WO2013097295A1 - 弹射用动力源单元体和航母燃气蒸汽弹射器及弹射方法 - Google Patents

弹射用动力源单元体和航母燃气蒸汽弹射器及弹射方法 Download PDF

Info

Publication number
WO2013097295A1
WO2013097295A1 PCT/CN2012/001737 CN2012001737W WO2013097295A1 WO 2013097295 A1 WO2013097295 A1 WO 2013097295A1 CN 2012001737 W CN2012001737 W CN 2012001737W WO 2013097295 A1 WO2013097295 A1 WO 2013097295A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
chamber
ejection
piston
power source
Prior art date
Application number
PCT/CN2012/001737
Other languages
English (en)
French (fr)
Other versions
WO2013097295A8 (zh
Inventor
任明琪
闫飞宇
吕磊
Original Assignee
Ren Mingqi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ren Mingqi filed Critical Ren Mingqi
Publication of WO2013097295A1 publication Critical patent/WO2013097295A1/zh
Publication of WO2013097295A8 publication Critical patent/WO2013097295A8/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/04Ground or aircraft-carrier-deck installations for launching aircraft
    • B64F1/06Ground or aircraft-carrier-deck installations for launching aircraft using catapults
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/04Blasting cartridges, i.e. case and explosive for producing gas under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B5/00Cartridge ammunition, e.g. separately-loaded propellant charges
    • F42B5/02Cartridges, i.e. cases with charge and missile
    • F42B5/145Cartridges, i.e. cases with charge and missile for dispensing gases, vapours, powders, particles or chemically-reactive substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/80Energy efficient operational measures, e.g. ground operations or mission management

Definitions

  • the invention relates to an ejection power source unit body and an aircraft carrier gas vapor ejector and an ejection method, in particular to an ejection power source unit body and a projecting power source unit for generating a steam generated by high temperature and high pressure gas heated cooling water generated by gunpowder combustion.
  • the gas-fired catapult that assists the carrier aircraft on the aircraft carrier as a power source and its ejection method. Background technique
  • the flying speed is low and the speed is only About 1000km, it is a high-sonic aircraft, unable to carry out high-speed combat in the air, and the general combat aircraft are more than 1 times the speed of sound; the operation is too difficult, the pilot is not good training, the British have 5 “sea otters in the Falklands War” "The crash of the fighter due to operational errors is both laborious and costly; the engine is highly demanding at full load, and once the sand picked up by the take-off is sucked into the running engine, there may be incalculable consequences.
  • the fixed-wing carrier aircraft can also take a gliding take-off, even a large aircraft carrier (hereinafter sometimes an aircraft carrier is also called an aircraft carrier), its slab length will obviously limit the take-off weight and take-off frequency of the carrier aircraft, the carrier aircraft The amount of bombs and fuel carrying capacity will be greatly limited. It is almost impossible to build an AWACS aircraft, anti-submarine reconnaissance aircraft and electronic countermeasures machines with a weight of more than 30t. In addition, due to the limitation of the runway, the take-off and landing of the carrier aircraft must be carried out separately. The preparation time is long and the frequency of take-off and landing is low, which seriously affects the comprehensive operational effectiveness of the aircraft carrier.
  • skid takeoff is a last resort method without mastering the carrier-based ejection technology.
  • the carrier-based aircraft on the aircraft carrier has the following advantages: It enables small and medium-sized aircraft carriers to take off heavy aircraft, and can help various carrier aircraft including early warning aircraft, anti-submarine reconnaissance aircraft and electronic countermeasure aircraft to take off quickly. Improve the aircraft carrier's rapid response capability, expand the scope of operations and early warning, and play the role of "multiplier" for the overall operational effectiveness of the aircraft carrier;
  • the ejection takeoff distance is short, the seesaw space can be utilized to the maximum extent; the flight operation procedure can be simplified; Up to 4 take-off runways can be set up, and the landing runway can be set at the same time to ensure high-density take-off and landing; the carrier aircraft can take off smoothly at the cross-span wind and zero wind speed, creating a high-performance carrier-based machine.
  • the carrier aircraft should be larger.
  • the acceleration of the motion, and the acceleration is preferably a fixed value. If only the maximum acceleration value satisfies the requirement and the average acceleration is low, the ship-off speed of the carrier aircraft cannot reach the theoretical design value.
  • the force of the traction ship is determined according to the maximum acceleration value.
  • the design of the landing gear, longitudinal beams and other traction components of the carrier aircraft should be designed according to the maximum overload, which will inevitably increase the aircraft. the weight of.
  • the carrier can only reduce the amount of bomb or fuel, or increase the ejector.
  • the length, or must take off at a lower speed therefore, in order to maximize the maximum overload of the carrier aircraft, the carrier aircraft takes off at the maximum bomb capacity and maximum speed within a relatively short ejection distance, the catapult is
  • the traction applied to the carrier during the entire ejection process should be constant and correspond to the maximum overload of the carrier.
  • the carrier F14 with a weight of 33.7 tons accelerates to 185kn (343km/h) on a 95m long runway, and considers that there are two F110-GE-400 engines on the F14, the total thrust of the afterburning at takeoff is 250kN.
  • the catapult's traction should be 1357kN, and its output should exceed 129 hrs when the catapult is advanced to the end.
  • the power source of such a load or working device must be designed to be energy storage.
  • it can be designed to allow the main power of the aircraft carrier to generate steam (thermal energy) when the catapult does not output power, and store this part of the energy in the gas storage tank in the form of high temperature and high pressure steam.
  • the catapult Convert this part of the steam into mechanical energy and work on the carrier's aircraft to increase the kinetic energy of the carrier. Since this part of the thermal energy is converted into mechanical energy in a short time, the output power of the catapult is extremely large, but there is no need for a power source equivalent to the power.
  • the open cylinder type steam catapult is mainly composed of a gas storage tank, an ejection valve, an open cylinder, a piston assembly, a traction pulley, a water brake, an exhaust valve, and a back.
  • the catapult uses two gas storage tanks with a reserve of 227m 3 as the power source.
  • the high temperature and high pressure steam generated by the main power boiler of the aircraft carrier is stored in the gas storage tank.
  • the ejection valve is installed between the gas storage tank and the open cylinder.
  • the ejection valve When the ejector is working, the ejection valve is opened, and the steam in the gas storage tank is filled into the working chambers of the two open cylinders placed side by side, and the steam expands to work while entering the cylinder, pushing the total piston in the two open cylinders.
  • the towing rod extending from the nose landing gear of the aircraft is hung on the hook that protrudes from the traction pulley, and the traction pulley can tow the aircraft when the traction pulley moves forward. Move forward to accelerate the carrier and bounce it off the seesaw.
  • the C - 13 - 1 steam catapult can have a maximum overload of 6g, and the average acceleration of the entire stroke is only a little more than 2g (individual data is 3. 5g), F / A - 18C combat attack aircraft pilots often banule C - 1 3 - 1 catapults in the rear section often do not have the aircraft's own engine to accelerate faster.
  • the pressure of the steam in the gas storage tank remains basically the same during the ejection of the carrier (in fact, although steam is added to the gas tank at this time, the catapult and the main drive are both In the use of steam, so the pressure of the steam in the gas tank is not increased but is decreasing), the volume of steam entering the working chamber of the open cylinder can not keep up with the increase of the cylinder volume, pushing the piston assembly forward movement, mainly By the expansion of superheated steam, steam expansion reduces the pressure and temperature of the steam. Since the vapor pressure in the gas tank does not increase, it is also because of the steam expansion and pressure drop in the open cylinder that the flow of steam entering the open cylinder through the ejection valve is increased.
  • the acceleration at the end of the ejection stroke is estimated to not exceed lg. If estimated by lg, C-13-1 cylinder diameter It is 531 1 ⁇ 2m ( 21" ), the piston assembly and the traction block weigh 7 t , the F / A - 18C combat attack aircraft has a maximum takeoff weight of 22. 3t , F404-GE-402 enhanced performance engine afterburning thrust is 2 x78. 3kN
  • the steam pressure that is actually used to push the piston assembly, the traction block, and the carrier aircraft is only 0. 29 MPa.
  • the steam ejector with the steam tank with constant steam pressure as the power source the speed of the piston assembly of the ejector is increasing during the ejection of the carrier, but the ejector is applied to the carrier.
  • the traction is continuously reduced.
  • the lower steam pressure can only be used to overcome the resistance of the piston assembly (inertia force, exhaust resistance and The shear resistance of the lubricating oil) and the acceleration of the steam itself are not very helpful to the aircraft.
  • the longer the cylinder length the higher the ejection speed is.
  • the cylinder length and ejection speed of this type of structure of the steam catapult almost reached the limit.
  • the average overload of the catapult is only a little more than 2g, but it must be designed according to the overload of 6g. It can also be said that if the catapult is designed more reasonably, the carrier can carry more ammunition and fuel, or it can take off at a higher speed, or the catapult can be designed to be shorter.
  • the "Nimitz" nuclear-powered aircraft carrier takes off at a speed of one frame per minute, it will lose 20% of the carrier's main power steam after continuously launching the carrier aircraft, and the power is reduced by 32%. %, the maximum speed is reduced from 30kn to 22kn.
  • the maximum speed is reduced from 30kn to 22kn.
  • even a nuclear-powered aircraft carrier with two nuclear reactors with a total power of 194 MW and four emergency diesel engines with a total power of 8 MW will reduce the speed due to insufficient power and reduce the number of ejections of the carrier aircraft per unit time. .
  • the current steam ejector with a constant steam pressure as the power source in order to keep the steam pressure in the gas tank as constant, the steam pressure in the gas tank is getting higher and higher, and the volume is getting more and more Large, if a fragment hits the gas tank when attacked by the enemy, not only will there be a big bang, but the leaking high temperature steam will instantly steam the relevant operators. Moreover, due to the large volume and weight of the ejector gas storage tank, the number of carrier aircraft loaded on the aircraft carrier is affected to some extent.
  • this type of catapult can only be used on an aircraft carrier powered by a steam turbine. If the aircraft carrier uses other power such as a gas turbine or a diesel engine, the catapult has no use. At present, most of the US aircraft carriers use steam turbines with lower efficiency and backward technology as the main power. It can also be said that steam catapults must use steam. In order to make the power source the same, they have to take An expedient measure.
  • the inventor believes that, in terms of the ejection performance required by kinematics and kinetics, the pressure of the steam that has just left the ejection valve into the open cylinder working chamber to push the rear end of the piston assembly should be increased as the ejection speed increases, but now
  • the steam pressure in the technical gas storage tank is kept substantially constant, and the pressure loss is greatly reduced when the steam passes through the ejection valve at the end of the ejection, and the steam pressure entering the working chamber of the open cylinder is greatly reduced, that is, the piston assembly is actually pushed.
  • the forward steam pressure is very low, and the forward resistance of the piston assembly is also increased, so it is impossible to achieve uniform acceleration ejection of this type of ejector.
  • the inventor believes that this is mainly because the steam ejector shares a power source with the main drive, and the steam ejector uses a large amount of steam, and the steam consumed by the ejector cannot be replenished in time, and the gas storage tank does not have The function of rapidly increasing the steam pressure cannot quickly increase the steam pressure entering the open cylinder working chamber during the ejection process.
  • the most effective way to solve this problem is to separate the main drive and the power source of the catapult.
  • the main power on the aircraft carrier is used as the power source for the main drive and other auxiliary devices.
  • the catapult uses a separate power source and ejects.
  • the power source of the device is to store the energy substance capable of generating high temperature and high pressure gas in a special container in a chemically-made manner and constitute a separate projecting power source unit. If it is required to release energy, it is only required to fire.
  • the ejection power source unit body can quickly and continuously release a certain amount of high-pressure gas within a predetermined time.
  • the ejection power source unit body should be safe and reliable, and can quickly and easily replace the new ejection power source unit body after ejecting a carrier aircraft.
  • a high-pressure tank with a large volume is not large, a connected explosion is set.
  • the explosion chamber and the expansion chamber are provided with a plurality of the power source unit for the ejection on the side of the explosion chamber, and the high-pressure gas generated by each of the ejection power source unit bodies can be directly discharged into the explosion chamber, and then enters the expansion chamber, and the expansion chamber In communication with the two open cylinder working chambers, the gas in the expansion chamber can be directly replenished into the open cylinder working chamber.
  • the carrier aircraft When the carrier aircraft is ejected, one or more ejecting power source unit bodies are fired, and the gas is rapidly charged into the expansion chamber and the two open cylinder working chambers, and the gas expands, pushes the piston forward to work, the expansion chamber and the open cylinder The gas pressure in the working chamber is reduced.
  • the piston moves for a certain stroke, the other ejecting power source unit body is fired, the high pressure gas is released again, and the gas in the open cylinder working chamber is quickly replenished and pressurized, so that
  • the pressure of the gas in the working chamber of the open cylinder can be continuously and continuously controlled, so that the traction force of the carrier of the catapult can be maintained substantially unchanged during the entire ejection process.
  • the present invention has been made to solve the above-mentioned problems, and an object thereof is to provide an ejection power source unit body in which an energy substance capable of generating high-temperature and high-pressure gas is chemically stored in a special container, so that When it is required to release energy, the power source unit can quickly and continuously release a certain amount of high-pressure gas within a prescribed time as long as the firing is performed, and can quickly and easily replace the new one after ejecting a carrier aircraft.
  • the power source unit for ejection is provided in which an energy substance capable of generating high-temperature and high-pressure gas is chemically stored in a special container, so that When it is required to release energy, the power source unit can quickly and continuously release a certain amount of high-pressure gas within a prescribed time as long as the firing is performed, and can quickly and easily replace the new one after ejecting a carrier aircraft.
  • the power source unit for ejection for ejection.
  • Another object of the present invention is to provide an ejector using a power source unit for ejection, which firstly fires one or more of the ejection power source unit bodies when the vehicle is ejected, releasing high-pressure gas, so that The gas is charged into the working chamber of the open cylinder to push the piston forward to work.
  • the piston moves for a certain stroke, the other ejecting power source unit body is fired again, and the high pressure gas is released again, and the gas in the open cylinder working chamber is quickly performed. It is supplemented and pressurized to control the pressure of the gas pushing the piston continuously during the ejection of the carrier. It can ensure that the traction of the traction carrier that is output during the entire ejection process of the catapult remains basically unchanged.
  • the present invention provides a power source unit for ejection, comprising: a casing, which is connected by a bottom of a cylinder having a bottom edge for shell casting, and a tubular portion; the fixing frame is fixed on the inner wall of the casing, There is a hole; the gunpowder is placed on the fixed frame; the igniter is placed between the bottom of the tube and the gunpowder; the igniter control device is arranged outside the bottom of the tube for detonating the igniter; the high pressure chamber nozzle, Fixed on the fixed frame, used to establish the high temperature and high pressure atmosphere required for continuous combustion of the gunpowder at the bottom of the cylinder; the splitting cylinder is connected with the high pressure chamber nozzle and the fixed frame for guiding the gas generated by the combustion of the gunpowder; a water piston disposed inside the tubular portion and having a through hole at the bottom; a circular end cap mounted at the top end of the cartridge; a riser penetrating through the center of the annular
