WO2013094834A1 - 안정성을 가진 신규의 화합물, 이를 포함하는 전하 수송 재료 및 청색 인광 유기발광소자 - Google Patents

안정성을 가진 신규의 화합물, 이를 포함하는 전하 수송 재료 및 청색 인광 유기발광소자 Download PDF

Info

Publication number
WO2013094834A1
WO2013094834A1 PCT/KR2012/005204 KR2012005204W WO2013094834A1 WO 2013094834 A1 WO2013094834 A1 WO 2013094834A1 KR 2012005204 W KR2012005204 W KR 2012005204W WO 2013094834 A1 WO2013094834 A1 WO 2013094834A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
light emitting
substituted
carbazole
triphenylamine
Prior art date
Application number
PCT/KR2012/005204
Other languages
English (en)
French (fr)
Other versions
WO2013094834A9 (ko
Inventor
신동윤
Original Assignee
율촌화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 율촌화학 주식회사 filed Critical 율촌화학 주식회사
Priority to JP2014530579A priority Critical patent/JP5760282B2/ja
Publication of WO2013094834A1 publication Critical patent/WO2013094834A1/ko
Publication of WO2013094834A9 publication Critical patent/WO2013094834A9/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2658Bombardment with radiation with high-energy radiation producing ion implantation of a molecular ion, e.g. decaborane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission

Definitions

  • the present invention relates to a novel compound having stability, a charge transporting material containing the same, and a blue phosphorescent organic light emitting device. More particularly, the present invention relates to a novel compound having stable stability and electrical stability such as a high glass transition temperature (Tg) A charge transporting material containing the same, and a blue phosphorescent organic light emitting device.
  • Tg glass transition temperature
  • OLEDs organic light emitting devices
  • PM passive matrix
  • Phosphorescent luminescence is a phenomenon in which electrons transition from ground states to excited states, followed by intersystem crossing to cause non-luminescent transition of singlet excitons to triplet excitons, And a light emitting mechanism.
  • This phosphorescence emission can not transfer to the ground state when the triplet exciton is transited, and the lifetime (luminescence time) of the phosphorescence is longer than that of fluorescence because the phosphorescence is transferred to the bottom state after the reversal of the electron spin proceeds. That is, the emission duration of fluorescence emission is only several nanoseconds, but in the case of phosphorescence emission, it corresponds to a relatively long time of several microseconds.
  • the phosphorescent organic light emitting device includes an anode made of an ITO transparent electrode; A hole transport layer (HTL) formed on the anode; An emission layer (EML) formed on the hole transport layer (HTL); An electron transport layer (ETL) formed on the emission layer (EML); And a cathode formed on the electron transport layer (ETL), which are successively laminated on the substrate through a method such as vapor deposition.
  • the light emitting layer (EML) includes a host as a charge transporting material and a dopant as a phosphorescent material.
  • the phosphorescent organic light emitting device having the above structure
  • holes are injected from the anode and electrons are injected from the cathode.
  • the injected holes and electrons are injected through the hole transport layer (HTL) and the electron transport layer (EML) to form luminescent excitons.
  • the formed luminescent excitons emit light while transitioning to the ground state.
  • Korean Patent Registration No. 10-0454500 discloses an organic light emitting element in which a buffer layer is formed between a hole transporting layer (HTL) and a light emitting layer (EML)
  • HTL hole transporting layer
  • EML light emitting layer
  • HTL hole transporting layer
  • EML light emitting layer
  • HTL hole transporting layer
  • EML light emitting layer
  • the OLEDs shown in the prior art documents 1 and 2 have a complicated manufacturing process and a large thickness due to a number of processes for forming each layer due to the multilayer structure having an excessively large number of layers. And is not suitable for blue characteristics, so that it is difficult to have high luminous efficiency and long life characteristics.
  • Korean Patent Laid-Open No. 10-2007-0091291 discloses an organic light-emitting device using a material containing a triarylamine group as a hole transport material.
  • Korean Patent Laid-Open No. 10-2011-0041952 discloses a carbazole compound represented by a specific formula.
  • the charge transport material In order to increase the luminous efficiency of the blue phosphorescent organic light emitting device (PHOLED), the charge transport material must maximize the injection of charges (holes and electrons) into the light emitting layer (EML). And this requires a wide energy band gap. In addition, triplet energy (ET) must be high. In addition, the charge transporting material should have excellent electrical properties such as charge mobility and excellent thermal stability such as glass transition temperature (Tg).
  • the hole transporting material particularly, the hole transporting material constituting the HTL is preferably TAPC (1,1-bis (4-bis (4-methylphenyl) .
  • the charge transporting materials used for conventional blue phosphorescence including TAPC have a low glass transition temperature (Tg) and a low stability of the compound, resulting in a short life span.
  • a novel high-molecular-weight compound having a high thermal stability such as a glass transition temperature (Tg) and a wide energy bandgap and having improved electrical properties such as charge mobility, , A charge transporting material containing the same, and a blue phosphorescent organic light emitting device (PhOLED).
  • Tg glass transition temperature
  • PhOLED blue phosphorescent organic light emitting device
  • the present invention provides a compound wherein an aromatic compound is substituted for a carborane.
  • the aromatic compound is selected from compounds having a phenyl group and a nitrogen atom according to a preferred embodiment.
  • the aromatic compound is preferably selected from a triphenylamine-based compound or a carbazole-based compound.
  • the aromatic compound may be substituted at the o-, m- or para- position of the carbene, preferably substituted at the para- position of the carbene.
  • the phenyl group of the aromatic compound preferably has one or more alkyl groups bonded thereto.
  • the present invention also provides a charge transport material comprising the compound according to the present invention and a blue phosphorescent organic light emitting device (PhOLED).
  • a charge transport material comprising the compound according to the present invention and a blue phosphorescent organic light emitting device (PhOLED).
  • the blue phosphorescent organic light emitting device includes a positive electrode; A hole transport layer (HTL) formed on the anode; And an emission layer (EML) formed on the hole transport layer (HTL); An electron transport layer (ETL) formed on the light emitting layer (EML); And a cathode formed on the electron transport layer (ETL), wherein at least one selected from the group consisting of the hole transport layer (HTL), the emission layer (EML) and the electron transport layer (ETL) includes the compound according to the present invention.
  • an aromatic compound preferably a triphenylamine-based compound or a carbazole-based compound
  • a carborane has a high glass transition temperature (Tg), thereby having excellent thermal stability.
  • electrical characteristics such as charge mobility are excellent.
  • Tg glass transition temperature
  • PhOLED blue phosphorescent organic light emitting device
  • it is electrically stable and has long-life characteristics in the blue phosphorescent organic light emitting device (PhOLED).
  • FIG. 1 and FIG. 2 are cyclic voltammetry (CV) curves showing the electrochemical stability evaluation results of compounds according to an embodiment of the present invention.
  • the charge transporting material used for the blue phosphorescent organic light emitting device must have a high triplet energy (ET) and a wide energy band gap in order to realize high efficiency blue phosphorescence.
  • physical properties such as charge mobility (charge mobility) and the like should be excellent and thermal stability such as glass transition temperature (Tg) should be excellent.
  • Tg glass transition temperature
  • it should have electrical stability and long life characteristics.
  • the compound provided in the present invention has a structure in which an aromatic compound is substituted for a carborane. Specifically, it has a structure in which an aromatic compound is substituted for a carborane having a three-dimensional structure represented by B 10 C 2 H 2 . At this time, one or two aromatic compounds may be substituted for H of carboran.
  • the aromatic compound is not limited as long as it has one or two or more phenyl groups in the molecule.
  • the phenyl group of the aromatic compound is substituted and bonded to the H site of the carboran.
  • the aromatic compound is selected from compounds having at least one phenyl group and at least one nitrogen (N) atom.
  • the aromatic compound may be selected from a triphenylamine-based compound or carbazole-based compound having a phenyl group and nitrogen (N), which has good charge mobility.
  • a triphenylamine-based compound or a carbazole-based compound is substituted for an aromatic compound in a carborane, it is preferable in terms of electric characteristics such as charge mobility as well as thermal properties such as a glass transition temperature (Tg).
  • the triphenylamine-based compound is not limited as long as it has three phenyl groups and at least one nitrogen (N) in the molecule.
  • the triphenylamine-based compound includes, for example, triphenylamine having three phenyl groups and at least one nitrogen (N) in the molecule, and any other compound may be bonded to the triphenylamine.
  • one or more alkyl, aryl (a compound having at least one phenyl group) and a heterocyclic compound may be bonded to the phenyl group of triphenylamine.
  • the carbazole-based compound is not limited as long as it has at least one carbazole structure in the molecule.
  • the carbazole-based compound is not particularly limited as long as it has a carbazole in which two 6-atom phenyl groups (benzene rings) are bonded to both sides of a five-membered ring containing nitrogen (N) .
  • N nitrogen
  • one or more alkyl, aryl (a compound having at least one phenyl group) and a heterocyclic compound may be bonded to the carbazole.
  • the aromatic compound has a phenyl group, and the phenyl group is bound to at least one alkyl group (C n H 2n + 1 - where n is not limited, for example from 1 to 20) It is good to have.
  • the alkyl group is bonded to the phenyl group of the aromatic compound, the electrochemical stability and the like are advantageous.
  • the aromatic compound when the aromatic compound is selected from a triphenylamine-based compound, at least one of the three phenyl groups of the triphenylamine-based compound preferably has at least one alkyl group bonded thereto.
  • the aromatic compound when the aromatic compound is selected from carbazole-based compounds, it is preferable that at least one of the two phenyl groups of the carbazole-based compound has at least one alkyl group bonded thereto.
  • the compound provided in the present invention has a structure in which two aromatic compounds are substituted. That is, it is preferable that two aromatic compounds as described above are substituted for carboranes.
  • the compound provided by the present invention is selected from compounds represented by the following general formula (1) or (2).
  • CB is carboran.
  • R 1 , R 2 , R 3 and R 4 may be the same or different and are each hydrogen (H) or an alkyl group.
  • the alkyl group is not limited. That is, the number of carbon atoms of the alkyl group is not limited.
  • the alkyl group may have, for example, a C1 to C20 carbon number.
  • the alkyl group include, but are not limited to, a methyl group, an ethyl group, a propyl group, and a butyl group.
  • the propyl group includes an n-propyl group and an iso-propyl group
  • the butyl group is an n-butyl group. group, an iso-butyl group and a tertiary-butyl group. It is preferable that at least one selected from R 1 , R 2 , R 3 and R 4 in the above formulas (1) and (2) is an alkyl group.
  • the two aromatic compounds When two aromatic compounds are substituted for carboranes, the two aromatic compounds may be substituted at the ortho (o-), meta (m-) or para (p-) position of the carboran.
  • the aromatic compound is preferably substituted at the m-position or the p-position of carboran, more preferably at the p-position.
  • Tg glass transition temperature
  • the compound according to the present invention has a structure in which an aromatic compound (preferably a triphenylamine-based compound or carbazole-based compound) is substituted for carboranes.
  • an aromatic compound preferably a triphenylamine-based compound or carbazole-based compound
  • specific examples of the compound according to the present invention are illustrated by the structural formulas.
  • carboran (-B 10 C 2 -) is represented by a molecular model.
  • R 5 is an alkyl group.
  • the compounds according to the present invention can be selected from among the groups listed in the following formulas (3) and (4).
  • the aromatic compound exemplifies a structure selected from a triphenylamine-based compound or a carbazole-based compound, and may be selected from the group listed in the following Chemical Formula 4, among which the alkyl group (R 5 ) It is good.
  • the alkyl group (R 5 ) is bonded to the phenyl group in the formula (4), but one to four alkyl groups (R 5 ) may be bonded to the phenyl group.
  • the compounds according to the invention may also be selected from the group of compounds represented by the following formulas (3) and (4), preferably from compounds in which the aromatic compound is bonded at the p-position of the carboran.
  • the compounds according to the present invention can be synthesized (produced) in various ways.
  • a carbene when a carbene is substituted with a triphenylamine-based compound, it is synthesized by, for example, synthesizing triphenylamine substituted with Br (bromine) and then reacting the carbene (R 1 , R 2 , R 3 and R 4 in Formula (1) may be H).
  • alkyltriphenylamine is synthesized, followed by substitution reaction of carboran (o-, m-, or p-) in the presence of a catalyst and a solvent to synthesize (R 1 , R 2 , R 3 and R 4 are alkyl groups).
  • a carbazole (o-, m-, or p-) substitution reaction is carried out with a carbazole (or a carbazole in which an alkyl group is bonded) in the presence of a catalyst and a solvent to synthesize (R 1 , R 2 , R 3 and R 4 are H or an alkyl group).
  • the compound according to the present invention is a compound having a specific structure in which an aromatic compound (preferably a triphenylamine-based compound or a carbazole compound) is substituted for carboranes, which has high triple energy (ET) And has a wide energy bandgap.
  • an aromatic compound preferably a triphenylamine-based compound or a carbazole compound
  • ET triple energy
  • the compound according to the present invention is a compound having a specific structure in which an aromatic compound (preferably a triphenylamine-based compound or a carbazole compound) is substituted for carboranes, which has high triple energy (ET) And has a wide energy bandgap.
  • thermal stability such as glass transition temperature (Tg) and electrical properties such as charge mobility are superior to those of TAPC and carbazole compounds conventionally used.
  • the compound according to the present invention is suitable for use in products requiring thermal stability and electrical characteristics (such as charge transport properties), for example, organic light emitting devices (OLEDs), more specifically blue phosphorescent organic light emitting devices It is applied as a charge carrier and realizes excellent luminous efficiency.
  • the compound according to the present invention has high electrochemical stability, so that it has long life characteristics in a device such as a blue phosphorescent organic light emitting device (PhOLED).
  • the charge transporting material according to the present invention includes the compound according to the present invention.
  • the charge transport material according to the present invention is usefully used, for example, as a charge (electron and electron) transport material of an organic light emitting device (OLED), specifically, a blue phosphorescent organic light emitting device (PhOLED) It is very useful as a sieve.
  • OLED organic light emitting device
  • PhOLED blue phosphorescent organic light emitting device
  • the blue phosphorescent organic light emitting device (PhOLED) according to the present invention includes the compound according to the present invention.
  • the blue phosphorescent organic light emitting device (PhOLED) according to the present invention may have a plurality of organic thin film layers as usual, and at least one of the plurality of organic thin film layers may transmit the compound according to the present invention to the charge transport material .
  • the blue phosphorescent organic light-emitting device comprises an anode; A hole transport layer (HTL) formed on the anode; A light emitting layer (EML) formed on the hole transport layer (HTL); An electron transport layer (ETL) formed on the light emitting layer (EML); And a cathode formed on the electron transport layer (ETL).
  • the blue phosphorescent organic light emitting device (PhOLED) according to the present invention may include a hole injection layer (HIT) formed between the anode and the hole transport layer (HTL), as occasion demands; And an electron injection layer (EIL) formed between the electron transport layer (ETL) and the cathode.
  • the blue phosphorescent organic light emitting device (PhOLED) according to the present invention may include a substrate for supporting the respective layers.
  • At this time, at least one selected from the HTL, the EML, and the ETL may include the compound according to the present invention.
  • at least the hole transport layer (HTL) comprises the compound according to the present invention.
  • the substrate is not particularly limited as long as it has a supporting force, and can be selected from, for example, a glass substrate or a polymer substrate. Further, the substrate may be selected from a polymer substrate in consideration of flexibility, and may be made of a polymer including, for example, one or more resins selected from polyethylene terephthalate (PET), polyethylene naphthalate (PEN) and polycarbonate A film can be used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • a film can be used.
  • the anode is not particularly limited and may be, for example, indium tin oxide (ITO), indium zinc oxide (IZO), tungsten oxide (WO), tin oxide (SnO), zinc oxide (ZnO) Metal oxides such as aluminum-oxide (ZAO); Metal nitrides such as titanium nitride; Metals such as gold, platinum, silver, copper, aluminum, nickel, cobalt, lead, molybdenum, tungsten, tantalum and niobium; An alloy of such a metal or an alloy of copper iodide; And conductive polymers such as polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, poly (3-methylthiophene), and polyphenylene sulfide; And the like.
  • the anode may be selected from transparent electrodes selected from ITO, IZO and WO, for example.
  • the hole transport layer (HTL) may include the compound according to the present invention as described above. Further, the hole transport layer (HTL) may further include conventionally used hole transport materials in addition to the compounds according to the present invention.
  • the light emitting layer may be composed of a single layer or a multilayer, including a host for charge transport and a dopant for phosphorescence characteristics.
  • the host may be conventional or may contain the compound according to the present invention.
  • the host of the light emitting layer may be, for example, 4,4'-N, N-dicarbazolebiphenyl (CBP), 1,3-N, N-dicarbazolebenzene (mCP) Can be used.
  • the host material may be selected from the group consisting of (4,4'-bis (2,2-diphenyl-ethen-1-yl) diphenyl (DPVBi), bis (styryl) amine Quinolinolato) (aluminum (III) (BAlq), 3 (2-methyl-8-quinolinolato) (4-dimethylamino) 4- (4-ethylphenyl) -1,2,4-triazole (p-EtTAZ), 3- (4-tert-butylphenyl) -1,2,4-triazole (TAZ), 2,2 ', 7,7'-tetrakis (P-TTA), 5,5-bis (dimetiethylboryl) -2,2-bithy
  • the dopant of the light emitting layer may be at least one selected from commonly used FIr6 and FIrpic, and may be DCM1 (4-dicyanomethylene-2-methyl-6- (para-dimethylaminostyryl) -4H-pyran), dicyanomethylene) -2-methyl-6- (1,1,7) -tetramethylene- 9-enyl) -4H-pyran), dicyanomethylene) -2-tertiarybutyl-6- (1,1,7,7-tetramethylduluridyl- ) -4H-pyran), dicyanomethylene) -2-isopropyl-6- (1,1,7,7-tetramethylduluridyl-9-enyl) -4H- And Rubrene, and the like.
  • the electron transport layer (ETL) may be a conventional one or may include the compound according to the present invention.
  • the electron transport layer (ETL) is conventional and may be selected from, for example, aryl-substituted oxadiazole, aryl-substituted triazole, aryl-substituted phenanthroline, benzoxazole and benzisazole compounds, Specific examples thereof include 4-bis [N- (1-naphthyl) -N-phenyl-amino] biphenyl (BAlq), 1,3- -Oxadiazole (OXD-7), 3-phenyl-4- (1'-naphthyl) -5-phenyl-1,2,4- triazole (TAZ), and tris (8- quinolinato) aluminum (III) (Alq3), and the like.
  • the compounds according to the present invention may be mixed in the above listed materials.
  • HIL hole injection layer
  • EIL electron injection layer
  • HIL hole injection layer
  • EIL electron injection layer
  • these include, for example, 4,4'-bis ⁇ N- (1-naphthyl) -N-phenyl-amino ⁇ biphenyl (? -NPD), PEDOT / PSS, copper phthalocyanine , 4 ', 4 "-tris (3-methylphenylphenylamino) triphenylamine (m-MTDATA), and 4,4' -Triphenylamine (2-TNATA), and the like.
  • the negative electrode is not limited, and a conventional one can be used.
  • the cathode can be selected from metal.
  • the negative electrode may include one or more alloys selected from Al, Ca, Mg and Ag, for example, and an alloy containing Al or Al may be coated with LiF.
  • the thicknesses of the respective layers constituting the blue phosphorescent organic light emitting device (PhOLED) in the present invention are not limited.
  • the layers may be formed by vacuum deposition such as sputtering, drying after liquid coating, firing after coating, and the like, and the formation method thereof is not limited.
  • a compound in which a carbazole compound was substituted at the o-position of carboran was synthesized (prepared) by the following procedure.
  • the final product according to the present example 1 synthesized as described above is a compound in which a carbazole compound is substituted at the o-position, as shown in the following chemical formula 5, which was confirmed by 1 H-NMR analysis.
  • a compound in which a carbazole compound was substituted at the m-position of carboran was synthesized (prepared) by the following procedure.
  • K 2 CO 3 potassium carbonate
  • palladium tripotassium phosphate were added dropwise to the carbazole and stirred. Then, dicarbazoyl ethylene was separated by column chromatography.
  • the final product according to Example 2 synthesized as described above is a compound in which a carbazole compound is substituted at the m-position, as shown in Formula 6 below, which was confirmed by 1 H-NMR analysis.
  • the final product according to Example 3 synthesized as described above is a compound in which a carbazole compound is substituted at the p-position, as shown in the following Chemical Formula 7, which was confirmed by 1 H-NMR analysis.
  • triphenyl amine substituted with Br was dissolved in tetrahydrofuran (THF) solvent, and the solution was maintained at -78 ° C. Next, the temperature was lowered, n-butyllithium (n-BuLi) was added, the temperature of the refluxing solution was maintained for 30 minutes, trimethoxyborate was added and reacted. After removing moisture through anhydrous magnesium sulfate, the solvent was removed. Then, triphenylamine boronic acid produced by column chromatography was isolated.
  • THF tetrahydrofuran
  • Triphenylamine 4-boronic acid was charged with p-carborane, Pd (PPh 3 ) 4 (Tetrakis (triphenylphosphine) palladium) and K 2 CO 3 (DME) and distilled water were added dropwise thereto, followed by stirring at 140 ⁇ ⁇ for 12 hours. The stirred solution was dehydrated through anhydrous magnesium sulfate, and the solvent was removed. Next, the final product was isolated using column chromatography.
  • the final product according to the present example 4 synthesized as above was a compound in which triphenylamine was substituted at the p-position, as shown in the following chemical formula 8, which was confirmed by 1 H-NMR analysis.
  • the final product according to the present example 5 synthesized as described above is a compound in which triphenylamine is substituted at the p-position and a methyl group (Me) is bonded to the phenyl group of the triphenylamine, This was confirmed by 1 H-NMR analysis.
  • Me is a methyl group (CH 3 -).
  • a carbazole compound represented by the following formula (11) was used as a specimen according to Comparative Example 2.
  • the glass transition temperature (Tg) and melting temperature (Tm) were evaluated as thermal properties.
  • the triplet energy (ET) and the energy band gap were evaluated using a laser measuring instrument (1 ns pulsed nitrogen laser, manufactured by Photon Technology International, model name GL-3300) And Digital Oscilloscope (product of LeCroy, model LC 572A).
  • the thermal properties (Tg, Tm) were evaluated using a Pysis Diamond DSC instrument from Perkin-Elmer.
  • the characteristics were different depending on the substitution position of the carbazole. That is, it was found that the case where the substituent carbazole is bonded at the m-position with respect to the o-position of carboran exhibits good characteristics. And showed the best characteristics when substituted at the p-position. In particular, it was found that the glass transition temperature (Tg), when substituted at the p-position, had a high thermal property of 10 ° C or higher than that at the o-position or the m-position.
  • Tg glass transition temperature
  • FIG. Fig. 1 is the CV curve of the compound according to Example 4
  • Fig. 2 is the CV curve of the compound according to Example 5.
  • a hole injection layer (HIL), a hole transport layer (HTL), a light emitting layer (EML), an electron transport layer (ETL), and an electron transport layer (ETL) were formed on the ITO film by a conventional deposition method. Thereby forming a negative electrode. (CBP) and a dopant (FIr6) were used at a molar ratio of 9: 1, which are commonly used for the hole injecting layer (HIL) and the light emitting layer (EML), respectively.
  • CBP hole injecting layer
  • EML electron transport layer
  • ETL electron transport layer
  • the electron transport layer (ETL) and the cathode were laminated to each other by using glass / anode / HIL (NPD) / HTL / EML (CBP + FIr6) / ETL (SiTAZ) / cathode using SiTAZ and LiF / Was prepared.
  • Example 1 used the compound according to Example 1
  • Example 2 used the compound according to Example 2 above.
  • Working Example 3 the compound according to Example 3 was used.
  • PhOLED was prepared in the same manner as above except that HTL was used in a different manner. Specifically, the compound (TAPC) according to Comparative Example 1 was used for Comparative Sample 1, and the compound (carbazole) according to Comparative Example 2 was used for Comparative Sample 2.
  • the minimum driving voltage (V ON ) causing the current density and the current density at 12 V were evaluated for PhOLED according to each of the test pieces (1 to 3) and the comparative test pieces (1 and 2) manufactured as described above. Further, device characteristics such as light emission luminance cd / A, light emission efficiency (lm / W) and color coordinates (CIE) were evaluated.
  • PhOLED according to the embodiment of the present invention has high current density as well as excellent device characteristics such as light emission luminance (Cd / A) and luminous efficiency (lm / W), as compared with conventional comparative samples . Further, in the case of the test piece 3 using the compound in which the aromatic compound (carbazole-based) was substituted at the p-position of carboran, it was found that the device was driven at a low voltage of 4.5 V with excellent luminescence characteristics.
  • PhOLED an element using the compound according to Example 5 in which triphenylamine (Me) was bonded to a hole transporting layer (HTL), and a device using HTL as a hole transporting layer
  • HTL hole transporting layer
  • the lifetime was measured by measuring the lifetime of the PhOLED with DC-power supply (ED-200E) and luminance meter for optical and electrical characteristics. At this time, the measurement of the lifetime is called half-life at half of the initial luminance, and the lifetime is defined as the half-life.
  • the device specimen according to the present invention has a lifetime characteristic of at least 2 times, which is a half life period of 871 hours for the device using the compound according to Example 5 and 428 hours for the device according to the comparative specimen 1 could know.
  • the compound (charge transport material) according to the present invention has a high triplet energy (ET) and a wide energy bandgap. And excellent electrical properties such as hole mobility, and particularly excellent thermal stability such as glass transition temperature (Tg). In addition, it has electrochemical stability as well as thermal stability, and it has a long life characteristic. In addition, it can be seen that PhOLED employing it has excellent luminescence characteristics.
  • a charge transporting material and a blue phosphorescent organic light emitting device having a long life characteristic including a novel compound having improved thermal stability and electric characteristics are provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Electroluminescent Light Sources (AREA)
  • Indole Compounds (AREA)

