, and ensure that the air pump enters the working state when the electromagnetic clutch fails, ensuring the braking of the vehicle.
  • the system can still work normally in case of sudden power failure.
  • An electromagnetic transmission device wherein the second transmission device comprises a drive cylinder. Driven by the transmission cylinder, the manufacturing process is simple, the transmission effect is good, and the installation is convenient.
  • An electromagnetic transmission device wherein the first transmission device comprises at least one drive piece. A driving piece structure is adopted between the driving disk and the driving cylinder, so that the driving disk and the driving cylinder can control the driving piece by the powering and power-off of the first electronic control device, and control the driving cylinder and the transmission by controlling the movement of the driving piece.
  • the power phase of the disk is separated or combined, and the transmission piece is used as the first transmission device, and the manufacturing process is simple, the cost is low, and the transmission effect is good; and at least one driving piece is used, so that once the driving piece fails or the transmission effect is reduced during use, At the same time, other transmission pieces can continue to function as a transmission, which ensures the overall transmission effect of the transmission piece.
  • An electromagnetic transmission device wherein the structure and positional relationship of the first transmission transmission piece, the second transmission transmission cylinder and the first electric control device can be in the following three forms:
  • the driving piece is three curved pieces
  • the driving disk is provided with three sets of protrusions on the outer side of the circumferential position, and the three driving pieces are hinged on the corresponding protrusions of the driving plate through the pin shaft
  • the drive cylinder has an opposite end face of the drive plate outside the circumferential position of the drive plate, and a gap exists between the drive piece and the opposite end surface of the drive barrel
  • the first electronic control device includes an electromagnet An electromagnet assembly composed of a core and a coil, the electromagnet assembly being located in an inner cavity of an end surface of the drive disk at a circumferential position.
  • the three arc-shaped transmission pieces are hinged to the outside of the circumferential position of the transmission plate through the pin shaft, and the installation is simple, the transmission effect is good, and the manufacturing is simple; the transmission cylinder is disposed at a certain gap position outside the circumferential position of the transmission disk, so that when the coil is de-energized
  • the transmission piece can press the transmission cylinder under the action of centrifugal force, and the transmission effect is good and the cost is low; and the centrifugal force is used instead of the special power supply to achieve the transmission effect, thereby saving energy.
  • the drive cylinder has an opposite end face with the drive plate outside the circumferential position of the drive plate, and the opposite end faces of the drive sleeve are provided with three sets of protrusions, and the drive pieces are three a curved piece, the three driving pieces are hinged on the corresponding protrusions of the driving cylinder by a pin; the driving piece has a gap with the opposite end faces of the driving plate;
  • the first electric control device comprises a permanent magnet And an electromagnet assembly consisting of an electromagnet core and a coil, the permanent magnet being located in an inner cavity of the drive disc, the electromagnet assembly being located outside the opposite end surface of the drive cylinder; when the coil is energized
  • the magnetic attraction force of the electromagnet core to the driving piece is greater than the magnetic attraction force of the permanent magnet to the driving piece.
  • the permanent magnet and the electromagnet assembly are used together as the first electronic control device to control the movement of the driving piece, and the driving piece is mounted on the inner end surface of the driving cylinder accordingly, which is a deformation of the structure in the above (1), which is The structure can also realize that when the coil is actively powered off or the coil is accidentally powered off, the power of the transmission disc can be transmitted to the passive device through the first transmission driving piece and the second transmission driving barrel; and in the above structure
  • the permanent magnet uses the inherent performance to achieve the suction effect without having to use the specially supplied power, which reduces power consumption and saves energy.
  • the driving piece is three curved pieces
  • the driving disk is provided with three sets of protrusions on the inner side of the circumferential position, and the three driving pieces are hinged on the corresponding protrusions of the driving plate through the pin shaft
  • the drive cylinder has an opposite end face with the drive plate on a inner side of the drive plate, and a gap exists between the drive piece and the opposite end surface of the drive barrel
  • the first electronic control device includes a permanent magnet and An electromagnet assembly composed of an electromagnet core and a coil, the permanent magnet being located in the drive cylinder The inner cavity, the electromagnet assembly is located outside the circumferential position of the drive plate; when the coil is energized, the electromagnet core has a magnetic attraction force to the drive plate that is greater than the permanent magnet to the drive plate Magnetic attraction.
  • Adopting such a structure is another modification of the structure in the above (1), so that the power transmission piece and the transmission cylinder can transmit the power of the transmission disk to the passive device in the case of the power failure of the coil, and the transmission piece is mounted accordingly.
  • the inner side of the drive plate is in the circumferential position, the cost is low, and the transmission effect is good.
  • An electromagnetic transmission device wherein an arc-shaped friction plate is fixedly coupled to an opposite end surface of the drive plate and the drive cylinder.
  • the structure of connecting the friction plates on the transmission piece is adopted, so that the transmission effect of the transmission piece is good and the service life is long.
  • a method of manufacturing an electromagnetic transmission device comprises the steps of: (a) forming a transmission disk; (b) forming a first transmission; (c) forming a second transmission; (d) forming a first electronic control device; (e) installing a drive plate, a first transmission, a second transmission, and a first electronic control device such that: when the first electronic control device is powered, the first electronic control device drives the first transmission device such that a second transmission is separated from the drive plate; when the first electronic control is powered off, the first electronic control device drives the first transmission such that the second transmission engages the drive plate .
  • the above manufacturing method may include the following two specific methods:
  • the first transmission in the step (b) is three curved transmission pieces, and the outer side of the circumferential position of the transmission disk in the step (a) has three sets of protrusions, and the three transmissions are The piece is hinged to the corresponding protrusion of the drive plate by a pin;
  • the second transmission in the step (c) is a drive barrel, and the drive barrel has an opposite end face outside the circumferential position of the drive plate after installation a gap between the driving piece and the opposite end surface of the driving barrel;
  • the first electronic control device in the step (d) is an electromagnet assembly composed of an electromagnet core and a coil, and the electromagnet assembly is mounted An inner cavity at an end face of the drive disk at a circumferential position; further comprising a passive device for mounting the passive device to fix the drive cylinder to the passive device.
  • the first transmission in the step (b) is three curved transmission pieces
  • the second transmission in the step (c) is a transmission cylinder
  • the transmission cylinder has the In the step (a), the opposite end faces of the outer side of the driving disk circumferential direction, the inner side of the opposite end faces of the driving cylinder has three sets of protrusions, and the three driving pieces are hinged to the corresponding protrusions of the driving barrel through the pin shaft a gap between the driving piece hinged on the driving cylinder and an outer end surface of the circumferential direction of the driving disk;
  • the first electronic control device in the step (d) is a permanent magnet and an electromagnet core And an electromagnet assembly composed of a coil, the permanent magnet being mounted in an inner cavity of the drive plate, the electromagnet assembly being mounted outside the opposite end face of the drive cylinder; when the coil is energized
  • the magnetic force of the electromagnet core to the driving piece is greater than the magnetic force of the permanent magnet to the driving piece; further comprising a passive device, the passive
  • a control method for the above electromagnetic transmission device includes the following three cases:
  • the control method is:
  • the first electronic control device When the engine water temperature is lower than the first set value, the first electronic control device is powered
  • the first electronic control device When the engine water temperature is equal to or higher than the first set value, the first electronic control device is powered off.
  • the control method is:
  • the first electronic control device When the engine water temperature is lower than the second set value, the first electronic control device is powered, and the second electronic control device is powered off; when the engine water temperature is equal to or higher than the second set value and lower than the third set value , the first electronic control device is powered, and the second electronic control device is powered;
  • the first electronic control device When the engine water temperature is equal to or higher than the third set value, the first electronic control device is powered off, and the second electronic control device is powered.
  • the control method is:
  • the first electronic control device When the air pump pressure value is lower than the fourth set value, the first electronic control device is powered off;
  • the first electronic control device When the air pump pressure value is equal to or higher than the fourth set value, the first electronic control device is powered.
  • the above control method is used to control the power generation and power-off of the first electronic control device or the second electronic control device according to different needs of different devices, to meet the cooling demand of the automobile engine or the working needs of the braking system, and to ensure The electromagnetic transmission can be driven when the first electronic control unit is powered off.
  • FIG. 1 is a front cross-sectional view of a three-speed electromagnetic fan clutch in the prior art
  • Figure 2 is a front cross-sectional view of the first embodiment
  • Figure 3 is a cross-sectional view taken along line A-A of Figure 2;
  • Figure 4 is a perspective view of the drive plate in the first embodiment
  • Figure 5 is a perspective view of the transmission piece in the first embodiment
  • 6a and 6b are perspective views of the electromagnet core in the first embodiment
  • Figure 7 is a right side view of the transmission disk and the driving piece in the first embodiment
  • Figure 8 is a B-direction view of Figure 7.
  • Figure 9 is a right side view of the drive cylinder of the first embodiment
  • Figure 10 is a cross-sectional view taken along line CC of Figure 9;
  • Figure 11 is a front cross-sectional view of the second embodiment;
  • Figure 12 is a front cross-sectional view of the third embodiment
  • Figure 13 is a cross-sectional view taken along line D-D of Figure 12;
  • Figure 14 is a perspective view of the drive plate in the third embodiment
  • Figure 15 is a perspective view of the electromagnet core in the third embodiment
  • Figure 16 is a right side view of the driving disk and the driving piece in the third embodiment
  • Figure 17 is a view taken along line E of Figure 16;
  • Figure 18 is a front cross-sectional view showing the fourth embodiment
  • Figure 19 is a front cross-sectional view showing the fifth embodiment
  • Figure 20 is a cross-sectional view taken along line F-F of Figure 19;
  • Figure 21 is a right side view of the driving disk and the driving piece in the fifth embodiment
  • Figure 22 is a view taken along line G of Figure 21;
  • Figure 23 is a front cross-sectional view of the drive cylinder of the fifth embodiment.
  • Figure 24 is a cross-sectional view taken along line H-H of Figure 23;
  • Figure 25 is a front cross-sectional view showing the sixth embodiment. detailed description
  • the electromagnetic transmission device of the present invention is applied to an electromagnetic fan clutch and a gas pump in an automobile as an example for detailed description together with the drawings, and a manufacturing method and a control method of the device in each embodiment are described.
  • the third embodiment of the electromagnetic transmission device of the present invention is applied to a single-speed, two-speed, three-speed electromagnetic fan clutch, wherein the first electronic control device and the second electronic control device each include only an electromagnet core and a coil;
  • a single-speed electromagnetic fan clutch is taken as an example, and an embodiment of the first electronic control device including an electromagnet core, a coil and a permanent magnet is described.
  • Embodiments 5 and 6 are the electromagnetic transmission device of the present invention applied to the air pump.
  • Embodiments wherein the first electronic control device in Embodiment 5 includes only an electromagnet core and a coil, and the first electronic control device in Embodiment 6 includes an electromagnet core, a coil, and a permanent magnet.
  • Embodiment 1 wherein the first electronic control device in Embodiment 5 includes only an electromagnet core and a coil, and the first electronic control device in Embodiment 6 includes an electromagnet core, a coil, and a permanent magnet.
  • an electromagnetic transmission device includes a drive plate 102 (shown in FIG. 4), and further includes a first transmission device, a second transmission device and a first electronic control device, as shown in FIG. 3, FIG. 7, and FIG. 8, wherein the first transmission device comprises three transmission pieces 106, and the three transmission pieces 106 are hinged on the protrusions 117 at the circumferential position of the transmission disk 102 through the pin shafts 124.
  • the shape of the transmission piece 106 is curved (as shown in the figure). 5)), the outer surface of the driving piece 106 is provided with a curved friction plate 106a which is press-bonded to the driving piece 106; the second transmission device is the driving cylinder 107 (as shown in FIG. 9 and FIG.
  • the cylinder 107 is on the drive plate 102
  • the outer side of the circumferential position has an opposite end face with the drive plate 102, and there is a gap between the drive cylinder 107 and the friction plate 106a;
  • the first electronic control device comprises an electromagnet assembly composed of an electromagnet core 103 and a coil 104, the electromagnet assembly is located The inner surface of the drive disk 102, wherein the electromagnet core 103 is mounted on the drive shaft 101 via the second bearing 105, and the electromagnet core 103 is softly coupled to the engine body through a fixed hose, and the drive plate 102 and the drive plate 106 are made of a magnetically permeable material.
  • six sets of magnetic isolation slots 122 are provided in the circumferential position of the drive disc 102.
  • three protrusions 117 are disposed on the outer side of the circumferential position of the drive plate 102, and are evenly distributed in the circumferential position of the drive plate 102.
  • the three drive pieces 106 are hinged to each other by the pins 124. On the protrusions 117, the drive piece 106 can be rotated by the pin 124 away from or near the circumferential position of the drive disk 102.
  • the passive device is a fan fixing plate 109.
  • the fan fixing plate 109 is mounted on the transmission shaft 101 through the first bearing 108, as shown in FIG. 9 and FIG.
  • the three sets of fixing pieces 120 are fixed on the fan fixing plate 109 by fastening bolts 118.
  • the driving plate 102 is fixedly mounted on the transmission shaft 101 by a semi-circular key 119, and the electromagnet core 103 passes through the second bearing 105 in the inner cavity of the driving plate 102. Mounted on the drive shaft 101, as shown in FIG. 6a and FIG.
  • the coil 104 is disposed in the coil inlay groove 103a formed in the electromagnet core 103, and the direction of the magnetic conductive opening of the coil inlay groove 103a is directed to the circumferential position of the drive disc 102. .
  • the first electronic control device When the first electronic control device (coil 104) is powered, the first electronic control device (the electromagnet core 103 having the magnetic attraction force) drives the first transmission device (the transmission piece 106 to which the outer surface is bonded with the friction plate 106a)
  • the second transmission (the drive cylinder 107) is separated from the power of the drive disc 102 (the drive piece 106 is sucked on the outer side of the end face of the drive disc 102 in the circumferential position, and is not engaged with the drive cylinder 107); when the first electric control device (coil 104)
  • the first electronic control device When the power is off, the first electronic control device (the electromagnet core 103 having no magnetic attraction) drives the first transmission device (the transmission piece 106 to which the outer surface is bonded with the friction plate 106a) so that the second transmission device (transmission)
  • the barrel 107) is engaged with the power of the drive plate 102 (the drive piece 106 hinged on the drive plate 102 is pressed against the drive barrel 107 by the friction plate
