WO2013102534A1 - Verfahren zur herstellung eines verbundkörpers mit gesinterter fügeschicht und sintervorrichtung zur herstellung eines derartigen verbundkörpers - Google Patents

Verfahren zur herstellung eines verbundkörpers mit gesinterter fügeschicht und sintervorrichtung zur herstellung eines derartigen verbundkörpers Download PDF

Info

Publication number
WO2013102534A1
WO2013102534A1 PCT/EP2012/075048 EP2012075048W WO2013102534A1 WO 2013102534 A1 WO2013102534 A1 WO 2013102534A1 EP 2012075048 W EP2012075048 W EP 2012075048W WO 2013102534 A1 WO2013102534 A1 WO 2013102534A1
Authority
WO
WIPO (PCT)
Prior art keywords
subspace
chamber
composite body
sintering
partial
Prior art date
Application number
PCT/EP2012/075048
Other languages
English (en)
French (fr)
Inventor
Michael Guyenot
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP12816024.9A priority Critical patent/EP2801106A1/de
Publication of WO2013102534A1 publication Critical patent/WO2013102534A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B5/00Presses characterised by the use of pressing means other than those mentioned in the preceding groups
    • B30B5/02Presses characterised by the use of pressing means other than those mentioned in the preceding groups wherein the pressing means is in the form of a flexible element, e.g. diaphragm, urged by fluid pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68318Auxiliary support including means facilitating the separation of a device or wafer from the auxiliary support
    • H01L2221/68322Auxiliary support including means facilitating the selective separation of some of a plurality of devices from the auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/75301Bonding head
    • H01L2224/75314Auxiliary members on the pressing surface
    • H01L2224/75315Elastomer inlay
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/75301Bonding head
    • H01L2224/75314Auxiliary members on the pressing surface
    • H01L2224/75317Removable auxiliary member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/755Cooling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7598Apparatus for connecting with bump connectors or layer connectors specially adapted for batch processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/83005Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a temporary auxiliary member not forming part of the bonding apparatus being a temporary or sacrificial substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83209Compression bonding applying isostatic pressure, e.g. degassing using vacuum or a pressurised liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides

Definitions

  • the present invention relates to a method for producing a composite body according to the subject-matter of independent claim 1 and to a sintering apparatus for producing such a composite body according to independent claim 6.
  • IGBTs insulated-gate bipolar transistor
  • a sintered joining layer is made of a silver sintering paste
  • German Patent DE 10 2007 046 901 A1 To produce a sintered compound is a paste-shaped
  • Starting material comprising easily decomposable silver compounds and silver flakes or nanosilver, used as a bonding layer.
  • the silver compounds decompose to form the elemental silver and form together with the silver flakes and the nanosilver, the sintered compound.
  • the sintering gear is carried out under exposure to the standard conditions increased pressure.
  • the present invention is a method for producing a composite body, in particular a composite body for constructing an electronic component, which comprises in a finished state, at least two cohesively interconnected part body, wherein the material connection by at least one arranged in a joining direction between the part bodies Füge für brought about. Under a "joining direction" should in this
  • the relative direction can be understood in the context in which parts to be joined are moved against each other immediately before joining.
  • the partial bodies can be formed, for example, by carrier substrates or by functional layers of semiconductor materials which are known from the production of electronic components. It is proposed that the method comprises the following steps:
  • Time savings can be achieved by avoiding otherwise necessary, complex compensation structures.
  • unavoidably occurring height tolerances can be compensated and a uniform surface pressure can be achieved on arranged composite bodies of slightly different height, whereby a simultaneous production of a plurality of composite bodies in a sintering process can be made possible.
  • the deformable subelement can in particular also be formed irreversibly deformable.
  • Positive air pressure difference means that in the second subspace there is an increased air pressure compared to the first subspace of the sintering chamber, so that due to the pressure difference, the deformable subelement is deformed in the direction of the first subspace.
  • the positive air pressure difference between the second subspace and the first subspace is produced by the fact that the
  • Air pressure in the first subspace is lowered to a value below an ambient air pressure value. Under a "ambient air pressure value" is in
  • an air pressure to be understood which prevails outside the gas-tight sealable sintering chamber.
  • a reduction in the number and size of macropores in the sintered joining layer can be achieved.
  • the air pressure in the second subspace is increased to a value above an ambient air pressure value.
  • steps a) and b) be for manufacture
  • At least two arranged composite bodies are performed at least twice before the steps c) and d) are carried out.
  • two or more arranged composite bodies can be produced in one production process, without complex compensating structures for compensating for a difference in distance which is potentially present due to manufacturing tolerances
  • the separator may have low adhesion to other materials. Thereby, adhesion of the composite body to the partial element at one end of a manufacturing process can be avoided.
  • the separating element is preferably made essentially of polytetrafluoroethylene (PTFE). In principle, however, the separating element may also be produced from another material which appears suitable for this purpose to the person skilled in the art and may be formed, for example, by a mat of a silicone elastomer.
  • Another object of the present invention is a sintering apparatus for producing a composite body, in particular a composite body for the construction of an electronic component, according to one of the extended and further developed, advantageous method.
  • the sintering apparatus comprises:
  • a substantially gas-tight sealable sintering chamber with chamber walls a substantially gas-impermeable space divider which divides the sintering chamber into a first subspace and at least one second subspace,
  • substantially gas-tight and “substantially gas-impermeable” is meant in this context, in particular, that the object should have the property described in an ideal form, but always present in a practical embodiment by imperfections
  • Leakage and gas permeability may have.
  • the deformable part element is designed elastically deformable.
  • elastically deformable is to be understood in this context in particular that an air pressure difference between the two sides of the sub-element maximum reversible deformation of the sub-element of advantageously at least 2 mm, preferably more than 4 mm and, more preferably, more than 5 mm causes.
  • a "flexurally soft object” is to be understood as meaning, in particular, an object which, starting from a force-free state in a direction which is perpendicular to main extension directions of the object, can not absorb any mechanical forces.
  • a pliable soft sheet object in which main directions of extension are given by dimensions of the object in two non-parallel in-plane directions can not receive forces in a direction normal to the surface, so that upon application of such a directed force, they will immediately irreversibly deformed.
  • the bending soft trained sub-element may be formed, for example, as an unrestrained attached film.
  • FIG. 1 is a schematic representation of a composite body in a side view
  • Fig. 2 is a schematic, side sectional view of a sintering device according to the invention with arranged composite bodies according to FIG. 1. Description of the embodiment
  • Fig. 1 shows a schematic structure of two composite bodies 10, 10 ', which are used for the construction of electronic components, in a finished state in a side view.
  • Each of the composite bodies 10, 10 ' comprises two partial bodies 12, 12', 14, 14 '.
  • the partial bodies 12, 12 ', 14, 14' of each of the two composite bodies 10, 10 ' are interconnected in a joining direction 16 by material connection, wherein the material connection by a in a joining direction 16 between the partial bodies 12, 12', 14, 14 ' arranged joining layer 18, 18 'is brought about.
  • the first partial body 12, which is shown at the bottom in FIG. 1, consists of a substrate in silicon carbide (SiC) plate form.
  • the joining layer 18 above the first part body 12 is formed by a sintered material made entirely of sintered silver. Parallel to a plane which is arranged perpendicular to the joining direction 16, the second partial body 14 designed as a silicon-based semiconductor layer is provided.
  • the second composite body 10 ' is formed identically to the first composite body 10. Nevertheless, by manufacturing tolerances between the two composite bodies 10, 10 'in the arranged state, a height difference 20, which in the
  • Fig. 1 is exaggerated for clarity.
  • FIG. 2 shows a schematic, lateral view of a sintering device according to the invention for producing the composite bodies 10, 10 '.
  • the sintering apparatus comprises a substantially gastight sealable sintering chamber 22 having an interior 24 defined by chamber walls 26, a bottom member 28, a ceiling member 30, and a door, not shown, arranged parallel to the plane of the drawing in a closed state and provided for the sintering chamber 22 gastight to close, is limited.
  • the sintering chamber 22 has a gas-impermeable space divider 32, which is materially connected on both sides and on a longitudinal side facing away from the door with the chamber walls 26 by welds and the sintering chamber 22 into a first, lower subspace 36 and a second, upper subspace 38 divides.
  • the space divider 32, as well as the door-facing edges of the chamber walls 26, are provided with sealing elements which are integrally formed and form a sealing unit 40.
  • the chamber wall 26 opposite the door in a closed state has, in an upper region of the first subspace 36, a gas-permeable connection 42 between the sintering chamber 22 and a space surrounding the sintering device, which space serves to exchange the air.
  • a vacuum pump (not shown) and a ventilation valve (not shown) are installed on the connecting piece.
  • the sintering device further comprises a combined heating / cooling device 44, which is arranged on the bottom element 28 within the first subspace 36 and forms on its inner side 24 of the sintering chamber 22 side facing a support surface 46, which for storing the sintered, arranged composite bodies 10, 10 'serves.
  • the heating / cooling device 44 is provided to increase a temperature in the first compartment 36 and in particular a temperature of arranged on the shelf 46, arranged composite body 10, 10 'to a predetermined sintering temperature between 100 ° C and 350 ° C. or a temperature higher than the normal room temperature in the first compartment 36 and the arranged composite body 10,
  • the space divider 32 has a deformable partial element 34, which is arranged in a preferably central area and whose position is relative to the
  • the partial element 34 is formed by an elastically deformable membrane of polytetrafluoroethylene (PTFE) in a rectangular shape, wherein the sides of the rectangle are gas-tightly connected to the space divider 32.
  • PTFE polytetrafluoroethylene
  • the partial element 34 may also be formed by an elastically deformable membrane of a silicone elastomer.
  • the sub-element 34 is reversible relative to the chamber walls 26 reversibly by a maximum of 5 mm deflected.
  • the partial body 12, 14 and arranged in the joining direction 16 between the two partial bodies 12, 14, unsintered joining layer 18 are first arranged in the manner shown in FIG. 1 to the arranged composite body 10.
  • the arranged composite body 10 is placed on the support surface 46 in the first subspace 36 in the immediate vicinity, at a minimum distance of about 2 mm below the elastically deformable subelement 34 of the space divider 32.
  • a separating element 48 formed by a thin PTFE film for separating the arranged composite bodies 10, 10 'and the space divider 32 is placed on the arranged composite bodies 10, 10'.
  • the door of the sintering apparatus is closed and a positive air pressure difference between the second subspace 38 and the first subspace 36 is established by lowering the air pressure in the first subspace 36 by the vacuum pump to a value below an ambient air pressure value.
  • the air pressure in the first subspace 36 By lowering the air pressure to a value of 1 mbar, the elastically deformable subelement 34 is uniformly deformed in the direction of the first subspace 36 (shown in dashed lines in FIG. 2) and comes into abutment with the composite bodies 10 arranged below the subelement 34. 10 'on the thus despite the existing height difference 20 a uniform surface pressure is applied.
  • positive air pressure difference between the second subspace 38 and the first subspace 36 is activated by activation of a heating element of the heating / cooling device 44, the temperature of the arranged composite body 10, 10 'to a predetermined temperature as the sintering temperature and for a predetermined time Sintering process maintained.
  • the surface pressure on the disposed composites 10, 10 ' is maintained because both elongation of the composites 10, 10' during an initial increase in temperature to the sintering temperature and shrinkage of the composites 10, 10 'by a thickness change of the bonding layer 18, 18 'during the
  • the heating element of the heating / cooling device 44 is deactivated and a cooling element of the heating / cooling Direction 44 is activated to lower the temperature of the now completed composite body 10, 10 'in a predetermined time to room temperature.
  • the cooling element of the heating / cooling device 44 Upon reaching the room temperature, the cooling element of the heating / cooling device 44 is deactivated and the air pressure in the first subspace 36 is determined by means of the
  • Ventilation valve adapted to the ambient air pressure.
  • the elastically deformable sub-element 34 deforms in a reversible manner back to its original position and stands out from the composite bodies 10, 10 ', so that the surface pressure on the composite bodies 10, 10' is repealed. Thereafter, the door of the sintering device can be opened and the completed

