WO2013100464A1 - 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치 - Google Patents

유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치 Download PDF

Info

Publication number
WO2013100464A1
WO2013100464A1 PCT/KR2012/011022 KR2012011022W WO2013100464A1 WO 2013100464 A1 WO2013100464 A1 WO 2013100464A1 KR 2012011022 W KR2012011022 W KR 2012011022W WO 2013100464 A1 WO2013100464 A1 WO 2013100464A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
group
formula
organic
Prior art date
Application number
PCT/KR2012/011022
Other languages
English (en)
French (fr)
Inventor
조영경
홍진석
강의수
류동완
이한일
정성현
채미영
허달호
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Publication of WO2013100464A1 publication Critical patent/WO2013100464A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/94Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom spiro-condensed with carbocyclic rings or ring systems, e.g. griseofulvins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/78Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems condensed with rings other than six-membered or with ring systems containing such rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a compound for an organic optoelectronic device capable of providing an organic optoelectronic device having excellent life, efficiency, electrochemical stability, and thermal stability, an organic light emitting device including the same, and a display device including the organic light emitting device.
  • An organic optoelectric device refers to a device requiring charge exchange between an electrode and an organic material using holes or electrons.
  • Organic optoelectronic devices can be divided into two types according to the operation principle.
  • excitons are formed in the organic material layer by photons introduced into the device from an external light source, and the excitons are separated into electrons and holes, and these electrons and holes are transferred to different electrodes to be used as current sources (voltage sources). It is an electronic device of the form.
  • the second is an electronic device in which holes or electrons are injected into an organic semiconductor forming an interface with the electrodes by applying voltage or current to two or more electrodes, and operated by the injected electrons and holes.
  • Examples of an organic optoelectronic device include an organic photoelectric device, an organic light emitting device, an organic solar cell, an organic photo conductor drum, and an organic transistor, all of which are used to inject or transport holes or electrons to drive the device. Injection or transport materials, or luminescent materials.
  • organic light emitting diodes are attracting attention as the demand for flat panel displays increases.
  • organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material.
  • Such an organic light emitting device converts electrical energy into light by applying a current to an organic light emitting material, and has a structure in which a functional organic material layer is inserted between an anode and a cathode.
  • the organic material layer is often made of a multi-layered structure composed of different materials to increase the efficiency and stability of the organic light emitting device, for example, it may be made of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer.
  • the material used as the organic material layer in the organic light emitting device may be classified into a light emitting material and a charge transport material, such as a hole injection material, a hole transport material, an electron transport material, an electron injection material, and the like according to a function.
  • a charge transport material such as a hole injection material, a hole transport material, an electron transport material, an electron injection material, and the like according to a function.
  • the light emitting materials may be classified into blue, green, and red light emitting materials and yellow and orange light emitting materials required to realize better natural colors according to light emission colors.
  • the maximum emission wavelength is shifted to a long wavelength due to the intermolecular interaction, and the color purity decreases or the efficiency of the device decreases due to the emission attenuation effect.
  • the host / dopant system can be used as a light emitting material.
  • materials constituting the organic material layer in the device such as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, a host and / or a dopant in the light emitting material, etc.
  • a hole injection material such as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, a host and / or a dopant in the light emitting material, etc.
  • a hole injection material such as a hole transport material, a light emitting material, an electron transport material, an electron injection material, a host and / or a dopant in the light emitting material, etc.
  • This stable and efficient material should be preceded, and development of a stable and efficient organic material layer for an organic light emitting device has not been made yet, and therefore, development of new materials is continuously required.
  • the necessity of such a material development is the same in the other organic optoelectronic devices described above.
  • the low molecular weight organic light emitting diode is manufactured in the form of a thin film by vacuum evaporation method, so the efficiency and lifespan performance is good, and the high molecular weight organic light emitting diode using the inkjet or spin coating method has low initial investment cost. Large area has an advantage.
  • Both low molecular weight organic light emitting diodes and high molecular weight organic light emitting diodes are attracting attention as next-generation displays because they have advantages such as self-luminous, high-speed response, wide viewing angle, ultra-thin, high definition, durability, and wide driving temperature range.
  • advantages such as self-luminous, high-speed response, wide viewing angle, ultra-thin, high definition, durability, and wide driving temperature range.
  • LCD liquid crystal display
  • the response speed is 1000 times faster than the LCD in microseconds, it is possible to implement a perfect video without afterimages. Therefore, it is expected to be spotlighted as the most suitable display in line with the recent multimedia era.
  • the luminous efficiency In order to increase the size, the luminous efficiency must be increased and the life of the device must be accompanied. In this case, the light emitting efficiency of the device should be smoothly coupled to the holes and electrons in the light emitting layer.
  • the electron mobility of the organic material is generally slower than the hole mobility, in order to efficiently combine holes and electrons in the light emitting layer, an efficient electron transport layer is used to increase the electron injection and mobility from the cathode, It should be able to block the movement of holes.
  • a compound for an organic optoelectronic device which can play a role of hole injection and transport or electron injection and transport, and can act as a light emitting host with an appropriate dopant.
  • An organic light emitting diode having excellent lifespan, efficiency, driving voltage, electrochemical stability, and thermal stability and a display device including the same are provided.
  • a compound for an organic optoelectronic device represented by a combination of the following Chemical Formulas 1 and 2 is provided.
  • X is -O-, -S-, -S (O)-or -S (O) 2-
  • Ar 1 and Ar 2 are independently substituted or unsubstituted C6 to C30 aryl Group or a substituted or unsubstituted C2 to C30 heteroaryl group
  • L 1 and L 2 are independently a single bond, a substituted or unsubstituted C2 to C10 alkenylene group, a substituted or unsubstituted C2 to C10 alkynylene group
  • m1 and m2 are independently an integer of 0 or 1 and any one of m1 and m2 is 1, n1 and n2 Is independently an integer of any one of 0 to 3
  • R 1 to R 7 is independently hydrogen, deuterium, substituted or unsubstituted C1 to C
  • Formula 1 may be represented by the following formula (3).
  • Ar 2 is a substituted or unsubstituted C6 to C30 aryl group or a substituted or unsubstituted C2 to C30 heteroaryl group
  • L 2 is a single bond, a substituted or unsubstituted C2 to C10 alkenylene group, A substituted or unsubstituted C2 to C10 alkynylene group, a substituted or unsubstituted C6 to C30 arylene group, or a substituted or unsubstituted C2 to C30 heteroarylene group
  • m2 is 1, n2 is any one of 0 to 3 Is an integer
  • R 1 to R 3 , R 6 or R 7 are independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C6 to C30 aryl group, or a substituted or unsubstituted C2 to C30 Heteroaryl group, two * of the
  • the compound for an organic optoelectronic device may be represented by the following formula (4).
  • X is -O-, -S-, -S (O)-or -S (O) 2-
  • Ar 1 and Ar 2 are independently substituted or unsubstituted C6 to C30 aryl group or A substituted or unsubstituted C2 to C30 heteroaryl group
  • L 1 and L 2 are independently a single bond, a substituted or unsubstituted C2 to C10 alkenylene group, a substituted or unsubstituted C2 to C10 alkynylene group, a substituted or Unsubstituted C6 to C30 arylene group or substituted or unsubstituted C2 to C30 heteroarylene group
  • m1 and m2 are independently an integer of 0 or 1 either m1 and m2 is 1, n1 and n2 are independent Is an integer of any one of 0 to 3
  • R 1 to R 7 are independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 al
  • the compound for an organic optoelectronic device may be represented by the following formula (5).
  • Ar 2 is a substituted or unsubstituted C6 to C30 aryl group or a substituted or unsubstituted C2 to C30 heteroaryl group
  • L 2 is a single bond, a substituted or unsubstituted C2 to C10 alkenylene group, A substituted or unsubstituted C2 to C10 alkynylene group, a substituted or unsubstituted C6 to C30 arylene group, or a substituted or unsubstituted C2 to C30 heteroarylene group
  • m2 is 1, n2 is any one of 0 to 3 Integer
  • R 1 to R 7 are independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C6 to C30 aryl group, or a substituted or unsubstituted C2 to C30 heteroaryl group.
  • Ar 1 and Ar 2 are independently substituted or unsubstituted imidazolyl group, substituted or unsubstituted triazolyl group, substituted or unsubstituted tetrazolyl group, substituted or unsubstituted carbazolyl group, substituted or unsubstituted Substituted oxadiazolyl group, substituted or unsubstituted oxtriazolyl group, substituted or unsubstituted thiatriazolyl group, substituted or unsubstituted benzimidazolyl group, substituted or unsubstituted benzotriazolyl group, substituted or Unsubstituted pyridinyl group, substituted or unsubstituted pyrimidinyl group, substituted or unsubstituted triazinyl group, substituted or unsubstituted pyrazinyl group, substituted or unsubstituted pyridazinyl group, substituted or
  • Ar 1 and Ar 2 are independently a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted phenanthrenyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted fluorenyl group , Substituted or unsubstituted triphenylenyl group, substituted or unsubstituted spiro-fluorenyl group, substituted or unsubstituted terphenyl group, substituted or unsubstituted pyrenyl group, substituted or unsubstituted perrylenyl group, or May be a combination.
  • Ar 1 and Ar 2 are independently a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted phenanthryl group, a substituted or unsubstituted naphthacenyl group , Substituted or unsubstituted pyrenyl group, substituted or unsubstituted biphenylyl group, substituted or unsubstituted p-terphenyl group, substituted or unsubstituted m-terphenyl group, substituted or unsubstituted chrysenyl group, substituted or unsubstituted Substituted triphenylenyl group, substituted or unsubstituted perenyl group, substituted or unsubstituted indenyl group, substituted or unsubstituted furanyl
  • the compound for an organic optoelectronic device may be a triplet excitation energy (T1) 2.0 eV or more.
  • the organic optoelectronic device may be selected from the group consisting of an organic photoelectric device, an organic light emitting device, an organic solar cell, an organic transistor, an organic photosensitive drum, and an organic memory device.
  • the organic light emitting device comprising an anode, a cathode and at least one organic thin film layer interposed between the anode and the cathode
  • at least one layer of the organic thin film layer is the above-described organic optoelectronic It provides an organic light emitting device comprising a compound for the device.
  • the organic thin film layer may be selected from the group consisting of a light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, an electron injection layer, a hole blocking layer and a combination thereof.
  • the compound for an organic optoelectronic device may be included in a hole transport layer or a hole injection layer.
  • the compound for an organic optoelectronic device may be included in a light emitting layer.
  • the compound for an organic optoelectronic device may be used as a phosphorescent or fluorescent host material in the light emitting layer.
  • a display device including the organic light emitting diode described above is provided.
  • Such a compound can be used as a hole injection / transport material, a host material, or an electron injection / transport material for the light emitting layer.
  • the organic optoelectronic device using the same has excellent electrochemical and thermal stability, and has excellent life characteristics, and may have high luminous efficiency even at a low driving voltage.
  • 1 to 5 are cross-sectional views illustrating various embodiments of an organic light emitting device that may be manufactured using a compound for an organic optoelectronic device according to an embodiment of the present invention.
  • hole injection layer 230 light emitting layer + electron transport layer
  • substituted unless otherwise defined, at least one hydrogen of a substituent or a compound is a deuterium, a halogen group, a hydroxy group, an amino group, a substituted or unsubstituted C1 to C30 amine group, a nitro group, a substituted or unsubstituted C1 to C10 such as C3 to C40 silyl group, C1 to C30 alkyl group, C1 to C10 alkylsilyl group, C3 to C30 cycloalkyl group, C6 to C30 aryl group, C1 to C20 alkoxy group, fluoro group, trifluoromethyl group, etc.
  • substituted halogen, hydroxy, amino, substituted or unsubstituted C1 to C20 amine group, nitro group, substituted or unsubstituted C3 to C40 silyl group, C1 to C30 alkyl group, C1 to C10 alkylsilyl group, C3 to Two adjacent substituents of C1 to C10 trifluoroalkyl group or cyano group such as C30 cycloalkyl group, C6 to C30 aryl group, C1 to C20 alkoxy group, fluoro group and trifluoromethyl group may be fused to form a ring. .
  • hetero means containing 1 to 3 heteroatoms selected from the group consisting of N, O, S, and P in one functional group, and the remainder is carbon.
  • an "alkyl group” means an aliphatic hydrocarbon group.
  • the alkyl group may be a "saturated alkyl group” that does not contain any double or triple bonds.
  • the alkyl group may be branched, straight chain or cyclic.
  • Alkenylene group means a functional group consisting of at least two carbon atoms of at least one carbon-carbon double bond
  • alkynylene group means at least two carbon atoms of at least one carbon-carbon triplet. It means a functional group consisting of a bond.
  • the alkyl group may be an alkyl group that is C1 to C20. More specifically, the alkyl group may be a C1 to C10 alkyl group or a C1 to C6 alkyl group.
  • a C1 to C4 alkyl group has 1 to 4 carbon atoms in the alkyl chain, i.e., the alkyl chain is methyl, ethyl, propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl and t-butyl Selected from the group consisting of:
  • the alkyl group is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohex It means a practical skill.
  • Aromatic group means a functional group in which all elements of the functional group in the ring form have p-orbitals, and these p-orbitals form conjugation. Specific examples include an aryl group and a heteroaryl group.
  • aryl group includes a monocyclic or fused ring polycyclic (ie, a ring that divides adjacent pairs of carbon atoms) functional groups.
  • Heteroaryl group means containing 1 to 3 hetero atoms selected from the group consisting of N, O, S and P in the aryl group, and the rest are carbon. When the heteroaryl group is a fused ring, each ring may include 1 to 3 heteroatoms.
  • the carbazole derivative refers to a structure in which a nitrogen atom of a substituted or unsubstituted carbazolyl group is substituted with a hetero atom or carbon instead of nitrogen.
  • Specific examples thereof include dibenzofuran (dibenzofuranyl group), dibenzothiophene (dibenzothiophenyl group), fluorene (fluorenyl group) and the like.
  • the hole characteristic means a characteristic that has conductivity characteristics along the HOMO level to facilitate the injection of holes formed at the anode into the light emitting layer and movement in the light emitting layer.
  • an electronic characteristic means the characteristic which has electroconductive characteristic along LUMO level, and facilitates the injection of the electron formed in the cathode into the light emitting layer, and the movement in the light emitting layer.
  • Compound for an organic optoelectronic device is at least one substituted or unsubstituted aryl group in the bifluorene core of the spiro structure; Or a substituted or unsubstituted heteroaryl group.
  • some of the core of the spiro structure may be in the form of a fused ring.
  • the core structure may be used as a light emitting material, a hole injection material or a hole transport material of an organic optoelectronic device. It may be particularly suitable for hole injection materials or hole transport materials.
  • the compound for an organic optoelectronic device may be a compound having various energy band gaps by introducing a variety of other substituents to the substituents substituted in the core portion and the core portion.
  • the hole transport ability or electron transfer ability is enhanced to have an excellent effect in terms of efficiency and driving voltage, and excellent in organic chemical and thermal stability It is possible to improve the life characteristics when driving the device.
  • X is -O-, -S-, -S (O)-or -S (O) 2-
  • Ar 1 and Ar 2 are independently substituted or unsubstituted C6 to C30 aryl Group or a substituted or unsubstituted C2 to C30 heteroaryl group
  • L 1 and L 2 are independently a single bond, a substituted or unsubstituted C2 to C10 alkenylene group, a substituted or unsubstituted C2 to C10 alkynylene group
  • m1 and m2 are independently an integer of 0 or 1 and any one of m1 and m2 is 1, n1 and n2 Is independently an integer of any one of 0 to 3
  • R 1 to R 7 is independently hydrogen, deuterium, substituted or unsubstituted C1 to C
  • X may be -O-, -S-, -S (O)-or -S (O) 2- . Since the -O-, -S-, -S (O)-or -S (O) 2 -has a polar group and can interact with the electrode, the charge can be easily injected.
  • the compound since the compound has steric hindrance, the interaction between molecules is small, so that crystallization can be suppressed. For this reason, the yield which manufactures an element can be improved. In addition, the life characteristics of the manufactured device can be improved.
  • Chemical Formula 1 may be represented by the following Chemical Formula 3.
  • Ar 2 is a substituted or unsubstituted C6 to C30 aryl group or a substituted or unsubstituted C2 to C30 heteroaryl group
  • L 2 is a single bond, a substituted or unsubstituted C2 to C10 alkenylene group, A substituted or unsubstituted C2 to C10 alkynylene group, a substituted or unsubstituted C6 to C30 arylene group, or a substituted or unsubstituted C2 to C30 heteroarylene group
  • m2 is 1, n2 is any one of 0 to 3 Is an integer
  • R 1 to R 3 , R 6 or R 7 are independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C6 to C30 aryl group, or a substituted or unsubstituted C2 to C30 Heteroaryl group, two * of the
  • the compound for an organic optoelectronic device may be represented by the following formula (4).
  • formula (4) In the case of having the position of the fused ring as shown in the following formula (4), by introducing a spirofluorene group to the 3, 4 positions of dibenzofuran and dibenzothiophene, structural isomers do not occur, thereby increasing the synthesis yield.
  • dibenzofuran and dibenzothiophene have high hole mobility and function as a hole transport group, and spirofluorene can improve thermal stability and electrochemical stability.
  • X is -O-, -S-, -S (O)-or -S (O) 2-
  • Ar 1 and Ar 2 are independently substituted or unsubstituted C6 to C30 aryl group or A substituted or unsubstituted C2 to C30 heteroaryl group
  • L 1 and L 2 are independently a single bond, a substituted or unsubstituted C2 to C10 alkenylene group, a substituted or unsubstituted C2 to C10 alkynylene group, a substituted or Unsubstituted C6 to C30 arylene group or substituted or unsubstituted C2 to C30 heteroarylene group
  • m1 and m2 are independently an integer of 0 or 1 either m1 and m2 is 1, n1 and n2 are independent Is an integer of any one of 0 to 3
  • R 1 to R 7 are independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 al
  • the compound for an organic optoelectronic device may be represented by the following Formula 5.
  • Ar 2 is a substituted or unsubstituted C6 to C30 aryl group or a substituted or unsubstituted C2 to C30 heteroaryl group
  • L 2 is a single bond, a substituted or unsubstituted C2 to C10 alkenylene group, A substituted or unsubstituted C2 to C10 alkynylene group, a substituted or unsubstituted C6 to C30 arylene group, or a substituted or unsubstituted C2 to C30 heteroarylene group
  • m2 is 1, n2 is any one of 0 to 3 Integer
  • R 1 to R 7 are independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C6 to C30 aryl group, or a substituted or unsubstituted C2 to C30 heteroaryl group.
  • the L 1 and L 2 By selectively adjusting the L 1 and L 2 to determine the conjugation length of the entire compound, it can be applied to the light emitting layer of the organic photoelectric device as a phosphorescent host by increasing the triplet energy band gap therefrom.
  • L 1 and L 2 are a substituted or unsubstituted phenylene group, a substituted or unsubstituted biphenylene group, a substituted or unsubstituted terphenylene group, a substituted or unsubstituted naphthylene group, a substituted or unsubstituted Anthracenylene group, substituted or unsubstituted phenanthryl group, substituted or unsubstituted pyrenylene group, substituted or unsubstituted fluorenylene group, substituted or unsubstituted triphenylene group and the like.
  • Ar 1 and Ar 2 are independently substituted or unsubstituted imidazolyl group, substituted or unsubstituted triazolyl group, substituted or unsubstituted tetrazolyl group, substituted or unsubstituted carbazolyl group, substituted or unsubstituted Substituted oxadiazolyl group, substituted or unsubstituted oxtriazolyl group, substituted or unsubstituted thiatriazolyl group, substituted or unsubstituted benzimidazolyl group, substituted or unsubstituted benzotriazolyl group, substituted or Unsubstituted pyridinyl group, substituted or unsubstituted pyrimidinyl group, substituted or unsubstituted triazinyl group, substituted or unsubstituted pyrazinyl group, substituted or unsubstituted pyridazinyl group, substituted or
  • Ar 1 and Ar 2 are independently a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted phenanthrenyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted fluorenyl group , Substituted or unsubstituted triphenylenyl group, substituted or unsubstituted spiro-fluorenyl group, substituted or unsubstituted terphenyl group, substituted or unsubstituted pyrenyl group, substituted or unsubstituted perrylenyl group, or May be a combination.
  • the molecular weight can be adjusted to facilitate the sublimation purification.
  • Ar 1 and Ar 2 are independently a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted phenanthryl group, a substituted or unsubstituted naphthacenyl group , Substituted or unsubstituted pyrenyl group, substituted or unsubstituted biphenylyl group, substituted or unsubstituted p-terphenyl group, substituted or unsubstituted m-terphenyl group, substituted or unsubstituted chrysenyl group, substituted or unsubstituted Substituted triphenylenyl group, substituted or unsubstituted perenyl group, substituted or unsubstituted indenyl group, substituted or unsubstituted furanyl
  • the compound for an organic optoelectronic device due to the substituent is light emitting, hole or electronic properties; Membrane stability; Thermal stability and high triplet excitation energy (T1).
  • the compound for an organic optoelectronic device may be represented by any one of the following Formulas A-1 to A-24, but is not limited thereto.
  • the compound for an organic optoelectronic device may be represented by any one of the following Formulas B-1 to B-257, but is not limited thereto.
  • introducing a functional group having the electronic characteristics is effective for improving the lifespan and driving voltage of the organic light emitting diode.
  • Compound for an organic optoelectronic device has a maximum emission wavelength of about 320 to 500 nm, triplet excitation energy (T1) is 2.0 eV or more, more specifically 2.0 to 4.0 eV range
  • T1 triplet excitation energy
  • the charge of the host having a high triplet excitation energy is well transferred to the dopant, thereby increasing the light emitting efficiency of the dopant and lowering the driving voltage by freely adjusting the HOMO and LUMO energy levels of the material. Because of the advantages it can be very useful as a host material or a charge transport material.
  • nonlinear optical material since the compound for an organic optoelectronic device has photoactive and electrical activity, nonlinear optical material, electrode material, color change material, optical switch, sensor, module, wave guide, organic transistor, laser, light absorber, dielectric and separator It can also be very usefully applied to materials such as (membrane).
  • the compound for an organic optoelectronic device including the compound as described above has a glass transition temperature of 90 ° C. or higher, and a thermal decomposition temperature of 400 ° C. or higher, thereby providing excellent thermal stability. This makes it possible to implement a high efficiency organic photoelectric device.
  • the compound for an organic optoelectronic device including the compound as described above may serve as light emission, electron injection and / or transport, and may also serve as a light emitting host with an appropriate dopant. That is, the compound for an organic optoelectronic device may be used as a host material of phosphorescence or fluorescence, a blue dopant material, or an electron transport material.
  • Compound for an organic optoelectronic device according to an embodiment of the present invention is used in the organic thin film layer to improve the life characteristics, efficiency characteristics, electrochemical stability and thermal stability of the organic optoelectronic device, it is possible to lower the driving voltage.
  • one embodiment of the present invention provides an organic optoelectronic device comprising the compound for an organic optoelectronic device.
  • the organic optoelectronic device refers to an organic photoelectric device, an organic light emitting device, an organic solar cell, an organic transistor, an organic photosensitive drum, an organic memory device, and the like.
  • a compound for an organic optoelectronic device according to an embodiment of the present invention is included in an electrode or an electrode buffer layer to increase quantum efficiency, and in the case of an organic transistor, a gate, a source-drain electrode, or the like may be used as an electrode material. Can be used.
  • Another embodiment of the present invention is an organic light emitting device comprising an anode, a cathode and at least one organic thin film layer interposed between the anode and the cathode, at least any one of the organic thin film layer is an embodiment of the present invention It provides an organic light emitting device comprising a compound for an organic optoelectronic device according to.
  • the organic thin film layer which may include the compound for an organic optoelectronic device may include a layer selected from the group consisting of a light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, an electron injection layer, a hole blocking layer and a combination thereof. At least one of the layers includes the compound for an organic optoelectronic device according to the present invention.
  • the hole transport layer or the hole injection layer may include a compound for an organic optoelectronic device according to an embodiment of the present invention.
  • the compound for an organic optoelectronic device when included in a light emitting layer, the compound for an organic optoelectronic device may be included as a phosphorescent or fluorescent host, and in particular, may be included as a fluorescent blue dopant material.
  • FIG. 1 to 5 are cross-sectional views of an organic light emitting device including a compound for an organic optoelectronic device according to an embodiment of the present invention.
  • the organic light emitting diodes 100, 200, 300, 400, and 500 according to the embodiment of the present invention are interposed between the anode 120, the cathode 110, and the anode and the cathode. It has a structure including at least one organic thin film layer 105.
  • the anode 120 includes a cathode material, and a material having a large work function is preferable as the anode material so that hole injection can be smoothly injected into the organic thin film layer.
  • the positive electrode material include metals such as nickel, platinum, vanadium, chromium, copper, zinc, and gold or alloys thereof, and include zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO).
  • metal oxides such as ZnO and Al, or combinations of metals and oxides such as SnO 2 and Sb, and poly (3-methylthiophene), poly [3,4- (ethylene-1, 2-dioxy) thiophene] (conductive polymers such as polyehtylenedioxythiophene (PEDT), polypyrrole and polyaniline, etc.), but is not limited thereto.
  • a transparent electrode including indium tin oxide (ITO) may be used as the anode.
  • the negative electrode 110 includes a negative electrode material, and the negative electrode material is preferably a material having a small work function to facilitate electron injection into the organic thin film layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, lead, cesium, barium, or alloys thereof, and LiF / Al.
  • Multilayer structure materials such as LiO 2 / Al, LiF / Ca, LiF / Al, and BaF 2 / Ca, and the like, but are not limited thereto.
  • a metal electrode such as aluminum may be used as the cathode.
  • FIG. 1 illustrates an organic light emitting device 100 in which only a light emitting layer 130 exists as an organic thin film layer 105.
  • the organic thin film layer 105 may exist only as a light emitting layer 130.
  • FIG. 2 illustrates a two-layered organic light emitting diode 200 including an emission layer 230 and an hole transport layer 140 including an electron transport layer as the organic thin film layer 105, as shown in FIG. 2.
  • the organic thin film layer 105 may be a two-layer type including the light emitting layer 230 and the hole transport layer 140.
  • the light emitting layer 130 functions as an electron transporting layer
  • the hole transporting layer 140 functions to improve bonding and hole transporting properties with a transparent electrode such as ITO.
  • FIG. 3 is a three-layered organic light emitting device 300 having an electron transport layer 150, an emission layer 130, and a hole transport layer 140 as an organic thin film layer 105, and the organic thin film layer 105.
  • the light emitting layer 130 is in an independent form, and has a form in which a film (electron transport layer 150 and hole transport layer 140) having excellent electron transport properties or hole transport properties is stacked in separate layers.
  • FIG. 4 illustrates a four-layered organic light emitting diode 400 in which an electron injection layer 160, an emission layer 130, a hole transport layer 140, and a hole injection layer 170 exist as an organic thin film layer 105.
  • the hole injection layer 170 may improve adhesion to ITO used as an anode.
  • FIG. 5 shows different functions such as the electron injection layer 160, the electron transport layer 150, the light emitting layer 130, the hole transport layer 140, and the hole injection layer 170 as the organic thin film layer 105.
  • the five-layer organic light emitting device 500 having five layers is present, and the organic light emitting device 500 is effective in lowering the voltage by separately forming the electron injection layer 160.
  • the electron transport layer 150, the electron injection layer 160, the light emitting layers 130 and 230, the hole transport layer 140, and the hole injection layer 170 forming the organic thin film layer 105 and their Any one selected from the group consisting of a combination includes the compound for an organic optoelectronic device.
  • the compound for an organic optoelectronic device may be used in the electron transport layer 150 including the electron transport layer 150 or the electron injection layer 160, and the hole blocking layer (not shown) is included in the electron transport layer. It is desirable to provide an organic light emitting device having a simplified structure because it does not need to be formed separately.
  • the compound for an organic optoelectronic device when included in the light emitting layers 130 and 230, the compound for an organic optoelectronic device may be included as a phosphorescent or fluorescent host, or may be included as a fluorescent blue dopant.
  • the above-described organic light emitting device includes a dry film method such as an evaporation, sputtering, plasma plating and ion plating after forming an anode on a substrate;
  • the organic thin film layer may be formed by a wet film method such as spin coating, dipping, flow coating, or the like, followed by forming a cathode thereon.
  • a display device including the organic light emitting diode is provided.
  • the glass substrate coated with ITO Indium tin oxide having a thickness of 1500 ⁇ was washed with distilled water ultrasonic waves. After washing the distilled water, ultrasonic cleaning with a solvent such as isopropyl alcohol, acetone, methanol and the like was dried and then transferred to a plasma cleaner, and then the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum depositor.
  • a solvent such as isopropyl alcohol, acetone, methanol and the like
  • HTM see material structure below
  • HTM was vacuum deposited on the ITO substrate to form a hole injection layer having a thickness of 1200 ⁇ .
  • Example 1 The material synthesized in Example 1 was used as a host on the hole injection layer, and a phosphorescent green dopant was doped with PhGD (see the figure below) at 7% by weight to form a light emitting layer having a thickness of 300 Pa by vacuum deposition.
  • PhGD phosphorescent green dopant
  • BAlq (Bis (2-methyl-8-quinolinolato-N1, O8)-(1,1'-Biphenyl-4-olato) aluminum] 50um and Alq3 [Tris (8-hydroxyquinolinato) aluminium] 250 ⁇ Laminated sequentially to form an electron transport layer.
  • An organic light emitting device was manufactured by sequentially depositing LiF 5 ′ and Al 1000 ′ on the electron transport layer to form a cathode.
  • An organic light emitting diode was manufactured according to the same method as Example 7 except for using the compound prepared in Example 2 (A-6) instead of using the compound prepared in Example 1.
  • An organic light emitting diode was manufactured according to the same method as Example 7 except for using the compound prepared in Example 3 (A-8) instead of using the compound prepared in Example 1.
  • An organic light emitting diode was manufactured according to the same method as Example 7 except for using the compound prepared in Example 4 (A-11) instead of using the compound prepared in Example 1.
  • An organic light emitting diode was manufactured according to the same method as Example 7 except for using the compound prepared in Example 5 (B-123), instead of using the compound prepared in Example 1.
  • An organic light emitting diode was manufactured according to the same method as Example 7 except for using the compound prepared in Example 6 (B-127) instead of using the compound prepared in Example 1.
  • An organic light emitting diode was manufactured according to the same method as Example 4 except for using Compound C1 as a host instead of Example 1 (A-6).
  • the current value flowing through the unit device was measured using a current-voltmeter (Keithley 2400) while increasing the voltage from 0V to 10V, and the measured current value was divided by the area to obtain a result.
  • the resulting organic light emitting device was measured using a luminance meter (Minolta Cs-1000A) while increasing the voltage from 0V to 10V to obtain a result.
  • the current efficiency (cd / A) and power efficiency (lm / W) of the same brightness (3,000 cd / m 2 ) were calculated using the brightness, current density, and voltage measured from (1) and (2) above.
  • Table 1 summarizes the device evaluation results.
  • Example 1 Classification Host Vd Cd / A lm / W cd / m 2 CIEx CIEy Comparative Example 1 C1 6.90 49.53 22.54 3000 0.333 0.623
  • Example 7 A-1 5.45 54.3 31.3 3000 0.356 0.613
  • Example 8 A-6 5.48 54.1 31 3000 0.348 0.608
  • Example 9 A-8 5.65 55.6 30.9 3000 0.345 0.611
  • Example 10 A-11 5.38 55.8 32.6 3000 0.359 0.615
  • Example 11 B-123 5.90 52.9 28.2 3000 0.354 0.607
  • Example 12 B-127 5.95 52.5 27.7 3000 0.362 0.609