  • the specific working process of the electromagnetic transmission device of the present invention in the single-speed electromagnetic fan clutch is as follows: After the engine is started, the engine drives the spindle 101 to rotate, and the spindle 101 drives the transmission disk 102 to rotate at full speed through the semicircle key 119.
  • the temperature control switch 125 controls the circuit of the coil 104 to be in an ON state, at which time the radial magnetic field generated by the electromagnet core 103 is connected.
  • the drive piece 106 having the friction plate 106a is firmly attracted to the drive plate 102.
  • the friction plate 106a is not in contact with the drive barrel 107, and the fan fixed disk 109 and the drive barrel 107 connected thereto are free to slide by the first bearing 108.
  • the temperature control switch 125 controls the circuit of the disconnecting coil 104, and the three driving pieces 106 are pressed and driven by the friction plate 106a under the action of centrifugal force.
  • the cylinder 107 rotates the drive cylinder 107 and the drive disc 102 at the same speed, and the drive cylinder 107 drives the fan on the fan fixed disc 109 to rotate, thereby achieving a powerful cooling effect.
  • the electromagnet core 103 does not have magnetism and does not attract the three driving pieces 106.
  • the three driving pieces 106 pass the friction plate 106a under centrifugal force.
  • the drive cylinder 107 is pressed to rotate the drive cylinder 107 and the drive disc 102 at the same speed to achieve the same powerful cooling effect.
  • the present invention relates to a method of manufacturing the above-described electromagnetic transmission device (applied in a single-speed electromagnetic fan clutch), comprising the steps of: (a) casting a drive disk 102 and machining it, and having three sets of protrusions 117 on the outer side of the circumferential position of the drive plate 102 (b) casting the first transmission, ie three curved transmission segments 106, and machining them; (c) casting the second transmission, ie the drive cylinder 107, and machining it; (d) casting the first electricity
  • the electromagnet core 103 in the control device is machined, and the coil 104 is mounted in a coil mounting groove 103a on the electromagnet core 103 in a flat winding manner; (e)
  • the driving disk 102 is mounted on the transmission shaft 101 through a semicircular key 119.
  • the three driving pieces 106 are hinged to the corresponding protrusions 117 of the driving plate 102 through the pin 124, and the electromagnet core 103 is mounted on the transmission shaft 101 through the second bearing 105 and located at the end face of the circumferential position of the driving plate 102.
  • the inner cavity, the fan fixing plate 109 (passive device) is mounted on the transmission shaft 101 through the first bearing 108, and the driving cylinder 107 is mounted on the fan through the three sets of fixing pieces 120 by bolts.
  • the drive cylinder 107 On the fixed plate 109, the drive cylinder 107 is mounted with an opposite end face outside the end face of the drive disk 102 in the circumferential direction, and there is a gap between the drive piece 106 and the opposite end faces of the drive cylinder 107, and after installation, it is:
  • the electromagnet core 103 attracts the drive piece 106 to the outer end surface of the drive plate 102 at a circumferential position, so that the drive barrel 107 is separated from the drive plate 102;
  • the electromagnet core 103 When the coil 104 is de-energized, the electromagnet core 103 does not suck the driving piece 106, and the driving piece 106 presses the driving cylinder 107 under the centrifugal force, so that the driving cylinder 107 is engaged with the power of the driving plate 102 through the driving piece 106, thereby The driving disk 102 is driven to rotate the fan fixing plate 109 through the driving piece 106 and the driving cylinder 107.
  • the invention provides a control method for the above electromagnetic transmission device (applied in a single speed electromagnetic fan clutch), and the steps include:
  • the temperature sensor 125 controls the circuit of the coil 104, the coil 104 is energized, and the electromagnet core 103 has magnetic properties;
  • the temperature sensor 125 controls the circuit that opens the coil 104, the coil 104 is de-energized, and the electromagnet core 103 is not magnetic.
  • the difference between the two-speed electromagnetic fan clutch in the first embodiment and the first embodiment is as follows, including the other configurations in the first embodiment shown in FIG.
  • the magnet fixing plate 210 is located in the inner cavity of the fan fixing plate 209, and is mounted on the driving shaft 201 through the driving sleeve 233.
  • the first fixed soft iron is embedded in the opposite end surface of the magnet fixing plate 210 and the fan fixing plate 209. 215, the first soft iron 215 is magnetically adsorbed with a permanent magnet 214.
  • a second soft iron 216 is embedded on the fan fixing plate 209 at a position corresponding to the permanent magnet 214.
  • the specific working process of the electromagnetic transmission device of the present invention in the two-speed electromagnetic fan clutch is as follows: After the engine is started, the engine drives the spindle 201 to rotate, and the spindle 201 drives the transmission disk 202 to rotate at full speed through the semi-circular key 219. 201 simultaneously drives the magnet fixing plate 210 to rotate at full speed through the driving sleeve 233.
  • the temperature control switch 225 controls the circuit of the coil 204 to be in an on state, and the electromagnet core 203 generates a radial pull-in magnetic field to connect the friction plate.
  • the three driving pieces 206 of 206a are firmly sucked onto the driving plate 202, and the friction plates 206a are not in contact with the driving barrel 207, so that the fan fixing plate 209 is not driven to rotate; at the same time, the second soft iron 216 is in the permanent magnet 214.
  • the second soft iron 216 cuts the magnetic lines of force to generate an eddy current, and the eddy current generates a new magnetic field.
  • the magnet fixing plate 210 drives the fan fixed disk 209 to follow the differential speed.
  • SP The fan fixing plate 209 and the magnet fixing plate 210 are flexibly connected to rotate at a medium speed to play the role of preliminary heat dissipation and temperature, so that the automobile engine maintains a proper working temperature.
  • the temperature control switch 225 controls the circuit of the disconnecting coil 204, and the three driving pieces 206 pass through the three friction plates 206a under the action of centrifugal force.
  • the driving cylinder 207 is pressed to rotate the driving cylinder 207 and the driving plate 202 at the same speed, and the driving cylinder 207 drives the fan on the fan fixing plate 209 to rotate, thereby achieving the effect of strong cooling; if the power supply system suddenly fails during the driving process of the automobile When the coil 204 is powered off, since the coil 204 is powered off, the electromagnet core 203 does not have magnetism and does not attract the driving piece 206.
  • the three driving pieces 206 press the driving barrel 207 through the three friction plates 206a under the action of centrifugal force, so that the transmission
  • the cylinder 207 and the driving plate 202 rotate at the same speed, and the driving cylinder 207 drives the fan on the fan fixing plate 209 to rotate to achieve the same powerful cooling effect.
  • 224 in Fig. 11 is a pin shaft
  • 205 is a second bearing
  • 208 is a first bearing
  • 220 is a fixing piece on the driving cylinder 201
  • 222 is an opposite end surface of the driving plate 202.
  • a magnetic isolation slot is provided.
  • the positions of the permanent magnet 214, the first soft iron 215, and the second soft iron 216 on the magnet fixing plate 210 and the fan fixing plate 209 are not limited to the above, as long as the magnet fixing plate 210 can be driven to move the fan fixing plate 209 by the magnetic effect.
  • the first soft iron 215 and the permanent magnet 214 may be disposed on the fan fixing plate 209
  • the second soft iron 216 may be disposed on the magnet fixing plate 210.
  • the manufacturing method of the above electromagnetic transmission device is basically the same as the manufacturing method in the first embodiment, except that: the magnet is fixed to the magnet 210 and machined, and the fan is installed.
  • the magnet fixing plate 210 is first fixedly mounted on the transmission shaft 201 through the transmission sleeve 233, and is located in the inner cavity of the fan fixing plate 209.
  • the first fixing iron 215 and the permanent magnet are embedded in the magnet fixing plate 210.
  • the end surface of the 214 corresponds to the end surface of the fan fixing disk 209 in which the second soft iron 216 is fitted.
  • a control method for the above electromagnetic transmission device (applied in a two-speed electromagnetic fan clutch) is the same as the control method in the first embodiment.
  • Embodiment 3 A control method for the above electromagnetic transmission device (applied in a two-speed electromagnetic fan clutch) is the same as the control method in the first embodiment.
  • the three-speed electromagnetic fan clutch in this embodiment is different from the first embodiment in the following structure: the magnet fixing plate 310
  • the third bearing 311 (instead of the driving sleeve 233 in the second embodiment) is mounted on the driving plate 302.
  • the electromagnet core 303 is provided with inner and outer coil mounting grooves 303a and 303b (as shown in FIG. 15), and the outer coil 304a (shown in FIG. 15).
  • the first electronic control device which is equivalent to the coil 204 in the second embodiment, is disposed in the outer coil inlay groove 303a, and the direction of the magnetic conductive opening of the outer coil inlaid groove 303a is directed to the circumferential position of the driving plate 302, and the inner coil 304b (the first coil)
  • the second electric control device is disposed in the inner coil inlay groove 303b, and the direction of the magnetic conductive opening of the inner coil inlay groove 303b is directed to the magnet fixing disc 310 in the axial direction, and the corresponding position of the magnet fixing disc 310 and the inner coil 304b passes through the small spring piece 312.
  • the support is connected to a small suction disc 313 which is adjacent to the drive disc 302 and has a gap with the corresponding end surface of the drive disc 302.
  • the inner coil 304b the second electric control device
  • the electromagnet core 303 When the inner coil 304b (the second electric control device) is energized, the electromagnet core 303 generates an axial magnetic attraction force, and the electromagnet core 303 sucks the small suction disc 313 through the transmission disc 302 to the driving disc 302, so that the magnet is fixed.
  • the disk 310 is engaged with the drive plate 302, and the power of the drive plate 302 is directly transmitted to the magnet fixed disk 310.
  • the transmission piece 306 is shown in FIG.
  • the outer surface is provided with a friction plate 306a which is press-bonded to the driving piece 306.
  • the friction piece 306a has a large friction coefficient to drive the driving cylinder 307 to rotate, and the opposite surface of the driving cylinder 307 and the friction plate 306a is wear-resistant.
  • the processing is to make the transmission effect between the friction plate 306a and the driving cylinder 307 better.
  • the driving piece 306 can press the driving cylinder 307 through the friction plate 306a under the centrifugal force, and pass through the driving cylinder.
  • 307 drives the fan fixed plate 309 to rotate at full speed to achieve the effect of cooling the engine at full speed.
  • three projections 317 are provided on the outer side of the circumferential position of the drive disc 302, evenly distributed in the circumferential position of the transmission disc 302, and the three transmission pieces 306 are hinged to the three projections 317 by the pins 324. on.
  • the specific working process of the electromagnetic transmission device of the present invention in the three-speed electromagnetic fan clutch is as follows: After the engine is started, the engine drives the spindle 301 to rotate, and the spindle 301 drives the transmission disk 302 to rotate at full speed through the semicircle key 319.
  • the temperature control switch 325 controls the circuit of the outer coil 304a, and the electromagnet core 303 generates a radial pull-in magnetic field to connect the friction plate 306a.
  • the three driving pieces 306 are firmly sucked onto the driving plate 302.
  • the three friction plates 306a are not in contact with the driving cylinder 307.
  • the fan fixing plate 309 is free to slide through the first bearing 308, and the inner coil 304b is kept in a power-off state.
  • 302 does not pull the small suction disc 313, the drive disc 302 remains in a phase separated from the magnet fixing disc 310, and the magnet fixing disc 310 is free to slide through the third bearing 311.
  • the temperature control switch 325 controls the inner coil to be turned on.
  • the electromagnet core 303 generates an axial absorbing force, and the suction yoke 313 is sucked onto the driving plate 302 to rotate synchronously with the driving plate 302.
  • the small absorbing plate 313 drives the magnet fixing plate 310 to rotate through the small spring piece 312.
  • the second soft iron 316 embedded in the fan fixing plate 307 rotates relative to the magnetic field formed by the permanent magnet 314 and the first soft iron 315.
  • the second soft iron 316 cuts the magnetic lines of force to generate an eddy current, and the eddy current generates a new magnetic field.
  • the magnet fixing plate 310 drives the fan fixing plate 309 to differentially follow, SP: the fan fixing plate 309 and the magnet fixing plate 310 are flexibly connected at a medium speed to play the role of preliminary heat dissipation and cooling, so that the automobile engine is maintained properly. Working temperature.
  • the temperature control switch 325 controls the power supply of the outer coil 304a to be disconnected, and the three drive pieces 306 pass through the three friction plates 306a under the action of the centrifugal force.
  • the driving cylinder 307 is rotated at the same speed as the driving cylinder 307, and the driving cylinder 307 drives the fan on the fan fixing plate 309 to rotate to achieve a powerful cooling effect.
  • the outer coil 304a is powered off due to a sudden failure of the power supply system during running, the outer coil 304a is powered off and the electromagnet core 303 is not magnetic and does not attract the driving piece 306.
  • the three driving pieces 306 are under the action of centrifugal force.
  • the drive barrel 307 is pressed by the friction plate 306a to rotate the drive barrel 307 and the drive plate 302 at the same speed to achieve the same powerful cooling effect.
  • the same structure as in the second embodiment, 305 in Fig. 12 is a second bearing, and 320 is a fixing piece on the drive cylinder 301.
  • the fan fixed disk can be rotated and cooled in the event of a sudden power failure to prevent the engine temperature from being too high, and the device can prevent the prior art from being invalid due to the electromagnetic clutch failure.
  • the manufacturing method of the above electromagnetic transmission device is basically the same as the manufacturing method in the second embodiment (wherein the outer coil 304a functions the same as the coil 204 in the second embodiment)
  • the difference is that the magnet fixing plate 310 is mounted on the transmission shaft 301 through the third bearing 311, and the second electric control device (the inner coil 304b is disposed on the electromagnet core 303), the magnet fixing plate 310 and the inner portion are added.
  • the corresponding position of the coil 304b is supported by the small spring piece 312 to be coupled with the small suction disk 313.
  • the invention provides a control method for the above electromagnetic transmission device (applied in a three-speed electromagnetic fan clutch), and the steps include:
  • the temperature sensor 325 controls the circuit that turns on the outer coil 304a while controlling the inner coil 304b to remain in the power-off state, and the electromagnet core 303 is directed to the circumferential position of the drive disk 302.
  • the end face has magnetic properties, and the end face directed to the small suction pad 313 is not magnetic;
  • the temperature sensor 325 controls the outer coil 304a to remain energized while controlling the inner coil 304b to be energized, the electromagnet The core 303 is directed to the drive plate 302
  • the end face of the circumferential position has magnetic properties, and the end face pointing to the small suction pad 313 is also magnetic;
  • the temperature sensor 325 controls the outer coil 304a to be de-energized while controlling the inner coil 304b to be energized, and the end face of the electromagnet core 303 pointing to the circumferential position of the drive disc 302 is not With the magnetic force, the driving piece 306 presses the driving cylinder 307 under the centrifugal force, and drives the fan fixing plate 309 to rotate at full speed. At this time, regardless of whether the magnet fixing plate 310 rotates or not, the fan fixing plate 309 rotates at full speed, so that the inner coil 304b is controlled at this time. When the power is turned on or the power is turned off unexpectedly, the transmission device can rotate the fan fixing plate 309 at full speed.
  • the electric control device includes a permanent magnet 403c and an electromagnet assembly composed of an electromagnet core 403 and a coil 404.
  • the permanent magnet 403c is located inside the drive cylinder 407, and the specific position of the permanent magnet 403c is mounted through the second bearing 405 as shown in FIG.
  • the drive shaft 401 is located in the inner cavity of the drive plate 402.
  • the end surface of the permanent magnet 403c pointing to the circumferential position of the drive plate 402 is a magnetic pole.
  • the electromagnet assemblies 403 and 404 are located outside the drive cylinder 407, and the electromagnet core 403 is fixed.
  • the hose is softly coupled to the engine block;
  • the first transmission includes three drive plates 406, and the drive plate 406 is rotatably coupled to the drive cylinder 407 and the opposite end faces of the drive plate 402.