Abstract

본 발명은 신규의 화합물, 이를 포함하는 전하 수송 재료 및 청색 인광 유기발광소자에 관한 것이다. 본 발명은 카르보란(carborane)에 방향족 화합물이 치환된 화합물을 제공한다. 그리고 상기 화합물을 포함하는 전하 수송 재료 및 청색 인광 유기발광소자(PhOLED)를 제공한다.  상기 방향족 화합물은, 바람직하게는 트리페닐 아민계 화합물 또는 카바졸계 화합물로부터 선택되며, 이는 또한 카르보란의 p- 위치에 치환되어 있다.  본 발명에 따른 신규의 화합물은, 카르보란에 방향족 화합물이 치환되어, 유리 전이 온도 (Tg) 등의 높은 열적 안정성과 넓은 에너지 밴드 갭, 그리고 전하 모빌리티(mobility) 등의 우수한 전기적 특성을 갖는다.  이에 따라, 소자의 발광 특성을 개선하며, 또한 전기적으로도 안정하여 장수명 특성을 갖게 한다.

Description

안정성을 가진 신규의 화합물, 이를 포함하는 전하 수송 재료 및 청색 인광 유기발광소자
본 발명은 안정성을 가진 신규의 화합물, 이를 포함하는 전하 수송 재료 및 청색 인광 유기발광소자에 관한 것으로, 보다 상세하게는 높은 유리 전이 온도(Tg) 등의 열적 안정성과 전기적 안정성을 가지며, 전하 수송 특성이 우수한 신규의 화합물, 이를 포함하는 전하 수송 재료 및 청색 인광 유기발광소자에 관한 것이다.
차세대 디스플레이로 각광을 받는 유기발광소자(OLED ; Organic Light Emitting Device)와 관련하여 전기, 전자, 재료, 화학, 물리, 광학 등 여러 분야에 걸쳐 학문적, 산업적 연구가 활발히 진행되고 있다.  이러한 연구의 성과로 PM(Passive Matrix) 방식의 유기 발광소자(OLED)가 핸드폰의 외부 창에 사용되는 등 일부 전자 기기에 도입되기도 하였으며, 최근에는 AM(Active Matrix) 방식의 유기 발광소자(OLED)를 PDA, 핸드폰, 게임기 등의 모바일 디스플레이에 적용하기 위한 연구와 사업화가 진행되고 있다.
이와 관련하여, 최근에는 형광 물질뿐만 아니라 인광 물질도 유기발광소자(OLED)로 사용될 수 있음이 알려졌으며 이에 대한 연구가 지속 중이다.  인광 발광은 바닥상태(ground states)에서 여기 상태로 전자가 전이한 후, 계간 전이(intersystem crossing)를 통해 단일항 여기자가 삼중항 여기자로 비발광 전이된 다음, 삼중항 여기자가 바닥상태로 전이하면서 발광하는 메커니즘(mechanism)으로 이루어진다.  이러한 인광 발광은 삼중항 여기자의 전이 시, 직접 바닥상태로 전이할 수 없어 전자스핀의 뒤바뀜이 진행된 이후에 바닥상태로 전이되는 과정을 거치기 때문에 형광보다 수명(발광시간)이 길어지는 특성을 갖는다.  즉, 형광 발광의 발광 지속기간은 수 나노초(several nano seconds)에 불과하지만, 인광 발광의 경우는 상대적으로 긴 시간인 수 마이크로초(several micro seconds)에 해당한다.
일반적으로, 인광 유기발광소자(PhOLED)는 ITO 투명전극으로 이루어진 양극(anode); 상기 양극 상에 형성된 정공 수송층(hole transport layer, HTL); 상기 정공 수송층(HTL) 상에 형성된 발광층(emitting layer, EML); 상기 발광층(EML) 상에 형성된 전자 수송층(electron transport layer, ETL); 및 상기 전자 수송층(ETL) 상에 형성된 음극(cathode)을 포함하는 다층 구조를 가지며, 이들은 증착 등의 방법을 통해 기판 상에 순차적으로 적층 형성된다.  그리고 상기 발광층(EML)은 전하 수송 재료로서의 호스트(host)와 인광 물질로서의 도판트(dopant)를 포함하고 있다. 
위와 같은 구조의 인광 유기발광소자(PhOLED)에 전압이 가해지면 양극으로부터 정공이 주입되고 음극으로부터 전자가 주입되며, 주입된 정공과 전자는 각각 정공 수송층(HTL)과 전자 수송층(ETL)을 거쳐 발광층(EML)에서 재조합(recombination)하여 발광 엑시톤(excitons)을 형성한다.  그리고 형성된 발광 엑시톤(excitons)은 바닥상태로 전이하면서 빛을 방출한다.
최근, 인광 유기발광소자(PhOLED)의 발광 효율을 높이기 위한 노력이 많이 시도되었다.  그 결과, 녹색의 경우 29%, 그리고 적색의 경우 15%의 높은 발광 효율을 가지는 기술이 보고되었다.  그러나 청색의 경우 녹색과 적색에 비해 낮은 발광 효율을 나타내고 있으며, 색 좌표 또한 뛰어나지 않은 단점을 보이고 있다.  이를 해결하기 위해서 현재 많은 연구자들이 연구 중에 있다.  청색 인광 유기발광소자(PhOLED)의 층 구조의 개선과, 전하 수송 재료(호스트)의 새로운 물질에 대한 개발 등이 연구의 주류를 이루고 있다.
층 구조의 개선과 관련하여, 대한민국 등록특허 제10-0454500호[선행 특허문헌 1]에는 정공 수송층(HTL)과 발광층(EML)의 사이에 버퍼층을 형성한 유기발광소자가 제시되어 있으며, 대한민국 등록특허 제10-0777099호[선행 특허문헌 2]에는 정공 수송층(HTL)과 발광층(EML)의 사이에 장벽완화층을 형성한 유기발광소자가 제시되어 있다.  
그러나 상기 선행문헌 1 및 2에 제시된 유기발광소자는, 층수가 너무 많은 다층 구조를 가짐으로 인하여, 각 층을 형성하기 위한 다수의 공정이 수반되어 제조 공정이 복잡하고, 두께가 두껍다.  그리고 청색 특성에 적합하지 않아 높은 발광 효율 및 장수명 특성을 갖기 어렵다.
또한, 전하 수송 재료(호스트)와 관련하여, 대한민국 공개특허 제10-2007-0091291호[선행 특허문헌 3]에는 트라이아릴아민기를 함유한 물질을 정공 수송 재료로 사용한 유기발광소자가 제시되어 있다.  그리고 대한민국 공개특허 제10-2011-0041952호[선행 특허문헌 4]에는 특정의 화학식으로 표시되는 카바졸 화합물이 제시되어 있다.
청색 인광 유기발광소자(PhOLED)의 발광 효율을 높이기 위해, 전하 수송 재료는 발광층(EML)으로의 전하(정공 및 전자)의 주입을 극대화시켜야 한다.  그리고 이를 위해서는 넓은 에너지 밴드 갭(band gap)을 가져야 한다.  또한, 삼중항 에너지(ET ; Triplet Energy))가 높아야 한다.  이와 함께, 전하 수송 재료는 전하 모빌리티(mobility) 등의 전기적 특성이 뛰어나야 하고, 유리 전이 온도(Tg) 등의 열적 안정성도 우수해야 한다.
상기 선행 특허문헌 3에 제시된 바와 같이 전하 수송 재료, 특히 정공 수송층(HTL)을 구성하는 정공 수송 재료는 TAPC(1,1-비스(4-비스(4-메틸페닐)-아미노페닐)-사이클로헥산)를 주로 사용하고 있다.  그러나 상기 TAPC를 포함한 종래 청색 인광용으로 사용되는 전하 수송 재료는 유리 전이 온도(Tg)가 낮고 화합물의 안정성이 낮아 수명이 짧은 문제점이 있다.
이에, 본 발명은 높은 유리 전이 온도(Tg) 등의 열적 안정성과 넓은 에너지 밴드 갭을 가지며 전하 모빌리티 등의 전기적 특성이 향상되어 분자의 물리적 특성이 우수하고, 이와 함께 소자의 장수명 특성을 갖게 하는 신규의 화합물, 이를 포함하는 전하 수송 재료 및 청색 인광 유기발광소자(PhOLED)를 제공하는 데에 그 목적이 있다.
상기 목적을 달성하기 위하여 본 발명은 카르보란(carborane)에 방향족 화합물이 치환된 화합물을 제공한다.
상기 방향족 화합물은, 바람직한 구현 예에 따라서 페닐기와 질소 원자를 가지는 화합물로부터 선택된다. 예를 들어, 방향족 화합물은 트리페닐 아민계 화합물 또는 카바졸계 화합물로부터 선택되는 것이 좋다.
상기 방향족 화합물은 카르보란의 오쏘(o-), 메타(m-) 또는 파라(p-) 위치에 치환될 수 있으며, 바람직하게는 카르보란의 파라(p-) 위치에 치환된 것이 좋다.  아울러, 상기 방향족 화합물의 페닐기에는 하나 이상의 알킬기가 결합된 것이 좋다.
또한, 본 발명은 상기 본 발명에 따른 화합물을 포함하는 전하 수송 재료 및 청색 인광 유기발광소자(PhOLED)를 제공한다.
이때, 본 발명에 따른 청색 인광 유기발광소자(PhOLED)는 양극; 상기 양극 상에 형성된 정공 수송층(HTL); 및 상기 정공 수송층(HTL) 상에 형성된 발광층(EML); 상기 발광층(EML) 상에 형성된 전자 수송층(ETL); 및 상기 전자 수송층(ETL) 상에 형성된 음극을 포함하되, 상기 정공 수송층(HTL), 발광층(EML) 및 전자 수송층(ETL) 중에서 선택된 하나 이상은 상기 본 발명에 따른 화합물을 포함하는 것이 좋다.
본 발명에 따르면, 카르보란(carborane)에 방향족 화합물(바람직하게는 트리페닐 아민계 화합물 또는 카바졸계 화합물)이 치환되어, 높은 유리 전이 온도(Tg)를 가지므로 우수한 열적 안정성을 갖는다.  그리고 전하 모빌리티 등의 전기적 특성이 우수하다. 이에 따라, 청색 인광 유기발광소자(PhOLED)의 발광 특성을 개선한다.  또한, 전기적으로도 안정하여 청색 인광 유기발광소자(PhOLED)에 장수명 특성을 갖게 한다. 
도 1 및 도 2는 본 발명의 실시예에 따른 화합물의 전기화학적 안정도 평가 결과를 보인 CV(Cyclic voltammetry) 곡선이다.
전술한 바와 같이, 청색 인광 유기발광소자(PhOLED)에 사용되는 전하 수송 재료는 고효율의 청색 인광을 구현하기 위해 삼중항 에너지(ET)가 높아야 하고, 넓은 에너지 밴드 갭을 가져야 한다.  또한, 전하 모빌리티(전하 이동도) 등의 물리적 특성이 뛰어나고, 유리 전이 온도(Tg) 등의 열적 안정성이 우수해야 한다.  이와 함께 전기적으로도 안정하여 장수명 특성을 가져야 한다.
이에, 청색 인광용 전하 수송 재료에 대한 연구를 거듭한 결과, 방향족 화합물이 카르보란에 치환된 경우, 우수한 발광 효율을 가질 수 있는 물리적 특성을 가짐을 알 수 있었다.  또한, 전하 모빌리티 등의 물리적 특성과 함께 유리 전이 온도(Tg) 등의 열적 안정성, 그리고 전기적 안정성이 뛰어나 장수명 특성을 갖게 함을 알 수 있었다.  특히, 카르보란에 방향족 화합물로서 트리페닐 아민계 또는 카바졸계 화합물이 치환된 경우, 바람직하게는 상기 방향족 화합물이 카르보란의 파라(p-) 위치에 치환된 경우, 높은 유리 전이 온도와 함께 우수한 전하 모빌리티 등을 가짐을 알 수 있었다.  아울러, 상기 방향족 화합물의 페닐기에 알킬기(alkyl group)가 결합되어 있는 경우, 더욱 우수한 특성을 가짐을 알 수 있었다. 
이하, 본 발명을 상세히 설명한다.
본 발명에서 제공하는 화합물은 카르보란(carborane)에 방향족 화합물(aromatic compound)이 치환된 구조를 갖는다.  구체적으로, B10C2H2으로 표시되는 입체 구조의 카르보란에 방향족 화합물이 치환된 구조를 갖는다.  이때, 상기 방향족 화합물은 카르보란의 H 대신에 1개 또는 2개가 치환될 수 있다. 
상기 방향족 화합물은 분자 내에 1개 또는 2개 이상의 페닐기를 가지는 것이면 제한되지 않는다.  카르보란의 H자리에 방향족 화합물의 페닐기가 치환 결합된다.
바람직한 구현 예에 따라서, 상기 방향족 화합물은 1개 이상의 페닐기와 1개 이상의 질소(N) 원자를 가지는 화합물로부터 선택된다. 예를 들어, 방향족 화합물은 페닐기와 질소(N)를 가지는 화합물로서, 전하 이동도가 좋은 트리페닐 아민계 화합물 또는 카바졸계 화합물 등으로부터 선택되면 좋다. 카르보란에 방향족 화합물로서 트리페닐 아민계 화합물이나 카바졸계 화합물이 치환된 경우, 유리 전이 온도(Tg) 등의 열적 특성과 함께 전하 모빌리티 등의 전기적 특성 등에서 바람직하다.
본 발명에서, 상기 트리페닐 아민계 화합물은 분자 내에 3개의 페닐기와 1개 이상의 질소(N)를 가지는 것이면 제한되지 않는다.  트리페닐 아민계 화합물은, 예를 들어 분자 내에 3개의 페닐기와 1개 이상의 질소(N)를 가지는 트리페닐 아민을 포함하되, 상기 트리페닐 아민에 어떠한 다른 화합물이 결합되어 있어도 좋다. 예를 들어, 트리페닐 아민의 페닐기에 하나 이상의 알킬, 아릴(하나 이상의 페닐기를 가지는 화합물) 및 헤테로고리 화합물 등이 결합되어 있어도 좋다.
또한, 본 발명에서, 상기 카바졸계 화합물은 분자 내에 하나 이상의 카바졸 구조를 가지는 것이면 제한되지 않는다. 카바졸계 화합물은, 구체적으로 질소(N)를 포함하는 5원자 고리의 양쪽 면에 6원자 페닐기(벤젠고리) 2 개가 결합된 카바졸을 가지는 것이면 제한되지 않으며, 상기 카바졸에 어떠한 다른 화합물이 결합되어 있어도 좋다. 예를 들어, 카바졸에 하나 이상의 알킬, 아릴(하나 이상의 페닐기를 가지는 화합물) 및 헤테로고리 화합물 등이 결합되어 있어도 좋다.
바람직한 구현 예에 따라서, 상기 방향족 화합물은 페닐기를 가지되, 상기 페닐기에는 하나 이상의 알킬기(CnH2n+1- ; 여기서, n은 제한되지 않으며, 예를 들어 1 ~ 20이다.)가 결합되어 있는 것이 좋다. 이와 같이 방향족 화합물의 페닐기에 알킬기가 결합되어 있는 경우, 전기화학적 안정성 등에 유리하다.
예를 들어, 상기 방향족 화합물이 트리페닐 아민계 화합물로부터 선택된 경우, 상기 트리페닐 아민계 화합물의 3개의 페닐기 중에서 적어도 1개 이상의 페닐기에는 하나 이상의 알킬기가 결합되어 있는 것이 좋다. 또한, 상기 방향족 화합물이 카바졸계 화합물로부터 선택된 경우, 상기 카바졸계 화합물의 2개의 페닐기 중에서 적어도 1개 이상의 페닐기에는 하나 이상의 알킬기가 결합되어 있는 것이 좋다.
또한, 본 발명에서 제공하는 화합물은 2개의 방향족 화합물이 치환된 구조를 가지는 것이 좋다. 즉, 카르보란에 상기와 같은 방향족 화합물 2개가 치환되어 있는 것이 좋다. 보다 구체적인 구현예에 따라서, 본 발명에서 제공하는 화합물은, 하기 화학식 1 또는 화학식 2로 표시되는 화합물로부터 선택되는 것이 좋다.
[화학식 1]
Figure PCTKR2012005204-appb-I000001
[화학식 2]
Figure PCTKR2012005204-appb-I000002
상기 화학식 1 및 화학식 2에서, CB는 카르보란이다.  그리고 상기 화학식 1 및 2에서 R1, R2, R3 및 R4는 서로 같거나 다를 수 있으며, 이들은 각각 수소(H) 또는 알킬기이다.  상기 알킬기는 제한되지 않는다.  즉, 알킬기의 탄소 수는 제한되지 않는다.  알킬기는, 예를 들어 C1 ~ C20의 탄소 수를 가질 수 있다. 
상기 알킬기는, 구체적인 예를 들어 메틸기(methyl group), 에틸기(ethyl group), 프로필기(propyl group) 및 부틸기(butyl group) 등으로부터 선택될 수 있으나, 이들로 제한되지 않는다.  그리고 상기 프로필기(propyl group)는 n-프로필기(n-propyl group) 및 i-프로필기(iso-propyl group)를 포함하며, 상기 부틸기(butyl group)는 n-부틸기(n-butyl group), i-부틸기(iso-butyl group) 및 t-부틸기(tertiary-butyl group)를 포함한다.  상기 화학식 1 및 2의 R1, R2, R3 및 R4 중에서 선택된 하나 이상은 알킬기인 것이 좋다.
상기 화학식 1 및 2에 예시한 바와 같이, 카르보란(CB)에는 2개의 방향족 화합물이 치환된 것이 좋다. 화학식 1은 카르보란(CB)에 방향족 화합물로서 2개의 트리페닐 아민계 화합물이 치환된 구조를 보인 것이고, 화학식 2는 카르보란(CB)에 방향족 화합물로서 2개의 카바졸계 화합물이 치환된 구조를 보인 것이다.
이때, 카르보란에 2개의 방향족 화합물이 치환된 경우, 상기 2개의 방향족 화합물은 카르보란의 오쏘 (o-), 메타(m-) 또는 파라(p-) 위치에 치환될 수 있다.  방향족 화합물은, 바람직하게는 카르보란의 m- 위치 또는 p- 위치에 치환된 것이 좋으며, 보다 바람직하게는 p- 위치에 치환된 것이 좋다.  방향족 화합물이 p- 위치에 치환된 경우, 높은 유리 전이 온도(Tg)와 전하 모빌리티 등을 갖는다.
상기한 바와 같이, 본 발명에 따른 화합물은 카르보란에 방향족 화합물(바람직하게는, 트리페닐 아민계 화합물 또는 카바졸계 화합물)이 치환된 구조를 갖는다.  하기 화학식 3 및 화학식 4에는 본 발명에 따른 화합물의 구체적인 몇 가지 예를 구조식으로 예시하였다.  이때, 하기 화학식 3 및 4에서, 카르보란(-B10C2-)은 분자 모형으로 나타내었다.  그리고 하기 화학식 3 및 4에서, R5는 알킬기이다.
본 발명에 따른 화합물은, 구체적인 예를 들어 하기 화학식 3 및 4에 나열된 군중에서 선택될 수 있다.  바람직하게는, 방향족 화합물이 트리페닐 아민계 화합물이나 카바졸계 화합물로부터 선택된 구조를 예시한 것으로서, 하기 화학식 4에 나열된 군중에서 선택될 수 있으며, 이들 중에서도 알킬기(R5)가 결합된 것으로부터 선택되는 것이 좋다. 이때, 화학식 4에는 페닐기에 1개의 알킬기(R5)가 결합된 것을 예시하였지만, 페닐기에는 1개 내지 4개의 알킬기(R5)가 결합될 수 있다.  또한, 본 발명에 따른 화합물은 하기 화학식 3및 4에 나열된 군중에서, 바람직하게는 방향족 화합물이 카르보란의 p- 위치에 결합된 화합물로부터 선택될 수 있다. 
[화학식 3]
Figure PCTKR2012005204-appb-I000003
[화학식 4]
Figure PCTKR2012005204-appb-I000004
한편, 본 발명에 따른 화합물은 다양한 방법으로 합성(제조)될 수 있다.  바람직한 구현 예에 따라서, 카르보란에 트리페닐 아민계 화합물을 치환시키는 경우, 이는 예를 들어 Br(bromine)이 치환된 트리페닐 아민을 합성한 다음, 여기에 촉매와 용매 등의 존재 하에서 카르보란(o-, m-, 또는 p-)을 치환 반응시켜 합성(화학식 1에서 R1, R2, R3 및 R4가 H인 것)될 수 있다.  다른 예를 들어, 알킬 트리페닐 아민을 합성한 다음, 여기에 촉매와 용매 등의 존재 하에서 카르보란(o-, m-, 또는 p-)을 치환 반응시켜 합성(화학식 1에서 R1, R2, R3 및 R4가 알킬기인 것)될 수 있다.  아울러, 촉매와 용매 등의 존재 하에서, 카바졸(또는 알킬기가 결합된 카바졸)에 카르보란(o-, m-, 또는 p-)을 치환 반응시켜 합성(화학식 2에서 R1, R2, R3 및 R4가 H 또는 알킬기인 것)될 수 있다. 
이상에서 설명한 바와 같이, 본 발명에 따른 화합물은 카르보란에 방향족 화합물(바람직하게는, 트리페닐 아민계 화합물 또는 카바졸 화합물)이 치환된 특정 구조의 화합물로서, 이는 높은 삼중항 에너지(ET)와 넓은 에너지 밴드 갭을 갖는다.  또한, 유리 전이 온도(Tg) 등의 열적 안정성과 전하 모빌리티 등의 전기적 특성이 종래 일반적으로 사용되는 TAPC나 카바졸 화합물에 비해 뛰어나다. 
이에 따라, 본 발명에 따른 화합물은 열적 안정성과 전기적 특성(전하 수송 특성 등) 등이 요구되는 제품, 예를 들어 유기발광소자(OLED), 보다 구체적인 예를 들어 청색 인광 유기발광소자(PhOLED)의 전하 수송체로 적용되어 우수한 발광 효율을 구현한다.  또한, 본 발명에 따른 화합물은 전기화학적 안정성이 높아 청색 인광 유기발광소자(PhOLED) 등의 소자에 장수명 특성을 갖게 한다.
한편, 본 발명에 따른 전하 수송 재료는 상기 본 발명에 따른 화합물을 포함한다. 본 발명에 따른 전하 수송 재료는, 예를 들어 유기발광소자(OLED), 구체적인 예를 들어 청색 인광 유기발광소자(PhOLED)의 전하(전공 및 전자) 수송체로 유용하게 사용되며, 바람직하게는 정공 수송체로 매우 유용하게 사용된다. 
또한, 본 발명에 따른 청색 인광 유기발광소자(PhOLED)는 상기 본 발명에 따른 화합물을 포함한다.  구체적으로, 본 발명에 따른 청색 인광 유기발광소자(PhOLED)는 통상과 같이 다수의 유기 박막층을 가질 수 있으며, 이때 상기 다수의 유기 박막층 중에서 적어도 하나 이상의 층은 상기 본 발명에 따른 화합물을 전하 수송 재료로 포함한다.
구체적인 구현 예에 따라서, 본 발명에 따른 청색 인광 유기발광소자(PhOLED)는 통상과 같이 양극(anode); 상기 양극 상에 형성된 정공 수송층(HTL); 상기 정공 수송층(HTL) 상에 형성된 발광층(EML); 상기 발광층(EML) 상에 형성된 전자 수송층(ETL); 및 상기 전자 수송층(ETL) 상에 형성된 음극(cathode)을 포함하는 다층 구조를 가질 수 있다. 
또한, 본 발명에 따른 청색 인광 유기발광소자(PhOLED)는, 경우에 따라서 상기 양극과 정공 수송층(HTL)의 사이에 형성된 정공 주입층(hole injection layer, HIT); 및 상기 전자 수송층(ETL)과 음극의 사이에 형성된 전자 주입층(electron injection layer, EIL) 중에서 선택된 하나 이상을 더 포함할 수 있다.  아울러, 본 발명에 따른 청색 인광 유기발광소자(PhOLED)는 상기 각 층들을 지지하기 위한 기판(substrate)을 포함할 수 있다.
이때, 상기 정공 수송층(HTL), 발광층(EML) 및 전자 수송층(ETL) 중에서 선택된 하나 이상은 상기 본 발명에 따른 화합물을 포함하는 것이 좋다.  바람직하게는, 적어도 정공 수송층(HTL)은 상기 본 발명에 따른 화합물을 포함하는 것이 좋다.