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치에 관한 것으로, 화학식 1 및 2의 조합으로 표시되는 유기광전자소자용 화합물을 제공하여, 우수한 전기화학적 및 열적 안정성으로 수명 특성이 우수하고, 낮은 구동전압에서도 높은 발광효율을 가지는 유기발광소자를 제조할 수 있다.

Description

유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
수명, 효율, 전기화학적 안정성 및 열적 안정성이 우수한 유기광전자소자를 제공할 수 있는 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치에 관한 것이다.
유기광전자소자(organic optoelectric device)라 함은 정공 또는 전자를 이용한 전극과 유기물 사이에서의 전하 교류를 필요로 하는 소자를 의미한다.
유기광전자소자는 동작 원리에 따라 하기와 같이 크게 두 가지로 나눌 수 있다. 첫째는 외부의 광원으로부터 소자로 유입된 광자에 의하여 유기물층에서 엑시톤(exciton)이 형성되고 이 엑시톤이 전자와 정공으로 분리되고, 이 전자와 정공이 각각 다른 전극으로 전달되어 전류원(전압원)으로 사용되는 형태의 전자소자이다.
둘째는 2 개 이상의 전극에 전압 또는 전류를 가하여 전극과 계면을 이루는 유기물 반도체에 정공 또는 전자를 주입하고, 주입된 전자와 정공에 의하여 동작하는 형태의 전자소자이다.
유기광전자소자의 예로는 유기광전소자, 유기발광소자, 유기태양전지, 유기감광체 드럼(organic photo conductor drum), 유기트랜지스터 등이 있으며, 이들은 모두 소자의 구동을 위하여 정공의 주입 또는 수송 물질, 전자의 주입 또는 수송 물질, 또는 발광 물질을 필요로 한다.
특히, 유기발광소자(organic light emitting diode, OLED)는 최근 평판 디스플레이(flat panel display)의 수요가 증가함에 따라 주목받고 있다. 일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다.
이러한 유기발광소자는 유기발광재료에 전류를 가하여 전기에너지를 빛으로 전환시키는 소자로서 통상 양극(anode)과 음극(cathode) 사이에 기능성 유기물 층이 삽입된 구조로 이루어져 있다. 여기서 유기물층은 유기발광소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다.
이러한 유기발광소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공(hole)이, 음극에서는 전자(electron)가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만나 재결합(recombination)에 의해 에너지가 높은 여기자를 형성하게 된다. 이때 형성된 여기자가 다시 바닥상태(ground state)로 이동하면서 특정한 파장을 갖는 빛이 발생하게 된다.
최근에는, 형광 발광물질뿐 아니라 인광 발광물질도 유기발광소자의 발광물질로 사용될 수 있음이 알려졌으며, 이러한 인광 발광은 바닥상태(ground state)에서 여기상태(excited state)로 전자가 전이한 후, 계간 전이(intersystem crossing)를 통해 단일항 여기자가 삼중항 여기자로 비발광 전이된 다음, 삼중항 여기자가 바닥상태로 전이하면서 발광하는 메카니즘으로 이루어진다.
상기한 바와 같이 유기발광소자에서 유기물층으로 사용되는 재료는 기능에 따라, 발광 재료와 전하 수송 재료, 예컨대 정공주입 재료, 정공수송 재료, 전자수송 재료, 전자주입 재료 등으로 분류될 수 있다.
또한, 발광 재료는 발광색에 따라 청색, 녹색, 적색 발광재료와 보다 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색 발광 재료로 구분될 수 있다.
한편, 발광 재료로서 하나의 물질만 사용하는 경우 분자간 상호 작용에 의하여 최대 발광 파장이 장파장으로 이동하고 색순도가 떨어지거나 발광 감쇄 효과로 소자의 효율이 감소되는 문제가 발생하므로, 색순도의 증가와 에너지 전이를 통한 발광 효율과 안정성을 증가시키기 위하여 발광 재료로서 호스트/도판트 계를 사용할 수 있다.
유기발광소자가 전술한 우수한 특징들을 충분히 발휘하기 위해서는 소자 내 유기물층을 이루는 물질, 예컨대 정공주입 물질, 정공수송 물질, 발광 물질, 전자수송 물질, 전자주입 물질, 발광 재료 중 호스트 및/또는 도판트 등이 안정하고 효율적인 재료에 의하여 뒷받침되는 것이 선행되어야 하며, 아직까지 안정하고 효율적인 유기발광소자용 유기물층 재료의 개발이 충분히 이루어지지 않은 상태이며, 따라서 새로운 재료의 개발이 계속 요구되고 있다. 이와 같은 재료 개발의 필요성은 전술한 다른 유기광전자소자에서도 마찬가지이다.
또한, 저분자 유기발광소자는 진공 증착법에 의해 박막의 형태로 소자를 제조하므로 효율 및 수명성능이 좋으며, 고분자 유기 발광 소자는 잉크젯(Inkjet) 또는 스핀코팅(spin coating)법을 사용하여 초기 투자비가 적고 대면적화가 유리한 장점이 있다.
저분자 유기발광소자 및 고분자 유기발광소자는 모두 자체발광, 고속응답, 광시야각, 초박형, 고화질, 내구성, 넓은 구동온도범위 등의 장점을 가지고 있어 차세대 디스플레이로 주목을 받고 있다. 특히 기존의 LCD(liquid crystal display)와 비교하여 자체발광형으로서 어두운 곳이나 외부의 빛이 들어와도 시안성이 좋으며, 백라이트가 필요 없어 LCD의 1/3수준으로 두께 및 무게를 줄일 수 있다.
또한, 응답속도가 LCD에 비해 1000배 이상 빠른 마이크로 초 단위여서 잔상이 없는 완벽한 동영상을 구현할 수 있다. 따라서, 최근 본격적인 멀티미디어 시대에 맞춰 최적의 디스플레이로 각광받을 것으로 기대되며, 이러한 장점을 바탕으로 1980년대 후반 최초 개발 이후 효율 80배, 수명 100배 이상에 이르는 급격한 기술발전을 이루어 왔고, 최근에는 40인치 유기발광소자 패널이 발표되는 등 대형화가 급속히 진행되고 있다.
대형화를 위해서는 발광 효율의 증대 및 소자의 수명 향상이 수반되어야 한다. 이때, 소자의 발광 효율은 발광층 내의 정공과 전자의 결합이 원활히 이루어져야 한다. 그러나, 일반적으로 유기물의 전자 이동도는 정공 이동도에 비해 느리므로, 발광층 내의 정공과 전자의 결합이 효율적으로 이루어지기 위해서는, 효율적인 전자 수송층을 사용하여 음극으로부터의 전자 주입 및 이동도를 높이는 동시에, 정공의 이동을 차단할 수 있어야 한다.
또한, 수명 향상을 위해서는 소자의 구동시 발생하는 줄열(Joule heat)로 인해 재료가 결정화되는 것을 방지하여야 한다. 따라서, 전자의 주입 및 이동성이 우수하며, 전기화학적 안정성이 높은 유기 화합물에 대한 개발이 필요하다.
정공 주입 및 수송 역할 또는 전자 주입 및 수송역할을 할 수 있고, 적절한 도펀트와 함께 발광 호스트로서의 역할을 할 수 있는 유기광전자소자용 화합물을 제공한다.
수명, 효율, 구동전압, 전기화학적 안정성 및 열적 안정성이 우수한 유기발광소자 및 이를 포함하는 표시장치를 제공하고자 한다.
본 발명의 일 구현예에서는, 하기 화학식 1 및 2의 조합으로 표시되는 유기광전자소자용 화합물을 제공한다.
[화학식 1]
Figure PCTKR2012011022-appb-I000001
[화학식 2]
Figure PCTKR2012011022-appb-I000002
상기 화학식 1 및 2에서, X는 -O-, -S-, -S(O)- 또는 -S(O)2-이고, Ar1 및 Ar2는 독립적으로 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, L1 및 L2는 독립적으로 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고, m1 및 m2는 독립적으로 0 또는 1인 정수이며, m1 및 m2 중 어느 하나는 1이고, n1 및 n2는 독립적으로 0 내지 3 중 어느 하나의 정수이고, R1 내지 R7은 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, 상기 화학식 2의 두 개의 *은 상기 화학식 1의 인접한 두 개의 *과 결합하여 융합고리를 형성한다.
상기 화학식 1은 하기 화학식 3으로 표시될 수 있다.
[화학식 3]
Figure PCTKR2012011022-appb-I000003
상기 화학식 3에서, Ar2는 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, L2는 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고, m2는 1이고, n2는 0 내지 3 중 어느 하나의 정수이고, R1 내지 R3, R6 또는 R7은 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, 상기 화학식 2의 두 개의 *은 상기 화학식 3의 인접한 두 개의 *과 결합하여 융합고리를 형성한다.
상기 유기광전자소자용 화합물은 하기 화학식 4로 표시될 수 있다.
[화학식 4]
Figure PCTKR2012011022-appb-I000004
상기 화학식 4에서, X는 -O-, -S-, -S(O)- 또는 -S(O)2-이고, Ar1 및 Ar2는 독립적으로 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, L1 및 L2는 독립적으로 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고, m1 및 m2는 독립적으로 0 또는 1인 정수이며, m1 및 m2 중 어느 하나는 1이고, n1 및 n2는 독립적으로 0 내지 3 중 어느 하나의 정수이고, R1 내지 R7은 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이다.
상기 유기광전자소자용 화합물은 하기 화학식 5로 표시될 수 있다.
[화학식 5]
Figure PCTKR2012011022-appb-I000005
상기 화학식 5에서, Ar2는 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, L2는 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고, m2는 1이고, n2는 0 내지 3 중 어느 하나의 정수이고, R1 내지 R7은 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이다.
상기 Ar1 및 Ar2는 독립적으로 치환 또는 비치환된 이미다졸릴기, 치환 또는 비치환된 트리아졸릴기, 치환 또는 비치환된 테트라졸릴기, 치환 또는 비치환된 카바졸릴기, 치환 또는 비치환된 옥사다이아졸릴기, 치환 또는 비치환된 옥사트리아졸릴기, 치환 또는 비치환된 싸이아트리아졸릴기, 치환 또는 비치환된 벤즈이미다졸릴기, 치환 또는 비치환된 벤조트리아졸릴기, 치환 또는 비치환된 피리디닐기, 치환 또는 비치환된 피리미디닐기, 치환 또는 비치환된 트리아지닐기, 치환 또는 비치환된 피라지닐기, 치환 또는 비치환된 피리다지닐기, 치환 또는 비치환된 퓨리닐기, 치환 또는 비치환된 퀴놀리닐기, 치환 또는 비치환된 이소퀴놀리닐기, 치환 또는 비치환된 프탈라지닐기, 치환 또는 비치환된 나프피리디닐기, 치환 또는 비치환된 퀴녹살리닐기, 치환 또는 비치환된 퀴나졸리닐기, 치환 또는 비치환된 아크리디닐기, 치환 또는 비치환된 페난트롤리닐기, 치환 또는 비치환된 페나지닐기 또는 이들의 조합일 수 있다.
상기 Ar1 및 Ar2는 독립적으로 치환 또는 비치환된 페닐기, 치환 또는 비치환된 나프틸기, 치환 또는 비치환된 페난트레닐기, 치환 또는 비치환된 안트라세닐기, 치환 또는 비치환된 플루오레닐기, 치환 또는 비치환된 트리페닐레닐기, 치환 또는 비치환된 스피로-플루오레닐기, 치환 또는 비치환된 터페닐기, 치환 또는 비치환된 파이레닐기, 치환 또는 비치환된 페릴레닐기 또는 이들의 조합일 수 있다.
상기 Ar1 및 Ar2는 독립적으로 치환 또는 비치환된 페닐기, 치환 또는 비치환된 나프틸기, 치환 또는 비치환된 안트라세닐기, 치환 또는 비치환된 페난트릴기, 치환 또는 비치환된 나프타세닐기, 치환 또는 비치환된 피레닐기, 치환 또는 비치환된 바이페닐일기, 치환 또는 비치환된 p-터페닐기, 치환 또는 비치환된 m-터페닐기, 치환 또는 비치환된 크리세닐기, 치환 또는 비치환된 트리페닐레닐기, 치환 또는 비치환된 페릴레닐기, 치환 또는 비치환된 인데닐기, 치환 또는 비치환된 퓨라닐기, 치환 또는 비치환된 티오페닐기, 치환 또는 비치환된 피롤릴기, 치환 또는 비치환된 피라졸릴기, 치환 또는 비치환된 이미다졸일기, 치환 또는 비치환된 트리아졸일기, 치환 또는 비치환된 옥사졸일기, 치환 또는 비치환된 티아졸일기, 치환 또는 비치환된 옥사디아졸일기, 치환 또는 비치환된 티아디아졸일기, 치환 또는 비치환된 피리딜기, 치환 또는 비치환된 피리미디닐기, 치환 또는 비치환된 피라지닐기, 치환 또는 비치환된 트리아지닐기, 치환 또는 비치환된 벤조퓨라닐기, 치환 또는 비치환된 벤조티오페닐기, 치환 또는 비치환된 벤즈이미다졸일기, 치환 또는 비치환된 인돌일기, 치환 또는 비치환된 퀴놀리닐기, 치환 또는 비치환된 이소퀴놀리닐기, 치환 또는 비치환된 퀴나졸리닐기, 치환 또는 비치환된 퀴녹살리닐기, 치환 또는 비치환된 나프티리디닐기, 치환 또는 비치환된 벤즈옥사진일기, 치환 또는 비치환된 벤즈티아진일기, 치환 또는 비치환된 아크리디닐기, 치환 또는 비치환된 페나진일기, 치환 또는 비치환된 페노티아진일기, 치환 또는 비치환된 페녹사진일기 또는 이들의 조합일 수 있다.
상기 유기광전자소자용 화합물은 3중항 여기에너지(T1) 2.0eV 이상일 수 있다.
상기 유기광전자소자는, 유기광전소자, 유기발광소자, 유기태양전지, 유기트랜지스터, 유기 감광체 드럼 및 유기메모리소자로 이루어진 군에서 선택될 수 있다.
본 발명의 또 다른 일 구현예에서는, 양극, 음극 및 상기 양극과 음극 사이에 개재되는 적어도 한 층 이상의 유기박막층을 포함하는 유기발광소자에 있어서, 상기 유기박막층 중 적어도 어느 한 층은 전술한 유기광전자소자용 화합물을 포함하는 것인 유기발광소자를 제공한다.
상기 유기박막층은 발광층, 정공수송층, 정공주입층, 전자수송층, 전자주입층, 정공차단층 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.
상기 유기광전자소자용 화합물은 정공수송층 또는 정공주입층 내에 포함될 수 있다.
상기 유기광전자소자용 화합물은 발광층 내에 포함될 수 있다.
상기 유기광전자소자용 화합물은 발광층 내에 인광 또는 형광 호스트 재료로서 사용될 수 있다.
본 발명의 또 다른 일 구현예에서는, 전술한 유기발광소자를 포함하는 표시장치를 제공한다.
높은 정공 또는 전자 수송성, 막 안정성 열적 안정성 및 높은 3중항 여기에너지를 가지는 화합물을 제공할 수 있다.
이러한 화합물은 발광층의 정공 주입/수송 재료, 호스트 재료, 또는 전자 주입/수송 재료로 이용될 수 있다. 이를 이용한 유기광전자소자는 우수한 전기화학적 및 열적 안정성을 가지게 되어 수명 특성이 우수하고, 낮은 구동전압에서도 높은 발광효율을 가질 수 있다.
도 1 내지 도 5는 본 발명의 일 구현예에 따른 유기광전자소자용 화합물을 이용하여 제조될 수 있는 유기발광소자에 대한 다양한 구현예들을 나타내는 단면도이다.
100 : 유기발광소자 110 : 음극
120 : 양극 105 : 유기박막층
130 : 발광층 140 : 정공 수송층
150 : 전자수송층 160 : 전자주입층
170 : 정공주입층 230 : 발광층 + 전자수송층
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.
본 명세서에서 "치환"이란 별도의 정의가 없는 한, 치환기 또는 화합물 중의 적어도 하나의 수소가 중수소, 할로겐기, 히드록시기, 아미노기, 치환 또는 비치환된 C1 내지 C30 아민기, 니트로기, 치환 또는 비치환된 C3 내지 C40 실릴기, C1 내지 C30 알킬기, C1 내지 C10 알킬실릴기, C3 내지 C30 시클로알킬기, C6 내지 C30 아릴기, C1 내지 C20 알콕시기, 플루오로기, 트리플루오로메틸기 등의 C1 내지 C10 트리플루오로알킬기 또는 시아노기로 치환된 것을 의미한다.
또한 상기 치환된 할로겐기, 히드록시기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니트로기, 치환 또는 비치환된 C3 내지 C40 실릴기, C1 내지 C30 알킬기, C1 내지 C10 알킬실릴기, C3 내지 C30 시클로알킬기, C6 내지 C30 아릴기, C1 내지 C20 알콕시기, 플루오로기, 트리플루오로메틸기 등의 C1 내지 C10 트리플루오로알킬기 또는 시아노기 중 인접한 두 개의 치환기가 융합되어 고리를 형성할 수도 있다.
본 명세서에서 "헤테로"란 별도의 정의가 없는 한, 하나의 작용기 내에 N, O, S 및 P로 이루어진 군에서 선택되는 헤테로 원자를 1 내지 3개 함유하고, 나머지는 탄소인 것을 의미한다.
본 명세서에서 "이들의 조합"이란 별도의 정의가 없는 한, 둘 이상의 치환기가 연결기로 결합되어 있거나, 둘 이상의 치환기가 축합하여 결합되어 있는 것을 의미한다.
본 명세서에서 "알킬(alkyl)기"이란 별도의 정의가 없는 한, 지방족 탄화수소기를 의미한다. 알킬기는 어떠한 이중결합이나 삼중결합을 포함하고 있지 않은 "포화 알킬(saturated alkyl)기"일 수 있다. 상기 알킬기는 분지형, 직쇄형 또는 환형일 수 있다.
"알케닐렌(alkenylene)기"는 적어도 두 개의 탄소원자가 적어도 하나의 탄소-탄소 이중 결합으로 이루어진 작용기를 의미하며, "알키닐렌(alkynylene)기" 는 적어도 두 개의 탄소원자가 적어도 하나의 탄소-탄소 삼중 결합으로 이루어진 작용기를 의미한다.
알킬기는 C1 내지 C20인 알킬기일 수 있다. 보다 구체적으로 알킬기는 C1 내지 C10 알킬기 또는 C1 내지 C6 알킬기일 수도 있다.
예를 들어, C1 내지 C4 알킬기는 알킬쇄에 1 내지 4 개의 탄소원자, 즉, 알킬쇄는 메틸, 에틸, 프로필, 이소-프로필, n-부틸, 이소-부틸, sec-부틸 및 t-부틸로 이루어진 군에서 선택됨을 나타낸다.
구체적인 예를 들어 상기 알킬기는 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, t-부틸기, 펜틸기, 헥실기, 시클로프로필기, 시클로부틸기, 시클로펜틸기, 시클로헥실기 등을 의미한다.
"방향족기"는 고리 형태인 작용기의 모든 원소가 p-오비탈을 가지고 있으며, 이들 p-오비탈이 공액(conjugation)을 형성하고 있는 작용기를 의미한다. 구체적인 예로 아릴기와 헤테로아릴기가 있다.
"아릴(aryl)기"는 모노시클릭 또는 융합 고리 폴리시클릭(즉, 탄소원자들의 인접한 쌍들을 나눠 가지는 고리) 작용기를 포함한다.
"헤테로아릴(heteroaryl)기"는 아릴기 내에 N, O, S 및 P로 이루어진 군에서 선택되는 헤테로 원자를 1 내지 3개 함유하고, 나머지는 탄소인 것을 의미한다. 상기 헤테로아릴기가 융합고리인 경우, 각각의 고리마다 상기 헤테로 원자를 1 내지 3개 포함할 수 있다.
본 명세서에서 카바졸계 유도체라함은 치환 또는 비치환된 카바졸릴기의 질소원자가 질소가 아닌 헤테로 원자 또는 탄소로 치환된 구조를 의미한다. 구체적인 예를 들어, 디벤조퓨란(디벤조퓨라닐기), 디벤조티오펜(디벤조티오페닐기), 플루오렌(플루오레닐기) 등 이다.
본 명세서에서, 정공 특성이란, HOMO 준위를 따라 전도 특성을 가져 양극에서 형성된 정공의 발광층으로의 주입 및 발광층에서의 이동을 용이하게 하는 특성을 의미한다.
또한 전자 특성이란, LUMO 준위를 따라 전도 특성을 가져 음극에서 형성된 전자의 발광층으로의 주입 및 발광층에서의 이동을 용이하게 하는 특성을 의미한다.
본 발명의 일 구현예에 따른 유기광전자소자용 화합물은 스피로 구조의 바이 플루오렌 코어에 적어도 하나의 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기가 결합된 구조를 가질 수 있다.
또한 상기 스피로 구조의 코어 중 일부는 융합된 고리 형태일 수 있다.
상기 코어 구조는 유기광전자소자의 발광 재료, 정공주입재료 또는 정공수송재료로 이용될 수 있다. 특히 정공주입재료 또는 정공수송재료에 적합할 수 있다.
또한, 상기 유기광전자소자용 화합물은 코어 부분과 코어 부분에 치환된 치환기에 다양한 또 다른 치환기를 도입함으로써 다양한 에너지 밴드 갭을 갖는 화합물이 될 수 있다.
상기 화합물의 치환기에 따라 적절한 에너지 준위를 가지는 화합물을 유기광전자소자에 사용함으로써, 정공전달 능력 또는 전자전달 능력이 강화되어 효율 및 구동전압 면에서 우수한 효과를 가지고, 전기화학적 및 열적 안정성이 뛰어나 유기광전자소자 구동시 수명 특성을 향상시킬 수 있다.
본 발명의 일 구현예에서는, 하기 화학식 1 및 2의 조합으로 표시되는 유기광전자소자용 화합물을 제공할 수 있다.
[화학식 1]
Figure PCTKR2012011022-appb-I000006
[화학식 2]
Figure PCTKR2012011022-appb-I000007
상기 화학식 1 및 2에서, X는 -O-, -S-, -S(O)- 또는 -S(O)2-이고, Ar1 및 Ar2는 독립적으로 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, L1 및 L2는 독립적으로 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고, m1 및 m2는 독립적으로 0 또는 1인 정수이며, m1 및 m2 중 어느 하나는 1이고, n1 및 n2는 독립적으로 0 내지 3 중 어느 하나의 정수이고, R1 내지 R7은 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, 상기 화학식 2의 두 개의 *은 상기 화학식 1의 인접한 두 개의 *과 결합하여 융합고리를 형성한다.
상기 X은 -O-, -S-, -S(O)- 또는 -S(O)2-이 적합할 수 있다. 상기 -O-, -S-, -S(O)- 또는 -S(O)2-은 극성기를 갖고 있어 전극과 상호작용이 가능하기 때문에 전하의 주입이 용이할 수 있다.
상기 Ar1 또는 Ar2가 상기 코어인 스피로 구조의 바이 플루오렌기에 결합되는 경우, 전하의 이동도가 높아질 수 있으며, 이로 인해 소자의 구동전압이 저하되는 효과가 있다.
또한, 상기 화합물은 입체 장해성을 가지기 때문에 분자 사이의 상호작용이 작아 결정화가 억제될 수 있다. 이로 인해 소자를 제조하는 수율을 향상시킬 수 있다. 또한, 제조된 소자의 수명 특성이 개선될 수 있다.
또한, 상기 화합물은 비교적 분자량이 크기 때문에, 화합물의 증착시의 분해를 억제할 수 있다.
보다 구체적으로 상기 화학식 1은 하기 화학식 3으로 표시될 수 있다.
[화학식 3]
Figure PCTKR2012011022-appb-I000008
상기 화학식 3에서, Ar2는 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, L2는 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고, m2는 1이고, n2는 0 내지 3 중 어느 하나의 정수이고, R1 내지 R3, R6 또는 R7은 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, 상기 화학식 2의 두 개의 *은 상기 화학식 3의 인접한 두 개의 *과 결합하여 융합고리를 형성한다.
보다 구체적으로 상기 유기광전자소자용 화합물은 하기 화학식 4로 표시될 수 있다. 하기 화학식 4와 같은 융합 고리의 위치를 가지는 경우 디벤조퓨란, 디벤조티오펜의 3, 4번 위치로 스피로플루오렌기를 도입함으로써 구조이성질체가 생기지 않아 합성수율을 높일 수 있다. 또한, 디벤조퓨란, 디벤조티오펜은 높은 정공 이동도를 가져 정공수송기로서 기능을 하고, 스피로플루오렌은 열적 안정성과 전기화학적 안정성을 향상시킬 수 있다.
[화학식 4]
Figure PCTKR2012011022-appb-I000009
상기 화학식 4에서, X는 -O-, -S-, -S(O)- 또는 -S(O)2-이고, Ar1 및 Ar2는 독립적으로 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, L1 및 L2는 독립적으로 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고, m1 및 m2는 독립적으로 0 또는 1인 정수이며, m1 및 m2 중 어느 하나는 1이고, n1 및 n2는 독립적으로 0 내지 3 중 어느 하나의 정수이고, R1 내지 R7은 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이다.
보다 구체적으로 상기 유기광전자소자용 화합물은 하기 화학식 5로 표시될 수 있다.
[화학식 5]
Figure PCTKR2012011022-appb-I000010
상기 화학식 5에서, Ar2는 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고, L2는 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고, m2는 1이고, n2는 0 내지 3 중 어느 하나의 정수이고, R1 내지 R7은 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이다.
상기 L1 및 L2을 선택적으로 조절하여 화합물 전체의 공액(conjugation) 길이를 결정할 수 있으며, 이로부터 삼중항 에너지 밴드갭을 크게 함으로서 인광호스트로 유기광전소자의 발광층에 적용할 수 있다.
상기 L1 및 L2의 구체적인 예로는 치환 또는 비치환된 페닐렌기, 치환 또는 비치환된 바이페닐렌기, 치환 또는 비치환된 터페닐렌기, 치환 또는 비치환된 나프틸렌기, 치환 또는 비치환된 안트라세닐렌기, 치환 또는 비치환된 페난트릴렌기, 치환 또는 비치환된 피레닐렌기, 치환 또는 비치환된 플루오레닐렌기, 치환 또는 비치환된 트리페닐렌기 등이다.
상기 Ar1 및 Ar2는 독립적으로 치환 또는 비치환된 이미다졸릴기, 치환 또는 비치환된 트리아졸릴기, 치환 또는 비치환된 테트라졸릴기, 치환 또는 비치환된 카바졸릴기, 치환 또는 비치환된 옥사다이아졸릴기, 치환 또는 비치환된 옥사트리아졸릴기, 치환 또는 비치환된 싸이아트리아졸릴기, 치환 또는 비치환된 벤즈이미다졸릴기, 치환 또는 비치환된 벤조트리아졸릴기, 치환 또는 비치환된 피리디닐기, 치환 또는 비치환된 피리미디닐기, 치환 또는 비치환된 트리아지닐기, 치환 또는 비치환된 피라지닐기, 치환 또는 비치환된 피리다지닐기, 치환 또는 비치환된 퓨리닐기, 치환 또는 비치환된 퀴놀리닐기, 치환 또는 비치환된 이소퀴놀리닐기, 치환 또는 비치환된 프탈라지닐기, 치환 또는 비치환된 나프피리디닐기, 치환 또는 비치환된 퀴녹살리닐기, 치환 또는 비치환된 퀴나졸리닐기, 치환 또는 비치환된 아크리디닐기, 치환 또는 비치환된 페난트롤리닐기, 치환 또는 비치환된 페나지닐기 또는 이들의 조합일 수 있다. 이러한 경우, 전자이동도가 높은 치환기와의 조합으로 바이폴라(bipolar)특성의 구조화합물을 합성하여 정공과 전자 전달 능력을 높여 소자의 발광효율과 성능향상을 기대할 수 있다.
상기 Ar1 및 Ar2는 독립적으로 치환 또는 비치환된 페닐기, 치환 또는 비치환된 나프틸기, 치환 또는 비치환된 페난트레닐기, 치환 또는 비치환된 안트라세닐기, 치환 또는 비치환된 플루오레닐기, 치환 또는 비치환된 트리페닐레닐기, 치환 또는 비치환된 스피로-플루오레닐기, 치환 또는 비치환된 터페닐기, 치환 또는 비치환된 파이레닐기, 치환 또는 비치환된 페릴레닐기 또는 이들의 조합일 수 있다. 이러한 경우, 승화정제가 용이하도록 분자량 조절이 가능하다.
상기 Ar1 및 Ar2는 독립적으로 치환 또는 비치환된 페닐기, 치환 또는 비치환된 나프틸기, 치환 또는 비치환된 안트라세닐기, 치환 또는 비치환된 페난트릴기, 치환 또는 비치환된 나프타세닐기, 치환 또는 비치환된 피레닐기, 치환 또는 비치환된 바이페닐일기, 치환 또는 비치환된 p-터페닐기, 치환 또는 비치환된 m-터페닐기, 치환 또는 비치환된 크리세닐기, 치환 또는 비치환된 트리페닐레닐기, 치환 또는 비치환된 페릴레닐기, 치환 또는 비치환된 인데닐기, 치환 또는 비치환된 퓨라닐기, 치환 또는 비치환된 티오페닐기, 치환 또는 비치환된 피롤릴기, 치환 또는 비치환된 피라졸릴기, 치환 또는 비치환된 이미다졸일기, 치환 또는 비치환된 트리아졸일기, 치환 또는 비치환된 옥사졸일기, 치환 또는 비치환된 티아졸일기, 치환 또는 비치환된 옥사디아졸일기, 치환 또는 비치환된 티아디아졸일기, 치환 또는 비치환된 피리딜기, 치환 또는 비치환된 피리미디닐기, 치환 또는 비치환된 피라지닐기, 치환 또는 비치환된 트리아지닐기, 치환 또는 비치환된 벤조퓨라닐기, 치환 또는 비치환된 벤조티오페닐기, 치환 또는 비치환된 벤즈이미다졸일기, 치환 또는 비치환된 인돌일기, 치환 또는 비치환된 퀴놀리닐기, 치환 또는 비치환된 이소퀴놀리닐기, 치환 또는 비치환된 퀴나졸리닐기, 치환 또는 비치환된 퀴녹살리닐기, 치환 또는 비치환된 나프티리디닐기, 치환 또는 비치환된 벤즈옥사진일기, 치환 또는 비치환된 벤즈티아진일기, 치환 또는 비치환된 아크리디닐기, 치환 또는 비치환된 페나진일기, 치환 또는 비치환된 페노티아진일기, 치환 또는 비치환된 페녹사진일기 또는 이들의 조합일 수 있다. 이러한 경우, 전자 전달 능력이 좋은 헤테로아릴기의 치환기 조합으로 바이폴라(bipolar)특성의 구조 화합물을 합성할 수 있으며, 이로 인해 정공과 전자 전달 능력을 높여 소자의 발광효율과 성능향상을 기대할 수 있다.
상기 치환기로 인해 상기 유기광전자소자용 화합물은 발광, 정공 또는 전자 특성; 막 안정성; 열적 안정성 및 높은 3중항 여기에너지(T1)를 가질 수 있다.
보다 구체적으로, 상기 유기광전자소자용 화합물은 하기 화학식 A-1 내지 A-24 중 어느 하나로 표시될 수 있으나, 이에 제한되지는 않는다.
[화학식 A-1] [화학식 A-2] [화학식 A-3] [화학식 A-4]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-110
[화학식 A-5] [화학식 A-6]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-112
[화학식 A-7] [화학식 A-8]
[규칙 제91조에 의한 정정 21.02.2013] 
d
Figure WO-DOC-FIGURE-114
[화학식 A-9] [화학식 A-10]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-116
[화학식 A-11] [화학식 A-12]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-118
[화학식 A-13] [화학식 A-14] [화학식 A-15] [화학식 A-16]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-120
[화학식 A-17] [화학식 A-18]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-122
[화학식 A-19] [화학식 A-20]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-124
[화학식 A-21] [화학식 A-22]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-126
[화학식 A-23] [화학식 A-24]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-128
보다 구체적으로, 상기 유기광전자소자용 화합물은 하기 화학식 B-1 내지 B-257 중 어느 하나로 표시될 수 있으나, 이에 제한되지는 않는다.
[화학식 B-1] [화학식 B-2] [화학식 B-3] [화학식 B-4]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-131
[화학식 B-5] [화학식 B-6] [화학식 B-7] [화학식 B-8]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-133
[화학식 B-9] [화학식 B-10] [화학식 B-11] [화학식 B-12]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-135
[화학식 B-13] [화학식 B-14] [화학식 B-15] [화학식 B-16]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-137
[화학식 B-17] [화학식 B-18] [화학식 B-19] [화학식 B-20]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-139
[화학식 B-21] [화학식 B-22] [화학식 B-23] [화학식 B-24]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-141
[화학식 B-25] [화학식 B-26] [화학식 B-27] [화학식 B-28]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-143
[화학식 B-29] [화학식 B-30] [화학식 B-31] [화학식 B-32]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-145
[화학식 B-33] [화학식 B-34] [화학식 B-35] [화학식 B-36]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-147
[화학식 B-37] [화학식 B-38] [화학식 B-39] [화학식 B-40]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-149
[화학식 B-41] [화학식 B-42] [화학식 B-43] [화학식 B-44]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-151
[화학식 B-45] [화학식 B-46] [화학식 B-47] [화학식 B-48]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-153
[화학식 B-49] [화학식 B-50] [화학식 B-51]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-155
[화학식 B-52] [화학식 B-53] [화학식 B-54]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-157
[화학식 B-55] [화학식 B-56] [화학식 B-57]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-159
[화학식 B-58] [화학식 B-59] [화학식 B-60]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-161
[화학식 B-61] [화학식 B-62] [화학식 B-63]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-163
[화학식 B-64] [화학식 B-65] [화학식 B-66]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-165
[화학식 B-67] [화학식 B-68] [화학식 B-69]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-167
[화학식 B-70] [화학식 B-71] [화학식 B-72]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-169
[화학식 B-73] [화학식 B-74] [화학식 B-75]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-171
[화학식 B-76] [화학식 B-77] [화학식 B-78]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-173
[화학식 B-79] [화학식 B-80] [화학식 B-81]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-175
[화학식 B-82] [화학식 B-83] [화학식 B-84]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-177
[화학식 B-85]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-179
[화학식 B-86] [화학식 B-87]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-181
[화학식 B-88] [화학식 B-89]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-183
[화학식 B-90] [화학식 B-91]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-185
[화학식 B-92] [화학식 B-93]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-187
[화학식 B-94] [화학식 B-95]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-189
[화학식 B-96] [화학식 B-97]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-191
[화학식 B-98] [화학식 B-99]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-193
[화학식 B-100] [화학식 B-101] [화학식 B-102]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-195
[화학식 B-103] [화학식 B-104] [화학식 B-105]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-197
[화학식 B-106] [화학식 B-107] [화학식 B-108]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-199
[화학식 B109] [화학식 B110] [화학식 B111]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-200
[화학식 B-112] [화학식 B-113] [화학식 B-114]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-203
[화학식 B-115] [화학식 B-116] [화학식 B-117]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-205
[화학식 B-118] [화학식 B-119]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-207
[화학식 B-120] [화학식 B-121] [화학식 B-122]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-209
[화학식 B-123] [화학식 B-124] [화학식 B-125]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-210
[화학식 B-126] [화학식 B-127] [화학식 B-128]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-213
[화학식 B-129] [화학식 B-130] [화학식 B-131]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-215
[화학식 B-132] [화학식 B-133] [화학식 B-134] [화학식 B-135]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-217
[화학식 B-136] [화학식 B-137] [화학식 B-138] [화학식 B-139]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-219
[화학식 B-140] [화학식 B-141] [화학식 B-142] [화학식 B-143]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-221
[화학식 B-144] [화학식 B-145] [화학식 B-146] [화학식 B-147]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-223
[화학식 B-148] [화학식 B-149] [화학식 B-150] [화학식 B-151]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-225
[화학식 B-152] [화학식 B-153] [화학식 B-154] [화학식 B-155]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-227
[화학식 B-156] [화학식 B-157] [화학식 B-158] [화학식 B-159]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-229
[화학식 B-160] [화학식 B-161] [화학식 B-162] [화학식 B-163]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-231
[화학식 B-164] [화학식 B-165] [화학식 B-166] [화학식 B-167]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-233
[화학식 B-168] [화학식 B-169] [화학식 B-170] [화학식 B-171]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-235
[화학식 B-172] [화학식 B-173] [화학식 B-174] [화학식 B-175]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-237
[화학식 B-176] [화학식 B-177] [화학식 B-178]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-239
[화학식 B-179] [화학식 B-180] [화학식 B-181]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-241
[화학식 B-182] [화학식 B-183]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-243
[화학식 B-184] [화학식 B-185] [화학식 B-186]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-245
[화학식 B-187] [화학식 B-188] [화학식 B-189]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-247
[화학식 B-190] [화학식 B-191] [화학식 B-192]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-249
[화학식 B-193] [화학식 B-194] [화학식 B-195]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-251
[화학식 B-196] [화학식 B-197] [화학식 B-198]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-253
[화학식 B-199] [화학식 B-200] [화학식 B-201]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-255
[화학식 B-202] [화학식 B-203] [화학식 B-204]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-257
[화학식 B-205] [화학식 B-206] [화학식 B-207]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-259
[화학식 B-208] [화학식 B-209] [화학식 B-210]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-261
[화학식 B-211]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-263
[화학식 B-212] [화학식 B-213]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-265
[화학식 B-214] [화학식 B-215]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-267
[화학식 B-216] [화학식 B-217]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-269
[화학식 B-218] [화학식 B-219]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-271
[화학식 B-220] [화학식 B-221]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-273
[화학식 B-222] [화학식 B-223]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-275
[화학식 B-224] [화학식 B-225]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-277
[화학식 B-226] [화학식 B-227] [화학식 B-228]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-279
[화학식 B-229] [화학식 B-230] [화학식 B-231]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-282
[화학식 B-232] [화학식 B-233] [화학식 B-234]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-283
[화학식 B-235] [화학식 B-236] [화학식 B-237]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-285
[화학식 B-238] [화학식 B-239] [화학식 B-240]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-287
[화학식 B-241] [화학식 B-242] [화학식 B-243]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-289
[화학식 B-244] [화학식 B-245]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-291
[화학식 B-246] [화학식 B-247] [화학식 B-248]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-293
[화학식 B-249] [화학식 B-250] [화학식 B-251]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-295
[화학식 B-252] [화학식 B-253] [화학식 B-254]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-297
[화학식 B-255] [화학식 B-256] [화학식 B-257]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-299
전술한 본 발명의 일 구현예에 따른 화합물이 전자특성, 정공특성 양쪽을 모두 요구하는 경우에는 상기 전자 특성을 가지는 작용기를 도입하는 것이 유기발광소자의 수명 향상 및 구동 전압 감소에 효과적이다.
전술한 본 발명의 일 구현예에 따른 유기광전자소자용 화합물은 최대 발광 파장이 약 320 내지 500 nm 범위를 나타내고, 3중항 여기에너지(T1)가 2.0 eV 이상, 보다 구체적으로 2.0 내지 4.0 eV 범위인 것으로, 높은 3중항 여기 에너지를 가지는 호스트의 전하가 도판트에 잘 전달되어 도판트의 발광효율을 높일 수 있고, 재료의 호모(HOMO)와 루모(LUMO) 에너지 준위를 자유롭게 조절하여 구동전압을 낮출 수 있는 이점이 있기 때문에 호스트 재료 또는 전하수송재료로 매우 유용하게 사용될 수 있다.
뿐만 아니라, 상기 유기광전자소자용 화합물은 광활성 및 전기적인 활성을 갖고 있으므로, 비선형 광학소재, 전극 재료, 변색재료, 광 스위치, 센서, 모듈, 웨이브 가이드, 유기 트렌지스터, 레이저, 광 흡수체, 유전체 및 분리막(membrane) 등의 재료로도 매우 유용하게 적용될 수 있다.
상기와 같은 화합물을 포함하는 유기광전자소자용 화합물은 유리전이온도가 90℃ 이상이며, 열분해온도가 400℃이상으로 열적 안정성이 우수하다. 이로 인해 고효율의 유기광전소자의 구현이 가능하다.
상기와 같은 화합물을 포함하는 유기광전자소자용 화합물은 발광, 또는 전자 주입 및/또는 수송역할을 할 수 있으며, 적절한 도판트와 함께 발광 호스트로서의 역할도 할 수 있다. 즉, 상기 유기광전자소자용 화합물은 인광 또는 형광의 호스트 재료, 청색의 발광도펀트 재료, 또는 전자수송 재료로 사용될 수 있다.
본 발명의 일 구현예에 따른 유기광전자소자용 화합물은 유기박막층에 사용되어 유기광전자소자의 수명 특성, 효율 특성, 전기화학적 안정성 및 열적 안정성을 향상시키며, 구동전압을 낮출 수 있다.
이에 따라 본 발명의 일 구현예는 상기 유기광전자소자용 화합물을 포함하는 유기광전자소자를 제공한다. 이 때, 상기 유기광전자소자라 함은 유기광전소자, 유기발광소자, 유기 태양 전지, 유기 트랜지스터, 유기 감광체 드럼, 유기 메모리 소자 등을 의미한다. 특히, 유기 태양 전지의 경우에는 본 발명의 일 구현예에 따른 유기광전자소자용 화합물이 전극이나 전극 버퍼층에 포함되어 양자 효율을 증가시키며, 유기 트랜지스터의 경우에는 게이트, 소스-드레인 전극 등에서 전극 물질로 사용될 수 있다.
이하에서는 유기발광소자에 대하여 구체적으로 설명한다.
본 발명의 다른 일 구현예는 양극, 음극 및 상기 양극과 음극 사이에 개재되는 적어도 한 층 이상의 유기박막층을 포함하는 유기발광소자에 있어서, 상기 유기박막층 중 적어도 어느 한 층은 본 발명의 일 구현예에 따른 유기광전자소자용 화합물을 포함하는 유기발광소자를 제공한다.
상기 유기광전자소자용 화합물을 포함할 수 있는 유기박막층으로는 발광층, 정공수송층, 정공주입층, 전자수송층, 전자주입층, 정공차단층 및 이들의 조합으로 이루어진 군에서 선택되는 층을 포함할 수 있는 바, 이 중에서 적어도 어느 하나의 층은 본 발명에 따른 유기광전자소자용 화합물을 포함한다. 특히, 정공수송층 또는 정공주입층에 본 발명의 일 구현예에 따른 유기광전자소자용 화합물을 포함할 수 있다. 또한, 상기 유기광전자소자용 화합물이 발광층 내에 포함되는 경우 상기 유기광전자소자용 화합물은 인광 또는 형광호스트로서 포함될 수 있고, 특히, 형광 청색 도펀트 재료로서 포함될 수 있다.
도 1 내지 도 5는 본 발명의 일 구현예에 따른 유기광전자소자용 화합물을 포함하는 유기발광소자의 단면도이다.
도 1 내지 도 5를 참조하면, 본 발명의 일 구현예에 따른 유기발광소자(100, 200, 300, 400 및 500)는 양극(120), 음극(110) 및 이 양극과 음극 사이에 개재된 적어도 1층의 유기박막층(105)을 포함하는 구조를 갖는다.
상기 양극(120)은 양극 물질을 포함하며, 이 양극 물질로는 통상 유기박막층으로 정공주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 니켈, 백금, 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금을 들 수 있고, 아연산화물, 인듐산화물, 인듐주석산화물(ITO), 인듐아연산화물(IZO)과 같은 금속 산화물을 들 수 있고, ZnO와 Al 또는 SnO2와 Sb와 같은 금속과 산화물의 조합을 들 수 있고, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](polyehtylenedioxythiophene: PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등을 들 수 있으나, 이에 한정되는 것은 아니다. 바람직하게는 상기 양극으로 ITO(indium tin oxide)를 포함하는 투명전극을 사용할 수 있다.
상기 음극(110)은 음극 물질을 포함하여, 이 음극 물질로는 통상 유기박막층으로 전자주입이 용이하도록 일 함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석, 납, 세슘, 바륨 등과 같은 금속 또는 이들의 합금을 들 수 있고, LiF/Al, LiO2/Al, LiF/Ca, LiF/Al 및 BaF2/Ca과 같은 다층 구조 물질 등을 들 수 있으나, 이에 한정되는 것은 아니다. 바람직하게는 상기 음극으로 알루미늄 등과 같은 금속전극을 사용할 수 있다.
먼저 도 1을 참조하면, 도 1은 유기박막층(105)으로서 발광층(130)만이 존재하는 유기발광소자(100)를 나타낸 것으로, 상기 유기박막층(105)은 발광층(130)만으로 존재할 수 있다.
도 2를 참조하면, 도 2는 유기박막층(105)으로서 전자수송층을 포함하는 발광층(230)과 정공수송층(140)이 존재하는 2층형 유기발광소자(200)를 나타낸 것으로, 도 2에 나타난 바와 같이, 유기박막층(105)은 발광층(230) 및 정공 수송층(140)을 포함하는 2층형일 수 있다. 이 경우 발광층(130)은 전자 수송층의 기능을 하며, 정공 수송층(140)은 ITO와 같은 투명전극과의 접합성 및 정공수송성을 향상시키는 기능을 한다.
도 3을 참조하면, 도 3은 유기박막층(105)으로서 전자수송층(150), 발광층(130) 및 정공수송층(140)이 존재하는 3층형 유기발광소자(300)로서, 상기 유기박막층(105)에서 발광층(130)은 독립된 형태로 되어 있고, 전자수송성이나 정공수송성이 우수한 막(전자수송층(150) 및 정공수송층(140))을 별도의 층으로 쌓은 형태를 나타내고 있다.
도 4를 참조하면, 도 4는 유기박막층(105)으로서 전자주입층(160), 발광층(130), 정공수송층(140) 및 정공주입층(170)이 존재하는 4층형 유기발광소자(400)로서, 상기 정공주입층(170)은 양극으로 사용되는 ITO와의 접합성을 향상시킬 수 있다.
도 5를 참조하면, 도 5는 유기박막층(105)으로서 전자주입층(160), 전자수송층(150), 발광층(130), 정공수송층(140) 및 정공주입층(170)과 같은 각기 다른 기능을 하는 5개의 층이 존재하는 5층형 유기발광소자(500)를 나타내고 있으며, 상기 유기발광소자(500)는 전자주입층(160)을 별도로 형성하여 저전압화에 효과적이다.
상기 도 1 내지 도 5에서 상기 유기박막층(105)을 이루는 전자 수송층(150), 전자 주입층(160), 발광층(130, 230), 정공 수송층(140), 정공 주입층(170) 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나는 상기 유기광전자소자용 화합물을 포함한다. 이 때 상기 유기광전자소자용 화합물은 상기 전자 수송층(150) 또는 전자주입층(160)을 포함하는 전자수송층(150)에 사용될 수 있으며, 그중에서도 전자수송층에 포함될 경우 정공 차단층(도시하지 않음)을 별도로 형성할 필요가 없어 보다 단순화된 구조의 유기발광소자를 제공할 수 있어 바람직하다.
또한, 상기 유기광전자소자용 화합물이 발광층(130, 230) 내에 포함되는 경우 상기 유기광전자소자용 화합물은 인광 또는 형광호스트로서 포함될 수 있으며, 또는 형광 청색 도펀트로서 포함될 수 있다.
상기에서 설명한 유기발광소자는, 기판에 양극을 형성한 후, 진공증착법(evaporation), 스퍼터링(sputtering), 플라즈마 도금 및 이온도금과 같은 건식성막법; 또는 스핀코팅(spin coating), 침지법(dipping), 유동코팅법(flow coating)과 같은 습식성막법 등으로 유기박막층을 형성한 후, 그 위에 음극을 형성하여 제조할 수 있다.
본 발명의 또 다른 일 구현예에 따르면, 상기 유기발광소자를 포함하는 표시장치를 제공한다.
이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되어서는 아니된다.
(유기광전자소자용 화합물의 제조)
중간체 생성물 (A), (B), (C) 및 (D)의 합성
하기 반응식 1과 같은 4단계 경로를 통해 합성하였다.
[반응식 1]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-328
제1단계; 중간체 생성물(A)의 합성
4-디벤조퓨란 보론산 15.01 g (70.79 mmol), 2-브로모아이오도벤젠 22.03 g (77.87 mmol) 및 탄산칼륨 11.74 g (84.95 mmol), 테트라키스-(트라이페닐포스핀)팔라듐(0) 1.64 g (1.42 mmmol) 을 톨루엔 300 ml, 에탄올 150 ml에 현탁 시킨 후 12 시간 동안 환류 교반하였다. 반응 종료 후 상기 반응액을 디클로로메탄으로 추출 하고 실리카겔로 필터 한 후 감압 증류 하고, 헥산 : 디클로로메탄 = 9 : 1(v/v) 로 실리카겔 컬럼하여 중간체 생성물 (A) 15 g (수율 : 60 %)를 수득하였다.
제2단계; 중간체 생성물(B)의 합성
실시예 1에서 합성한 중간체 생성물 (A) 8.2 g (25.37 mmol)과 테트라하이드로퓨란 150 mL 에 현탁하고 -78℃에서 n-BuLi 30.45 mL (19.04 mmol) 을 천천히 넣는다. -78℃에서 2시간 교반 후 2,7-다이브로모플루오레논 9.43 g (27.91 mol) 을 천천히 넣고 24시간 동안 교반하였다. 반응 종료 후 암모늄클로라이드 수용액으로 quenching 하고 디클로로메탄으로 추출하고 유기층을 실리카겔 필터한다. 유기 용액을 제거하고 헥산 : 에틸아세테이트 = 7 : 3 (v/v) 으로 실리카겔 컬럼하여 중간체 생성물 (B) 11.8 g (수율 : 80 %)을 수득하였다.
제3단계: 중간체 생성물 (C)의 합성
중간체 생성물 (B) 11.8 g (20.27 mmol)과 아세틱에시드 200 mL 에 현탁하고 상온에서 CH3SO3H 3.95 mL (60.8 mmol) 을 천천히 넣는다. 24시간 동안 교반하였다. 반응 종료 후 나트륨 바이카보네이트 수용액 200 mL 으로 quenching 하고 생성된 고체는 필터하고 디클로로메탄과 증류수로 추출하고 유기층을 실리카겔 필터한다. 유기 용액을 제거하고 헥산 : 디클로로메탄 = 6 : 4(v/v) 로 실리카겔 컬럼하여 중간체 생성물 (C) 9.5 g (수율 : 83 %)을 수득하였다.
제4단계: 중간체 생성물 (D)의 합성
중간체 생성물 (C) 10 g (17.72 mmol), 비스피나콜라토다이보란 5.85 g (23.04 mmol), 아세트산칼륨 5.22 g (53.17 mmol) 및 [비스(디페닐포스피노)페로센]디클로로팔라듐 0.29 g (0.35 mmol) 을 톨루엔 100 mL 현탁시킨 후 12시간 동안 환류 교반하였다. 반응 종료 후 디클로로메탄과 증류수로 추출하고 유기층을 실리카겔 필터한다. 유기 용액을 제거하고 헥산 : 에틸아세트산 = 8 : 2(v/v) 로 실리카겔 컬럼하여 중간체 생성물 (D) 5.6 g (수율 : 48 %)을 수득하였다.
실시예 1: 화합물 A-1의 합성
[반응식 2]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-339
중간체 화합물 (C) 9.5 g (16.84 mmol) 과 4-페닐 보론산 4.31 g (35.36 mmol) 및 탄산칼륨 2.79 g (20.2 mmol), 테트라키스-(트라이페닐포스핀)팔라듐(0) 0.39 g (0.34 mmmol) 을 톨루엔 200 ml, 증류수 100 ml에 현탁 시킨 후 12 시간 동안 환류 교반하였다. 디클로로메탄과 증류수로 추출하고 유기층을 실리카겔 필터한다. 유기 용액을 제거하고 헥산 : 디클로로메탄 = 7 : 3(v/v) 으로 실리카겔 컬럼하여 생성물 고체를 디클로로메탄과 노말헥산으로 재결정하여 화학식 A-1의 합성물 6.5 g (수율 : 69 %)을 수득하였다.
실시예 2: 화합물 A-6의 합성
[반응식 3]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-343
중간체 화합물 (C) 7 g (12.41 mmol) 과 4-비페닐 보론산 5.16 g (26.05 mmol) 및 탄산칼륨 2.06 g (14.89 mmol), 테트라키스-(트라이페닐포스핀)팔라듐(0) 0.29 g (0.25 mmmol) 을 톨루엔 50 ml, 증류수 10 ml에 현탁 시킨 후 12 시간 동안 환류 교반하였다. 디클로로메탄과 증류수로 추출하고 유기층을 실리카겔 필터한다. 유기 용액을 제거하고 헥산 : 디클로로메탄 = 7 : 3(v/v) 으로 실리카겔 컬럼하여 생성물 고체를 디클로로메탄과 노말헥산으로 재결정하여 화학식 A-6의 합성물 5.5 g (수율 : 62 %)을 수득하였다.
실시예 3: 화합물 A-8의 합성
[반응식 4]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-347
중간체 화합물 (D) 5.6 g (8.51 mmol) 과 1-브로모-3,5-디페닐벤젠 5.52 g (17.86 mmol) 및 탄산칼륨 1.41 g (10.21 mmol), 테트라키스-(트라이페닐포스핀)팔라듐(0) 0.2 g (0.17 mmmol) 을 톨루엔 50 ml, 증류수 12 ml에 현탁 시킨 후 12 시간 동안 환류 교반하였다. 디클로로메탄과 증류수로 추출하고 유기층을 실리카겔 필터한다. 유기 용액을 제거하고 헥산 : 디클로로메탄 = 7 : 3(v/v) 으로 실리카겔 컬럼하여 생성물 고체를 디클로로메탄과 노말헥산으로 재결정하여 화학식 A-8의 합성물 3.7 g (수율 : 50 %)을 수득하였다.
실시예 4: 화합물 A-11의 합성
[반응식 5]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-351
중간체 화합물 (C) 7 g (12.41 mmol) 과 9,9' -디메틸-2-플루오렌 보론산 6.2 g (26.05 mmol) 및 탄산칼륨 2.06 g (14.89 mmol), 테트라키스-(트라이페닐포스핀)팔라듐(0) 0.29 g (0.25 mmmol) 을 톨루엔 50 ml, 증류수 12 ml에 현탁 시킨 후 12 시간 동안 환류 교반하였다. 디클로로메탄과 증류수로 추출하고 유기층을 실리카겔 필터한다. 유기 용액을 제거하고 헥산 : 디클로로메탄 = 7 : 3(v/v) 으로 실리카겔 컬럼하여 생성물 고체를 디클로로메탄과 노말헥산으로 재결정하여 화학식 B-8의 합성물 5.4 g (수율 : 55 %)을 수득하였다.
실시예 5: 화합물 B-123의 합성
[반응식 6]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-355
중간체 화합물 (D) 6 g (9.11 mmol) 과 2-클로로-4,6-디페닐피리미딘 5.1 g (19.14 mmol) 및 탄산칼륨 1.51 g (10.94 mmol), 테트라키스-(트라이페닐포스핀)팔라듐(0) 0.21 g (0.18 mmmol) 을 톨루엔 50 ml, 증류수 10 ml에 현탁 시킨 후 12 시간 동안 환류 교반하였다. 디클로로메탄과 증류수로 추출하고 유기층을 실리카겔 필터한다. 유기 용액을 제거하고 헥산 : 디클로로메탄 = 7 : 3(v/v) 으로 실리카겔 컬럼하여 생성물 고체를 디클로로메탄과 노말헥산으로 재결정하여 화학식 B-123의 합성물 4.7 g (수율 : 59 %)을 수득하였다.
실시예 6: 화합물 B-127의 합성
[반응식 7]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-359
중간체 화합물 (D) 6 g (9.11 mmol) 과 2-클로로-4,6-디페닐트리아진 5.12 g (19.14 mmol) 및 탄산칼륨 1.51 g (10.94 mmol), 테트라키스-(트라이페닐포스핀)팔라듐(0) 0.21 g (0.18 mmmol) 을 톨루엔 50 ml, 증류수 10 ml에 현탁 시킨 후 12 시간 동안 환류 교반하였다. 디클로로메탄과 증류수로 추출하고 유기층을 실리카겔 필터한다. 유기 용액을 제거하고 헥산 : 디클로로메탄 = 7 : 3(v/v) 으로 실리카겔 컬럼하여 생성물 고체를 디클로로메탄과 노말헥산으로 재결정하여 화학식 B-127의 합성물 5 g (수율 : 63 %)을 수득하였다.
(유기발광소자의 제조)
실시예 7: 유기발광소자의 제조
ITO (Indium tin oxide)가 1500Å의 두께가 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 이송 시킨 다음 산소 플라즈마를 이용하여 상기 기판을 5분간 세정 한 후 진공 층착기로 기판을 이송하였다. 이렇게 준비된 ITO 투명 전극을 양극으로 사용하여 ITO 기판 상부에 HTM (재료 구조 아래 그림 참조) 을 진공 증착하여 1200Å두께의 정공 주입층을 형성하였다.
[HTM]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-365
상기 정공 주입층 상부에 실시예 1에서 합성된 물질을 호스트로 사용하고 인광 Green 도판트로 PhGD (아래 그림 참조)를 7중량%로 도핑하여 진공 증착으로 300Å 두께의 발광층을 형성하였다.
[PhGD]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-368
그 후 상기 발광층 상부에 BAlq [Bis(2-methyl-8-quinolinolato-N1,O8)-(1,1'-Biphenyl-4-olato)aluminum] 50Å 및 Alq3 [Tris(8-hydroxyquinolinato)aluminium] 250Å 를 순차적으로 적층하여 전자수송층을 형성하였다. 상기 전자수송층 상부에 LiF 5Å과 Al 1000Å을 순차적으로 진공 증착하여 음극을 형성함으로써 유기발광소자를 제조하였다.
[Balq] [Alq3]
[규칙 제91조에 의한 정정 21.02.2013] 
Figure WO-DOC-FIGURE-371
실시 예 8
실시예 1에서 제조된 화합물을 사용한 것을 대신하여, 실시예 2 (A-6)에서 제조된 화합물을 사용한 것을 제외하고는 상기 실시 예 7과 동일하게 실시하여 유기발광소자를 제작하였다.
실시 예 9
실시예 1에서 제조된 화합물을 사용한 것을 대신하여, 실시예 3 (A-8)에서 제조된 화합물을 사용한 것을 제외하고는 상기 실시 예 7과 동일하게 실시하여 유기발광소자를 제작하였다.
실시 예 10
실시예 1에서 제조된 화합물을 사용한 것을 대신하여, 실시예 4 (A-11)에서 제조된 화합물을 사용한 것을 제외하고는 상기 실시 예 7과 동일하게 실시하여 유기발광소자를 제작하였다.
실시 예 11
실시예 1에서 제조된 화합물을 사용한 것을 대신하여, 실시예 5 (B-123) 에서 제조된 화합물을 사용한 것을 제외하고는 상기 실시 예 7과 동일하게 실시하여 유기발광소자를 제작하였다.
실시 예 12
실시예 1에서 제조된 화합물을 사용한 것을 대신하여, 실시예 6 (B-127) 에서 제조된 화합물을 사용한 것을 제외하고는 상기 실시 예 7과 동일하게 실시하여 유기발광소자를 제작하였다.
비교예 1
상기 실시예 4에서, 실시예 1(A-6) 대신 화합물 C1을 호스트로 사용한 점을 제외하고는 동일한 방법으로 유기발광소자를 제조하였다.
[C1]
Figure PCTKR2012011022-appb-I000116
(유기발광소자의 성능 측정)
상기 실시예 7 내지 12 및 비교예 1에서 제조된 각각의 유기발광소자에 대하여 전압에 따른 전류밀도 변화, 휘도변화 및 발광효율을 측정하였다. 구체적인 측정방법은 하기과 같고, 그 결과는 하기 표 1에 나타내었다
(1) 전압변화에 따른 전류밀도의 변화 측정
제조된 유기발광소자에 대해, 전압을 0V 부터 10V 까지 상승시키면서 전류-전압계(Keithley 2400)를 이용하여 단위소자에 흐르는 전류값을 측정하고, 측정된 전류값을 면적으로 나누어 결과를 얻었다.
(2) 전압변화에 따른 휘도변화 측정
제조된 유기발광소자에 대해, 전압을 0V 부터 10V 까지 상승시키면서 휘도계(Minolta Cs-1000A)를 이용하여 그 때의 휘도를 측정하여 결과를 얻었다.
(3) 발광효율 측정
상기(1) 및 (2)로부터 측정된 휘도와 전류밀도 및 전압을 이용하여 동일 밝기(3,000cd/m2)의 전류 효율(cd/A) 및 전력 효율(lm/W)을 계산하였다.  
(4) 색좌표는 휘도계(Minolta Cs-100A)를 이용하여 측정하였고, 그 결과를 나타내었다.
아래 표 1 에 소자평가 결과를 정리하였다.
표 1
분 류 호스트 Vd Cd/A lm/W cd/m2 CIEx CIEy
비교예 1 C1 6.90 49.53 22.54 3000 0.333 0.623
실시예 7 A-1 5.45 54.3 31.3 3000 0.356 0.613
실시예 8 A-6 5.48 54.1 31 3000 0.348 0.608
실시예 9 A-8 5.65 55.6 30.9 3000 0.345 0.611
실시예 10 A-11 5.38 55.8 32.6 3000 0.359 0.615
실시예 11 B-123 5.90 52.9 28.2 3000 0.354 0.607
실시예 12 B-127 5.95 52.5 27.7 3000 0.362 0.609
상기 실시예 7 내지 12 모두가 비교예 1의 소자와 비교해서 유기발광소자의 구동전압을 낮추고, 휘도와 효율을 향상시킴을 알 수 있다.
이를 바탕으로 우수한 전자 주입 및 전자 전달 능력을 가지는 저전압, 고효율, 고휘도, 장수명의 유기발광소자를 제작할 수 있었다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (15)

  1. 하기 화학식 1 및 2의 조합으로 표시되는 유기광전자소자용 화합물:
    [화학식 1]
    Figure PCTKR2012011022-appb-I000117
    [화학식 2]
    Figure PCTKR2012011022-appb-I000118
    상기 화학식 1 및 2에서,
    X는 -O-, -S-, -S(O)- 또는 -S(O)2-이고,
    Ar1 및 Ar2는 독립적으로 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고,
    L1 및 L2는 독립적으로 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고,
    m1 및 m2는 독립적으로 0 또는 1인 정수이며, m1 및 m2 중 어느 하나는 1이고,
    n1 및 n2는 독립적으로 0 내지 3 중 어느 하나의 정수이고,
    R1 내지 R7은 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고,
    상기 화학식 2의 두 개의 *은 상기 화학식 1의 인접한 두 개의 *과 결합하여 융합고리를 형성한다.
  2. 제1항에 있어서,
    상기 화학식 1은 하기 화학식 3으로 표시되는 것인 유기광전자소자용 화합물:
    [화학식 3]
    Figure PCTKR2012011022-appb-I000119
    상기 화학식 3에서,
    Ar2는 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고,
    L2는 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고,
    m2는 1이고,
    n2는 0 내지 3 중 어느 하나의 정수이고,
    R1 내지 R3, R6 또는 R7은 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고,
    상기 화학식 2의 두 개의 *은 상기 화학식 3의 인접한 두 개의 *과 결합하여 융합고리를 형성한다.
  3. 제1항에 있어서,
    상기 유기광전자소자용 화합물은 하기 화학식 4로 표시되는 것인 유기광전자소자용 화합물:
    [화학식 4]
    Figure PCTKR2012011022-appb-I000120
    상기 화학식 4에서,
    X는 -O-, -S-, -S(O)- 또는 -S(O)2-이고,
    Ar1 및 Ar2는 독립적으로 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고,
    L1 및 L2는 독립적으로 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고,
    m1 및 m2는 독립적으로 0 또는 1인 정수이며, m1 및 m2 중 어느 하나는 1이고,
    n1 및 n2는 독립적으로 0 내지 3 중 어느 하나의 정수이고,
    R1 내지 R7은 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이다.
  4. 제1항에 있어서,
    상기 유기광전자소자용 화합물은 하기 화학식 5로 표시되는 것인 유기광전자소자용 화합물:
    [화학식 5]
    Figure PCTKR2012011022-appb-I000121
    상기 화학식 5에서,
    Ar2는 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이고,
    L2는 단일결합, 치환 또는 비치환된 C2 내지 C10 알케닐렌기, 치환 또는 비치환된 C2 내지 C10 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기이고,
    m2는 1이고,
    n2는 0 내지 3 중 어느 하나의 정수이고,
    R1 내지 R7은 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이다.
  5. 제1항에 있어서,
    상기 Ar1 및 Ar2는 독립적으로 치환 또는 비치환된 이미다졸릴기, 치환 또는 비치환된 트리아졸릴기, 치환 또는 비치환된 테트라졸릴기, 치환 또는 비치환된 카바졸릴기, 치환 또는 비치환된 옥사다이아졸릴기, 치환 또는 비치환된 옥사트리아졸릴기, 치환 또는 비치환된 싸이아트리아졸릴기, 치환 또는 비치환된 벤즈이미다졸릴기, 치환 또는 비치환된 벤조트리아졸릴기, 치환 또는 비치환된 피리디닐기, 치환 또는 비치환된 피리미디닐기, 치환 또는 비치환된 트리아지닐기, 치환 또는 비치환된 피라지닐기, 치환 또는 비치환된 피리다지닐기, 치환 또는 비치환된 퓨리닐기, 치환 또는 비치환된 퀴놀리닐기, 치환 또는 비치환된 이소퀴놀리닐기, 치환 또는 비치환된 프탈라지닐기, 치환 또는 비치환된 나프피리디닐기, 치환 또는 비치환된 퀴녹살리닐기, 치환 또는 비치환된 퀴나졸리닐기, 치환 또는 비치환된 아크리디닐기, 치환 또는 비치환된 페난트롤리닐기, 치환 또는 비치환된 페나지닐기 또는 이들의 조합인 것인 유기광전자소자용 화합물.
  6. 제1항에 있어서,
    상기 Ar1 및 Ar2는 독립적으로 치환 또는 비치환된 페닐기, 치환 또는 비치환된 나프틸기, 치환 또는 비치환된 페난트레닐기, 치환 또는 비치환된 안트라세닐기, 치환 또는 비치환된 플루오레닐기, 치환 또는 비치환된 트리페닐레닐기, 치환 또는 비치환된 스피로-플루오레닐기, 치환 또는 비치환된 터페닐기, 치환 또는 비치환된 파이레닐기, 치환 또는 비치환된 페릴레닐기 또는 이들의 조합인 것인 유기광전자소자용 화합물.
  7. 제1항에 있어서,
    상기 Ar1 및 Ar2는 독립적으로 치환 또는 비치환된 페닐기, 치환 또는 비치환된 나프틸기, 치환 또는 비치환된 안트라세닐기, 치환 또는 비치환된 페난트릴기, 치환 또는 비치환된 나프타세닐기, 치환 또는 비치환된 피레닐기, 치환 또는 비치환된 바이페닐일기, 치환 또는 비치환된 p-터페닐기, 치환 또는 비치환된 m-터페닐기, 치환 또는 비치환된 크리세닐기, 치환 또는 비치환된 트리페닐레닐기, 치환 또는 비치환된 페릴레닐기, 치환 또는 비치환된 인데닐기, 치환 또는 비치환된 퓨라닐기, 치환 또는 비치환된 티오페닐기, 치환 또는 비치환된 피롤릴기, 치환 또는 비치환된 피라졸릴기, 치환 또는 비치환된 이미다졸일기, 치환 또는 비치환된 트리아졸일기, 치환 또는 비치환된 옥사졸일기, 치환 또는 비치환된 티아졸일기, 치환 또는 비치환된 옥사디아졸일기, 치환 또는 비치환된 티아디아졸일기, 치환 또는 비치환된 피리딜기, 치환 또는 비치환된 피리미디닐기, 치환 또는 비치환된 피라지닐기, 치환 또는 비치환된 트리아지닐기, 치환 또는 비치환된 벤조퓨라닐기, 치환 또는 비치환된 벤조티오페닐기, 치환 또는 비치환된 벤즈이미다졸일기, 치환 또는 비치환된 인돌일기, 치환 또는 비치환된 퀴놀리닐기, 치환 또는 비치환된 이소퀴놀리닐기, 치환 또는 비치환된 퀴나졸리닐기, 치환 또는 비치환된 퀴녹살리닐기, 치환 또는 비치환된 나프티리디닐기, 치환 또는 비치환된 벤즈옥사진일기, 치환 또는 비치환된 벤즈티아진일기, 치환 또는 비치환된 아크리디닐기, 치환 또는 비치환된 페나진일기, 치환 또는 비치환된 페노티아진일기, 치환 또는 비치환된 페녹사진일기 또는 이들의 조합인 것인 유기광전자소자용 화합물.
  8. 제1항에 있어서,
    상기 유기광전자소자용 화합물은 3중항 여기에너지(T1) 2.0eV 이상인 것인 유기광전자소자용 화합물.
  9. 제1항에 있어서,
    상기 유기광전자소자는, 유기광전소자, 유기발광소자, 유기태양전지, 유기트랜지스터, 유기 감광체 드럼 및 유기메모리소자로 이루어진 군에서 선택되는 것인 유기광전자소자용 화합물.
  10. 양극, 음극 및 상기 양극과 음극 사이에 개재되는 적어도 한 층 이상의 유기박막층을 포함하는 유기발광소자에 있어서,
    상기 유기박막층 중 적어도 어느 한 층은 상기 제1항에 따른 유기광전자소자용 화합물을 포함하는 것인 유기발광소자.
  11. 제10항에 있어서,
    상기 유기박막층은 발광층, 정공수송층, 정공주입층, 전자수송층, 전자주입층, 정공차단층 및 이들의 조합으로 이루어진 군에서 선택되는 것인 유기발광소자.
  12. 제11항에 있어서,
    상기 유기광전자소자용 화합물은 정공수송층 또는 정공주입층 내에 포함되는 것인 유기발광소자.
  13. 제11항에 있어서,
    상기 유기광전자소자용 화합물은 발광층 내에 포함되는 것인 유기발광소자.
  14. 제11항에 있어서,
    상기 유기광전자소자용 화합물은 발광층 내에 인광 또는 형광 호스트 재료로서 사용되는 것인 유기발광소자.
  15. 제10항의 유기발광소자를 포함하는 표시장치.
PCT/KR2012/011022 2011-12-29 2012-12-17 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치 WO2013100464A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0146194 2011-12-29
KR1020110146194A KR101497134B1 (ko) 2011-12-29 2011-12-29 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치

Publications (1)

Publication Number Publication Date
WO2013100464A1 true WO2013100464A1 (ko) 2013-07-04

Family

ID=48697845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011022 WO2013100464A1 (ko) 2011-12-29 2012-12-17 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치

Country Status (2)

Country Link
KR (1) KR101497134B1 (ko)
WO (1) WO2013100464A1 (ko)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185751A1 (en) * 2013-05-16 2014-11-20 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compounds and organic electroluminescent device comprising the same
WO2015090504A2 (de) 2013-12-19 2015-06-25 Merck Patent Gmbh Heterocyclische spiroverbindungen
CN106458954A (zh) * 2014-07-28 2017-02-22 Sfc株式会社 包含杂环的缩合芴衍生物
CN106536485A (zh) * 2014-07-21 2017-03-22 默克专利有限公司 用于电子器件的材料
JP2018058823A (ja) * 2016-08-09 2018-04-12 彩豐精技股▲分▼有限公司 化合物およびこれを用いた有機電子デバイス
JP2018511572A (ja) * 2015-09-16 2018-04-26 エルジー・ケム・リミテッド 化合物およびこれを含む有機発光素子
US10418562B2 (en) 2015-02-06 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
CN113292497A (zh) * 2021-02-09 2021-08-24 长春海谱润斯科技股份有限公司 一种五元杂环衍生物及其有机电致发光器件
CN113402498A (zh) * 2021-08-19 2021-09-17 浙江华显光电科技有限公司 螺二芴化合物、制剂、有机发光器件及显示或照明装置
US11871661B2 (en) 2015-12-17 2024-01-09 Samsung Display Co., Ltd. Organic light-emitting device
US11937502B2 (en) * 2015-04-14 2024-03-19 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device comprising the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170186967A1 (en) * 2014-06-11 2017-06-29 Hodogaya Chemical Co., Ltd. Pyrimidine derivative and an organic electroluminescent device
KR102360221B1 (ko) * 2015-01-08 2022-02-09 솔루스첨단소재 주식회사 유기 전계 발광 소자
KR101985649B1 (ko) * 2015-10-07 2019-06-04 주식회사 엘지화학 이중 스피로형 화합물 및 이를 포함하는 유기 발광 소자
KR101817775B1 (ko) * 2015-11-12 2018-01-11 에스에프씨주식회사 신규한 유기발광 화합물 및 이를 포함하는 유기 발광 소자
TWI745361B (zh) * 2016-03-17 2021-11-11 德商麥克專利有限公司 具有螺聯茀結構之化合物
KR101933209B1 (ko) * 2016-10-24 2018-12-31 주식회사 엘지화학 유기 발광 소자
GB2569636A (en) * 2017-12-21 2019-06-26 Sumitomo Chemical Co Composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057978A2 (en) * 2007-11-01 2009-05-07 Cheil Industries Inc. Material for organic photoelectric device, and organic photoelectric device thereby
WO2009124627A1 (de) * 2008-04-07 2009-10-15 Merck Patent Gmbh Pluorenderivate für organische elektrolumineszenzvorrichtungen
WO2011000455A1 (de) * 2009-06-30 2011-01-06 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
KR20120060611A (ko) * 2010-12-02 2012-06-12 제일모직주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057978A2 (en) * 2007-11-01 2009-05-07 Cheil Industries Inc. Material for organic photoelectric device, and organic photoelectric device thereby
WO2009124627A1 (de) * 2008-04-07 2009-10-15 Merck Patent Gmbh Pluorenderivate für organische elektrolumineszenzvorrichtungen
WO2011000455A1 (de) * 2009-06-30 2011-01-06 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
KR20120060611A (ko) * 2010-12-02 2012-06-12 제일모직주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105164120A (zh) * 2013-05-16 2015-12-16 罗门哈斯电子材料韩国有限公司 有机电致发光化合物和包含所述有机电致发光化合物的有机电致发光装置
WO2014185751A1 (en) * 2013-05-16 2014-11-20 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compounds and organic electroluminescent device comprising the same
US11545634B2 (en) 2013-12-19 2023-01-03 Merck Patent Gmbh Heterocyclic spiro compounds
WO2015090504A3 (de) * 2013-12-19 2015-08-20 Merck Patent Gmbh Heterocyclische spiroverbindungen
CN105829292A (zh) * 2013-12-19 2016-08-03 默克专利有限公司 杂环螺环化合物
US20160308147A1 (en) * 2013-12-19 2016-10-20 Merck Patent Gmbh Heterocyclic spiro compounds
EP3708634A1 (de) 2013-12-19 2020-09-16 Merck Patent GmbH Heterocyclische spiroverbindungen
WO2015090504A2 (de) 2013-12-19 2015-06-25 Merck Patent Gmbh Heterocyclische spiroverbindungen
JP2017507901A (ja) * 2013-12-19 2017-03-23 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH 複素環式スピロ化合物
TWI776260B (zh) * 2013-12-19 2022-09-01 德商麥克專利有限公司 雜環螺化合物
CN112898254A (zh) * 2013-12-19 2021-06-04 默克专利有限公司 杂环螺环化合物
TWI667231B (zh) * 2013-12-19 2019-08-01 德商麥克專利有限公司 雜環螺化合物
CN112851613A (zh) * 2013-12-19 2021-05-28 默克专利有限公司 杂环螺环化合物
TWI709556B (zh) * 2013-12-19 2020-11-11 德商麥克專利有限公司 雜環螺化合物
US10777750B2 (en) 2013-12-19 2020-09-15 Basf Se Heterocyclic spiro compounds
CN106536485A (zh) * 2014-07-21 2017-03-22 默克专利有限公司 用于电子器件的材料
EP4037000A1 (de) 2014-07-21 2022-08-03 Merck Patent GmbH Materialen für elektronische vorrichtungen
CN106458954B (zh) * 2014-07-28 2022-06-28 Sfc株式会社 包含杂环的缩合芴衍生物
CN106458954A (zh) * 2014-07-28 2017-02-22 Sfc株式会社 包含杂环的缩合芴衍生物
US11683980B2 (en) 2014-07-28 2023-06-20 Sfc Co., Ltd. Condensed fluorene derivative comprising heterocyclic ring
US10418562B2 (en) 2015-02-06 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US11937502B2 (en) * 2015-04-14 2024-03-19 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device comprising the same
US10651411B2 (en) 2015-09-16 2020-05-12 Lg Chem, Ltd. Compound and organic light emitting device containing same
JP2018511572A (ja) * 2015-09-16 2018-04-26 エルジー・ケム・リミテッド 化合物およびこれを含む有機発光素子
US11871661B2 (en) 2015-12-17 2024-01-09 Samsung Display Co., Ltd. Organic light-emitting device
JP2018058823A (ja) * 2016-08-09 2018-04-12 彩豐精技股▲分▼有限公司 化合物およびこれを用いた有機電子デバイス
CN113292497A (zh) * 2021-02-09 2021-08-24 长春海谱润斯科技股份有限公司 一种五元杂环衍生物及其有机电致发光器件
CN113402498A (zh) * 2021-08-19 2021-09-17 浙江华显光电科技有限公司 螺二芴化合物、制剂、有机发光器件及显示或照明装置

Also Published As

Publication number Publication date
KR20130077470A (ko) 2013-07-09
KR101497134B1 (ko) 2015-03-02

Similar Documents

Publication Publication Date Title
WO2013100464A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2013100539A9 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2019132506A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2013100467A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2014010823A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
WO2013100538A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2012161382A1 (en) Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode
WO2013089424A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2012176959A1 (en) Material for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode
WO2013094951A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2014030822A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2014058124A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2015152650A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2013095039A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2013191429A1 (ko) 함질소 헤테로환 화합물 및 이를 포함한 유기 전자소자
WO2020060320A1 (ko) 유기 발광 소자
WO2013100465A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2013022145A1 (ko) 유기광전자소자용 화합물 및 이를 포함하는 유기발광소자
WO2021049840A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2013027902A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2019022455A1 (ko) 플루오렌 유도체 및 이를 포함하는 유기 발광 소자
WO2017014357A1 (ko) 유기 발광 소자
WO2019108033A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2015152651A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2019004791A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12862287

Country of ref document: EP

Kind code of ref document: A1