  • the shape of the drive plate 406 is curved, and the drive plate 406 is The inner surface is provided with a curved friction plate 406a which is press-bonded to the driving piece 406.
  • the driving piece 406, the driving cylinder 407 and the driving plate 402 can be magnetically guided.
  • a plurality of sets of magnetic isolation slots 422 are defined on the end surface of the circumferential direction of the drive disc 402.
  • the opposite end faces of the drive cylinder 407 are also provided with a plurality of sets of magnetic isolation slots 407a, which are fixed on the drive cylinder 407.
  • a sheet, 417, is a projection on the upper inner end surface of the drive cylinder 407 for mounting the drive piece 406 through the pin 424.
  • the specific operation of the electromagnetic transmission device of the present invention in the single-speed electromagnetic fan clutch is as follows: After the engine is started, the engine drives the spindle 401 to rotate, and the spindle 401 drives the transmission disk 402 to rotate at full speed by the semicircle key 419.
  • the temperature control switch 425 controls the circuit of the coil 404 to be in an ON state, at which time the coil 404 in the electromagnet core 403 is powered on, electromagnetic
  • the magnetic force of the iron core 403 to the driving piece 406 to which the friction plate 406a is attached is greater than the magnetic force of the permanent magnet 403c to the corresponding driving piece 406, so that the driving piece 406 to which the friction piece 406a is attached may be biased toward the side of the electromagnet core 403.
  • the lower friction plate 406a on the inner side of the driving piece 406 is not in contact with the driving plate 402, and the fan fixing plate 409 and the driving cylinder 407 connected thereto are freely slidable by the first bearing 408.
  • the temperature control switch 425 controls the power of the disconnection coil 404
  • the electromagnet core 403 has no magnetic attraction to the driving piece 406, and the three driving pieces 406 are firmly attracted to the outer end surface of the circumferential position of the driving plate 402 by the magnetic field of the permanent magnet 403c, thereby making the driving plate 402
  • the three driving pieces 406 drive the driving cylinder 407 to rotate, and the driving cylinder 407 drives the fan on the fan fixing plate 409 to rotate, thereby achieving the effect of strong cooling.
  • the electromagnet core 403 does not pull the three driving pieces 406, and the three driving pieces 406 are firmly sucked by the magnetic field of the permanent magnet 403c.
  • the driving disk 402 is driven by the three driving pieces 406 to drive the driving cylinder 407 to drive the fan on the fan fixing plate 409 to rotate, so as to achieve the same powerful cooling effect.
  • the specific position of the permanent magnet 403c is not limited to being mounted on the drive shaft 401 by the second bearing 405 as shown in FIG. 18, and the permanent magnet 403c may be embedded on the outer side of the end surface of the drive plate 402 at the circumferential position, or directly
  • the drive plate 402 is made of a permanent magnet material.
  • the first electronic control device in the single-speed electromagnetic fan clutch includes an embodiment of a permanent magnet and an electromagnet assembly composed of an electromagnet core and a coil, and is also applicable to the two-speed electromagnetic fan clutch of the second embodiment.
  • the three-speed electromagnetic fan clutch of the third embodiment when the embodiment is employed in the two-speed and three-speed electromagnetic fan clutches, the remaining components connected to the first electronic control unit are structurally adapted.
  • the manufacturing method of the above electromagnetic transmission device (applied in the single-speed electromagnetic fan clutch) is basically the same as the manufacturing method in the first embodiment, except that: the inner side of the opposite end surface of the driving cylinder 407 has three sets of protrusions 417, The three driving pieces 406 are hinged on the corresponding protrusions 417 of the driving cylinder 407 through the pin 424, and there is a gap between the driving piece 406 and the outer end surface of the circumferential direction of the driving plate 402; the first electronic control device in the step (d) is The permanent magnet 403c and the electromagnet assembly composed of the electromagnet core 403 and the coil 404, the permanent magnet 403c is mounted on the transmission shaft 401 via the bearing 405 and located in the inner cavity of the transmission disk 402, and the electromagnet assembly is disposed in the transmission cylinder 407.
  • the electromagnet core 403 On the outer side of the opposite end face, the electromagnet core 403 is fixed to the engine casing; when the coil 404 is energized, the magnetic attraction force of the electromagnet core 403 to the drive piece 406 is greater than the magnetic attraction force of the permanent magnet 403c to the drive piece 406.
  • Embodiment 5 The control method of the above electromagnetic transmission device (applied in a single-speed electromagnetic fan clutch) of the present invention is the same as the control method in the first embodiment.
  • Embodiment 5 The control method of the above electromagnetic transmission device (applied in a single-speed electromagnetic fan clutch) of the present invention is the same as the control method in the first embodiment.
  • an electromagnetic transmission device includes a drive plate 502 (the drive plate 502 is a pulley that is driven by the engine to rotate), and further includes a first transmission device, a second transmission device, and a first electronic control device, wherein A transmission includes three drive plates 506.
  • three drive plates 506 are hinged in a circumferential position of the drive plate 502 by pins 524.
  • the shape of the drive plate 506 is curved, and the drive plate 506 is The outer surface is provided with a curved friction plate 506a that is press-bonded to the drive plate 506;
  • the second transmission is a drive cylinder 507 (shown in Figures 23 and 24), and the drive cylinder 507 is on the drive plate 502.
  • the outer side of the circumferential position has an opposite end face with the drive plate 502, and the opposite end face of the drive cylinder 507 has a gap with the friction plate 506a;
  • the first electronic control device includes an electromagnet assembly composed of an electromagnet core 503 and a coil 504, an electromagnet The assembly is located within the interior of the drive plate 502, and the drive plate 502, drive plate 506, and drive barrel 507 are each formed of a magnetically permeable material.
  • a passive device is further included.
  • the passive device is a gas pump shaft 509.
  • the drive plate 502 is mounted on the air pump shaft 509 via a bearing 502a.
  • the drive tube 507 is fixedly mounted on the air pump shaft 509 via a semi-circular key 519.
  • the electromagnet core 503 It is fixed to the air pump casing 509a by fastening bolts.
  • the electromagnet core 503 is provided with a coil inlay groove, and the coil 504 is disposed in the coil inlay groove.
  • the direction of the magnetic flux opening of the coil inlay groove is the same as the radial divergence direction of the air pump shaft 509.
  • the inner side of the end surface of the driving disk 502 is located on the inner side of the end surface of the driving disk 502, and the six sets of magnetic shielding grooves 522 are opened on the end surface of the driving disk 502 at the circumferential direction, as shown in FIG. 20, FIG. 23 and FIG.
  • Six sets of magnetic isolation grooves 507a are provided on the drive cylinder 507 at corresponding positions with the magnetic flux barriers 522 on the drive plate 502.
  • the outer side of the circumferential position of the driving disk 502 is uniformly provided with three protrusions 517 along the outer circumferential direction, and one ends of the three driving pieces 506 are respectively hinged on the corresponding protrusions 517 by pins; The opposing surfaces of the sheet 506 are abraded.
  • the first electronic control device (coil 504) is powered, the first electronic control device (the electromagnet core 503 having magnetic attraction) drives the first transmission device (ie, the outer surface is bonded with the friction plate 506a).
  • the drive piece 506) separates the second transmission (ie, the drive barrel 507) from the power of the drive plate 502 (the drive piece 506 is attracted to the outer side of the circumferential position of the drive plate 502, and is not engaged with the drive barrel 507);
  • the first electronic control device (coil 504) is de-energized, the first electronic control device (the electromagnet core 503 having no magnetic attraction) drives the first transmission device (ie, the transmission piece 506 whose outer surface is bonded with the friction plate 506a)
  • the second transmission i.e., the drive cylinder 507) is engaged with the power of the drive plate 502 (the drive piece 506 is pressed against the drive barrel 507 by the friction plate 506a under centrifugal force).
  • the drive plate 502 (pulley) is rotated.
  • the pressure in the air pump is equal to or higher than the fourth set value of 6-8 kg (when the brake system can work normally)
  • the air pump does not need to work, and the pressure switch 525 is controlled at this time.
  • the coil 504 is energized, and the driving piece 506 is sucked onto the outer end surface of the circumferential direction of the driving plate 502.
  • the friction material 506a is not in contact with the driving cylinder 507, and the driving disk 502 cannot transmit power to the air pump rotating shaft 509 through the driving cylinder 507, and the air pump does not. jobs.
  • the pressure switch 525 controls the coil 504 to be powered off, and the driving piece 506 presses the driving cylinder 507 under the centrifugal force, so that The drive cylinder 507 rotates at the same speed as the drive disc 502, and the drive cylinder 507 drives the air pump shaft 509 to rotate, so that the air pump enters the working state.
  • the driving cylinder 507 drives the air pump shaft 509 to rotate, so that the air pump can still work normally in the case of sudden power failure.
  • the manufacturing method of the above electromagnetic transmission device (applied in the air pump) is basically the same as the manufacturing method in the first embodiment, except that: the transmission disk 502 is a pulley driven by the engine, and the passive device is a gas pump shaft 509.
  • the drive plate 502 is mounted on the air pump shaft 509 via a bearing 502a.
  • the drive barrel 507 is fixedly mounted on the air pump shaft 509 by a semicircular key 519.
  • the electromagnet core 503 is fixed to the air pump housing 509a by bolts.
  • the invention provides a control method for the above electromagnetic transmission device (applied in the air pump), and the steps include:
  • the pressure switch 525 controls the coil 504 to be de-energized, and the drive disc 502 transmits power to the air pump shaft 509 through the driving piece 506 and the driving barrel 507, and the air pump operates;
  • the pressure switch 525 controls the coil 504 to be energized, and the driving piece 506 is attracted to the outer end surface of the circumferential direction of the driving disc 502, and is not combined with the driving barrel 507. , the power cannot be transmitted to the air pump shaft 509, and the air pump does not work.
  • the difference between the air pump in the embodiment and the fifth embodiment is that the first electronic control device includes The permanent magnet 603c and the electromagnet assembly composed of the electromagnet core 603 and the coil 604, the permanent magnet 603c is located in the inner cavity of the driving cylinder 607, and is fixed to the air pump casing 609a by fastening bolts, and the electromagnet assembly is located in the circumferential direction of the driving disk 602. The outside of the position is fixed to the air pump casing 609a by bolts.
  • the first transmission includes three transmission pieces 606.
  • the transmission piece 606 is hinged by a pin 624 to a protrusion 617 on the inner side of the circumferential position of the drive plate 602.
  • the drive piece 606 is located on the drive plate 602 and the drive barrel 607.
  • the shape of the driving piece 606 is curved, and the inner surface of the driving piece 606 is provided with a curved friction plate 606a pressed and bonded to the driving piece 606.
  • the friction piece 606a and the opposite end surface of the driving barrel 607 are provided.
  • the gap, the transmission disk 602 and the drive cylinder 607 between the permanent magnet 603c and the opposite end faces of the electromagnet core 603 are respectively provided with a plurality of sets of magnetic isolation grooves 622 and 607a.
  • the electromagnet core 603 is opposite to the transmission piece.
  • the magnetic attraction of 606 is greater than the magnetic attraction of permanent magnet 603c to drive plate 606.
  • the drive plate 602 (pulley) is rotated.
  • the pressure in the air pump is equal to or higher than the fourth set value of 6-8 kg (when the brake system can work normally)
  • the air pump does not need to work
  • the pressure switch 625 controls the coil 604.
  • the electromagnet core 603 pulls the drive piece 606 onto the inner end surface of the drive plate 602.
  • the friction material 606a on the inner surface of the drive piece 606 is not in contact with the drive barrel 607, and the drive barrel 607 cannot drive the drive plate 602.
  • the power is transmitted to the air pump shaft 609, and the air pump does not work.
  • the pressure switch 525 controls the circuit of the disconnecting coil 604, and the electromagnet core 603 has no magnetic attraction to the driving piece 606.
  • the three driving pieces 606 are firmly sucked on the outer side of the opposite end faces of the driving cylinder 607 by the magnetic field of the permanent magnet 603c, so that the driving plate 602 passes through three
  • the driving piece 606 drives the driving cylinder 607 to rotate, and the driving cylinder 607 drives the air pump rotating shaft 609 to rotate, so that the air pump enters the working state.
  • the driving piece 606 When the power supply system fails during driving, the coil 604 is suddenly powered off, the driving piece 606 is not attracted by the electromagnet core 603, and the driving piece 606 is firmly attracted to the outer wall of the driving cylinder 607 by the magnetic field of the permanent magnet 603c.
  • the friction plate 606a on the inner surface of the driving piece 606 firmly presses the driving cylinder 607, so that the driving disk 602 transmits power to the driving cylinder 607 through the driving piece 606 to drive the air pump rotating shaft 609 to rotate, so that the air pump enters in the case of sudden power failure.
  • Working condition to ensure that the vehicle can brake normally in case of sudden power failure.
  • the specific position of the permanent magnet 603c is not limited to being mounted on the air pump rotating shaft 609 through the bearing 602a as shown in FIG. 25, and the permanent magnet 603c may be mounted on the outer side of the opposite end surface of the driving cylinder 607, or directly on the driving cylinder 607.
  • the opposite end faces of the drive piece 606 are made of a permanent magnet material.
  • the manufacturing method of the above electromagnetic transmission device is basically the same as the manufacturing method in the fifth embodiment, except that the driving piece 606 is hinged on the inner end surface of the circumferential position of the driving disk 602 (implementation In the fifth example, on the outer end surface, the first electronic control device in the step (d) is a permanent magnet 603c and an electromagnet assembly composed of the electromagnet core 603 and the coil 604, and the permanent magnet 603c is sleeved outside the air pump shaft 609.
  • the ring is fixed to the air pump casing 609a by bolts.
  • the permanent magnet 603c is disposed in the inner cavity of the driving cylinder 607, and the electromagnet assembly is disposed outside the opposite end faces of the driving plate 602, and the electromagnet core 603 is fixed to the air pump casing 509 by bolts.
  • the magnetic attraction force of the electromagnet core 603 to the driving piece 606 when the coil 604 is energized is greater than the magnetic attraction force of the permanent magnet 603c to the driving piece 606.
  • control method of the above electromagnetic transmission device (applied in the air pump) of the present invention is the same as the control method in the fifth embodiment.
  • the driving piece is not limited to three, one or more, and different numbers of driving pieces can be set according to the type of the transmission device to ensure the best transmission effect;
  • the friction piece can be connected to the driving piece to increase friction , better transmission, can also omit the friction plate and wear the drive plate and the drive barrel;
  • the drive plate is steel, iron or other conductive magnetic material;
  • the friction plate is all metal, asbestos or other wear-resistant materials.
  • the friction plate and the driving piece may be connected by press bonding in the above embodiments 1 to 6, or may be bolted, riveted or other connecting means.
  • the electromagnetic transmission device of the invention is suitable for industrial production and can be applied to the manufacture of various electromagnetic fan clutches. It can effectively prevent the electromagnetic clutch failure caused by the sudden failure of the vehicle power supply system, ensure that the device can still function to cool the engine when the electromagnetic clutch fails, and can also be applied to the air pump controlled by the electromagnetic clutch to ensure the electromagnetic clutch fails.
  • the air pump can enter the working state to ensure that the vehicle can enter the braking state in case of sudden power failure.
  • the method of manufacturing an electromagnetic actuator of the present invention is suitable for processing and manufacturing the electromagnetic actuator of the present invention, which makes the manufacturing method simple, low in cost, and suitable for processing.
  • the control method of the electromagnetic transmission device of the present invention is adapted to control the working state of the electromagnetic transmission device of the present invention according to changes in engine temperature or changes in the pressure value of the air pump, so that the control method is simple and easy to operate.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

提供一种具有结构简单的防失效、实用性高、安全可靠的电磁传动装置以及该电磁传动装置的制造方法与控制方法。其目的是为了提供一种在电磁离合器的供电系统出现故障或突发性断电的情况下,仍然能够工作并实现传动功能的电磁传动装置,防止电磁离合器失效情况下所带来的一系列不利后果。该电磁传动装置包括传动盘(102;202;302;402;502;602),还包括第一传动装置(106;206;306;406;506;606),第二传动装置(107;207;307;407;507;607)和第一电控装置(103、104;203、204;303、304a;403、404;503、504;603、604),当所述第一电控装置(103、104;203、204;303、304a;403、404;503、504;603、604)得电时,所述第一电控装置(103、104;203、204;303、304a;403、404;503、504;603、604)驱动所述第一传动装置(106;206;306;406;506;606)使得所述第二传动装置(107;207;307;407;507;607)与所述传动盘(102;202;302;402;502;602)相分离;当第一电控装置(103、104;203、204;303、304a;403、404;503、504;603、604)断电时,所述第一电控装置(103、104;203、204;303、304a;403、404;503、504;603、604)驱动所述第一传动装置(106;206;306;406;506;606)使得所述第二传动装置(107;207;307;407;507;607)与所述传动盘(102;202;302;402;502;602)相接合。