상기 기판은 지지력을 갖는 것이면 좋으며, 예를 들어 유리 기판이나 고분자 기판 등으로부터 선택될 수 있다.  또한, 기판은 플렉시블(flexible)을 고려한다면 고분자 기판으로부터 선택될 수 있으며, 예를 들어 폴리에틸렌테레프탈레이트(PET), 폴리에틸렌나프탈레이트(PEN) 및 폴리카보네이트(PC) 등으로부터 선택된 하나 이상의 수지를 포함하는 필름을 사용할 수 있다.
상기 양극은 특별히 제한되지 않으며, 이는 예를 들어 인듐-주석-옥사이드(ITO), 인듐-아연-옥사이드(IZO), 텅스텐 옥사이드(WO), 주석 옥사이드(SnO), 아연 옥사이드(ZnO) 및 아연-알루미늄-옥사이드(ZAO) 등의 금속 옥사이드; 티타늄 니트라이드 등의 금속 니트라이드; 금, 백금, 은, 구리, 알루미늄, 니켈, 코발트, 리드, 몰리브덴, 텅스텐, 탄탈륨, 니오븀 등의 금속; 이러한 금속의 합금 또는 구리 요오드화물의 합금; 그리고 폴리아닐린, 폴리티오핀, 폴리피롤, 폴리페닐렌비닐렌, 폴리(3-메틸티오핀), 및 폴리페닐렌설파이드 등의 전도성 중합체; 등으로부터 선택된 재질로 구성될 수 있다.  양극은, 구체적인 예를 들어 ITO, IZO 및 WO 등으로부터 선택된 투명전극으로부터 선택될 수 있다.
상기 정공 수송층(HTL)은 전술한 바와 같이 상기 본 발명에 따른 화합물을 포함하는 것이 좋다.  또한, 정공 수송층(HTL)은 상기 본 발명에 따른 화합물 이외에, 종래 통상적으로 사용되는 정공 수송 물질을 더 포함할 수 있다.
상기 발광층(EML)은 단층 또는 복층으로 구성될 수 있으며, 이는 전하 이송을 위한 호스트(host)와 인광 특성을 위한 도판트(dopant)를 포함한다.  이때, 상기 호스트는 통상적인 것을 사용하거나, 상기 본 발명에 따른 화합물을 포함할 수 있다. 
상기 발광층(EML)의 호스트는, 통상적인 것으로서 예를 들어 4,4'-N,N-디카바졸비페닐(CBP), 1,3-N,N-디카바졸벤젠(mCP) 및 이들의 유도체를 사용할 수 있다.  또한, 상기 호스트 재료는, (4,4'-비스(2,2-디페닐-에텐-1-일)디페닐(DPVBi), 비스(스티릴)아민(DSA)계, 비스(2-메틸-8-퀴놀리놀라토)(트리페닐실록시)알루미늄(III)(SAlq), 비스(2-메틸-8-퀴놀리놀라토)(파라-페놀라토)알루미늄(III)(BAlq), 3-(비페닐-4-일)-5-(4-디메틸아미노)4-(4-에틸페닐)-1,2,4-트리아졸(p-EtTAZ), 3-(4-비페닐)-4-페닐-5-(4-터셔리-부틸페닐)-1,2,4-트리아졸(TAZ), 2,2',7,7'-테트라키스(비-페닐-4-일)-9,9'-스피로플루오렌(Spiro-DPVBI), 트리스(파라-터-페닐-4-일)아민(p-TTA), 5,5-비스(디메지틸보릴)-2,2-비티오펜(BMB-2T) 및 페릴렌(perylene) 등으로부터 선택될 수 있다.  그리고 상기 나열한 재료에 상기 본 발명에 따른 화합물이 혼합 구성될 수 있다. 
또한, 상기 발광층(EML)의 도판트는 통상적으로 사용되는 FIr6 및 FIrpic 등으로부터 선택된 하나 이상을 사용할 수 있으며, 이외에 DCM1(4-디시아노메틸렌-2-메틸-6-(파라-디메틸아미노스틸릴)-4H-피란), 디시아노메틸렌-2-메틸-6-(줄로리딘-4-일-비닐)-4H-피란), 디시아노메틸렌)-2-메틸-6-(1,1,7,7-테트라메틸줄로리딜-9-에닐)-4H-피란), 디시아노메틸렌)-2-터셔리부틸-6-(1,1,7,7-테트라메틸줄로리딜-9-에닐)-4H-피란), 디시아노메틸렌)-2-아이소프로필-6-(1,1,7,7-테트라메틸줄로리딜-9-에닐)-4H-피란) 및 나일레드(Nile red) 및 루브렌(Rubrene) 등으로부터 선택될 수 있다.
상기 전자 수송층(ETL)은 통상적인 것을 사용하거나, 상기 본 발명에 따른 화합물을 포함할 수 있다.  전자 수송층(ETL)은 통상적인 것으로서, 예를 들어 아릴-치환된 옥사디아졸, 아릴-치환된 트리아졸, 아릴-치환된 펜안트롤린, 벤족사졸 및 벤즈시아졸 화합물 등으로부터 선택될 수 있으며, 구체적인 예를 들면, 4-비스[N-(1-나프틸)-N-페닐-아미노]비페닐(BAlq), 1,3-비스(N,N-t-부틸-페닐)-1,3,4-옥사디아졸(OXD-7), 3-페닐-4-(1'-나프틸)-5-페닐-1,2,4-트리아졸(TAZ), 및 트리스(8-퀴놀리나토)알루미늄(III)(Alq3) 등을 들 수 있다.  그리고 상기 나열한 물질에 상기 본 발명에 따른 화합물이 혼합 구성될 수 있다.  
아울러, 상기 정공 주입층(HIL) 및 전자 주입층(EIL)의 경우에도 통상과 같은 것을 사용할 수 있다.  이들은 예를 들어, 통상적으로서 사용되는 4,4'-비스{N-(1-나프틸)-N-페닐-아미노}비페닐(α-NPD), PEDOT/PSS, 구리 프탈로시아닌(CuPc), 4,4',4"-트리스(3-메틸페닐페닐아미노)트리페닐아민(m-MTDATA), 및 4,4',4"-트리스(N-(2-나프틸)-N-페닐-아미노)-트리페닐아민(2-TNATA) 등의 물질로부터 선택될 수 있다. 
상기 음극은 제한되지 않으며, 이는 통상적인 것을 사용할 수 있다.  음극은 금속으로부터 선택될 수 있다.  음극은, 예를 들어 Al, Ca, Mg 및 Ag 등으로부터 선택된 하나 또는 2 이상의 합금을 포함할 수 있으며, 구체적인 예를 들어 Al 또는 Al을 포함하는 합금에 LiF이 코팅된 것을 사용할 수 있다.
또한, 본 발명에서 청색 인광 유기발광소자(PhOLED)를 구성하는 상기 각 층들의 두께는 제한되지 않는다.  아울러, 상기 각 층들은 통상과 같은 방법, 예를 들어 각 층에 따라 스퍼터링 등의 진공 증착법이나, 액상 코팅 후의 건조, 또는 코팅 후의 소성 등을 형성될 수 있으며, 그 형성방법은 제한되지 않는다. 
이하, 본 발명의 실시 예 및 비교 예를 예시한다.  하기의 실시 예는 본 발명의 이해를 돕도록 하기 위해 제공되는 것일 뿐, 이에 의해 본 발명의 기술적 범위가 한정되는 것은 아니다.
[실시예 1]
다음과 같은 과정을 통해 카르보란의 o- 위치에 카바졸 화합물이 치환된 화합물을 합성(제조)하였다.
1. 카바졸에 포타슘 카보네이트(potassium carbonate), 팔라듐 트리포타슘 포스페이트(palladium tripotasium phospate)를 적가하여 교반한 다음, 컬럼 크로마토그래피를 이용하여 디카바졸에틸렌(dicabazoylethylene)을 분리하였다.
2. 위 디카바졸에틸렌(dicabazoylethylene)에 용매 벤젠 존재 하에서 o-카르보란(o-carborane)을 넣고, 교반시켰다.  교반한 용액을 무수 황화마그네슘을 통하여 수분을 없애고, 용매를 제거하였다.  그리고 컬럼 크로마토그래피를 이용하여 최종 생성물을 분리 수득하였다. 
위와 같이 합성된 본 실시예 1에 따른 최종 생성물은 o- 위치에 카바졸 화합물이 치환된 화합물로서, 하기 화학식 5에 보인 바와 같으며, 이는 1H-NMR 분석을 통해 확인하였다.
[화학식 5]
Figure PCTKR2012005204-appb-I000005
[실시예 2]
다음과 같은 과정을 통해 카르보란의 m- 위치에 카바졸 화합물이 치환된 화합물을 합성(제조)하였다.
1. 카바졸에 K2CO3(potassium carbonate), 팔라듐 트리포타슘 포스페이트(palladium tripotassium phosphate)를 적가하여 교반한 다음, 컬럼 크로마토그래피를 이용하여 디카바졸 에틸렌(dicarbazoyl ethylene)을 분리하였다.
2. 위 디카바졸 에틸렌(dicarbazoyl ethylene)을 용매 디메틸에테르(DME)에 녹이고, 0℃에서 n-부틸리튬(n-BuLi)을 적가하였다. 그리고 용매 피리딘(Pyridine)과 염화 구리(copper chloride)를 더 넣어 반응시켰다. 이후, 반응한 용액을 무수황화 마그네슘을 통하여 수분을 없애고, 용매를 제거하였다. 그리고 컬럼크로마토 그래피를 이용하여 최종 생성물을 분리 수득하였다.
위와 같이 합성된 본 실시 예 2에 따른 최종 생성물은 m- 위치에 카바졸 화합물이 치환된 화합물로서, 하기 화학식 6에 보인 바와 같으며, 이는 1H-NMR 분석을 통해 확인하였다.
[화학식 6]
Figure PCTKR2012005204-appb-I000006
[실시예 3]
상기 실시예 2와 대비하여, 카르보란으로서 m-카르보란 대신에 p-카르보란(p-carborane)을 사용한 것을 제외하고는 동일한 방법으로 합성(제조)하였다.
위와 같이 합성된 본 실시예 3에 따른 최종 생성물은 p- 위치에 카바졸 화합물이 치환된 화합물로서, 하기 화학식 7에 보인 바와 같으며, 이는 1H-NMR 분석을 통해 확인하였다.
[화학식 7]
Figure PCTKR2012005204-appb-I000007
[실시예 4]
다음과 같은 과정을 통해 카르보란의 p- 위치에 트리페닐 아민이 치환된 화합물을 합성(제조)하였다. 
1. 디페닐아민(diphenylamine)과 1,4-디브로모벤젠(1,4-dibromobenzene)을 Pd(OAc)2(palladium acetylacetate), 소듐 터부톡사이드(Sodium tertbutoxide) 및 DPPF 및 톨루엔이 존재하는 용액에 적가 하여 12시간 교반 하였다.  그리고 무수 황화마그네슘을 통하여 수분을 제거한 다음, 컬럼 크로마토그래피를 이용하여 Br(bromine)이 치환된 트리페닐 아민(triphenyl amine)을 분리하였다.
2. 위 Br이 치환된 트리페닐 아민(triphenyl amine)을 용매 테트라하이드로퓨란(THF)으로 녹인 후, 이 용액을 -78℃로 유지하였다.  다음으로, 온도를 낮춘 다음 n-부틸리튬(n-BuLi)을 넣고 30분 동안 환류 용액의 온도를 유지한 후, 트리메톡시보레이트(trimethoxyborate)를 넣고 반응시켰다.  그리고 무수 황화마그네슘을 통하여 수분을 없앤 후, 용매를 제거하였다.  이후, 컬럼 크로마토그래피를 이용하여 생성된 트리페닐 아민 보로닉산(triphenyl amine boronic acid)을 분리하였다.
3. 위 트리페닐 아민 4-보로닉산(triphenyl amine-4- boronic acid)에 p-카르보란(p-carborane), Pd(PPh3)4(Tetrakis(triphenylphosphine)palladium) 및 K2CO3(potassium carbonate)를 넣고, 용매 디메틸에테르(DME)와 증류수를 적가하여 140℃에서 12시간 동안 교반시켰다.  교반한 용액을 무수 황화 마그네슘을 통하여 수분을 없애고, 용매를 제거하였다.  다음으로, 컬럼 크로마토그래피를 이용하여 최종 생성물을 분리 수득하였다.
위와 같이 합성된 본 실시예 4에 따른 최종 생성물은 p- 위치에 트리페닐 아민이 치환된 화합물로서, 하기 화학식 8에 보인 바와 같으며, 이는 1H-NMR 분석을 통해 확인하였다.
[화학식 8]
Figure PCTKR2012005204-appb-I000008
[실시예 5]
다음과 같은 과정을 통해 p- 위치에 트리페닐 아민이 치환되고, 상기 트리페닐 아민에는 메틸기(Me)가 결합된 화합물을 합성(제조)하였다.
1. 4-브로모톨루엔(4-bromotoluene)과 벤질아민(benzylamine)을 잔포스(Xantphos), 팔라듐(Pd), 소듐 터부톡사이드(Sodium tertbutoxide), 그리고 톨루엔(toluene)이 존재하는 용액에 적가하여 14시간 동안 환류 온도에서 교반하였다.  그리고 무수 황화마그네슘을 통하여 수분을 없앤 후, 컬럼 크로마토그래피를 통하여 메틸기(Me)가 치환된 트리페닐 아민(triphenyl amine)을 분리하였다. 
2. 위 메틸기(Me)가 치환된 트리페닐 아민(4,4'-dimethyltriphenylamine)에 트리클로로메탄(trichloromethane)을 적가하여 녹이고, N-브로모숙시미드(N-bromosuccimide)를 섞어 140oC의 높은 온도에서 교반 한다.  그리고 무수황화 마그네슘을 통하여 수분을 없애고, 용매를 제거한 후, 컬럼 크로마토그래피를 통하여 p-메틸 트리페닐 아민(p-Methyl triphenyl amine)을 분리하였다.
3. 위 p-메틸 트리페닐 아민(p-Methyl triphenyl amine)에 용매 디메틸에테르(DME)와 피리딘(Pyridine)을 3:1 부피비로 적가한 다음, 0℃로 유지하고, n-부틸리튬(n-BuLi)을 적가하였다.  그리고 얻어진 용액을 환류 온도에서 40분 동안 유지한 후, p-카르보란을 적가하였다.  이후, 염화 구리(copper Chloride)를 넣고 140℃로 교반하였다.  교반된 용액을 무수황화 마그네슘을 통하여 수분을 제거하고, 컬럼 크로마토 그래피를 이용하여 최종 생성물을 분리 수득하였다.
위와 같이 합성된 본 실시예 5에 따른 최종 생성물은 p- 위치에 트리페닐 아민이 치환되고, 상기 트리페닐 아민의 페닐기에는 메틸기(Me)가 결합된 화합물로서, 하기 화학식 9에 보인 바와 같으며, 이는 1H-NMR 분석을 통해 확인하였다. 하기 화학식 9에서 Me는 메틸기(CH3-)이다.
[화학식 9]
Figure PCTKR2012005204-appb-I000009
[비교예 1]
종래의 정공 수송층(HTL)을 구성하는 정공 수송 재료로 많이 사용되는 통상의 TAPC를 본 비교예 1에 따른 시편으로 사용하였다.  이는 하기 화학식 10에 보인 구조를 갖는다.  하기 화학식 10에서 Me는 메틸기(CH3-)이다.
[화학식 10]
Figure PCTKR2012005204-appb-I000010
[비교예 2]
하기 화학식 11에 보인 카바졸 화합물을 본 비교예 2에 따른 시편으로 사용하였다. 
[화학식 11]
Figure PCTKR2012005204-appb-I000011
상기 각 실시예(1 ~ 5) 및 비교예(1 및 2)에 따른 화합물에 대하여 삼중항 에너지(ET, λex = 355 ㎚), 에너지 밴드 갭, 정공 모빌리티(Hole mobility) 및 열적 특성 등의 물성을 평가하고, 그 결과를 하기 [표 1]에 나타내었다.  열적 특성으로는 유리 전이 온도(Tg)와 용융 온도(Tm)를 평가하였다.   이때, 삼중항 에너지(ET)와 에너지 밴드 갭은 레이저 측정기(1 ns pulsed nitrogen laser, Photon Technology International社 제품, 모델명 GL-3300)를 통해 평가하였으며, 정공 모빌리티는 상기 레이저 측정기(모델명 GL-3300)와 Digital Oscilloscope(LeCroy 社 제품, 모델명 LC 572A)를 통해 분석하였다.  그리고 열적 특성(Tg, Tm)은 Perkin-Elmer 社의 Pysis Diamond DSC 측정기를 이용하여 평가하였다.
표 1 < 물성 평가 결과 >
비  고 ET[eV] 에너지 밴드 갭[eV] 정공 모빌리티(@ 5x105V/㎝)[㎠/Vs] 열적 특성
Tg [℃] Tm [℃]
실시예 1 2.34 3.49 1.0 x 10-4 135 297
실시예 2 3.06 3.54 9.4 x 10-4 132 286
실시예 3 3.06 3.55 1.5 x 10-3 146 400
실시예 4 2.89 3.44 6.3 x 10-4 110 344
실시예 5 2.87 3.46 1.2 x 10-3 120 290
비교예 1 2.87 3.53 8.5 x 10-5 80 180
비교예 2 2.75 2.34 4.0 x 10-4 106 251
상기 [표 1]에 나타난 바와 같이, 본 발명에 따라 카르보란에 방향족 화합물(트리페닐 아민계 또는 카바졸계 화합물)이 치환된 실시예(1 ~ 5)에 따른 화합물은 종래의 비교예(1 및 2)와 대비하여, 동등 수준의 삼중항 에너지(ET)를 갖거나, 그 이상으로서 3.0eV 이상의 높은 삼중항 에너지(ET)를 가짐을 알 수 있었다.  그리고 비교예(1 및 2)보다 넓은 에너지 밴드 갭을 가짐을 알 수 있었다.  또한, 정공 모빌리티와 열적 특성도 매우 높음을 알 수 있었다. 
아울러, 상기 실시예 1 내지 3의 결과에서 알 수 있는 바와 같이, 카바졸의 치환 위치에 따라 특성이 달라짐을 알 수 있었다.  즉, 치환기인 카바졸이 카르보란의 o- 위치보다 m- 위치에 결합된 경우가 양호한 특성을 보임을 알 수 있었다.  그리고 p- 위치에 치환된 경우, 가장 양호한 특성을 보였다. 특히, 유리 전이 온도(Tg)에 있어, o- 위치나 m- 위치에 치환된 경우보다 p- 위치에 치환된 경우가 10℃ 이상의 높은 열적 특성을 가짐을 알 수 있었다. 
또한, 실시예 4 및 5를 대비해 보면, 트리페닐 아민에 메틸기(Me)가 결합된 경우, 즉 실시예 5에 따른 화합물의 경우가 정공 모빌리티 및 유리 전이 온도(Tg)에 있어 메틸기(Me)가 없는 실시예 4보다 양호한 결과를 보임을 알 수 있었다.
한편, 상기 실시예 4 및 실시예 5에 따른 화합물에 대하여 전기화학적 안정도를 평가하였다. 전기화학적 안정도는 당 업계에서 통상적으로 사용하는 CV(Cyclic voltammetry) 곡선을 통해 평가하였으며, 그 결과를 첨부된 도 1 및 도 2에 나타내었다.  도 1은 실시예 4에 따른 화합물의 CV 곡선이고, 도 2는 실시예 5에 따른 화합물의 CV 곡선이다. 
도 1 및 도 2에 나타난 바와 같이, 카르보란에 트리페닐 아민이 치환되되, 트리페닐 아민의 페닐기에 메틸기(Me)가 결합된 화합물(실시예 5)이 메틸기(Me)가 없는 화합물(실시예 4)보다 전기화학적으로 안정함을 CV를 통해 알 수 있었다.  이는 화합물의 전기화학적 안정성에 의한 장수명 특성을 갖게 할 수 있음을 의미한다. 
< 소자 제조 >
[소자 실시시편 1 내지 3]
유리 기판 상에 양극으로서 ITO 박막을 증착한 다음, 상기 양극(ITO) 상에 통상과 같은 증착 방법으로 정공 주입층(HIL), 정공 수송층(HTL), 발광층(EML), 전자 수송층(ETL) 및 음극을 형성하였다.  정공 주입층(HIL)으로는 통상적으로 사용되는 NDP를 사용하고, 발광층(EML)으로는 통상적으로 사용되는 호스트(CBP)와 도판트(FIr6)를 9 : 1의 몰비로 사용하여 형성하였다. 그리고 전자 수송층(ETL)과 음극은 통상적으로 사용되는 SiTAZ 와 LiF/Al를 각각 사용하여, 유리/양극/HIL(NPD)/HTL/EML(CBP+FIr6)/ETL(SiTAZ)/음극의 적층 구조를 가지는 PhOLED를 제조하였다.
이때, 상기 정공 수송층(HTL)은 각 실시시편에 따라 달리하여 사용하였다.  구체적으로, 실시시편 1은 상기 실시예 1에 따른 화합물을 사용하였으며, 실시시편 2는 상기 실시예 2에 따른 화합물을 사용하였다.  그리고 실시시편 3의 경우에는 상기 실시예 3에 따른 화합물을 사용하였다. 
[소자 비교시편 1 및 2]
상기와 동일하게 PhOLED를 제조하되, 정공 수송층(HTL)을 달리하여 사용하였다.  구체적으로, 비교시편 1의 경우에는 상기 비교예 1에 따른 화합물(TAPC)을 사용하고, 비교시편 2의 경우에는 상기 비교예 2에 따른 화합물(카바졸)을 사용하였다. 
위와 같이 제조된 각 실시시편(1 ~ 3) 및 비교시편(1 및 2)에 따른 PhOLED에 대하여, 전류밀도를 갖게 하는 최소 구동 전압(VON)과, 12V에서의 전류밀도를 평가하였다.  또한, 발광 휘도(cd/A), 발광 효율(lm/W) 및 색 좌표(CIE) 등의 소자 특성을 평가하였다. 
본 발명의 실시시편에 따른 PhOLED는 종래에 따른 비교시편과 대비하여, 높은 전류밀도를 가짐은 물론 발광 휘도(Cd/A)와 발광 효율(lm/W) 등의 소자 특성이 우수함을 알 수 있었다.  또한, 방향족 화합물(카바졸계)이 카르보란의 p- 위치에 치환된 화합물을 사용한 실시시편 3의 경우, 발광 특성이 매우 우수하면서 4.5V의 낮은 전압에서 구동됨을 알 수 있었다.
한편, PhOLED를 구성함에 있어서, 상기와 동일하게 실시하되, 정공 수송층(HTL)으로서 트리페닐 아민에 메틸기(Me)가 결합된 상기 실시예 5에 따른 화합물을 사용한 소자와, 정공 수송층(HTL)으로서 통상적인 TAPC 를 사용한 상기 비교시편 1에 따른 소자에 대하여 수명 특성을 평가하였다.
수명 특성은 광학적 및 전기적 특성의 측정이 완료된 PhOLED에 대하여 DC-power supply(ED-200E)를 이용하여 DC-power를 공급하고 휘도계로 수명(lifetime)을 측정하였다. 이때, lifetime의 측정은 초기 휘도의 반이 되는 시점을 반감기라 하고, 이 반감기까지 되는 시간을 lifetime으로 하였다. 평가 결과, 상기 실시예 5에 따른 화합물을 사용한 소자의 경우에는 871 시간, 상기 비교시편 1에 따른 소자의 경우에는 428 시간의 반감기로서, 본 발명에 따른 소자 시편이 2배 이상의 장수명 특성을 가짐을 알 수 있었다.
이상의 실시예에서 확인되는 바와 같이, 본 발명에 따른 화합물(전하 수송 재료)는 높은 삼중항 에너지(ET)와 넓은 에너지 밴드 갭을 가짐을 알 수 있다.  그리고 정공 모빌리티 등의 전기적 특성이 뛰어나며, 특히 유리 전이 온도(Tg) 등의 열적 안정성이 매우 우수함을 알 수 있다. 또한, 열적 안정성과 함께 전기화학적으로도 안정하여 장수명 특성을 가짐을 알 수 있다.  아울러, 이를 적용한 PhOLED는 우수한 발광 특성을 가짐을 알 수 있다.
열적 안정성 및 전기적 특성이 향상된 신규 화합물을 포함하여 장수명 특성을 가지는 전하 수송 재료 및 청색 인광 유기발광소자를 제공한다.

Claims (15)

  1. 카르보란(carborane)에 방향족 화합물이 치환된 화합물.
  2. 제 1 항에 있어서,
    상기 방향족 화합물은 페닐기와 질소 원자를 가지는 화합물인 것을 특징으로 하는 화합물.
  3. 제 2 항에 있어서,
    상기 방향족 화합물은 트리페닐 아민계 화합물 또는 카바졸계 화합물인 것을 특징으로 하는 화합물.
  4. 제 2 항에 있어서,
    상기 방향족 화합물은 페닐기에 알킬기가 결합되어 있는 것을 특징으로 하는 화합물.
  5. 제 3 항에 있어서,
    상기 트리페닐 아민계 화합물 또는 카바졸계 화합물에 알킬기가 결합되어 있는 것을 특징으로 하는 화합물.
  6. 제 1 항에 있어서,
    상기 카르보란에 2개의 방향족 화합물이 치환된 것을 특징으로 하는 화합물.
  7. 제 6 항에 있어서,
    상기 방향족 화합물은 카르보란의 p- 위치에 치환된 것을 특징으로 하는 화합물.
  8. 제 7 항에 있어서,
    상기 방향족 화합물은 페닐기와 질소 원자를 가지는 화합물인 것을 특징으로 하는 화합물.
  9. 제 8 항에 있어서,
    상기 방향족 화합물은 트리페닐 아민계 화합물 또는 카바졸계 화합물인 것을 특징으로 하는 화합물.
  10. 제 8 항에 있어서,
    상기 방향족 화합물은 페닐기에 알킬기가 결합되어 있는 것을 특징으로 하는 화합물.
  11. 제 9 항에 있어서,
    상기 트리페닐 아민계 화합물 또는 카바졸계 화합물에 알킬기가 결합되어 있는 것을 특징으로 하는 화합물.
  12. 제 1 항에 있어서,
    상기 화합물은 하기 화학식 1 또는 화학식 2로 표시되는 것을 특징으로 하는 화합물.  
    [화학식 1]
    Figure PCTKR2012005204-appb-I000012
    [화학식 2]
    Figure PCTKR2012005204-appb-I000013
    (위 화학식 1 및 2에서, CB는 카르보란이고; R1, R2 , R3 및 R4는 각각 수소 또는 알킬기이다.)
  13. 제 1 항 내지 제 12 항 중 어느 하나의 항에 따른 화합물을 포함하는 전하 수송 재료.
  14. 제 1 항 내지 제 12 항 중 어느 하나의 항에 따른 화합물을 포함하는 청색 인광 유기발광소자.
  15. 양극; 
    상기 양극 상에 형성된 정공 수송층(HTL); 및
    상기 정공 수송층(HTL) 상에 형성된 발광층(EML);
    상기 발광층(EML) 상에 형성된 전자 수송층(ETL); 및
    상기 전자 수송층(ETL) 상에 형성된 음극을 포함하되,
    상기 정공 수송층(H TL), 발광층(EML) 및 전자 수송층(ETL) 중에서 선택된 하나 이상은 제 1 항 내지 제 12 항 중 어느 하나의 항에 따른 화합물을 포함하는 청색 인광 유기발광소자.
PCT/KR2012/005204 2011-12-19 2012-06-29 안정성을 가진 신규의 화합물, 이를 포함하는 전하 수송 재료 및 청색 인광 유기발광소자 WO2013094834A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014530579A JP5760282B2 (ja) 2011-12-19 2012-06-29 安定性を有する新規化合物、これを含む電荷輸送材料および青色リン光有機el素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0137298 2011-12-19
KR20110137298 2011-12-19

Publications (2)

Publication Number Publication Date
WO2013094834A1 true WO2013094834A1 (ko) 2013-06-27
WO2013094834A9 WO2013094834A9 (ko) 2014-09-04

Family

ID=48668691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005204 WO2013094834A1 (ko) 2011-12-19 2012-06-29 안정성을 가진 신규의 화합물, 이를 포함하는 전하 수송 재료 및 청색 인광 유기발광소자

Country Status (3)