  • the high pressure chamber, the diverting chamber and the cooling water chamber are arranged in the ejecting power source unit body, the high temperature and high pressure gas generated by the combustion of the gunpowder is ejected from the high pressure chamber nozzle and then enters the diverting chamber, diffusing and diverting in the diverting chamber, and a part of the high temperature
  • the high-pressure gas is ejected from the gas inlet on the riser into the riser from the spout, and another part of the high-temperature and high-pressure gas pushes the pressurizing piston, squeezing the water bag in the water chamber, causing the break line of the water bag to break, in the water bag
  • Cooling water is sprayed from the cooling water nozzle on the riser into the inside of the riser, mixed with high-temperature and high-pressure gas, absorbing the gas heat of the gunpowder, generating steam, and forming a high-pressure mixture with the gunpowder gas.
  • the ejection power source unit body is provided with the gunpowder in the cartridge case, and when the energy is required to be released, the ejection power source unit body can quickly and continuously release a certain amount of high-pressure gas within a predetermined time as long as the firing is performed. And after ejecting a carrier aircraft, the new ejection power source unit can be quickly and easily replaced by an automatic loader.
  • the power source unit of the ejection is the same as the ordinary projectile, and is easy to transport and store, and does not fire without exploding, so it is safe.
  • the present invention provides a gas vapor ejector for solving the above problems, comprising: a high pressure tank, internally divided into an explosion chamber and an expansion chamber, separated by a partition in the middle, and a vent hole is arranged on the partition; an open cylinder, which works The chamber communicates with the expansion chamber through the intake duct; the piston is disposed in the open cylinder; the exhaust valve is mounted on the tank wall on one side of the expansion chamber, and the outlet is provided with an exhaust duct leading to the outside of the cabin of the aircraft carrier; And a control device, a cannon is arranged on the tank wall on one side of the explosion chamber for loading the power source unit for ejection, and a gun bolt and a firing device are arranged at the rear end of the gun.
  • the gas vapor ejector also has a returning device and a water brake cylinder, and the returning device is used to pull the piston and the traction pulley back to the ejection.
  • the water brake cylinder is used to brake the piston and the traction pulley;
  • the gas vapor ejector also has a pressure sensor and a position sensor; and an automatic loading device for loading the power source unit for ejection is provided at a position of the high pressure tank near the bolt Loader.
  • the invention provides a method for ejecting a carrier aircraft by using a gas vapor ejector: a. detecting the movement position and movement speed of the piston by the control device, b. controlling the control device during ejection, first firing a One or more ejecting power source unit bodies, C. when the piston moves for a certain stroke, the other ejecting power source unit body is fired again, and the ejection power source unit body is fired as the piston movement stroke and speed increase. density.
  • one or more of the ejection power source unit bodies are first fired when the carrier aircraft is ejected, the high pressure gas is released, and the gas is charged into the open cylinder working chamber to push the piston Working forward, when the piston moves for a certain stroke, it fires another ejecting power source unit again, releases the high-pressure gas again, and quickly replenishes and pressurizes the gas in the open cylinder working chamber.
  • the pressure of the gas propelling the piston can be continuously and continuously controlled, and the traction force of the traction carrier aircraft outputted by the gas vapor ejector during the entire ejection process is substantially unchanged.
  • the carrier can carry more ammunition and fuel, or can take off at a higher speed, or catapult Can be designed to be shorter.
  • weight and volume of the high pressure tank used in the gas steam ejector using the power source unit for ejection are much smaller than the weight and volume of the prior art gas tank, weight and space can be saved, and the aircraft carrier can carry more More carrier aircraft.
  • the carrier Since the gas vapor ejector using the power source unit for ejection does not use the main driving power source of the aircraft carrier, the carrier is not ejected by the gas vapor ejector.
  • the aircraft carrier will not reduce the speed due to insufficient power and reduce the ejection ship per unit time.
  • any aircraft carrier in the form of power transmission can also be used for rapid ejection of small field airport aircraft with space constraints and short runway length without the need for a dedicated power boiler.
  • FIG. 1 is a schematic view showing the structure of a gas vapor bomb of the present invention.
  • Fig. 2 is a schematic view showing another structural form of the gas vapor bomb of the present invention.
  • Figure 3 is a schematic view showing the structure of a gas vapor ejector of the present invention.
  • Figure 4 is a schematic block diagram showing another form of the gas vapor ejector of the present invention. detailed description
  • FIG. 1 is a schematic view showing the structure of a gas vapor bomb 77 of the present invention.
  • the cartridge 6 of the gas vapor bomb 77 includes a cylinder bottom portion 1 1 and a cylinder portion 18.
  • One end of the cylinder bottom portion 11 and the cylinder portion 18 are integrally connected by a thread (or other means), and the bottom portion of the cylinder 11 has a bottom edge 5 for shell throwing, a porous fixing frame 13 is arranged inside the cartridge case 6, and a gunpowder 36 (or solid propellant) is fixed on the fixing frame 13 at the bottom of the gunpowder 36 and the barrel
  • An igniter 37 is disposed between the bottom 10 of the cylinder 11.
  • the igniter control unit 38 is disposed outside the bottom 10 of the cylinder, can be fired from the outside, and is connected to the igniter 37 through the bottom 10 for detonating the igniter 37.
  • the high pressure chamber 7 is surrounded by the cylinder bottom 11 of the cartridge case 6 and the high pressure chamber nozzle 35.
  • the high pressure chamber nozzle 35 and the splitter cylinder 15 are integrally provided with the holder 13 and are fixed to the inner wall of the cartridge case 6.
  • a cup-shaped water pressure piston 33 is provided inside the cylindrical portion 18, and a cup-shaped bottom portion 17 is provided with a through hole 27 at the center thereof, and a side wall portion thereof is in contact with the inner wall of the cylindrical portion 18 to serve as a guide portion for pressing water.
  • the piston 33 is free to move along the axis of the tubular portion 18.
  • the flow chamber 8 is surrounded by the cylindrical portion 18 of the cartridge case 6, the high pressure chamber nozzle 35, the splitter cylinder 15 and the pressurized water piston 33.
  • the splitter cylinder 15 is used to guide the gas generated by the combustion of the gunpowder.
  • an annular end cap 28 is fixed by threading or other connection, the riser 29 extends through the center of the annular end cap and is integral with the annular end cap 28, and the riser 29 can be from the pressurized water piston
  • the through hole 27 in the bottom portion 17 of the 33 is exposed, and the gas inlet 30 is disposed in the upper portion of the pipe wall of the riser 29, and is exposed in the diverting chamber 8, and the lower portion of the riser 29 is provided with a cooling water spout 21.
  • the upper end of the riser 29 is closed by the dome 31, and the lower end is a spout 26, which is also a spout 26 of the gas vapor bomb 77.
  • the spout 26 is provided with a diaphragm which can be broken and detached when the pressure inside the riser 29 reaches a certain value. 25.
  • the cooling water chamber 9 is defined by the cylindrical portion 18 of the cartridge case 6, the riser 29, the annular end cap 28 and the bottom 17 of the water pressure piston 33.
  • the cooling water chamber 9 is provided with a sealed water bag 19, and the water bag 19 is provided with cooling.
  • the water is provided with a break line 22 which is easily broken at a position corresponding to the cooling water spout 21 of the riser 29.
  • the above-mentioned gunpowder 36 is a composite double-base gunpowder (or compound double-base solid propellant CDB) which is non-toxic, smokeless, non-corrosive, good in mechanical properties and large in performance, and can also be a double-base propellant DB.
  • CDB compound double-base solid propellant
  • composite propellant such as propellant XLDB, which is formed into a block or hollow strip shape with holes 12, and is fixed on the fixing frame 13 to make the hole 12 (in the case of a hollow tube strip, refers to a gap between the hollow tubular strips) corresponding to the hole 39 in the holder 13, or directly placed in the high pressure chamber 7 by the holder 13 and the barrel bottom 11 In the gunpowder room.
  • propellant XLDB cross-linked modified double base Propellant
  • the entire gunpowder block is required to be burned from the detonation to the end of the combustion. It takes 0. 2 ⁇ 0. 6s, that is, the gunpowder 36 belongs to the slow-burning gunpowder.
  • the igniter 37 is detonated by the igniter control unit 38, and the igniting form can be in the form of any of the prior art, such as impact squib or electric bow blast.
  • the water bag 19 is made of a plastic film or other water-impermeable soft material, and is filled with a cooling water and has a circular cross section. When the sealed and water-filled water bag 19 is placed into the tubular portion 18, the water bag 19 just occupies the cylindrical portion 18 of the cartridge 6, the riser 29, the annular end cap 28, and the bottom 17 of the pressurized water piston 33. Cooling water chamber 9.
  • the diaphragm 25 is made of hard plastic, bakelite, cast aluminum or other easily rupturable material, and is fixed to the spout 26 of the riser 29 (gas vapor bomb 77) by means of screwing or bonding.
  • the diaphragm 25 is provided because a certain pressure and temperature are required for the combustion of the gunpowder 36, and when the igniter 37 is ignited and exploded, the pressure required for the combustion of the gunpowder 36 can be established inside the casing 6 due to the sealing of the diaphragm 25.
  • the axis of the gas steam bomb 77 is preferably arranged vertically because it is more advantageous for draining the cooling water in the gas steam bomb 77, but since the cooling water is contained in the water bag 19, it is pressurized by water.
  • the piston 33 is squeezed and the cooling water can also be drained, so that it can also be arranged in a horizontal arrangement.
  • the gas vapor bomb 77 of this structure comprises a cartridge 6, a holder 13, a gunpowder 36, an igniter 37, an igniter control device 38, a high pressure chamber nozzle 35, a diverting cylinder 15, a pressurized water piston 33, a water bag 19,
  • the annular end cap 28, the riser 29, and the diaphragm 25 are surrounded by the barrel bottom 11 of the cartridge case 6 and the high pressure chamber nozzle 35 into a high pressure chamber 7, and the holder 13, the gunpowder 36 and the igniter 37 are placed in the high pressure chamber 7, and the cartridge is placed.
  • the cylindrical portion 18, the high pressure chamber nozzle 35, the splitter cylinder 15, and the water pressure piston 33 surround the flow chamber 8, so that the water pressure piston 33 can move freely along the axis of the tubular portion 18, and the tubular portion 18 of the cartridge case 6 is freely movable.
  • the riser 29, the annular end cap 28 and the bottom 17 of the pressurized water piston 33 enclose a cooling water chamber 9, and a diaphragm 25 is disposed on the spout 26 of the riser 29, and a gas inlet 30 and cooling water are disposed on the pipe wall of the riser 29.
  • the spout 21, the gas inlet 30 is exposed in the diverting chamber 8, and a water bag 19 is provided in the cooling water chamber 9, and the water bag 19 is provided with cooling water, and is provided at a position corresponding to the cooling water spout 21 of the riser 29. Cracked split line 22. Since the gas vapor bomb 77 is of such a structure, when the igniter control unit 38 is fired from the outside of the cartridge case 6 by a firing device (not shown), the igniter 37 ignites and ignites, and the gunpowder 36 is ignited, and the gunpowder 36 is burned. The high temperature and high pressure gas enters the high pressure chamber nozzle 35 through the hole 12 and the hole 39 in the holder 13 and is accelerated to be ejected from the nozzle 32.
  • the high-temperature and high-pressure gas After the high-temperature and high-pressure gas is ejected from the nozzle 32, it is diffused and shunted in the diverting cylinder 15, and a part of the gas enters the inside of the riser 29 from the gas inlet 30 of the riser 29, and the pressure inside the riser 29 rises, when the pressure reaches a certain level. value, and the rupture of the diaphragm 25 off, the gas discharged from the standpipe nozzle 29 to 26. The other portion of the high temperature and high pressure gas pushes the bottom 17 of the water pressure piston 33, causing the water pressure piston 33 to move downward, squeezing the water bag 19.
  • the plastic film of the water bag 19 is deformable only at the break line 22 corresponding to the cooling water spout 21, and the pressure inside the cooling water spout 21 and the riser 29 is low, the water bag 19 is squeezed and cooled. After the pressure rises, the break line 22 at the position corresponding to the cooling water spout 21 of the water bag 19 is broken, and the cooling water in the water bag 19 is sprayed from the cooling water spout 21 of the riser 29 into the inside of the riser 29.
  • the cooling water and the high-temperature and high-pressure gas are mixed in the riser 29, the cooling water absorbs a large amount of the heat generated steam of the gas, and the temperature of the gas is lowered, so that it is actually ejected from the spout 26 of the riser 29 (which is also the spout of the gas vapor bomb 77). It is a mixture of much lower temperature than gunpowder gas.
  • the size of the cooling water nozzle 21, the amount of gunpowder 36 and the amount of cooling water the temperature of the mixture can be controlled between 200 and 500 °C.
  • the high-pressure chamber 7, the diverting chamber 8, and the cooling water chamber 9 are disposed in the gas-steam bomb 77, so that the high-temperature and high-pressure gas generated by the combustion of the gunpowder 36 is ejected from the high-pressure chamber nozzle 35 and then enters the diverting chamber 8, in the diverting chamber.
  • a part of the high-temperature and high-pressure gas is discharged from the gas inlet 30 of the riser 29 into the riser 29 from the spout 26, and another part of the high-temperature and high-pressure gas pushes the pressurizing piston 33, and squeezes the water in the water chamber 9.
  • the bag 19 breaks the break line 22 of the water bag 19, and the cooling water in the water bag 19 is sprayed from the cooling water spout 21 on the riser 29 into the inside of the riser 29, mixed with the high-temperature and high-pressure gas, and absorbs the gas of the gunpowder 36. Heat, generate steam, and form a high-pressure mixture with gunpowder gas.
  • the gas steam bomb 77 is an ejecting power source unit body that is capable of generating high-temperature and high-pressure gas, and the pyrotechnic material 36 is chemically stored in a special container-type casing 6 when it is required to release energy. As long as the igniter control unit 38 is fired, the ejection power source unit can quickly and continuously release a certain amount of high-pressure gas for a predetermined period of time.
  • FIG. 2 is a schematic view showing another structural form of the gas vapor bomb of the present invention.
  • the same components as those of the above embodiment are denoted by the same reference numerals as those of the above embodiment.
  • the riser 29 is configured to have a dome 31 at the upper end and a plurality of small gas inlets 30 on the side wall of the dome 31, it may be as shown in FIG.
  • a configuration of a large gas inlet 30' is provided at the upper end of the riser 29 as shown. Since the high-temperature and high-pressure gas discharged from the nozzle 32 of the high-pressure chamber nozzle 35 can also be diffused and shunted in the split chamber 8, a part of the high-temperature and high-pressure gas enters the riser 29, and another part of the high-temperature and high-pressure gas pushes the pressurizing piston 33, so this
  • the structural form has the same functions and effects as those of the above embodiment.
  • FIG. 3 is a schematic view showing the schematic configuration of a gas vapor ejector 1 of the present invention.
  • front refers to the ejection direction of the gas vapor ejector 1
  • rear refers to the opposite direction to "front”.
  • the gas vapor ejector 1 mainly includes a high pressure tank 70, two open cylinders 67 (one shown in the figure) which are arranged side by side in a horizontal arrangement, and a working chamber at the rear end, and a piston disposed in the open cylinder 67 (also The piston assembly 56, the water brake cylinder 56 (the same number as the piston 57), the exhaust valve 59, the traction pulley 50, the return device 58, the automatic loading machine 81, the lubrication system, the electric heating device, the pressure sensor, the position Sensors and control devices (not shown), etc.
  • the piston 57 is coupled to the traction block 50, and the returning device 58 is used to pull the piston 57 and the traction block 50 back to the ejection position, and the water brake cylinder 56 is used to brake the piston 57 and the traction pulley 50.
  • the carrier aircraft 60 is placed above the flight deck 68 in the ejection direction (the direction of piston movement), and the drawbar 52 projecting forward from the nose landing gear of the carrier aircraft 60 is hung from the traction pulley 50 to the flight deck.
  • a positioner (not shown) fixed to the flight raft 68 is connected to a force-limiting bolt (not shown) behind the nose gear by a drag lever 53 projecting forward and upward.
  • a baffle 55 is also provided above the flight raft 68 behind the carrier 60.
  • the gas vapor ejector 1 of the present invention is different from the prior art except that the sealing strips of the high pressure tank 70, the gas steam bomb 77, the automatic loading machine 81 and the open cylinder 67 are different from the prior art, and the working principle and structural form of the remaining portions are both existing and existing.
  • the technology is basically the same. The following mainly describes the structure of the high pressure tank 70, the gas vapor ejector 1 and the ejection method.
  • the high pressure tank 70 is a high pressure tank having an internal volume of 10 to 20 m 3 , and is internally divided into an explosion chamber 72 and an expansion chamber 71, separated by a partition 76 (the function of the partition 76 is to slow down).
  • the shock wave has an impact on the piston 57.
  • the volume of the high pressure tank 70 is large, the diaphragm 76 may not be provided, and the high pressure tank 70 has only one chamber. If the volume of the high pressure tank 70 is small, a plurality of expansion chambers may be provided.
  • a vent hole 73 is provided in the partition plate 76, and the expansion chamber 71 (the chamber of the high pressure tank 70 when the partition is not provided) passes through the intake pipe.
  • Channel 51 communicates with the cylinder two working chambers 67 opening in the tank wall side expansion chamber 71- (may be in the intake duct 51) with an exhaust valve 59 installed on the outlet of the discharge valve 59 is mounted an exhaust duct 78, the exhaust duct 78 leads to the outside of the aircraft carrier cabin, and a plurality of magazines 75 are disposed on the tank wall on the side of the explosion chamber 72.
  • the guns 75 are filled with a gas vapor bomb 77, and are disposed at the rear end of the gun 75.
  • a gun bolt and a firing device are provided with an automatic loading machine 81 for automatically loading the gas vapor bomb 77 at a position close to the bolt of the high pressure tank 70.
  • the cavity between the rear end face of the piston 57 and the intake duct 51 as a working chamber, the volume of which is the working volume. Since the high pressure tank 70, the intake duct 51, and the working chambers of the two open cylinders 67 are in communication, when the gas vapor bomb 77 is loaded in the magazine 75 on the high pressure tank 70, and the igniter control unit 38 is fired, the gas steam The mixture generated by the bomb 77 can be charged into the explosion chamber 72 of the high pressure tank 70, and enters the expansion chamber 71 through the vent hole 73 in the partition 76, and then enters the two opening cylinders 67 from the expansion chamber 71 through the intake duct 51. Work cavity.
  • the amount of the mixed gas produced is also constant.
  • the number of fired gas vapor bombs 77 is different, and the working chambers of the high pressure tank 70 and the open cylinder 76 have different pressures.
  • the working volume of the high pressure tank 70, the working chamber of the two opening steam rainbow 76, and the intake duct 51 is constant, and when the gas vapor ejector 1 is ejecting the carrier aircraft 60, the working chamber volume of the two open cylinders 67 is varied. If the piston 57 moves forward, the working chamber volume becomes large and the pressure is lowered.
  • the movement resistance of the piston 57 also increases as the ejection speed increases, if the movement and speed of the piston 57 increase, that is, as the working chamber volume and the ejection speed increase, the gas vapor bomb 77 is further fired.
  • the gas in the working chamber of the high pressure tank 70 and the two open cylinders 67 is supplemented and pressurized, so that the pressure in the working chamber of the high pressure tank 70 and the two open cylinders 76 can be continuously increased, thereby making the traction force of the traction carrier 60 substantially constant.
  • a stroke switch position sensor, not shown
  • the control device can be used at any time.
  • the moving position and the moving speed of the piston 57 are detected, and the position of the piston 57 is in one-to-one correspondence with the volume of the working chamber. Therefore, the high pressure tank 70, the intake duct 51, and the two open cylinders 76 can be determined according to the position of the piston 57.
  • the total volume of the chamber, the control device can determine the number of gas bombs 77 that should be fired.
  • the piston 57 moves a certain stroke, and a gas vapor bomb 77 should be fired again, rapidly in the working chamber of the high pressure tank 70 and the two open cylinders 67.
  • the gas is supplemented and pressurized.
  • a pressure sensor (not shown) is also mounted on the high pressure tank 70 and the two open cylinders 76.
  • the control device can increase the firing density of the gas steam bomb 77 at any time according to the pressure change detected by the pressure sensor, so that the traction force of the traction carrier 60 remains unchanged. Also, the ejection load of the carrier aircraft 60 is different, and the required traction force is different. However, the traction force is different, and the pressure in the working chamber of the high pressure tank 70 and the two open cylinders 76 is required to be different, which needs to be adjusted by adjusting the firing density. Adjustment. That is, the high pressure tank 70 is provided with a plurality of magazines 75, each of which is filled with a gas vapor bomb 77. The quality of the ejected carrier aircraft 60 is different, and the number of gas bombs 77 that are ultimately fired is different.
  • the gas vapor ejector 1 of this structure comprises a high pressure tank 70, two open cylinders 67 arranged side by side, a working chamber at the rear end, a piston 57, a water brake cylinder 56, an exhaust valve 59, a traction block 50, a return position
  • the device 58, the automatic loader 81, the lubrication system, the electric heating device, the pressure sensor and the position sensor, and the control device (not shown) the inside of the high pressure tank 70 is divided into an explosion chamber 72 and an expansion chamber 71, separated by a partition 76.
  • the venting hole 73 is disposed on the partition plate 76.
  • the expansion chamber 71 communicates with the working chamber of the two open cylinders 67 through the intake duct 51, and an exhaust valve 59 is installed on the tank wall on the side of the expansion chamber 71.
  • the outlet of the valve 59 is provided with an exhaust duct 78 leading to the outside of the aircraft carrier cabin, and a plurality of magazines 75 are disposed on the tank wall on the side of the explosion chamber 72, and the gas bombs 77 are filled in the guns 75.
  • a gun bolt and a firing device (not shown) are disposed at the rear end of the magazine 75, and an automatic loading machine 81 for automatically loading the gas vapor bomb 77 is disposed at a position of the high pressure tank 70 near the bolt.
  • the gas vapor ejector 1 of this structure differs from the prior art mainly in that a conventional gas storage tank for storing high temperature and high pressure steam is not used as a power source, but a gas steam bomb capable of generating a high pressure mixture at any time as needed is used.
  • a gas steam bomb capable of generating a high pressure mixture at any time as needed is used.
  • the ejection power source unit body a plurality of such ejection power source unit bodies are disposed in the high pressure tank 70, and the expansion chamber 71 of the high pressure tank 70 communicates with the working chambers of the two open cylinders 67.
  • the method of ejecting the carrier aircraft 60 by the gas vapor ejector 1 is: detecting the movement position and the moving speed of the piston 57 by the control device, and when the carrier carrier 60 is ejected, it is controlled by the control device, first firing one or a plurality of ejection power source unit bodies, and when the piston 57 moves for a certain stroke, the other ejection power source unit body is fired again, and the piston 57 is increased in stroke and speed.
  • the firing density In this way, during the ejection of the carrier aircraft 60, the pressure of the gas pushing the piston 57 can be continuously and continuously increased, and the traction force of the traction carrier 60 outputted by the gas vapor ejector 1 during the entire ejection process remains substantially unchanged.
  • the carrier aircraft 60 is evenly accelerated.
  • the carrier density 60 can be ejected with different quality.
  • the gas steam ejector 1 with the gas steam bomb 77 as the ejection power source unit body ejects the carrier aircraft 60: 1 First, all the guns 75 are filled with the gas steam bomb 77, and the gun bolt is locked, closed. The exhaust valve 59; 2 the carrier 60 is operated to the ejection position, the baffle 55 is supported, and the drawbar 52 projecting forward from the nose gear is hung on the hook extending from the traction block 50 above the flight deck 68.
  • the drag rod 53 extending from the positioner forward and upward is connected with the force-limiting bolt behind the front landing gear; 3 the engine of the carrier 60 is operated with normal thrust, and several gas steam bombs 77 are fired to make the high-pressure tank 70 and the intake duct 51 and the two open cylinders 76 have a certain pressure in the working chamber, and the drawbar 52 is firmly hung on the hook of the traction block 50, and exerts a certain traction force on the carrier 60, but since the force-limiting bolt is not Pulling off, the dragging lever 53 still drags the carrier aircraft 60, and the carrier aircraft 60 cannot move forward; 4 after determining that it can be ejected, the carrier aircraft 60 is commanded to operate in an energizing state, and then several gases are simultaneously fired.
  • the steam bomb 77 increases the working chamber pressure of the high pressure tank 70 and the two open cylinders 67. When the pressure reaches a certain value, the force limiting bolt is pulled off, under the traction force of the traction pulley 50 and the engine thrust of the carrier aircraft 60.
  • the carrier aircraft 60 begins to slide, and during this process, the pressure of the working chambers of the high pressure tank 70 and the open cylinder 67 continues to rise to the rated pressure; 5 after the piston 57 moves for a certain stroke, a gas vapor bomb 77 is again fired, The gas in the working chamber of the open cylinder 67 is replenished and pressurized, and stops firing the gas vapor bomb 77 before reaching the end point, and the piston 57 is operated to the end point by the continuous injection of the fired gas vapor bomb 77 and the expansion of the mixed gas;
  • the carrier 60 is bounced off the flight raft 68, and the water brake cone of the piston 57 enters the water brake cylinder 56, squeezing the fresh water in the water brake cylinder 56 to form a resistance.
  • the moving speed of the piston 57 is gradually decreased until the movement is stopped; 7 the exhaust valve 59 is opened, and the pressure of the working chamber of the high pressure tank 70 and the two open cylinders 67 is lowered; 8 returning device 58 starts, pulls the piston 57 and the traction block 50 back to the ejection position, at the same time, the automatic loader 81 works, and the cannon is opened to remove the cartridge 6 of the fired gas bomb 77 in each of the magazines 75 (throwing) The casing), and a new gas-fired bomb 77 is placed in each of the magazines 75, and at the same time, the deflector 55 is lowered so that its upper surface is flush with the flight raft 68.
  • the gas steam ejector 1 is used as the gas ejector unit 1 for the ejection power source unit body
  • one or more of the ejection power source unit bodies are first fired to release the high pressure gas, and the gas is charged.
  • the pusher 57 pushes forward to work, when the piston 57 moves After a certain stroke, the other ejecting power source unit body is fired again, the high pressure gas is released again, the gas in the working chamber of the open cylinder 67 is quickly replenished and pressurized, and the firing is improved as the piston 57 moves and the speed increases.
  • the density in the process of ejecting the carrier aircraft 60, can controllably and continuously increase the pressure of the gas pushing the piston 57, so that the traction force of the traction carrier 60 outputted by the gas vapor ejector 1 during the entire ejection process is substantially maintained. change.
  • the gas vapor ejector 1 of the present invention can always tow the carrier aircraft 60 with maximum overload, the carrier aircraft 60 can carry more ammunition and fuel, or can take off at a higher speed, or the ejector 1 can Designed to be shorter.
  • the gas steam ejector 1 of the present invention uses a high pressure tank 70 which is much smaller in weight and volume than the prior art gas tank, it can save weight and space, and the aircraft carrier can carry more ships. Machine 60.
  • the gas-fired steam ejector 1 of the present invention does not use the main driving power source of the aircraft carrier, the gas-fired steam ejector 1 is used to eject the carrier aircraft 60, and the aircraft carrier does not reduce the speed due to insufficient power, and reduces the ejection of the carrier aircraft per unit time. 60 trips.
  • gas vapor ejector 1 using the power source unit for ejection can be used on an aircraft carrier of any power and any power transmission form, or can be used for space limitation and a short runway length without a dedicated power boiler. The rapid ejection of a small field airport aircraft took off.
  • the gas vapor ejector 1 using the power source unit for ejection does not consume expensive fresh water on the aircraft carrier.
  • FIG. 4 is a schematic block diagram showing another form of the gas vapor ejector 1 of the present invention.
  • the same portions as those of the above embodiment are denoted by the same reference numerals.
  • the present embodiment adopts a structural form in which two high-pressure tanks are provided, that is, a first high-pressure tank 70 and a second high-pressure tank 70', and the structure of the second high-pressure tank 70'.
  • the form and function are substantially the same as those of the first high pressure tank 70, and communicate with the working chambers of the two open cylinders 67 through the intake duct 51', and the gun wall and the gun bolt are also arranged on the tank wall, and the automatic loader is arranged near the gun bolt.
  • this embodiment has the same functions and effects as those of the above embodiment. It is also possible to use a configuration in which a plurality of, for example, three or four high pressure tanks are provided.
  • the gas-fired steam ejector of the power source and its ejection method ⁇ " are described in detail. The specific application is applied in this paper.
  • the principles and embodiments of the present invention have been described by way of example, and the description of the above embodiments is merely for facilitating understanding of the method of the present invention and its core idea. It should be noted that those skilled in the art can make various modifications and changes to the present invention without departing from the spirit and scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

一种弹射用动力源单元体,该弹射用动力源单元体(77)包括高压室(7)、分流室(8)和冷却水室(9),火药(36)燃烧产生的高温高压燃气进入分流室,一部分燃气从燃气进口进入立管(29)内部,另一部分燃气挤压冷却水室中的水袋(19),使水袋中的冷却水从冷却水喷口喷入到立管的内部,与高温高压的燃气混合生成蒸汽,该蒸汽与火药燃气形成混合气。所述弹射用动力单元体将火药设置在弹壳(6)内,在需要释放能量时通过击发改动力单元体即可释放高压气体,从而实现舰载机的弹射。以及利用该动力单元体实现舰载机弹射的航母燃气蒸汽弹射器及弹射方法。

Description

弹射用动力源单元体和航母燃气蒸汽弹射器及弹射方法 技术领域
本发明涉及一种弹射用动力源单元体和航母燃气蒸汽弹射器及弹 射方法, 尤其是由火药燃烧产生的高温高压燃气加热冷却水生成蒸汽的弹射用 动力源单元体和用弹射用动力源单元体作为动力源的协助航空母舰上的舰载机 起飞的燃气蒸汽弹射器及其弹射方法。 背景技术
由于飞机的功能多、 且综合作战效能高, 所以, 自从莱特兄弟发明飞机之 后, 人们就试图使飞机能在军舰上起降。 固定翼飞机从航空母舰上起飞, 目前 主要有三种方式: 垂直 /短距起降飞机直接从飞行曱板上起飞; 滑跃式起飞; 弹 射起飞。
应该说, 垂直 /短距起降飞机有一些优点, 但也存在一些无法克服的致命的 弱点, 如: 太费油, 在垂直起飞的时候要消耗掉总油料的 1 / 3, 作战半径只有 100km左右, 不具备远航能力; 载弹量和栽油量太小, 若增加栽弹量, 则不能垂 直起降了, 必须要一段跑道, 这样还不如发展常规舰载机; 飞行速度低, 时速 只有 1000km左右, 属高亚音速飞机, 无法在空中进行高速格斗作战, 而一般作 战飞机都达 1 倍音速以上; 操作太难, 飞行员不好训练, 英国在马岛战争时就 有 5架"海鹞"战机因为操作失误坠毁, 既费劲又费钱; 发动机在全负荷运转的时 候对环境要求高, 一旦有因为起飞掀起的沙土被吸进运转中的发动机就有可能 发生不可估量的后果。
虽然固定翼舰载机也可以采用滑跃式起飞, 但即便是大型航母(以下有时 航空母舰也称为航母), 其曱板长度也会明显制约舰载机的起飞重量和起飞频 率, 舰载机的载弹量与燃油的携带量将会受到很大限制, 几乎不可能搭栽重量 超过 30t 的预警机、 反潜侦察机以及电子对抗机等。 另外, 滑跃式起飞的航空 母舰, 由于跑道的限制, 舰载机的起飞与降落必须分别进行, 准备时间长, 起 降频率低, 严重影响航空母舰的综合作战效能。 有专家做过理论计算, 表明吨 位相同的航空母舰, 滑跃起飞的综合作战效能大约是弹射起飞的 1 /4到 1 /7, 甚 至有人说是 1 / 1 000。 也可以说, 滑跃起飞是在没有掌握舰载机弹射技术情况下 的一种不得已而为之的方法。
一般认为, 航空母舰上的舰载机采用弹射起飞有如下优点: 使中小型航母 能起飞重型飞机, 能够帮助包括预警机、 反潜侦察机以及电子对抗机等在内的 各种舰载机快速满载起飞, 提高航空母舰的快速反应能力, 扩大作战与预警范 围, 对航空母舰综合作战效能起到 "倍增器" 的作用; 弹射起飞距离短, 曱板 空间可以被最大限度地利用起来; 可简化飞行作业程序; 不仅可以设置多达 4 条起飞跑道, 而且可以同时设置降落跑道, 保证高密度地起飞与降落; 能使舰 载机在横曱板风和零风速时顺利起飞, 为设计高性能舰载机创造了条件;就飞机 起飞安全性来说, 弹射起飞要比从陆地上起飞还要安全; 依靠弹射起飞每架次 可节省燃油近 200kg,从效费比上评价弹射器,该装置可以说是效率最高的航空 支援设备了。
虽然世界上有多个国家拥有航空母舰, 但同样是航空母舰, 有没有弹射器 使其综合作战效能存在天壤之别。 有专家认为, 没有弹射器就不要造航空母舰。
美国是使用舰栽机的先驱者, 也是航空母舰的始祖国之一, 目前是世界上 拥有航空母舰最多、 技术最先进的国家。 历史上, 舰载机经历了双翼机、 单翼 活塞机、 喷气式战斗机、 超音速飞机等漫长的演变过程, 伴随着舰栽机技术的 不断进步, 弹射器也经历了气动转盘式弹射器、 火药转盘式弹射器、 惯性飞轮 弹射器、 液压机械式弹射器、 喷气轻型弹射器、 燃气蒸汽弹射器、 开口汽缸式 弹射器等发展过程, 也因此美国海军一共装备了 7大类共计 37型弹射器。 但自 从 1951年英国人米切尔发明了开口汽缸式的蒸汽弹射器之后, 美国的航空母舰 至今一直使用该技术弹射舰载机, 这也是经过实战证明了的技术。 2003年美国 海军还在公开的财政预算书里提到了一项改良蒸汽弹射器试验设施的项目, 要 求国会拨款提升蒸汽弹射器试验设施的现代化水平, 并且提到提升试验设施水 平的目的是为应付蒸汽弹射器服役到 2050年的需要。 由此看来, 蒸汽弹射器还 会在美国海军航空母舰上使用相当长一段时间。
然而, 美国海军在舰艇设备全面电气化的大趋势下, 航母的动力传输将以 电力为基础, 所有动力设备也将电气化, 因此自 1992年起, 美国海军委托卡曼 电磁系统公司为新一代航母研制全新的、 性能非凡的电磁弹射器。 但研发电 磁弹射器需要解决线性同步电动机、 盘式交流发电机、 大功率数字循环变频器、 磁屏蔽、 电磁兼容、 系统散热等关键技术, 研制难度极大, 他们在 1945年西屋 公司研制的电磁弹射器、 1980的电磁炮、 卡曼公司的电磁驱动超高速电梯技术 基础上, 又耗时 19年花费了 32亿美元的经费, 虽然现处于弹射试验阶段, 但 短期内很难投入美军现役。
纵观美国海军航空母舰弹射器的发展历史, 可以说, 美国海军几乎尝试了 所有弹射器技术的一切发展可能, 其使用经验和研发经历也值得我们认真仔细 研究和思考。
为了了解弹射器的技术要求, 我们首先从运动学和动力学角度分析弹射器 的负载特性。
根据运动学关系式 2^ = ^— ( V。 = 0 )可知, 要想使舰栽机在比较短的跑 道上以较大的离舰速度 V'起飞, 就应使舰载机有较大的运动加速度, 且加速度 最好是一个定值, 如果仅最大加速度值满足要求, 而平均加速度较低, 则舰载 机的离舰速度就不可能达到理论设计值。 而且根据牛顿第二定律 = , 牵引舰 栽机的力是依据最大加速度值确定的, 设计舰载机的起落架、 纵梁及其它牵引 部件就应按该最大过载进行设计, 这样势必会增加飞机的重量。 反过来说, 如 果牵引舰载机的最大过栽已定的话, 若不能使舰载机以该最大过栽均匀加速, 则舰载机只能减少载弹量或燃油、 或者需要加大弹射器的长度、 或者必须以较 低的速度起飞, 因此, 为了能最大限度地利用舰载机的最大过载使舰载机在比 较短的弹射距离内以最大载弹量和最大速度起飞, 弹射器在整个弹射过程中施 加给舰载机的牵引力应当是恒定的, 且与舰栽机的最大过载相对应。
由于弹射器是不断加速的, 所以, 弹射器的输出速度是从 0到弹射速度 v,。 由于功率是力 (= Wia)与速度 V,的乘积, 因此, 弹射器在弹射过程中输出功率是 从 0到最大 , 也就是说舰载机弹射起飞时弹射器的输出功率达到最大。
如果以 33. 7 t重的舰载机 F14在 95m长的跑道上加速到 185kn ( 343km/h ), 并考虑 F14有两台 F110-GE-400发动机, 按起飞时加力燃烧总推力为 250kN进 行计算, 忽略空气阻力和其它摩擦阻力, 则弹射器的牵引力应为 1357kN, 当弹 射器推进到终点时其输出功率应超过 129爾。
另外, 由于弹射器是间歇地工作的, 在需要弹射舰载机时才使用, 而且弹 射一架舰载机也仅仅需要两三秒的 间,即使是在作战期间大部分时间也是 在等待, 所以, 这种负载或工作性质的装置, 其动力源一定要设计成蓄能式的。 例如可以设计成在弹射器不输出动力时让航母的主动力作功生成蒸汽(热能), 并将这部分能量以高温高压的蒸汽形式储存在储气罐中, 在弹射舰载机时, 弹 射器将这部分蒸汽转换成机械能并对舰载机作功, 增加舰载机的动能。 由于是 在短时间内将这部分热能转换成了机械能, 所以弹射器的输出功率极大, 但并 不需要有功率与之相当的动力源。
以美国航母现役主力弹射器 C-13- 1为例, 开口汽缸式的蒸汽弹射器, 主要 由储气罐、 弹射阀、 开口汽缸、 活塞总成、 牵引滑车、 水刹、 排气阀、 回位装 置、 导流板等构成。 该弹射器以两个储量为 227m3的储气罐为动力源, 平时将航 母主动力锅炉产生的高温高压蒸汽储存到储气罐中, 弹射阀安装在储气罐和开 口汽缸之间。 在弹射器工作时, 打开弹射阀, 将储气罐中的蒸汽充入到并排放 置的两个开口汽缸的工作腔中, 则蒸汽一边进入汽缸一边膨胀作功, 推动两开 口汽缸中的活塞总成向前运动并带动牵引滑车向前运动; 从飞机前起落架上伸 出的牵引杆挂在从牵引滑车上伸出曱板的挂钩上, 在牵引滑车向前运动时, 牵 引滑车能牵引飞机向前运动, 使舰载机加速并将其弹离曱板。
这种结构形式的蒸汽弹射器已经使用了 60年, 虽然能弹射舰载机, 但存在 一些严重缺陷。
例如, C - 13 - 1型蒸汽弹射器最大过载可以达到 6g, 而整个行程的平均加 速度仅有 2g多一点 (个别资料称是 3. 5g ), F/ A - 18C战斗攻击机飞行员常常 调侃 C - 1 3 - 1弹射器在后段往往没有飞机自身的发动机加速得快。
本发明人认为, 这主要是因为在弹射过程中, 随着活塞总成速度和汽缸容 积的增加, 通过弹射阀的蒸汽流量增加, 由于蒸汽通过弹射阀节流口时的压力 降与流速的平方成正比, 所以消耗在弹射阀上的压力降猛增。 由于储气耀的容 积很大, 在弹射舰载机过程中储气罐中蒸汽的压力基本保持不变 (实际上尽管 此时也有蒸汽补充到储气罐中, 但由于弹射器和主驱动都在用汽, 所以储气罐 中蒸汽的压力不但没有增加而是在下降), 进入开口汽缸工作腔中的蒸汽的体积 跟不上汽缸容积的增加量, 推动活塞总成向前运动, 主要是靠过热蒸汽的膨胀, 而蒸汽膨胀就会降低蒸汽的压力和温度。 由于储气罐中的蒸汽压力并没有增加, 所以也正是由于开口汽缸中的蒸汽膨胀、 压力降低, 才能使通过弹射阀进入开 口汽缸中的蒸汽流量增加。 从另一角廋讲, 因为从打开弹射阀到舰载机离舰只 有 2秒的时间, 且在舰载机刚开始滑行时, 开口汽缸工作腔中的压力还比较高, 弹射阀两端的压差比较小, 蒸汽流量不可能大, 而在弹射行程的后段,开口汽缸 工作腔中的压力虽然变低了, 但活塞运动速度很高, 走完余下的行程用时很短, 也不可能补充太多的蒸汽, 所以在这 2 秒的时间里, 从储气罐补充到开口汽缸 工作腔中的蒸汽不可能很多。 但在舰载机离舰后, 关闭弹射阀需要一些时间, 而此时因开口汽缸工作腔中的蒸汽压力很低, 会有大量的蒸汽从储气罐进入到 开口汽缸工作腔中, 此时进入开口汽缸工作腔中的蒸汽并没有对舰载机作功, 完全是浪费。 因此, 可以说以蒸汽压力恒定的储气罐为动力源的蒸汽弹射器, 进入开口汽缸工作腔中的蒸汽的体积不可能跟上汽缸容积的增加量, 这样的话, 在弹射舰载机的过程中, 由于开口汽缸工作腔中的压力不断减小, 所以蒸汽作 用在活塞总成上的推力也在不断减小。
还有一个原因就是活塞前端的空气是被推着挤出开口汽缸的, 在开口汽缸 的前端设置有放气阀, 通过该放气阀的空气流量随着活塞总成速度的增加而激 增, 阀上的压力降猛增, 所以, 空气作用在活塞前端的阻碍活塞前进的排气阻 力 (背压)在弹射过程中是不断增加的。 另外, 活塞与开口汽缸之间是通过密 封环接触的, 为了不至于拉缸, 接触面上有润滑油, 润滑油的剪切阻力是与剪 切速度(活塞运动速度) 的平方成正比的。 也就是说阻碍活塞运动的排气阻力 和润滑油剪切阻力是随着活塞速度的增加而增加的。
另外, 蒸汽本身加速也需要一部分蒸汽能量。
以弹射 F/ A - 18C战斗攻击机为例进行分析, 如果平均加速度只有 2g多一 点儿的话, 则弹射冲程末端的加速度估计不会超过 lg, 如果按 lg进行估算, C- 13-1汽缸直径是 531 ½m ( 21" ), 活塞总成和牵引滑车重 7 t , F/ A - 18C战 斗攻击机最大起飞重量 22. 3t , F404-GE-402 增强性能发动机加力推力为 2 x78. 3kN,则真正用于推动活塞总成、 牵引滑车和舰载机前进的蒸汽压力只有 0. 29MPa。 这说明在弹射冲程的末端, 弹射阀的压力降太大, 充入到开口汽缸工 作腔的蒸汽体积跟不上开口汽缸工作腔容积的增加量, 推动活塞总成向前运动, 主要是靠过热蒸汽膨胀, 且膨胀后的很低的蒸汽压力还主要用于克服阻碍活塞 运动的排气阻力和润滑油剪切阻力了。 也就是说, 刚打开弹射阀弹射舰栽机时, 蒸汽弹射器施加给舰载机的牵引力会是过载 5 ~ 6g,但在整个弹射行程中,推力 不断减小, 到最后有可能过载不到 lg。 s 通过以上分析可知, 以蒸汽压力恒定的储气罐为动力源的蒸汽弹射器, 在 弹射舰载机的过程中, 弹射器的活塞总成速度是不断增加的, 但弹射器施加给 舰载机的牵引力是不断减小的, 到弹射沖程的末端, 由于活塞总成的速度很高, 所以, 较低的蒸汽压力基本上只能用于克服活塞总成运动阻力 (惯性力、 排气 阻力和润滑油剪切阻力) 以及蒸汽本身的加速, 对飞机的帮助不大。 且这种情 况汽缸长度越长弹射速度越高则越明显。 实际上, 目前这种结构形式的蒸汽弹 射器的汽缸长度和弹射速度几乎达到了极限。
这实际上对舰载机提出了过高的要求,即弹射时平均过载只有 2g多一点儿, 但必须按过载 6g进行设计。 也可以说如果弹射器设计得更加合理的话, 舰载机 完全可以携带更多的弹药和燃料, 或者能以更高的离舰速度起飞, 或者弹射器 可以设计得更短一些。
由于舰载机离舰后, 还会有一大部分蒸汽进入开口汽缸工作腔, 这部分蒸 汽并没有对舰载机作功, 所以这种弹射器的效率很低, 其蒸汽能量利用率仅有 6%, 弹射器需要消耗大量的蒸汽。 由于弹射器所需蒸汽来自航母的主动力锅炉, 也就是说与航母的主驱动是同一动力源, 而弹射器用的蒸汽在弹射后基本散失 掉了 (弹射一架舰载机大约需消耗将近 H 的淡水)。 有资料显示, 如果 "尼米 兹" 级核动力航母以每分钟一架的速度紧急弹射舰载机起飞、 连续弹射 8 架舰 载机之后就会损失航母主动力蒸汽达 20%, 动力减少 32%, 最大航速从 30kn降 低到 22kn。 也就是说, 即使是具有 2座总功率为 194MW的核反应堆、 还有 4台 总功率为 8MW的应急柴油机的核动力航母也会因为动力不足而降低航速、 减少 单位时间内弹射舰载机的架次。
另外, 目前的以蒸汽压力恒定的储气耀为动力源的蒸汽弹射器, 为了尽量 使储气罐中的蒸汽压力保持恒定, 储气罐中的蒸汽压力越来越高, 容积也越来 越大, 如果被敌人攻击时有破片击中储气罐, 不仅会带来大爆炸, 而且泄漏的 高温蒸汽瞬间就可以将相关的操作人员蒸熟。 并且由于这种弹射器储气罐的体 积和重量都很大, 在一定程度上影响了航空母舰搭载舰载机的数量。
另外, 这种弹射器只能用在以蒸汽轮机为主动力的航空母舰上, 如果航空 母舰釆用其它动力如燃气轮机或柴油机, 则这种弹射器就没有了用武之地。 目 前美国的航空母舰大都采用效率较低、 技术比较落后的蒸汽轮机为主动力, 也 可以说就是因为蒸汽弹射器必须使用蒸汽, 为了使动力源相同, 而不得不采取 的一种权宜之计。
正是由于以上所述原因, 在 1961年刚刚开发成功 C-Π蒸汽弹射器不久, 美国海军就打算开发体积小、 重量轻、 推力更大的内燃式弹射器, 以取代蒸汽 弹射器, 但由于种种原因该项目于 1963年搁浅了。
本发明人认为, 单从运动学和动力学要求的弹射性能来讲, 刚刚离开弹射 阀进入开口汽缸工作腔推动活塞总成后端的蒸汽, 其压力应当随着弹射速度的 增加而提高, 但现有技术的储气罐中的蒸汽压力基本保持恒定, 而在弹射的末 端蒸汽通过弹射阀时压力损失很大, 进入开口汽缸工作腔的蒸汽压力大大降低 了, 也就是说, 真正推动活塞总成前进的蒸汽压力很低, 而且活塞总成前进的 阻力还变大了, 所以这种结构形式的弹射器不可能实现均匀加速弹射。 本发明 人认为, 这主要是由于蒸汽弹射器与主驱动共用一个动力源, 而蒸汽弹射器的 用汽量又很大、 弹射所消耗的蒸汽得不到及时的补充, 储气罐又不具备快速提 高蒸汽压力的功能, 不能在弹射的过程中迅速大幅提高进入开口汽缸工作腔的 蒸汽压力所造成的。
如果我国发展航空母舰弹射器技术, 应该认真分析现有技术的优缺点, 在 吸取英美等国先进经验的基础上, 摒弃那种落后的传统的理论和观念, 立足于 中国的经济和工业基础之上, 发展自己的弹射器技术。 那么, 设计一种什么样 的弹射器使用的动力源单元体, 使其在弹射舰载机的过程中能够可控地不断提 高开口汽缸工作腔中气体的压力, 就成为本领域工程技术人员急需解决的关键 技术问题。 发明内容
解决这一问题的最有效的方法就是将主驱动和弹射器的动力源分开, 将航 空母舰上的主动力作为主驱动和其它辅助装置的动力源, 而弹射器采用单独设 置的动力源, 且弹射器的这种动力源最好是将能产生高温高压气体的能源物质 以化学能的方式储存在特制的容器中且构成一个独立的弹射用动力源单元体, 如果需要其释放能量, 只要进行击发, 该弹射用动力源单元体就能在规定的时 间内迅速持续地释放出一定量的高压气体。 而且, 这种弹射用动力源单元体应 当安全可靠, 且在弹射一架舰载机之后, 能快速便捷地替换新的弹射用动力源 单元体。 这样的话, 如果在体积不是^ 大的耐高压的高压罐中设置连通的爆 炸室和膨胀室, 在爆炸室一侧设置多个该弹射用动力源单元体, 各个弹射用动 力源单元体产生的高压气体都可以直接排放到爆炸室中, 进而进入膨胀室, 而 膨胀室与两开口汽缸工作腔连通, 膨胀室中的气体就可以直接补充到开口汽缸 工作腔中。 当弹射舰载机时, 击发一个或多个弹射用动力源单元体, 气体迅速 充入到膨胀室和两开口汽缸工作腔中, 气体膨胀、 推动活塞向前运动作功, 膨 胀室和开口汽缸工作腔中的气体压力降低, 当活塞运动一定行程后再击发另外 的弹射用动力源单元体, 再次释放高压气体, 迅速地对开口汽缸工作腔中的气 体进行补充、 加压, 这样则能在弹射舰载机的过程中可控地不断提高开口汽缸 工作腔中气体的压力, 才能使弹射器牵引舰载机的牵引力在整个弹射过程中基 本保持不变。
本发明是为解决上述一系列问题而提出的, 其目的就是要提供一种将能产 生高温高压气体的能源物质以化学能的方式储存在特制的容器中的弹射用动力 源单元体, 使其在需要其释放能量时, 只要进行击发, 该动力源单元体就能在 规定的时间内迅速持续地释放出一定量的高压气体, 且在弹射一架舰载机之后, 能快速便捷地替换新的弹射用动力源单元体。
本发明的另一目的就是要提供一种使用弹射用动力源单元体的弹射器, 使 其在弹射舰载机时, 首先击发一个或多个该弹射用动力源单元体, 释放高压气 体, 使气体充入到开口汽缸工作腔中推动活塞向前运动作功, 当活塞运动一定 行程后再次击发另外的弹射用动力源单元体, 再次释放高压气体, 迅速地对开 口汽缸工作腔中的气体进行补充、 加压, 使其在弹射舰载机的过程中能可控地 不断提高推动活塞的气体的压力, 能保证弹射器在整个弹射过程中输出的牵引 舰载机的牵引力基本保持不变。
本发明为解决上述问题, 提供了一种弹射用动力源单元体, 包括: 弹壳, 由具有抛壳用的底缘的筒底部和筒部连接构成; 固定架, 固定在弹壳的内壁上, 其上有孔; 火药, 设置在固定架上; 点火器, 设置在筒底部的筒底与火药之间; 点火器控制装置, 设置在筒底的外部, 用于引爆点火器; 高压室喷管, 固定在 固定架上, 用于协同筒底部建立火药持续燃烧所需的高温高压氛围; 分流圓筒, 与高压室喷管和固定架连接为一体, 用于对火药燃烧产生的燃气进行导向; 压 水活塞, 设置在筒部的内部且底部具有通孔; 环形端盖, 安装在弹壳的顶端; 立管, 贯穿环形端盖中心; 水袋, 内桨有冷却水;隔膜,用于封堵立管的喷口, 由弹壳的筒底部和高压室喷管围成高压室, 固定架、 火药和点火器设置在高压 室中; 由弹壳的筒部、 高压室喷管、 分流圆筒和压水活塞围成分流室, 使压水 活塞能顺着筒部的轴线自如移动; 由弹壳的筒部、 立管、 环形端盖和压水活塞 的底部围成冷却水室, 立管的管壁上设置燃气进口和冷却水喷口, 燃气进口暴 露在分流室中, 水袋设置在冷却水室中, 且在与立管的冷却水喷口对应的位置 上设有容易破裂的断裂线。
由于在弹射用动力源单元体中设置高压室、 分流室和冷却水室, 使火药燃 烧产生的高温高压燃气从高压室喷管喷出后进入分流室, 在分流室中扩散、 分 流, 一部分高温高压燃气从立管上的燃气进口进入立管内部从喷口喷出, 另一 部分高温高压燃气推压压水活塞, 挤压水室中的水袋, 使水袋的断裂线断裂, 水袋中的冷却水从立管上的冷却水喷口喷入到立管的内部, 与高温高压燃气混 合, 吸收火药的燃气热, 生成蒸汽, 与火药燃气形成高压的混合气。
这种弹射用动力源单元体将火药设置在弹壳内, 在需要其释放能量时, 只 要进行击发, 该弹射用动力源单元体就能在规定的时间内迅速持续地释放出一 定量的高压气体, 且在弹射一架舰载机之后, 通过自动装弹机能快速便捷地替 换新的弹射用动力源单元体。 另外, 这种弹射用动力源单元体与普通炮弹一样, 便于运输和储存, 且不击发不会发生爆炸, 因此很安全。
本发明为解决上述问题提供了一种燃气蒸汽弹射器, 包括: 高压罐, 内部 分为爆炸室和膨胀室, 中间由隔板隔开, 在隔板上设置有通气孔; 开口汽缸, 其工作腔与膨胀室通过进气管道连通; 设置在开口汽缸内的活塞; 排气阀, 安 装在膨胀室一侧的罐壁上, 其出口安装有通向航空母舰船舱外部的排气管道; 与活塞相连的牵引滑车; 以及控制装置, 在爆炸室一側的罐壁上设置有炮膛, 用于装填弹射用动力源单元体, 且在炮膛的后端设置炮栓和击发装置。
另外, 优选如下技术方案。 开口汽缸有两个, 该两个开口汽缸并排水平设 置, 且后端的工作腔连通; 燃气蒸汽弹射器还具有回位装置和水刹缸, 回位装 置用于将活塞和牵引滑车拉回到弹射位置, 水刹缸用于对活塞和牵引滑车进行 制动; 燃气蒸汽弹射器还具有压力传感器和位置传感器; 在高压罐的靠近炮栓 的位置上设有用于装填弹射用动力源单元体的自动装弹机。
本发明提供一种用燃气蒸汽弹射器弹射舰载机的方法: a.由控制装置检测 活塞的运动位置和运动速度, b.在弹射时, 由控制装置进行控制, 首先击发一 个或多个弹射用动力源单元体, C.当活塞运动一定行程后再次击发另外的弹射 用动力源单元体, 而且随着活塞运动行程和速度的增加而提高弹射用动力源单 元体的击发密度。
由于使用弹射用动力源单元体的燃气蒸汽弹射器, 在弹射舰载机时, 首先 击发一个或多个该弹射用动力源单元体, 释放高压气体, 气体充入到开口汽缸 工作腔中推动活塞向前运动作功, 当活塞运动一定行程后再次击发另外的弹射 用动力源单元体, 再次释放高压气体, 迅速地对开口汽缸工作腔中的气体进行 补充、 加压, 在弹射舰载机的过程中能可控地不断提高推动活塞的气体的压力, 保证燃气蒸汽弹射器在整个弹射过程中输出的牵引舰载机的牵引力基本保持不 变。
由于使用弹射用动力源单元体的燃气蒸汽弹射器能始终以最大过载牵引舰 载机, 所以舰载机可以携带更多的弹药和燃料, 或者能以更高的离舰速度起飞, 或者弹射器可以设计得更短一些。
由于使用弹射用动力源单元体的燃气蒸汽弹射器所使用的高压罐的重量和 体积比现有技术的储气罐的重量和体积要小得多, 所以能节省重量和空间, 航 空母舰可以携带更多的舰载机。
由于使用弹射用动力源单元体的燃气蒸汽弹射器不使用航空母舰的主驱动 动力源, 所以用燃气蒸汽弹射器弹射舰载机, 航空母舰也不会因为动力不足而 降低航速、 减少单位时间内弹射舰载机的架次。 及任何动力传输形式的航空母舰上, 还可以不需要配备专用的动力锅炉就用于 受空间限制而跑道长度较短的小型野战机场飞机的快速弹射起飞。
另外, 使用弹射用动力源单元体的燃气蒸汽弹射器不消耗航空母舰上宝贵 的淡水。 附图说明
图 1是本发明的燃气蒸汽弹的结构示意图。
图 2是本发明的燃气蒸汽弹的另一种结构形式的示意图。
图 3是本发明的燃气蒸汽弹射器的简要结构示意图。
图 4是本发明的燃气蒸汽弹射器的 另一种形式的简要结构示意图。 具体实施方式
以下参照附图详细地对本发明的实施例进行说明。
图 1是本发明的燃气蒸汽弹 77的结构示意图。 如图 1所示, 燃气蒸汽弹 77的弹壳 6包括筒底部 1 1和筒部 18, 筒底部 1 1和筒部 18的一端通过螺 纹方式(也可以为其它方式)连接成一个整体, 筒底部 11上具有抛壳用的 底缘 5 ,在弹壳 6的内部设有多孔的固定架 1 3,在固定架 1 3上固定有火药 36 (或称为固体推进剂), 在火药 36与筒底部 11的筒底 10之间设有点火器 37 , 点火器控制装置 38设置在筒底 10的外侧、 能从外部击发的位置上, 并穿 过筒底 10与点火器 37连接, 用于引爆点火器 37。 由弹壳 6的筒底部 11和高压 室喷管 35围成高压室 7。高压室喷管 35及分流圓筒 15与固定架 13设置成一体 且被固定在弹壳 6的内壁上。 另外, 在筒部 18的内部设有杯状的压水活塞 33, 其杯状的底部 17中心设有通孔 27, 其侧壁部分与筒部 18的内壁接触, 成为导 向部分, 使压水活塞 33能顺着筒部 18的轴线自如移动。 由弹壳 6的筒部 18、 高压室喷管 35、分流圆筒 15和压水活塞 33围成分流室 8。 分流圆筒 15用于对 火药燃烧产生的燃气进行导向。 在筒部 18 的另一端 (顶端), 通过螺紋或其 它连接方式固定有环形端盖 28, 立管 29贯穿环形端盖中心, 且与环形端盖 28 成为一体, 立管 29能从压水活塞 33的底部 17上的通孔 27中露出来, 而该立 管 29的管壁上部设有燃气进口 30 , 且使其暴露在分流室 8中, 立管 29的下部 设有冷却水喷口 21, 立管 29的上端由穹顶 31封闭、 而下端为喷口 26, 也是燃 气蒸汽弹 77的喷口 26,在该喷口 26上设有当立管 29内部的压力达到一定值时 能破裂而脱落下来的隔膜 25。 由弹壳 6的筒部 18、 立管 29、 环形端盖 28和压 水活塞 33的底部 17围成冷却水室 9, 冷却水室 9中设有密封的水袋 19, 水袋 19内装有冷却水, 且在与立管 29的冷却水喷口 21对应的位置上设有容易破裂 的断裂线 22。
上述火药 36为燃气无毒、 无烟、 无腐蚀性、 力学性能好、 性能可调范围大 的复合双基火药 (或称为复合双基固体推进剂 CDB ), 也可以是双基推进剂 DB、 复合推进剂、 聚硫橡胶推进剂 PS、 聚氯乙烯推进剂 PVC、 聚氨酯推进剂、 聚丁 二烯推进剂、硝胺推进剂、复合改性双基推进剂 CMDB、交联改性双基推进剂 XLDB 等推进剂, 将其制成有孔 12的块状或空 心管条状, 固定在固定架 13上, 使孔 12 (为空心管条状时是指空心管状条之间的空隙) 与固定架 13上的孔 39相对 应, 或直接放置在高压室 7中的由固定架 13和筒底部 11内腔构成的火药室中。 通过调整火药的组分比例, 使整个火药块从被引爆开始燃烧到燃烧结束需要 0. 2 ~ 0. 6s的时间, 也就是说, 火药 36属于緩燃火药。
由点火器控制装置 38引爆点火器 37,引爆形式可以采用现有技术中撞击引 爆或电弓 I爆等任何弓 I爆形式。
水袋 19由塑料薄膜或其它不透水的柔软材料制成, 在其中充满冷却水后其 橫截面为圓环状。 当将密封且充满水的水袋 19放入到筒部 18中时, 水袋 19刚 好占据由弹壳 6的筒部 18、 立管 29、 环形端盖 28和压水活塞 33的底部 17围 成的冷却水室 9。
隔膜 25用硬塑料、 胶木、 铸铝或其它易破裂的材料制成, 通过螺纹或粘接 等连接方式固定在立管 29 (燃气蒸汽弹 77 ) 的喷口 26上。 设置隔膜 25, 是因 为火药 36燃烧需要有一定的压力和温度, 而在点火器 37点火爆炸时, 由于隔 膜 25的封堵能使弹壳 6内部建立火药 36燃烧所需的压力。而在点燃火药 36后, 由于燃烧产生的大量燃气从高压室喷管 35的喷口 32喷出有较大的阻力, 所以 是由高压室喷管 35协同弹壳 6的筒底部 11,在高压室 7中建立火药持续燃烧所 需的高温高压氛围的。
在工作状态下, 燃气蒸汽弹 77的轴线最好是垂直布置, 这是因为这样更有 利于排净燃气蒸汽弹 77中的冷却水, 但由于冷却水装在水袋 19 中, 并由压水 活塞 33挤压, 同样能排净冷却水, 所以也可以采用轴线水平布置的形式。
这种结构的燃气蒸汽弹 77, 包括弹壳 6、 固定架 13、 火药 36、 点火器 37、 点火器控制装置 38、 高压室喷管 35、 分流圆筒 15、 压水活塞 33、 水袋 19、 环 形端盖 28、 立管 29、 隔膜 25 , 由弹壳 6的筒底部 11和高压室喷管 35围成高压 室 7, 固定架 13、 火药 36和点火器 37放置在高压室 7中, 由弹壳 6的筒部 18、 高压室喷管 35、 分流圓筒 15和压水活塞 33围成分流室 8, 使压水活塞 33能顺 着筒部 18的轴线自如移动, 由弹壳 6的筒部 18、 立管 29、 环形端盖 28和压水 活塞 33的底部 17围成冷却水室 9, 在立管 29的喷口 26上设置隔膜 25, 立管 29的管壁上设置燃气进口 30和冷却水喷口 21 ,燃气进口 30暴露在分流室 8中, 在冷却水室 9中设置水袋 19 , 水袋 19内装有冷却水, 且在与立管 29的冷却水 喷口 21对应的位置上设有容易破裂的 裂线 22。 由于燃气蒸汽弹 77是这种结构, 所以, 当由击发装置(未图示)从弹壳 6 的外部击发点火器控制装置 38时, 点火器 37点火爆炸, 将火药 36点燃, 火药 36燃烧产生的高温高压燃气通过孔 12和固定架 13上的孔 39向下进入到高压室 喷管 35中, 且加速从喷口 32喷出。 高温高压燃气从喷口 32喷出后, 在分流圓 筒 15内扩散、 分流, 一部分燃气从立管 29的燃气进口 30进入立管 29的内部, 立管 29 内部的压力升高, 当压力达一定值时, 隔膜 25破裂且脱落, 燃气从立 管 29的喷口 26喷出。 而另一部分高温高压燃气推压压水活塞 33的底部 17 , 使 压水活塞 33向下运动, 挤压水袋 19。 由于水袋 19的塑料薄膜仅有与冷却水喷 口 21对应的断裂线 22处可以变形, 而且冷却水喷口 21和立管 29内部的压力 较低, 所以, 在水袋 19被挤压、 冷却水的压力升高后, 水袋 19的与冷却水喷 口 21对应位置处的断裂线 22断裂, 水袋 19中的冷却水从立管 29的冷却水喷 口 21喷入到立管 29的内部。
由于冷却水和高温高压燃气在立管 29内混合,冷却水吸收大量的燃气热生 成蒸汽, 燃气温度降低, 所以, 实际从立管 29的喷口 26 (也是燃气蒸汽弹 77 的喷口 )喷出的是温度比火药燃气低得多的混合气。 合理设计冷却水喷口 21的 尺寸、 火药 36及冷却水的量, 可以将混合气的温度控制在 200 ~ 500°C之间。
也就是说, 在燃气蒸汽弹 77中设置高压室 7、 分流室 8和冷却水室 9, 使 火药 36燃烧产生的高温高压燃气从高压室喷管 35喷出后进入分流室 8,在分流 室 8中扩散、 分流, 一部分高温高压燃气从立管 29上的燃气进口 30进入立管 29 内部从喷口 26喷出, 另一部分高温高压燃气推压压水活塞 33, 挤压水室 9 中的水袋 19, 使水袋 19的断裂线 22断裂, 水袋 19中的冷却水从立管 29上的 冷却水喷口 21喷入到立管 29的内部, 与高温高压燃气混合, 吸收火药 36的燃 气热, 生成蒸汽, 与火药燃气形成高压的混合气。
这种燃气蒸汽弹 77是将能产生高温高压气体的能源物质一一火药 36 以化 学能的方式储存在特制的容器一一弹壳 6 中的弹射用动力源单元体, 在需要其 释放能量时, 只要击发点火器控制装置 38, 该弹射用动力源单元体就能在规定 的时间内迅速持续地释放出一定量的高压气体。
由于这种弹射用动力源单元体外壳与普通炮弹极其相似, 在筒底部 11上设 有用于抛壳的底缘 5 , 所以如果配合现有自动装弹机技术, 在弹射一架舰载机之 后, 能快速便捷地替换新的弹射用动力 源单元体。 图 2是本发明的燃气蒸汽弹的另一种结构形式的示意图。 凡与上述实施例 结构相同的部位, 均标注与上述实施例相同的标号。 在上述燃气蒸汽弹 77的实 施例中, 虽然立管 29采用的是上端为穹顶 31, 在靠近穹顶 31的侧壁上设置多 个小的燃气进口 30的结构形式, 但也可以采用如图 2所示的在立管 29的上端 设置一个大的燃气进口 30' 的结构形式。 由于从高压室喷管 35的喷口 32喷出 的高温高压燃气同样能在分流室 8 中扩散、 分流, 一部分高温高压燃气进入立 管 29 , 另一部分高温高压燃气推压压水活塞 33, 所以这种结构形式具有与上述 实施例同样的功能和效果。
图 3是本发明的燃气蒸汽弹射器 1的简要结构示意图。 在本发明中 "前" 是指燃气蒸汽弹射器 1 的弹射方向, "后" 是指与 "前" 相反的方向。 如图 3 所示, 燃气蒸汽弹射器 1主要包括高压罐 70、 并排水平设置、 后端的工作腔连 通的两个开口汽缸 67 (图中示出一个)、 设置在开口汽缸 67内的活塞(也称活 塞总成) 57、 水刹缸 56 (与活塞 57数量相同)、 排气阀 59、 牵引滑车 50、 回位 装置 58、 自动装弹机 81、 润滑系统、 电加热装置、 压力传感器、 位置传感器和 控制装置(未图示)等。 活塞 57与牵引滑车 50相连, 回位装置 58用于将活 塞 57和牵引滑车 50拉回到弹射位置, 水刹缸 56用于对活塞 57和牵引滑 车 50进行制动。 舰载机 60沿弹射方向 (活塞运动方向)放置在飞行曱板 68 的上方, 从舰载机 60的前起落架向前伸出的牵引杆 52挂在从牵引滑车 50伸出 到飞行曱板 68上方的挂钩上, 固定于飞行曱板 68上的位持器(未图示)通过 向前上方伸出的拖拽杆 53与前起落架后方的限力螺栓(未图示)连接。 在舰载 机 60后方的飞行曱板 68之上, 还设置有导流板 55。
本发明的燃气蒸汽弹射器 1除高压罐 70、 燃气蒸汽弹 77、 自动装弹机 81 和开口汽缸 67的密封带与现有技术不同之外, 其余部分的工作原理和结构形式 均与现有技术基本相同。 以下主要对高压罐 70的结构、 燃气蒸汽弹射器 1及弹 射方法进行说明。
如图 3所示, 高压罐 70是内部容积为 10 ~ 20 m3的高压罐体, 内部分为爆 炸室 72和膨胀室 71 , 中间由隔板 76隔开(隔板 76的作用是减緩沖击波对活塞 57的冲击, 如果高压罐 70容积大, 也可以不设置隔板 76, 则高压罐 70仅有一 个腔室, 如果高压罐 70的容积小, 则也可以设置多个膨胀室), 在隔板 76上设 置有通气孔 73, 膨胀室 71 (在不设置隔 板时是高压罐 70的腔室)通过进气管 道 51与两开口汽缸 67的工作腔连通, 在膨胀室 71—侧的罐壁(也可以在进气 管道 51 )上安装有排气阀 59, 排气阀 59的出口安装有排气管道 78, 排气管道 78通向航空母舰船舱的外部, 在爆炸室 72—侧的罐壁上设置有多个炮膛 75, 在各炮膛 75中装填有燃气蒸汽弹 77, 且在炮膛 75的后端设置炮栓和击发装置 (未图示), 在高压罐 70的靠近炮栓的位置上设有用于自动装填燃气蒸汽弹 77 的自动装弹机 81。
我们称活塞 57后端面与进气管道 51之间的空腔为工作腔, 其容积为工作 容积。 由于高压罐 70、 进气管道 51以及两开口汽缸 67的工作腔是连通的, 所 以在将燃气蒸汽弹 77装填在高压罐 70上的炮膛 75中, 并击发点火器控制装置 38时, 燃气蒸汽弹 77产生的混合气能充入到高压罐 70的爆炸室 72中, 并通过 隔板 76上的通气孔 73进入到膨胀室 71, 再从膨胀室 71经过进气管道 51进入 两开口汽缸 67的工作腔。
由于每个燃气蒸汽弹 77的装药量和冷却水量都是一定的, 所以, 其所产生 的混合气的量也是一定的。 当将这样的多个燃气蒸汽弹 77装填到高压罐 70上 的炮膛 75中, 击发的燃气蒸汽弹 77的个数不同, 高压罐 70和开口汽缸 76的 工作腔就会有不同的压力。 高压罐 70、 两开口汽虹 76 的工作腔以及进气管道 51的容积是一定的, 而在燃气蒸汽弹射器 1弹射舰载机 60时, 两开口汽缸 67 的工作腔容积是变化的。如果活塞 57向前运动,则工作腔容积变大,压力降低。 另外, 由于随着弹射速度的增加活塞 57的运动阻力也增加, 所以若随着活塞 57 运动行程和速度的增加, 即随着工作腔容积和弹射速度的增加, 进一步击发燃 气蒸汽弹 77, 对高压罐 70和两开口汽缸 67工作腔中的气体进行补充、 加压, 则能使高压罐 70和两开口汽缸 76工作腔中的压力不断提高, 由此能使牵引舰 载机 60的牵引力基本保持不变。
在两开口汽缸 76的中间、 沿活塞 57的运动方向每隔一定距离设置一个行 程开关(位置传感器, 未图示), 在弹射舰栽机 60 的过程中, 控制装置(未图 示)可以随时检测到活塞 57的运动位置和运动速度, 而活塞 57的位置与工作 腔的容积是一一对应的, 所以, 根据活塞 57的位置可以确定高压罐 70、 进气管 道 51以及两开口汽缸 76工作腔的总容积, 控制装置就可以确定应击发的燃气 蒸汽弹 77的个数。 在弹射舰栽机 60的过程中, 活塞 57运动一定的行程, 就应 再次击发一个燃气蒸汽弹 77 , 迅速地对 高压罐 70和两开口汽缸 67工作腔中 的气体进行补充、 加压。 我们称活塞 57单位行程击发的燃气蒸汽弹 77的个数 为击发密度, 理论上讲, 击发密度不同, 高压罐 70和两开口汽缸 76工作腔中 的平均压力就不同。 另外, 高压罐 70和两开口汽缸 76上还安装有压力传感器 (未图示), 在弹射舰载机 60的过程中, 由于开口汽缸 76不可避免的会出现一 些泄漏、 密封不可能十分严密, 所以, 控制装置可以随时根据压力传感器检测 到的压力变化, 提高燃气蒸汽弹 77的击发密度, 使牵引舰载机 60的牵引力保 持不变。 还有, 弹射的舰载机 60的盾量不同, 所需要的牵引力就不同, 而牵引 力不同, 就要求高压罐 70和两开口汽缸 76工作腔中的压力不同, 这都需要通 过调整击发密度进行调节。 也就是说, 高压罐 70上设置多个炮膛 75, 每个炮膛 75 中都装填燃气蒸汽弹 77, 弹射的舰载机 60的质量不同, 则最终击发的燃气 蒸汽弹 77的个数不同。
这种结构的燃气蒸汽弹射器 1, 包括高压罐 70、 并排水平设置、 后端的工 作腔连通的两个开口汽缸 67、 活塞 57、 水刹缸 56、 排气阀 59、 牵引滑车 50、 回位装置 58、 自动装弹机 81、 润滑系统、 电加热装置、 压力传感器和位置传感 器以及控制装置(未图示), 高压罐 70内部分为爆炸室 72和膨胀室 71, 中间由 隔板 76隔开, 在隔板 76上设置有通气孔 73, 膨胀室 71通过进气管道 51与两 开口汽缸 67的工作腔连通, 在膨胀室 71—側的罐壁上安装有排气阀 59, 排气 阀 59的出口安装有排气管道 78, 该管道 78通向航空母舰船舱的外部, 而在爆 炸室 72—侧的罐壁上设置有多个炮膛 75,在各炮膛 75中装填有燃气蒸汽弹 77, 且在炮膛 75的后端设置炮栓和击发装置(未图示), 在高压罐 70的靠近炮栓的 位置上设有用于自动装填燃气蒸汽弹 77的自动装弹机 81。
这种结构的燃气蒸汽弹射器 1 与现有技术不同之处主要在于没有采用传统 的储存高温高压蒸汽的储气罐作为动力源, 而是采用能根据需要随时产生高压 混合气的燃气蒸汽弹 77作为弹射用动力源单元体, 将多个这样的弹射用动力源 单元体配置在高压罐 70上, 高压罐 70的膨胀室 71与两开口汽缸 67的工作腔 连通。
因此, 用这种燃气蒸汽弹射器 1弹射舰载机 60的方法是: 由控制装置检测 活塞 57的运动位置和运动速度, 在弹射舰载机 60时, 由控制装置进行控制, 首先击发一个或多个弹射用动力源单元体, 当活塞 57运动一定行程后再次击发 另外的弹射用动力源单元体, 而且随着 活塞 57运动行程和速度的增加而提高 击发密度。 这样在弹射舰载机 60的过程中能可控地不断提高推动活塞 57的气 体的压力, 保证燃气蒸汽弹射器 1在整个弹射过程中输出的牵引舰载机 60的牵 引力基本保持不变, 从而使舰载机 60均匀加速。 而且根据所弹射舰载机 60的 质量的不同而调整击发密度, 则能弹射质量不同的舰载机 60。
因此, 以燃气蒸汽弹 77为弹射用动力源单元体的燃气蒸汽弹射器 1弹射舰 载机 60的流程是: ①首先, 所有炮膛 75都装填上燃气蒸汽弹 77, 并锁紧炮栓, 关闭排气阀 59; ②舰载机 60运行到弹射位置, 支起导流板 55, 将从前起落架 向前伸出的牵引杆 52挂在从牵引滑车 50伸出到飞行甲板 68上方的挂钩上, 将 从位持器向前上方伸出的拖拽杆 53与前起落架后方的限力螺栓连接; ③舰载机 60的发动机以平常推力运转, 击发若干个燃气蒸汽弹 77 , 使高压罐 70和进气 管道 51及两开口汽缸 76工作腔中具有一定的压力, 牵引杆 52牢靠地挂在牵引 滑车 50的挂钩上, 对舰载机 60施加一定的牵引力, 但由于限力螺栓没有被拉 断, 拖拽杆 53仍拖拽着舰载机 60, 舰载机 60并不能向前运动; ④在确定可以 弹射后, 指挥舰载机 60以加力状态运转, 然后同时击发若干燃气蒸汽弹 77, 使 高压罐 70和两开口汽缸 67的工作腔压力升高, 当压力达到一定值时, 限力螺 栓被拉断, 在牵引滑车 50的牵引力和舰载机 60发动机推力的作用下, 舰载机 60开始滑行, 且在此过程中, 高压罐 70和开口汽缸 67工作腔的压力继续升高 至额定压力; ⑤在活塞 57运动一定行程后, 再次击发一个燃气蒸汽弹 77, 对开 口汽缸 67工作腔中的气体进行补充、 加压, 在到达终点前停止击发燃气蒸汽弹 77 , 靠已击发燃气蒸汽弹 77的持续喷射和混合气的膨胀使活塞 57运行到终点; ⑥在燃气蒸汽弹射器 1的活塞 57运行到终点时, 舰载机 60弹离飞行曱板 68, 活塞 57的水刹锥进入水刹缸 56中, 挤压水刹缸 56中的淡水, 形成阻力, 使活 塞 57的运动速度逐渐减小, 直至停止运动; ⑦打开排气阀 59, 高压罐 70、 两 开口汽缸 67工作腔的压力降低; ⑧回位装置 58启动,将活塞 57和牵引滑车 50 拉回到弹射位置, 与此同时, 自动装弹机 81工作, 打开炮栓将各炮膛 75 中的 已发射过的燃气蒸汽弹 77的弹壳 6取出 (抛壳), 并将新的燃气蒸汽弹 77装入 各炮膛 75中, 同时, 放下导流板 55, 使其上表面与飞行曱板 68平齐。
由于使用燃气蒸汽弹 77作为弹射用动力源单元体的燃气蒸汽弹射器 1 , 在 弹射舰载机 60时,首先击发一个或多个该弹射用动力源单元体,释放高压气体, 气体充入到开口汽缸 67工作腔中推动^ 塞 57向前运动作功, 当活塞 57运动 一定行程后再次击发另外的弹射用动力源单元体, 再次释放高压气体, 迅速地 对开口汽缸 67工作腔中的气体进行补充、 加压, 而且随着活塞 57运动行程和 速度的增加而提高击发密度, 在弹射舰载机 60的过程中能可控地不断提高推动 活塞 57的气体的压力, 所以能保证燃气蒸汽弹射器 1在整个弹射过程中输出的 牵引舰载机 60的牵引力基本保持不变。
由于本发明的燃气蒸汽弹射器 1能始终以最大过载牵引舰载机 60, 所以舰 载机 60可以携带更多的弹药和燃料, 或者能以更高的离舰速度起飞, 或者弹射 器 1可以设计得更短一些。
由于本发明的燃气蒸汽弹射器 1使用的高压罐 70的重量和体积比现有技术 的储气罐的重量和体积要小得多, 所以能节省重量和空间, 航空母舰可以携带 更多的舰载机 60。
由于本发明的燃气蒸汽弹射器 1 不使用航空母舰的主驱动动力源, 所以用 燃气蒸汽弹射器 1弹射舰载机 60, 航空母舰也不会因为动力不足而降低航速、 减少单位时间内弹射舰载机 60的架次。
另外, 使用弹射用动力源单元体的燃气蒸汽弹射器 1 可以用在任何动力及 任何动力传输形式的航空母舰上, 还可以不需要配备专用的动力锅炉就用于受 空间限制而跑道长度较短的小型野战机场飞机的快速弹射起飞。
另外, 使用弹射用动力源单元体的燃气蒸汽弹射器 1 不消耗航空母舰上宝 贵的淡水。
图 4是本发明的燃气蒸汽弹射器 1的另一种形式的简要结构示意图。 凡与 上述实施例相同的部位均标注相同的标号。 如图 4 所示, 与上述实施例不同的 是, 本实施例采用设置两个高压罐的结构形式, 即设置第一高压罐 70和第二高 压罐 70' , 第二高压罐 70' 的结构形式和功能与第一高压罐 70基本相同, 且 通过进气管道 51' 与两开口汽缸 67工作腔连通,同样在罐壁上设有炮膛、炮栓, 在炮栓附近设有自动装弹机(未图示), 因采用两个高压罐 70和 70' 主要是为 了便于加工和布置, 且自动装弹机 81容易设计, 可以提高装弹速度, 在弹射舰 载机 60时统一进行控制, 所以本实施例具有与上述实施例相同的功能和效果。 实际上还可以采用设置多个例如三个或四个高压罐的结构形式。 动力源的燃气蒸汽弹射器及其弹射方^" 进行了详细介绍。 本文中应用了具体 个例对本发明的原理及实施方式进行了阐述, 以上实施例的说明只是用于帮助 理解本发明的方法及其核心思想。 应当指出, 对于本技术领域的普通技术人员 来说, 在不脱离本发明原理的前提下, 还可以对本发明进行若干改进和修饰, 这些改进和修饰也在本发明权利要求的保护范围之内。

Claims

权 利 要 求 书
1. 一种弹射用动力源单元体, 其特征是, 包括: 弹壳, 由具有抛壳用 的底缘的筒底部和筒部连接构成; 固定架, 固定在所述弹壳的内壁上, 其上有 孔; 火药, 设置在所述固定架上; 点火器, 设置在所述筒底部的筒底与所述火 药之间; 点火器控制装置, 设置在所述筒底的外部, 用于引爆所述点火器; 高 压室喷管, 固定在所述固定架上, 用于协同筒底部建立火药持续燃烧所需的高 温高压氛围; 分流圆筒, 与所述高压室喷管和固定架连接为一体, 用于对所述 火药燃烧产生的燃气进行导向;压水活塞,设置在所述筒部的内部且底部具有 通孔; 环形端盖, 安装在所述弹壳的顶端; 立管, 贯穿所述环形端盖中心; 水 袋, 内装有冷却水; 隔膜, 用于封堵所述立管的喷口,
由所述弹壳的筒底部和所述高压室喷管围成高压室, 所述固定架、所述火 药和所述点火器设置在所述高压室中;
由所述弹壳的筒部、所述高压室喷管、所述分流圓筒和所述压水活塞围成 分流室, 使所述压水活塞能顺着所述筒部的轴线自如移动;
由所述弹壳的所述筒部、所述立管、所述环形端盖和所述压水活塞的底部 围成冷却水室, 所述立管的管壁上设置燃气进口和冷却水喷口, 所述燃气进口 暴露在所述分流室中, 所迷水袋设置在所述冷却水室中, 且在与所述立管的所 述冷却水喷口对应的位置上设有容易破裂的断裂线。
2. 根据权利要求 1所述的弹射用动力源单元体, 其特征是, 所述火药 为緩燃火药, 呈有孔的块状或空心管条状, 该孔或空心管条之间的空隙与所述 固定架上的孔相对。
3. 根据权利要求 1所述的弹射用动力源单元体, 其特征是: 所述隔膜 通过螺纹连接或粘接的方式固定在所述立管的喷口上。
4. 一种燃气蒸汽弹射器, 其特征是, 包括: 高压罐, 内部分为爆炸室 和膨胀室, 中间由隔板隔开, 在所述隔板上设置有通气孔; 开口汽缸, 其工作 腔与所述膨胀室通过进气管道连通; 设置在所述开口汽缸内的活塞; 排气阔, 安装在所述膨胀室一侧的罐壁上,其出口安装有通向航空母舰船舱外部的排气 管道; 与所述活塞相连的牵引滑车; 以及控制装置, 在所述爆炸室一侧的罐壁上设置有炮膛,用于装填权利要求 1中所述的弹 射用动力源单元体, 且在所述炮膛的后端设置炮栓和击发装置。
5. 根据权利要求 4所述的燃气蒸汽弹射器, 其特征是: 所述开口汽釭 有两个, 该两个开口汽缸并排水平设置, 且后端的工作腔连通。
6. 根据权利要求 4所述的燃气蒸汽弹射器, 其特征是: 所述燃气蒸汽 弹射器还具有回位装置和水刹缸,所述回位装置用于将所述活塞和所述牵引滑 车拉回到弹射位置, 所述水刹缸用于对所述活塞和所述牵引滑车进行制动。
7. 根据权利要求 4所述的燃气蒸汽弹射器, 其特征是: 所述燃气蒸汽 弹射器还具有压力传感器和位置传感器。
8. 根据权利要求 4所述的燃气蒸汽弹射器, 其特征是: 在所述高压罐 的靠近所述炮栓的位置上设有用于装填权利要求 1 中所述动力源单元体的自 动装弹机。
9. 一种燃气蒸汽弹射器的弹射方法: 其特征是,
a. 由控制装置检测活塞的运动位置和运动速度,
b.在弹射时, 由控制装置进行控制, 首先击发一个或多个权利要求 1中所 述的弹射用动力源单元体,
c当活塞运动一定行程后再次击发另外的动力源单元体。
10. 根据权利要求 9所述的燃气蒸汽弹射器的弹射方法, 其特征是: 随 着上述活塞运动行程和速度的增加而提高弹射用动力源单元体的击发密度。
PCT/CN2012/001737 2011-12-29 2012-12-26 弹射用动力源单元体和航母燃气蒸汽弹射器及弹射方法 WO2013097295A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110448662.1A CN103183132B (zh) 2011-12-29 2011-12-29 弹射用动力源单元体和航母燃气蒸汽弹射器及弹射方法
CN201110448662.1 2011-12-29

Publications (2)

Publication Number Publication Date
WO2013097295A1 true WO2013097295A1 (zh) 2013-07-04
WO2013097295A8 WO2013097295A8 (zh) 2013-08-29

Family

ID=48674642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001737 WO2013097295A1 (zh) 2011-12-29 2012-12-26 弹射用动力源单元体和航母燃气蒸汽弹射器及弹射方法

Country Status (2)

Country Link
CN (1) CN103183132B (zh)
WO (1) WO2013097295A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104787354A (zh) * 2015-03-11 2015-07-22 西北农林科技大学 一种直线加速式弹滑一体弹射器
CN105416607A (zh) * 2015-12-12 2016-03-23 上海洲跃生物科技有限公司 一种航母舰载机的海水弹射装置
US10151847B2 (en) 2015-10-26 2018-12-11 Pgs Geophysical As Marine surveys conducted with multiple source arrays
CN111762334A (zh) * 2020-07-02 2020-10-13 李广 一种弹射元件调向的储库式蒸汽弹射器

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103057720A (zh) * 2012-06-04 2013-04-24 叶锋 火药弹射器
CN105035344B (zh) * 2015-08-13 2017-10-10 海门黄海创业园服务有限公司 一种喷液式航母舰载机弹射器
CN105035343B (zh) * 2015-08-13 2018-01-16 济南环太机电技术有限公司 一种喷汽式航母舰载机弹射器
CN106081151A (zh) * 2016-08-16 2016-11-09 张跃亮 一种火药式航空母舰飞机弹射装置
CN106986044B (zh) * 2017-02-26 2023-04-07 刘国良 舰载机燃汽弹射器
CN107140227B (zh) * 2017-05-18 2019-09-03 浙江思密达智能装备有限公司 具有并联和分离功能的内置无缝敞口气缸蒸汽弹射器
CN108438247A (zh) * 2018-05-12 2018-08-24 李广 一种具有并联、串联和分离功能的蒸汽弹射器
CN110589008A (zh) * 2018-06-12 2019-12-20 王善良 一种燃气弹射器
CN109795708A (zh) * 2019-01-20 2019-05-24 陈厚然 一种直线加速动力装置
CN110027721A (zh) * 2019-05-16 2019-07-19 西北工业大学 爆震燃烧弹射固定翼无人机起飞系统
CN110553827B (zh) * 2019-09-16 2023-12-15 芜湖天航装备技术有限公司 用于检测弹射装置弹架分离可靠性的气动控制系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6263797B1 (en) * 1998-12-30 2001-07-24 Skyblazer, Inc. Enhanced flare apparatus
FR2821419A1 (fr) * 2001-02-23 2002-08-30 Jean Carlier Dispositif de projection de fluides
WO2007141335A1 (en) * 2006-06-09 2007-12-13 Autoliv Development Ab A pyrotechnic gas generator for use in automobile safety
CN201882250U (zh) * 2010-08-04 2011-06-29 丘文辉 一种燃气弹射器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2289766A (en) * 1938-09-13 1942-07-14 Schneider & Cie Powder catapult
DE9407053U1 (de) * 1994-04-28 1994-07-28 Comet GmbH Pyrotechnik-Apparatebau, 27574 Bremerhaven Signalmittel, insbesondere Signalrakete

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6263797B1 (en) * 1998-12-30 2001-07-24 Skyblazer, Inc. Enhanced flare apparatus
FR2821419A1 (fr) * 2001-02-23 2002-08-30 Jean Carlier Dispositif de projection de fluides
WO2007141335A1 (en) * 2006-06-09 2007-12-13 Autoliv Development Ab A pyrotechnic gas generator for use in automobile safety
CN201882250U (zh) * 2010-08-04 2011-06-29 丘文辉 一种燃气弹射器

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104787354A (zh) * 2015-03-11 2015-07-22 西北农林科技大学 一种直线加速式弹滑一体弹射器
US10151847B2 (en) 2015-10-26 2018-12-11 Pgs Geophysical As Marine surveys conducted with multiple source arrays
US10162072B2 (en) 2015-10-26 2018-12-25 Pgs Geophysical As Marine surveys conducted with multiple source arrays
US10162073B2 (en) 2015-10-26 2018-12-25 Pgs Geophysical As Marine surveys conducted with multiple source arrays
US11327196B2 (en) 2015-10-26 2022-05-10 Pgs Geophysical As Marine surveys conducted with multiple source arrays
CN105416607A (zh) * 2015-12-12 2016-03-23 上海洲跃生物科技有限公司 一种航母舰载机的海水弹射装置
CN111762334A (zh) * 2020-07-02 2020-10-13 李广 一种弹射元件调向的储库式蒸汽弹射器
CN111762334B (zh) * 2020-07-02 2024-02-02 李广 一种弹射元件调向的储库式蒸汽弹射器

Also Published As

Publication number Publication date
WO2013097295A8 (zh) 2013-08-29
CN103183132B (zh) 2015-09-09
CN103183132A (zh) 2013-07-03

Similar Documents

Publication Publication Date Title
WO2013097295A1 (zh) 弹射用动力源单元体和航母燃气蒸汽弹射器及弹射方法
US4040334A (en) Missile launcher for aircraft
US3499364A (en) Apparatus for submerged launching of missiles
CN107416226B (zh) 一种大潜深水下无动力飞行器发射系统及方法
US2623721A (en) Aircraft structure
CN110254715B (zh) 一种无人机载消防弹发射系统和发射方法
CN110920892A (zh) 一种整体投放小型集群无人机播撒装置
US2900150A (en) Ejection seat catapult
CN102923284A (zh) 一种具较高战力与生存能力的隐形航母
CN117944858A (zh) 一种水下自浮式无人机群运载装置及工作过程
CN101954973A (zh) 可以实现零零弹射的战斗直升机及武器与装备
CN104326086B (zh) 降落伞快速开伞装置
RU2215981C2 (ru) Крылатая ракета в транспортно-пусковом контейнере
US3186662A (en) Ejection of one body from another
CN212058476U (zh) 一种机载气体发射的后座力调节器
US3027125A (en) Propulsion system
CN117507703A (zh) 一种跨介质组合发动机
RU2090454C1 (ru) Летательный аппарат тарельчатый планетного и межпланетного плавания
US3705550A (en) Solid rocket thrust termination device
CN108569414A (zh) 舰载机二段式滑轮组弹射器
US3749017A (en) Parachute retarding tail assembly for bomb
US3646847A (en) Slug-throwing deployment apparatus
RU2175726C1 (ru) Твердотопливная разгонная двигательная установка
US3116900A (en) Pilot escape device for aircraft
US1681434A (en) Apparatus for launching torpedoes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12862237

Country of ref document: EP

Kind code of ref document: A1