Description

电磁传动装置及其制造方法和控制方法 技术领域
本发明涉及主要在车辆上使用的电磁传动装置, 具体涉及电磁风扇离合器和气泵装置, 以及他们的制造方法和控制方法。 背景技术
目前, 汽车上使用的电磁风扇离合器, 是根据发动机的水温变化来控制风扇的转速, 从 而使得汽车发动机在运行过程中保持最佳状态。 具体是通过控制电磁铁芯上的线圈的得电或 断电来控制磁铁固定盘或风扇固定盘上的吸合盘与传动盘的吸合与分离, 从而控制风扇固定 盘上风扇的转速, 达到使风扇以合适的转速给发动机降温的效果。
现有的电磁风扇离合器 (以三速电磁风扇离合器为例) 如图 1所示, 包括主轴 1 '、 传动 盘 2'、 电磁铁芯 3 '、 外线圈 4a'、 内线圈 4b'、 风扇固定盘 9'、 磁铁固定盘 10'、 小弹簧片 12'、 小吸合盘 13 '、 大弹簧片 34'、 大吸合盘 35 ' 和安全板 36', 其中由导磁材料制成的传 动盘 2, 通过半圆键 19' 固定安装在主轴 上, 传动盘 2' 的侧面设有若干组隔磁槽 23 ', 传动盘 2' 的内腔设有电磁铁芯 3 ', 电磁铁芯 3 ' 通过轴承 5 ' 安装在主轴 上, 电磁铁芯 3 ' 内分别设有内、 外线圈镶嵌槽, 内、 外线圈镶槽的导磁开口方向均与主轴 轴向方向相 同且指向传动盘 2' 的侧面, 内、 外线圈镶嵌槽内分别以平绕法设有内、 外线圈 4b'、 4a', 风扇固定盘 9' 与磁铁固定盘 10' 分别通过轴承 8 '、 1 安装在主轴 上, 其中磁铁固定 盘 10' 位于风扇固定盘 9' 内腔, 在磁铁固定盘 10' 的一侧端面上沿圆周均布有若干个固定 孔用来镶嵌软磁铁 15 ', 软磁铁 15 ' 上吸合有永磁铁 14', 风扇固定盘 9' 上与永磁铁 14' 的对应端面上镶嵌有软磁铁 16', 磁铁固定盘 10' 上与内线圈 4b' 相对的环形端面上通过小 弹簧片 12' 支撑连接有小吸合盘 13 ', 风扇固定盘 9' 上与外线圈 4a' 相对的环形端面上通 过大弹簧片 34' 支撑连接有大吸合盘 35 ', 大、 小吸合盘 13 '、 35 ' 均靠近传动盘 2' 的侧面, 与传动盘 2, 的对应端面间有间隙, 风扇固定盘 9, 的周向位置外侧端面上固定连接安全板 36', 安全板 36' 上开设有锁止孔, 传动盘 2' 的周向位置外侧上与锁止孔的对应位置开设有 配合孔。
上述三速电磁风扇离合器的具体工作过程是: 当发动机温度尚未达到三速电磁风扇离合 器的较低设定温度值 (比如设为 82°C ) 时, 电磁铁芯 3 ' 中的内、 外线圈 4b'、 4a' 均不通 电, 传动盘 2' 不会吸合磁铁固定盘 10' 上的小吸合盘 13 ', 也不吸合风扇固定盘 9' 上的大 吸合盘 35 ', 风扇固定盘 9' 通过轴承 8 ' 自由滑转, 磁铁固定盘 10' 通过轴承 1 自由滑 转; 当发动机温度达到较低设定温度值(82°C )且低于较高设定温度值(比如设为 88°C )时, 内线圈 4b' 得电, 由于电磁铁芯 3 ' 的磁效应使得传动盘 2' 吸合小吸合盘 13 ', 使小吸合盘 13 ' 与传动盘 2' 同步旋转, 小吸合盘 13 ' 通过小弹簧片 12' 带动磁铁固定盘 10' 全速旋转, 镶嵌在风扇固定盘 9' 中的软磁铁 16' 在磁铁固定盘 10' 中的永磁铁 14' 与软磁铁 15 ' 形 成的磁场中相对旋转, 切割磁力线, 其自身产生涡电流, 涡电流产生新的磁场, 在磁场力的 作用下实现风扇固定盘 9' 与磁铁固定盘 10' 柔性连接中速旋转, 起到初步散热降温的作用; 当发动机温度升高到较高温度设定值 (88°C ) 时, 外线圈 4b' 得电, 产生吸合力, 将大吸合 盘 35 ' 吸合到传动盘 2 ' 上, 大吸合盘 35 ' 随传动盘 2' 同步旋转, 大吸合盘 35 ' 通过大弹 簧片 34' 带动风扇固定盘 9' 全速旋转, 从而起到强力降温的作用。
但是, 车辆在行驶过程中, 若电磁风扇离合器的供电系统突发故障突然断电, 则内、 外 线圈 4b'、 4a' 作用失效, 此时就不能通过控制内、 外线圈 4b'、 4a' 的通电断电来控制风扇 固定盘 9' 上的风扇叶片的转速以给发动机降温了。 当然, 电磁风扇离合器的原设计结构中 通常具有与随车携带的紧急锁紧螺栓配合使用的安全板 36' 和相应的锁止孔、 配合孔, 驾驶 员可以在电磁风扇离合器的供电系统出现故障后尽快停车, 然后将紧急锁紧螺栓插入到安全 板 36' 上的锁止孔和传动盘 2' 上的配合孔中, 以使风扇固定盘 9' 与传动盘 2' 同步旋转, 使风扇全速转动对发动机降温。 若驾驶员在行车过程中得知供电系统出现故障, 可以停车后 使用紧急锁紧螺栓将风扇固定盘 9' 与传动盘 2' 固定, 使风扇全速旋转降温; 然而, 驾驶员 往往无法确保能够在第一时间得知故障情况, 因而不能及时停车采用紧急锁紧螺栓, 且停车 安装紧急锁紧螺栓也较麻烦; 即使驾驶员能够在第一时间得知供电系统故障, 但汽车实际运 行的路况复杂多变, 在某些特定运行环境下驾驶员不能停车, 或者无法马上停车采取螺栓锁 紧措施, 可能会因此造成发动机高温损坏甚至是报废, 严重情况下甚至会因此引起交通事故, 后果不堪设想。 此外, 如图 1所示, 当发动机水温升高到较高温度设定值 (88°C ) 时, 为了 满足: 外线圈 4a' 得电后能够使电磁铁芯 3 ' 具有足够大的磁性, 以将与风扇固定盘 9' 固 定连接的大吸合盘 35 ' 吸合到传动盘 2' 上, 并能够带动风扇固定盘 9' 与传动盘 2' 同速旋 转, 就需要发动机给外线圈 4a' 提供持续电力, 这样不仅消耗了较多电能, 而且增加了发动 机功率的损耗, 使得本来就处于高温状态的发动机更加超负荷运转, 降低了发动机的使用寿 命。
目前, 用于车辆刹车系统的气泵装置, 在车辆行驶过程中, 是利用电磁离合器的通电或 断电来控制气泵的工作, 在气泵内压力低于刹车系统工作所需压力值 (比如 6-8公斤) 时, 电磁离合器的供电系统给电, 利用电磁铁芯的吸合力将带动气泵转轴运转的部件与转动的皮 带轮 (皮带轮通过发动机带动) 相连, 使得气泵转轴与皮带轮同步运转, 从而达到使气泵处 于工作状态的目的; 当气泵内压力达到或超过刹车系统工作所需压力值(比如 6-8公斤) 时, 电磁离合器的供电系统断电, 气泵转轴与皮带轮分离, 气泵停止工作。 然而, 如果在车辆行 驶过程中遇到电磁离合器的供电系统出现故障, 突发性断电, 或者电磁离合器出现其他故障, 那么此时电磁离合器无法控制气泵工作, 影响气泵的作用发挥, 导致刹车系统不能正常工作, 进而可能会带来一系列的严重后果, 不能给驾驶员一个安全保障; 当然, 现有的部分车辆上 也安装有防止气泵控制系统失效的安全结构, 但这些安全结构的使用都需要停车, 并手动启 用防失效结构, 因而具有一定的局限性。 发明内容
为了解决上述技术问题, 本发明提供一种具有防失效装置、 实用性高、 安全可靠的电磁 传动装置。 其目的是为了实现在电磁离合器的供电系统出现故障或突发性断电的情况下, 电 磁传动装置仍然能够工作并实现传动功能, 安全可靠, 防止电磁离合器失效情况下所带来的 一系列不利后果。
本发明的另一个技术目的是提供上述具有防失效安全装置的电磁传动装置的制造方法。 本发明的又一个技术目的是提供上述具有防失效安全装置的电磁传动装置的控制方法。 本发明一种电磁传动装置, 包括传动盘, 还包括第一传动装置, 第二传动装置和第一电 控装置, 当所述第一电控装置得电时, 所述第一电控装置驱动所述第一传动装置使得所述第 二传动装置与所述传动盘相分离; 当所述第一电控装置断电时, 所述第一电控装置驱动所述 第一传动装置使得所述第二传动装置与所述传动盘相接合。
本发明的电磁传动装置, 采用第一电控装置得电时第二传动装置与传动盘相分离、 第一 电控装置断电时第二传动装置与传动盘相结合的结构, 使得本电磁传动装置在保证能够通过 控制第一电控装置的通电断电来控制传动与否的同时, 更确保了在第一电控装置突发断电情 况下传动盘能够带动第二传动装置工作,有效防止第一电控装置意外断电情况下的传动失效, 保证本传动装置的使用更加安全可靠。 并且, 本发明设计为: 在第一电控装置断电时, 传动 盘能够将动力传递至第二传动装置, 从而不必耗费过多的电能就能达到传动的效果, 节约了 电能, 延长了供电系统及供电线路的寿命。
本发明一种电磁传动装置, 还包括被动装置, 所述第二传动装置与所述被动装置固定连 接。 增设被动装置, 并将被动装置与第二传动装置固定连接, 从而使得本发明的电磁传动装 置能够通过传动盘带动第二传动装置进而带动被动装置进入工作状态, 可以根据不同的被动 装置以将本传动装置应用到不同的设备中, 实用性较强。 本发明一种电磁传动装置, 还包括传动轴, 所述被动装置为风扇固定盘, 所述传动盘固 定安装在所述传动轴上, 所述风扇固定盘通过第一轴承安装在所述传动轴上。 上述结构即是 将本发明的电磁传动装置应用在单速电磁风扇离合器中, 在保证能够通过控制第一电控装置 的通电断电来控制风扇固定盘的全速旋转或自由滑转的同时, 更确保了在第一电控装置突发 断电情况下传动盘能够带动风扇固定盘全速旋转, 给发动机降温, 有效防止第一电控装置意 外断电情况下的传动失效, 保证本传动装置应用于单速电磁风扇离合器中更加安全可靠, 确 保汽车的良好运行状态。
本发明一种电磁传动装置, 还包括传动轴和磁铁固定盘, 所述被动装置为风扇固定盘, 所述传动盘固定安装在所述传动轴上, 所述风扇固定盘通过第一轴承安装在所述传动轴上, 所述磁铁固定盘固定安装在所述传动轴上, 所述磁铁固定盘用于通过磁效应带动所述风扇固 定盘差速跟转。 上述结构即是将本发明的电磁传动装置应用在两速电磁风扇离合器中, 使得 两速电磁风扇离合器能够根据发动机的不同温度控制风扇固定盘进行不同速度的旋转以给发 动机降温, 确保发动机保持最佳工作状态; 同时确保在供电系统断电时风扇能够全速旋转给 发动机降温, 防止在供电系统突发故障情况下发动机不能及时散热而致其温度过高。
本发明一种电磁传动装置, 还包括传动轴、 磁铁固定盘和第二电控装置, 所述被动装置 为风扇固定盘, 所述传动盘固定安装在所述传动轴上, 所述风扇固定盘通过第一轴承安装在 所述传动轴上, 所述磁铁固定盘通过第三轴承安装在所述传动轴上, 所述磁铁固定盘用于通 过磁效应带动所述风扇固定盘差速跟转, 当所述第二电控装置得电时, 所述传动盘与所述磁 铁固定盘相接合; 当所述第二电控装置断电时, 所述传动盘与所述磁铁固定盘相分离。 上述 结构即是将本发明的电磁传动装置应用在三速电磁风扇离合器中, 使得三速电磁风扇离合器 能够根据发动机的不同温度控制风扇固定盘进行不同速度的旋转以给发动机降温, 以使发动 机保持最佳工作状态; 同时确保在供电系统断电时风扇能够全速旋转给发动机降温, 防止在 供电系统突发故障情况下发动机不能及时散热而致其温度过高。
本发明一种电磁传动装置, 其中所述被动装置为气泵转轴, 所述传动盘通过轴承安装在 气泵转轴上。 上述结构即是将本发明的电磁传动装置应用在气泵中, 在保证能够通过控制第 一电控装置的通电断电来控制气泵转轴旋转与否的同时, 确保在第一电控装置突发断电情况 下传动盘能够带动气泵转轴旋转, 为车辆制动系统提供压力, 防止第一电控装置意外断电情 况下的传动失效, 保证在电磁离合器失效时气泵进入工作状态, 确保车辆的制动系统在突发 断电情况下仍可正常工作。
本发明一种电磁传动装置, 其中所述第二传动装置包括传动筒。 采用传动筒进行传动, 制造加工简单, 传动效果好, 安装方便。 本发明一种电磁传动装置, 其中所述第一传动装置包括至少一个传动片。 在传动盘与传 动筒之间采用传动片结构, 以使传动盘与传动筒能够由第一电控装置的得电与断电来控制传 动片, 通过控制传动片的运动达到控制传动筒与传动盘的动力相分离或相结合的目的, 且采 用传动片作为第一传动装置制造加工简单, 成本低, 传动效果好; 采用至少一个传动片, 使 得在使用时一旦一个传动片失效或传动效果降低时, 其他传动片可以继续起到传动的作用, 很好地保障了传动片的整体传动效果。
本发明一种电磁传动装置, 其中第一传动装置传动片、 第二传动装置传动筒和第一电控 装置的结构及位置关系可以采用以下三种形式:
( 1 )其中所述传动片为三个弧形片, 所述传动盘的周向位置外侧设有三组突起, 所述三 个传动片通过销轴铰接在所述传动盘的相应突起上; 所述传动筒在所述传动盘的周向位置外 侧具有与所述传动盘的相对端面, 所述传动片与所述传动筒的相对端面间有间隙; 所述第一 电控装置包括由电磁铁芯和线圈组成的电磁铁组件, 所述电磁铁组件位于所述传动盘的周向 位置所在端面的内腔。采用三个弧形传动片通过销轴铰接在传动盘周向位置外侧, 安装简单, 传动效果好, 制造简便; 传动筒设在传动盘的周向位置外侧一定间隙位置, 使得当线圈断电 时传动片可在离心力作用下压紧传动筒, 传动效果好, 成本低; 且利用离心力而不是专门供 给动力来达到传动的效果, 节约了能源。
(2)其中所述传动筒在所述传动盘的周向位置外侧具有与所述传动盘的相对端面, 所述 传动筒的所述相对端面上设有三组突起, 所述传动片为三个弧形片, 所述三个传动片通过销 轴铰接在所述传动筒的相应突起上; 所述传动片与所述传动盘的相对端面间有间隙; 所述第 一电控装置包括永磁铁和由电磁铁芯和线圈组成的电磁铁组件, 所述永磁铁位于所述传动盘 的内腔, 所述电磁铁组件位于所述传动筒的所述相对端面外侧; 当所述线圈得电时所述电磁 铁芯对所述传动片的磁吸力大于所述永磁铁对所述传动片的磁吸力。 采用永磁铁与电磁铁组 件共同作为第一电控装置来控制传动片的运动, 并相应地将传动片安装在传动筒的内侧端面 上, 是对上述(1 ) 中结构的一种变形, 这种结构也能够实现当主动使线圈断电或在线圈意外 断电情况下, 能够通过第一传动装置传动片与第二传动装置传动筒将传动盘的动力传递至被 动装置; 且上述结构中的永磁铁是利用自身固有性能起到吸合效果而不必耗费专门提供的电 力, 减少了电耗, 节约了能源。
( 3 )其中所述传动片为三个弧形片, 所述传动盘的周向位置内侧设有三组突起, 所述三 个传动片通过销轴铰接在所述传动盘的相应突起上; 所述传动筒在所述传动盘的周向位置内 侧具有与所述传动盘的相对端面, 所述传动片与所述传动筒的相对端面间有间隙; 所述第一 电控装置包括永磁铁和由电磁铁芯和线圈组成的电磁铁组件, 所述永磁铁位于所述传动筒的 内腔, 所述电磁铁组件位于所述传动盘的周向位置外侧; 当所述线圈得电时所述电磁铁芯对 所述传动片的磁吸力大于所述永磁铁对所述传动片的磁吸力。采用这种结构是对上述(1 )中 结构的另一种变形, 以实现在线圈断电情况下传动片与传动筒能够将传动盘的动力传递至被 动装置, 并相应地将传动片安装在传动盘周向位置内侧, 成本低, 传动效果好。
本发明一种电磁传动装置, 其中所述传动片上与所述传动筒的相对端面处固定连接有弧 形摩擦片。采用在传动片上连接摩擦片的结构, 使得传动片的传动效果较好, 使用寿命较长。
本发明一种电磁传动装置的制造方法, 包括以下步骤: (a) 形成传动盘; (b) 形成第一 传动装置; (c) 形成第二传动装置; (d) 形成第一电控装置; (e) 安装传动盘、 第一传动装 置、 第二传动装置和第一电控装置, 使得: 当第一电控装置得电时, 第一电控装置驱动所述 第一传动装置使得所述第二传动装置与所述传动盘相分离; 当第一电控装置断电时, 所述第 一电控装置驱动所述第一传动装置使得所述第二传动装置与所述传动盘相接合。
上述制造方法可以包括以下两种具体方式:
( 1 )其中所述步骤 (b) 中的第一传动装置为三个弧形传动片, 所述步骤 (a) 中的传动 盘的周向位置外侧具有三组突起, 将所述三个传动片通过销轴铰接在所述传动盘的相应突起 上; 所述步骤(c) 中的第二传动装置为传动筒, 所述传动筒安装后具有与所述传动盘周向位 置外侧的相对端面, 所述传动片与所述传动筒的相对端面间有间隙; 所述步骤(d) 中的第一 电控装置为由电磁铁芯和线圈组成的电磁铁组件, 将所述电磁铁组件安装在所述传动盘的周 向位置所在端面的内腔; 还包括被动装置, 安装所述被动装置, 将所述传动筒固定在所述被 动装置上。
(2)其中所述步骤 (b) 中的第一传动装置为三个弧形传动片; 所述步骤 (c) 中的第二 传动装置为传动筒, 所述传动筒安装后具有与所述步骤(a) 中的传动盘周向位置外侧的相对 端面, 所述传动筒的所述相对端面内侧具有三组突起, 将所述三个传动片通过销轴铰接在所 述传动筒的相应突起上, 铰接在所述传动筒上的所述传动片与所述传动盘的周向位置外侧端 面间有间隙; 所述步骤(d)中的第一电控装置为永磁铁和由电磁铁芯和线圈组成的电磁铁组 件, 将所述永磁铁安装在所述传动盘的内腔, 将所述电磁铁组件安装在所述传动筒的所述相 对端面外侧; 当所述线圈得电时所述电磁铁芯对所述传动片的磁吸力大于所述永磁铁对所述 传动片的磁吸力; 还包括被动装置, 所述被动装置为风扇固定盘, 安装所述风扇固定盘, 将 所述传动筒固定在所述风扇固定盘上。
采用上述制造方法, 尽可能地减小电磁传动装置的质量, 节省材料, 提高各组成部件的 精度, 简化各部件结构及连接关系, 确保良好的传动效果, 实现通断电控制传动并保证上述 传动装置在断电时能够传动。 本发明一种对上述电磁传动装置的控制方法, 包括以下三种情况:
( 1 )当第一电控装置包括电磁铁芯和线圈, 线圈的得电断电与发动机水温有关时, 控制 方法为:
当发动机水温低于第一设定值时, 使第一电控装置得电;
当发动机水温等于或高于第一设定值时, 使第一电控装置断电。
(2)当电磁传动装置包括第一电控装置和第二电控装置, 上述两电控装置的得电断电均 与发动机水温有关时, 控制方法为:
当发动机水温低于第二设定值时, 使第一电控装置得电, 第二电控装置断电; 当发动机水温等于或高于第二设定值且低于第三设定值时, 使第一电控装置得电, 第二 电控装置得电;
当发动机水温等于或高于第三设定值时, 使第一电控装置断电, 第二电控装置得电。
(3 )当第一电控装置包括电磁铁芯和线圈, 线圈的得电断电与气泵压力值有关时, 控制 方法为:
当气泵压力值低于第四设定值时, 使第一电控装置断电;
当气泵压力值等于或高于第四设定值时, 使第一电控装置得电。
采用上述控制方法, 是根据不同设备的不同需要情况来控制第一电控装置或第二电控装 置的得电与断电, 以满足汽车发动机的降温需求或制动系统的工作需要, 并确保在第一电控 装置断电时电磁传动装置能够传动。 下面结合附图对本发明的实施例作进一步说明。
附图说明
图 1为现有技术中的三速电磁风扇离合器的主视剖视图;
图 2为实施例一的主视剖视图;
图 3为图 2中沿 A-A线方向的剖视图;
图 4为实施例一中的传动盘的立体图;
图 5为实施例一中的传动片的立体图;
图 6a和图 6b均为实施例一中的电磁铁芯的立体图;
图 7为实施例一中的传动盘与传动片配合的右视图;
图 8为图 7的 B向视图。
图 9为实施例一中的传动筒的右视图;
图 10为图 9中沿 C-C线方向的剖视图; 图 11为实施例二的主视剖视图;
图 12为实施例三的主视剖视图;
图 13为图 12中沿 D-D线方向的剖视图;
图 14为实施例三中的传动盘的立体图;
图 15为实施例三中的电磁铁芯的立体图;
图 16为实施例三中的传动盘与传动片配合的右视图;
图 17为图 16的 E向视图;
图 18为实施例四的主视剖视图;
图 19为实施例五的主视剖视图;
图 20为图 19中沿 F-F线方向的剖视图;
图 21为实施例五中的传动盘与传动片配合的右视图;
图 22为图 21的 G向视图;
图 23为实施例五中的传动筒的主视剖视图;
图 24为图 23中沿 H-H线方向的剖视图;
图 25为实施例六的主视剖视图。 具体实施方式
下面以本发明的电磁传动装置应用于汽车上的电磁风扇离合器和气泵中为例结合附图进 行详细说明, 同时对各实施方式中的设备的制造方法和控制方法进行了说明, 其中实施例一 至三为本发明的电磁传动装置分别应用于单速、 两速、 三速电磁风扇离合器中的实施方式, 其中的第一电控装置和第二电控装置均只包括电磁铁芯和线圈; 实施例四是以单速电磁风扇 离合器为例, 对第一电控装置包括电磁铁芯、 线圈和永磁铁的实施方式进行说明; 实施例五、 六为本发明的电磁传动装置应用于气泵中的实施方式, 其中实施例五中的第一电控装置只包 括电磁铁芯和线圈, 实施例六中的第一电控装置包括电磁铁芯、 线圈和永磁铁。 实施例一
如图 2所示, 一种电磁传动装置, 包括传动盘 102 (如图 4所示), 还包括第一传动装置, 第二传动装置和第一电控装置, 如图 3、 图 7、 图 8所示, 其中第一传动装置包括三个传动片 106, 三个传动片 106通过销轴 124铰接在传动盘 102周向位置上的突起 117上, 传动片 106 的形状为弧形(如图 5所示), 传动片 106的外表面设有一层经压制粘接在传动片 106上的弧 形摩擦片 106a; 第二传动装置为传动筒 107 (如图 9、 图 10所示), 传动筒 107在传动盘 102 的周向位置外侧具有与传动盘 102的相对端面, 传动筒 107与摩擦片 106a之间有间隙; 第一 电控装置包括由电磁铁芯 103和线圈 104组成的电磁铁组件, 电磁铁组件位于传动盘 102内 腔, 其中电磁铁芯 103通过第二轴承 105安装在传动轴 101上, 且电磁铁芯 103通过固定胶 管与发动机机体软连接, 传动盘 102和传动片 106均由导磁材料制成, 如图 2、 图 4所示, 传动盘 102的周向位置上设有 6组隔磁槽 122。
如图 4、 图 7、 图 8所示, 传动盘 102的周向位置外侧上设有三个突起 117, 均匀分布在 传动盘 102的周向位置上,三个传动片 106通过销钉 124铰接在三个突起 117上,传动片 106 可通过销钉 124做远离或靠近传动盘 102周向位置的转动。
还包括被动装置, 被动装置为风扇固定盘 109, 如图 1所示, 风扇固定盘 109通过第一 轴承 108安装在传动轴 101上, 结合图 9、 图 10所示, 传动筒 107—端上的三组固定片 120 通过紧固螺栓 118固定在风扇固定盘 109上, 传动盘 102通过半圆键 119固定安装在传动轴 101上, 电磁铁芯 103在传动盘 102的内腔通过第二轴承 105安装在传动轴 101上, 结合图 6a、 图 6b所示, 线圈 104设于电磁铁芯 103上开设的线圈镶嵌槽 103a内, 线圈镶嵌槽 103a 的导磁开口方向指向传动盘 102的周向位置。
当第一电控装置 (线圈 104)得电时, 第一电控装置 (具有磁吸力的电磁铁芯 103 )驱动 第一传动装置 (外表面粘接有摩擦片 106a的传动片 106) 使得第二传动装置 (传动筒 107) 与传动盘 102的动力相分离 (传动片 106吸合在传动盘 102的周向位置所在端面外侧上, 不 与传动筒 107相接合); 当第一电控装置 (线圈 104) 断电时, 第一电控装置 (不具有磁吸力 的电磁铁芯 103 ) 驱动第一传动装置 (外表面粘接有摩擦片 106a的传动片 106) 使得第二传 动装置 (传动筒 107) 与传动盘 102的动力相接合 (铰接在传动盘 102上的传动片 106在离 心力作用下通过摩擦片 106a压紧传动筒 107)。
如图 2所示, 本发明一种电磁传动装置在单速电磁风扇离合器中的具体工作过程如下: 发动机启动后, 发动机带动主轴 101旋转, 主轴 101通过半圆键 119带动传动盘 102全 速旋转。
当发动机水温尚未达到温控开关 125的第一设定值 82°C时,温控开关 125控制使线圈 104 的电路处于接通状态, 此时电磁铁芯 103产生的径向吸合磁场把连有摩擦片 106a的传动片 106牢固吸合在传动盘 102上, 摩擦片 106a与传动筒 107不发生接触, 风扇固定盘 109及与 其相连的传动筒 107通过第一轴承 108自由滑转。
当水温升高到温控开关 125的第一设定值 82°C时, 温控开关 125控制断开线圈 104的电 路, 三个传动片 106在离心力的作用下通过摩擦片 106a压紧传动筒 107, 使传动筒 107与传 动盘 102达到同速旋转, 传动筒 107带动风扇固定盘 109上的风扇旋转, 达到强力降温的效 果; 如果汽车在行驶过程中供电系统突发故障导致线圈 104断电, 则电磁铁芯 103不具有磁 性不会吸合三个传动片 106,三个传动片 106在离心力作用下通过摩擦片 106a压紧传动筒 107 使传动筒 107与传动盘 102达到同速旋转, 以达到同样的强力降温效果。
本发明对上述电磁传动装置 (应用在单速电磁风扇离合器中) 的制造方法, 包括以下步 骤:(a)铸造传动盘 102并进行机械加工,传动盘 102的周向位置外侧具有三组突起 117; (b) 铸造第一传动装置, 即三个弧形传动片 106, 并进行机械加工; (c) 铸造第二传动装置, 即 传动筒 107, 并进行机械加工; (d) 铸造第一电控装置中的电磁铁芯 103并进行机械加工, 将线圈 104以平绕法装于电磁铁芯 103上的线圈镶嵌槽 103a内; (e)将传动盘 102通过半圆 键 119安装在传动轴 101上, 将三个传动片 106通过销轴 124铰接在传动盘 102的相应突起 117上, 将电磁铁芯 103通过第二轴承 105安装在传动轴 101上并位于传动盘 102周向位置 所在端面的内腔, 将风扇固定盘 109 (被动装置) 通过第一轴承 108安装在传动轴 101上, 将传动筒 107通过三组固定片 120利用螺栓安装在风扇固定盘 109上, 传动筒 107安装后具 有与传动盘 102周向位置所在端面外侧的相对端面, 传动片 106与传动筒 107的相对端面间 有间隙, 安装完成后使得:
当线圈 104得电时, 电磁铁芯 103将传动片 106吸合在传动盘 102的周向位置外侧端面 上, 使得传动筒 107与传动盘 102相分离;
当线圈 104断电时, 电磁铁芯 103不吸合传动片 106, 传动片 106在离心力的作用下压 紧传动筒 107, 使得传动筒 107通过传动片 106与传动盘 102的动力相接合, 从而使传动盘 102通过传动片 106、 传动筒 107带动风扇固定盘 109转动。
本发明一种对上述电磁传动装置 (应用在单速电磁风扇离合器中) 的控制方法, 步骤包 括:
当发动机水温低于第一设定值 82 °C时, 温度传感器 125控制接通线圈 104的电路, 线圈 104得电, 电磁铁芯 103具有磁性;
当发动机水温达到第一设定值 82°C或者继续升高时, 温度传感器 125控制断开线圈 104 的电路, 线圈 104断电, 电磁铁芯 103不具有磁性。 实施例二
如图 11所示, 在图 2-10中所示出的实施例一中的其他结构不变的前提下, 本实施例中 的两速电磁风扇离合器与实施例一的区别结构在于: 还包括磁铁固定盘 210, 磁铁固定盘 210 位于风扇固定盘 209内腔, 并通过传动套 233安装在传动轴 201上, 磁铁固定盘 210上与风 扇固定盘 209的相对端面位置镶嵌有若干第一软铁 215, 第一软铁 215上磁性吸附有永磁铁 214, 风扇固定盘 209上在与永磁铁 214的对应位置镶嵌有第二软铁 216。
如图 11所示, 本发明一种电磁传动装置在两速电磁风扇离合器中的具体工作过程如下: 发动机启动后, 发动机带动主轴 201旋转, 主轴 201通过半圆键 219带动传动盘 202全 速旋转, 主轴 201同时通过传动套 233带动磁铁固定盘 210全速旋转。
当发动机水温尚未达到温控开关 225的第一设定值 82 °C时,温控开关 225控制使线圈 204 的电路处于接通状态, 电磁铁芯 203产生径向吸合磁场把连有摩擦片 206a的三个传动片 206 牢固吸合到传动盘 202上, 摩擦片 206a与传动筒 207不发生接触, 因而不会带动风扇固定盘 209转动; 与此同时, 第二软铁 216在永磁铁 214与第一软铁 215形成的磁场中相对旋转, 第二软铁 216切割磁力线产生涡电流, 涡电流产生新的磁场, 在磁场力的作用下实现磁铁固 定盘 210带动风扇固定盘 209差速跟转, SP : 风扇固定盘 209与磁铁固定盘 210柔性连接中 速旋转, 起到初步散热降温的作用, 使汽车发动机保持合适的工作温度。
当发动机水温升高到温控开关 225的第一设定值 82 °C时,温控开关 225控制断开线圈 204 的电路, 三个传动片 206在离心力的作用下通过三个摩擦片 206a压紧传动筒 207, 使传动筒 207与传动盘 202达到同速旋转, 传动筒 207带动风扇固定盘 209上的风扇旋转, 达到强力 降温的效果; 如果汽车在行驶过程中供电系统突发故障导致线圈 204断电, 则由于线圈 204 断电电磁铁芯 203不具有磁性不会吸合传动片 206, 三个传动片 206在离心力的作用下通过 三个摩擦片 206a压紧传动筒 207, 使传动筒 207与传动盘 202达到同速旋转, 传动筒 207带 动风扇固定盘 209上的风扇旋转, 以达到同样的强力降温效果。
与实施例一中的相应结构相同, 附图 11中的 224为销轴, 205为第二轴承, 208为第一 轴承, 220为传动筒 201上的固定片, 222为传动盘 202相对端面上开设的隔磁槽。
磁铁固定盘 210与风扇固定盘 209上的永磁铁 214、 第一软铁 215和第二软铁 216的位 置不限于上述情况,只要能达到通过磁效应使磁铁固定盘 210带动风扇固定盘 209跟转即可, 比如可以将第一软铁 215和永磁铁 214设于风扇固定盘 209上, 将第二软铁 216设于磁铁固 定盘 210上。
本发明对上述电磁传动装置 (应用在两速电磁风扇离合器中) 的制造方法, 与实施例一 中的制造方法基本相同, 不同之处在于: 铸造磁铁固定盘 210并进行机械加工, 在安装风扇 固定盘 209 (被动装置)之前, 首先将磁铁固定盘 210通过传动套 233固定安装在传动轴 201 上, 位于风扇固定盘 209内腔, 磁铁固定盘 210上镶嵌有第一软铁 215和永磁铁 214的端面 与风扇固定盘 209上镶嵌有第二软铁 216的端面相对应。
本发明一种对上述电磁传动装置 (应用在两速电磁风扇离合器中) 的控制方法, 与实施 例一中的控制方法相同。 实施例三
如图 12所示, 在图 11中所示出的实施例二中的其他结构不变的前提下, 本实施例中的 三速电磁风扇离合器与实施例一的区别结构在于: 磁铁固定盘 310通过第三轴承 311 (代替 实施例二中的传动套 233 ) 安装在传动盘 302上, 电磁铁芯 303上开设有内、 外线圈镶嵌槽 303a 303b (如图 15所示),外线圈 304a (第一电控装置,作用等同于实施例二中的线圈 204) 设于外线圈镶嵌槽 303a内,外线圈镶嵌槽 303a的导磁开口方向指向传动盘 302的周向位置, 内线圈 304b (第二电控装置) 设于内线圈镶嵌槽 303b内, 内线圈镶嵌槽 303b的导磁开口方 向沿轴向指向磁铁固定盘 310,磁铁固定盘 310上与内线圈 304b的对应位置通过小弹簧片 312 支撑连接有小吸合盘 313, 小吸合盘 313靠近传动盘 302且与传动盘 302的对应端面间有间 隙。 当内线圈 304b (第二电控装置) 得电时, 电磁铁芯 303产生轴向磁吸力, 电磁铁芯 303 通过传动盘 302将小吸合盘 313吸合到传动盘 302上, 使得磁铁固定盘 310与传动盘 302相 接合, 传动盘 302的动力直接传递至磁铁固定盘 310。
如图 14所示, 传动盘 302的侧面开设有 6组内隔磁槽 323, 传动盘 302的周向位置所在 端面上开设有 6组外隔磁槽 322, 如图 13所示, 传动片 306的外表面设有一层经压制粘接在 传动片 306上的摩擦片 306a,摩擦片 306a具有较大的摩擦系数能够带动传动筒 307转动,传 动筒 307上与摩擦片 306a的相对表面做耐磨处理, 以使摩擦片 306a与传动筒 307之间的传 动效果更好, 当外线圈 304a断电时, 传动片 306在离心力的作用下能够通过摩擦片 306a压 紧传动筒 307, 并通过传动筒 307带动风扇固定盘 309全速转动, 以达到给发动机全速降温 的效果。
如图 16、 图 17所示, 传动盘 302的周向位置外侧上设有三个突起 317, 均匀分布在传动 盘 302的周向位置上, 三个传动片 306通过销钉 324铰接在三个突起 317上。
如图 12所示, 本发明一种电磁传动装置在三速电磁风扇离合器中的具体工作过程如下: 发动机启动后, 发动机带动主轴 301旋转, 主轴 301通过半圆键 319带动传动盘 302全 速旋转。
当发动机水温尚未达到温控开关 325的第二设定值 82°C时, 温控开关 325控制接通外线 圈 304a的电路, 电磁铁芯 303产生径向吸合磁场把连有摩擦片 306a的三个传动片 306牢固 吸合到传动盘 302上, 三个摩擦片 306a与传动筒 307不发生接触, 风扇固定盘 309通过第一 轴承 308自由滑转, 内线圈 304b保持断电状态,传动盘 302不吸合小吸合盘 313,传动盘 302 保持与磁铁固定盘 310的相分离状态, 磁铁固定盘 310通过第三轴承 311 自由滑转。
当发动机水温升高到温控开关 325的第二设定值 82°C时, 温控开关 325控制接通内线圈 304b的电路, 电磁铁芯 303产生轴向吸合力, 将吸小合盘 313吸合到传动盘 302上随传动盘 302同步旋转, 小吸合盘 313通过小弹簧片 312带动磁铁固定盘 310旋转, 镶嵌在风扇固定 盘 307中的第二软铁 316在永磁铁 314与第一软铁 315形成的磁场中相对旋转,第二软铁 316 切割磁力线产生涡电流, 涡电流产生新的磁场, 在磁场力的作用下实现磁铁固定盘 310带动 风扇固定盘 309差速跟转, SP : 风扇固定盘 309与磁铁固定盘 310柔性连接中速旋转, 起到 初步散热降温的作用, 使汽车发动机保持合适的工作温度。
如果发动机水温继续升高到温控开关 325的第三设定值 88°C, 温控开关 325控制断开外 线圈 304a的电源, 三个传动片 306在离心力的作用下通过三个摩擦片 306a压紧传动筒 307 使传动筒 307与传动盘 302达到同速旋转, 传动筒 307带动风扇固定盘 309上的风扇旋转, 达到强力降温的效果。
如果汽车在行驶过程中供电系统突发故障导致外线圈 304a断电, 则由于外线圈 304a断 电电磁铁芯 303不具有磁性不会吸合传动片 306, 三个传动片 306在离心力的作用下通过摩 擦片 306a压紧传动筒 307, 使传动筒 307与传动盘 302达到同速旋转, 以达到同样的强力降 温效果。
与实施例二中的相应结构相同, 附图 12中的 305为第二轴承, 320为传动筒 301上的固 定片。
采用上述结构, 不但能实现三个速度降温, 还保证了在突发断电情况下风扇固定盘能够 旋转降温, 防止发动机温度过高, 这种装置能够防止现有技术中因电磁离合器失效而导致的 风扇停转, 因而使用起来更加安全可靠。
本发明对上述电磁传动装置 (应用在三速电磁风扇离合器中) 的制造方法, 与实施例二 中的制造方法基本相同 (其中外线圈 304a与实施例二中的线圈 204所起的作用相同), 不同 之处在于:磁铁固定盘 310通过第三轴承 311安装在传动轴 301上,增加了第二电控装置(内 线圈 304b, 设于电磁铁芯 303上), 磁铁固定盘 310上与内线圈 304b的对应位置通过小弹簧 片 312支撑连接有小吸合盘 313。
本发明一种对上述电磁传动装置 (应用在三速电磁风扇离合器中) 的控制方法, 步骤包 括:
当发动机水温低于第二设定值 82°C时, 温度传感器 325控制接通外线圈 304a的电路, 同时控制内线圈 304b保持断电状态,电磁铁芯 303上指向传动盘 302周向位置的端面具有磁 性, 而指向小吸合盘 313的端面不具有磁性;
当发动机水温等于或高于第二设定值 82°C且低于第三设定值 88°C时,温度传感器 325控 制外线圈 304a保持得电状态, 同时控制内线圈 304b得电, 电磁铁芯 303上指向传动盘 302 周向位置的端面具有磁性, 指向小吸合盘 313的端面也具有磁性;
当发动机水温等于或高于第三设定值 88°C时, 温度传感器 325控制外线圈 304a断电, 同时控制内线圈 304b得电, 电磁铁芯 303上指向传动盘 302周向位置的端面不具有磁性, 传 动片 306在离心力作用下压紧传动筒 307, 带动风扇固定盘 309全速旋转, 此时无论磁铁固 定盘 310是否旋转, 风扇固定盘 309均会全速旋转, 因而此时控制内线圈 304b得电或遇意外 断电情况时, 本传动装置均可使风扇固定盘 309全速旋转。 实施例四
如图 18所示, 在图 2-10中所示出的实施例一中的其他结构不变的前提下, 本实施例中 的单速电磁风扇离合器与实施例一的区别结构在于:第一电控装置包括永磁铁 403c和由电磁 铁芯 403和线圈 404组成的电磁铁组件, 永磁铁 403c位于传动筒 407的内侧, 永磁铁 403c 的具体位置如图 18所示通过第二轴承 405安装在传动轴 401上, 并位于传动盘 402的内腔, 永磁铁 403c上指向传动盘 402周向位置的端面为磁极端, 电磁铁组件 403、 404位于传动筒 407的外侧, 电磁铁芯 403通过固定胶管与发动机机体软连接; 第一传动装置包括三个传动 片 406, 传动片 406转动连接在传动筒 407上与传动盘 402的相对端面上, 传动片 406的形 状为弧形, 传动片 406的内表面设有一层经压制粘接在传动片 406上的弧形摩擦片 406a, 传 动片 406、 传动筒 407、 传动盘 402均可导磁, 当线圈 404得电时电磁铁芯 403对传动片 406 的磁吸力大于永磁铁 403c对传动片 406的磁吸力。
如图 18所示, 传动盘 402的周向位置所在端面上开设有若干组隔磁槽 422, 传动筒 407 的相对端面上也开设有若干组隔磁槽 407a, 420为传动筒 407上的固定片, 417为传动筒 407 上内侧端面上的突起, 用于通过销轴 424安装传动片 406。
如图 18所示, 本发明的电磁传动装置在单速电磁风扇离合器中的具体工作过程如下: 发动机启动后, 发动机带动主轴 401旋转, 主轴 401通过半圆键 419带动传动盘 402全 速旋转。
当发动机水温尚未达到温控开关 425的第一设定值 82 °C时,温控开关 425控制使线圈 404 的电路处于接通状态, 此时电磁铁芯 403中的线圈 404接通电源, 电磁铁芯 403对连有摩擦 片 406a的传动片 406的磁吸力大于永磁铁 403c对相应传动片 406的磁吸力, 因而连有摩擦 片 406a的传动片 406会在偏向电磁铁芯 403侧的合力作用下牢固吸合在传动筒 407的内壁上, 传动片 406内侧的摩擦片 406a与传动盘 402不发生接触,风扇固定盘 409及与其相连的传动 筒 407通过第一轴承 408自由滑转。
当水温升高到温控开关 425的第一设定值 82°C时, 温控开关 425控制断开线圈 404的电 路, 此时电磁铁芯 403对传动片 406没有磁吸力, 三个传动片 406在永磁铁 403c的磁场作用 下被牢固吸合在传动盘 402的周向位置外侧端面上, 从而使传动盘 402通过三个传动片 406 带动传动筒 407旋转, 传动筒 407带动风扇固定盘 409上的风扇旋转, 达到强力降温的效果。
如果汽车在行驶过程中供电系统突发故障断电, 则由于线圈 404断电电磁铁芯 403不会 吸合三个传动片 406, 三个传动片 406在永磁铁 403c的磁场作用下被牢固吸合在传动盘 402 的周向位置外侧端面上, 使传动盘 402通过三个传动片 406带动传动筒 407进而带动风扇固 定盘 409上的风扇旋转, 以达到同样的强力降温效果。
当然,永磁铁 403c的具体位置不限于图 18中所示的通过第二轴承 405安装在传动轴 401 上, 也可以将永磁铁 403c镶嵌在传动盘 402的周向位置所在端面外侧上, 或者直接将传动盘 402采用永磁铁材料制成。
本实施例中, 单速电磁风扇离合器中的第一电控装置包括永磁铁和由电磁铁芯和线圈组 成的电磁铁组件的实施方式, 同样适用于实施例二中的两速电磁风扇离合器和实施例三中的 三速电磁风扇离合器, 在两速和三速电磁风扇离合器中采用此实施方式时, 与第一电控装置 相连接的其余部件在结构上作适应性变化。
本发明对上述电磁传动装置 (应用在单速电磁风扇离合器中) 的制造方法, 与实施例一 中的制造方法基本相同, 不同之处在于: 传动筒 407的相对端面内侧具有三组突起 417, 将 三个传动片 406通过销轴 424铰接在传动筒 407的相应突起 417上,传动片 406与传动盘 402 的周向位置外侧端面间有间隙; 步骤(d)中的第一电控装置为永磁铁 403c和由电磁铁芯 403 和线圈 404组成的电磁铁组件,将永磁铁 403c通过轴承 405安装在传动轴 401上并位于传动 盘 402的内腔, 将电磁铁组件设在传动筒 407的相对端面外侧, 将电磁铁芯 403固定在发动 机壳体上; 当线圈 404得电时电磁铁芯 403对传动片 406的磁吸力大于永磁铁 403c对传动片 406的磁吸力。
本发明一种对上述电磁传动装置 (应用在单速电磁风扇离合器中) 的控制方法, 与实施 例一中的控制方法相同。 实施例五
如图 19所示, 一种电磁传动装置, 包括传动盘 502 (传动盘 502为皮带轮, 由发动机带 动其转动), 还包括第一传动装置, 第二传动装置和第一电控装置, 其中第一传动装置包括三 个传动片 506,如图 20-22所示,三个传动片 506通过销轴 524铰接在传动盘 502的周向位置, 传动片 506的形状为弧形, 传动片 506的外表面设有一层经压制粘接在传动片 506上的弧形 摩擦片 506a; 第二传动装置为传动筒 507 (如图 23、 24所示), 传动筒 507在传动盘 502的 周向位置外侧具有与传动盘 502的相对端面,传动筒 507的相对端面与摩擦片 506a之间有间 隙; 第一电控装置包括由电磁铁芯 503和线圈 504组成的电磁铁组件, 电磁铁组件位于传动 盘 502内腔, 传动盘 502、 传动片 506和传动筒 507均由导磁材料制成。
如图 19所示, 还包括被动装置, 被动装置为气泵转轴 509, 传动盘 502通过轴承 502a 安装在气泵转轴 509上, 传动筒 507通过半圆键 519固定安装在气泵转轴 509上, 电磁铁芯 503通过紧固螺栓固定在气泵壳体 509a上, 电磁铁芯 503上开设有线圈镶嵌槽, 线圈 504设 于线圈镶嵌槽内, 线圈镶嵌槽的导磁开口方向与气泵转轴 509的径向发散方向相同, 指向传 动盘 502的周向位置所在端面内侧, 传动盘 502的周向位置所在端面上对着导磁开口方向处 开设有 6组隔磁槽 522, 结合图 20、 图 23、 24所示, 传动筒 507上在与传动盘 502上的隔磁 槽 522的对应位置设有 6组隔磁槽 507a。
如图 21、 22所示, 传动盘 502的周向位置外侧沿外圆周向均匀设有三个突起 517, 三个 传动片 506的一端分别通过销钉铰接在对应突起 517上; 传动筒 507上与传动片 506的相对 表面做耐磨处理。
如图 19所示, 当第一电控装置 (线圈 504) 得电时, 第一电控装置 (具有磁吸力的电磁 铁芯 503 ) 驱动第一传动装置 (即外表面粘接有摩擦片 506a的传动片 506) 使得第二传动装 置 (即传动筒 507) 与传动盘 502的动力相分离 (传动片 506吸合在传动盘 502的周向位置 外侧上, 不与传动筒 507相接合); 当第一电控装置 (线圈 504) 断电时, 第一电控装置 (不 具有磁吸力的电磁铁芯 503 )驱动第一传动装置(即外表面粘接有摩擦片 506a的传动片 506 ) 使得第二传动装置 (即传动筒 507) 与传动盘 502的动力相接合 (传动片 506在离心力作用 下通过摩擦片 506a压紧传动筒 507)。
如图 19所示, 本发明一种电磁传动装置在气泵中的具体工作过程如下:
发动机启动后, 带动传动盘 502 (皮带轮) 旋转, 在气泵内压力等于或高于第四设定值 6-8公斤时 (刹车系统能够正常工作时), 气泵无需工作, 此时压力开关 525控制线圈 504得 电, 将传动片 506吸合到传动盘 502周向位置外侧端面上, 摩擦材料 506a不与传动筒 507接 触, 传动盘 502不能将动力通过传动筒 507传递至气泵转轴 509, 气泵不工作。
当气泵内压力低于第四设定值 6-8公斤时 (刹车系统不能正常工作时),此时压力开关 525 控制线圈 504断电, 传动片 506在离心力作用下压紧传动筒 507, 使传动筒 507与传动盘 502 同速旋转, 传动筒 507带动气泵转轴 509旋转, 使得气泵进入工作状态。
当电磁离合器在行车过程中发生故障导致线圈 504突然断电时, 传动片 506不被电磁铁 芯 503吸引, 传动片 506在离心力作用下压紧传动筒 507, 使传动筒 507与传动盘 502同步 旋转, 传动筒 507带动气泵转轴 509旋转, 使得气泵在突发断电情况下仍然能够正常工作。 本发明对上述电磁传动装置 (应用在气泵中) 的制造方法, 与实施例一中的制造方法基 本相同, 不同之处在于: 传动盘 502为由发动机带动的皮带轮, 被动装置为气泵转轴 509, 传动盘 502通过轴承 502a安装在气泵转轴 509上,传动筒 507通过半圆键 519固定安装在气 泵转轴 509上, 电磁铁芯 503通过螺栓固定在气泵壳体 509a上。
本发明一种对上述电磁传动装置 (应用在气泵中) 的控制方法, 步骤包括:
当气泵压力低于第四设定值 6-8公斤时, 压力开关 525控制线圈 504断电, 传动盘 502 通过传动片 506和传动筒 507将动力传递至气泵转轴 509, 气泵工作;
当气泵压力等于或高于第四设定值 6-8公斤时, 压力开关 525控制线圈 504得电, 传动 片 506被吸合在传动盘 502周向位置外侧端面上, 不与传动筒 507结合, 不能将动力传递至 气泵转轴 509, 气泵不工作。 实施例六
如图 25所示, 在图 19-24中所示出的实施例五中的其他结构不变的前提下, 本实施例中 的气泵与实施例五的区别结构在于:第一电控装置包括永磁铁 603c和由电磁铁芯 603和线圈 604组成的电磁铁组件, 永磁铁 603c位于传动筒 607的内腔, 并通过紧固螺栓固定在气泵外 壳 609a上, 电磁铁组件位于传动盘 602周向位置外侧并通过螺栓固定在气泵外壳 609a上。
如图 25所示, 第一传动装置包括三个传动片 606, 传动片 606通过销轴 624铰接在传动 盘 602周向位置内侧的突起 617上,传动片 606位于传动盘 602与传动筒 607的相对端面上, 传动片 606的形状为弧形, 传动片 606的内表面设有一层经压制粘接在传动片 606上的弧形 摩擦片 606a, 摩擦片 606a与传动筒 607的相对端面间有间隙, 位于永磁铁 603c与电磁铁芯 603的相对端面之间的传动盘 602和传动筒 607上均开设有若干组隔磁槽 622和 607a, 当线 圈 604得电时电磁铁芯 603对传动片 606的磁吸力大于永磁铁 603c对传动片 606的磁吸力。
如图 25所示, 本发明的电磁传动装置在气泵中的具体工作过程如下:
发动机启动后, 带动传动盘 602 (皮带轮) 旋转, 在气泵内压力等于或高于第四设定值 6-8公斤时 (刹车系统能够正常工作时), 气泵无需工作, 压力开关 625控制线圈 604得电, 电磁铁芯 603将传动片 606吸合到传动盘 602的内端面上, 此时位于传动片 606内表面上的 摩擦材料 606a不与传动筒 607接触, 传动筒 607不能将传动盘 602的动力传递至气泵转轴 609, 气泵不工作。
当气泵内压力低于第四设定值 6-8公斤时 (刹车系统不能正常工作时),此时压力开关 525 控制断开线圈 604的电路, 电磁铁芯 603对传动片 606没有磁吸力, 三个传动片 606在永磁 铁 603c的磁场作用下被牢固吸合在传动筒 607的相对端面外侧上,从而使传动盘 602通过三 个传动片 606带动传动筒 607旋转, 传动筒 607带动气泵转轴 609旋转, 使得气泵进入工作 状态。
当在行车过程中供电系统发生故障导致线圈 604突然断电时, 传动片 606不被电磁铁芯 603吸引, 传动片 606在永磁铁 603c的磁场作用下被牢固吸合在传动筒 607的外壁上, 传动 片 606内表面的摩擦片 606a牢固压紧传动筒 607, 使得传动盘 602通过传动片 606将动力传 递至传动筒 607进而带动气泵转轴 609旋转, 从而使气泵在突发断电情况下进入工作状态, 确保车辆在突发断电情况下能够正常制动。
当然, 永磁铁 603c的具体位置不限于图 25中所示的通过轴承 602a安装在气泵转轴 609 上, 也可以将永磁铁 603c镶嵌在传动筒 607的相对端面外侧上, 或者直接将传动筒 607上与 传动片 606的相对端面采用永磁铁材料制成。
本发明对上述电磁传动装置 (应用在气泵中) 的制造方法, 与实施例五中的制造方法基 本相同, 不同之处在于: 传动片 606铰接在传动盘 602周向位置的内侧端面上 (实施例五中 在外侧端面上), 步骤(d) 中的第一电控装置为永磁铁 603c和由电磁铁芯 603和线圈 604组 成的电磁铁组件, 将永磁铁 603c套设于气泵转轴 609外环并通过螺栓固定在气泵壳体 609a 上, 永磁铁 603c设于传动筒 607内腔, 将电磁铁组件设在传动盘 602的相对端面外侧, 将电 磁铁芯 603通过螺栓固定在气泵壳体 509a上; 当线圈 604得电时电磁铁芯 603对传动片 606 的磁吸力大于永磁铁 603c对传动片 606的磁吸力。
本发明一种对上述电磁传动装置 (应用在气泵中) 的控制方法, 与实施例五中的控制方 法相同。
在实施例一至六中, 传动片不限于三个, 一个以上均可, 可根据传动装置的型号等设置 不同数量的传动片, 以保证传动效果最佳; 传动片上可以连接摩擦片以增大摩擦, 更好的传 动, 也可以省略摩擦片而将传动片与传动筒进行耐磨处理; 传动片为钢、 铁或其他导电导磁 材料; 摩擦片为全金属、 石棉或其他耐磨材料。
摩擦片与传动片的连接方式可以是上述实施例一至六中的压制粘接,也可以是螺栓连接、 铆接或其他连接方式。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述, 并非对本发明的范围进行 限定, 在不脱离本发明设计精神的前提下, 本领域普通技术人员对本发明的技术方案作出的 各种变形和改进, 均应落入本发明权利要求书确定的保护范围内。 工业实用性
本发明的电磁传动装置, 适合工业生产, 可以应用在各种电磁风扇离合器的生产制造中, 能够有效防止车辆供电系统突发故障情况下导致的电磁离合器失效, 确保在电磁离合器失效 时本装置仍可发挥作用对发动机降温; 也可以应用在电磁离合器控制工作的气泵中, 确保电 磁离合器失效时气泵能够进入工作状态, 以保证车辆能够在突发断电情况下进入制动状态。
本发明的电磁传动装置的制造方法, 适于加工制造本发明的电磁传动装置, 使得该制造 方法简单、 成本低、 适于加工制造。
本发明的电磁传动装置的控制方法, 适于根据发动机温度变化或气泵压力值变化来控制 本发明的电磁传动装置的工作状态, 使得该控制方法简单易行、 操作方便。