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Verbundkörpers (10), insbesondere eines Verbundkörpers (10) zum Aufbau eines elektronischen Bauelements, der in einem fertiggestellten Zustand zumindest zwei stoffschlüssig miteinander verbundene Teilkörper (12, 14) umfasst, wobei der Stoffschluss durch zumindest eine in einer Fügerichtung (16) zwischen den Teilkörpern (12, 14) angeordnete Fügeschicht (18) herbeigeführt ist, die von einem gesinterten Werkstoff gebildet ist, gekennzeichnet durch folgende Schritte: a) Erstellen einer Anordnung der zumindest zwei Teilkörper (12, 14) und der in der Fügerichtung (16) zwischen den zumindest zwei Teilkörpern (12, 14) angeordneten, zumindest einen ungesinterten Fügeschicht (18) zu einem angeordneten Verbundkörper (10), b) Platzieren des angeordneten Verbundkörpers (10) in einen ersten Teilraum (36) einer im Wesentlichen gasdicht verschließbaren Sinterkammer (22) mit Kammerwänden (26) und einem im Wesentlichen gasundurchlässigen Raumteiler (32), der die Sinterkammer (22) in den ersten Teilraum (36) und zumindest einen zweiten Teilraum (38) aufteilt, in unmittelbarer Nähe des Raumteilers (32), wobei der Raumteiler (32) zumindest ein verformbares Teilelement (34) aufweist, dessen Position relativ zu den Kammerwänden (26) veränderbar ist, c) Herstellen einer positiven Raumdruckdifferenz zwischen dem zweiten Teilraum (38) und dem ersten Teilraum (36), und d) Erhitzen des angeordneten Verbundkörpers (10) zumindest bis auf eine als Sintertemperatur vorbestimmte Temperatur. Weiterhin betrifft die Erfindung eine Sintervorrichtung zur Herstellung eines derartigen Verbund körpers (10).

Description

Beschreibung
Titel
Verfahren zur Herstellung eines Verbundkörpers mit gesinterter Fügeschicht und Sintervorrichtung zur Herstellung eines derartigen Verbund körpers
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Verbundkörpers gemäß dem Gegenstand des unabhängigen Anspruchs 1 sowie eine Sintervorrichtung zur Herstellung eines derartigen Verbundkörpers gemäß dem unabhängigen Anspruch 6.
Stand der Technik Verbundkörper mit den Merkmalen des Oberbegriffs des Anspruchs 1 finden
Anwendung auf dem Gebiet der Leistungselektronik, beispielsweise bei IGBTs (insulated-gate bipolar transistor), wobei versucht wird, Anforderungen an einen dauerhaften Verbund von Teilkörpern des Verbundkörpers hinsichtlich einer Erhöhung einer zulässigen maximalen Betriebstemperatur und einer angestreb- ten Erhöhung einer Anzahl von Temperaturzyklen zur Verlängerung der Lebensdauer eines elektronischen Bauelements durch zumindest eine Fügeschicht zu erfüllen, die durch einen Sintervorgang herstellbar ist. Derartige Verbundkörper, bei denen eine gesinterte Fügeschicht aus einer Silbersinterpaste hergestellt ist, werden beispielsweise in der deutschen Patentschrift DE 10 2007 046 901 A1 beschrieben. Zur Herstellung einer Sinterverbindung wird ein pastenförmiger
Ausgangswerkstoff, umfassend leicht zersetzbare Silberverbindungen sowie Silberflocken oder Nanosilber, als Fügeschicht verwendet. Bei einer Temperaturbehandlung des Ausgangswerkstoffs unter 300°C zersetzen sich die Silberverbindungen unter Ausbildung des elementaren Silbers und bilden zusammen mit den Silberflocken und dem Nanosilber die Sinterverbindung aus. Der Sintervor- gang erfolgt dabei unter Beaufschlagung mit gegenüber den Standardbedingungen erhöhtem Druck.
Offenbarung der Erfindung
Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung eines Verbundkörpers, insbesondere eines Verbundkörpers zum Aufbau eines elektro- nischen Bauelements, der in einem fertiggestellten Zustand zumindest zwei stoffschlüssig miteinander verbundene Teilkörper umfasst, wobei der Stoffschluss durch zumindest eine in einer Fügerichtung zwischen den Teilkörpern angeordnete Fügeschicht herbeigeführt ist. Unter einer "Fügerichtung" soll in diesem
Zusammenhang insbesondere die relative Richtung verstanden werden, in der zusammenzufügende Teile unmittelbar vor einer Zusammenfügung gegeneinander bewegt werden. Die Teilkörper können beispielsweise von Trägersubstraten oder von Funktionsschichten aus Halbleitermaterialien gebildet sein, die aus der Herstellung von elektronischen Bauelementen bekannt sind. Es wird vorgeschlagen, dass das Verfahren folgende Schritte umfasst:
a) Erstellen einer Anordnung der zumindest zwei Teilkörper und der in der Fügerichtung zwischen den zumindest zwei Teilkörpern angeordneten, zumindest einen ungesinterten Fügeschicht zu einem angeordneten Verbundkörper, b) Platzieren des angeordneten Verbundkörpers in einen ersten Teilraum einer im Wesentlichen gasdicht verschließbaren Sinterkammer mit Kammerwänden und einem im Wesentlichen gasundurchlässigen Raumteiler, der die Sinterkammer in den ersten Teilraum und zumindest einen zweiten Teilraum aufteilt, in unmittelbarer Nähe des Raumteilers, wobei der Raumteiler zumindest ein verformbares Teilelement aufweist, dessen Position durch eine Druckdifferenz zwischen dem ersten und dem zweiten Teilraum (36, 38) relativ zu den Kammerwänden veränderbar ist,
c) Herstellen einer positiven Luftdruckdifferenz zwischen dem zweiten Teilraum und dem ersten Teilraum, und
d) Erhitzen des angeordneten Verbundkörpers zumindest bis auf eine als Sintertem- peratur vorbestimmte Temperatur. Dadurch kann insbesondere bei angeordneten Verbundkörpern, die eine dem Raumteiler zugewandte Außenfläche mit zumindest zwei Teilflächen umfasst, die nach dem Platzieren des angeordneten Verbund körpers im ersten Teilraum in Bezug auf den Raumteiler unterschiedlich beabstandet sind, eine gleichmäßige Flächenpressung auf die zumindest zwei Teilflächen ermöglicht werden. Ferner kann in diesen Fällen eine
Zeitersparnis durch Vermeidung von ansonsten notwendigen, aufwändigen Ausgleichsaufbauten erreicht werden.
Weiterhin können bei mehreren angeordneten Verbundkörper unvermeidlicherweise auftretende Höhentoleranzen ausgeglichen und eine gleichmäßige Flächenpressung auf angeordnete Verbundkörper mit leicht unterschiedlicher Höhe erreicht werden, wodurch eine gleichzeitige Herstellung mehrerer Verbundkörper in einem Sintervorgang ermöglicht werden kann. Das verformbare Teilelement kann insbesondere auch irreversibel verformbar ausgebildet sein.
Unter positiver Luftdruckdifferenz ist zu verstehen, dass im zweiten Teilraum ein im Vergleich zum ersten Teilraum der Sinterkammer erhöhter Luftdruck vorliegt, sodass auf Grund der Druckdifferenz das verformbare Teilelement in Richtung des ersten Teilraums verformt wird.
Weiterhin wird vorgeschlagen, dass die positive Luftdruckdifferenz zwischen dem zweiten Teilraum und dem ersten Teilraum dadurch hergestellt wird, dass der
Luftdruck im ersten Teilraum auf einen Wert unterhalb eines Umgebungsluftdruckwerts abgesenkt wird. Unter einem„Umgebungsluftdruckwert" soll in
diesem Zusammenhang ein Luftdruck verstanden werden, der außerhalb der gasdicht verschließbaren Sinterkammer herrscht. Dadurch kann eine Reduzierung von Anzahl und Größe von Makroporen in der gesinterten Fügeschicht erreicht werden. Zusätzlich oder alternativ ist es möglich, dass der Luftdruck im zweiten Teilraum auf einen Wert oberhalb eines Umgebungsluftdruckwertes erhöht wird.
Wenn der angeordnete Verbundkörper im ersten Teilraum unterhalb des Teilelements angeordnet wird, ist eine Beaufschlagung mit einer gleichmäßigen
Flächenpressung in besonders einfacher Weise ermöglicht, bei der eine Gefahr einer unbeabsichtigten Verschiebung der Teilkörper des angeordneten Verbundkörpers in einem Zeitraum zwischen dem Platzieren des angeordneten Verbundkörpers und dem Erhitzen gering gehalten werden kann. Ferner wird vorgeschlagen, dass die Schritte a) und b) zu einer Herstellung
zumindest zweier angeordneter Verbundkörper zumindest zweifach durchgeführt werden, bevor die Schritte c) und d) ausgeführt werden. Dadurch können zwei oder mehr angeordnete Verbundkörper in einem Herstellvorgang hergestellt werden, ohne dass aufwändige Ausgleichsaufbauten zum Ausgleich einer durch Fertigungstoleranzen potentiell vorhandenen Abstandsdifferenz in Bezug auf das
