WO2013099196A1 - 高張力熱延鋼板およびその製造方法 - Google Patents

高張力熱延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2013099196A1
WO2013099196A1 PCT/JP2012/008220 JP2012008220W WO2013099196A1 WO 2013099196 A1 WO2013099196 A1 WO 2013099196A1 JP 2012008220 W JP2012008220 W JP 2012008220W WO 2013099196 A1 WO2013099196 A1 WO 2013099196A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
hot
rolled steel
rolling
Prior art date
Application number
PCT/JP2012/008220
Other languages
English (en)
French (fr)
Inventor
船川 義正
浩 大和田
山本 徹夫
洋 宇張前
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2013551230A priority Critical patent/JP5700139B2/ja
Publication of WO2013099196A1 publication Critical patent/WO2013099196A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Definitions

  • the present invention relates to a high-tensile hot-rolled steel sheet having a high strength with a tensile strength TS of 780 MPa or more and 900 MPa or less, and a method for producing the same, suitable as a structural member for automobiles and other transportation machinery and construction.
  • it relates to improvement of workability, particularly bending workability.
  • the steel sheet for automobile parts has a large elongation and has excellent workability, in particular, excellent bending workability.
  • the steel sheet for automobile parts has a large elongation and has excellent workability, in particular, excellent bending workability.
  • workability, especially bending workability is regarded as important as well as strength in a steel plate as a material for automobile undercarriage parts.
  • a high-tensile steel plate having a large elongation and excellent bending workability is required.
  • the workability of steel materials generally decreases with increasing strength.
  • Patent Document 1 discloses that, by weight, C: 0.03-0.25%, Si: 2.0% or less, Mn: 2.0% or less, P: 0.1% or less, S: 0.007% or less, A composition containing Al: 0.07% or less, Cr: 1.0% or less and (Si + 20 ⁇ P) / (Mn + Cr) satisfying 0.6 to 1.5, ferrite and second phase (pearlite, bainite, martensite, residual austenite Fatigue characteristics and stretch flangeability (stretch flange), wherein the hardness of the second phase, the volume fraction of the second phase, and the particle size of the second phase satisfy a predetermined relationship.
  • a high-strength hot-rolled steel sheet having an excellent formability and a tensile strength of 490 MPa or more has been proposed.
  • Patent Document 2 by weight, C: 0.01 to 0.10%, Si: 1.5% or less, Mn: more than 1.0 to 2.5%, P: 0.15% or less, S: 0.008% or less, Al: 0.01 to 0.08 %, Ti or Nb total: 0.10 to 0.60% composition, ferrite content is 95% or more in area ratio, and ferrite average crystal grain size is 2.0 to 10.0 ⁇ m2.0, martensite
  • a high-strength hot-rolled steel sheet with an ultrafine ferrite structure having a structure not containing residual austenite and a tensile strength of 490 MPa or more and excellent stretch flangeability has been proposed. In the technique described in Patent Document 2, fatigue strength is also improved.
  • Patent Document 3 discloses that in mass%, C: 0.01 to 0.1%, S: 0.03% or less, N: 0.005% or less, Ti: 0.05 to 0.5%, Si: 0.01 to 2%, Mn: 0.05 to 2 %, P: 0.1% or less, Al: 0.005 to 1.0%, and (Ti-48 / 12C-48 / 14N-48 / 32S) containing Ti in a range satisfying 0% or more, and in steel in average size 10 1 ⁇ 10 3 nm particles precipitates containing 5nm or more Ti, the minimum interval is less than 10 1 nm ultra 10 4 nm, the tensile strength of burring workability than 640MPa (burring formability ) And hot-rolled steel sheets with excellent fatigue properties have been proposed.
  • Patent Document 4 contains, in mass%, C: 0.02 to 0.08%, Si: 0.01 to 1.5%, Mn: 0.1 to 1.5%, Ti: 0.03 to 0.06%, P: 0.1% or less, S : 0.005% or less, Al: 0.5% or less, N: 0.009% or less, further, the total content of Nb, Mo, V is limited to 0.01% or less, Ti / C: 0.375 to 1.6, An alloy-saving high-strength hot-rolled steel sheet with an average diameter of TiC precipitates in crystal grains of 0.8 to 3 nm, an average number density of 1 ⁇ 10 17 pieces / cm 3 and a tensile strength of 540 to 650 MPa has been proposed. ing.
  • Japanese Unexamined Patent Publication No. 04-329848 Japanese Unexamined Patent Publication No. 2000-328186 Japanese Unexamined Patent Publication No. 2002-161340 Japanese Unexamined Patent Publication No. 2011-26690
  • the Mn content is high, the portions where Mn segregates are scattered in the steel plate, and when the steel plate is press-formed, the bending workability is stably secured. There was a problem that was difficult.
  • the total amount of one or two of Ti and Nb is limited to a predetermined range to form strong carbides and reduce the amount of dissolved C to almost zero.
  • the carbide tends to be coarsened and a desired high strength cannot be secured stably.
  • the average size of precipitates containing Ti of 5 nm or more is in a wide range of 10 1 to 10 3 nm, so that a desired high strength cannot be secured stably. There's a problem.
  • the tensile strength of the obtained steel sheet is at most 650 MPa, and there remains a problem in combining further high strength and excellent workability.
  • the present invention provides a high-strength hot-rolled steel sheet having a high tensile strength of 780 MPa to 900 MPa and excellent workability, particularly excellent bending workability, and a method for producing the same, which solves the problems of the prior art.
  • the purpose is to do.
  • the “excellent bending workability” mentioned here is a bending test in which a steel sheet having a thickness t is bent using a punch having a tip radius R on a V-shaped block having a vertex angle of 90 degrees, and a crack is formed on the outer side of the bending portion.
  • R is the lowest bend radius that does not cause R, and it means that the limit bend radius ratio defined by R / t is small.
  • the present inventors diligently studied various factors affecting the high strength and bending workability of hot-rolled steel sheets. As a result, in a composite structure in which phases with different hardnesses are combined, the bending workability is lowered. Therefore, in order to ensure excellent bending workability, it was first necessary to have a single-phase structure. It was. In a single-phase structure, a ferrite phase having a low dislocation density is most suitable from the viewpoint of improving workability. In order to increase the strength with a ferrite single-phase structure having a low dislocation density, it is conceivable to precipitate fine carbides in the ferrite crystal grains.
  • the present inventors have conceived that hot rolling should be performed in a temperature range in which recrystallization occurs instantaneously. It has been found that fine sulfides can be precipitated by rolling in such a specific temperature range. This is because when rolling in a temperature range where recrystallization occurs instantaneously, the accumulated distortion energy accumulated during rolling is released instantly by recrystallization, so the driving force for coarsening of sulfides is released instantly. As a result, the coarsening of the sulfide hardly occurs. Moreover, if tandem rolling is used, the effect becomes remarkable. When rolling is performed in the non-recrystallization temperature range, the sulfide is coarsened by using the energy accumulated by rolling as a driving force.
  • the present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows. (1) By mass%, C: 0.035 to 0.065%, Si: 0.2% or less, Mn: 0.7% or less, P: 0.025% or less, S: 0.02% or less, N: 0.01% or less, Al: 0.1% or less, Ti: a composition comprising 0.1 to 0.2%, the balance Fe and inevitable impurities, and a metal structure (microstructure) composed of ferrite grains with an area ratio of 95% or more, and the average grain size in the ferrite grains A high-strength hot-rolled steel sheet having a tensile strength TS of 780 MPa to 900 MPa, which has a structure in which Ti carbide of less than 6 nm and a structure in which TiS having an average particle diameter of 0.5 ⁇ m or less is dispersed and precipitated in the metal structure are dispersed.
  • TS tensile strength
  • the high-tensile hot-rolled steel sheet according to any one of (1) to (4), wherein a limit bending radius ratio is 2 or less.
  • (6) A method for producing a hot-rolled steel sheet, in which a steel material is heated and subjected to hot rolling comprising rough rolling and finish rolling, and after finishing rolling is cooled and wound.
  • the steel material in mass%, C: 0.035 to 0.065%, Si: 0.2% or less, Mn: 0.7% or less, P: 0.025% or less, S: 0.02% or less, N: 0.01% or less, Al: 0.1% or less, Ti: 0.1-0.2%
  • the finish rolling is tandem rolling in which five or more finishing mills are continuously installed.
  • the finishing entry temperature of the finishing mill is 1000 ° C. or more, and the exit temperature of the finishing mill. (Rolling delivery temperature) is set to 900 ° C or higher, The coiling temperature after cooling is 500 ° C. or more and 700 ° C. or less, A method for producing high-tensile hot-rolled steel sheets with a tensile strength of 780 MPa to 900 MPa. (7) The method for producing a high-tensile hot-rolled steel sheet according to (6), further containing B: 0.0035% or less in mass% in addition to the composition.
  • tensile strength TS high strength of 780 MPa to 900 MPa, which is suitable as a structural member for automobiles and other transportation machinery and construction, and excellent bending workability.
  • the high-tensile hot-rolled steel sheet can be easily manufactured, and has a remarkable industrial effect.
  • the high-tensile hot-rolled steel sheet according to the present invention is particularly suitable as a material for automobile undercarriage parts and the like that have a complicated cross-sectional shape during press forming and undergo a bending process on the surface.
  • the hot-rolled steel sheet of the present invention is, in mass%, C: 0.035 to 0.065%, Si: 0.2% or less, Mn: 0.7% or less, P: 0.025% or less, S: 0.02% or less, N: 0.01% or less, Al: It contains 0.1% or less, Ti: 0.1-0.2%, and has a composition consisting of the balance Fe and inevitable impurities.
  • C has the effect of forming fine carbides and increasing the strength of the steel sheet.
  • a content of 0.035% or more is required.
  • the content exceeds 0.065%, the strength increases excessively and pearlite is easily formed. Since pearlite is a starting point for cracking during bending, the formation of pearlite is a factor that reduces bending workability. For this reason, C is limited to a range of 0.035 to 0.065%.
  • the content is preferably 0.040 to 0.055%.
  • Si 0.2% or less
  • Si a low melting point oxide containing Si
  • the surface properties are lowered, cracks are easily generated from the surface during bending, and bending workability is lowered.
  • Si was limited to 0.2% or less.
  • Preferably it is 0.05% or less. There is no problem even if the Si content is zero.
  • Mn 0.7% or less If Mn exceeds 0.7%, segregation of Mn is likely to occur. In the Mn segregation part, a crack is likely to occur during bending, and therefore bending workability is lowered. Moreover, since TiS precipitates faster, it tends to be coarser and bending workability tends to decrease. For these reasons, Mn is limited to 0.7% or less. In addition, Preferably it is 0.5% or less. There is no problem even if the Mn content is zero.
  • P 0.025% or less
  • P 0.025% or less
  • P is 0.02% or less. There is no problem even if the P content is zero.
  • S 0.02% or less
  • S combines with Ti to form TiS and Mn to form MnS.
  • These sulfides are easily coarsened, and may be coarsened to about several ⁇ m. Such a coarse sulfide is likely to be a starting point of crack generation during bending, and causes a decrease in bending workability. If S is contained in excess of 0.02%, generation of coarse sulfides cannot be suppressed, and bending workability is deteriorated. For this reason, S was limited to 0.02% or less. In addition, Preferably it is 0.01% or less, More preferably, it is 0.004% or less. There is no problem even if the S content is zero.
  • N 0.01% or less N is a harmful element that lowers the bending workability in the present invention, and is desirably reduced as much as possible.
  • N was limited to 0.01% or less.
  • Preferably it is 0.006% or less. There is no problem even if the N content is zero.
  • Al 0.1% or less
  • Al is an element that acts as a deoxidizer. In order to acquire such an effect, it is desirable to contain 0.001% or more. On the other hand, if the content exceeds 0.1%, deoxidation products aggregate and coarsen, so that the bending workability is lowered. For this reason, Al was limited to 0.1% or less.
  • Ti 0.1-0.2%
  • Ti is the most important element in the present invention. Ti forms fine carbides and contributes to increasing the strength of steel sheets while maintaining excellent stretch flangeability. In order to obtain such an effect, the content of 0.1% or more is required. However, when the content exceeds 0.2%, coarse sulfides are likely to be generated, and bending workability tends to be lowered. Therefore, Ti is limited to the range of 0.1 to 0.2%. It is preferably 0.14 to 0.18%.
  • the above-mentioned components are basic components, but as a selective element in addition to the basic composition, B: 0.0035% or less, and / or Cu, Sn, Ni, Ca, Mg, Co, As, Cr, Mo, Sb, One or two or more of W, Nb, Pb, Ta, REM, V, Cs, Zr, Hf, and Zn in total can be selected and contained as necessary.
  • elements (Cu and the like) mixed from ore and scrap do not need to be reduced as long as they are below the total content.
  • B 0.0035% or less
  • B is an element that segregates at austenite grain boundaries and refines sulfides.
  • B is preferably contained in an amount of 0.0005% or more.
  • the content exceeds 0.0035%, Fe 23 (CB) 6 precipitates, bending workability is deteriorated. For this reason, when it contains, it is preferable to limit B to 0.0035% or less.
  • the balance other than the above components is composed of Fe and inevitable impurities.
  • the hot-rolled steel sheet of the present invention comprises a metal structure in which 95% or more of the area ratio is occupied by ferrite crystal grains, a Ti carbide having an average particle diameter of less than 6 nm in the ferrite crystal grains constituting the matrix, and further in the metal structure. It has a structure in which TiS having an average particle size of 0.5 ⁇ m or less is dispersed and precipitated.
  • a ferrite single phase structure is adopted.
  • the “single phase” does not need to be 100% in terms of area ratio, and may be substantially a single phase.
  • substantially single phase means that the ferrite phase composed of ferrite crystal grains is 95% or more, preferably 97% or more in terms of the area ratio with respect to the entire structure.
  • the “metal structure” here refers to a metal structure observed at a magnification of 500 to 5000 times using an optical microscope or a scanning electron microscope.
  • Examples of the second phase other than the ferrite phase include cementite, pearlite, bainite phase, martensite phase, and retained austenite phase.
  • the total of these second phases is acceptable if the area ratio is about 5% or less, preferably about 3% or less.
  • Ti carbide average particle size less than 6nm
  • Ti carbide has a strong tendency to precipitate as fine carbide having an extremely small average particle size.
  • fine Ti carbides are dispersed and precipitated in ferrite crystal grains constituting a metal structure that is substantially a ferrite single phase to ensure a desired high strength.
  • Ti carbide finely precipitated in ferrite crystal grains acts as a resistance to dislocation movement that occurs when deformation is applied to the steel sheet, and contributes to strengthening of the hot-rolled steel sheet. For this reason, the average particle diameter of Ti carbide precipitated in the ferrite crystal grains is set to less than 6 nm. If the average particle size is 3 nm or less, the effect becomes more remarkable.
  • the average particle size of Ti carbide was set to less than 6 nm. In addition, Preferably it is 4 nm or less.
  • Ti carbide may have solid solution of elements contained in steel in addition to Ti as a carbide constituent element, but Ti carbide in the present invention is a Ti carbide in which such other elements are dissolved.
  • both Ti carbides that do not contain carbide constituent elements are included. Note that Ti is an element that can be added at a relatively low cost, and it is advantageous to use Ti carbide that does not substantially contain carbide constituent elements other than Ti. In this case, among the selective elements, Mo, W, Nb, and V, which have a strong tendency to form carbides, are preferably not added (content of about impurities).
  • TiS Average particle size of 0.5 ⁇ m or less
  • sulfide containing Ti is precipitated in the metal structure in addition to precipitation of carbide containing fine Ti.
  • the sulfide containing Ti that precipitates include single TiS and a composite sulfide of TiS and MnS.
  • Ti-containing sulfides are more likely to be coarser than carbides, and TiS and MnS composite sulfides are particularly likely to be coarser. When sulfides containing Ti are coarsely deposited, bending workability is adversely affected.
  • single TiS that is not combined with MnS and fine TiS are deposited.
  • the average particle size of the deposited TiS is 0.5 ⁇ m or less. Thereby, the bad influence which acts on bending workability can be excluded. When the average particle size exceeds 0.5 ⁇ m and TiS becomes coarse, it becomes a starting point of cracking during bending, and bending workability is lowered. For this reason, the average particle size of TiS was limited to 0.5 ⁇ m or less.
  • a plating film may be formed on the steel sheet surface.
  • the corrosion resistance of the hot-rolled steel sheet is improved, and the hot-rolled steel sheet is suitable for use in parts exposed to severe corrosive environments, for example, undercarriage parts of automobiles.
  • the plating film include a hot dip galvanized film, an alloyed hot dip zinc film, and an electroplated film.
  • the preferable manufacturing method of this invention high tension hot-rolled steel plate is demonstrated.
  • the steel material having the above composition is heated and subjected to hot rolling consisting of rough rolling and finish rolling, and after finishing rolling, the steel material is cooled and wound to obtain a hot-rolled steel sheet (steel strip).
  • the method for producing a steel material such as a slab having the above composition is not particularly limited.
  • a melting method any conventional melting method such as a converter or an electric furnace can be applied.
  • the molten steel is preferably made into a steel material such as a slab by a continuous casting method because of problems such as segregation, but a known casting method such as an ingot-bundling rolling method or a thin slab continuous casting method may be used. There is no problem using it.
  • the obtained steel material is then hot rolled into a hot rolled sheet.
  • reheat it when performing hot rolling on a steel material, even if it is charged in a heating furnace and reheated to a predetermined temperature, or if the steel material retains heat above a predetermined temperature, reheat it. There is no problem even with direct or direct rolling, in which hot rolling is performed only by holding for a short time.
  • the reheating temperature of the steel material is preferably 1150 ° C or higher and 1300 ° C or lower.
  • a steel material containing Ti which is a carbide forming element
  • the heating temperature exceeds 1300 ° C. and becomes excessively high, the austenite grain boundaries are abnormally oxidized, the surface properties of the resulting hot-rolled steel sheet are lowered, and the bending workability is lowered. For this reason, it is preferable to limit the heating temperature for hot rolling of the steel material to a range of 1150 to 1300 ° C.
  • the heated steel material is then subjected to rough rolling and finish rolling to form a hot rolled sheet.
  • the conditions for rough rolling are not particularly limited as long as the rough rolling bar having a predetermined size and shape can be obtained.
  • Finish rolling is a tandem rolling method in which five or more finishing mills are continuously installed and continuously rolled in one direction.
  • tandem rolling the position of the austenite grain boundary is changed in a short time, whereby the refinement of sulfides precipitated at the austenite grain boundary is achieved. That is, before the sulfide is precipitated at the austenite grain boundary, the coarsening of the sulfide can be prevented by changing the position of the austenite grain boundary by rolling and subsequent recrystallization. By combining this effect with the effect of promoting austenite recrystallization, the sulfide can be efficiently refined.
  • finish rolling mill is installed in less than 5 stages, the number of recrystallizations of austenite is reduced, the refinement of sulfide is not promoted, and the desired effect cannot be expected.
  • the rolling reduction per stage of the tandem finish rolling mill is not particularly limited, but a rolling reduction of 5% or more is preferable.
  • the entrance side temperature of the finish rolling mill is set to 1000 ° C. or more, and the exit side temperature is set to 900 ° C. or more.
  • finish rolling is performed in a temperature range where recrystallization occurs instantaneously to prevent the coarsening of sulfides.
  • the inlet temperature is less than 1000 ° C.
  • rolling in the non-recrystallization temperature range becomes long, and the risk of the sulfide becoming coarse increases.
  • the outlet temperature is less than 900 ° C.
  • the residence time in the non-recrystallization temperature range is long, the amount of reduction in the non-recrystallization temperature range increases, and the coarsening of the sulfide becomes remarkable. For this reason, the inlet side temperature of the finishing mill was limited to 1000 ° C.
  • the temperature range of finish rolling is preferably 1050 to 920 ° C. After finishing rolling, it is cooled and wound at a predetermined winding temperature.
  • the cooling after finishing rolling is not particularly limited, but is preferably 50 ° C./s or more at an average cooling rate up to 700 ° C. from the viewpoint of securing the tensile strength. If the cooling rate is smaller than 50 ° C./s on average, it becomes difficult to substantially secure the structure of the ferrite single phase. For this reason, the average cooling rate is preferably 50 ° C./s or more.
  • the coiling temperature is 500 ° C or higher and 700 ° C or lower. Optimization of the coiling temperature is important in order to secure a desired steel sheet structure or to suppress the coarsening of sulfides. When the coiling temperature is higher than 700 ° C., the sulfide becomes coarse after winding, and the bending workability is deteriorated.
  • the coiling temperature is 500 ° C. or more from the viewpoint of securing a ferrite single phase structure. When the coiling temperature is less than 500 ° C., a large amount of bainite is generated and bending workability is deteriorated. In addition, Preferably it is 580 degreeC or more and 680 degrees C or less.
  • the hot-rolled steel sheet manufactured by the above process may be subjected to a plating process, for example, a hot dip galvanizing process to form a plating film on the surface.
  • a plating process for example, a hot dip galvanizing process to form a plating film on the surface.
  • An alloying treatment may be performed after the hot dip galvanizing treatment to form an alloyed hot dip galvanized film.
  • electroplating may be performed to form an electroplating film.
  • Molten steel having the composition shown in Table 1 was melted in a converter and continuously cast into a slab (steel material) having a wall thickness of 280 mm. These slabs were heated to the heating temperature shown in Table 2 and subjected to rough rolling, followed by tandem continuous rolling in which seven finish rolling mills were installed continuously as finish rolling under the conditions shown in Table 2. Then, it cooled on the conditions shown in Table 2, and wound up by the winding temperature shown in Table 2, and obtained the hot-rolled steel plate of board thickness: 2.9mm.
  • Some hot-rolled steel sheets are pickled to remove the scale of the surface layer, and then subjected to hot dip galvanizing treatment (immersion in a 490 ° C zinc plating bath (0.1% Al-Zn bath)) for adhesion
  • An amount: 48 g / m 2 of a hot dip galvanized film was formed, and further alloyed at 550 ° C. to obtain an alloyed hot dip galvanized steel sheet.
  • Test specimens were collected from the obtained hot-rolled steel sheet and subjected to structure observation, tensile test, and bending test.
  • the test method is as follows.
  • (1) Microstructure observation A specimen for microstructural observation is collected from the obtained hot-rolled steel sheet, a cross section (L cross section) parallel to the rolling direction is mechanically polished, corroded with nital liquid (nital), and then a scanning electron microscope The tissue was observed at (magnification: 3000 times) and imaged. Using the obtained structure photograph, the type of structure other than the ferrite phase and the ferrite phase, and the structure fraction (area ratio) thereof were determined by an image analysis apparatus.
  • a thin film for observation with a transmission electron microscope was prepared from the obtained hot-rolled steel sheet and observed with a transmission electron microscope (magnification: 120,000 to 260,000 times) to determine the particle diameter of the fine Ti carbide.
  • the particle diameter of the fine Ti carbide was observed at 260,000 times and 30 or more fields of view, and the particle diameter of each particle was determined for a total of 100 or more Ti carbides.
  • the particle diameter of each particle was obtained by circular approximation by image analysis, and the value was arithmetically averaged to obtain the average particle diameter of Ti carbide in the steel sheet (test piece).
  • TiS was observed and imaged at 30 times or more at 10,000 magnifications.
  • the obtained tissue was subjected to image analysis, and the particle diameter of each particle was calculated by circular approximation for a total of 20 or more TiS.
  • the obtained values were arithmetically averaged to obtain the average grain size of TiS in the steel sheet (test piece).
  • (2) Tensile test From the obtained hot-rolled steel sheet, a JIS No. 5 tensile test piece (GL: 50 mm) with the direction perpendicular to the rolling direction as the tensile direction was collected, and a tensile test was performed in accordance with the provisions of JIS Z 2241. And tensile strength TS was determined.
  • Bending test A bending test piece (size: 30 mm x 150 mm) was collected from the obtained hot-rolled steel sheet.
  • the bending specimen is placed on the V-shaped block so that the longitudinal center of the specimen coincides with the apex of the V-shaped block (vertical angle: 90 °), and the center position of the bending specimen is punched (tip radius R).
  • the bending test of pressing against the V-shaped block with the punch tip radius changed. After the test, the outside of the bent part of the test piece was visually observed to investigate the presence of cracks. The number of repetitions was three. In all three bending tests, the case where no cracks were visually observed on the outer side of the bent part was acceptable, and the case where even one crack was generated was rejected.
  • R / t which divided the smallest tip radius R to pass by board thickness t was defined as a limit bending radius ratio, and it was set as an evaluation standard of bending workability. When R / t is 2 or less, it is evaluated that the bending workability is excellent.
  • Each of the examples of the present invention is a hot-rolled steel sheet having a high tensile strength TS: 780 MPa or more and a good bending property.
  • the comparative example which is out of the scope of the present invention does not ensure the desired high strength, or has a large limit bending radius ratio and cannot ensure the desired bending workability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Abstract

 質量%で、C:0.035~0.065%、Si:0.2%以下、Mn:0.7%以下、S:0.02%以下、N:0.01%以下、Al:0.1%以下、Ti:0.1~0.2%を含み、あるいはさらにB:0.0035%以下含む組成の鋼素材に、粗圧延と、仕上圧延を5段以上連続して圧延機を設置したタンデム方式の圧延として、仕上圧延機の入側温度を1000℃以上、出側温度を900℃以上とし、仕上圧延終了後、冷却し、700℃以下の巻取温度で巻き取る。これにより、面積率で95%以上がフェライト結晶粒からなる金属組織で、該フェライト結晶粒内に平均粒径が6nm未満のTi炭化物と、さらに金属組織中に平均粒径0.5μm以下のTiSとが微細に分散析出した組織とを有し、引張強さTS:780MPa以上900MPa以下の高強度と、曲げ加工性に優れた高張力熱延鋼板が得られる。

Description

高張力熱延鋼板およびその製造方法
 本発明は、自動車をはじめとする輸送機械類の部品、建築用などの構造用部材として好適な、引張強さTSが780MPa以上900MPa以下の高強度を有する高張力熱延鋼板およびその製造方法に係り、加工性、とくに曲げ加工性の向上に関する。
 近年、自動車業界においては、地球環境の保全という観点から、炭酸ガスCO2排出量を削減すべく、自動車の燃費を改善することが常に重要な課題となってきた。自動車の燃費向上には、自動車車体の軽量化を図ることが有効であるが、自動車車体の強度を維持しつつ車体の軽量化を図る必要がある。自動車部品用素材となる鋼板を高強度化し、素材を薄肉化すれば、自動車車体としての強度を低下することなく、車体の軽量化が達成できる。たとえば、自動車の足回り部品(chassis parts)用鋼板の高強度化は、自動車車体の大幅な軽量化に繋がり、自動車の燃費向上に極めて有効な手段となる。このようなことから、最近では、これらの部品用素材に対し、高強度化の要望が非常に強くなっている。
一方、鋼板を素材とする自動車部品の多くは、プレス加工によって成形されるため、自動車部品用鋼板には、伸びが大きく、優れた加工性を有すること、とくに優れた曲げ加工性を有することが要求される。例えば、自動車足回り部品では、板厚が比較的厚い鋼板を用いてプレス成形することから、鋼板表面に局部的に曲げ加工が加わる。そのため、自動車足回り部品用素材となる鋼板には、強度とともに加工性、とくに曲げ加工性が重要視される。このため、とくに自動車足回り部品用素材としては、伸びが大きく、曲げ加工性に優れた高張力鋼板が必要となる。
しかし、鉄鋼材料は、一般的に、高強度化に伴い加工性が低下する。そのため、高張力鋼板を足回り部品に適用するうえでは、高強度と優れた加工性とを兼備した高張力鋼板とすることが必要となる。このようなことから、足回り部品用素材として、高強度と優れた加工性とを兼備した高張力熱延鋼板が要望されている。
 このような要望に対し、例えば、特許文献1には、重量%で、C:0.03~0.25%、Si:2.0%以下、Mn:2.0%以下、P:0.1%以下、S:0.007%以下、Al:0.07%以下、Cr:1.0%以下を含み、かつ、(Si+20×P)/(Mn+Cr)が0.6~1.5を満足する組成と、フェライトと第2相(パーライト、ベイナイト、マルテンサイト、残留オーステナイトの1種以上)よりなる組織とを有し、第2相の硬さ、第2相の体積率、第2相の粒径が所定の関係を満足する、疲労特性と伸びフランジ性(stretch flange formability)に優れた引張強さが490MPa以上である高強度熱延鋼板が提案されている。
 また、特許文献2には、重量%で、C:0.01~0.10%、Si:1.5%以下、Mn:1.0超~2.5%、P:0.15%以下、S:0.008%以下、Al:0.01~0.08%、Ti,Nbの1種又は2種の合計:0.10~0.60%を含む組成と、フェライト量が面積率で95%以上で、かつフェライトの平均結晶粒径が2.0~10.0μm で、マルテンサイトおよび残留オーステナイトを含まない組織とを有し、引張強さが490MPa以上で、伸びフランジ性に優れた超微細フェライト組織高強度熱延鋼板が提案されている。特許文献2に記載された技術では、疲労強度も向上するとしている。
 また、特許文献3には、質量%で、C:0.01~0.1%、S:0.03%以下、N:0.005%以下、Ti:0.05~0.5%、Si:0.01~2%、Mn:0.05~2%、P:0.1%以下、Al:0.005~1.0%を含み、さらに(Ti-48/12C-48/14N-48/32S)が0%以上を満たす範囲でTiを含有する組成と、鋼中の粒子で5nm以上のTiを含む析出物の平均サイズが10~10nmで、最小間隔が10 nm超104 nm以下である、引張強さが640MPa以上でバーリング加工性(burring formability)と疲労特性に優れた熱延鋼板が提案されている。
 また、特許文献4には、質量%で、C:0.02~0.08%、Si:0.01~1.5%、Mn:0.1~1.5%、Ti:0.03~0.06%を含有し、P:0.1%以下、S:0.005%以下、Al:0.5%以下、N:0.009%以下に制限し、更に、Nb、Mo、Vの含有量の合計を0.01%以下に制限し、Ti/C:0.375~1.6であり、結晶粒内のTiC析出物の平均直径が0.8~3nmで、平均個数密度が1×1017個/cmであり、引張強度が540~650MPaである省合金型高強度熱延鋼板が提案されている。
日本国特開平04-329848号公報 日本国特開2000-328186号公報 日本国特開2002-161340号公報 日本国特開2011-26690号公報
 しかしながら、特許文献1に記載された技術では、鋼板にプレス加工等を施して所望の部品形状に成形する際に、軟質のフェライトと硬質の第二相との界面が、加工時の割れ発生起点となりやすく、優れた曲げ加工性を有する熱延鋼板であるとはいい難い。しかも、特許文献1に記載された技術は、引張強さが490MPa以上である熱延鋼板についてであり、特許文献1に記載された技術では、更なる高強度化と優れた曲げ加工性とを兼備させることに問題を残していた。 
 また、特許文献2に記載された技術では、Mn含有量が高く、Mnが偏析した箇所が鋼板の中に点在し、鋼板をプレス成形する際に、曲げ加工性を安定的に確保することが困難であるという問題があった。また、特許文献2に記載された技術では、Ti,Nbの1種又は2種の合計量を所定範囲に限定し、強固な炭化物を形成させ固溶C量をほぼ零に低減している。しかし、Cに対し過剰なTi、Nbを含有させると、炭化物が粗大化しやすく、所望の高強度を安定的に確保できないという問題がある。
 また、特許文献3に記載された技術では、5nm以上のTiを含む析出物の平均サイズが10~10nmと広い範囲となっているため、所望の高強度を安定的に確保できないという問題がある。
 また、特許文献4に記載された技術では、得られる鋼板の引張強さはたかだか650MPaまでであり、更なる高強度と優れた加工性とを兼備させるには問題を残していた。
 本発明は、かかる従来技術の問題を解決し、引張強さ780MPa以上900MPa以下の高強度で、且つ優れた加工性、とくに優れた曲げ加工性を有する高張力熱延鋼板およびその製造方法を提供することを目的とする。なお、ここでいう「優れた曲げ加工性」とは、頂角90度のV字ブロックに先端半径Rのポンチを用いて板厚tの鋼板を曲げ加工する曲げ試験で、曲げ部外側に亀裂が生じない最低の曲げ半径をRとして、R/tで定義される限界曲げ半径比が小さいことを意味する。
本発明者らは、上記した目的を達成するために、熱延鋼板の高強度化と曲げ加工性に及ぼす各種要因について、鋭意研究した。その結果、硬さに差異がある相が複合した複合組織では、曲げ加工性が低下するため、優れた曲げ加工性を確保するためには、まず単相組織とする必要があることに思い至った。単相組織では、加工性の向上という観点から、転位密度の低いフェライト相がもっとも適している。
そして、転位密度の低いフェライト単相組織で高強度化するには、フェライト結晶粒中に微細炭化物を析出させることが考えられる。しかし、フェライト結晶粒中に、例えばTiを主たる炭化物構成元素とする微細炭化物が析出したフェライト組織では、曲げ加工性が向上しない場合があることを知見した。
そこで、曲げ加工性が向上しない理由について鋭意検討した。その結果、粗大化した硫化物が曲げ加工性を低下させていることを見出した。Tiを含有する鋼においては、硫化物としては、単体の硫化物TiSと、TiS とMnSとの複合硫化物の2種類が析出する。鋼中の硫化物は、炭化物より粗大化しやすく、このうち、とくに、TiSとMnSとの複合硫化物(complex sulfide)が粗大化しやすい。
この複合硫化物の粗大化を防止するために、本発明者らは、再結晶が瞬時に生じる温度域で熱間圧延することがよいことを想到した。このような特定の温度範囲で圧延することにより、微細な硫化物を析出させることができることを見出した。
というのは、再結晶が瞬時に生じる温度域で圧延すると、圧延で蓄積した歪エネルギー(accumulated distortion energy)、再結晶により瞬時に解放されるため、硫化物の粗大化の駆動力が瞬時に解放されて硫化物の粗大化が生じにくい。しかも、タンデム圧延を利用すれば、その効果は顕著となる。未再結晶温度域で圧延すると、圧延により蓄積されたエネルギーを駆動力に、硫化物が粗大化してしまう。
 本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)質量%で、C:0.035~0.065%、Si:0.2%以下、Mn:0.7%以下、P:0.025%以下、S: 0.02%以下、N:0.01%以下、Al:0.1%以下、Ti:0.1~0.2%を含み、残部Feおよび不可避的不純物からなる組成と、さらに面積率で95%以上がフェライト結晶粒からなる金属組織(microstructure)で、該フェライト結晶粒内に平均粒径が6nm未満のTi炭化物と、さらに金属組織中に平均粒径0.5μm以下のTiSとが分散析出(dispersively precipitated)した組織とを有する、引張強さTS:780MPa以上900MPa以下の高張力熱延鋼板。
(2)(1)において、前記組成に加えてさらに、質量%で、B:0.0035%以下を含有する高張力熱延鋼板。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Cu、Sn、Ni、Ca、Mg、Co、As、Cr、Mo、Sb、W、Nb、Pb、Ta、REM、V、Cs、Zr、Hf、Znのうちの1種または2種以上を合計で、1%以下含有する高張力熱延鋼板。
(4)(1)ないし(3)のいずれかにおいて、表面にめっき層を有する高張力熱延鋼板。
(5)限界曲げ半径比が2以下である(1)ないし(4)のいずれかに記載の高張力熱延鋼板。
(6)鋼素材に、加熱し粗圧延と仕上圧延からなる熱間圧延を施し、仕上圧延終了後、冷却し、巻取る、熱延鋼板の製造方法であって、
前記鋼素材を、質量%で、
C:0.035~0.065%、          Si:0.2%以下、
Mn:0.7%以下、            P:0.025%以下、
S:0.02%以下、            N:0.01%以下、
Al:0.1%以下、             Ti:0.1~0.2%
を含み、残部Feおよび不可避的不純物からなる組成の鋼素材とし、
前記仕上圧延を、仕上圧延機を5段以上、連続して設置したタンデム方式の圧延として、前記仕上圧延機の入側温度(finishing entry temperature)を1000℃以上、前記仕上圧延機の出側温度(finishing delivery temperature)を900℃以上とする圧延とし、
前記冷却後の巻取り温度を、500℃以上700℃以下とする、
引張強さが780MPa以上900MPa以下の高張力熱延鋼板の製造方法。
(7)前記組成に加えてさらに、質量%で、B:0.0035%以下を含有する(6)に記載の高張力熱延鋼板の製造方法。
(8)前記組成に加えてさらに、質量%で、Cu、Sn、Ni、Ca、Mg、Co、As、Cr、Mo、Sb、W、Nb、Pb、Ta、REM、V、Cs、Zr、Hf、Znのうちの1種または2種以上を合計で、1%以下含有する(6)または(7)に記載の高張力熱延鋼板の製造方法。
 本発明によれば、自動車をはじめとする輸送機械類の部品、建築用などの構造用部材として好適な、引張強さTS:780MPa以上900MPa以下の高強度を有し、且つ曲げ加工性に優れた高張力熱延鋼板を、容易に製造することができ、産業上格段の効果を奏する。また、本発明になる高張力熱延鋼板は、プレス成形時の断面形状が複雑で、表面が曲げ加工を受ける、自動車足回り部品等の素材として、とくに好適である。
 本発明熱延鋼板は、質量%で、C:0.035~0.065%、Si:0.2%以下、Mn:0.7%以下、P:0.025%以下、S:0.02%以下、N:0.01%以下、Al:0.1%以下、Ti:0.1~0.2%を含み、残部Feおよび不可避的不純物からなる組成を有する。
 まず、本発明高張力熱延鋼板の組成限定理由について説明する。以下、とくに断わらないかぎり質量%は、単に%で記す。
 C:0.035~0.065%
Cは、微細炭化物を形成し、鋼板の強度を増加する作用を有する。所望の引張強さである780MPa以上の高強度を確保するためには、0.035%以上の含有を必要とする。一方、0.065%を超える含有は、強度が増加しすぎるうえ、パーライトが形成されやすくする。パーライトは曲げ加工時に亀裂発生の起点となるため、パーライトの形成は、曲げ加工性を低下させる要因となる。このため、Cは0.035~0.065%の範囲に限定した。なお、好ましくは0.040~0.055%である。
 Si:0.2%以下
Siを、0.2%を超えて含有すると、圧延時に表面にSiを含む低融点酸化物が形成され、表面性状が低下し、曲げ加工時に表面から亀裂が発生しやすくなり、曲げ加工性が低下する。このため、Siは0.2%以下に限定した。なお、好ましくは0.05%以下である。Si含有量はゼロであっても問題ない。
 Mn:0.7%以下
Mnを、0.7%を超えて含有すると、Mnの偏析が生じやすくなる。Mn偏析部では曲げ加工時に亀裂が生じやすく、そのため、曲げ加工性が低下する。また、TiSの析出が早くなるため粗大化しやすく、曲げ加工性が低下しやすい傾向がある。このようなことから、Mnは0.7%以下に限定した。なお、好ましくは0.5%以下である。Mn含有量はゼロであっても問題ない。
 P:0.025%以下
Pを、0.025%を超えて多量に含有すると偏析が顕著になり、曲げ加工性が低下する。このため、Pは0.025%以下に限定した。なお、好ましくは0.02%以下である。P含有量はゼロであっても問題ない。
 S:0.02%以下
Sは、Mn、Tiを含有する本発明では、Tiと結合してTiSを、Mnと結合してMnSを形成する。これらの硫化物は、粗大化しやすく、数μm程度まで粗大化する場合がある。このような粗大な硫化物は、曲げ加工時に亀裂発生の起点となりやすく、曲げ加工性を低下させる要因となる。Sを、0.02%を超えて含有すると、粗大な硫化物の発生を抑制できなくなり、曲げ加工性が低下する。このため、Sは0.02%以下に限定した。なお、好ましくは0.01%以下であり、さらに好ましくは0.004%以下である。S含有量はゼロであっても問題ない。
 N:0.01%以下
Nは、本発明では曲げ加工性を低下させる有害な元素であり、できるだけ低減することが望ましい。とくに、0.01%を超える含有は、粗大な窒化物が生成し、曲げ加工性を低下させる。このため、Nは0.01%以下に限定した。なお、好ましくは0.006%以下である。N含有量はゼロであっても問題ない。
 Al:0.1%以下
Alは、脱酸剤として作用する元素である。このような効果を得るためには0.001%以上含有することが望ましい。一方、0.1%を超えて過剰に含有すると、脱酸生成物(deoxidation products)が凝集し、粗大化するため、曲げ加工性が低下する。このため、Alは0.1%以下に限定した。
 Ti:0.1~0.2%
Tiは、本発明において最も重要な元素である。Tiは微細な炭化物を形成することにより、優れた伸びフランジ性を維持しつつ、鋼板の高強度化に寄与する。このような効果を得るためには、0.1%以上の含有を必要とするが、0.2%を超えて含有すると、粗大な硫化物を生じやすく、曲げ加工性が低下する傾向となる。このため、Tiは0.1~0.2%の範囲に限定した。なお、好ましくは0.14~0.18%である。
 上記した成分が基本の成分であるが、基本組成に加えて選択元素として、B:0.0035%以下、および/または、Cu、Sn、Ni、Ca、Mg、Co、As、Cr、Mo、Sb、W、Nb、Pb、Ta、REM、V、Cs、Zr、Hf、Znのうちの1種または2種以上を合計で、1%以下、を、必要に応じて選択して含有できる。例えば、鉱石やスクラップから混入する元素(Cu等)は、上記合計含有量以下であれば、とくに低減する必要はない。
 B:0.0035%以下
Bは、オーステナイト粒界に偏析して、硫化物を微細化する作用を有する元素であり、このような効果を得るためには0.0005%以上含有することが望ましい。一方、0.0035%を超えて含有すると、Fe23(CB)が析出し、曲げ加工性が低下する。このため、含有する場合には、Bは0.0035%以下に限定することが好ましい。
 上記した成分に加えて、本発明では、Cu、Sn、Ni、Ca、Mg、Co、As、Cr、Mo、Sb、W、Nb、Pb、Ta、REM、V、Cs、Zr、Hf、Znのうちの1種または2種以上を含有してもよいが、含有する場合には合計で1%以下とすることが好ましい。なお、より好ましくは合計で0.5%以下である。
 上記した成分以外の残部は、Feおよび不可避的不純物からなる。
 つぎに、本発明熱延鋼板の組織限定理由について説明する。
本発明熱延鋼板は、面積率で95%以上をフェライト結晶粒により占められる金属組織と、該マトリックスを構成するフェライト結晶粒内に平均粒径が6nm未満のTi炭化物と、さらに金属組織中に平均粒径0.5μm以下のTiSとが分散析出した組織を有する。
 面積率で95%以上がフェライト結晶粒からなる金属組織
本発明では、優れた曲げ加工性を確保するために、金属組織を、転位密度が低く、延性に富むフェライト結晶粒で占めることが有効である。とくに優れた伸びフランジ性を確保するために、フェライト単相組織とする。なお、ここでいう「単相」とは、面積率で100%である必要はなく、実質的に単相であればよい。ここで「実質的に単相」とは、フェライト結晶粒からなるフェライト相が、組織全体に対する面積率で95%以上、好ましくは97%以上である場合をいう。ここでいう「金属組織」とは、光学顕微鏡や走査型電子顕微鏡を用いて500~5000倍の倍率で観察される金属組織を指す。
なお、フェライト相以外の第二相は、セメンタイト、パーライト、ベイナイト相、マルテンサイト相、残留オーステナイト相等が挙げられる。これら第二相の合計は、面積率で5%程度以下、好ましくは3%程度以下であれば、許容できる。
 Ti炭化物:平均粒径が6nm未満
Ti炭化物は、その平均粒径が極めて小さい微細な炭化物として析出する傾向が強い。本発明では、実質的にフェライト単相である金属組織を構成するフェライト結晶粒中に、微細なTi炭化物を分散析出させ、所望の高強度を確保する。フェライト結晶粒中に微細に析出したTi炭化物は、鋼板に変形が加わった際に生じる転位の移動に対する抵抗として作用し、熱延鋼板の強化に寄与する。このため、フェライト結晶粒中に析出するTi炭化物の平均粒径は6nm未満とする。なお、平均粒径が3nm以下であれば、その作用はより顕著となる。このようなことから、Ti炭化物の平均粒径は6nm未満とした。なお、好ましくは4nm以下である。また、Ti炭化物には炭化物構成元素としてTiの他に鋼に含まれている元素が固溶する場合があるが、本発明におけるTi炭化物は、このような他の元素を固溶したTi炭化物とTi以外に炭化物構成元素を含まないTi炭化物の両者を含む。なお、Tiは比較的安価に添加できる元素であり、Ti以外に実質的に炭化物構成元素を含まないTi炭化物を用いることが有利である。この場合、前記選択元素のうち、炭化物形成傾向の強いMo、W、Nb、Vは無添加(不純物程度の含有量)とすることが好ましい。
 TiS:平均粒径0.5μm以下
Tiを含有する本発明熱延鋼板では、金属組織中に、微細なTiを含む炭化物の析出に加えて、Tiを含む硫化物が析出する。析出するTiを含む硫化物としては、単独のTiS、さらにはTiSとMnSの複合硫化物がある。Tiを含む硫化物は炭化物より粗大化しやすく、TiSとMnSの複合硫化物は、とくに粗大化しやすい。Tiを含む硫化物が粗大に析出すると、曲げ加工性に悪影響を及ぼす。本発明では、MnSと複合しない、単独のTiS、しかも微細なTiSを析出させる。析出TiSの平均粒径は0.5μm以下とする。これにより、曲げ加工性に及ぼす悪影響を排除することができる。平均粒径が0.5μmを超えてTiSが粗大化すると、曲げ加工時に亀裂の発生起点となり、曲げ加工性を低下させる。このため、TiSの平均粒径は0.5μm以下に限定した。
 本発明では、鋼板表面にめっき皮膜を形成してもよい。めっき皮膜を形成することにより、熱延鋼板の耐食性が向上し、厳しい腐食環境に晒される部品、例えば、自動車の足回り部品等の使途に好適な熱延鋼板となる。なお、めっき皮膜としては、溶融亜鉛めっき皮膜、合金化溶融亜鉛皮膜、電気めっき皮膜等が例示できる。
 つぎに、本発明高張力熱延鋼板の好ましい製造方法について説明する。
本発明では、上記した組成を有する鋼素材に、加熱し粗圧延と仕上圧延からなる熱間圧延を施し、仕上圧延終了後、冷却し、巻取り、熱延鋼板(鋼帯)とする。
 上記した組成を有するスラブ等の鋼素材の製造方法はとくに限定する必要はない。溶製方法としては、転炉、電気炉等の常用の溶製方法がいずれも適用できる。溶製された溶鋼は、偏析等の問題から、連続鋳造方法によりスラブ等の鋼素材とすることが好ましいが、造塊-分塊圧延法、薄スラブ連鋳法などの、公知の鋳造方法を用いてもなんら問題はない。
 得られた鋼素材はついで、熱間圧延を施され熱延板とされる。なお、鋼素材に熱間圧延を施すにあたり、加熱炉に装入し所定の温度まで再加熱しても、あるいは鋼素材が所定温度以上の熱を保有している場合には、再加熱することなく、あるいは短時間の保持を行うだけで、熱間圧延を施す、いわゆる直接・直送圧延としてもなんら問題はない。 
 鋼素材の再加熱温度は、1150℃以上1300℃以下とすることが好ましい。炭化物形成元素であるTiを含有する鋼素材を使用する本発明では、粗圧延前に鋼素材中の炭化物、さらには硫化物を完全に溶解しておくことが必要であるため、TiSとMnSとの複合硫化物を完全に溶解させることができる1150℃以上に加熱することが好ましい。一方、加熱温度が1300℃を超えて、過剰に高温になると、オーステナイト結晶粒界が異常酸化され、得られる熱延鋼板の表面性状が低下し、曲げ加工性が低下する。このようなことから、鋼素材の熱間圧延のための加熱温度は1150~1300℃の範囲に限定することが好ましい。
 加熱された鋼素材は、ついで粗圧延および仕上圧延を施され、熱延板とされる。
粗圧延の条件は、所定の寸法形状の粗圧延バーが得られる条件であればよく、とくに限定する必要はない。
 仕上圧延は、仕上圧延機を5段以上、連続して設置して、一方向に連続して圧延するタンデム方式の圧延とする。タンデム方式の圧延とすることにより、オーステナイト結晶粒界の位置を短時間で変えることで、オーステナイト粒界に析出する硫化物の微細化が達成される。すなわち、硫化物がオーステナイト粒界に析出する前に、圧延とそれに続く再結晶により、オーステナイト粒界の位置を変化させることで、顕著な硫化物の粗大化を防止できる。この効果を、オーステナイト再結晶促進による効果と合わせることで、硫化物を効率的に微細化することができる。なお、仕上圧延機の設置が5段未満では、オーステナイトの再結晶回数が少なくなり、硫化物の微細化が促進されず、所望の効果を期待できなくなる。なお、タンデム方式の仕上圧延機の1段当りの圧下率にとくに限定はないが、5%以上の圧下が好ましい。
さらに仕上圧延では、仕上圧延機の入側温度を1000℃以上、出側温度を900℃以上とする。本発明では、仕上圧延を、再結晶が瞬時に生じる温度域で圧延し、硫化物の粗大化を阻止する。再結晶が瞬時に生じる温度域で圧延すれば、圧延での蓄積エネルギーが瞬時に解放され、硫化物の粗大化の駆動力がなくなり、粗大化を阻止することができる。なお、入側温度が1000℃未満では、未再結晶温度域での圧延が長くなり、硫化物が粗大化する危険が増大する。一方、出側温度が900℃未満では、未再結晶温度域での滞留時間が長く、未再結晶温度域での圧下量が多くなり、硫化物の粗大化が顕著となる。このようなことから、仕上圧延機の入側温度を1000℃以上、出側温度を900℃以上に限定した。なお、仕上圧延の温度範囲は、好ましくは1050~920℃である。
仕上圧延を終了した後、冷却して、所定の巻取り温度で巻き取る。仕上圧延終了後の冷却は、とくに限定する必要はないが、700℃までの平均冷却速度で50℃/s以上とすることが、引張強さの確保の観点から好ましい。冷却速度が平均で、50℃/sを下回って小さくなると、実質的にフェライト単相の組織を確保できにくくなる。このようなことから、平均冷却速度で50℃/s以上とすることが好ましい。
 巻取り温度は、500℃以上700℃以下とする。
巻取り温度の適正化は、所望の鋼板組織を確保するために、あるいは硫化物の粗大化を抑制するために、重要である。巻取り温度が700℃を超える高温では、巻取り後に硫化物が粗大化し、曲げ加工性が低下する。なお、巻取り温度は、フェライト単相組織を確保する観点から500℃以上とする。巻取り温度が500℃未満では、ベイナイトが多量に生成して曲げ加工性が劣化する。なお、好ましくは580℃以上680℃以下である。
 上記のような工程で製造された熱延鋼板には、めっき処理、例えば溶融亜鉛めっき処理を施し、表面にめっき皮膜を形成してもよい。なお、溶融亜鉛めっき処理後に合金化処理を施して、合金化溶融亜鉛めっき皮膜としてもよい。また、電気めっきを施して電気めっき皮膜を形成しても良い。
 表1に示す組成の溶鋼を転炉で溶製し、連続鋳造して肉厚:280mmのスラブ(鋼素材)とした。これらスラブに、表2に示す加熱温度に加熱し、粗圧延を施した後、仕上圧延として、仕上圧延機を7段連続して設置したタンデム方式の連続圧延を、表2に示す条件で施したのち、表2に示す条件で冷却し、表2に示す巻取り温度で巻き取り、板厚:2.9mmの熱延鋼板を得た。なお、一部の熱延鋼板については、酸洗して表層のスケールを除去したのち、溶融亜鉛めっき処理(490℃の亜鉛めっき浴(0.1%Al-Zn浴)中に浸漬)を施し、付着量:48g/mの溶融亜鉛めっき皮膜を形成し、さらに550℃で合金化処理を施し、合金化溶融亜鉛めっき鋼板とした。
 得られた熱延鋼板から試験片を採取し、組織観察、引張試験、曲げ試験を実施した。試験方法は次のとおりである。
(1)組織観察
得られた熱延鋼板から組織観察用試験片を採取し、圧延方向と平行な断面(L断面)を機械研磨し、ナイタール液(nital)で腐食したのち、走査型電子顕微鏡(倍率:3000倍)で組織観察を行い、撮像した。得られた組織写真を用いて、画像解析装置によりフェライト相、フェライト相以外の組織の種類、およびそれらの組織分率(面積率)を求めた。
また、得られた熱延鋼板から透過型電子顕微鏡観察用薄膜を作製し、透過型電子顕微鏡(倍率:120000~260000倍)で観察し、微細Ti炭化物の粒子径を求めた。なお、微細Ti炭化物の粒子径は、260000倍で30視野以上観察し、合計で100個以上のTi炭化物について各粒子の粒子径を求めた。得られた組織写真を用い、画像解析により、円近似で各粒子の粒子径をもとめ、それらの値を算術平均して、その鋼板(試験片)におけるTi炭化物の平均粒子径とした。
また、TiSについては、10000倍で30視野以上観察し撮像した。得られた組織について画像解析により、合計で20個以上のTiSについて円近似で、各粒子の粒子径を算出した。得られた値を算術平均して、その鋼板(試験片)におけるTiSの平均粒径とした。
(2)引張試験
得られた熱延鋼板から、圧延方向に対し直角方向を引張方向とするJIS 5号引張試験片(GL:50mm)を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、引張強さTSを求めた。
(3)曲げ試験
得られた熱延鋼板から、曲げ試験片(大きさ:30mm×150mm)を採取した。曲げ試験片を、試験片の長手方向中央がV字ブロック(頂角:90°)の頂点に一致するように、V字ブロックに載置し、曲げ試験片の中央位置をポンチ(先端半径R)でV字ブロックに押し付ける曲げ試験を、ポンチ先端半径を変化させて行った。試験後、試験片の曲げ部外側を目視観察し割れの有無を調査した。繰り返し数は3回とした。3回の曲げ試験ですべて、曲げ部外側に目視で亀裂が発生しなかった場合を合格であると、一つでも亀裂が生じた場合を不合格であるとした。そして、合格する最も小さい先端半径Rを板厚tで除したR/tを、限界曲げ半径比と定義し、曲げ加工性の評価基準とした。R/tが2以下である場合に、曲げ加工性に優れていると評価する。
 得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
本発明例はいずれも、引張強さTS:780MPa以上の高強度と、良好な曲げ特性を兼備した熱延鋼板である。一方、本発明の範囲を外れる比較例は、所望の高強度が確保できていないか、或いは限界曲げ半径比が大きく、所望の曲げ加工性が確保できていない。

Claims (8)

  1.  質量%で、
    C:0.035~0.065%、          Si:0.2%以下、
    Mn:0.7%以下、            P:0.025%以下、
    S:0.02%以下、            N:0.01%以下、
    Al:0.1%以下、             Ti:0.1~0.2%
    を含み、残部Feおよび不可避的不純物からなる組成と、
    さらに面積率で95%以上がフェライト結晶粒からなる金属組織で、該フェライト結晶粒中に平均粒径が6nm未満のTi炭化物と、さらに金属組織中に平均粒径0.5μm以下のTiSとが分散析出した組織とを有する引張強さTS:780MPa以上900MPa以下の高張力熱延鋼板。
  2.  前記組成に加えてさらに、質量%で、B:0.0035%以下を含有する請求項1に記載の高張力熱延鋼板。
  3.  前記組成に加えてさらに、質量%で、Cu、Sn、Ni、Ca、Mg、Co、As、Cr、Mo、Sb、W、Nb、Pb、Ta、REM、V、Cs、Zr、Hf、Znのうちの1種または2種以上を合計で、1%以下含有する請求項1または2に記載の高張力熱延鋼板。
  4.  表面にめっき層を有する請求項1ないし3のいずれかに記載の高張力熱延鋼板。
  5.  限界曲げ半径比が2以下である請求項1ないし4のいずれかに記載の高張力熱延鋼板。
  6. 鋼素材に、加熱し粗圧延と仕上圧延からなる熱間圧延を施し、仕上圧延終了後、冷却し、巻取る、熱延鋼板の製造方法であって、
    前記鋼素材を、質量%で、
    C:0.035~0.065%、          Si:0.2%以下、
    Mn:0.7%以下、            P:0.025%以下、
    S:0.02%以下、            N:0.01%以下、
    Al:0.1%以下、             Ti:0.1~0.2%
    を含み、残部Feおよび不可避的不純物からなる組成の鋼素材とし、
    前記仕上圧延を、仕上圧延機を5段以上、連続して設置したタンデム方式の圧延として、前記仕上圧延機の入側温度を1000℃以上、前記仕上圧延機の出側温度を900℃以上とする圧延とし、
    前記冷却後の巻取り温度を、500℃以上700℃以下とする
    引張強さが780MPa以上900MPa以下の高張力熱延鋼板の製造方法。
  7.  前記組成に加えてさらに、質量%で、B:0.0035%以下を含有する請求項6に記載の高張力熱延鋼板の製造方法。
  8.  前記組成に加えてさらに、質量%で、Cu、Sn、Ni、Ca、Mg、Co、As、Cr、Mo、Sb、W、Nb、Pb、Ta、REM、V、Cs、Zr、Hf、Znのうちの1種または2種以上を合計で、1%以下含有する請求項6または7に記載の高張力熱延鋼板の製造方法。
PCT/JP2012/008220 2011-12-27 2012-12-21 高張力熱延鋼板およびその製造方法 WO2013099196A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013551230A JP5700139B2 (ja) 2011-12-27 2012-12-21 高張力熱延鋼板およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011285918 2011-12-27
JP2011-285918 2011-12-27

Publications (1)

Publication Number Publication Date
WO2013099196A1 true WO2013099196A1 (ja) 2013-07-04

Family

ID=48696738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008220 WO2013099196A1 (ja) 2011-12-27 2012-12-21 高張力熱延鋼板およびその製造方法

Country Status (3)

Country Link
JP (1) JP5700139B2 (ja)
TW (1) TWI502079B (ja)
WO (1) WO2013099196A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113366127A (zh) * 2019-03-11 2021-09-07 日本制铁株式会社 热轧钢板

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111575609A (zh) * 2020-05-09 2020-08-25 包头钢铁(集团)有限责任公司 一种兼具高强度、良好塑性和韧性的工程机械用钢及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169727A (en) * 1980-05-29 1981-12-26 Nippon Kokan Kk <Nkk> Manufacture of hot-rolled steel plate for enameled product having excellent antifishscale property
JP2000212690A (ja) * 1998-11-20 2000-08-02 Nkk Corp 成形性および表面性状が優れた高強度熱延鋼板およびその製造方法
JP2000273577A (ja) * 1999-03-19 2000-10-03 Nkk Corp 伸びフランジ加工性と材質安定性に優れた高張力熱延鋼板およびその製造方法
JP2003321735A (ja) * 2002-04-30 2003-11-14 Jfe Steel Kk 強度安定性に優れた高成形性高張力鋼板ならびにその製造方法および加工方法
JP2005154809A (ja) * 2003-11-21 2005-06-16 Jfe Steel Kk プレス成形性に優れた溶接継手用高強度薄鋼板およびこれを用いた溶接継手
WO2011162412A1 (ja) * 2010-06-25 2011-12-29 Jfeスチール株式会社 伸びフランジ性に優れた高強度熱延鋼板およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169727A (en) * 1980-05-29 1981-12-26 Nippon Kokan Kk <Nkk> Manufacture of hot-rolled steel plate for enameled product having excellent antifishscale property
JP2000212690A (ja) * 1998-11-20 2000-08-02 Nkk Corp 成形性および表面性状が優れた高強度熱延鋼板およびその製造方法
JP2000273577A (ja) * 1999-03-19 2000-10-03 Nkk Corp 伸びフランジ加工性と材質安定性に優れた高張力熱延鋼板およびその製造方法
JP2003321735A (ja) * 2002-04-30 2003-11-14 Jfe Steel Kk 強度安定性に優れた高成形性高張力鋼板ならびにその製造方法および加工方法
JP2005154809A (ja) * 2003-11-21 2005-06-16 Jfe Steel Kk プレス成形性に優れた溶接継手用高強度薄鋼板およびこれを用いた溶接継手
WO2011162412A1 (ja) * 2010-06-25 2011-12-29 Jfeスチール株式会社 伸びフランジ性に優れた高強度熱延鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAHIKO MORITA ET AL.: "Development of Hot rolled High Strength Steels Hardened by Precipitation hardening with High Stretch Flanging", CURRENT ADVANCES IN MATERIALS AND PROCESSES, vol. 5, no. 6, September 1992 (1992-09-01), pages 1863 - 1866 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113366127A (zh) * 2019-03-11 2021-09-07 日本制铁株式会社 热轧钢板
CN113366127B (zh) * 2019-03-11 2023-01-17 日本制铁株式会社 热轧钢板

Also Published As

Publication number Publication date
JPWO2013099196A1 (ja) 2015-04-30
TWI502079B (zh) 2015-10-01
JP5700139B2 (ja) 2015-04-15
TW201339321A (zh) 2013-10-01

Similar Documents

Publication Publication Date Title
JP5765080B2 (ja) 伸びフランジ性に優れた高強度熱延鋼板およびその製造方法
JP5884476B2 (ja) 曲げ加工性に優れた高張力熱延鋼板およびその製造方法
JP5609786B2 (ja) 加工性に優れた高張力熱延鋼板およびその製造方法
JP5447741B1 (ja) 鋼板、めっき鋼板、及びそれらの製造方法
JP6394812B2 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP5321671B2 (ja) 強度と加工性の均一性に優れた高張力熱延鋼板およびその製造方法
WO2011004779A1 (ja) 高強度鋼板およびその製造方法
JP5321672B2 (ja) 材質均一性に優れた高張力熱延鋼板およびその製造方法
KR20180120210A (ko) 박 강판 및 도금 강판, 그리고, 열연 강판의 제조 방법, 냉연 풀 하드 강판의 제조 방법, 박 강판의 제조 방법 및 도금 강판의 제조 방법
WO2011122030A1 (ja) 加工性に優れた高張力溶融亜鉛めっき鋼板およびその製造方法
WO2013099136A1 (ja) 高強度熱延鋼板およびその製造方法
WO2017131054A1 (ja) 高強度亜鉛めっき鋼板、高強度部材及び高強度亜鉛めっき鋼板の製造方法
JP5821864B2 (ja) バーリング加工性に優れた高強度熱延鋼板およびその製造方法
KR20180120715A (ko) 박 강판 및 도금 강판, 그리고, 열연 강판의 제조 방법, 냉연 풀 하드 강판의 제조 방법, 박 강판의 제조 방법 및 도금 강판의 제조 방법
WO2015118864A1 (ja) 高強度熱延鋼板およびその製造方法
JP5610089B2 (ja) 高張力熱延鋼板およびその製造方法
WO2013099197A1 (ja) 高張力熱延鋼板およびその製造方法
JP5700139B2 (ja) 高張力熱延鋼板およびその製造方法
JP5594438B2 (ja) 高張力熱延めっき鋼板およびその製造方法
JP5644964B2 (ja) 高強度熱延鋼板およびその製造方法
CN114585758B (zh) 高强度钢板和碰撞吸收构件以及高强度钢板的制造方法
CN114585759B (zh) 高强度钢板和碰撞吸收构件以及高强度钢板的制造方法
JP5884164B2 (ja) 打抜き性と伸びフランジ加工性に優れた高張力熱延鋼板およびその製造方法
CN117751205A (zh) 钢板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863493

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013551230

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12863493

Country of ref document: EP

Kind code of ref document: A1