Claims

权 利 要 求 书
1、 一种电磁传动装置, 包括传动盘 (102; 202; 302; 402; 502; 602), 其特征在于: 还包括第一传动装置 (106; 206; 306; 406; 506; 606), 第二传动装置 (107; 207; 307; 407; 507; 607) 和第一电控装置 (103、 104; 203、 204; 303、 304a; 403、 404; 503、 504; 603、 604),
当所述第一电控装置(104; 204; 304a; 404; 504; 604)得电时,所述第一电控装置( 103 ; 203; 303; 403; 503; 603 ) 驱动所述第一传动装置 ( 106; 206; 306; 406; 506; 606) 使得 所述第二传动装置 (107; 207; 307; 407; 507; 607) 与所述传动盘 (102; 202; 302; 402; 502; 602) 相分离;
当所述第一电控装置(104; 204; 304a; 404; 504; 604)断电时,所述第一电控装置( 103 ; 203; 303; 403; 503; 603 ) 驱动所述第一传动装置 ( 106; 206; 306; 406; 506; 606) 使得 所述第二传动装置 (107; 207; 307; 407; 507; 607) 与所述传动盘 (102; 202; 302; 402; 502; 602) 相接合。
2、根据权利要求 1所述的电磁传动装置,其特征在于:还包括被动装置(109; 209; 309; 409; 509; 609), 所述第二传动装置 ( 107; 207; 307; 407; 507; 607)与所述被动装置 ( 109; 209; 309; 409; 509; 609) 固定连接。
3、 根据权利要求 2所述的电磁传动装置, 其特征在于: 还包括传动轴 (101 ; 401 ), 所 述被动装置为风扇固定盘(109; 409),所述传动盘(102; 402)固定安装在所述传动轴(101 ; 401 ) 上, 所述风扇固定盘 (109; 409)通过第一轴承 (108; 408 ) 安装在所述传动轴 (101 ; 401 ) 上。
4、 根据权利要求 2所述的电磁传动装置, 其特征在于: 还包括传动轴 (201 ) 和磁铁固 定盘(210), 所述被动装置为风扇固定盘(209), 所述传动盘(202) 固定安装在所述传动轴
(201 ) 上, 所述风扇固定盘 (209) 通过第一轴承 (208 ) 安装在所述传动轴 (201 ) 上, 所 述磁铁固定盘 (210) 固定安装在所述传动轴 (201 ) 上, 所述磁铁固定盘(210)用于通过磁 效应带动所述风扇固定盘 (209) 差速跟转。
5、 根据权利要求 2所述的电磁传动装置, 其特征在于: 还包括传动轴 (301 )、 磁铁固定 盘(310)和第二电控装置(303、 304b),所述被动装置为风扇固定盘(309),所述传动盘(302) 固定安装在所述传动轴 (301 ) 上, 所述风扇固定盘 (309)通过第一轴承 (308 ) 安装在所述 传动轴 (301 ) 上, 所述磁铁固定盘 (310 ) 通过第三轴承 (311 ) 安装在所述传动轴 (301 ) 上, 所述磁铁固定盘 (310) 用于通过磁效应带动所述风扇固定盘 (309) 差速跟转, 当所述 第二电控装置 (304b ) 得电时, 所述传动盘 (302) 与所述磁铁固定盘 (310 ) 相接合; 当所 述第二电控装置 (304b) 断电时, 所述传动盘 (302) 与所述磁铁固定盘 (310) 相分离。
6、 根据权利要求 2所述的电磁传动装置, 其特征在于: 所述被动装置为气泵转轴 (509; 609), 所述传动盘 (502; 602) 通过轴承 (502a; 602a) 安装在气泵转轴 (509; 609) 上。
7、根据权利要求 3至 6中任一所述的电磁传动装置, 其特征在于: 所述第二传动装置包 括传动筒 ( 107; 207; 307; 407; 507; 607)。
8、根据权利要求 7所述的电磁传动装置, 其特征在于: 所述第一传动装置包括至少一个 传动片 ( 106; 206; 306; 406; 506; 606)。
9、 根据权利要求 8所述的电磁传动装置, 其特征在于: 所述传动片 (106; 206; 306; 506)为三个弧形片, 所述传动盘(102; 202; 302; 502)的周向位置外侧设有三组突起(117; 217; 317; 517), 所述三个传动片 ( 106; 206; 306; 506) 通过销轴 ( 124; 224; 324; 524) 铰接在所述传动盘 ( 102; 202; 302; 502) 的相应突起 ( 117; 217; 317; 517) 上;
所述传动筒 (107; 207; 307; 507) 在所述传动盘 (102; 202; 302; 502) 的周向位置 外侧具有与所述传动盘 (102; 202; 302; 502) 的相对端面, 所述传动片 (106; 206; 306; 506) 与所述传动筒 (107; 207; 307; 507) 的相对端面间有间隙;
所述第一电控装置包括由电磁铁芯 (103 ; 203; 303; 503 ) 和线圈 (104; 204; 304a; 504) 组成的电磁铁组件, 所述电磁铁组件位于所述传动盘 (102; 202; 302; 502) 的周向位 置所在端面的内腔。
10、 根据权利要求 8所述的电磁传动装置, 其特征在于: 所述传动筒(407)在所述传动 盘 (402) 的周向位置外侧具有与所述传动盘(402) 的相对端面, 所述传动筒(407) 的所述 相对端面上设有三组突起 (417), 所述传动片 (406) 为三个弧形片, 所述三个传动片 (406) 通过销轴 (424) 铰接在所述传动筒 (407 ) 的相应突起 (417) 上; 所述传动片 (406) 与所 述传动盘 (402) 的相对端面间有间隙;
所述第一电控装置包括永磁铁 (403c) 和由电磁铁芯 (403 ) 和线圈 (404) 组成的电磁 铁组件, 所述永磁铁 (403c)位于所述传动盘(402) 的内腔, 所述电磁铁组件位于所述传动 筒 (407) 的所述相对端面外侧;
当所述线圈 (404)得电时所述电磁铁芯 (403 )对所述传动片 (406) 的磁吸力大于所述 永磁铁 (403c) 对所述传动片 (406) 的磁吸力。
11、 根据权利要求 8所述的电磁传动装置, 其特征在于: 所述传动片 (606) 为三个弧形 片, 所述传动盘 (602) 的周向位置内侧设有三组突起 (617), 所述三个传动片 (606) 通过 销轴 (624) 铰接在所述传动盘 (602) 的相应突起 (617) 上; 所述传动筒(607)在所述传动盘(602) 的周向位置内侧具有与所述传动盘(602) 的相 对端面, 所述传动片 (606) 与所述传动筒 (607) 的相对端面间有间隙;
所述第一电控装置包括永磁铁 (603c) 和由电磁铁芯 (603 ) 和线圈 (604) 组成的电磁 铁组件, 所述永磁铁 (603c)位于所述传动筒(607) 的内腔, 所述电磁铁组件位于所述传动 盘 (602) 的周向位置外侧;
当所述线圈 (604)得电时所述电磁铁芯 (603 )对所述传动片 (606) 的磁吸力大于所述 永磁铁 (603c) 对所述传动片 (606) 的磁吸力。
12、 根据权利要求 9所述的电磁传动装置, 其特征在于: 所述传动片 (106; 206; 306; 506) 上与所述传动筒 (107; 207; 307; 507) 的相对端面处固定连接有弧形摩擦片 (106a; 206a; 306a; 506a)。
13、 一种电磁传动装置的制造方法, 其特征在于包括以下步骤:
( a) 形成传动盘 ( 102; 202; 302; 402; 502; 602);
(b) 形成第一传动装置 ( 106; 206; 306; 406; 506; 606);
( c) 形成第二传动装置 ( 107; 207; 307; 407; 507; 607);
( d) 形成第一电控装置 (103、 104; 203、 204; 303、 304a; 403、 404; 503、 504; 603、 604);
( e) 安装传动盘 ( 102; 202; 302; 402; 502; 602)、 第一传动装置 ( 106; 206; 306; 406; 506; 606)、 第二传动装置 ( 107; 207; 307; 407; 507; 607) 和第一电控装置 (103、 104; 203、 204; 303、 304a; 403、 404; 503、 504; 603、 604), 使得:
当第一电控装置(104; 204; 304a; 404; 504; 604)得电时, 第一电控装置(103 ; 203; 303; 403; 503; 603 ) 驱动所述第一传动装置 (106; 206; 306; 406; 506; 606) 使得所述 第二传动装置 ( 107; 207; 307; 407; 507; 607)与所述传动盘 ( 102; 202; 302; 402; 502; 602) 相分离;
当第一电控装置 (104; 204; 304a; 404; 504; 604) 断电时, 所述第一电控装置 (103 ; 203; 303; 403; 503; 603 ) 驱动所述第一传动装置 ( 106; 206; 306; 406; 506; 606) 使得 所述第二传动装置 (107; 207; 307; 407; 507; 607) 与所述传动盘 (102; 202; 302; 402; 502; 602) 相接合。
14、 根据权利要求 13所述的电磁传动装置的制造方法, 其特征在于: 所述步骤 (b) 中 的第一传动装置为三个弧形传动片 (106; 206; 306; 506), 所述步骤(a) 中的传动盘(102; 202; 302; 502 ) 的周向位置外侧具有三组突起 (117; 217; 317; 517), 将所述三个传动片
( 106; 206; 306; 506) 通过销轴 ( 124; 224; 324; 524) 铰接在所述传动盘 ( 102; 202; 302; 502) 的相应突起 (117; 217; 317; 517) 上;
所述步骤 (c) 中的第二传动装置为传动筒 (107; 207; 307; 507), 所述传动筒 (107; 207; 307; 507)安装后具有与所述传动盘 ( 102; 202; 302; 502)周向位置外侧的相对端面, 所述传动片 (106; 206; 306; 506) 与所述传动筒 (107; 207; 307; 507) 的相对端面间有 间隙;
所述步骤 (d) 中的第一电控装置为由电磁铁芯 (103 ; 203; 303; 503 ) 和线圈 (104; 204; 304a; 504)组成的电磁铁组件, 将所述电磁铁组件安装在所述传动盘(102; 202; 302; 502) 的周向位置所在端面的内腔;
还包括被动装置 (109; 209; 309; 509), 安装所述被动装置 (109; 209; 309; 509), 将所述传动筒 (107; 207; 307; 507) 固定在所述被动装置 (109; 209; 309; 509) 上。
15、 根据权利要求 13所述的电磁传动装置的制造方法, 其特征在于: 所述步骤 (b) 中 的第一传动装置为三个弧形传动片 (406);
所述步骤 (c) 中的第二传动装置为传动筒 (407), 所述传动筒 (407) 安装后具有与所 述步骤 (a) 中的传动盘 (402) 周向位置外侧的相对端面, 所述传动筒 (407) 的所述相对端 面内侧具有三组突起 (417), 将所述三个传动片 (406) 通过销轴 (424) 铰接在所述传动筒 (407) 的相应突起 (417) 上, 所述传动片 (406) 与所述传动盘 (402) 的周向位置外侧端 面间有间隙;
所述步骤 (d) 中的第一电控装置为永磁铁 (403c) 和由电磁铁芯 (403 ) 和线圈 (404) 组成的电磁铁组件, 将所述永磁铁 (403c) 安装在所述传动盘 (402) 的内腔, 将所述电磁铁 组件设置在所述传动筒 (407) 的所述相对端面外侧;
当所述线圈 (404)得电时所述电磁铁芯 (403 )对所述传动片 (406) 的磁吸力大于所述 永磁铁 (403c) 对所述传动片 (406) 的磁吸力;
还包括被动装置, 所述被动装置为风扇固定盘 (409), 安装所述风扇固定盘 (409), 将 所述传动筒 (407) 固定在所述风扇固定盘 (409) 上。
16、 一种对权利要求 1-4、 7-10、 12 中任一项所述的电磁传动装置的控制方法, 步骤包 括:
当发动机水温低于第一设定值时, 使第一电控装置 (104; 204; 404) 得电;
当发动机水温等于或高于第一设定值时, 使第一电控装置 (104; 204; 404) 断电。
17、 一种对权利要求 5中的电磁传动装置的控制方法, 步骤包括:
当发动机水温低于第二设定值时, 使第一电控装置 (304a)得电, 第二电控装置 (304b) 断电; 当发动机水温等于或高于第二设定值且低于第三设定值时, 使第一电控装置 (304a) 得 电, 第二电控装置 (304b) 得电;
当发动机水温等于或高于第三设定值时, 使第一电控装置 (304a) 断电, 第二电控装置 ( 304b) 得电。
18、 一种对权利要求 6-9、 11-12中任一项所述的电磁传动装置的控制方法, 步骤包括: 当气泵压力值低于第四设定值时, 使第一电控装置 (504、 604) 断电;
当气泵压力值等于或高于第四设定值时, 使第一电控装置 (504、 604) 得电。
PCT/CN2012/070226 2012-01-11 2012-01-11 电磁传动装置及其制造方法和控制方法 WO2013104117A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12865416.7A EP2803878B1 (en) 2012-01-11 2012-01-11 Electromagnetic driving device and methods for manufacturing and controlling same
EA201491338A EA026539B1 (ru) 2012-01-11 2012-01-11 Электромагнитное приводное устройство и способы его сборки и управления
PCT/CN2012/070226 WO2013104117A1 (zh) 2012-01-11 2012-01-11 电磁传动装置及其制造方法和控制方法
BR112014017149A BR112014017149A8 (pt) 2012-01-11 2012-01-11 dispositivo de acionamento eletromagnético e métodos de fabricação e controle do mesmo
CA2860992A CA2860992C (en) 2012-01-11 2012-01-11 Electromagnetic driving device and methods for manufacturing and controlling same
US14/371,523 US9476464B2 (en) 2012-01-11 2012-01-11 Electromagnetic driving device and methods for manufacturing and controlling same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/070226 WO2013104117A1 (zh) 2012-01-11 2012-01-11 电磁传动装置及其制造方法和控制方法

Publications (1)

Publication Number Publication Date
WO2013104117A1 true WO2013104117A1 (zh) 2013-07-18

Family

ID=48781031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070226 WO2013104117A1 (zh) 2012-01-11 2012-01-11 电磁传动装置及其制造方法和控制方法

Country Status (6)

Country Link
US (1) US9476464B2 (zh)
EP (1) EP2803878B1 (zh)
BR (1) BR112014017149A8 (zh)
CA (1) CA2860992C (zh)
EA (1) EA026539B1 (zh)
WO (1) WO2013104117A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11466735B2 (en) 2020-03-13 2022-10-11 Rolls-Royce Corporation Electromagnetic clutch system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112015002180A5 (de) * 2014-05-09 2017-01-26 Schaeffler Technologies AG & Co. KG Kupplungseinrichtung mit Wirbelstrombremse mit reduziertem Luftspalt
CN105257726A (zh) * 2015-11-11 2016-01-20 福建工程学院 一种分合速度可调的无磨损离合器
CN107313849A (zh) * 2017-08-29 2017-11-03 浙江耐士伦机械有限公司 一种换向电磁风扇离合器总成
CN115789125B (zh) * 2023-02-06 2023-04-18 龙口中宇热管理系统科技有限公司 一种车用风扇、水泵一体式离合器及车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4206837A (en) * 1978-03-02 1980-06-10 Dana Corporation Centrifugal clutch having electromagnetic release
US4589536A (en) * 1984-09-04 1986-05-20 Ford Motor Company Electromagnetic friction clutch
JPS6376924A (ja) * 1986-09-19 1988-04-07 Nippon Denso Co Ltd 遠心クラツチ
CN2668923Y (zh) * 2004-01-13 2005-01-05 孙保平 离心式离合器
CN2809324Y (zh) * 2005-07-20 2006-08-23 三阳工业股份有限公司 离合器构造
CN201009726Y (zh) * 2007-03-13 2008-01-23 缪文泉 混合动力系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4976924A (zh) * 1972-11-27 1974-07-24
JP2001200860A (ja) * 1999-03-05 2001-07-27 Nippon Soken Inc 摩擦クラッチ
DE102005022457A1 (de) * 2005-05-14 2006-11-30 Zf Friedrichshafen Ag Elektromagnetisch schaltbare Kupplung
US8267237B2 (en) * 2008-11-24 2012-09-18 Magna Powertrain Inc. Reverse clutch for rotatable inputs
JP5526916B2 (ja) * 2010-03-25 2014-06-18 アイシン精機株式会社 車両用ウォータポンプ
JP5527611B2 (ja) * 2010-11-04 2014-06-18 アイシン精機株式会社 電磁クラッチ
EP2592296B1 (en) * 2011-11-09 2014-01-15 Aisin Seiki Kabushiki Kaisha Electromagnetic clutch
DE102012210287A1 (de) * 2012-06-19 2013-12-19 Zf Friedrichshafen Ag Verbindungsvorrichtung und Getriebe für einen Fahrzeugantriebsstrang sowie Verfahren zur Betätigung einer solchen Verbindungsvorrichtung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4206837A (en) * 1978-03-02 1980-06-10 Dana Corporation Centrifugal clutch having electromagnetic release
US4589536A (en) * 1984-09-04 1986-05-20 Ford Motor Company Electromagnetic friction clutch
JPS6376924A (ja) * 1986-09-19 1988-04-07 Nippon Denso Co Ltd 遠心クラツチ
CN2668923Y (zh) * 2004-01-13 2005-01-05 孙保平 离心式离合器
CN2809324Y (zh) * 2005-07-20 2006-08-23 三阳工业股份有限公司 离合器构造
CN201009726Y (zh) * 2007-03-13 2008-01-23 缪文泉 混合动力系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11466735B2 (en) 2020-03-13 2022-10-11 Rolls-Royce Corporation Electromagnetic clutch system

Also Published As

Publication number Publication date
BR112014017149A2 (pt) 2017-06-13
EA201491338A1 (ru) 2014-10-30
US9476464B2 (en) 2016-10-25
EP2803878A1 (en) 2014-11-19
EP2803878B1 (en) 2020-11-04
CA2860992A1 (en) 2013-07-18
BR112014017149A8 (pt) 2021-03-09
EP2803878A4 (en) 2016-08-31
US20150034447A1 (en) 2015-02-05
CA2860992C (en) 2016-10-25
EA026539B1 (ru) 2017-04-28

Similar Documents

Publication Publication Date Title
WO2013104117A1 (zh) 电磁传动装置及其制造方法和控制方法
CN105570341B (zh) 电磁离合器
EP3721112B1 (en) Rotational coupling device having means for sealing the interface between the armature and the electromagnet
US3842378A (en) Double clutch for vehicle air conditioning compressor
AU2004300987B2 (en) Two-speed rotational control apparatus with eddy current drive
CN202483694U (zh) 电磁风扇离合器
CN102536415B (zh) 电磁风扇离合器及其制造方法和控制方法
US20110253077A1 (en) Reversible Double-Acting Electromagnetic Device For Transmitting The Movement To/From A Driven/Driving Member
CN206361052U (zh) 一种电磁制动器及电动机
CN202483695U (zh) 电磁风扇离合器
US9863486B2 (en) Driven accessory
CN102562252B (zh) 电磁风扇离合器及其制造方法和控制方法
CN101294607A (zh) 由弹性装置接合并电磁分离向从动件传递旋转运动的设备
KR100641042B1 (ko) 자기유체를 이용한 벤틸레이티드 클러치
CN104747620B (zh) 电磁离合器
CN102562253B (zh) 电磁风扇离合器及其制造方法和控制方法
CN111140606A (zh) 安全离合器
CN210050219U (zh) 一种失电电磁离合器总成
CN202468003U (zh) 电磁风扇离合器
CN103850772A (zh) 安全式永磁水泵
CN202463801U (zh) 制动气泵
CN102529933B (zh) 制动气泵及其制造方法和控制方法
CN218761062U (zh) 一种双级制动电磁制动器和电机装置
US20240102522A1 (en) Brake for motor
CN111356824B (zh) 用于以三速度来驱动冷却机动车辆中冷却剂的风扇的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865416

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2860992

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201491338

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 2012865416

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014017149

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 14371523

Country of ref document: US

ENP Entry into the national phase

Ref document number: 112014017149

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140711