Country Link
JP (1) JP5760282B2 (ko)
KR (1) KR101482559B1 (ko)
WO (1) WO2013094834A1 (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045705A1 (ja) 2013-09-30 2015-04-02 新日鉄住金化学株式会社 有機電界発光素子用材料及びこれを用いた有機電界発光素子
WO2015045718A1 (ja) 2013-09-30 2015-04-02 新日鉄住金化学株式会社 有機電界発光素子用材料及びこれを用いた有機電界発光素子
WO2015098297A1 (ja) 2013-12-26 2015-07-02 新日鉄住金化学株式会社 有機電界発光素子用材料及びこれを用いた有機電界発光素子
KR20160130860A (ko) 2014-03-28 2016-11-14 신닛테츠 수미킨 가가쿠 가부시키가이샤 유기 전계발광 소자용 재료 및 이것을 사용한 유기 전계발광 소자
CN106133936A (zh) * 2014-03-24 2016-11-16 新日铁住金化学株式会社 有机电场发光元件用材料及使用其的有机电场发光元件
KR20160137587A (ko) 2014-03-24 2016-11-30 신닛테츠 수미킨 가가쿠 가부시키가이샤 유기 전계발광 소자용 재료 및 이것을 사용한 유기 전계발광 소자
KR20180122645A (ko) 2016-03-28 2018-11-13 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 유기 전계 발광 소자
US10468608B2 (en) 2015-03-30 2019-11-05 Nippon Steel Chemical & Material Co., Ltd. Organic-electroluminescent-element material, and organic electroluminescent element using same
US10807996B2 (en) 2015-03-30 2020-10-20 Nippon Steel Chemical & Material Co., Ltd. Material for organic electroluminescent element and organic electroluminescent element in which same is used

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6307332B2 (ja) * 2014-04-21 2018-04-04 新日鉄住金化学株式会社 有機電界発光素子
KR101739189B1 (ko) 2015-07-09 2017-05-23 울산대학교 산학협력단 고정된 카보레인을 함유하는 인광 화합물 및 이를 이용한 유기 발광 소자
CN107353302A (zh) * 2017-07-03 2017-11-17 南京邮电大学 一种基于咔唑的碳硼烷衍生物材料及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166574A (ja) * 2003-12-05 2005-06-23 Canon Inc 有機発光素子
JP2005162709A (ja) * 2003-12-05 2005-06-23 Canon Inc カルボラン化合物
KR20100056448A (ko) * 2007-07-05 2010-05-27 메르크 파텐트 게엠베하 유기 전자 소자용 발광성 금속 착물

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9623311D0 (en) * 1996-11-08 1997-01-08 British Nuclear Fuels Plc Metallacarboranes
WO2009085344A2 (en) * 2007-12-28 2009-07-09 Universal Display Corporation Dibenzothiophene-containing materials in phosphorescent light emitting diodes
JP6006732B2 (ja) * 2011-12-12 2016-10-12 新日鉄住金化学株式会社 有機電界発光素子用材料及びそれを用いた有機電界発光素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166574A (ja) * 2003-12-05 2005-06-23 Canon Inc 有機発光素子
JP2005162709A (ja) * 2003-12-05 2005-06-23 Canon Inc カルボラン化合物
KR20100056448A (ko) * 2007-07-05 2010-05-27 메르크 파텐트 게엠베하 유기 전자 소자용 발광성 금속 착물

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KOKADO, K. ET AL.: "Multicolor Tuning of Aggregation-Induced Emission through Substituent Variation of Diphenyl-ortho carborane", JOURNAL OF ORGANIC CHEMISTRY, vol. 76, no. 1, 15 December 2010 (2010-12-15), pages 316 - 319 *
PETERSON, J. J. ET AL.: "Carborane-Containing Poly(fluorene): Response to Solvent Vapors and Amines", ACS APPLIED MATERIALS & INTERFACES, vol. 3, no. 6, 18 May 2011 (2011-05-18), pages 1796 - 1799 *
WEE, K.-R. ET AL.: "Carborane Photochemistry Triggered by Aryl Substitution: Carborane- Based Dyads with Phenyl Carbazoles", ANGEWANDTE CHEMIE, vol. 51, no. 11, 1 February 2012 (2012-02-01), pages 2677 - 2680 *
WEE, K.R. ET AL.: "Carborane-Based Optoelectronically Active Organic Molecules: Wide Band Gap Host Materials for Blue Phosphorescence", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 134, no. 43, 11 October 2012 (2012-10-11), pages 17982 - 17990 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105594008B (zh) * 2013-09-30 2017-06-30 新日铁住金化学株式会社 有机电场发光元件用材料及使用其的有机电场发光元件
WO2015045718A1 (ja) 2013-09-30 2015-04-02 新日鉄住金化学株式会社 有機電界発光素子用材料及びこれを用いた有機電界発光素子
US10636981B2 (en) 2013-09-30 2020-04-28 Nippon Steel Chemical & Material Co., Ltd. Material for organic electroluminescent element and organic electroluminescent element using the same
CN105594008A (zh) * 2013-09-30 2016-05-18 新日铁住金化学株式会社 有机电场发光元件用材料及使用其的有机电场发光元件
KR20160056942A (ko) 2013-09-30 2016-05-20 신닛테츠 수미킨 가가쿠 가부시키가이샤 유기 전계 발광 소자용 재료 및 이것을 사용한 유기 전계 발광 소자
KR20160061406A (ko) 2013-09-30 2016-05-31 신닛테츠 수미킨 가가쿠 가부시키가이샤 유기 전계발광 소자용 재료 및 이것을 사용한 유기 전계발광 소자
WO2015045705A1 (ja) 2013-09-30 2015-04-02 新日鉄住金化学株式会社 有機電界発光素子用材料及びこれを用いた有機電界発光素子
US9978963B2 (en) 2013-09-30 2018-05-22 Nippon Steel & Sumikin Chemical Co., Ltd. Material for organic electroluminescent elements, and organic electroluminescent element using same
KR20160095175A (ko) 2013-12-26 2016-08-10 신닛테츠 수미킨 가가쿠 가부시키가이샤 유기 전계발광 소자용 재료 및 이것을 사용한 유기 전계발광 소자
WO2015098297A1 (ja) 2013-12-26 2015-07-02 新日鉄住金化学株式会社 有機電界発光素子用材料及びこれを用いた有機電界発光素子
US10283721B2 (en) 2013-12-26 2019-05-07 Nippon Steel Chemical & Material Co., Ltd. Material for organic electroluminescent elements, and organic electroluminescent element using same
US10305048B2 (en) 2014-03-24 2019-05-28 Nippon Steel Chemical & Material Co., Ltd. Organic-electroluminescent-element material and organic electroluminescent elements using same
KR20160135357A (ko) 2014-03-24 2016-11-25 신닛테츠 수미킨 가가쿠 가부시키가이샤 유기 전계발광 소자용 재료 및 이것을 사용한 유기 전계발광 소자
KR20160137587A (ko) 2014-03-24 2016-11-30 신닛테츠 수미킨 가가쿠 가부시키가이샤 유기 전계발광 소자용 재료 및 이것을 사용한 유기 전계발광 소자
CN106133936A (zh) * 2014-03-24 2016-11-16 新日铁住金化学株式会社 有机电场发光元件用材料及使用其的有机电场发光元件
CN106133936B (zh) * 2014-03-24 2017-11-28 新日铁住金化学株式会社 有机电场发光元件用材料及使用其的有机电场发光元件
US10529932B2 (en) 2014-03-24 2020-01-07 Nippon Steel Chemical & Material Co., Ltd. Organic-electroluminescent-element material and organic electroluminescent element using same
TWI660960B (zh) * 2014-03-24 2019-06-01 日商日鐵化學材料股份有限公司 有機電場發光元件用材料及使用其的有機電場發光元件
CN106133937B (zh) * 2014-03-28 2017-09-26 新日铁住金化学株式会社 有机电场发光元件用材料以及使用其的有机电场发光元件
US10446767B2 (en) 2014-03-28 2019-10-15 Nippon Steel Chemical & Material Co., Ltd. Organic-electroluminescent-element material and organic electroluminescent element using same
KR20160130860A (ko) 2014-03-28 2016-11-14 신닛테츠 수미킨 가가쿠 가부시키가이샤 유기 전계발광 소자용 재료 및 이것을 사용한 유기 전계발광 소자
CN106133937A (zh) * 2014-03-28 2016-11-16 新日铁住金化学株式会社 有机电场发光元件用材料以及使用其的有机电场发光元件
US10468608B2 (en) 2015-03-30 2019-11-05 Nippon Steel Chemical & Material Co., Ltd. Organic-electroluminescent-element material, and organic electroluminescent element using same
US10807996B2 (en) 2015-03-30 2020-10-20 Nippon Steel Chemical & Material Co., Ltd. Material for organic electroluminescent element and organic electroluminescent element in which same is used
KR20180122645A (ko) 2016-03-28 2018-11-13 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 유기 전계 발광 소자

Also Published As

Publication number Publication date
KR20130070507A (ko) 2013-06-27
KR101482559B1 (ko) 2015-01-19
WO2013094834A9 (ko) 2014-09-04
JP2014532300A (ja) 2014-12-04
JP5760282B2 (ja) 2015-08-05

Similar Documents

Publication Publication Date Title
WO2013094834A9 (ko) 안정성을 가진 신규의 화합물, 이를 포함하는 전하 수송 재료 및 청색 인광 유기발광소자
CN102482279B (zh) 有机电子装置及其化合物与终端机
KR100659088B1 (ko) 디플루오로피리딘계 화합물 및 이를 이용한 유기 발광 소자
WO2011108902A2 (ko) 2개 이상의 오원자 헤테로고리를 포함하는 화합물이 2개 이상 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
KR101401639B1 (ko) 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
WO2011019173A2 (ko) 오원자 헤테로 고리를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
KR102169273B1 (ko) 아크리딘 유도체를 포함하는 유기발광 화합물 및 이를 포함하는 유기발광소자
KR20120117675A (ko) 피렌 유도체 화합물 및 이를 포함하는 유기전계발광소자
KR101434292B1 (ko) 발광소자
CN109336772A (zh) 一种含螺结构的三芳香胺化合物及其用途和发光器件
KR20120029258A (ko) 헤테로방향환 화합물 및 이를 사용한 유기발광소자
KR20100069360A (ko) 전자 수송-주입 물질 및 이를 이용한 유기전계발광소자
WO2011111996A9 (ko) 두개의 3차 아민이 치환된 인돌 유도체를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
KR20130121516A (ko) 신규한 아릴아민을 사용한 정공 수송 물질 및 이를 포함한 유기 전계 발광 소자
KR20120056418A (ko) 전자수송물질 및 이를 이용한 유기전계발광소자
KR20140086880A (ko) 신규한 유기 화합물 및 이를 포함하는 유기발광소자
KR20140080451A (ko) 중수소로 치환된 신규한 유기발광 화합물 및 이를 포함하는 유기발광소자
KR101375542B1 (ko) 티오펜 유도체를 포함하는 정공수송 물질 및 이를 사용한 유기전계 발광소자
TW201406706A (zh) 縮合化合物以及包含其之有機發光裝置
KR20120128483A (ko) 유기 발광 장치
KR100846607B1 (ko) 유기 발광 소자
KR20120112257A (ko) 신규한 화합물 및 이를 포함하는 유기전계발광소자
KR20140091496A (ko) 중수소로 치환된 신규한 유기발광 화합물 및 이를 포함하는 유기발광소자
KR102245921B1 (ko) 신규한 유기 화합물 및 이를 포함하는 유기발광소자
KR20130044525A (ko) 인광 화합물 및 이를 이용한 유기전계발광소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859255

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014530579

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12859255

Country of ref document: EP

Kind code of ref document: A1