WO2013094791A1 - 거리 측정 장치 - Google Patents

거리 측정 장치 Download PDF

Info

Publication number
WO2013094791A1
WO2013094791A1 PCT/KR2011/009996 KR2011009996W WO2013094791A1 WO 2013094791 A1 WO2013094791 A1 WO 2013094791A1 KR 2011009996 W KR2011009996 W KR 2011009996W WO 2013094791 A1 WO2013094791 A1 WO 2013094791A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light receiving
measuring device
distance measuring
reflector
Prior art date
Application number
PCT/KR2011/009996
Other languages
English (en)
French (fr)
Inventor
조성진
이경언
김현준
차성훈
이정욱
신현석
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2011/009996 priority Critical patent/WO2013094791A1/ko
Priority to EP11878113.7A priority patent/EP2781932B1/en
Priority to US14/362,387 priority patent/US9429420B2/en
Publication of WO2013094791A1 publication Critical patent/WO2013094791A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning

Definitions

  • the present invention relates to a distance measuring device.
  • knowing the length of one side and the angle between one side can measure the distance.
  • the light is irradiated to the object, and the distance from the object is determined by the position of the light reflected and scattered by the object on the light receiving unit and the angle of the emitted light.
  • the distance of the object when the distance of the object is changed, the position where the spot is formed in the light receiving element is changed, and the distance can be calculated by detecting this signal.
  • the distance measuring device for measuring the distance to the object by using light such as laser light is a method of measuring the time of flight (TOF) of the light and the difference between the angle of the light reflected from the distant object and the near object is different.
  • the object distance is measured by using a position sensitive device (PSD) method.
  • PSD position sensitive device
  • the present invention can measure the distance of an object with one reflector by tilting the base on which the transmitter and the receiver are mounted, or by tilting the reflector, thereby simplifying an optical component and scanning a three-dimensional space. To solve the problem.
  • a light receiving unit including a light transmitting unit for emitting light and a light receiving element in which a spot of light is formed, the base being tilted;
  • a distance measuring device including a reflector which reflects light emitted from the transmitting unit to an object, reflects light reflected or scattered from the object to the light receiving unit, and is rotated.
  • an embodiment of the present invention further includes a tilt driver for tilting the base, wherein the tilt driver comprises: a motor; A first gear mounted to the rotating shaft of the motor; A second gear meshed with the first gear and formed in the base may be included.
  • the base may be tilted to an axis perpendicular to the optical axis emitted from the transmitting part and the rotation axis of the reflector.
  • the reflector may be a mirror.
  • the reflector includes a light reflecting surface that reflects the light emitted from the transmitting part to the object, and reflects the light reflected or scattered from the object to the light receiving part, the light reflecting surface is inclined to the rotation axis It may be lost.
  • the reflector may be a double-sided mirror formed on both sides of the light reflection surface or a polygonal column mirror formed on the polygonal surface of the light reflection surface.
  • the light transmitting unit may include a light source; It may be composed of a collimating lens (Collimate lens) for making the light emitted from the light source into parallel light.
  • a collimating lens Cold lens
  • the light source may be a laser diode (LD) or a light emitting diode (LED).
  • LD laser diode
  • LED light emitting diode
  • the light receiving unit may include a light receiving lens for collecting light scattered or reflected by an object; It may be configured as a light receiving element that can sense the position of the object by the light.
  • a wavelength selective transmission filter may be interposed between the light receiving lens and the light receiving element to block external light other than the light emitted from the light source from entering the light receiving element.
  • the light receiving device may be an image sensor including a plurality of unit pixels arranged in a matrix form of n ⁇ m and converting an optical signal by light into an electrical signal.
  • the spot may be formed on unit pixels of a plurality of lines of the image sensor.
  • the apparatus may further include a micro control unit (MCU) for processing a signal for the object distance measured by the light receiving element and outputting a signal for determining object distance data or an object.
  • MCU micro control unit
  • the MCU may be embedded in a case of the light receiver.
  • an object may be scanned up to ⁇ 85 ° based on an axis perpendicular to the axis of light emitted from the transmitting unit.
  • the light emitted from the transmitter is reflected on the light reflection surface with an object, and the light reflected or scattered from the object is reflected from the light reflection surface to the light receiving portion, is rotated, and the light reflection surface is inclined to the rotation axis
  • a distance measuring device including a reflector is provided.
  • the present invention has the effect of scanning the three-dimensional space by a triangulation method to detect the presence or absence of the surrounding object, and to measure the distance of the object.
  • the present invention is capable of measuring the distance of an object with one reflector by tilting the base on which the transmitter and the receiver are mounted, or by tilting the reflector, thereby simplifying the optical component.
  • the present invention can scan the object on each side of the light transmitting unit, it is possible to detect the presence or absence of the object, to extend the range to measure the distance of the object, there is an effect that can be more precise scanning.
  • FIG. 1 is a schematic diagram for explaining a distance measuring device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic view for explaining an operation of an example of a distance measuring device according to a first embodiment of the present invention
  • FIG. 3 is a schematic view for explaining a distance measuring device according to a second embodiment of the present invention.
  • FIG. 4 is a schematic view for explaining the operation of the reflector of the distance measuring device according to a second embodiment of the present invention.
  • FIG. 5 is a schematic view for explaining another example of the distance measuring device according to the second embodiment of the present invention.
  • FIG. 6 is a schematic view for explaining another example of the distance measuring device according to the second embodiment of the present invention.
  • FIG. 7 is a schematic view for explaining a distance measuring device according to a third embodiment of the present invention.
  • FIG. 8 is a schematic view for explaining a light transmitting unit of the distance measuring device according to the present invention.
  • FIG. 9 is a schematic view for explaining a light receiving unit of the distance measuring device according to the present invention.
  • FIGS. 10A and 10B are diagrams for describing a microcontrol unit (MCU) connected to a light receiving element of a distance measuring device according to the present invention.
  • MCU microcontrol unit
  • 11A and 11B are schematic views for explaining a range in which an object can be scanned in the distance measuring device according to the present invention.
  • FIG. 13 is a schematic plan view for explaining a spot formed on a light receiving element of the distance measuring device according to the present invention.
  • FIG. 14 is a schematic plan view for explaining the formation of a spot on the light receiving element of the distance measuring device according to the present invention.
  • the present invention can tilt the transmitter and receiver mounted on the base, rotate the reflector to receive light reflected or scattered from an object at the receiver to implement a distance measuring device, thereby simplifying the instrument components.
  • FIG. 1 is a schematic diagram for explaining a distance measuring device according to a first embodiment of the present invention
  • Figure 2 is a schematic diagram for explaining the operation of an example of a distance measuring device according to a first embodiment of the present invention. to be.
  • the distance measuring device is equipped with a light receiving unit 120 including a light transmitting unit 110 for emitting light and a light receiving element in which a spot of light is formed, and the base 100 is tilted. )Wow; And a reflector 150 that reflects light emitted from the transmitter 110 to the object 10, reflects light reflected or scattered from the object 10 to the light receiver 120, and rotates. do.
  • the light transmitting unit 110 and the light receiving unit 120 is mounted, the base 100 is tilted, so that the light transmitting unit 110 and the light receiving unit 120 is tilted at the same time.
  • the light emitted from the transmitter 110 is reflected from the rotated reflector 150 to the object 10, and the light reflected or scattered from the object 10 is reflected by the light receiver 150. Is reflected at 120.
  • the distance measuring apparatus of the present invention can scan the three-dimensional space by triangulation to detect the presence or absence of surrounding objects, and measure the distance of the objects.
  • the reflector 150 is rotated so that the light reflected from the reflector 150 can be scanned in a horizontal line, and the base 100 is tilted, thereby transmitting the light transmitting unit (
  • the light emitted from 110 may be reflected by the reflector 150 to be scanned into a plurality of horizontal lines, thereby scanning a three-dimensional space for detecting an object.
  • the reflector 150 is rotated to scan a horizontal line, the base 100 is tilted and the reflector 150 is rotated to scan another horizontal line, and then the base ( If the tilt and the operation of rotating the reflector 150 are continued, the three-dimensional scan can be performed as shown in FIG. 1.
  • the distance measuring device may include a tilt driver for tilting the base 100, and the tilt driver includes a motor 180; A first gear 181 mounted to a rotating shaft of the motor 180; The first gear 181 meshes with the first gear 181 and may be implemented as a second gear (not shown) formed in the base 100.
