WO2013102282A1 - 一种航空参数处理设备电源模块的fmis方法 - Google Patents

一种航空参数处理设备电源模块的fmis方法 Download PDF

Info

Publication number
WO2013102282A1
WO2013102282A1 PCT/CN2012/000063 CN2012000063W WO2013102282A1 WO 2013102282 A1 WO2013102282 A1 WO 2013102282A1 CN 2012000063 W CN2012000063 W CN 2012000063W WO 2013102282 A1 WO2013102282 A1 WO 2013102282A1
Authority
WO
WIPO (PCT)
Prior art keywords
power module
circuit
model
component
temperature
Prior art date
Application number
PCT/CN2012/000063
Other languages
English (en)
French (fr)
Inventor
陈颖
张晓秦
曹然
马响
康锐
Original Assignee
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航空航天大学 filed Critical 北京航空航天大学
Publication of WO2013102282A1 publication Critical patent/WO2013102282A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation

Definitions

  • the invention provides an FMIS method for a power module of an aviation parameter processing device, in particular to a power module fault and its influence simulation method for an aviation parameter processing device based on stress simulation and failure mode injection technology, which belongs to the field of product reliability simulation.
  • the aviation parameter processing equipment is an electronic device that records, processes, measures, and alarms the collected aviation flight parameters to monitor the operational status of the aircraft.
  • the function of the power module is to convert the external power supply voltage into the voltage required by other modules in the device to provide power input for the entire device.
  • the power module fixes the two sides of the equipment cabinet through the card slot, the connector and the locking strip.
  • the temperature load and the vibration load during the flight are affected.
  • Some components and connectors may have some states. The change or even failure, such changes or failures will affect the components or components around it, ultimately endangering the reliability and safety of the entire module and even the equipment.
  • the hardware FMEA (Fai lure Modes and Effect Analysis) method currently applied in engineering is to analyze all possible failure modes during the design, manufacture and use of components, components and equipment through the system, and each An analysis method for improving the reliability of a product by finding the cause and effect of the failure mode, finding potential weak links, and proposing improvement measures and design plans.
  • the implementation of this method relies on the experience of engineers and has greater subjectivity. Engineers with less experience may not be able to find key failure modes. It is impossible to accurately estimate these failure modes for their same level, high level and final. The impact of the hierarchy, so that no targeted design improvement measures can be proposed.
  • FMIS Feilure Mode Injection and Injection Simulation
  • the stress simulation method refers to the use of commercial numerical simulation software, such as ANSYS, Flotherm, Nastran, to apply the temperature and vibration load of the device to the digital model of the product, and obtain the response of the device to these loads by computer simulation.
  • the failure mode injection technology uses EDA (Electronic Design Automation) software to inject the failure mode circuit model into the normal circuit simulation model to obtain the electrical performance of each part and final output of the circuit in the failure mode.
  • the FMIS method is a quantitative assist method for performing FMEA. Through the investigation and retrieval of the prior art, there is no report on the research and application of the FMEA method for the aviation parameter processing equipment power module using the FMIS method at home and abroad.
  • the purpose of the present invention is to provide an FMIS method for a power module of an aviation parameter processing device according to the deficiencies of the prior art, which is based on a stress simulation method and a failure mode injection technique to determine a power module failure mode and obtain quantitatively.
  • the circuit output in this failure mode provides a basis for the designer to evaluate the impact of the failure mode and determine its hazard, and also provides a basis for the design improvement of the power module.
  • the present invention is implemented by the following technical solutions, determining key components of a power module, determining potential failure modes of key components, simulating circuit output under normal state of the power module, and simulating circuit output of the power module in a failed state .
  • Step 1 Determine the key components on the power module of the aeronautical parameter processing device (hereinafter referred to as the "power module”). mainly includes:
  • Flotherm is a mature commercial finite integration software whose main function is temperature simulation. mainly includes:
  • the 3D CAD model of the established power module is imported into the Flotherm software through an intermediate format such as IGES, SAT, STEP, etc.
  • the 3D CAD model describes the structural composition and assembly connection relationship of the power module, including the power module and power consumption.
  • the geometry of the components exceeding 0.1 W does not require the geometry of the solder joints of the components.
  • b) Define the temperature distribution simulation material parameters for each part of the power module. It mainly includes: specific heat capacity and thermal conductivity of each component.
  • the temperature load mainly includes the worst ambient temperature and the actual operating power consumption of the component.
  • the worst temperature environmental conditions determined in 1) are applied to the power module model.
  • the actual heat dissipation of the component is divided by the surface area of the component to obtain the surface heat flux density, which is input to the Flotherm software using the Flotherm heat flux application command.
  • Use the Flotherm temperature boundary setting command to set the natural convective heat transfer coefficient of the interface between the element and the air.
  • ANSYS is a mature commercial finite element simulation software for power spectral density simulation. mainly includes: a) Import the 3D CAD model of the power module. Firstly, the 3D CAD model of the established power module is imported into the ANSYS software through an intermediate format, such as IGS, STEP, etc. The 3D CAD model describes the structural composition and assembly connection relationship of the power module, including the power module and the weight greater than 0. The geometry of a 1 gram component does not require the geometry of the component solder joints to be established.
  • b) Define the vibration stress simulation material parameters for each part of the power module. It mainly includes: density, elastic modulus and Poisson's ratio of each component.
  • vibration acceleration power spectral density and boundary conditions mainly includes using ANSYS acceleration power spectral density application command to input the worst vibration acceleration power spectral density value determined in 1) and its corresponding frequency value into the ANSYS software, and apply it to the fixed position of the power module.
  • the direction of application is perpendicular to the mounting direction of the power module.
  • the displacement boundary application command of ANSYS the zero displacement constraint of X, ⁇ , ⁇ is applied to the fixed position of the power module.
  • the integrated circuit is a key component when the surface temperature exceeds 85; if the chip quality level is military grade, then when the simulation When the surface temperature exceeds 100 C, the integrated circuit is a key component; for a resistor, a capacitor, etc., if the connection with the circuit board is surface mount, when the surface temperature exceeds 90, Components are key
  • the components and parts in which the displacement and acceleration root mean square values obtained by the equipment in the vibration simulation are located are designated as key components.
  • Step 2 Determine the failure mode of the critical components. According to the following table 1, the correspondence between the load of the electronic product and the loss and the cause of the failure, the type of load on the key components and components on the power module obtained in the first step is used to determine the possible failure mode.
  • Step 3 Perform transient circuit simulation of the power module under normal conditions. mainly includes:
  • a. Establish the Pspice circuit model of the power module under normal conditions. First, build a model of the components that make up the power module. For circuit models of resistors, capacitors, inductors, partial diodes, partial transistors, etc., a general model can be selected in Pspice's model library, and the corresponding parameters in the general model can be modified according to the actual parameters of the components. For integrated circuit chips and some diodes, transistors and other devices, if the model of the corresponding model cannot be found in the Pspice model library, you can download the corresponding model from the component manufacturer's webpage. After the component model is built, the input and output terminals of each component are connected according to the circuit function relationship to form the Pspice circuit model of the power module.
  • Step 4 Perform transient circuit simulation of the power module in the failed state, including - a. failure mode injection. Inject the failure mode of the key component determined in step 1 into the power module Pspice circuit model established in step 3 (a) to form the circuit mode in the failed state.
  • Type The failure mode injection method of the components is shown in Table 2 below.
  • the technical idea of the present invention is: firstly, the key components of the power module are determined according to the results of the stress simulation, and the failure mode of the key component is determined by using the correspondence between the load and the failure mode, and the Pspice circuit model of the power module is established.
  • the circuit transient simulation obtains the circuit output under the normal state of the power module, establishes the Pspice circuit model under the failure state of the power module, and obtains the circuit output under the failure state of the power module by performing circuit transient simulation.
  • the FMIS method of the power module of the aviation parameter processing equipment based on the stress simulation and the failure mode injection technology can obtain the failure mode of the power module and the output state of the circuit under the failure in the early stage of design, thereby facilitating the designer. Evaluate the impact of this failure mode and take targeted design improvements to avoid failures.
  • the present invention has the following advantages:
  • the stress simulation method can provide engineers with quantitative stress distribution status in the design stage, which can locate key components more accurately, and can save test cost and shorten equipment development cycle. Use the failure mode injection technique to obtain the output of the power module in the failed state.
  • the failure modes of components usually have three conditions: short circuit, open circuit, and parameter drift.
  • the failure mode injection technique provides a method for quantitatively simulating the output of a power module in a failed state. The designer can compare the output in normal and failed states to accurately describe the impact of the failure mode.
  • FIG. 1 is a block flow diagram of a method of the present invention.
  • FIG. 2 is a schematic structural view of a power module of an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a Pspice model of a power module according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of two-way voltage output in a normal state of a power module according to an embodiment of the present invention.
  • Fig. 5 is a schematic view showing the Pspice model of the power module of the embodiment of the present invention after the short circuit of the injection resistor R12.
  • FIG. 6 is a schematic diagram of a Pspice model of a power module of the embodiment of the present invention after the parameter of the injection resistor R12 is drifted.
  • Fig. 7 is a schematic view showing the two-way voltage output of the power module of the embodiment of the present invention in the short-circuit state of the resistor R12.
  • FIG. 8 is a schematic diagram of two voltage outputs of a power module of the embodiment of the present invention in a state in which a resistance R12 parameter drifts.
  • Pspice in Figure 1 is a commonly used commercial electronic design automation software.
  • the LM193 in Figures 3, 5, and 6 is the type of op amp and is an integrated circuit device.
  • Outl in Figures 4, 7, and 8 is the first output, or output 1; out2 is the second output. Or called output 2.
  • FIG. 1 mainly includes determining key components of the power module, determining potential failure modes of the key components, transient circuit simulation under normal state of the power module, and failure state of the power module.
  • Transient circuit simulation The structure of the power module is shown in Figure 2. It mainly includes circuit boards, plastic integrated circuit chips, ceramic integrated circuit chips, chip resistors, cartridge resistors, and capacitors.
  • FIG. 1 is a FMIS method of a power module of an aviation parameter processing device, and the specific steps of the method are as follows:
  • Step 1 Determine the key components on the power module of the aviation parameter processing equipment (hereinafter referred to as the “power module”). mainly includes:
  • U4 is a military-grade integrated circuit chip with a case temperature exceeding 100; R12 is a military grade surface mount resistor with a case temperature exceeding 90" C. Therefore, U4 and R12 are determined to be key components under high temperature conditions.
  • the reliability of the aeronautical parameter processing equipment is weak on the CPU module and the AD conversion module.
  • the power module does not have weak links of vibration reliability, and there are no key components under vibration conditions.
  • Step 2 Determine the failure mode of the critical components.
  • Table 1 the correspondence between the load of the electronic product and the failure mode and the cause of failure, using the key components and components on the power module obtained in step one The type of load received to determine its possible failure mode.
  • the key components in the power module of this embodiment and their failure modes and failure causes are shown in Table 3 below.
  • Step 3 Perform transient circuit simulation of the power module under normal conditions, including: a. Establish a Pspice circuit model of the power module.
  • the components on the power module including resistors, capacitors, and circuit models, call the general model in Pspice's model library, and then modify the resistance of the resistors in the general model and the capacitance of the capacitor.
  • the model of the integrated circuit chip is also provided directly in the Pspice model library. After the component model is built, the input and output terminals of each component are connected according to the circuit function relationship to form the Pspice circuit model of the power module.
  • b Transient simulation of the circuit under normal conditions.
  • Step 4 Perform transient circuit simulation of the power module in the failed state, mainly including - failure mode injection. Inject the failure mode of the key component determined in step 1 into the Pspice circuit model of the power module established in step 3 (a) to form the circuit model in the failed state. Failure modes of U4 and R12 The Pspice model and its injection method are shown in Table 4 below.
  • Figure 5 shows the Pspice model of the power module after short-circuiting the injection resistor R12, where the circular part is the R12 short-circuit fault model.
  • Figure 6 shows the Pspice model of the power module after the drift of the injection resistor R12. The elliptical part is the model of the R12 parameter drift fault.
  • b Transient simulation of the circuit in the failed state. Input the voltage supplied from the outside to the power supply circuit, DC 27V, start the transient simulation of the Pspice circuit, and obtain the input and output electrical parameters of the components in the U4 and R12 failure modes and the final output of the circuit.
  • Figure 7 shows the two voltage outputs of the power module in the short-circuit state of resistor R12.
  • the invention establishes a power module fault and its influence simulation method for an aviation parameter processing equipment based on stress simulation and failure mode injection technology.
  • stress simulation and failure mode injection can be performed on the power module of the aeronautical parameter processing equipment, and the critical failures of the equipment and their effects can be quickly located in the design stage to avoid damage to the equipment caused by failure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种航空参数处理设备电源模块的FMIS方法,该方法有四大步骤:步骤一:确定航空参数处理设备电源模块上的关键部件;步骤二:确定关键部件的失效模式;步骤三:进行电源模块在正常状态下的瞬态电路仿真;步骤四:进行电源模块在失效状态下的瞬态电路仿真。本发明是基于应力仿真方法和失效模式注入技术来确定航空参数处理设备电源模块失效模式,并定量获得该失效模式下电路输出,为设计人员评估失效模式的影响、确定其危害性提供依据,同时也为电源模块的设计改进提供依据。它在产品可靠性仿真技术领域里具有较好的实用价值和广阔地应用前景。

Description

一种航空参数处理设备电源模块的 FMIS方法 技 术 领 域
本发明提供一种航空参数处理设备电源模块的 FMIS方法,特别是涉及一种 基于应力仿真和失效模式注入技术的航空参数处理设备电源模块故障及其影响 仿真方法, 属于产品可靠性仿真领域。
背 景 技 术
随着科技的高速发展, 航空产品的复杂程度不断提高, 同时对可靠性的要 求也越来越高。 因此, 在产品研制过程中对故障分析、 可靠性设计提出了更高 的要求。 航空参数处理设备是对采集的航空飞行参数进行记录、 处理、 测量、 报警, 以监控飞机运行状态的电子设备。 电源模块的功能是将外界电源电压转 化为设备中其他模块需要的电压, 为整个设备提供电源输入。 电源模块通过卡 槽、 连接器、 锁紧条固定设备机箱两侧, 在飞机执行任务的过程中受到温度载 荷以及飞行中振动载荷的作用, 其各组成元器件、 连接件可能会发生某些状态 的变化甚至失效, 这种变化或失效会对其周围的元器件或部件产生影响, 最终 危害到整个模块甚至设备的可靠性和安全性。
目前工程上应用的硬件 FMEA (失效模式及影响分析, Fai lure Modes and Effect Analysis )方法是通过系统的分析元器件、 零部件、 设备在设计、 制造 和使用过程中所有可能的故障模式, 以及每一故障模式的原因及影响, 找到潜 在的薄弱环节, 提出改进措施和设计预案, 从而提高产品可靠性的一种分析方 法。 这种方法的实施依赖于工程人员的经验, 具有较大的主观性, 经验不丰富 的工程人员可能无法找到关键的失效模式, 无法准确的估计这些失效模式对其 同层次、高一层次和最终层次的影响,从而不能提出有针对性的设计改进措施。
FMIS (失效模式注入仿真, Failure Modes and Injection Simulation ) 是利用应力与失效模式注入仿真相结合的方法获得产品实际环境和工作条件下 会发生的失效模式、 定量确定在这些故障模式下电路输出的方法。 FMIS主要包 括应力仿真和失效模式注入两个关键的技术或方法。 应力仿真方法是指利用商 用数值仿真软件, 例如 ANSYS、 Flotherm、 Nastran将设备所承受的温度、振动 载荷施加到产品的数字模型上, 利用计算机仿真的方法获得设备对这些载荷的 响应。 失效模式注入技术是利用 EDA (电子设计自动化, Electronic Design Automation)软件,将失效模式电路模型注入到正常的电路仿真模型中,获得该 失效模式下电路各部分及最终输出电性能情况。 常用的 EDA软件包括 Pspice、 Cadence, Cyber等。 FMIS方法是进行 FMEA的定量辅助方法。 通过对现有技术 的查新和检索, 国内外还没有利用 FMIS 方法进行航空参数处理设备电源模块 FMEA方面研究和应用的报道。
发 明 内 容
1、 目的: 本发明的目的在于针对现有技术的不足, 提供一种航空参数处理 设备电源模块的 FMIS方法,它是基于应力仿真方法和失效模式注入技术来确定 电源模块失效模式, 并定量获得该失效模式下电路输出, 为设计人员评估失效 模式的影响、确定其危害性提供依据, 同时也为电源模块的设计改进提供依据。
2、技术方案: 本发明是通过以下技术方案实现的, 确定电源模块的关键部 件, 确定关键部件的潜在失效模式, 仿真电源模块正常状态下的电路输出, 仿 真电源模块在失效状态下的电路输出。
本发明一种航空参数处理设备电源模块的 FMIS方法, 其具体步骤如下- 步骤一: 确定航空参数处理设备电源模块(以下简称 "电源模块")上的关 键部件。 主要包括:
a. 首先要获得电源模块在温度、 振动载荷下的应力分布。 详细过程如下:
1 ) 确定电源模块任务过程中最恶劣的温度和振动环境。 主要包括- 1.若电源模块的设计要求中给出了电源模块的工作温度范围以及振动加速 度功率谱密度剖面, 则选择温度范围中的高温作为最恶劣的温度环境, 选择所 给出的振动加速度功率谱密度剖面中, 振动加速度功率谱密度量值最大的一个 做为最恶劣振动环境, 若只给出一个振动加速度功率谱密度剖面, 则将该剖面 确定为最恶劣振动环境。
2.若电源模块设计要求中未给出电源模块的工作温度范围以及振动加速度 功率谱密度剖面, 根据国家标准 《GBT2423. 43- 2008 电工电子产品环境试验》 确定最恶劣的温度和振动环境。
2 )对电源模块进行 Flotherm温度分布仿真。 Flotherm是一种成熟的商业 有限积分软件, 主要功能是进行温度仿真。 主要包括:
a)导入电源模块的三维 CAD (计算机辅助设计, Computer Aided Design)模 型。首先将建立好的电源模块三维 CAD模型通过中间格式,如 IGES、 SAT、 STEP等格式导入到 Flotherm软件中, 该三维 CAD模型描述了电源模块 的结构组成、 装配连接关系, 包括电源模块以及功耗超过 0. 1W的元器 件的几何结构, 不需要建立元器件焊接点的几何结构。
b)定义电源模块组成各部分的温度分布仿真材料参数。 主要包括: 各组成 材料的比热容、 导热系数。
c)对电源模块模型进行网格划分。 利用 Flotherm软件进行自动网格划分, 网格长宽比应控制在 20以内。
d)施加温度载荷与边界条件。 温度载荷主要包括最恶劣环境温度和元器件 的工作实际功耗, 利用 Flotherm的温度施加命令, 将 1 )中确定的最恶 劣温度环境条件施加到电源模块模型中。将元器件的实际功耗除以元器 件的表面积, 得到面热流密度, 利用 Flotherm的热流密度施加命令, 输入到 Flotherm软件中。 利用 Flotherm温度边界设置命令, 设置元器 件与空气相接触面的自然对流换热系数。
e) 实施温度分布仿真。利用 Flotherm的求解命令进行该电源模块在最恶劣 温度条件下的温度分布仿真, 最终可以获得电源模块各部分, 各位置点 的温度分布。
3 )对电源模块进行 ANSYS振动应力分布仿真。 ANSYS是一种成熟的商业有 限元仿真软件, 可以进行功率谱密度仿真。 主要包括: a) 导入电源模块的三维 CAD模型。 首先将建立好的电源模块三维 CAD 模型通过中间格式, 如 IGS、 STEP等格式导入到 ANSYS软件中, 该三维 CAD模型描述了电源模块的结构组成、 装配连接关系, 包括了电源模块 以及重量大于 0. 1克的元器件的几何结构,不需要建立元器件焊接点的 几何结构。
b ) 定义电源模块组成各部分的振动应力仿真材料参数。主要包括:各组 成材料的密度、 弹性模量、 泊松比。
c ) 对电源模块模型进行网格划分。 利用 ANSYS软件进行自动网格划分, 网格长宽比应控制在 5以内。
d) 施加振动加速度功率谱密度与边界条件。主要包括,利用 ANSYS的加 速度功率谱密度施加命令, 将 1 ) 中确定的最恶劣振动加速度功率谱密 度量值及其对应的频率值输入到 ANSYS软件中,并施加到电源模块的固 定位置部位, 施加方向垂直于电源模块的安装方向。利用 ANSYS的位移 边界施加命令, 对电源模块固定位置部位施加 X、 Υ、 Ζ三个方向的零位 移约束。
e ) 实施振动应力仿真。设置电源模块的振动阻尼值,根据工程经验一般 选择 0. 03到 0. 05之间的数量。利用 ANSYS的求解命令进行该电源模块 在最恶劣振动条件下的应力仿真,求解结束后可以获得电源模块各部位 的响应, 包括位移、 速度以及加速度均方根。
b.将高温、 高振动响应的元器件、 零部件确定为关键部件。
对于集成电路芯片、 二极管、 晶体管等分立器件, 若芯片的质量等级 为工业级, 则当仿真得到其表面温度超过 85 时,该集成电路为关键部件; 若芯片质量等级为军品级,则当仿真得到其表面温度超过 100 C时,该集成 电路为关键部件; 对于电阻器、 电容器等元器件, 若其与电路板的连接方 式为表面贴装, 则当仿真得到其表面温度超过 90 时, 该元器件定为关键 将设备在振动仿真中得到的位移、 加速度均方根最大值的部位所在的 元器件、 零部件定为关键部件。
步骤二: 确定关键部件的失效模式。 根据下列表 1, 电子产品的载荷与失 莫式及失效原因的对应关系, 利用步骤一中获得的电源模块上关键元器件与 件所受的载荷类型来确定其可能的失效模式。
表 1 电子产品受到的载荷与失效模式与失效原因对应关系
Figure imgf000007_0001
步骤三: 进行电源模块在正常状态下的瞬态电路仿真。 主要包括:
a. 建立正常状态下电源模块的 Pspice电路模型。首先建立组成电源模块的 各元器件的模型。 对于电阻器、 电容器、 电感器、 部分二极管、 部分晶 体管等元器件的电路模型可以在 Pspice的模型库中选择通用模型,根据 元器件的实际参数来修改通用模型中相应参数。 对于集成电路芯片和部 分二极管、晶体管等器件,若 Pspice模型库中无法找到对应型号的模型, 可以到元器件制造商的网页下载相应的模型。 元器件模型建好后, 根据 电路功能关系, 将各元器件输入输出端连接起来, 形成电源模块的 Pspice电路模型。
b. 对正常状态下电路进行瞬态仿真。 输入外界提供给电源电路的电压随时 间的变化曲线,启动 Pspice电路瞬态仿真,获得正常状态下电路中各元 器件的输入和输出电参数以及电路最终的输出, 例如电压、 电流随时间 的变化曲线。
步骤四: 进行电源模块在失效状态下的瞬态电路仿真, 主要包括- a. 失效模式注入。 将步骤一确定的关键元器件的失效模式注入到步骤三 ( a)中建立的电源模块 Pspice电路模型中, 形成失效状态下的电路模 型。 元器件的失效模式注入方法如下列表 2所示。
表 2 元器件失效模式的注入方法
Figure imgf000008_0001
b. 对失效状态下的电路进行瞬态仿真。输入外界提供给电源电路的电压随 时间的变化曲线, 启动 Pspice电路瞬态仿真, 获得失效状态下电路中 各元器件的输入和输出电参数以及电路最终的输出, 例如电压、 电流随 时间的变化曲线。
综上所述,本发明的技术思路在于:首先根据应力仿真的结果确定电源模 块的关键部件, 利用载荷与失效模式的对应关系确定关键部件的失效模式、 建 立电源模块的 Pspice电路模型,通过进行电路瞬态仿真获得电源模块正常状态 下的电路输出,建立电源模块失效状态下的 Pspice电路模型,通过进行电路瞬 态仿真获得电源模块失效状态下的电路输出。 可以看出, 基于应力仿真和失效 模式注入技术的航空参数处理设备电源模块的 FMIS方法,可以在设计的早期阶 段获得电源模块可能发生的失效模式以及该失效下电路输出状态, 从而有利于 设计人员评估该失效模式的影响, 有针对性的采取设计改进措施, 避免失效的 发生。
3、 优点及功效: 本发明具有以下优点:
1. 利用应力仿真方法确定电源模块的关键部件。电源模块关键部件可以依靠经 验或通过实物样机试验确定。在设计阶段通常采用经验法,在原理样机验证 阶段采用试验方法。当设计人员经验不足时,在设计阶段确定的关键器件往 往不准确。 而在验证阶段采用试验方法需要较长的试验时间和设计更改时 间。利用应力仿真方法可以在设计阶段为工程师提供设备定量的应力分布状 况, 定位关键部件较为准确, 且能够节约试验成本, 缩短设备研发周期。 . 利用失效模式注入技术获得电源模块失效状态下的输出。元器件的失效模式 通常有短路、 开路、 参数漂移三种情况。 对于短路、 开路这两种模式, 设计 人员可以比较容易的确定其对周围器件及电源模块的影响。 但对于参数漂 移,不同漂移量值可以导致对电源模块的不同影响,仅仅依靠定性的分析难 以准确的给出其影响。失效模式注入技术提供了一种定量仿真电源模块在失 效状态下输出的方法,设计人员可以对比正常与失效状态下的输出,准确的 描述该失效模式的影响。
附 图 说 明
图 1是本发明方法流程框图。
图 2是本发明实施例电源模块结构组成示意图。
图 3是本发明实施例电源模块的 Pspice模型示意图。
图 4是本发明实施例电源模块正常状态下的两路电压输出示意图。
图 5是本发明实施例电源模块在注入电阻 R12短路后的 Pspice模型示意 图。
图 6是本发明实施例电源模块在注入电阻 R12参数漂移后的 Pspice模型示 意图。
图 7是本发明实施例电源模块在电阻 R12短路状态下的两路电压输出示意 图。
图 8是本发明实施例电源模块在电阻 R12参数漂移状态下的两路电压输出 示意图。
. 图中符号说明如下:
图 1中的 Pspice为一种常用的商用电子设计自动化软件。
图 3、 5、 6中的 LM193为运算放大器的型号, 属于集成电路器件。
图 4、 7、 8中的 outl为第 1路输出, 或称为输出 1 ; out2为第 2路输出, 或称为输出 2。
具体实施方式
下面将结合附图和实施例对本发明做进一步的详细说明。
以下实施例是按照如图 1所示的流程进行实施的, 主要包括确定电源模块 的关键部件、 确定关键部件的潜在失效模式、 电源模块正常状态下的瞬态电路 仿真、电源模块失效状态下的瞬态电路仿真。电源模块的结构组成如图 2所示。 主要包括电路板、 塑封集成电路芯片、 陶瓷集成电路芯片、 贴片电阻器、 插装 电阻器、 电容器。
见图 1, 本发明一种航空参数处理设备电源模块的 FMIS方法, 该方法具体 步骤如下:
步骤一: 确定航空参数处理设备电源模块(以下简称 "电源模块")上的关 键部件。 主要包括:
a. 通过专利申请 "一种航空参数处理设备可靠性薄弱环节确定方法"的 步骤一、 步骤二、 步骤三来获得电源模块在温度、 振动载荷下的应力 分布。详细内容在"一种航空参数处理设备可靠性薄弱环节确定方法" 专利申请中的实施例中进行了说明。
b. . 将高温、 高振动响应的元器件、 零部件确定为关键部件。
根据 "一种航空参数处理设备可靠性薄弱环节确定方法"实施例中确定的 高温器件, 其中 U4和 R12位于电源模块。 U4为军品级的集成电路芯片, 壳温 超过了 100 ; R12为军品级表贴电阻, 壳温超过了 90"C。 因此确定 U4、 R12 为高温条件下的关键元器件。
在振动条件下,航空参数处理设备可靠性薄弱环节在 CPU模块和 AD转换模 块上, 电源模块不存在振动可靠性的薄弱环节, 也不存在振动条件下的关键部 件。
步骤二: 确定关键部件的失效模式。 根据表 1, 电子产品的载荷与失效模 式及失效原因的对应关系, 利用步骤一中获得的电源模块上关键元器件与部件 所受的载荷类型来确定其可能的失效模式。 本实施例电源模块中的关键部件及 其失效模式、 失效原因如下列表 3所示。
表 3 电源模块上的关键部件的失效模式
Figure imgf000011_0001
骤三: 进行电源模块在正常状态下的瞬态电路仿真, 主要包括: a. 建立电源模块的 Pspice电路模型。电源模块上的各元器件,包括 电阻器、电容器、的电路模型是在 Pspice的模型库中调用通用模型, 然后修改通用模型中电阻器的阻值和电容器的容值。集成电路芯片的 模型也是在 Pspice模型库中直接提供的。 元器件模型建好后, 根据 电路功能关系, 将各元器件输入输出端连接起来, 形成电源模块的 Pspice电路模型。 如图 3所示。 b. 对正常状态下电路进行瞬态仿真。 输入外界提供给电源电路的电 压, 直流 27V, 启动 Pspice电路瞬态仿真, 获得正常状态下电路中 各元器件的输入和输出电参数以及电路最终的输出。如图 4为电源模 块正常状态下的两路电压输出。 骤四: 进行电源模块在失效状态下的瞬态电路仿真, 主要包括- 失效模式注入。 将步骤一确定的关键元器件的失效模式注入到步骤三 ( a)中建立的电源模块 Pspice电路模型中, 形成失效状态下的电路模 型。 U4与 R12的失效模式 Pspice模型及其注入方法如下列表 4所示。
表 4 U4与 R12失效模式的注入方法 代号 失效模式 故障建模方法
短路 并联 1*10— fi欧电阻
U4
参数漂移 将增益值由 2. 8修改为 2. 9
短路 并联 1*1(Τ欧电阻
R12
阻值漂移 将电阻值由 6. 2千欧修改为 6. 25千 代号 失效模式 故障建模方法
短路 并联 1*10— H欧电阻
U4
参数漂移 将增益值由 2. 8修改为 2. 9
如图 5所示为电源模块在注入电阻 R12短路后的 Pspice模型,其中圆形部 位为 R12短路故障的模型。图 6为电源模块在注入电阻 R12参数漂移后的 Pspice 模型, 椭圆形部位为 R12参数漂移故障的模型。 b. 对失效状态下的电路进行瞬态仿真。 输入外界提供给电源电路的电压, 直流 27V, 启动 Pspice电路瞬态仿真, 获得 U4、 R12失效模式存在状 态下电路中各元器件的输入和输出电参数以及电路最终的输出。 如图 7 为电源模块在电阻 R12短路状态下的两路电压输出。可见, 当电源模块 中 R12电阻短路后, Outl输出恒为高电平, 0ut2在输入电压为 17〜32V 时输出错误。如图 8为电源模块在电阻 R12参数漂移状态下的两路电压 输出。 可见, 当电源模块中 R12的阻值由 6. 2千欧参数漂移到 6. 25千 欧时, 对输出无影响。
通过对航空参数处理设备电源模块进行 FMIS,可以帮助工程人员在设计的 初期阶段确定电源模块上关键元器件的失效模式及其失效影响, 从而有利于设 计人员采取手段避免器件失效后对电源模块, 乃至整个设备造成的危害。
本发明建立了基于应力仿真和失效模式注入技术的航空参数处理设备电源 模块故障及其影响仿真方法。 利用该方法, 可以对航空参数处理设备的电源模 块进行应力仿真与失效模式注入, 在设计阶段快速定位设备的关键失效及其影 响, 避免失效对设备造成危害。

Claims

权 利 要 求 书
1、 一种航空参数处理设备电源模块的 FMIS方法, 其特征在于: 该方法具 体步骤如下:
步骤一: 确定航空参数处理设备电源模块上的关键部件: 包括: a. 首先要获得电源模块在温度、 振动载荷下的应力分布; 详细过程如下:
1 ) 确定电源模块任务过程中最恶劣的温度和振动环境; 包括:
1.若电源模块的设计要求中给出了电源模块的工作温度范围以及振动加速 度功率谱密度剖面, 则选择温度范围中的高温作为最恶劣的温度环境, 选择所 给出的振动加速度功率谱密度剖面中, 振动加速度功率谱密度量值最大的一个 做为最恶劣振动环境, 若只给出一个振动加速度功率谱密度剖面, 则将该剖面 确定为最恶劣振动环境;
2.若电源模块设计要求中未给出电源模块的工作温度范围以及振动加速度 功率谱密度剖面, 根据国家标准 《GBT2423. 43-2008 电工电子产品环境试验》 确定最恶劣的温度和振动环境;
2)对电源模块进行 Flotherm温度分布仿真; Flotherm是一种有限积分软 件, 其功能是进行温度仿真; 包括:
a)导入电源模块的三维 CAD模型; 首先将建立好的电源模块三维 CAD模型 通过中间格式, 如 IGES、 SAT、 STEP格式导入到 Flotherm软件中, 该 三维 CAD模型描述了电源模块的结构组成、 装配连接关系, 包括电源模 块以及功耗超过 0. 1W的元器件的几何结构, 不需要建立元器件悍接点 的几何结构;
b) 定义电源模块组成各部分的温度分布仿真材料参数; 包括: 各组成材料 的比热容、 导热系数;
c)对电源模块模型进行网格划分;利用 Flotherm软件进行自动网格划分, 网格长宽比控制在 20以内; d)施加温度载荷与边界条件; 温度载荷主要包括最恶劣环境温度和元器件 的工作实际功耗, 利用 Flotherm的温度施加命令, 将 1 )中确定的最恶 劣温度环境条件施加到电源模块模型中; 将元器件的实际功耗除以元器 件的表面积, 得到面热流密度, 利用 Flotherm的热流密度施加命令, 输入到 Flotherm软件中; 利用 Flotherm温度边界设置命令, 设置元器 件与空气相接触面的自然对流换热系数;
e)实施温度分布仿真;利用 Flotherm的求解命令进行该电源模块在最恶劣 温度条件下的温度分布仿真, 最终获得电源模块各部分, 各位置点的温 度分布;
3 )对电源模块进行 ANSYS振动应力分布仿真; ANSYS是一种有限元仿真软 能进行功率谱密度仿真; 包括:
a) 导入电源模块的三维 CAD模型; 首先将建立好的电源模块三维 CAD 模型通过中间格式, 如 IGS、 STEP格式导入到 ANSYS软件中, 该三维 CAD模型描述了电源模块的结构组成、 装配连接关系, 包括了电源模块 以及重量大于 0. 1克的元器件的几何结构,不需要建立元器件焊接点的 几何结构;
b) 定义电源模块组成各部分的振动应力仿真材料参数;包括:各组成材 料的密度、 弹性模量、 泊松比;
c) 对电源模块模型进行网格划分; 利用 ANSYS软件进行自动网格划分, 网格长宽比控制在 5以内;
d) 施加振动加速度功率谱密度与边界条件;包括,利用 ANSYS的加速度 功率谱密度施加命令, 将 1 ) 中确定的最恶劣振动加速度功率谱密度量 值及其对应的频率值输入到 ANSYS软件中,并施加到电源模块的固定位 置部位, 施加方向垂直于电源模块的安装方向; 利用 ANSYS的位移边界 施加命令, 对电源模块固定位置部位施加 X、 Υ、 Ζ三个方向的零位移约 束; e) 实施振动应力仿真;设置电源模块的振动阻尼值,根据工程经验选择 0. 03到 0. 05之间的数量; 利用 ANSYS的求解命令进行该电源模块在最 恶劣振动条件下的应力仿真, 求解结束后获得电源模块各部位的响应, 包括位移、 速度以及加速度均方根;
b.将高温、 高振动响应的元器件、 零部件确定为关键部件;
对于集成电路芯片、 二极管、 晶体管分立器件, 若芯片的质量等级为 工业级, 则当仿真得到其表面温度超过 85°C时, 该集成电路为关键部件; 若芯片质量等级为军品级,则当仿真得到其表面温度超过 100"C时,该集成 电路为关键部件; 对于电阻器、 电容器元器件, 若其与电路板的连接方式 为表面贴装, 则当仿真得到其表面温度超过 90 C时, 该元器件定为关键部 件 ·'
将设备在振动仿真中得到的位移、 加速度均方根最大值的部位所在的 元器件、 零部件定为关键部件;
步骤二: 确定关键部件的失效模式; 根据下列表 1, 电子产品的载荷与失 效模式及失效原因的对应关系, 利用步骤一中获得的电源模块上关键元器件与 部件所受的载荷类型来确定其可能的失效模式;
表 1 电子产品受到的载荷与失效模式与失效原因对应关系
Figure imgf000015_0001
步骤三: 进行电源模块在正常状态下的瞬态电路仿真; 包括:
a. 建立正常状态下电源模块的 Pspice电路模型;首先建立组成电源模块的 各元器件的模型; 对于电阻器、 电容器、 电感器、 二极管、 晶体管元器 件的电路模型在 Pspice的模型库中选择通用模型,根据元器件的实际参 数来修改通用模型中相应参数; 对于集成电路芯片和二极管、 晶体管器 件,若 Pspice模型库中无法找到对应型号的模型,到元器件制造商的网 页下载相应的模型; 元器件模型建好后, 根据电路功能关系, 将各元器 件输入输出端连接起来, 形成电源模块的 Pspice电路模型;
b. 对正常状态下电路进行瞬态仿真; 输入外界提供给电源电路的电压随时 间的变化曲线,启动 Pspice电路瞬态仿真,获得正常状态下电路中各元 器件的输入和输出电参数以及电路最终的输出, 例如电压、 电流随时间 的变化曲线;
步骤四: 进行电源模块在失效状态下的瞬态电路仿真; 包括:
a. 失效模式注入; 将步骤一确定的关键元器件的失效模式注入到步骤三 ( a)中建立的电源模块 Pspice电路模型中, 形成失效状态下的电路模 型; 元器件的失效模式注入方法如下列表 2所示;
表 2 元器件失效模式的注入方法
Figure imgf000016_0001
b. 对失效状态下的电路进行瞬态仿真;输入外界提供给电源电路的电压随 时间的变化曲线, 启动 Pspice电路瞬态仿真, 获得失效状态下电路中 各元器件的输入和输出电参数以及电路最终的输出, 例如电压、 电流随 时间的变化曲线。
PCT/CN2012/000063 2012-01-06 2012-01-13 一种航空参数处理设备电源模块的fmis方法 WO2013102282A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012100036146A CN102592021B (zh) 2012-01-06 2012-01-06 一种航空参数处理设备电源模块的fmis方法
CN201210003614.6 2012-01-06

Publications (1)

Publication Number Publication Date
WO2013102282A1 true WO2013102282A1 (zh) 2013-07-11

Family

ID=46480655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000063 WO2013102282A1 (zh) 2012-01-06 2012-01-13 一种航空参数处理设备电源模块的fmis方法

Country Status (2)

Country Link
CN (1) CN102592021B (zh)
WO (1) WO2013102282A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112257303A (zh) * 2020-09-14 2021-01-22 中国航空工业集团公司洛阳电光设备研究所 一种基于热仿真模型的温度稳定时间的测试方法
CN113868758A (zh) * 2021-09-07 2021-12-31 天津大学 一种基于计算力学的弹性高超声速飞行器建模方法
CN116930725A (zh) * 2023-09-15 2023-10-24 中国船舶集团有限公司第七一九研究所 一种船用电路板卡使用寿命试验与评估方法及系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104020404B (zh) * 2013-08-26 2017-05-10 北京航空航天大学 一种包含内部缺陷的光耦低频噪声等效电路构建方法
CN103488842B (zh) * 2013-09-29 2017-01-04 北京航空航天大学 一种基于Saber的典型分立器件的可靠性自动预计方法
CN103514330B (zh) * 2013-10-08 2016-09-14 工业和信息化部电子第五研究所 元器件失效分析专家系统中失效分析流程构建方法及系统
US9429610B2 (en) * 2014-01-16 2016-08-30 Qualcomm Incorporated Voltage dependent die RC modeling for system level power distribution networks
CN105528943A (zh) * 2015-07-06 2016-04-27 中国电子科技集团公司第二十八研究所 基于电路仿真技术的教学训练系统设计与实现方法
CN107621786A (zh) * 2017-08-16 2018-01-23 中国电子科技集团公司第十八研究所 一种空间电源控制装置最坏情况分析方法
CN109492282A (zh) * 2018-10-29 2019-03-19 北京遥感设备研究所 一种dc/dc电源模块寿命评价关键器件确定方法
CN110823561B (zh) * 2019-11-13 2021-03-26 南京工业大学 一种基于材料模型库的非稳态载荷下轧机传动轴系统关键件疲劳寿命实时监控的方法
CN115308978B (zh) * 2022-08-05 2024-05-28 郑州森鹏电子技术股份有限公司 一种车载摄像头加热除霜功能的设计方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101251870A (zh) * 2008-03-21 2008-08-27 北京中星微电子有限公司 一种仿真验证多电源域中的隔离单元的方法
CN101806642A (zh) * 2010-04-09 2010-08-18 福州大学 基于仿真模型的电机运行三维温度场分布的虚拟测试方法
US8019580B1 (en) * 2007-04-12 2011-09-13 Gradient Design Automation Inc. Transient thermal analysis

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1010114A1 (en) * 1996-11-27 2000-06-21 Sundstrand Corporation, Inc. Method of maintaining components subject to fatigue failure
CN1453203A (zh) * 2003-05-27 2003-11-05 东南大学 微电子机械系统模块的系统级设计库的建立方法
CN101340326B (zh) * 2008-08-14 2010-12-29 中兴通讯股份有限公司 通讯设备的可靠性预计方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8019580B1 (en) * 2007-04-12 2011-09-13 Gradient Design Automation Inc. Transient thermal analysis
CN101251870A (zh) * 2008-03-21 2008-08-27 北京中星微电子有限公司 一种仿真验证多电源域中的隔离单元的方法
CN101806642A (zh) * 2010-04-09 2010-08-18 福州大学 基于仿真模型的电机运行三维温度场分布的虚拟测试方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112257303A (zh) * 2020-09-14 2021-01-22 中国航空工业集团公司洛阳电光设备研究所 一种基于热仿真模型的温度稳定时间的测试方法
CN112257303B (zh) * 2020-09-14 2024-04-09 中国航空工业集团公司洛阳电光设备研究所 一种基于热仿真模型的温度稳定时间的测试方法
CN113868758A (zh) * 2021-09-07 2021-12-31 天津大学 一种基于计算力学的弹性高超声速飞行器建模方法
CN113868758B (zh) * 2021-09-07 2024-05-14 天津大学 一种基于计算力学的弹性高超声速飞行器建模方法
CN116930725A (zh) * 2023-09-15 2023-10-24 中国船舶集团有限公司第七一九研究所 一种船用电路板卡使用寿命试验与评估方法及系统
CN116930725B (zh) * 2023-09-15 2023-12-26 中国船舶集团有限公司第七一九研究所 一种船用电路板卡使用寿命试验与评估方法及系统

Also Published As

Publication number Publication date
CN102592021B (zh) 2013-08-14
CN102592021A (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
WO2013102282A1 (zh) 一种航空参数处理设备电源模块的fmis方法
CN103559418B (zh) 一种基于故障物理的电子产品任务可靠度计算方法
US20050273309A1 (en) Circuit simulation method, device model, and simulation circuit
CN110750949B (zh) 一种基于ibis模型模拟系统级封装剂量率效应的方法
CN104462700A (zh) 基于故障物理的电子产品可靠性仿真试验方法
CN111950220B (zh) 一种电热耦合模型建立方法
CN113177336A (zh) 一种测温传感器的芯片结温测试方法、装置及存储介质
US8850374B2 (en) Method of reducing parasitic mismatch
CN105069258A (zh) 一种芯片设计可靠性的评估方法及装置
JP2023519139A (ja) 電気回路設計検査システムおよび方法
Pu et al. Electromagnetic susceptibility analysis of ICs using DPI method with consideration of PDN
Piumatti et al. Assessing the effectiveness of different test approaches for power devices in a PCB
Nayak et al. Model-based system-level EMI/EMC simulation for BCI pass-fail prediction
CN115291074A (zh) 一种igbt芯片焊料层故障的在线监测方法
Kerkhoff et al. Investigation of intermittent resistive faults in digital CMOS circuits
Yuan et al. An integrated method for hardware FMEA of new electronic products
Sun et al. Power integrity design for package-board system based on BGA
Xu et al. Distributed port assignment for extraction of power delivery networks
US10380292B1 (en) Systems and methods for finite difference time domain simulation of an electronic design
CN113074831A (zh) 一种换流阀内部温度监测方法、过热故障定位方法及装置
Hamed et al. Automatic Model Generation for PCB-based Power Electronics
Sedlář et al. Multiphysical Simulations Help to Ensure Assembled Printed Circuit Board and Power Components Reliability
JP2009276822A (ja) 半導体デバイス設計支援装置及び半導体デバイス設計支援方法
CN111523262A (zh) 一种多应力耦合作用下电路板互连部位加速因子计算方法
Gao et al. Circuit FMEA method by fault simulation based on saber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12864603

Country of ref document: EP

Kind code of ref document: A1