Teilelement erstellt werden müssen. Insbesondere können dadurch auch strukturell unterschiedliche angeordnete Verbundkörper mit unterschiedlichen Bauhöhen in einem Herstellvorgang hergestellt werden. Des Weiteren wird vorgeschlagen, dass anschließend an den Schritt b) ein
Trennelement zwischen den angeordneten Verbundkörpern und dem Raumteiler angeordnet wird. Vorteilhaft kann das Trennelement geringe Adhäsion gegenüber anderen Materialien aufweisen. Dadurch kann ein Anhaften der Verbundkörper an dem Teilelement an einem Ende eines Herstellvorgangs vermieden werden. Bevorzugt ist das Trennelement im Wesentlichen aus Polytetrafluor- ethylen (PTFE) hergestellt. Grundsätzlich kann das Trennelement aber auch aus einem anderen, dem Fachmann für diesen Zweck geeignet erscheinenden Material hergestellt und beispielsweise von einer Matte aus einem Silikonelastomer gebildet sein.
Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Sintervorrichtung zur Herstellung eines Verbundkörpers, insbesondere eines Verbund körpers zum Aufbau eines elektronischen Bauelements, nach einem der aus- und weitergestalteten, vorteilhaften Verfahren.
Die Sintervorrichtung umfasst:
eine im Wesentlichen gasdicht verschließbare Sinterkammer mit Kammerwänden, einen im Wesentlichen gasundurchlässigen Raumteiler, das die Sinterkammer in einen ersten Teilraum und zumindest einen zweiten Teilraum aufteilt,
- zumindest eine gasdurchlässige Verbindung zwischen der Sinterkammer und einem die Sintervorrichtung umgebenden Raum zum Luftaustausch, zumindest eine Heizvorrichtung zur Erhöhung einer Temperatur zumindest eines der Teilräume auf eine als Sintertemperatur vorbestimmte Temperatur, wobei der Raumteiler zumindest ein Teilelement aufweist, dessen Position durch eine Raumdruckdifferenz zwischen dem ersten und dem zweiten Teilraum (36, 38) relativ zu den Kammerwänden veränderbar ist.
Unter "im Wesentlichen gasdicht" und„im Wesentlichen gasundurchlässig" soll in diesem Zusammenhang insbesondere verstanden werden, dass das Objekt die beschriebene Eigenschaft in idealer Ausprägung aufweisen soll, jedoch eine in einer praktischen Ausgestaltung durch Unvollkommenheiten stets vorhandene
Leckage und Gasdurchlässigkeit aufweisen darf.
In einer vorteilhaften Ausgestaltung der Sintervorrichtung ist das verformbare Teilelement elastisch verformbar ausgebildet. Unter "elastisch verformbar" soll in diesem Zusammenhang insbesondere verstanden werden, dass eine Luftdruckdifferenz zwischen den beiden Seiten des Teilelements eine maximale, reversible Verformung des Teilelements von vorteilhaft zumindest 2 mm, bevorzugt von mehr als 4 mm und, besonders bevorzugt, von mehr als 5 mm hervorruft.
Dadurch können auf konstruktiv einfache Weise Toleranzen von angeordneten Verbundkörpern ausgeglichen und gleichmäßige Flächenpressungen auf die angeordneten Verbundkörper während des Herstellvorgangs trotz unterschiedlicher Abstände zum Teilelement nach Platzieren der angeordneten Verbundkörper in dem ersten Teilraum erreicht werden. Derselbe Vorteil kann erzielt werden, wenn das verformbare Teilelement biegeweich ausgebildet ist. Unter einem "biegeweichen Objekt" soll in diesem Zusammenhang insbesondere ein Objekt verstanden werden, dass ausgehend von einem kräftefrei angeordneten Zustand in einer Richtung, die senkrecht zu Haupterstreckungsrichtungen des Objekts angeordnet ist, keine mechanischen Kräfte aufnehmen kann. Ein biegeweiches, flächiges Objekt beispielsweise, bei dem Haupterstreckungsrichtungen durch Abmessungen des Objekts in zwei nicht-parallelen, in der Fläche liegenden Richtungen gegeben sind, kann in einer Richtung senkrecht zur Fläche keine Kräfte aufnehmen, so dass es sich bei Anwendung einer solcherart gerichteten Kraft sofort irreversibel verformt. Das biegeweich ausgebildete Teilelement kann beispielsweise als ungespannt befestigte Folie ausgebildet sein. Grundsätzlich ist es möglich, insbesondere im zweiten Teilraum, alternativ zu Luft ein beliebiges gasförmiges oder flüssiges Medium vorzusehen und durch eine Druckbeaufschlagung eine positive Raumdruckdifferenz zwischen dem ersten und dem zweiten Teilraum auszubilden.
Folglich ist für die Sintervorrichtung eine Druck erhöhende und/oder Druck vermindernde Vorrichtung vorzusehen. Zeichnung
Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In der Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt. Die Zeichnung, die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in Kombina- tion. Der Fachmann wird die Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen.
Es zeigen: Fig. 1 eine schematisierte Darstellung eines Verbundkörpers in einer Seitenansicht, und
Fig. 2 eine schematische, seitliche Schnittansicht einer erfindungsgemäßen Sintervorrichtung mit angeordneten Verbundkörpern gemäß der Fig. 1. Beschreibung des Ausführungsbeispiels
Fig. 1 zeigt einen schematisierten Aufbau zweier Verbundkörper 10, 10', die zum Aufbau von elektronischen Bauelementen Verwendung finden, in einem fertiggestellten Zustand in einer Seitenansicht. Jeder der Verbundkörper 10, 10' umfasst zwei Teilkörper 12, 12', 14, 14'. Die Teilkörper 12, 12', 14, 14' jedes der beiden Verbundkörper 10, 10' sind in einer Fügerichtung 16 durch Stoffschluss miteinander verbunden, wobei der Stoffschluss durch eine in einer Fügerichtung 16 zwischen den Teilkörpern 12, 12', 14, 14' angeordnete Fügeschicht 18, 18' herbeigeführt ist. Der erste Teilkörper 12, der in der Fig. 1 zuunterst dargestellt ist, besteht aus einem Substrat in Plattenform aus Siliziumkarbid (SiC). Die Fügeschicht 18 oberhalb des ersten Teilkörpers 12 ist von einem gesinterten Werkstoff gebildet, der vollständig aus gesintertem Silber besteht. Parallel zu einer Ebene, die senkrecht zur Fügerichtung 16 angeordnet ist, ist der als Halbleiterschicht auf Siliziumbasis ausgebildete zweite Teilkörper 14 vorgesehen.
Der zweite Verbundkörper 10' ist identisch zum ersten Verbundkörper 10 ausgebildet. Durch Fertigungstoleranzen besteht dennoch zwischen den beiden Ver- bundkörpern 10, 10' im angeordneten Zustand eine Höhendifferenz 20, die in der
Fig. 1 zur Verdeutlichung übertrieben dargestellt ist.
Fig. 2 zeigt eine schematische, seitliche Ansicht einer erfindungsgemäßen Sintervorrichtung zur Herstellung der Verbundkörper 10, 10'. Die Sintervorrichtung umfasst eine im Wesentlichen gasdicht verschließbare Sinterkammer 22 mit einem Innenraum 24, der von Kammerwänden 26, einem Bodenelement 28, einem Deckenelement 30 und von einer nicht dargestellten Tür, die in einem geschlossenen Zustand parallel zur Zeichenebene angeordnet und dazu vorgesehen ist, die Sinterkammer 22 gasdicht zu verschließen, begrenzt ist.
Die Sinterkammer 22 weist einen gasundurchlässigen Raumteiler 32 auf, der an beiden Seiten und an einer der Tür abgewandten Längsseite mit den Kammerwänden 26 durch Schweißverbindungen stoffschlüssig verbunden ist und die Sinterkammer 22 in einen ersten, unteren Teilraum 36 und einen zweiten, oberen Teilraum 38 aufteilt. An einer der Tür zugewandten Kante ist der Raumteiler 32, ebenso wie der Tür zugewandte Kanten der Kammerwände 26, mit Dichtungselementen ausgestattet, die einstückig geformt sind und eine Dichtungseinheit 40 ausbilden.
Die der Tür in einem geschlossenen Zustand gegenüberliegende Kammerwand 26 weist in einem oberen Bereich des ersten Teilraums 36 eine von einer Durchführung mit außen liegendem Anschlussstutzen gebildete gasdurchlässige Verbindung 42 zwischen der Sinterkammer 22 und einem die Sintervorrichtung umgebenden Raum auf, die zum Luftaustausch dient. In einem Betriebszustand der Sintervorrichtung sind an dem Anschlussstutzen eine (nicht dargestellte) Vaku- umpumpe und ein (nicht dargestelltes) Belüftungsventil installiert. Die Sintervorrichtung umfasst ferner eine kombinierte Heiz-/Kühlvorrichtung 44, die am Bodenelement 28 innerhalb des ersten Teilraums 36 angeordnet ist und an ihrer dem Innenraum 24 der Sinterkammer 22 zugewandten Seite eine Ablagefläche 46 ausbildet, die zur Ablage der zu sinternden, angeordneten Ver- bundkörpern 10, 10' dient. Die Heiz-/Kühlvorrichtung 44 ist dazu vorgesehen, eine Temperatur in dem ersten Teilraum 36 und insbesondere eine Temperatur von auf der Ablagefläche 46 befindlichen, angeordneten Verbundkörper 10, 10' auf eine als Sintertemperatur vorbestimmte Temperatur zwischen 100°C und 350°C zu erhöhen oder eine gegenüber der normalen Raumtemperatur erhöhte Temperatur in dem ersten Teilraum 36 und der angeordneten Verbundkörper 10,
10' zu erniedrigen. Dem Fachmann sind dazu geeignete Vorrichtungen geläufig, so dass an dieser Stelle darauf nicht näher eingegangen wird.
Des Weiteren weist der Raumteiler 32 ein in einem bevorzugt zentralen Bereich angeordnetes, verformbares Teilelement 34 auf, dessen Position relativ zu den
Kammer-wänden 26 veränderbar ist. Das Teilelement 34 ist von einer elastisch verformbaren Membran aus Polytetrafluorethylen (PTFE) in Rechteckform gebildet, wobei die Seiten des Rechtecks gasdicht mit dem Raumteiler 32 verbunden sind. Alter-nativ kann das Teilelement 34 auch von einer elastisch verformbaren Membran aus einem Silikonelastomer gebildet sein. Durch
Beaufschlagung mit einer Flächenpressung von 0,1 MPa ist das Teilelement 34 relativ zu den Kammerwänden 26 reversibel um maximal 5 mm auslenkbar.
Zur Herstellung des Verbund körpers 10 werden zunächst in der in der Fig. 1 dargestellten Weise die Teilkörper 12, 14 und die in der Fügerichtung 16 zwischen den zwei Teilkörpern 12, 14 angeordnete, ungesinterte Fügeschicht 18 zu dem angeordneten Verbundkörper 10 angeordnet.
Anschließend wird der angeordnete Verbundkörper 10 auf der Ablagefläche 46 im ersten Teilraum 36 in unmittelbarer Nähe, in einem minimalen Abstand von etwa 2 mm unterhalb des elastisch verformbaren Teilelements 34 des Raumteilers 32 platziert.
Diese beiden Vorgänge werden wiederholt, bis eine gewünschte Anzahl angeordneter Verbundkörper 10, 10' unterhalb des elastisch verformbaren Teilelements 34 platziert ist. In einem nächsten Schritt wird ein von einer dünnen PTFE-Folie gebildetes Trennelement 48 zur Trennung der angeordneten Verbundkörper 10, 10' und des Raumteilers 32 auf die angeordneten Verbundkörper 10, 10' gelegt.
Dann wird die Tür der Sintervorrichtung geschlossen und eine positive Luftdruckdifferenz zwischen dem zweiten Teilraum 38 und dem ersten Teilraum 36 dadurch hergestellt, dass der Luftdruck im ersten Teilraum 36 mittels der Vakuumpumpe auf einen Wert unterhalb eines Umgebungsluftdruckwerts abgesenkt wird. Durch eine Absenkung des Luftdrucks auf einen Wert von 1 mbar wird das elastisch verformbare Teilelement 34 gleichmäßig in Richtung des ersten Teilraums 36 verformt (in der Fig. 2 gestrichelt dargestellt) und gelangt in Anlage mit den unterhalb des Teilelements 34 platzierten, angeordneten Verbundkörpern 10, 10' auf die dadurch trotz der vorhandenen Höhendifferenz 20 eine gleichmäßige Flächenpressung ausgeübt wird.
Nach Erreichen der vorbestimmten, positiven Luftdruckdifferenz zwischen dem zweiten Teilraum 38 und dem ersten Teilraum 36 wird durch Aktivierung eines Heizelements der Heiz-/Kühlvorrichtung 44 die Temperatur der angeordneten Verbundkörper 10, 10' auf eine als Sintertemperatur vorbestimmte Temperatur erhöht und für eine vorbestimmte Zeit eines Sintervorgangs aufrechterhalten.
Während des Sinterungsvorgangs bleibt die Flächenpressung auf die angeordneten Verbundkörper 10, 10' erhalten, da sowohl eine Längenausdehnung der Verbundkörper 10, 10' während einer anfänglichen Erhöhung der Temperatur auf die Sintertemperatur als auch eine Schrumpfung der Verbundkörper 10, 10' durch eine Dickenveränderung der Fügeschicht 18, 18' während des
Sintervorgangs durch das elastisch verformbare Teilelement 34 ausgeglichen wird.
Durch den gegenüber dem normalen Luftdruck abgesenkten Luftdruck im ersten Teilraum 36 wird eine Reduzierung von Makroporen innerhalb der gesinterten Fügeschicht 18, 18' erreicht.
Nach Ablauf der für den Sintervorgang vorbestimmten Zeit wird das Heizelement der Heiz-/Kühlvorrichtung 44 deaktiviert und ein Kühlelement der Heiz-/Kühlvor- richtung 44 aktiviert, um die Temperatur der nunmehr fertiggestellten Verbundkörper 10, 10' in einer vorbestimmten Zeit auf die Raumtemperatur abzusenken.
Bei Erreichen der Raumtemperatur wird das Kühlelement der Heiz-/Kühlvorrich- tung 44 deaktiviert und der Luftdruck im ersten Teilraum 36 wird mittels des
Belüftungsventils an den Luftdruck der Umgebung angeglichen. Dadurch verformt sich das elastisch verformbare Teilelement 34 in reversibler Weise in seine Ausgangslage zurück und hebt sich von den Verbundkörpern 10, 10' ab, so dass die Flächenpressung auf den Verbundkörpern 10, 10' aufgehoben ist. Danach kann die Tür der Sintervorrichtung geöffnet und die fertiggestellten
Verbundkörper 10, 10' können entnommen werden.

Claims

Ansprüche
Verfahren zur Herstellung eines Verbundkörpers (10, 10'), insbesondere eines Verbundkörpers (10, 10') zum Aufbau eines elektronischen
Bauelements, der in einem fertiggestellten Zustand zumindest zwei
stoffschlüssig miteinander verbundene Teilkörper (12, 12', 14, 14') umfasst, wobei der Stoffschluss durch zumindest eine in einer Fügerichtung (16) zwischen den Teilkörpern (12, 12', 14, 14') angeordnete Fügeschicht (18,
18') herbeigeführt wird, die von einem gesinterten Werkstoff gebildet wird, gekennzeichnet durch folgende Schritte:
a) Erstellen einer Anordnung der zumindest zwei Teilkörper (12, 12', 14, 14') und der in der Fügerichtung (16) zwischen den zumindest zwei Teilkörpern (12, 12', 14, 14') angeordneten, zumindest einen ungesinterten Fügeschicht (18, 18') zu einem angeordneten Verbundkörper (10, 10'),
b) Platzieren des angeordneten Verbundkörpers (10, 10') in einen ersten
Teilraum (36) einer im Wesentlichen gasdicht verschließbaren Sinterkammer (22) mit Kammerwänden (26) und einem im Wesentlichen gasundurchlässigen Raumteiler (32), der die Sinterkammer (22) in den ersten Teilraum (36) und zumindest einen zweiten Teilraum (38) aufteilt, in unmittelbarer Nähe des Raumteilers (32), wobei der Raumteiler (32) zumindest ein verformbares Teilelement (34) aufweist, dessen Position durch eine Druckdifferenz zwischen dem ersten und dem zweiten Teilraum (36, 38) relativ zu den Kammerwänden (26) veränderbar ist,
c) Herstellen einer positiven Raumdruckdifferenz zwischen dem zweiten
Teilraum (38) und dem ersten Teilraum (36), und
d) Erhitzen des angeordneten Verbundkörpers (10, 10') zumindest bis auf eine als Sintertemperatur vorbestimmte Temperatur.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die positive
Raumdruckdifferenz zwischen dem zweiten Teilraum (38) und dem ersten
Teilraum (36) dadurch hergestellt wird, dass der Luftdruck im ersten Teilrau auf einen Wert unterhalb eines Umgebungsluftdruckwerts abgesenkt wird und/oder der Luftdruck im zweiten Teilraum (38) auf einen Wert oberhalb eines
Umgebungsluftdruckes erhöht wird.
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der angeordnete Verbundkörper (10, 10') im ersten Teilraum (36) unterhalb des Teilelements (34) angeordnet wird.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schritte a) und b) zu einer Herstellung zumindest zweier angeordneter Verbundkörper (10, 10') zumindest zweifach durchgeführt werden, bevor die Schritte c) und d) ausgeführt werden.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass anschließend an den Schritt b) ein Trennelement (48) zwischen den angeordneten Verbundkörpern (10, 10') und dem Raumteiler (32) angeordnet wird.
Sintervorrichtung zur Herstellung eines Verbundkörpers (10, 10'), insbesondere eines Verbundkörpers (10, 10') zum Aufbau eines elektronischen Bauelements, nach einem der Verfahren nach einem der Ansprüche 1 bis 5, umfassend:
eine im Wesentlichen gasdicht verschließbare Sinterkammer (22) mit die Sinterkammer (22) begrenzenden Kammerwänden (26),
einen im Wesentlichen gasundurchlässigen Raumteiler (32), der die Sinterkammer (22) in einen ersten Teilraum (36) und zumindest einen zweiten Teilraum (38) aufteilt,
eine Druck erhöhende und/oder Druck vermindernde Vorrichtung zur
Ausbildung einer positiven Raumdruckdifferenz zwischen dem ersten und dem zweiten Teilraum,
zumindest eine Heizvorrichtung (44) zur Erhöhung einer Temperatur in zumindest einem der Teilräume (36, 38) auf eine als Sintertemperatur vorbestimmte Temperatur, wobei der Raumteiler (32) zumindest ein verformbares Teilelement (34) aufweist, dessen Position durch eine Raumdruckdifferenz zwischen dem ersten und dem zweiten Teilraum (36, 38) relativ zu den Kammerwänden (26) veränderbar ist. Sintervorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass das verformbare Teilelement (34) elastisch verformbar ausgebildet ist.
Sintervorrichtung nach zumindest einem der Ansprüche 6 oder 7, gekennzeichnet durch ein Trennelement (48) zur Trennung der angeordneten Verbundkörper (10) und des Raumteilers (32).
PCT/EP2012/075048 2012-01-03 2012-12-11 Verfahren zur herstellung eines verbundkörpers mit gesinterter fügeschicht und sintervorrichtung zur herstellung eines derartigen verbundkörpers WO2013102534A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12816024.9A EP2801106A1 (de) 2012-01-03 2012-12-11 Verfahren zur herstellung eines verbundkörpers mit gesinterter fügeschicht und sintervorrichtung zur herstellung eines derartigen verbundkörpers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012200034A DE102012200034A1 (de) 2012-01-03 2012-01-03 Verfahren zur Herstellung eines Verbundkörpers mit gesinterter Fügeschicht und Sintervorrichtung zur Herstellung eines derartigen Verbundkörpers
DE102012200034.8 2012-01-03

Publications (1)

Publication Number Publication Date
WO2013102534A1 true WO2013102534A1 (de) 2013-07-11

Family

ID=47561535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/075048 WO2013102534A1 (de) 2012-01-03 2012-12-11 Verfahren zur herstellung eines verbundkörpers mit gesinterter fügeschicht und sintervorrichtung zur herstellung eines derartigen verbundkörpers

Country Status (3)

Country Link
EP (1) EP2801106A1 (de)
DE (1) DE102012200034A1 (de)
WO (1) WO2013102534A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352629A (en) * 1993-01-19 1994-10-04 General Electric Company Process for self-alignment and planarization of semiconductor chips attached by solder die adhesive to multi-chip modules
JP2000195903A (ja) * 1998-12-25 2000-07-14 Sony Chem Corp 電子部品接続体の製造方法及びその製造装置
US6172878B1 (en) * 1997-12-27 2001-01-09 Canon Kabushiki Kaisha Multi-element module and production process thereof
DE102007046901A1 (de) 2007-09-28 2009-04-09 W.C. Heraeus Gmbh Verfahren und Paste zur Kontaktierung von Metallflächen
US20090206456A1 (en) * 2008-02-14 2009-08-20 Infineon Technologies Ag Module including a sintered joint bonding a semiconductor chip to a copper surface
DE102010020696A1 (de) * 2010-05-17 2011-11-17 Danfoss Silicon Power Gmbh Verfahren zum NTV-Sintern eines drei-dimensionale Konturen aufweisenden Halbleiterbauelementes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194909A (ja) * 1995-11-07 1997-07-29 Sumitomo Electric Ind Ltd 複合材料およびその製造方法
JP4077181B2 (ja) * 2001-09-27 2008-04-16 本田技研工業株式会社 金属用又はセラミック用接合材及び金属又はセラミックの接合方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352629A (en) * 1993-01-19 1994-10-04 General Electric Company Process for self-alignment and planarization of semiconductor chips attached by solder die adhesive to multi-chip modules
US6172878B1 (en) * 1997-12-27 2001-01-09 Canon Kabushiki Kaisha Multi-element module and production process thereof
JP2000195903A (ja) * 1998-12-25 2000-07-14 Sony Chem Corp 電子部品接続体の製造方法及びその製造装置
DE102007046901A1 (de) 2007-09-28 2009-04-09 W.C. Heraeus Gmbh Verfahren und Paste zur Kontaktierung von Metallflächen
US20090206456A1 (en) * 2008-02-14 2009-08-20 Infineon Technologies Ag Module including a sintered joint bonding a semiconductor chip to a copper surface
DE102010020696A1 (de) * 2010-05-17 2011-11-17 Danfoss Silicon Power Gmbh Verfahren zum NTV-Sintern eines drei-dimensionale Konturen aufweisenden Halbleiterbauelementes

Also Published As

Publication number Publication date
EP2801106A1 (de) 2014-11-12
DE102012200034A1 (de) 2013-07-04

Similar Documents

Publication Publication Date Title
DE102011080929B4 (de) Verfahren zur Herstellung eines Verbundes und eines Leistungshalbleitermoduls
DE102007047698B4 (de) Vorrichtung und Verfahren zum Verbinden von Komponenten
DE102012012711A1 (de) Verfahren zur Herstellung eines Niederdruck- Dünnwandwärmetauschers und Dünnwandwärmetauscher
EP2403630B1 (de) Mikrostrukturierter formkörper mit perforierten teilen und verfahren zu dessen herstellung
EP2401131B1 (de) Mikrostrukturiertes verbundbauteil sowie verfahren und vorrichtung zu dessen herstellung
DE102017120243B4 (de) Verfahren und Vorrichtung zum Applizieren einer Komponente an einem Bauteil mittels eines Manipulators
DE102009046143A1 (de) Verfahren zur Herstellung eines Ultraschallwandlers
DE102011086108A1 (de) Druckausgleichsvorrichtung, Gehäuse und Verfahren zum Herstellen einer Druckausgleichsvorrichtung
WO2013102534A1 (de) Verfahren zur herstellung eines verbundkörpers mit gesinterter fügeschicht und sintervorrichtung zur herstellung eines derartigen verbundkörpers
EP1932405A2 (de) Gehäusesystem für elektronikgeräte
DE102012222376A1 (de) Verfahren für die Herstellung eines Sandwichbauteils für die Verwendung als Strukturbauteil eines Fahrzeugs
DE10134040A1 (de) Verfahren zur Herstellung von mikrofluidischen Hohlstrukturen aus Kunststoff
DE102020210276A1 (de) Mikrofluidische Vorrichtung und Verfahren zu ihrer Herstellung
DE10335492B4 (de) Verfahren zum selektiven Verbinden von mikrostrukturierten Teilen
WO2022229261A1 (de) Vorrichtung und verfahren zum membrankaschieren mit umbug in einem verfahrensschritt
DE10244786A1 (de) Mikromechanisches Bauelement und Verfahren
DE102021134002B3 (de) Vorrichtung und Verfahren zur Drucksinterverbindung
DE102010020930A1 (de) Etagenpresse, Etagenelement einer solchen Etagenpresse und Verfahren zur Herstellung von plattenförmigen Werkstücken mit einer solchen Etagenpresse
EP1558425A2 (de) Vorrichtung und verfahren für das verbinden von objekten
DE102018207858B4 (de) Verfahren und Haltevorrichtung zum Herstellen einer Mikropumpe mit mechanisch vorgespanntem Membranaktor
DE102011000336B4 (de) Verfahren zur Herstellung eines Formteils mittels Tiefziehen
EP3348383B1 (de) Verfahren und vorrichtung zum applizieren einer komponente an einem bauteil mittels eines manipulators
EP3918641B1 (de) Einrichtung und verfahren zur herstellung einer plattenanordnung
EP2596939A2 (de) Formteil und Thermoformverfahren zur Herstellung eines mehrere Schichten aufweisenden Formteils
DE102014117065A1 (de) Vorrichtung und Verfahren zur Herstellung eines Faserverbundwerkstücks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12816024

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012816024

Country of ref document: EP