  • '170' of Figure 1 is a support for supporting the motor 180.
  • the base 100 is tilted by an axis 130 perpendicular to the optical axis emitted from the light transmitting unit 110 and the rotation axis of the reflector 150.
  • a scan in a grid form can be performed as shown in FIG. 2. .
  • the reflector 150 may be applied as a mirror.
  • '111' is a collimated lens that makes light into parallel light, and may be included in the light emitting unit 110, and '121' is light scattered or reflected from the object 10.
  • the light receiving lens may be included in the light receiving unit 120.
  • FIG. 3 is a schematic view for explaining a distance measuring device according to a second embodiment of the present invention
  • FIG. 4 is a schematic view for explaining a reflector operation of the distance measuring device according to a second embodiment of the present invention
  • 5 is a schematic diagram illustrating another example of the distance measuring device according to the second embodiment of the present invention
  • FIG. 6 illustrates another example of the distance measuring device according to the second embodiment of the present invention. It is a schematic drawing for.
  • a distance measuring apparatus comprising: a base 200 on which a light receiving unit 220 including a light transmitting unit 210 for emitting light and a light receiving element in which a spot of light is formed is mounted; The light emitted from the transmitter 210 is reflected by the light reflecting surface to the object 10, and the light reflected or scattered from the object 10 is reflected from the light reflecting surface to the light receiving unit 220 and rotated.
  • the light reflection surface includes a reflector 151 inclined to the rotation axis.
  • the light reflecting surface of the reflector 151 is inclined to the rotation axis of the reflector 151.
  • the reflector 151 when the reflector 151 is a double-sided mirror in which light reflection surfaces are formed on both sides of the front and rear surfaces, when the double-sided mirror is rotated, the reflector 151 may reflect at different angles from the front and rear surfaces of the double-sided mirror. As illustrated in FIG. 3, two lines may be scanned in the vertical direction.
  • the light A incident on the double-sided mirror is reflected in the direction A1 in the front state 151a of the double-sided mirror, and the double-sided mirror is rotated so that in the rear-side state 151b of the double-sided mirror. Reflected in the direction A2, it is reflected at different angles from the front and rear of the double-sided mirror.
  • the base 200 may be in a fixed state without being tilted.
  • the reflector 151 is a square pillar mirror 152 having light reflection surfaces formed on the first to fourth surfaces as shown in FIG. 5, when the square pillar mirror 152 is rotated, Reflected from the first to fourth surfaces of the square pillar mirror 152, it is scanned into four lines.
  • the reflector 151 is a hexagonal column mirror 153
  • the light reflecting surface is formed on the first to sixth surface, as shown in Figure 6, when the hexagonal column mirror 153 is rotated, It is reflected from the first to sixth surfaces of the hexagonal column mirror 153 and scanned in six lines.
  • the reflector 151 of the distance measuring device according to the second embodiment of the present invention may be applied as a double-sided mirror or a polygonal pillar mirror.
  • '211' shown in FIGS. 3, 5 and 6, is a collimated lens for converting light into parallel light, and may be included in the light emitting unit 210, and '221' is scattered in the object 10.
  • the reflected light may be included in the light receiving unit 220 as the light receiving lens.
  • FIG. 7 is a schematic view for explaining a distance measuring device according to a third embodiment of the present invention.
  • the distance measuring apparatus is equipped with a light receiving unit 120 including a light transmitting unit 110 for emitting light and a light receiving element in which a spot of light is formed, and the base 100 tilted. )Wow;
  • the light emitted from the transmitter 110 is reflected by the light reflecting surface to the object 10, and the light reflected or scattered from the object 10 is reflected from the light reflecting surface to the light receiving unit 120, and rotates.
  • the light reflection surface includes a reflector 151 inclined to the rotation axis.
  • the light reflecting surface of the reflector 151 is inclined to the rotation axis of the reflector 151, the base 100 is tilted, and the reflector 151 is also rotated.
  • the reflector 151 may be applied as a double-sided mirror or a polygonal pillar mirror.
  • the third embodiment can be implemented by combining the first embodiment and the second embodiment.
  • the reflector 151 when the light reflecting surface of the reflector 151 is inclined to the rotation axis of the reflector 151, and the reflector 151 is a double-sided mirror, the reflector 151 Reflected at different angles at the front and back of the scan to two lines, the tilt of the base 100 allows scanning to additional lines.
  • FIG. 8 is a schematic view for explaining a light transmitting unit of a distance measuring device according to the present invention
  • FIG. 9 is a schematic view for explaining a light receiving unit of a distance measuring device according to the present invention.
  • the light emitted from the light source 110a may be configured as a collimator lens (Collimate lens) 111 to make parallel light.
  • the light source 110a may be configured of a laser diode (LD) or a light emitting diode (LED).
  • LD laser diode
  • LED light emitting diode
  • the light receiving unit includes a light receiving lens 120a for condensing the light scattered or reflected by the object to the light receiving element 120b; It may be configured as a light receiving element (120b) that can sense the position of the object by the light.
  • the light receiving lens 120a condenses the light reflected or scattered by the object into a spot
  • the light receiving element 120b receives the light converging element formed by the spot condensed by the light receiving lens 120a. Can be.
  • a wavelength selective transmission filter (not shown) between the light receiving lens 120a and the light receiving element 120b blocks external light other than the light emitted from the light source 110a from entering the light receiving element 120b. ) May be intervened.
  • FIGS. 10A and 10B are diagrams for describing a microcontrol unit (MCU) connected to a light receiving element of a distance measuring device according to the present invention.
  • MCU microcontrol unit
  • the signal for the object distance measured by the light receiving element 120b of the distance measuring device according to the present invention is processed by the MCU 300 to output a signal for determining object distance data or object presence.
  • the MCU 300 may be installed in a separate device from the light receiving unit 120, as shown in Figure 12a, or may be embedded in the case of the light receiving unit 120, as shown in Figure 12b.
  • the MCU 300 is mounted on a printed circuit board.
  • 11A and 11B are schematic views for explaining a range in which an object can be scanned in the distance measuring device according to the present invention.
  • the distance measuring apparatus of the present invention may scan an object to ⁇ 85 ° based on the axis V perpendicular to the axis O of the light emitted from the transmitting unit 110.
  • an object may be scanned up to ⁇ 85 °, which is ' ⁇ 1', based on the axis V perpendicular to the axis O of the light emitted from the transmitting unit 110, see FIG. 11B.
  • ⁇ 85 ° ⁇ 1, ⁇ 2
  • ⁇ 85 ° ⁇ 85 °
  • the distance measuring device of the present invention can scan the object in the range of 170 degrees on each side of the light transmitting unit, can detect the presence or absence of the object, expand the range for measuring the distance of the object, more precise scan This would be possible.
  • FIG. 12 is a view for explaining the basic principle of the triangulation method applied to the distance measuring device of the present invention.
  • the light transmitting unit 110 is disposed to be inclined with the object 10, and the light receiving element 120b is disposed to be spaced apart from the light transmitting unit 110, and the light receiving unit 110b is received between the light receiving element 120b and the object 10.
  • the lens 120a is disposed.
  • the distance between the object 10 and the light receiving lens 120a is defined as an object distance 'L', and the object distance 'L' is calculated by Equation 1 below.
  • f is the focal length
  • g is the distance between the light source and the lens
  • is the angle of inclination of the light source
  • p is the position of the spot where the light reflected or scattered from the object is formed on the light receiving element.
  • the present invention can measure the distance of an object with one reflector by tilting the base on which the transmitter and the receiver are mounted, or by tilting the reflector, thereby simplifying an optical component. .
  • FIG. 13 is a schematic plan view for explaining that a spot is formed on a light receiving element of a distance measuring apparatus according to the present invention
  • FIG. 14 is a schematic plan view for explaining a spot being formed on a light receiving element of a distance measuring apparatus according to the present invention. to be.
  • the light receiving device applied to the present invention is arranged in a matrix form of n X m, and may be applied as an image sensor including a plurality of unit pixels for converting an optical signal by light into an electrical signal.
  • the light spot 710 is formed on the unit pixels of one line.
  • the light spot 710 is formed on the unit pixels of a plurality of lines according to the number of tilts of the base.
  • some single pixels of the fifth line of the image sensor may have spots, but all of the single pixels of the fifth line may have spots, and in FIG. 14, the fifth to seventh lines of the image sensor may be present. Although spots are formed in some single pixels of the line, spots may be formed in all single pixels of the fifth to seventh lines of the image sensor.
  • the distance of the object can be measured with a single reflector, thereby simplifying the optical component, and triangulation method. It is possible to scan the presence or absence of surrounding objects, to measure the distance of the object, and to increase the range of the detection distance and the distance of the object, and to measure the distance. Can provide.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

본 발명은 거리 측정 장치에 관한 것이다. 즉, 본 발명의 거리 측정 장치는 광을 출사하는 송광부와 상기 광의 스팟(Spot)이 맺히는 수광 소자를 포함하는 수광부가 장착되어 있으며, 틸트되는 베이스와; 상기 송광부에서 출사된 광을 물체로 반사시키고, 상기 물체에서 반사 또는 산란되는 광을 상기 수광부로 반사시키며, 회전되는 반사체를 포함한다.

Description

거리 측정 장치
본 발명은 거리 측정 장치에 관한 것이다.
일반적으로 삼각 측량법을 이용하면 거리를 구할 수 있다.
즉, 한 변의 길이와 한 변과의 각도를 알게되면 거리를 측정할 수 있는 것이다.
이와 같은 원리를 이용해 광을 물체에 조사하고, 물체에서 반사 및 산란된 광이 수광부에 맺힌 위치와 출사된 광의 각도를 통해 물체와의 거리를 구하게 된다.
여기서, 물체의 거리가 바뀌면 수광 소자에서의 스팟(spot)이 맺히는 위치가 바뀌게 되고, 이 신호를 감지하여 거리를 계산할 수 있게 된다.
그리고, 레이저 광과 같은 빛을 이용하여 물체와의 거리를 측정하는 거리 측정 장치는 광의 주행시간(TOF, Time Of Flight)을 측정하는 방식과 원거리 물체와 근거리 물체에서 반사되는 광의 각도가 다른점을 이용하는 피에스디(PSD, Position Sensitive Device) 방식을 이용하여 물체거리를 측정한다.
이와 같이, 광으로 물체의 거리를 측정하는 장치 및 방법은 다양하고, 보다 우수한 성능을 위하여 다각적인 기술 개발이 수행되고 있다.
본 발명은 송광부와 수광부가 장착된 베이스를 틸트시키거나, 반사체를 기울여 배치함으로써, 하나의 반사체로 물체의 거리를 측정할 수 있어, 광학 부품을 단순화시킬 수 있으며, 3차원 공간을 스캔할 수 있는 과제를 해결하는 것이다.
본 발명은,
광을 출사하는 송광부와 상기 광의 스팟(Spot)이 맺히는 수광 소자를 포함하는 수광부가 장착되어 있으며, 틸트되는 베이스와;
상기 송광부에서 출사된 광을 물체로 반사시키고, 상기 물체에서 반사 또는 산란되는 광을 상기 수광부로 반사시키며, 회전되는 반사체를 포함하는 거리 측정 장치가 제공된다.
그리고, 본 발명의 일실시예는 상기 베이스를 틸트시키기 위한 틸트 구동부가 더 포함되고, 상기 틸트 구동부는, 모터와; 상기 모터의 회전축에 장착된 제 1 기어와; 상기 제 1 기어와 맞물리며, 상기 베이스에 형성된 제 2 기어를 포함될 수 있다.
또, 상기 베이스는, 상기 송광부에서 출사되는 광축 및 상기 반사체의 회전축에 수직한 축으로 틸트될 수 있다.
또한, 상기 반사체는, 미러일 수 있다.
게다가, 상기 반사체는, 상기 송광부에서 출사된 광을 상기 물체로 반사시키고, 상기 물체에서 반사 또는 산란되는 광을 상기 수광부로 반사시키는 광 반사면을 포함하고 있고, 상기 광 반사면이 회전축에 기울어져 있을 수 있다.
더불어, 상기 반사체는, 상기 광 반사면이 양면에 형성된 양면 미러 또는 상기 광 반사면이 다각면에 형성된 다각 기둥 미러일 수 있다.
또, 상기 송광부는, 광원과; 상기 광원에서 출사된 광을 평행광으로 만드는 콜리메이트 렌즈(Collimate lens)로 구성될 수 있다.
그리고, 상기 광원은, 레이저 다이오드(LD) 또는 발광 다이오드(LED)일 수 있다.
또한, 상기 수광부는, 물체에서 산란 또는 반사된 광을 집광시키는 수광 렌즈와; 상기 광으로 물체의 위치를 감지할 수 있는 수광 소자로 구성될 수 있다.
또, 상기 수광 렌즈와 상기 수광 소자 사이에는 상기 광원에서 출사되는 광 이외의 외부광이 상기 수광 소자로 입사되지 않도록 차단하는 파장 선택형 투과 필터가 개재될 수 있다.
더불어, 상기 수광 소자는, n X m의 매트릭스 형태로 배열되고, 빛에 의한 광학 신호를 전기신호로 변환하는 복수개의 단위 픽셀들로 이루어진 이미지 센서일 수 있다.
게다가, 상기 스팟은, 상기 이미지 센서의 복수 라인의 단위 픽셀들에 맺힐 수 있다.
또, 상기 수광소자에서 측정된 물체 거리에 대한 신호를 처리하여 물체 거리 데이터 또는 물체 유무를 판단하는 신호를 출력하는 MCU(Micro Control Unit)를 더 구비할 수 있다.
그리고, 상기 MCU는, 상기 수광부의 케이스 내부에 내장될 수 있다.
게다가, 상기 송광부에서 출사된 광의 축에 수직한 축을 기준으로 ±85˚까지 물체를 스캔할 수 있다.
본 발명은,
광을 출사하는 송광부와 상기 광의 스팟(Spot)이 맺히는 수광 소자를 포함하는 수광부가 장착되어 있는 베이스와;
상기 송광부에서 출사된 광을 물체로 광 반사면에서 반사시키고, 상기 물체에서 반사 또는 산란되는 광을 상기 광 반사면에서 상기 수광부로 반사시키며, 회전되고, 상기 광 반사면이 회전축에 기울어져 있는 반사체를 포함하는 거리 측정 장치가 제공된다.
본 발명은 삼각 측량법으로 3차원 공간을 스캔하여 주변 물체의 유무를 검출하고, 물체의 거리를 측정할 수 있는 효과가 있다.
그리고, 본 발명은 송광부와 수광부가 장착된 베이스를 틸트시키거나, 반사체를 기울여 배치함으로써, 하나의 반사체로 물체의 거리를 측정할 수 있어, 광학 부품을 단순화시킬 수 있는 효과가 있다.
또한, 본 발명은 송광부 양측 각각에서 물체를 스캔할 수 있어, 물체의 유무를 검출하고, 물체의 거리를 측정할 수 있는 범위를 확대시킬 수 있으며, 더 정밀한 스캔이 가능한 효과가 있다.
도 1은 본 발명의 제 1 실시예에 따른 거리 측정 장치를 설명하기 위한 모식적인 도면
도 2는 본 발명의 제 1 실시예에 따른 거리 측정 장치의 일례의 동작을 설명하기 위한 모식적인 도면
도 3은 본 발명의 제 2 실시예에 따른 거리 측정 장치를 설명하기 위한 모식적인 도면
도 4는 본 발명의 제 2 실시예에 따른 거리 측정 장치의 반사체 동작을 설명하기 위한 모식적인 도면
도 5는 본 발명의 제 2 실시예에 따른 거리 측정 장치의 다른 예를 설명하기 위한 모식적인 도면
도 6은 본 발명의 제 2 실시예에 따른 거리 측정 장치의 또 다른 예를 설명하기 위한 모식적인 도면
도 7은 본 발명의 제 3 실시예에 따른 거리 측정 장치를 설명하기 위한 모식적인 도면
도 8은 본 발명에 따른 거리 측정 장치의 송광부를 설명하기 위한 모식적인 도면
도 9는 본 발명에 따른 거리 측정 장치의 수광부를 설명하기 위한 모식적인 도면
도 10a와 도 10b는 본 발명에 따른 거리 측정 장치의 수광소자에 연결된 MCU(Micro Control Unit)을 설명하기 위한 도면
도 11a와 도 11b는 본 발명에 따른 거리 측정 장치에서 물체를 스캔할 수 있는 범위를 설명하기 위한 모식적인 도면
도 12는 본 발명의 거리 측정 장치에 적용된 삼각 측량법의 기본 원리를 설명하기 위한 도면
도 13은 본 발명에 따른 거리 측정 장치의 수광 소자에 스팟이 맺히는 것을 설명하기 위한 모식적인 평면도
도 14는 본 발명에 따른 거리 측정 장치의 수광 소자에 스팟이 맺히는 것을 설명하기 위한 모식적인 평면도
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 설명하면 다음과 같다.
이 과정에서 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의상 과장되게 도시될 수 있다. 또한, 본 발명의 구성 및 작용은 고려하여 특별히 정의된 용어들은 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 한다.
본 발명은 베이스에 장착된 송광부와 수광부를 틸트시키고, 반사체를 회전시켜 물체에서 반사 또는 산란되는 광을 상기 수광부에서 수광하여 거리 측정 장치를 구현하여, 기구 부품을 단순화시킬 수 있게 된다.
도 1은 본 발명의 제 1 실시예에 따른 거리 측정 장치를 설명하기 위한 모식적인 도면이고, 도 2는 본 발명의 제 1 실시예에 따른 거리 측정 장치의 일례의 동작을 설명하기 위한 모식적인 도면이다.
본 발명의 제 1 실시예에 따른 거리 측정 장치는 광을 출사하는 송광부(110)와 상기 광의 스팟(Spot)이 맺히는 수광 소자를 포함하는 수광부(120)가 장착되어 있으며, 틸트되는 베이스(100)와; 상기 송광부(110)에서 출사된 광을 물체(10)로 반사시키고, 상기 물체(10)에서 반사 또는 산란되는 광을 상기 수광부(120)로 반사시키며, 회전되는 반사체(150)를 포함하여 구성된다.
여기서, 상기 송광부(110)와 상기 수광부(120)가 장착되어 있는 상기 베이스(100)가 틸트됨으로써, 상기 송광부(110)와 상기 수광부(120)는 동시에 틸트된다.
그리고, 상기 송광부(110)에서 출사된 광은 상기 회전되는 반사체(150)에서 상기 물체(10)로 반사되고, 상기 물체(10)에서 반사 또는 산란되는 광은 상기 반사체(150)에서 상기 수광부(120)로 반사된다.
따라서, 본 발명의 거리 측정 장치는 삼각 측량법으로 3차원 공간을 스캔하여 주변 물체의 유무를 검출하고, 물체의 거리를 측정할 수 있다.
즉, 도 1에 도시된 바와 같이, 상기 반사체(150)가 회전됨으로써, 상기 반사체(150)에서 반사된 광은 수평 라인으로 스캔할 수 있고, 상기 베이스(100)가 틸트됨으로써, 상기 송광부(110)에서 출사된 광은 상기 반사체(150)에서 반사되어 다수의 수평 라인으로 스캔할 수 있게 되어, 물체 검출을 위한 3차원 공간의 스캔이 가능한 것이다.
더 세부적으로 설명하면, 상기 반사체(150)를 회전시켜 수평 한 라인 스캔하고, 상기 베이스(100)를 틸트 및 상기 반사체(150)를 회전시켜, 다른 수평 한 라인 스캔하고, 그 후, 상기 베이스(100)를 틸트 및 상기 반사체(150)를 회전시키는 동작을 계속 수행하면, 도 1과 같이 3차원 스캔을 수행할 수 있게 된다.
이때, 거리 측정 장치에는 상기 베이스(100)를 틸트시키기 위한 틸트 구동부가 포함될 수 있으며, 상기 틸트 구동부는 모터(180)와; 상기 모터(180)의 회전축에 장착된 제 1 기어(181)와; 상기 제 1 기어(181)와 맞물리며, 상기 베이스(100)에 형성된 제 2 기어(미도시)로 구현될 수 있다.
그리고, 도 1의 '170'은 상기 모터(180)를 지지하는 지지부이다.
더불어, 상기 베이스(100)는 상기 송광부(110)에서 출사되는 광축 및 상기 반사체(150)의 회전축에 수직한 축(130)으로 틸트된다.
그리고, 본 발명의 제 1 실시예에 따른 거리 측정 장치는 상기 반사체(150)의 회전 동작 및 상기 베이스(100)의 틸트 동작을 동시에 수행하게 되면, 도 2와 같이, 격자 형태로 스캔이 가능하다.
또한, 상기 반사체(150)는 미러로 적용될 수 있다.
또, 도 1 및 도 2에 도시된, '111'은 광을 평행광으로 만드는 콜리메이트 렌즈이고, 발광부(110)에 포함될 수 있으며, '121'은 물체(10)에서 산란 또는 반사된 광을 수광 렌즈로, 수광부(120)에 포함될 수 있다.
도 3은 본 발명의 제 2 실시예에 따른 거리 측정 장치를 설명하기 위한 모식적인 도면이고, 도 4는 본 발명의 제 2 실시예에 따른 거리 측정 장치의 반사체 동작을 설명하기 위한 모식적인 도면이고, 도 5는 본 발명의 제 2 실시예에 따른 거리 측정 장치의 다른 예를 설명하기 위한 모식적인 도면이며, 도 6은 본 발명의 제 2 실시예에 따른 거리 측정 장치의 또 다른 예를 설명하기 위한 모식적인 도면이다.
본 발명의 제 2 실시예에 따른 거리 측정 장치는 광을 출사하는 송광부(210)와 상기 광의 스팟(Spot)이 맺히는 수광 소자를 포함하는 수광부(220)가 장착되어 있는 베이스(200)와; 상기 송광부(210)에서 출사된 광을 물체(10)로 광 반사면에서 반사시키고, 상기 물체(10)에서 반사 또는 산란되는 광을 상기 광 반사면에서 상기 수광부(220)로 반사시키며, 회전되고, 상기 광 반사면이 회전축에 기울어져 있는 반사체(151)를 포함하여 구성된다.
즉, 제 2 실시예에 따른 거리 측정 장치는 상기 반사체(151)의 광 반사면이 상기 반사체(151)의 회전축에 기울어져 있다.
이때, 상기 반사체(151)가 전면 및 후면의 양면에 광 반사면이 형성되어 있는 양면 미러인 경우, 상기 양면 미러가 회전될 때, 상기 양면 미러의 전면 및 후면에서 다른 각도로 반사할 수 있게 되어, 도 3에 도시된 바와 같이, 상하 방향으로 2개의 라인으로 스캔할 수 있다.
예컨대, 도 4와 같이, 상기 양면 미러로 입사되는 광(A)는 상기 양면 미러의 전면 상태(151a)에서는 A1 방향으로 반사시키고, 상기 양면 미러가 회전되어 상기 양면 미러의 후면 상태(151b)에서는 A2 방향으로 반사시켜, 상기 양면 미러의 전면 및 후면에서 다른 각도로 반사하게 된다.
본 발명의 제 2 실시예에 따른 거리 측정 장치에서 상기 베이스(200)는 틸트되지 않고 고정되어 있는 상태일 수 있다.
또한, 상기 반사체(151)가 도 5와 같이, 제 1 면 내지 제 4 면에 광 반사면이 형성되어 있는 사각 기둥 미러(152)인 경우, 상기 사각 기둥 미러(152)가 회전될 때, 상기 사각 기둥 미러(152)의 제 1 면 내지 제 4 면에서 반사되어, 4개의 라인으로 스캔하게 된다.
그리고, 상기 반사체(151)가 도 6과 같이, 제 1 면 내지 제 6 면에 광 반사면이 형성되어 있는 육각 기둥 미러(153)인 경우, 상기 육각 기둥 미러(153)가 회전될 때, 상기 육각 기둥 미러(153)의 제 1 면 내지 제 6 면에서 반사되어, 6개의 라인으로 스캔하게 된다.
결국, 본 발명의 제 2 실시예에 따른 거리 측정 장치의 반사체(151)는 양면 미러 또는 다각 기둥 미러로 적용될 수 있다.
참고로, 도 3, 도 5 및 도 6에 도시된, '211'은 광을 평행광으로 만드는 콜리메이트 렌즈이고, 발광부(210)에 포함될 수 있으며, '221'은 물체(10)에서 산란 또는 반사된 광을 수광 렌즈로, 수광부(220)에 포함될 수 있다.
도 7은 본 발명의 제 3 실시예에 따른 거리 측정 장치를 설명하기 위한 모식적인 도면이다.
본 발명의 제 3 실시예에 따른 거리 측정 장치는 광을 출사하는 송광부(110)와 상기 광의 스팟(Spot)이 맺히는 수광 소자를 포함하는 수광부(120)가 장착되어 있으며, 틸트되는 베이스(100)와; 상기 송광부(110)에서 출사된 광을 물체(10)로 광 반사면에서 반사시키고, 상기 물체(10)에서 반사 또는 산란되는 광을 상기 광 반사면에서 상기 수광부(120)로 반사시키며, 회전되고, 상기 광 반사면이 회전축에 기울어져 있는 반사체(151)를 포함하여 구성된다.
제 3 실시예는 상기 반사체(151)의 광 반사면이 상기 반사체(151)의 회전축에 기울어져 있으며, 상기 베이스(100)는 틸트되고, 상기 반사체(151)도 회전된다.
그리고, 상기 반사체(151)는 양면 미러 또는 다각 기둥 미러로 적용될 수 있다.
즉, 제 3 실시예는 제 1 실시예와 제 2 실시예가 결합된 것으로 구현 가능한 것이다.
그러므로, 제 3 실시예는 도 7과 같이, 상기 반사체(151)의 광 반사면이 상기 반사체(151)의 회전축에 기울어져 있고, 상기 반사체(151)가 양면 미러인 경우, 상기 반사체(151)의 전면 및 후면에서 다른 각도로 반사하여 2개의 라인으로 스캔할 수 있고, 상기 베이스(100)의 틸트에 의해 추가의 라인들로 스캔할 수 있게 된다.
도 8은 본 발명에 따른 거리 측정 장치의 송광부를 설명하기 위한 모식적인 도면이고, 도 9는 본 발명에 따른 거리 측정 장치의 수광부를 설명하기 위한 모식적인 도면이다.
전술된 바와 같이, 본 발명에 따른 거리 측정 장치의 송광부는 광원(110a)과; 상기 광원(110a)에서 출사된 광을 평행광으로 만드는 콜리메이트 렌즈(Collimate lens)(111)로 구성될 수 있다.
상기 광원(110a)은 레이저 다이오드(LD) 또는 발광 다이오드(LED)로 구성할 수 있다.
그리고, 도 9와 같이, 수광부는 물체에서 산란 또는 반사된 광을 수광 소자(120b)에 집광시키는 수광 렌즈(120a)와; 상기 광으로 물체의 위치를 감지할 수 있는 수광 소자(120b)로 구성될 수 있다.
또, 상기 수광 렌즈(120a)는 상기 물체에서 반사 또는 산란되는 광을 스팟(Spot)으로 집광시키고, 상기 수광 소자(120b)는 상기 수광 렌즈(120a)에서 집광된 스팟(Spot)이 맺히는 수광 소자일 수 있다.
또한, 상기 수광 렌즈(120a)와 상기 수광 소자(120b) 사이에는 상기 광원(110a)에서 출사되는 광 이외의 외부광이 상기 수광 소자(120b)로 입사되지 않도록 차단하는 파장 선택형 투과 필터(미도시)가 개재될 수 있다.
도 10a와 도 10b는 본 발명에 따른 거리 측정 장치의 수광소자에 연결된 MCU(Micro Control Unit)을 설명하기 위한 도면이다.
본 발명에 따른 거리 측정 장치의 수광소자(120b)에서 측정된 물체 거리에 대한 신호는 MCU(300)에서 처리하여 물체 거리 데이터 또는 물체 유무를 판단하는 신호를 출력하게 된다.
이때, 상기 MCU(300)는 도 12a와 같이, 수광부(120)와 별도의 장치에 설치하거나, 도 12b에 도시된 바와 같이, 수광부(120)의 케이스 내부에 내장시킬 수 있다.
참고로, 상기 MCU(300)는 인쇄회로기판에 실장된다.
도 11a와 도 11b는 본 발명에 따른 거리 측정 장치에서 물체를 스캔할 수 있는 범위를 설명하기 위한 모식적인 도면이다.
본 발명의 거리 측정 장치는 송광부(110)에서 출사된 광의 축(O)에 수직한 축(V)을 기준으로 ±85˚까지 물체를 스캔할 수 있다.
즉, 도 11a와 같이, 상기 송광부(110)에서 출사된 광의 축(O)에 수직한 축(V)을 기준으로 'Θ1'인 -85˚까지 물체를 스캔할 수 있고, 도 11b를 참조하면, 상기 송광부(110)의 일측으로, ±85˚(Θ1, Θ2)로 스캔하고, 상기 송광부(110)의 타측측으로, ±85˚(Θ3, Θ4)로 스캔한다.
그러므로, 본 발명의 거리 측정 장치는 송광부 양측 각각에서 170˚ 범위로 물체를 스캔할 수 있어, 물체의 유무를 검출하고, 물체의 거리를 측정할 수 있는 범위를 확대시킬 수 있으며, 더 정밀한 스캔이 가능한 것이다.
도 12는 본 발명의 거리 측정 장치에 적용된 삼각 측량법의 기본 원리를 설명하기 위한 도면이다.
송광부(110)는 물체(10)와 기울어서 배치되고, 상기 송광부(110)으로부터 이격되어 수광 소자(120b)가 배치되어 있고, 상기 수광 소자(120b)와 상기 물체(10) 사이에는 수광 렌즈(120a)가 배치되어 있다.
이때, 물체(10)와 수광 렌즈(120a) 사이의 거리를 물체 거리 'L'로 정의하며, 물체 거리 'L'은 하기의 수학식 1로 계산된다.
수학식 1
Figure PCTKR2011009996-appb-M000001
여기서, f는 초점거리, g는 광원과 렌즈 사이 간격, Θ는 광원이 기울어진 각도, p는 물체에서 반사 또는산란된 광이 수광 소자에 맺히는 스팟의 위치이다.
상술된 바와 같이, 본 발명은 송광부와 수광부가 장착된 베이스를 틸트시키거나, 반사체를 기울여 배치함으로써, 하나의 반사체로 물체의 거리를 측정할 수 있어, 광학 부품을 단순화시킬 수 있는 장점이 있다.
도 13은 본 발명에 따른 거리 측정 장치의 수광 소자에 스팟이 맺히는 것을 설명하기 위한 모식적인 평면도이고, 도 14는 본 발명에 따른 거리 측정 장치의 수광 소자에 스팟이 맺히는 것을 설명하기 위한 모식적인 평면도이다.
본 발명에 적용된 수광 소자는 n X m의 매트릭스 형태로 배열되고, 빛에 의한 광학 신호를 전기신호로 변환하는 복수개의 단위 픽셀들로 이루어진 이미지 센서로 적용될 수 있다.
그러므로, 상술된 거리 측정 장치의 이미지 센서는 도 13에 도시된 바와 같이, 광 스팟(710)이 한 라인의 단위 픽셀들에 맺히게 된다.
그리고, 거리 측정 장치의 이미지 센서는 도 14에 도시된 바와 같이, 베이스의 틸트 횟수에 따라 광 스팟(710)이 복수 라인의 단위 픽셀들에 맺히게 된다.
여기서, 도 13에서, 이미지 센서의 5번째 라인의 일부 단일 픽셀들에 스팟이 맺혀있지만 5번째 라인의 전체 단일 픽셀들에 스팟이 맺혀있을 수 있고, 도 14에서는 이미지 센서의 5번째 라인 내지 7번째 라인의 일부 단일 픽셀들에 스팟이 맺혀있으나, 이미지 센서의 5번째 라인 내지 7번째 라인의 전체 단일 픽셀들에 스팟이 맺혀있을 수 있다.
이상에서 본 발명에 따른 실시예들이 설명되었으나, 이는 예시적인 것에 불과하고, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 범위의 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 다음의 특허청구범위에 의해서 정해져야 할 것이다.
본 발명은 송광부와 수광부가 장착된 베이스를 틸트시키거나, 반사체를 기울여 배치함으로써, 하나의 반사체로 물체의 거리를 측정할 수 있어, 광학 부품을 단순화시킬 수 있고, 삼각 측량법으로 3차원 공간을 스캔하여 주변 물체의 유무를 검출하고, 물체의 거리를 측정할 수 있으며, 물체의 유무를 검출 범위와 물체의 거리를 측정할 수 있는 범위를 확대시킬 수 있으며, 더 정밀한 스캔이 가능한 거리 측정 장치를 제공할 수 있다.

Claims (16)

  1. 광을 출사하는 송광부와 상기 광의 스팟(Spot)이 맺히는 수광 소자를 포함하는 수광부가 장착되어 있으며, 틸트되는 베이스와;
    상기 송광부에서 출사된 광을 물체로 반사시키고, 상기 물체에서 반사 또는 산란되는 광을 상기 수광부로 반사시키며, 회전되는 반사체를 포함하는 거리 측정 장치.
  2. 청구항 1에 있어서,
    상기 베이스를 틸트시키기 위한 틸트 구동부가 더 포함되고,
    상기 틸트 구동부는,
    모터와;
    상기 모터의 회전축에 장착된 제 1 기어와;
    상기 제 1 기어와 맞물리며, 상기 베이스에 형성된 제 2 기어를 포함하는 거리 측정 장치.
  3. 청구항 1에 있어서,
    상기 베이스는,
    상기 송광부에서 출사되는 광축 및 상기 반사체의 회전축에 수직한 축으로 틸트되는 거리 측정 장치.
  4. 청구항 1에 있어서,
    상기 반사체는,
    미러인 거리 측정 장치.
  5. 청구항 1에 있어서,
    상기 반사체는,
    상기 송광부에서 출사된 광을 상기 물체로 반사시키고, 상기 물체에서 반사 또는 산란되는 광을 상기 수광부로 반사시키는 광 반사면을 포함하고 있고,
    상기 광 반사면이 회전축에 기울어져 있는 거리 측정 장치.
  6. 청구항 5에 있어서,
    상기 반사체는,
    상기 광 반사면이 양면에 형성된 양면 미러 또는 상기 광 반사면이 다각면에 형성된 다각 기둥 미러인 거리 측정 장치.
  7. 청구항 1에 있어서,
    상기 송광부는,
    광원과;
    상기 광원에서 출사된 광을 평행광으로 만드는 콜리메이트 렌즈(Collimate lens)로 구성되는 거리 측정 장치.
  8. 청구항 7에 있어서,
    상기 광원은,
    레이저 다이오드(LD) 또는 발광 다이오드(LED)인 거리 측정 장치.
  9. 청구항 1에 있어서,
    상기 수광부는,
    물체에서 산란 또는 반사된 광을 집광시키는 수광 렌즈와;
    상기 광으로 물체의 위치를 감지할 수 있는 수광 소자로 구성되는 거리 측정 장치.
  10. 청구항 9에 있어서,
    상기 수광 렌즈와 상기 수광 소자 사이에는 상기 광원에서 출사되는 광 이외의 외부광이 상기 수광 소자로 입사되지 않도록 차단하는 파장 선택형 투과 필터가 개재되어 있는 거리 측정 장치.
  11. 청구항 9에 있어서,
    상기 수광 소자는,
    n X m의 매트릭스 형태로 배열되고, 빛에 의한 광학 신호를 전기신호로 변환하는 복수개의 단위 픽셀들로 이루어진 이미지 센서인 거리 측정 장치.
  12. 청구항 11에 있어서,
    상기 스팟은,
    상기 이미지 센서의 복수 라인의 단위 픽셀들에 맺히는 거리 측정 장치.
  13. 청구항 9에 있어서,
    상기 수광소자에서 측정된 물체 거리에 대한 신호를 처리하여 물체 거리 데이터 또는 물체 유무를 판단하는 신호를 출력하는 MCU(Micro Control Unit)를 더 구비하는 거리 측정 장치.
  14. 청구항 13에 있어서,
    상기 MCU는,
    상기 수광부의 케이스 내부에 내장되어 있는 거리 측정 장치.
  15. 청구항 1에 있어서,
    상기 송광부에서 출사된 광의 축에 수직한 축을 기준으로 ±85˚까지 물체를 스캔하는 거리 측정 장치.
  16. 광을 출사하는 송광부와 상기 광의 스팟(Spot)이 맺히는 수광 소자를 포함하는 수광부가 장착되어 있는 베이스와;
    상기 송광부에서 출사된 광을 물체로 광 반사면에서 반사시키고, 상기 물체에서 반사 또는 산란되는 광을 상기 광 반사면에서 상기 수광부로 반사시키며, 회전되고, 상기 광 반사면이 회전축에 기울어져 있는 반사체를 포함하는 거리 측정 장치.
PCT/KR2011/009996 2011-12-22 2011-12-22 거리 측정 장치 WO2013094791A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/KR2011/009996 WO2013094791A1 (ko) 2011-12-22 2011-12-22 거리 측정 장치
EP11878113.7A EP2781932B1 (en) 2011-12-22 2011-12-22 Distance measurement apparatus
US14/362,387 US9429420B2 (en) 2011-12-22 2011-12-22 Distance measurement apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/009996 WO2013094791A1 (ko) 2011-12-22 2011-12-22 거리 측정 장치

Publications (1)

Publication Number Publication Date
WO2013094791A1 true WO2013094791A1 (ko) 2013-06-27

Family

ID=48668663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009996 WO2013094791A1 (ko) 2011-12-22 2011-12-22 거리 측정 장치

Country Status (3)

Country Link
US (1) US9429420B2 (ko)
EP (1) EP2781932B1 (ko)
WO (1) WO2013094791A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3022584A1 (de) * 2013-07-16 2016-05-25 Valeo Schalter und Sensoren GmbH Optoelektronische detektionseinrichtung und verfahren zur abtastenden erfassung der umgebung eines kraftfahrzeugs
CN109725299A (zh) * 2017-10-31 2019-05-07 北京北科天绘科技有限公司 一种激光扫描装置、雷达装置及其扫描方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4194888A1 (en) * 2016-09-20 2023-06-14 Innoviz Technologies Ltd. Lidar systems and methods
US20190265357A1 (en) * 2016-10-24 2019-08-29 Pioneer Corporation Sensor device, sensing method, program, and storage medium
CN211740119U (zh) * 2017-09-28 2020-10-23 茂势达有限公司 距离测定传感器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070009591A (ko) * 2004-02-18 2007-01-18 고쿠리츠 다이가꾸 호우진 시즈오까 다이가꾸 광 비행 시간형 거리 센서
KR100682960B1 (ko) * 2006-01-20 2007-02-15 삼성전자주식회사 레이저 직선자 및 이를 이용한 거리 측정 및 라인 투사방법
KR20100107164A (ko) * 2009-03-25 2010-10-05 삼성전기주식회사 거리 측정 장치
KR20110032956A (ko) * 2009-09-24 2011-03-30 삼성중공업 주식회사 비접촉 형상측정장치
KR20110060041A (ko) * 2009-11-30 2011-06-08 (주)그린광학 3차원 표면 형상 측정 장치 및 방법과 그 시스템

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006721A (en) * 1990-03-23 1991-04-09 Perceptron, Inc. Lidar scanning system
US5455669A (en) * 1992-12-08 1995-10-03 Erwin Sick Gmbh Optik-Elektronik Laser range finding apparatus
AU4822297A (en) * 1996-10-11 1998-05-11 Schwartz Electro-Optics, Inc. Intelligent vehicle highway multi-lane sensor
JP4309014B2 (ja) * 2000-03-08 2009-08-05 株式会社トプコン レーザ基準面による建設機械制御システム
US6865347B2 (en) * 2001-01-05 2005-03-08 Motorola, Inc. Optically-based location system and method for determining a location at a structure
JP4059911B1 (ja) 2006-11-29 2008-03-12 北陽電機株式会社 三次元測距装置
CN101158600A (zh) * 2007-06-05 2008-04-09 杭州远方光电信息有限公司 分布光度计
TW201200953A (en) * 2010-06-18 2012-01-01 Hon Hai Prec Ind Co Ltd Projector and adjusting apparatus thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070009591A (ko) * 2004-02-18 2007-01-18 고쿠리츠 다이가꾸 호우진 시즈오까 다이가꾸 광 비행 시간형 거리 센서
KR100682960B1 (ko) * 2006-01-20 2007-02-15 삼성전자주식회사 레이저 직선자 및 이를 이용한 거리 측정 및 라인 투사방법
KR20100107164A (ko) * 2009-03-25 2010-10-05 삼성전기주식회사 거리 측정 장치
KR20110032956A (ko) * 2009-09-24 2011-03-30 삼성중공업 주식회사 비접촉 형상측정장치
KR20110060041A (ko) * 2009-11-30 2011-06-08 (주)그린광학 3차원 표면 형상 측정 장치 및 방법과 그 시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2781932A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3022584A1 (de) * 2013-07-16 2016-05-25 Valeo Schalter und Sensoren GmbH Optoelektronische detektionseinrichtung und verfahren zur abtastenden erfassung der umgebung eines kraftfahrzeugs
EP3022584B1 (de) * 2013-07-16 2021-07-21 Valeo Schalter und Sensoren GmbH Optoelektronische detektionseinrichtung und verfahren zur abtastenden erfassung der umgebung eines kraftfahrzeugs
CN109725299A (zh) * 2017-10-31 2019-05-07 北京北科天绘科技有限公司 一种激光扫描装置、雷达装置及其扫描方法
CN109725299B (zh) * 2017-10-31 2024-04-19 北京北科天绘科技有限公司 一种激光扫描装置、雷达装置及其扫描方法

Also Published As

Publication number Publication date
EP2781932A4 (en) 2015-07-29
US20140347677A1 (en) 2014-11-27
EP2781932A1 (en) 2014-09-24
EP2781932B1 (en) 2021-05-26
US9429420B2 (en) 2016-08-30

Similar Documents

Publication Publication Date Title
WO2013094791A1 (ko) 거리 측정 장치
WO2016175395A2 (ko) 미러 회전 방식의 다채널 라이더 스캐너 광학계
WO2013058422A1 (ko) 거리 측정 장치
WO2019022304A1 (ko) 하이브리드 라이다 스캐너
WO2018124413A1 (ko) 송수광 일체형 광학계 모듈 및 이를 구비하는 스캐닝 라이다
US7800745B2 (en) Goniophotometer
WO2018212395A1 (en) Lidar device and lidar system including the same
WO2017073982A1 (ko) 3차원 스캐닝 시스템
WO2020040390A1 (ko) 3차원 영상 생성 장치 및 방법
WO2011055952A2 (ko) 지시물체의 위치인식장치
US20120188559A1 (en) Device for optically scanning and measuring an environment
WO2017023106A1 (ko) 광파 탐지 및 거리 측정 장치
WO2013036076A2 (ko) 투영격자의 진폭을 적용한 3차원 형상 측정장치 및 방법
WO2017082540A1 (ko) 광 스캐너
WO2017018843A1 (ko) 광파 탐지 및 거리 측정 장치
WO2019022549A1 (ko) 라이다 장치
WO2020130598A1 (ko) 3차원 구강 스캐너 및 이를 이용한 구강 스캔 방법
WO2021096095A1 (ko) 라이다 시스템
WO2010137843A2 (ko) 적외선 스캔 방식의 터치스크린 장치
WO2017116002A1 (ko) 발광 장치, 이 장치를 포함하는 광학 모듈, 및 이 모듈을 포함하는 차량
WO2014104765A1 (ko) 3차원 공간 측정 장치 및 동작 방법
WO2021261809A1 (ko) 라이다 장치
CN101118314B (zh) 一种使用mems微镜检测触摸物坐标的光路系统
WO2012081900A2 (ko) 광 터치 패널
WO2021187775A1 (ko) 이동 통신 단말기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11878113

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14362387

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011878113

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE