WO2013099920A1 - 排水管及び排水管の閉塞防止方法、並びに、排水管の設置構造 - Google Patents

排水管及び排水管の閉塞防止方法、並びに、排水管の設置構造 Download PDF

Info

Publication number
WO2013099920A1
WO2013099920A1 PCT/JP2012/083600 JP2012083600W WO2013099920A1 WO 2013099920 A1 WO2013099920 A1 WO 2013099920A1 JP 2012083600 W JP2012083600 W JP 2012083600W WO 2013099920 A1 WO2013099920 A1 WO 2013099920A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
drain pipe
fluid
flow path
wall
Prior art date
Application number
PCT/JP2012/083600
Other languages
English (en)
French (fr)
Inventor
小松 喜美
喜廣 吉田
Original Assignee
株式会社ヨシダアニー
国立大学法人秋田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヨシダアニー, 国立大学法人秋田大学 filed Critical 株式会社ヨシダアニー
Priority to US14/240,097 priority Critical patent/US9279523B2/en
Priority to CA2845775A priority patent/CA2845775C/en
Priority to KR1020147002306A priority patent/KR20140118975A/ko
Priority to EP12862440.0A priority patent/EP2799632B1/en
Publication of WO2013099920A1 publication Critical patent/WO2013099920A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B7/00Water main or service pipe systems
    • E03B7/09Component parts or accessories
    • E03B7/10Devices preventing bursting of pipes by freezing
    • E03B7/12Devices preventing bursting of pipes by freezing by preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/006Rigid pipes specially profiled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture

Definitions

  • the present invention relates to a drainage pipe having a novel structure capable of suppressing freezing of a fluid flowing in the drainage pipe and preventing the pipe from being blocked by the freezing of the fluid.
  • the present invention has been made in view of the above-described prior art, and provides a drain pipe capable of hydrodynamically suppressing freezing of the fluid and preventing the clogging of the pipe without applying thermal energy from the outside.
  • the task is to do.
  • the present inventors presumed that the freezing of the fluid in the drain pipe and the clogging of the pipe are caused by the following mechanism.
  • the present inventors have conducted extensive research on a drainage pipe structure that can control fluid freezing and prevent the drainage pipe from being clogged. It was found that the freezing of the tube can be suppressed and the blockage of the tube can be prevented.
  • (1) Freezing of the fluid in the drain pipe can be suppressed by preventing the fluid flow from branching in the drain pipe or preventing the fluid from forming a liquid film. More specifically, by concentrating the flow of fluid, the influence of surface tension can be reduced and the flow velocity of the fluid can be increased. At the same time, the contact area with the outside air can be reduced, and the temperature drop is also suppressed. Thereby, freezing of a fluid can be suppressed and blockage in a drain pipe can be prevented.
  • the growth of the ice column can be suppressed, and blockage of the drain pipe downstream end can be prevented.
  • the thickness of the drain pipe downstream end By reducing the thickness of the drain pipe downstream end, the amount of fluid remaining at the drain pipe downstream end can be reduced. Thereby, the growth of ice pillars can be further suppressed, and blockage of the downstream end of the drain pipe can be prevented.
  • the thickness of the base part of the ice column generated at the downstream end of the drain pipe depends on the flow rate of the fluid and the thickness of the downstream end of the drain pipe.
  • the base part of the ice column can be kept thin, and the ice column is easily broken. That is, since the icicle naturally breaks before the icicle grows, the growth of the icicle can be suppressed, and blockage of the drain pipe downstream end can be prevented. (7)
  • By performing water-repellent treatment on the inner wall and downstream end of the drain pipe it is possible to prevent the formation of a liquid film and increase the flow rate of the fluid. In addition, it is possible to reduce droplets remaining at the downstream end. Thereby, obstruction
  • the drain pipe has a double pipe structure, and an air layer is provided between the inner pipe and the outer pipe, so that the air layer can function as a heat insulating layer, and the temperature outside the drain pipe decreases rapidly. Even in this case, the temperature drop in the tube can be suppressed.
  • 1st this invention is a drainage pipe provided with the concentrated flow path which concentrates the flow of a fluid on the inner wall of a pipe
  • the “fluid” may be any fluid that can flow along the inner wall of the tube.
  • the present invention can be widely applied even when a fluid other than water (such as an organic solvent) is circulated so as to prevent tube clogging due to freezing of the fluid.
  • a fluid other than water such as an organic solvent
  • cold area means a place where the temperature is below freezing point (0 ° C. or lower), preferably ⁇ 5 ° C. or lower, more preferably ⁇ 10 ° C. or lower, and further preferably ⁇ 15 ° C. or lower.
  • Drainage pipe mainly refers to a pipe through which drainage can be circulated, but is not limited thereto.
  • the present invention can also be applied as a water supply pipe, piping, and the like that can prevent the clogging of the pipe due to fluid freezing, and this aspect is also included in the present invention.
  • the drain pipe is used for drainage by being installed in a house or building in a cold region.
  • the “concentrated flow path that concentrates the flow of fluid” means that the flow of fluid is increased by concentrating the flow of fluid to suppress the generation of a liquid film or branch flow on the inner wall of the pipe. It means a possible flow path.
  • the concentrated flow path is preferably provided linearly along the longitudinal direction of the tube. This is because the freeze prevention effect according to the present invention and the tube blockage prevention effect due to freezing become more prominent.
  • the concentrated flow path is preferably a recess or a groove provided along the flow direction of the fluid (particularly preferably in the longitudinal direction of the tube) on the inner wall of the tube.
  • the drain pipe according to the first aspect of the present invention preferably has a shape in which the concentrated flow path has corners in its cross-sectional shape.
  • the concentrated flow path preferably has a cross-sectional shape having a vertex that is convex toward the outside of the tube.
  • the bottom of the recess or groove is a corner.
  • a plurality of concentrated flow paths may be provided on the inner wall of the pipe.
  • a barrier may be provided along the flow path between one concentrated flow path and another concentrated flow path.
  • a protrusion is provided at the downstream end of the pipe.
  • “Protruded portion is provided” means that a part of the downstream end portion of the pipe is extended in the fluid outflow direction. Thereby, it can concentrate on the front-end
  • the downstream end of the pipe is preferably thinner than the upstream side.
  • the inner wall and / or the downstream end of the pipe is subjected to water repellent treatment.
  • the “water-repellent treatment” means any of various water-repellent treatments such as a form in which a known water-repellent agent is applied and a form in which the surface structure of the inner wall and lower end of the tube is controlled to form a water-repellent surface. Can be applied.
  • an outer tube that further covers the tube is further provided to have a double tube structure.
  • a pipe (inner pipe) having a concentrated flow path can be protected, and the durability of the drain pipe can be improved.
  • an air layer can be provided between the inner tube and the outer tube, a heat insulating effect can also be expected.
  • the drain pipe according to the first aspect of the present invention is suitable as a drain pipe for freezing prevention, that is, below freezing point (0 ° C. or lower), preferably ⁇ 5 ° C. or lower, more preferably ⁇ 10 ° C. or lower, more preferably ⁇ It can be particularly suitably applied as a drain pipe for draining water at a location where the temperature is 15 ° C. or lower.
  • the second aspect of the present invention is a method for preventing the drainage pipe from being blocked by freezing of the fluid flowing in the drainage pipe, and providing a concentrated flow path for concentrating the fluid flow on the inner wall of the pipe. Accordingly, the drain pipe is prevented from being blocked by increasing the flow rate of the fluid in the concentrated flow path.
  • the fluid is preferably caused to flow along the inner wall of the tube.
  • the second aspect of the present invention is a method for preventing the drainage pipe from being blocked by freezing of the fluid flowing in the drainage pipe, and flowing the fluid through the inner wall of the pipe; It is preferable to provide a step of increasing the flow velocity of the fluid in the concentrated flow path by providing a concentrated flow path for concentrating the fluid flow on the inner wall of the pipe.
  • the drainage pipe is installed so that the longitudinal direction of the pipe coincides with the vertical direction so that the fluid flows down from the upper end side to the lower end side of the pipe. .
  • the longitudinal direction of the tube and the vertical direction coincide with each other means that the longitudinal direction of the tube does not necessarily coincide with the vertical direction, and ⁇ 5 ° (that is, the longitudinal direction of the tube and the horizontal direction). If the angle between the angle and the angle is 85 ° or more and 95 ° or less, the error range is acceptable.
  • the concentrated flow path is preferably provided in a straight line along the longitudinal direction of the tube. This is because the freeze prevention effect according to the present invention and the tube blockage prevention effect due to freezing become more prominent.
  • the concentrated flow path is a recess or groove provided on the inner wall of the tube along the fluid flow direction (particularly preferably, the longitudinal direction of the tube).
  • the cross-sectional shape of the concentrated flow path of the drain pipe has a corner.
  • a plurality of concentration channels can be provided on the inner wall of the pipe.
  • a barrier can be provided along the flow path between one concentrated flow path and another concentrated flow path.
  • the growth of the ice column can be more appropriately suppressed by providing the protrusion at the downstream end of the tube.
  • the growth of ice pillars can be more appropriately suppressed by making the downstream end of the tube thinner than the upstream side.
  • the third aspect of the present invention is a drainage pipe installation structure in which the drainage pipe according to the first aspect of the present invention is installed.
  • the fluid flow along the inner wall of the pipe.
  • the drain pipe installation structure according to the third aspect of the present invention is an anti-freezing installation structure, that is, a place where the temperature is below freezing point (0 ° C. or lower), more preferably ⁇ 10 ° C. or lower, and further preferably ⁇ 15 ° C. or lower Is particularly suitable as a drain pipe installation structure.
  • the flow velocity of the fluid can be increased, and the fluid can be discharged from only a part of the downstream end portion of the drain pipe.
  • the freezing of the fluid in a drain pipe can be suppressed, and the growth of the ice column in a drain pipe downstream end part can also be suppressed. That is, according to the present invention, fluid freezing can be suppressed hydrodynamically and the drainage pipe can be prevented from being blocked without applying thermal energy from the outside.
  • FIG. 1A shows a conventional example
  • FIG. 1B shows an example of the present invention.
  • It is the schematic for demonstrating the drain pipe 50 which concerns on this invention.
  • Drainage Pipe The drainage pipe according to the present invention is characterized by including a concentrated flow path for concentrating the flow of fluid on the inner wall of the pipe. That is, as shown in FIG. 1, in particular, in the case of a drain pipe installed so that the longitudinal direction and the vertical direction of the drain pipe coincide with each other, when the fluid is caused to flow along the inner wall of the drain pipe, In this case, the flow of the fluid becomes unstable and the flow branches or a liquid film is generated (FIG. 1A). This is caused by the freezing of the fluid in the drain pipe and a large number of downstream end portions of the drain pipe. The generation and growth of icicles occurred. On the other hand, in the drain pipe according to the present invention, the flow is concentrated in the concentrated flow path (FIG.
  • FIGS. 2 and 3 schematically show a drain pipe 10 of the present invention according to a first embodiment.
  • FIG. 2 is an external perspective view of the drain pipe 10
  • FIG. 3 is a diagram schematically showing a cross-sectional shape taken along the line III-III in FIG.
  • the drain pipe 10 is a pipe having a predetermined cross-sectional shape and extending in the longitudinal direction.
  • the inner wall of the drain pipe 10 is provided with recesses 10a, 10a,..., And protrusions 10b, 10b,... Provided along the fluid flow direction (longitudinal direction of the pipe). ing.
  • the recessed part 10a and the convex part 10b are alternately provided in the inner wall.
  • the recess 10a can function as a concentrated flow path.
  • the convex portion 10b between the adjacent concave portions 10a and 10a it is possible to suppress the fluid from jumping from one concave portion 10a to the other concave portion 10a, and to suppress the branching of the fluid flow. it can.
  • the drain pipe 10 shown in FIG. 3 is formed of a curved surface in both the concave portion 10a and the convex portion 10b. That is, the cross-sectional shape does not have corners. Usually, the generation of icicles at the downstream end of the drain pipe is likely to occur at the corner of the end face. In the drainage pipe 10, the generation of ice columns at the downstream end of the drainage pipe 10 can be further suppressed by having no corners in the cross-sectional shape.
  • the above-mentioned concave portion is convex toward the outside of the pipe (reference numeral 100c in FIG. 16) as in the later-described drain pipe 100 (see FIGS. 15 and 16).
  • the liquid droplets tend to stay at the downstream end of the drain pipe, which tends to be the starting point of the ice column.
  • the flow velocity of the fluid in the recess can be increased, and the fluid easily flows from one place at the downstream end of the drainage pipe, so that it is difficult to grow the ice column in the circumferential direction and the central direction at the lower end. did. That is, even if there is a defect that the liquid droplets are likely to stay at the lower end, it is more effective to give priority to the function of causing the fluid to flow out from one place as in the case of the drain pipe 100 as will be described later.
  • the diameter of the drain pipe 10 (the maximum outer diameter of the cylindrical pipe that can be inserted into the drain pipe, the length D in FIG. 3) is usually 70 mm to 120 mm, but is not limited to this range and is assumed. It can be adjusted according to the flow rate (drainage amount) of the fluid.
  • the depth of the concave portion 10a (the distance between the straight line connecting the apexes of the adjacent convex portions 10b and 10b and the bottom of the concave portion 10a between the adjacent convex portions 10b and 10b, the length d in FIG. 3)
  • the ratio of the length d to the length D (d / D) is usually 0.1 to 0.4, but is not limited to this range and is adjusted according to the assumed flow rate. can do. What is necessary is just to adjust the full length of the drain pipe 10 suitably according to an installation location.
  • the material of the drain pipe 10 is not particularly limited. What has been conventionally used as a material constituting the drain pipe, such as a metal such as stainless steel or a plastic such as polyvinyl chloride, can be appropriately selected and used. In particular, from the viewpoint of durability, it is preferable to use a metal such as stainless steel.
  • the drain pipe 10 can be manufactured by various methods. For example, you may shape
  • the drainage pipe 10 can also be easily manufactured by preparing 10 'and overlapping and joining the opposing ends.
  • the flow rate of the fluid can be increased in the recess 10a by concentrating the flow of the fluid in the recesses 10a, 10a,. In the portion, the fluid can be discharged only from the concave portion 10a. Thereby, the freezing of the fluid in a pipe
  • FIG. 5 schematically shows a cross section of a drain pipe 20 according to a second embodiment.
  • the inner wall of the drain pipe 20 is provided with recesses 20 a, 20 a,..., And protrusions 20 b, 20 b, ... provided along the fluid flow direction (longitudinal direction of the pipe).
  • barriers 20c, 20c,... are provided at the tops of the convex portions 20b, 20b,... Along the fluid flow direction (longitudinal direction of the pipe).
  • the drain pipe 20 has the same configuration as the drain pipe 10 described above except that the drain pipe 20 includes barriers 20c, 20c,.
  • the height of the barrier 20c (length h in FIG. 5) can be appropriately adjusted according to the assumed flow rate, and can be, for example, approximately the same as the depth of the recess 20a. Further, the material of the barrier 20c is not particularly limited.
  • the drain pipe 20 includes the barriers 20c, 20c,..., So that the fluid can be prevented from jumping from one recess 20a to another adjacent recess 20a, and the fluid flow can be more appropriately concentrated. . However, as described above, the generation of icicles at the downstream end of the drain pipe is likely to occur at the corner of the end face.
  • the barrier 20c may be installed up to the downstream end portion of the drain pipe 20 and a corner portion may not be formed at the downstream end portion.
  • a concave portion and a convex portion are provided on the inner wall of the drain pipe, and the outer wall of the drain pipe is also corrugated according to the shape of the concave portion and the convex portion. It is not limited to this form.
  • the present invention only needs to have a form in which the inner wall is provided with a concentrated flow path, and the shape of the outer wall is not particularly limited. For example, as shown to FIG. 6 (A), it is good also as a form like the drain pipe 30 provided with the circumferential outer wall.
  • the recessed part and the convex part each demonstrated as what is comprised by a curved surface, this invention is not limited to this form.
  • FIG. 6 (B) it is good also as a form like the drain pipe 40 provided with the rectangular shaped recessed part (groove) 40a and the convex part 40b in the inner wall.
  • the recessed part 100a which has a corner
  • FIG. 7 and 8 (A) and 8 (B) show a drain pipe 50 of the present invention according to a fifth embodiment.
  • 7 is a diagram schematically showing the external appearance of the drain pipe 50
  • FIG. 8A is a diagram schematically showing the shape of a section taken along the line VIIIa-VIIIa in FIG. 7
  • FIG. 8B is a diagram showing VIIIb- in FIG. It is a figure which shows schematically the shape of a VIIIb arrow cross section.
  • the drain pipe 50 is configured by connecting an upper drain pipe 51 and a lower drain pipe 52.
  • the upper drain pipe 51 is a cylindrical pipe.
  • the upper drain pipe 51 a drain pipe that has been conventionally used can be applied as it is.
  • the lower drainage pipe 52 includes an inclined portion 53 and a vertical portion 54 connected to a downstream end portion of the inclined portion 53.
  • the inner wall of the lower drain pipe 52 is provided with a recess 52a along the fluid flow direction.
  • the upper drain pipe 51 is connected to the upper end of the inclined portion 53 of the lower drain pipe 52, and the fluid flowing from the upper end of the upper drain pipe 51 passes through the inclined portion 53 and the vertical portion 54. And discharged from the downstream end of the lower drain pipe 52.
  • FIG. 9 shows the flow of fluid in the drain pipe 50.
  • the fluid that has flowed in from the upper end of the upper drain pipe 51 flows downward and flows in the inclined portion 53 so as to concentrate on the recess 52 a.
  • the fluid concentrated in the concave portion 52a in the inclined portion 53 flows from the concave portion 52a of the inclined portion 53 along the concave portion 52a of the vertical portion 54 without branching thereafter, and from the downstream end of the concave portion 52a of the vertical portion 54. Discharged.
  • the recess 52a can function as a concentrated flow path in the drain pipe 50, the flow rate of the fluid can be increased in the recess 52a, and the recess is formed at the downstream end of the drain pipe 50.
  • the fluid can be discharged only from the 52a portion.
  • tube can be suppressed and the growth of the ice column in a drain pipe downstream end part can also be suppressed. That is, according to the drain pipe 50, freezing of the fluid can be suppressed hydrodynamically and the drain pipe can be prevented from being blocked without inputting heat energy from the outside.
  • the external appearance of the drain pipe 60 of this invention which concerns on 6th Embodiment is shown roughly.
  • the drainage pipe 60 has the same cross-sectional shape as the drainage pipe 10, and further includes protrusions 60d, 60d,... At the downstream end of the drainage pipe.
  • the projecting portion 60d is provided on the downstream side extension of the concentrated flow path (concave portion) of the drain pipe 60, and is tapered (convex) toward the tip.
  • the protrusion 60d may be provided integrally with the concentrated flow path, or may be separately attached.
  • the fluid flowing in the drain pipe drops and flows out from the tapered tip of the protrusion 60d. That is, in the downstream side portion of the drain pipe 60, an ice column can be generated concentrating on the tip of the protrusion 60d, and the growth of the ice column in the circumferential direction can be suppressed. can do.
  • the protrusion 60d is provided on the downstream extension of the concentrated flow path, the fluid that has flowed through the concentrated flow path can easily reach the tip of the protrusion 60d. Icicles can be generated.
  • the protrusion 60d is not provided on the downstream extension of the concentrated flow path, the fluid that has flowed through the concentrated flow path reaches the tip of the protruding section from the upper end side of the protruding section through the end face. Therefore, the ice column can be preferentially generated at the tip of the projecting portion 60d.
  • FIGS. 11 and 12A and 12B schematically show a drain pipe 70 of the present invention according to a seventh embodiment.
  • 11 is an external view of the drain pipe 70
  • FIG. 12A is a cross-sectional view of the drain pipe 70 as viewed from the top (XIIa arrow in FIG. 11)
  • FIG. 12B is a bottom view of the drain pipe 70 (FIG. 11). It is a XIIb arrow view) sectional drawing.
  • the drain pipe 70 has concave portions 70a, 70a,... And convex portions 70b, 70b,... Similar to the drain pipe 10 on the inner wall from the upstream end portion to the downstream end portion. And the thickness of the tube is thinner at the downstream end than at the upstream side.
  • the drain pipe 70 by reducing the thickness of the downstream end of the drain pipe, the amount of fluid remaining at the downstream end can be reduced. Thereby, the growth of the ice column can be further suppressed, and blockage of the downstream end portion of the drain pipe can be more appropriately prevented. Further, the thickness of the base portion of the ice column generated at the downstream end of the drain pipe depends on the flow rate of the fluid and the thickness of the downstream end of the drain pipe. Like the drain pipe 70, the recess 70a is provided to increase the fluid flow rate, and the drain pipe downstream end is thinned, so that the base part of the ice pillar can be kept thin and the ice pillar is easily broken. It will be a thing. That is, according to the drain pipe 70, since the ice pillar naturally breaks before the ice pillar grows, the growth of the ice pillar can be suppressed, and the drain pipe downstream end can be more appropriately prevented.
  • FIG. 13 schematically shows a cross-sectional shape of a drain pipe 80 according to an eighth embodiment of the present invention.
  • the drain pipe 80 includes an outer pipe 81 on the outside of the drain pipe (inner pipe) 10 so as to cover the drain pipe 10 and has a double pipe structure.
  • the outer pipe 81 is a cylindrical pipe and includes an air layer 82 between the inner pipe 10 and the outer pipe 81.
  • the inner pipe 10 having a concentrated flow path can be protected by the outer pipe 81.
  • the air layer can function as a heat insulating layer. Thereby, the influence of the temperature outside the pipe is reduced, and freezing of the fluid in the pipe can be further suppressed.
  • FIG. 14 (A) and 14 (B) schematically show a drain pipe 90 of the present invention according to a ninth embodiment.
  • FIG. 14A is a diagram schematically showing the appearance of the drain pipe 90
  • FIG. 14B is a diagram for explaining the internal structure of the drain pipe 90.
  • the drain pipe 90 has the same appearance as a conventional cylindrical drain pipe in appearance.
  • the piece 91a and the piece 91b face each other, and are inclined toward the downstream side toward the proximity side.
  • the flow of the fluid traveling along the inner wall is controlled by the pieces 90a and 90b, and the flow can be concentrated between the pieces 90a and 90b. .
  • a concentrated flow path can be formed between the piece 90a and the piece 90b, and the flow velocity of the fluid can be increased in the concentrated flow path. it can. Further, at the downstream end of the drain pipe, the fluid can be discharged only from the concentrated flow path. Thereby, freezing of the fluid in a pipe
  • FIGS. 15 and 16 schematically show a drain pipe 100 of the present invention according to a tenth embodiment.
  • the concentrated flow path has a shape having a vertex (for example, reference numeral 100c in FIG. 16) convex toward the outside of the pipe (in other words, For example, when the bottom of the recess 100a provided on the inner wall of the drain pipe is a corner 100c), at the downstream end of the drain pipe 100, droplets easily stay on the corner 100c and become the starting point of the ice column.
  • the flow velocity of the fluid in the recess 100a can be increased, and the fluid can easily flow from one place at the downstream end of the drainage pipe 100, so that the ice column grows in the circumferential direction and the central direction of the pipe at the lower end. It becomes difficult to do. That is, even if there is a defect that the liquid droplets are likely to stay at the lower end, it is more effective to prevent clogging due to freezing of the pipe if priority is given to the function of allowing the fluid to flow out from one place as in the case of the drain pipe 100. .
  • the downstream side of the drain pipe may be shaped like the concave part 10a while increasing the fluid flow rate in the concave part 100a on the upstream side of the drain pipe.
  • FIG. 17 schematically shows a drain pipe 110 according to an eleventh embodiment of the present invention.
  • the inner wall of the drain pipe 110 is provided with a recess or groove that functions as a concentrated path in a spiral shape.
  • the effect of the present invention is achieved when the flow rate of the waste water is large.
  • the flow rate of the waste water is small, there is a possibility that the waste water flows over the spiral recess or groove and flows down directly. Therefore, from the viewpoint of making the effect of the present invention more remarkable, as described above, it is preferable to provide a concentrated flow path in a straight line along the longitudinal direction of the drain pipe.
  • water repellent treatment various water repellent treatments such as a form in which a known water repellent is applied and a form in which the surface structure is controlled to form a water repellent surface can be applied.
  • FIG. 18 is a schematic top view for explaining the flow of drainage in the vicinity of the inlet of the drain pipe of the present invention according to one embodiment (flow of drainage toward the drain pipe inlet).
  • the waste water that has reached the vicinity of the inlet of the drain pipe is guided to the concentrated flow path as indicated by an arrow in the figure by a gradient or groove provided in the vicinity of the inlet of the drain pipe.
  • the fluid flow can be further concentrated in the drain pipe.
  • the flow rate of the fluid can be increased, and the fluid can be discharged from only a part of the downstream end portion of the drain pipe. Thereby, the freezing of the fluid in a drain pipe can be suppressed, and the growth of the ice column in a drain pipe downstream end part can also be suppressed.
  • FIG. 19 is a schematic view for explaining the form around the lower end of the drain pipe 120 of the present invention according to one embodiment.
  • the lower end portion of the drain pipe 120 is connected to a water collecting tank 125 provided in the ground.
  • the lower end part of the drain pipe 120 is warmed by the influence of geothermal heat, and freezing of the lower end part can be further suppressed.
  • the water in the catchment 125 does not freeze due to the influence of geothermal heat
  • the lower end of the drainage pipe 120 is immersed below the water surface in the catchment 125, Freezing of the lower end portion can be more appropriately suppressed.
  • the drain pipe itself has been described as the present invention.
  • the present invention also has a side surface as a method for preventing the drainage pipe from being blocked by freezing of the fluid flowing in the drainage pipe. That is, the method according to the present invention is a method for preventing the drainage pipe from being blocked by freezing of the fluid flowing in the drainage pipe, and a concentrated flow path for concentrating the fluid flow on the inner wall of the pipe Is a drainage pipe blockage prevention method that increases the flow rate of fluid in the concentrated flow path.
  • the configuration of the concentrated flow path is as described above, the description thereof is omitted here.
  • the method of the present invention it is possible to suppress freezing of the fluid hydrodynamically and to prevent the clogging of the pipe without inputting heat energy from the outside.
  • the effect becomes more prominent when fluid flows along the inner wall of the pipe.
  • a method of preventing the drainage pipe from being blocked by freezing of the fluid flowing in the drain pipe, the step of flowing the fluid along the inner wall of the pipe, and the flow of the fluid to the inner wall of the pipe It is preferable to provide a drainage pipe blocking prevention method including a step of increasing a fluid flow rate in the concentrated flow path by providing a concentrated flow path for concentrating the flow.
  • the drainage pipe is installed so that the longitudinal direction and the vertical direction of the pipe coincide with each other, so that the fluid is transmitted from the upper end side to the lower end side of the pipe to flow down. This is because the antifreezing effect according to the present invention and the tube occlusion preventing effect due to freezing become more prominent.
  • the longitudinal direction of the tube and the vertical direction coincide with each other means that the longitudinal direction of the tube does not need to be completely coincident with the vertical direction, and ⁇ 5 ° (that is, the longitudinal direction of the tube and the horizontal direction If the angle formed is 85 ° or more and 95 ° or less), the error is allowed.
  • ⁇ 5 ° that is, the longitudinal direction of the tube and the horizontal direction If the angle formed is 85 ° or more and 95 ° or less), the error is allowed.
  • Drainage pipe installation structure The present invention also has a side face as a drainage pipe installation structure that is devised so that the drainage pipe is not blocked by fluid freezing when a fluid is circulated in the drainage pipe. That is, the installation structure according to the present invention is characterized in that the above-described drainage pipe according to the present invention is installed. In particular, it is preferable to install the drain pipe so that the longitudinal direction and the vertical direction of the drain pipe coincide with each other. In this case, the effect of preventing freezing in the drain pipe and the effect of suppressing the growth of ice columns at the lower end of the drain pipe are more remarkable. It becomes.
  • a pipe having a diameter D of 70 mm, a recess depth d13 mm, a number of recesses of 10 and a tube length of 1000 mm was used.
  • a normal cylindrical tube having an inner diameter of 96 mm and a tube length of 1000 mm was used. The experiment was performed in a low temperature room of ⁇ 15 ° C., and after confirming that the temperature of each part of the drain pipe became ⁇ 15 ° C., water (2 ° C.) was continuously poured from the upper part of the drain pipe. The drainage flow rate was 200 ml / min in all cases, and the drainage was adjusted so as to travel along the drainage pipe inner wall.
  • FIG. 20A and 20B show the state of the downstream end of the drain pipe after 7 hours from the start of the experiment.
  • FIG. 20A shows a state where a conventional cylindrical drain pipe is used
  • FIG. 20B shows a state where the drain pipe 10 according to the present invention is used.
  • FIG. 20 (A) when a conventional cylindrical drain pipe is used, as a result of the fluid flow branching inside the drain pipe, icicles are placed in the circumferential direction at the downstream end of the drain pipe. Has occurred and has become a large lump that has blocked the entire downstream end of the drain pipe.
  • FIG. 20 (B) when the drainage pipe 10 according to the present invention is used, the growth of ice pillars at the downstream end of the drainage pipe can be suppressed, and it is sufficient even after 7 hours. It had an opening and was able to drain without problems.
  • the drain pipe 10 when the drain pipe 10 was used, it was confirmed that the ice column would naturally break down when the ice column grew beyond a certain level.
  • fluid freezing can be suppressed hydrodynamically and the pipe can be blocked.
  • the performance of inhibiting clogging due to freezing was compared between the case where the drain pipe 10 as shown in FIGS. 2 and 3 was used and the case where the drain pipe 100 as shown in FIGS. 15 and 16 was used.
  • the drain pipe 10 the same one as described above was used, and as the drain pipe 100, one having a diameter D80 mm, a recess depth d11 mm, the number of recesses 9 and a tube length of 1000 mm was used.
  • the experiment was conducted in a low temperature room of -15 ° C or -25 ° C, and after confirming that the temperature of each part of the drain pipe reached -15 ° C or -25 ° C, water (2 ° C) was continuously supplied from the top of the drain pipe. Poured into.
  • the drainage flow rate was 200 ml / min in all cases, and the drainage was adjusted so as to travel along the drainage pipe inner wall.
  • the cross-sectional shape is such that the concentrated flow path has corners (vertices), thereby further concentrating the flow in the pipe and increasing the flow velocity to more appropriately suppress freezing. I understood that I could do it.
  • A An installation structure for preventing freezing of a drain pipe that allows fluid to flow along an inner wall of a pipe installed so that the longitudinal direction and the vertical direction substantially coincide with each other.
  • An installation structure for preventing freezing of a drain pipe in which a plurality of recesses or grooves are provided linearly along the longitudinal direction of the pipe as a concentrated flow path for concentrating the water.
  • B An installation structure for preventing freezing of a drain pipe that allows fluid to flow along the inner wall of the pipe, and the inner wall of the pipe has a corner in a cross-sectional shape as a concentrated flow path for concentrating the flow of fluid.
  • An installation structure for preventing freezing of a drain pipe wherein a plurality of concave portions or grooves formed in a shape are provided linearly along the longitudinal direction of the pipe.
  • C In the installation structure of the drain pipe installed so that the longitudinal direction and the vertical direction substantially coincide with each other, it is a method for preventing the drain pipe from being blocked by freezing of the fluid flowing through the pipe, The step of flowing the fluid along the inner wall of the tube, and the concentration flow by concentrating the fluid flow on the inner wall of the tube by providing a plurality of recesses or grooves linearly along the longitudinal direction of the tube. Increasing the flow rate of the fluid in the flow path.
  • the horizontal pipe is not formed with the concentrated flow path but is simply a cylindrical pipe.
  • the drainage flows to a certain extent at the bottom of the inner wall.
  • the horizontal pipe even if an ice column is generated at the downstream end of the drainage flow direction, it is difficult for the ice column to grow in the circumferential direction of the tube, and the problem of freezing and clogging at the tube outlet is easily avoided.
  • the present invention is a drainage pipe having a novel structure capable of suppressing freezing of the fluid flowing in the drainage pipe and preventing pipe clogging due to freezing of the fluid.
  • a cold district below freezing point (0 ° C. or lower)
  • the temperature is preferably ⁇ 5 ° C. or lower, more preferably ⁇ 10 ° C. or lower, and more preferably ⁇ 15 ° C. or lower
  • the snow melted on the rooftop in the winter is frozen in the drain pipe or the lower end of the drain pipe. Therefore, it can be suitably used as a drain pipe that can be efficiently discharged to the ground.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Sink And Installation For Waste Water (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

 管の内壁に、流体の流れを集中させる集中流路を備える排水管とすることによって、外部から熱エネルギーを投入することなく、流体力学的に流体の凍結を抑制し、管の閉塞を防止することを可能とする。

Description

排水管及び排水管の閉塞防止方法、並びに、排水管の設置構造
 本発明は、排水管内を流れる流体の凍結を抑制でき、流体の凍結による管閉塞を防止することが可能な、新規構造を有する排水管に関する。
 寒冷地においては、例えば冬季に屋上に積もった雪を、排水管を介して地上に効率的に排出させる必要がある。この際、排水管の内部或いは排水管の下流側端部において排水が凍結し、排水管が閉塞してしまうという問題がある。排水管が閉塞してしまうと排水が滞り、屋内に漏水してしまう虞がある。
 排水管内の排水の凍結を防止する方法として、一般的には、紐状のヒーター等を用いて外部から排水管内に熱エネルギーを供給する方法が採用されている(例えば、特許文献1参照)。しかしながら、このような形態にあっては、建物の高さと同等の長さを有するヒーターが必要となり、ランニングコストが大きくなってしまうほか、破損等によるメンテナンス費用も莫大なものとなる。また、極端な寒冷地では、排水管を屋内に設置する場合があり、設置スペースや意匠の問題も大きい。
特開平10-321356号公報
 本発明は上記従来技術に鑑みてなされたものであり、外部から熱エネルギーを投入することなく、流体力学的に流体の凍結を抑制し、管の閉塞を防止することが可能な排水管を提供することを課題とする。
 本発明者らは、排水管における流体の凍結及び管閉塞は以下のメカニズムにより生じると推測した。
(I)例えば、屋上に積もった雪は徐々に融雪する。通常、排水管内に雪解け水が多量に流れ込むことはなく、雪解け水は排水管内壁を伝って徐々に排出される。このような場合、管内壁の比較的広い範囲に亘って液膜が形成され、流れも分岐し易い。そのため、表面張力の影響が大きくなって流速が低下するとともに、外気との接触面積が大きくなって温度低下が促進され、結果として排水が凍結し易くなる。これにより、排水管内において排水の凍結による閉塞が生じる。
(II)排水管内で凍結せずとも、排水は排水管の下流側端部において凍結し、氷柱となる。特に排水管下流側端部の切断部表面(管厚み部分)に当該氷柱が発生し易い。上述の通り、排水管内において液膜となった排水は、流れが不安定となって分岐することから、排水管下流側端部の至るところに氷柱が発生することとなる。氷柱は時間の経過とともに成長し、隣接する氷柱同士が結合して大きな塊となり、やがては排水管の下流側端部において、排水の凍結による閉塞が生じる。
 本発明者らは上記推測に基づき、流体力学的に流体の凍結を抑制し、排水管の閉塞を防止することが可能な排水管構造について鋭意研究を進めたところ、以下の構造及び方法により流体の凍結を抑制でき、管閉塞を防止可能であることを知見した。
(1)排水管内において流体の流れを分岐させないようにし、或いは、液膜となることを防止することで、排水管内における流体の凍結を抑制することができる。より具体的には、流体の流れを集中させることにより、表面張力の影響を低減することができ、流体の流速を増大させることができる。同時に、外気との接触面積を減少させることができ、温度低下も抑制される。これにより、流体の凍結を抑制することができ、排水管内の閉塞を防止することができる。
(2)流体の流れを集中させるには、特に、管内壁に、流体の流れ方向(管の長手方向)に沿って凹部或いは溝を設けるとよい。
(3)流体の流れを集中させることにより、排水管下流側端部における氷柱の発生箇所を限定することができる。すなわち、排水管下流側端部において、氷柱が隣接することがないため、氷柱が管の周方向に成長すること等を抑制でき、排水管下流側端部の閉塞を防止することができる。
(4)排水管下流側端部に突出部を設けることで、当該突出部の先端に集中して氷柱を発生させることができる。これにより、氷柱の成長を抑制することができ、排水管下流側端部の閉塞を防止することができる。特に、流体の流れの直下に突出部が存在するように排水管を設計すると良い。
(5)排水管下流側端部を薄肉化することで、排水管下流側端部に留まる流体の量を低減することができる。これにより、氷柱の成長を一層抑制でき、排水管下流側端部の閉塞を防止することができる。
(6)排水管下流側端部にて発生した氷柱の根元部分の太さは、流体の流速や排水管下流側端部の厚みに依存する。流体の流速を増大させ、且つ、排水管下流側端部を薄肉化することで、氷柱の根元部分を細く維持することができ、氷柱が折れ易いものとなる。すなわち、氷柱が成長する前に氷柱が自然に折れるため、氷柱の成長を抑制することができ、排水管下流側端部の閉塞を防止することができる。
(7)排水管の内壁や下流側端部に対して撥水処理を施すことにより、液膜の発生を防止することができ、流体の流速を増大させることができる。また、下流側端部に留まる液滴を減少させることもできる。これにより、排水管内及び排水管下流側端部の閉塞を防止することができる。
(8)排水管を二重管構造とし、内管と外管との間に空気層を設けることで、当該空気層を断熱層として機能させることができ、排水管外の気温が急激に低下した場合でも、管内の温度低下を抑制することができる。
 本発明は上記知見に基づいてなされたものである。すなわち、
 第1の本発明は、管の内壁に、流体の流れを集中させる集中流路を備える排水管である。
 本発明において「流体」とは、管の内壁を伝って流れ得る流体であればよい。本発明は、水の以外の流体(有機溶媒等)を流通させる場合においても、当該流体の凍結による管閉塞を防止可能なものとして広く適用することができる。ただし、本発明の効果がより顕著に現れる態様として、雪解け水等、寒冷地における排水を対象とすることが好ましい。本願において「寒冷地」とは温度が氷点下(0℃以下)、好ましくは-5℃以下、より好ましくは-10℃以下、さらに好ましくは-15℃以下となるような地をいう。「排水管」とは、主に、排水を流通させ得る管を言うが、これに限定されるものではない。本発明は、流体の凍結による管の閉塞を防止可能な給水管、配管等としても適用可能であり、当該態様も本発明に含まれるものとする。ただし、本発明の効果がより顕著に現れる態様として、寒冷地の家屋や建物に設置して排水のために用いる排水管とすることが好ましい。「流体の流れを集中させる集中流路」とは、より具体的には、流体の流れを集中させることで、流体の流速を増大させ、管内壁における液膜の発生や分岐流れの発生を抑制可能な流路を意味する。
 第1の本発明において、集中流路は、管の長手方向に沿って直線状に設けられていることが好ましい。本発明による凍結防止効果、凍結による管閉塞防止効果がより顕著となるためである。
 第1の本発明において、集中流路が、管の内壁において流体の流通方向(特に好ましくは管の長手方向)に沿って設けられた凹部又は溝であることが好ましい。このような形態とすることで、流体の流れをより適切に集中させ、流速を増大させることができる。
 第1の本発明に係る排水管は、その断面形状において、集中流路が角部を有する形状であることが好ましい。言い換えれば、集中流路は、その断面形状が、管の外側に向かって凸となる頂点を有する形状であることが好ましい。例えば集中流路として凹部又は溝を設けた場合、当該凹部又は溝は、その底部が角部とされていることが好ましい。
 第1の本発明においては、管の内壁に集中流路が複数備えられていてもよい。
 この場合、一の集中流路と他の集中流路との間には、流路に沿って障壁が設けられていてもよい。これにより、流体が一の集中流路から隣接する他の集中流路に飛び越えて流れ込むことを抑制でき、流体の流れを一層適切に集中させることができる。
 第1の本発明において、管の下流側端部に突出部が設けられていることが好ましい。「突出部が設けられている」とは、管の下流側端部の一部が、流体の流出方向に延長されていることを意味する。これにより、突出部の先端に集中して氷柱を発生させることができ、排水管下流側端部の閉塞を防止することができる。
 第1の本発明において、管の下流側端部が、上流側よりも薄肉化されていることが好ましい。これにより、端部に発生した氷柱が自然と折れるものとなり、氷柱の成長を抑制することができる。
 第1の本発明において、管の内壁及び/又は下流側端部に撥水処理が施されていることが好ましい。これにより、流体の流速を増大させることができ、また、排水管下流側端部における氷柱の成長も抑制することができる。尚、「撥水処理」とは、公知の撥水剤を塗布する形態、管の内壁や下端部の表面構造を制御することにより撥水表面とする形態等、種々の撥水処理をいずれも適用することができる。
 第1の本発明において、さらに管を覆う外管を備え、二重管構造とされていることが好ましい。外管を設けることで集中流路を備える管(内管)を保護することができ、排水管の耐久性を向上させることができる。また、内管と外管との間に空気層を設けることができるので、断熱効果も期待できる。
 第1の本発明に係る排水管は、凍結防止用の排水管として好適であり、すなわち、氷点下(0℃以下)、好ましくは-5℃以下、より好ましくは-10℃以下、さらに好ましくは-15℃以下となるような箇所において排水を行うための排水管として、特に好適に適用できる。
 第2の本発明は、排水管内に流通する流体が凍結することよって、該排水管が閉塞することを防止する方法であって、管の内壁に、流体の流れを集中させる集中流路を設けることにより、該集中流路において流体の流速を増大させる、排水管の閉塞防止方法である。
 第2の本発明において、流体は管の内壁を伝わせて流されることが好ましい。言い換えると、第2の本発明は、排水管内に流通する流体が凍結することよって、該排水管が閉塞することを防止する方法であって、管の内壁を伝わせて流体を流す工程と、管の内壁に、流体の流れを集中させる集中流路を設けることにより、該集中流路において流体の流速を増大させる工程と、を備えることが好ましい。
 特に、第2の本発明においては、排水管について管の長手方向と鉛直方向とが一致するように設置することで、流体を管の上端側から下端側へと伝わせて流れ落とすことが好ましい。本発明による凍結防止効果及び凍結による管閉塞防止効果がより顕著となるためである。尚、本願において「管の長手方向と鉛直方向とが一致」とは、管の長手方向が鉛直方向と完全に一致している必要はなく、±5°(すなわち、管の長手方向と水平方向とのなす角度が85°以上95°以下)であれば、誤差範囲として許容する主旨である。また、すべての排水管部分について「管の長手方向と鉛直方向とが一致」している必要はなく、排水管の少なくとも一部に「管の長手方向と鉛直方向とが一致」している部分があれば、本発明に含まれるものとする。
 第2の本発明においても、集中流路は、管の長手方向に沿って直線状に設けられていることが好ましい。本発明による凍結防止効果、凍結による管閉塞防止効果がより顕著となるためである。
 第2の本発明においても、集中流路を、管の内壁において流体の流通方向(特に好ましくは管の長手方向)に沿って設けられた凹部又は溝とすることが好ましい。
 第2の本発明においても、排水管の集中流路の断面形状が角部を有するものであることが好ましい。
 また、第2の本発明においても、管の内壁に集中流路を複数設けることができる。
 この場合は、一の集中流路と他の集中流路との間に、流路に沿って障壁を設けることができる。
 また、第2の本発明においても、管の下流側端部に突出部を設けることで、氷柱の成長をより適切に抑制することができる。
 また、第2の本発明においても、管の下流側端部を、上流側よりも薄肉化することで、氷柱の成長を一層適切に抑制することができる。
 さらに、第2の本発明においても、管の内壁及び/又は下流側端部に撥水処理を施すことで、流体の凍結及び閉塞をより適切に防止することができる。
 さらに、管を覆う外管を設け、二重管構造とすることで、内管保護効果や断熱効果を得ることができる。
 第3の本発明は、第1の本発明に係る排水管を設置した、排水管の設置構造である。
 第3の本発明において、流体を管の内壁を伝わせて流すような構造とすることが好ましい。特に、管の長手方向と鉛直方向とが一致するように排水管を設置することで、流体が管の上端側から下端側へと伝って流れ落ちるような設置構造とすることが好ましい。本発明による凍結防止効果及び凍結による管閉塞防止効果がより顕著となるためである。
 第3の本発明に係る排水管の設置構造は、凍結防止用の設置構造、すなわち、氷点下(0℃以下)、より好ましくは-10℃以下、さらに好ましくは-15℃以下となるような箇所における排水管の設置構造として、特に好適である。
 本発明によれば、排水管内において流体の流れを集中させることで、流体の流速を増大させることができ、且つ、排水管下流側端部の一部のみから流体を排出させることができる。これにより、排水管内における流体の凍結を抑制でき、且つ、排水管下流側端部における氷柱の成長を抑制することもできる。すなわち、本発明によれば、外部から熱エネルギーを投入することなく、流体力学的に流体の凍結を抑制し、排水管の閉塞を防止することが可能である。
本発明のコンセプトを説明するための概略図である。図1(A)が従来例、図1(B)が本発明例である。 本発明に係る排水管10を説明するための概略図である。 本発明に係る排水管10の断面形状を概略的に示す図である。 本発明に係る排水管10の製造方法の一例を説明するための概略図である。 本発明に係る排水管20の断面形状を概略的に示す図である。 本発明に係る排水管30、40の断面形状を概略的に示す図である。 本発明に係る排水管50を説明するための概略図である。 本発明に係る排水管50を説明するための概略図である。 本発明に係る排水管50における流れを説明するための概略図である。 本発明に係る排水管60を説明するための概略図である。 本発明に係る排水管70を説明するための概略図である。 本発明に係る排水管70を説明するための概略図である。 本発明に係る排水管80の断面形状を概略的に示す図である。 本発明に係る排水管90を説明するための概略図である。 本発明に係る排水管100を説明するための概略図である。 本発明に係る排水管100の断面形状を概略的に示す図である。 本発明に係る排水管110を説明するための概略図である。 排水管に流れ込む流体の流れの一例を説明するための概略図である。 排水管の下端部の形態の一例を説明するための概略図である。 実験結果を示す図である。(A)が従来の円筒排水管を用いた場合、(B)が本発明に係る排水管を用いた場合である。
1.排水管
 本発明に係る排水管は、管の内壁に、流体の流れを集中させる集中流路を備えることに特徴を有する。すなわち、図1に示すように、特に、排水管について管の長手方向と鉛直方向とが一致するように設置された排水管において流体を排水管の内壁に伝わせて流す場合、従来の排水管にあっては流体の流れが不安定となって流れが分岐し、或いは、液膜が発生し(図1(A))、これが排水管内における流体の凍結や排水管下流側端部における多数の氷柱の発生及び成長を生じさせていた。これに対し、本発明に係る排水管では、集中流路に流れを集中させ(図1(B))、これにより表面張力の影響を低減させて流体の流速を増大させ、且つ、排水管下流側端部における氷柱の発生箇所を限定し、排水管内における流体の凍結や排水管下流側端部における氷柱の成長を抑制する。以下、当該集中流路を備える排水管の具体例について説明する。
1.1.第1実施形態
 図2、3に、第1実施形態に係る本発明の排水管10を概略的に示す。図2は排水管10の外観斜視図、図3は図2におけるIII-III矢視断面の形状を概略的に示す図である。図2に示すように、排水管10は、所定の断面形状を有して長手方向に延在する管である。
 図3に示すように、排水管10の内壁には、流体の流通方向(管の長手方向)に沿って設けられた凹部10a、10a、…、及び、凸部10b、10b、…が備えられている。ここで、排水管10においては、内壁に凹部10aと凸部10bとが交互に設けられている。排水管10においては、凹部10aに流れを集中させることができるので、当該凹部10aを集中流路として機能させることができる。また、隣接する凹部10a、10aの間に凸部10bが備えられることで、一方の凹部10aから他方の凹部10aに流体が飛び越えて流れ込むことを抑制でき、流体の流れの分岐を抑制することができる。
 図3に示された排水管10は、凹部10a、凸部10bともに、曲面によって構成されている。すなわち、断面形状において角部を有していない。通常、排水管の下流側端部における氷柱の発生は、端面の角部において起こり易い。排水管10では、断面形状において角部を有さないものとすることで、排水管10の下流側端部における氷柱の発生を一層抑制することができる。ただし、本発明者らが鋭意研究したところ、後述の排水管100(図15、16参照)のように、上記の凹部を、管の外側に向かって凸となる頂点(図16の符号100c)を有する形状とした場合(すなわち、排水管の内壁に設けられた凹部の底部が角部とされている場合)、排水管の下流側端部では液滴が留まり易くなり氷柱の起点となり易いが、凹部における流体の流速を増大させることができ、流体が排水管の下流側端部において一か所から流れ易くなるため、下端部において氷柱が周方向および中心方向に成長し難くなることを知見した。すなわち、下端部に液滴が留まり易い欠点があったとしても、後述するような排水管100のように、一か所から流体を流出させる機能を優先したほうが、効果的である。
 排水管10の径(排水管内に挿入可能な円筒管の最大外径、図3における長さD)は、通常、70mm~120mmであるが、当該範囲に限定されるものではなく、想定される流体の流量(排水量)に合わせて調整することができる。凹部10aの深さ(隣接する凸部10b、10bの頂点同士を結んだ直線と、当該隣接する凸部10b、10bの間の凹部10aの底部との距離、図3における長さd)は、上記長さDに対する長さdの比(d/D)とした場合、通常、0.1~0.4であるが、当該範囲に限定されるものではなく、想定される流量に合わせて調整することができる。排水管10の全長は、設置箇所に応じて適宜調整すればよい。
 排水管10の材質は特に限定されるものではない。ステンレス鋼等の金属、或いは、ポリ塩化ビニル等のプラスチック等、排水管を構成する材料として従来から用いられてきたものを適宜選択して用いることができる。特に、耐久性の観点から、ステンレス鋼等の金属を用いることが好ましい。
 排水管10は、種々の方法によって製造することができる。例えば、押出成形等の各種成形方法によって連続的に成形してもよいし、図4に示すように、凹部10a、10a、…と凸部10b、10b、…とを交互に設けた板状体10’を用意し、対向する端部同士を重ね合わせて接合することによっても排水管10を容易に製造することができる。
 以上のように、排水管10によれば、管内において流体の流れを凹部10a、10a、…に集中させることで、凹部10aにおいて流体の流速を増大させることができ、且つ、排水管下流側端部においては、当該凹部10a部分のみから流体を排出させることができる。これにより、管内における流体の凍結を抑制でき、且つ、排水管下流側端部における氷柱の成長を抑制することもできる。すなわち、排水管10によれば、外部から熱エネルギーを投入することなく、流体力学的に流体の凍結を抑制し、排水管の閉塞を防止することが可能である。
 尚、本発明者らは、家屋や建物の屋上に積もった雪を排水管によって排水する場合、排水管の下流側となるほど排水の凍結が生じ易いことを知見した。すなわち、地表に近づくほど、排水の凍結が生じ易い。この観点から、家屋や建物に設置される排水管において、排水の凍結が生じ易い部分のみ(例えば、排水管の下流側のみ)を本発明に係る排水管10のような構造を有するものとしてもよい。
1.2.第2実施形態
 図5に、第2実施形態に係る排水管20の断面を概略的に示す。図5に示すように、排水管20の内壁には、流体の流通方向(管の長手方向)に沿って設けられた凹部20a、20a、…、及び、凸部20b、20b、…が備えられており、また、凸部20b、20b、…の頂部には流体の流通方向(管の長手方向)に沿って障壁20c、20c、…がそれぞれ設けられている。排水管20は、障壁20c、20c、…を備えること以外は、上記した排水管10と同様の形態である。
 排水管20において、障壁20cの高さ(図5の長さh)については、想定される流量に応じて適宜調整することができ、例えば、凹部20aの深さと同程度とすることができる。また、障壁20cの材質も特に限定されるものではない。排水管20は、障壁20c、20c、…を備えることにより、流体が一の凹部20aから隣接する他の凹部20aに飛び越えて流れ込むことを抑制でき、流体の流れを一層適切に集中させることができる。ただし、上述したように、排水管下流側端部における氷柱の発生は、端面の角部において起こり易い。そのため、排水管20においては、排水管下流側端部の角部(凸部20bと障壁20cとの接触部分)において氷柱が発生し易くなる。この観点から、障壁20cの設置は、排水管20の下流側端部の手前までとし、当該下流側端部において角部を生じさせない形態としてもよい。
1.3.第3実施形態
 上記説明においては、排水管の内壁に凹部及び凸部が設けられ、当該凹部及び凸部の形状に合わせて、排水管の外壁も波打った形態を例示したが、本発明はこの形態に限定されるものではない。本発明は内壁に集中流路を備えた形態であればよく、外壁の形状については特に限定されるものではない。例えば、図6(A)に示すように、円周状の外壁を備えた排水管30のような形態としてもよい。
1.4.第4実施形態
 上記説明においては、凹部及び凸部がいずれも曲面により構成されるものとして説明したが、本発明はこの形態に限定されるものではない。例えば、図6(B)に示すように、内壁に、矩形状の凹部(溝)40a及び凸部40bを備えた排水管40のような形態としてもよい。或いは、後述の排水管100(図15、16)のように、角部を有する凹部100aとしてもよい。
1.5.第5実施形態
 上記説明においては、凹部が複数備えられるものとして説明したが、本発明はこの形態に限定されるものではない。以下、第5実施形態として凹部が一つのみ備えられる排水管について説明する。
 図7及び図8(A)、(B)に、第5実施形態に係る本発明の排水管50を示す。図7は排水管50の外観を概略的に示す図、図8(A)は図7におけるVIIIa-VIIIa矢視断面の形状を概略的に示す図、図8(B)は図7におけるVIIIb-VIIIb矢視断面の形状を概略的に示す図である。図7に示すように、排水管50は、上部排水管51と下部排水管52とが接続されて構成されている。
 図7及び図8(A)に示すように、上部排水管51は円筒状の管である。上部排水管51は従来から用いられてきた排水管をそのまま適用することができる。一方、図7及び図8(B)に示すように、下部排水管52は、傾斜部53及び当該傾斜部53の下流側端部に接続された鉛直部54からなっている。さらに、下部排水管52の内壁には、流体の流通方向に沿って凹部52aが設けられている。図7から明らかなように、上部排水管51は下部排水管52の傾斜部53の上端に接続されており、上部排水管51の上端から流入した流体は、傾斜部53、鉛直部54を通って下部排水管52の下流側端部から排出される。
 図9に、排水管50における流体の流れを示す。図9に示すように、上部排水管51の上端から流入した流体は、下方に流れ、傾斜部53において、凹部52aに集中するように流れ込む。傾斜部53において凹部52aに集中した流体は、流れがその後分岐することなく、傾斜部53の凹部52aから鉛直部54の凹部52aに沿って流れ、鉛直部54の凹部52aの下流側端部から排出される。
 このように、排水管50においても凹部52aを集中流路として機能させることができるため、凹部52aにおいて流体の流速を増大させることができ、且つ、排水管50の下流側端部において、当該凹部52a部分のみから流体を排出させることができる。これにより、管内における流体の凍結を抑制でき、且つ、排水管下流側端部における氷柱の成長を抑制することもできる。すなわち、排水管50によれば、外部から熱エネルギーを投入することなく、流体力学的に流体の凍結を抑制し、排水管の閉塞を防止することが可能である。
1.6.第6実施形態
 図10に、第6実施形態に係る本発明の排水管60の外観を概略的に示す。図10に示すように、排水管60は、排水管10と同様の断面形状を有してなるほか、さらに、排水管下流側端部に突出部60d、60d、…を備えている。突出部60dは、排水管60の集中流路(凹部)の下流側延長上に設けられており、先端に向かって先細り(凸)の形状とされている。突出部60dは、集中流路と一体で設けられていてもよいし、別途取り付けられたものであってもよい。
 このような突出部60dを備えた排水管60によれば、排水管内を流れる流体が突出部60dの先細りの先端から滴下・流出する。すなわち、排水管60の下流側部において、突出部60dの先端に集中して氷柱を発生させることができ、氷柱の周方向への成長を抑制できる結果、排水管下流側端部の閉塞を防止することができる。特に、突出部60dが集中流路の下流側延長上に備えられることで、集中流路を流れてきた流体が突出部60dの先端に容易に到達できるため、突出部60dの先端のみに、効率的に氷柱を発生させることができる。ただし、突出部60dが集中流路の下流側延長上に備えられない場合であっても、集中流路を流れてきた流体は、突出部の上端側から端面を伝って突出部の先端に到達するため、やはり、突出部60dの先端に優先的に氷柱を発生させることができる。
1.7.第7実施形態
 図11及び図12(A)、(B)に、第7実施形態に係る本発明の排水管70を概略的に示す。図11は排水管70の外観を示す図、図12(A)は排水管70の平面視(図11のXIIa矢視)断面図、図12(B)は排水管70の底面視(図11のXIIb矢視)断面図である。図11、12から明らかなように、排水管70は、上流側端部から下流側端部にかけて、内壁に、排水管10と同様の凹部70a、70a、…及び凸部70b、70b、…を有するとともに、管の厚みが上流側よりも下流側端部において薄肉化されている。
 排水管70においては、排水管下流側端部を薄肉化することで、当該下流側端部に留まる流体の量を低減することができる。これにより、氷柱の成長を一層抑制でき、排水管下流側端部の閉塞をより適切に防止することができる。また、排水管下流側端部にて発生する氷柱の根元部分の太さは、流体の流速や排水管下流側端部の厚みに依存する。排水管70のように、凹部70aを設けて流体の流速を増大させ、且つ、排水管下流側端部を薄肉化することで、氷柱の根元部分を細く維持することができ、氷柱が折れ易いものとなる。すなわち、排水管70によれば、氷柱が成長する前に氷柱が自然に折れるため、氷柱の成長を抑制することができ、排水管下流側端部の閉塞を一層適切に防止することができる。
1.8.第8実施形態
 図13に、第8実施形態に係る本発明の排水管80の断面形状を概略的に示す。図13に示すように、排水管80は、排水管(内管)10の外側にさらに当該排水管10を覆うように外管81を備え、二重管構造とされている。排水管80において、外管81は円筒管であり、内管10と外管81との間に空気層82を備えている。
 排水管80のような二重管構造とすることにより、集中流路を備える内管10を外管81によって保護することができる。また、内管10と外管81との間に空気層を設けることで、当該空気層を断熱層と機能させることができる。これにより、管外部の温度の影響が低減され、管内における流体の凍結を一層抑制することができる。
1.9.第9実施形態
 上記説明においては、管の内壁に設けられた凹部や溝が集中流路として機能するものとして説明した。しかしながら、本発明は当該形態に限定されるものではない。図14(A)、(B)に、第9実施形態に係る本発明の排水管90を概略的に示す。図14(A)は、排水管90の外観を概略的に示す図、図14(B)は、排水管90の内部構造を説明するための図である。
 図14(A)に示すように、排水管90は、外観においては従来の円筒状の排水管と同様の形態である。一方、図14(B)に示すように、排水管90の内壁には、流路を調整するための複数の片91a、91a、…及び、片91b、91b、…が設けられている。片91aと片91bとは互いに対向しており、近接側に向かって下流側に傾斜している。排水管90においては、図14(B)において矢印で示すように、内壁を伝う流体の流れが片90a及び片90bによって制御され、片90aと片90bとの間に流れを集中させることができる。すなわち、片の上端から下端に向かって流体を誘導することで、片90aと片90bとの間に集中流路を形成することができ、当該集中流路において、流体の流速を増大させることができる。また、排水管下流側端部においては、集中流路のみから流体を排出させることができる。これにより、管内における流体の凍結を抑制でき、且つ、管下流側端部における氷柱の成長を抑制することもできる。このように、凹部や溝を備えない排水管90によっても、集中流路の存在によって、外部から熱エネルギーを投入することなく、流体力学的に流体の凍結を抑制し、排水管の閉塞を防止することが可能である。
1.10.第10実施形態
 図15、16に、第10実施形態に係る本発明の排水管100を概略的に示す。既に説明したように、排水管100のように、断面形状において、集中流路が管の外側に向かって凸となる頂点(例えば、図16の符号100c)を有する形状とした場合(言い換えれば、例えば、排水管の内壁に設けられた凹部100aの底部が角部100cとされている場合)、排水管100の下流側端部において、当該角部100cに液滴が留まり易くなり氷柱の起点となり易いが、凹部100aにおける流体の流速を増大させることができ、流体が排水管100の下流側端部において一か所から流れ易くなるため、下端部において氷柱が管の周方向および中心方向に成長し難くなる。すなわち、下端部に液滴が留まり易い欠点があったとしても、排水管100のように、一か所から流体を流出させる機能を優先したほうが、管の凍結による閉塞防止には効果的である。
 また、排水管の上流側を排水管100のような形状とし、下流側端部を排水管10のような形状とすることも有効である。すなわち、排水管の上流側の凹部100aにおいて流体の流速を増大させつつ、排水管の下流側(例えば、下端部から約100mmの間)を凹部10aのような形状としてもよい。
1.11.第11実施形態
 図17に、第11実施形態に係る本発明の排水管110を概略的に示す。図11に示すように、排水管110の内壁には、集中経路として機能する凹部又は溝が螺旋状に設けられている。このように集中流路が螺旋状とされていても、排水の流量が多い場合は、本発明の効果が奏される。しかしながら、排水の流量が少量の場合は、螺旋状の凹部又は溝を乗り越えて、排水が真下に伝って流れる虞がある。そのため、本発明の効果をより顕著とする観点からは、上述したように、排水管の長手方向に沿って、直線状に集中流路を設けることが好ましい。
1.12.その他形態
 上記のような排水管10~110にあっては、排水管の内壁の構造を工夫することによって、流体力学的に流体の凍結を抑制し、管の閉塞を防止することが可能である。一方、管の内壁及び/又は下流側端部に撥水処理を施すことによって、管内における流体の液膜の発生を抑制でき、管内の流体の流速を増大させることができ、且つ、管の下流側端部に留まる流体を低減させることができる。この場合、排水管の内壁に縞状に撥水処理を施すことで、撥水処理を施した部分と撥水処理を施さない部分とで、流体の流速差を生じさせてもよい。
 すなわち、撥水処理が施された排水管によっても、外部から熱エネルギーを投入することなく、流体力学的に流体の凍結を抑制し、管の閉塞を防止することが可能となる。尚、撥水処理の形態としては、公知の撥水剤を塗布する形態、表面構造を制御することにより撥水表面とする形態等、種々の撥水処理をいずれも適用することができる。
 また、排水管の導入部(入口付近)の形態を工夫することも有効である。図18は一実施形態に係る本発明の排水管について、その入口付近における排水の流れ(排水管入口に向かう排水の流れ)を説明するための上面概略図である。図18に示すように、排水管の入口付近に到達した排水は、排水管の入口付近に設けられた勾配や溝によって、図中矢印で示されるように、集中流路に誘導される。すなわち、排水管の入口において排水が集中流路へと誘導されて流入するように排水管の入口付近の形態を工夫することで、排水管内において流体の流れを一層集中させることができ、管内の流体の流速を増大させることができるとともに、排水管下流側端部の一部のみから流体を排出させることができる。これにより、排水管内における流体の凍結を抑制でき、且つ、排水管下流側端部における氷柱の成長を抑制することもできる。
 さらに、排水管の排出部(下端部付近)の形態を工夫することも有効である。図19は一実施形態に係る本発明の排水管120について、その下端部周辺の形態を説明するための概略図である。図19に示すように、排水管120の下端部は、地中に設けられた集水枡125と接続されている。このようにすることで、排水管120の下端部が地熱の影響で温まり、下端部の凍結を一層抑制することができる。或いは、地熱の影響で集水枡125内の水が凍結しないのであれば、図19に示すように、排水管120の下端部を集水枡125内の水面よりも下方に浸漬させることで、当該下端部の凍結を一層適切に抑制することができる。
2.排水管の閉塞防止方法
 上記においては、本発明として排水管そのものについて説明した。一方、本発明は、排水管内に流通する流体が凍結することよって、当該排水管が閉塞することを防止する方法としての側面も有する。すなわち、本発明に係る方法は、排水管内に流通する流体が凍結することよって、該排水管が閉塞することを防止する方法であって、管の内壁に、流体の流れを集中させる集中流路を設けることにより、当該集中流路において流体の流速を増大させる、排水管の閉塞防止方法である。
 集中流路の形態等については、上述した通りであるのでここでは説明を省略する。このように、本発明に係る方法によれば、外部から熱エネルギーを投入することなく、流体力学的に流体の凍結を抑制し、管の閉塞を防止することが可能である。
 本発明に係る排水管の閉塞防止方法にあっては、流体が管の内壁を伝わせて流される場合に、その効果がより顕著となる。言い換えると、排水管内に流通する流体が凍結することよって、該排水管が閉塞することを防止する方法であって、管の内壁を伝わせて流体を流す工程と、管の内壁に、流体の流れを集中させる集中流路を設けることにより、該集中流路において流体の流速を増大させる工程と、を備える排水管の閉塞防止方法とすることが好ましい。
 特に、排水管について管の長手方向と鉛直方向とが一致するように設置することで、流体を管の上端側から下端側へと伝わせて流れ落とすことが好ましい。本発明による凍結防止効果及び凍結による管閉塞防止効果がより顕著となるためである。
 尚、「管の長手方向と鉛直方向とが一致」とは、管の長手方向が鉛直方向と完全に一致している必要はなく、±5°(すなわち、管の長手方向と水平方向とのなす角度が85°以上95°以下)であれば、誤差範囲として許容する主旨である。また、排水管の設置構造全体において、すべての排水管が「管の長手方向と鉛直方向とが一致」している必要はなく、排水管の少なくとも一部に「管の長手方向と鉛直方向とが一致」している部分があれば、本発明に含まれるものとする。
3.排水管の設置構造
 また、本発明は、排水管内に流体を流通させた場合に、流体凍結によって当該排水管が閉塞しないように工夫した、排水管の設置構造としての側面も有する。すなわち、本発明に係る設置構造は、上記した本発明に係る排水管を設置したことを特徴とする。特に、排水管の長手方向と鉛直方向とが一致するように排水管を設置することが好ましく、この場合、排水管内における凍結防止効果、排水管下端部における氷柱の成長を抑制する効果が一層顕著となる。
 以下、実施例により、本発明に係る排水管についてさらに詳細に説明するが、本発明は以下の具体的形態に限定されるものではない。
 図2及び図3で示されるような排水管10を用いた場合と通常の円筒排水管を用いた場合とで、排水管の閉塞の有無や氷柱の成長の差異を確認した。
 排水管10としては、径D70mm、凹部の深さd13mm、凹部の数10、管長1000mmのものを用いた。一方、通常の円筒管としては、内径96mm、管長1000mmのものを用いた。実験は-15℃の低温室内にて行い、排水管の各部温度が-15℃となったことを確認した後、水(2℃)を排水管上部から連続的に流し込んだ。排水流量はいずれも200ml/minとし、排水が排水管内壁を伝うように調整した。実験開始から7時間経過後における排水管下流側端部の様子を図20(A)、(B)に示す。図20(A)が従来の円筒排水管を用いた場合の様子、図20(B)が本発明に係る排水管10を用いた場合の様子である。
 図20(A)に示すように、従来の円筒排水管を用いた場合は、排水管の内部において流体の流れが分岐した結果、排水管の下流側端部の円周方向のいたる箇所に氷柱が発生しており、大きな塊となって排水管下流側端部全体を閉塞させてしまった。一方、図20(B)に示すように、本発明に係る排水管10を用いた場合は、排水管の下流側端部における氷柱の成長を抑制できており、7時間経過後においても十分な開口を有し、問題なく排水できた。また、排水管10を用いた場合は、氷柱が一定以上成長すると自然と折れ落ちることが確認された。このように、本発明に係る排水管10によれば、流体力学的に流体の凍結を抑制し、管の閉塞を防止することが可能となることが明らかとなった。
 図2及び図3で示されるような排水管10を用いた場合と、図15及び16で示されるような排水管100を用いた場合とで、凍結による閉塞抑制性能を比較した。排水管10としては前述のものと同じものを用い、排水管100としては、径D80mm、凹部の深さd11mm、凹部の数9、管長1000mmのものを用いた。実験は-15℃若しくは-25℃の低温室内にて行い、排水管の各部温度が-15℃若しくは-25℃となったことを確認した後、水(2℃)を排水管上部から連続的に流し込んだ。排水流量はいずれも200ml/minとし、排水が排水管内壁を伝うように調整した。
 -15℃においては、排水管10及び排水管100の双方とも、凍結による管の閉塞は生じなかった。一方、-25℃においては、排水管100については凍結による管閉塞が生じなかったが、排水管10については約2時間後に排水の凍結による管の閉塞が確認された。すなわち、排水管100のように、断面形状において集中流路が角部(頂点)を有するような形状とすることで、管内における流れを一層集中させ、流速を増大させて凍結を一層適切に抑制できることが分かった。
 特に、以下の排水管の設置構造や凍結防止方法において、本発明の効果が顕著なものとなる。
(A)長手方向と鉛直方向とが略一致するように設置された管の内壁を伝わせて流体を流す排水管の凍結防止用の設置構造であって、管の内壁には、流体の流れを集中させる集中流路として、凹部又は溝が管の長手方向に沿って直線状に複数設けられている、排水管の凍結防止用の設置構造。
(B)管の内壁を伝わせて流体を流す排水管の凍結防止用の設置構造であって、管の内壁には、流体の流れを集中させる集中流路として、断面形状において角部を有する形状とされた凹部又は溝が、管の長手方向に沿って直線状に複数設けられている、排水管の凍結防止用の設置構造。
(C)長手方向と鉛直方向とが略一致するように設置された排水管の設置構造において、管を流通する流体が凍結することよって、排水管が閉塞することを防止する方法であって、管の内壁を伝わせて流体を流す工程と、管の内壁に、流体の流れを集中させる集中流路として、管の長手方向に沿って直線状に凹部又は溝を複数設けることにより、該集中流路において流体の流速を増大させる工程と、を備える、凍結防止方法。
(D)排水管の設置構造において、管を流通する流体が凍結することよって、排水管が閉塞することを防止する方法であって、管の内壁を伝わせて流体を流す工程と、管の内壁に、流体の流れを集中させる集中流路として、断面形状において角部を有する形状とされる凹部又は溝を管の長手方向に沿って直線状に複数設けることにより、該集中流路において流体の流速を増大させる工程と、を備える、凍結防止方法。
 特に、上記(A)と(B)との組み合わせに係る排水管の設置構造や、上記(C)と(D)との組み合わせに係る凍結防止方法とすると、極めて顕著な効果が得られる。すなわち、管が横向きの場合、本発明に係る集中流路の形成によって凍結防止効果が高まるが、そもそも横向きの管においては集中流路を形成せずに単なる円筒管としたとしても、排水の分岐は生じ難く、排水は内壁底部にある程度集中して流れる。また、横向きの管においては、排水の流れ方向下流側端部において氷柱が発生したとしても、管周方向への氷柱の成長は生じ難く、管出口の凍結閉塞の問題も回避し易い。寒冷地においては、特に縦向きの排水管において管内凍結及び凍結による管出口の閉塞の問題が発生しており、本発明はこのような縦向きの排水管において、角部を有する集中流路を形成したことで、以下の複合的な理由によって相乗的に凍結防止効果、凍結による管閉塞防止効果を得ることができる。すなわち、
(理由1)角部を有する形状とすることで、縦向きの管において生じやすい管内における排水の揺らぎを、最も効果的に防止することができる。すなわち、集中流路としてより適切に機能させることができ、管内における凍結の発生を防止できる。
(理由2)角部を有する形状とし、より一層流れが集中することで、排水管の内壁や排水管内部の空気と排水が触れる面積が小さくなり排水の温度低下を低減することができる。これにより、管内及び管端部における排水の凍結を一層効果的に防止できる。
(理由3)角部を有する形状とすると、管下端部において当該角部に氷柱が優先的に発生する。発生する氷柱の太さは基端となる排水管下端部の形状や厚みによるところ、角部において生じた氷柱は細く折れ易い。よって、管下端において氷柱が発生したとしても、排水の流れによって氷柱が容易に折れ落ち、氷柱が管の周方向に成長することによって管閉塞が生じることがない。
 以上、現時点において、もっとも、実践的であり、かつ、好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲および明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う、排水管及び排水管の閉塞防止方法、並びに、排水管の設置構造もまた本発明の技術的範囲に包含されるものとして理解されなければならない。
 本発明は、排水管内を流れる流体の凍結を抑制でき、流体の凍結による管閉塞を防止することが可能な、新規構造を有する排水管であり、例えば、寒冷地(氷点下(0℃以下)、好ましくは-5℃以下、より好ましくは-10℃以下、さらに好ましくは-15℃以下となる箇所)において、冬季に屋上に積もった雪の雪解け水等を、排水管内や排水管下端部において凍結させることなく、地上に効率的に排出させることが可能な排水管として、好適に利用することができる。
10 排水管
  10a 凹部
  10b 凸部
20 排水管
  20a 凹部
  20b 凸部
  20c 障壁
30 排水管
  30a 凹部
  30b 凸部
40 排水管
  40a 凹部
  40b 凸部
50 排水管
  51 上部排水管
  52 下部排水管
    52a 凹部
    53 傾斜部
    54 鉛直部
60 排水管
  60d 突出部
70 排水管
  70a 凹部
  70b 凸部
80 排水管
  81 外管
  82 空気層
90 排水管
  91a、91b 片
100 排水管
  100a 凹部
  100b 凸部
  100c 角部(頂点)
110 排水管
120 排水管
  125 集水枡

Claims (24)

  1.  管の内壁に、流体の流れを集中させる集中流路を備える排水管。
  2.  前記集中流路が、前記管の長手方向に沿って直線状に設けられている、請求項1に記載の排水管。
  3.  前記集中流路が、前記管の内壁に設けられた凹部又は溝である、請求項1又は2に記載の排水管。
  4.  前記管の内壁に前記集中流路が複数備えられている、請求項1~3のいずれかに記載の排水管。
  5.  前記管の内壁において、一の前記集中流路と他の前記集中流路との間に、該集中流路に沿って障壁が設けられている、請求項4に記載の排水管。
  6.  断面形状において、前記集中流路が角部を有する形状である、請求項1~5のいずれかに記載の排水管。
  7.  前記管の下流側端部に突出部が設けられている、請求項1~6のいずれかに記載の排水管。
  8.  前記管の下流側端部が、上流側よりも薄肉化されている、請求項1~7のいずれかに記載の排水管。
  9.  前記管の内壁及び/又は下流側端部に撥水処理が施されている、請求項1~8のいずれかに記載の排水管。
  10.  さらに前記管を覆う外管を備え、二重管構造とされている、請求項1~9のいずれかに記載の排水管。
  11.  管内に流れる流体の凍結防止の用途に用いられる、請求項1~10のいずれかに記載の排水管。
  12.  排水管内に流通する流体が凍結することよって、該排水管が閉塞することを防止する方法であって、
     管の内壁に、流体の流れを集中させる集中流路を設けることにより、該集中流路において前記流体の流速を増大させる、
    排水管の閉塞防止方法。
  13.  前記集中流路を、前記管の長手方向に沿って直線状に設ける、請求項12に記載の方法。
  14.  前記排水管の長手方向と鉛直方向とを一致させる、請求項12又は13に記載の方法。
  15.  前記管の内壁に設けられた凹部又は溝を前記集中流路とする、請求項12~14のいずれかに記載の方法。
  16.  前記管の内壁に前記集中流路を複数設ける、請求項12~15のいずれかに記載の方法。
  17.  前記管の内壁において、前記一の前記集中流路と他の前記集中流路との間に、該集中流路に沿って障壁を設ける、請求項16に記載の方法。
  18.  断面形状において、前記集中流路が角部を有する形状とされる、請求項12~17のいずれかに記載の方法。
  19.  前記管の下流側端部に突出部を設ける、請求項12~18のいずれかに記載の方法。
  20.  前記管の下流側端部を、上流側よりも薄肉化する、請求項12~19のいずれかに記載の方法。
  21.  前記管の内壁及び/又は下流側端部に撥水処理を施す、請求項12~20のいずれかに記載の方法。
  22.  さらに前記管を覆う外管を設け、二重管構造とする、請求項12~21のいずれかに記載の方法。
  23.  請求項1~11のいずれかに記載の排水管が設置されてなる、排水管の設置構造。
  24.  前記排水管の長手方向と鉛直方向とが一致するように前記排水管が設置される、請求項23に記載の設置構造。
PCT/JP2012/083600 2011-12-26 2012-12-26 排水管及び排水管の閉塞防止方法、並びに、排水管の設置構造 WO2013099920A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/240,097 US9279523B2 (en) 2011-12-26 2012-12-26 Drainpipe, method for preventing blockage of drainpipe and installation structure of drainpipe
CA2845775A CA2845775C (en) 2011-12-26 2012-12-26 Drainpipe, method for preventing blockage of drainpipe and installation stucture of drainpipe
KR1020147002306A KR20140118975A (ko) 2011-12-26 2012-12-26 배수관 및 배수관의 폐색 방지 방법 및 배수관의 설치 구조
EP12862440.0A EP2799632B1 (en) 2011-12-26 2012-12-26 Drainpipe and drainpipe blockage-preventing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011283396 2011-12-26
JP2011-283396 2011-12-26
JP2012107956A JP5228127B1 (ja) 2011-12-26 2012-05-09 排水管の設置構造及び排水管の閉塞防止方法
JP2012-107956 2012-05-09

Publications (1)

Publication Number Publication Date
WO2013099920A1 true WO2013099920A1 (ja) 2013-07-04

Family

ID=48697404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083600 WO2013099920A1 (ja) 2011-12-26 2012-12-26 排水管及び排水管の閉塞防止方法、並びに、排水管の設置構造

Country Status (6)

Country Link
US (1) US9279523B2 (ja)
EP (1) EP2799632B1 (ja)
JP (1) JP5228127B1 (ja)
KR (1) KR20140118975A (ja)
CA (1) CA2845775C (ja)
WO (1) WO2013099920A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140036965A (ko) * 2012-09-18 2014-03-26 가부시키가이샤 니프코 곡관 구조 및 곡관 성형용 금형
US20140196809A1 (en) * 2013-01-12 2014-07-17 Gary Klein Low Flow Drain Pipe
WO2016205898A1 (en) * 2015-06-26 2016-12-29 Amog Technologies Pty Ltd A flow modification device, system, and method
CN109410905B (zh) * 2018-12-21 2024-06-25 广东闽江水族实业有限公司 一种消音器及具有其消音器的排水结构
US11448171B1 (en) * 2021-06-25 2022-09-20 Ford Global Technologies, Llc Hot-charge duct for turbocharger system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5459623A (en) * 1977-10-19 1979-05-14 Kubota Ltd Drain pipe
JPH03199794A (ja) * 1989-12-25 1991-08-30 Sekisui Chem Co Ltd 排水管
JPH0390737U (ja) * 1989-12-29 1991-09-17
JPH10321356A (ja) 1997-05-22 1998-12-04 Shinnetsu Kogyo Kk 自己制御型コードヒーターおよびそれを用いた装置
JP3071180U (ja) * 2000-02-21 2000-08-29 株式会社モリタ製作所 診療装置用フレキシブルチューブ、このチューブを備えた診療装置
JP2002235877A (ja) * 2001-02-09 2002-08-23 Purote Sangyo Kk プラスチック製給排水管
JP2005213809A (ja) * 2004-01-28 2005-08-11 Taku Seisakusho:Kk 凍結防止システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US70365A (en) * 1867-10-29 Improved mode of facilitating the flow of illuminating gas through pipes
US593338A (en) * 1897-11-09 William snelgrove and richard francis goyne
US1742392A (en) * 1926-04-16 1930-01-07 Harry A Higgins Radiator tube
US2869927A (en) * 1955-08-22 1959-01-20 George L Ayers Downspout spray drain
US4651781A (en) * 1984-02-02 1987-03-24 Northrop Corporation Distributed accumulator
JPS63214590A (ja) * 1987-03-03 1988-09-07 佐伯 信一 水道管
AT398489B (de) 1992-04-07 1994-12-27 Vaillant Gmbh Rohr
RU2211854C2 (ru) * 1997-06-10 2003-09-10 Эксон Кемикэл Пейтентс Инк. Пиролизная печь с u-образным змеевиком с внутренним оребрением
GB2340911B (en) * 1998-08-20 2000-11-15 Doncasters Plc Alloy pipes and methods of making same
SE516129C2 (sv) * 1999-06-29 2001-11-19 Aba Sweden Ab Mediumupptagande slang och förfarande för tillverkning av densamma
US6644358B2 (en) * 2001-07-27 2003-11-11 Manoir Industries, Inc. Centrifugally-cast tube and related method and apparatus for making same
DE102006047574A1 (de) * 2006-10-05 2008-04-17 Daimler Ag Leitungsoptimierung zum Verhindern von Einfrieren
EP2135691A1 (fr) 2008-06-16 2009-12-23 Jean-Marc Bouché Tuyau de descente d`eau de gouttiére, dispositif por l`évacuation d`eau d`une toiture et procédé de fabrication dudit tuyau
FR2942018B1 (fr) 2009-02-10 2016-01-22 European Aeronautic Defence & Space Co Eads France Pieces tubulaires composites de forme complexe
DE102009012699A1 (de) 2009-03-11 2010-09-16 Wurzer Profiliertechnik Gmbh Rohr mit integraler Rohrmuffe

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5459623A (en) * 1977-10-19 1979-05-14 Kubota Ltd Drain pipe
JPH03199794A (ja) * 1989-12-25 1991-08-30 Sekisui Chem Co Ltd 排水管
JPH0390737U (ja) * 1989-12-29 1991-09-17
JPH10321356A (ja) 1997-05-22 1998-12-04 Shinnetsu Kogyo Kk 自己制御型コードヒーターおよびそれを用いた装置
JP3071180U (ja) * 2000-02-21 2000-08-29 株式会社モリタ製作所 診療装置用フレキシブルチューブ、このチューブを備えた診療装置
JP2002235877A (ja) * 2001-02-09 2002-08-23 Purote Sangyo Kk プラスチック製給排水管
JP2005213809A (ja) * 2004-01-28 2005-08-11 Taku Seisakusho:Kk 凍結防止システム

Also Published As

Publication number Publication date
EP2799632A1 (en) 2014-11-05
CA2845775A1 (en) 2013-07-04
JP5228127B1 (ja) 2013-07-03
EP2799632B1 (en) 2019-08-28
US9279523B2 (en) 2016-03-08
EP2799632A4 (en) 2015-09-02
JP2013151848A (ja) 2013-08-08
KR20140118975A (ko) 2014-10-08
US20140182731A1 (en) 2014-07-03
CA2845775C (en) 2018-06-12

Similar Documents

Publication Publication Date Title
WO2013099920A1 (ja) 排水管及び排水管の閉塞防止方法、並びに、排水管の設置構造
US8528263B2 (en) Rainwater diverter
JP2011130761A (ja) 雨水人工涵養可能な地質循環式水幕栽培システム{Protectedcultivationsystemwithgeologicalcirculationofgroundwaterandrainfallartificialrecharge}
CN102678174A (zh) 穿越多年冻土区与非冻土区的隧道排水系统及其设置方法
CN202690131U (zh) 一种穿越多年冻土区与非冻土区的隧道排水系统
JP2012107451A (ja) 雨水の貯留構造及びこれを使用した雨水の循環システム
JP4421671B1 (ja) 地熱水環境保全型熱供給システム
KR100913913B1 (ko) 건물 옥상을 이용한 빗물의 저장·활용장치
CN111946010A (zh) 一种具有防积水及融雪功能的铝塑复合地板
JP2009197430A (ja) 地面灌水構造
RU2655799C1 (ru) Водооборотная осушительно-увлажнительная система
CN205503183U (zh) 隧道保温排水沟的掩式出水口结构
CN206337480U (zh) 生态边沟
CN107574906B (zh) 一种公路节水系统
CN204753637U (zh) 一种沉管隧道
JP4032139B2 (ja) 融雪ダクトおよび融雪システム
CN210460755U (zh) 隧道端墙式保温中心水沟出水口
JP6560706B2 (ja) 消雪設備及び消雪方法
CN207110272U (zh) 一种阳光房平台防水结构
CN204960167U (zh) 一种天沟排水一体化装置
RU2206687C1 (ru) Вертикальный цилиндрический резервуар
JP2016125248A (ja) オーバーフロー継手
CN219033386U (zh) 一种雪车雪橇赛道制冰补水设施
CN220597206U (zh) 一种人工湿地冬季自保温系统
CN209643437U (zh) 一种屋顶绿化循环水系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862440

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147002306

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2845775

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14240097

Country of ref document: US

Ref document number: 2012862440

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE