WO2010137843A2 - 적외선 스캔 방식의 터치스크린 장치 - Google Patents

적외선 스캔 방식의 터치스크린 장치 Download PDF

Info

Publication number
WO2010137843A2
WO2010137843A2 PCT/KR2010/003281 KR2010003281W WO2010137843A2 WO 2010137843 A2 WO2010137843 A2 WO 2010137843A2 KR 2010003281 W KR2010003281 W KR 2010003281W WO 2010137843 A2 WO2010137843 A2 WO 2010137843A2
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
screen
touch
light guide
guide bar
Prior art date
Application number
PCT/KR2010/003281
Other languages
English (en)
French (fr)
Other versions
WO2010137843A3 (ko
Inventor
김기수
Original Assignee
Kim Ki Su
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kim Ki Su filed Critical Kim Ki Su
Publication of WO2010137843A2 publication Critical patent/WO2010137843A2/ko
Publication of WO2010137843A3 publication Critical patent/WO2010137843A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03547Touch pads, in which fingers can move on a surface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • G06F3/0423Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen using sweeping light beams, e.g. using rotating or vibrating mirror
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0428Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by sensing at the edges of the touch surface the interruption of optical paths, e.g. an illumination plane, parallel to the touch surface which may be virtual

Definitions

  • the present invention relates to a touch screen device using infrared rays, and more particularly, to a touch screen device including an infrared laser scanner, a light guide bar, an infrared receiving phototransistor, and an X / Y decoder.
  • conventional methods for implementing a touch screen include a resistive film method, a capacitive method, an ultrasonic method, and an infrared matrix method.
  • a number of methods such as an image processing method, a piezo method, and a tension measurement method through a camera, have been proposed and commercialized.
  • FIGS. 1 and 2 An example of a conventional infrared matrix type touch screen will be described with reference to FIGS. 1 and 2.
  • FIG. 1 is an exemplary diagram for describing a problem according to a multi-touch of a conventional infrared matrix touch device
  • FIG. 2 is a view showing a structure of a conventional infrared matrix touch device.
  • the infrared ray transmitting LED 11 and the infrared ray receiving phototransistor 12 are densely arranged up and down and left and right along the outline of the screen 10, and the infrared light is formed on the screen 10.
  • the X / Y decoder 13 When a matrix is formed and a certain part on the screen 10 is touched, infrared rays therein are blocked, so it is sensed and transmitted to the X / Y decoder 13 to know the X / Y position of the contacted object. That's how it works.
  • the infrared transmitting LED 11 and the infrared receiving phototransistor 12 are arranged in an array along the frame outside the screen, the front of the screen 10 does not need to be covered by the touch panel, thereby providing a clear screen. It has advantages, and it is relatively easy to cope with the enlargement of the screen, and has the advantage of operating regardless of the type of the object to be touched, so it is used in ATM terminals, large screen kiosk systems, and electronic boards, although it is relatively expensive compared to other methods. .
  • the conventional infrared matrix method requires a large number of infrared LEDs and the same number of infrared phototransistors, and the number increases as the screen becomes larger, which is disadvantageous compared to other methods in terms of cost.
  • the positional resolution of the touch is determined by the number of LEDs and phototransistors, the cost problem arises again because the number of LEDs and phototransistors must be increased to increase the resolution.
  • references 1 and 2 estimate and calculate X / Y position information by linear interpolation using the size information of light obtained from adjacent phototransistors affected when a touch is made.
  • the size information of the light read from the phototransistor may vary depending on the brightness change or the temperature change of the environment, and may also vary depending on the light transmittance of the object in contact with the screen.
  • the estimation method cannot guarantee accurate position accuracy.
  • a multi-touch function that can recognize the picture has been important.
  • Such a multi-touch function can provide a more intuitive and useful convenience to the user, such as zoom in, zoom out, and rotation of the screen.
  • the information projected on the X and Y axes is multi-touch as shown in FIG. 1. If it happened, the touch position could not be determined. That is, when A touches the position A in FIG. 1, Ax and Ay are sensed to determine the position of the object A. FIG. If you touch the B position, Bx and By will be detected and you will know the position of B.
  • the conventional infrared matrix method using two X / Y axes cannot distinguish three or more multi-touches.
  • an object of the present invention is to provide an infrared scan type touch screen device that can increase the accuracy of X / Y position detection without increasing the number of the transmitting infrared LED and the receiving photo transistor in order to solve the above problems. It is done.
  • another object of the present invention is to provide a detection method for a multi-touch that can accurately detect each position even if three or more objects are touched at the same time.
  • An infrared scan type touch screen device of the present invention includes a screen on which a user can touch and view an image on or through the screen; Two or more infrared laser scanners installed at two or more edges of the screen to scan infrared the entire area of the screen at regular intervals; A light guide bar installed at an edge of the screen; An infrared reception phototransistor provided at an end of the light guide bar; An X / Y decoder for detecting X / Y coordinates; The X / Y decoder uses the information on the amount of light read from the infrared receiving phototransistor and the angle information of the laser beam read from the infrared laser scanner to obtain X / Y position information and size information of an object contacted on the screen. It is characterized by calculating.
  • the infrared laser scanner includes a motor; A mirror connected to the rotating shaft of the motor; An infrared laser emitted towards the mirror; And a rotation detector for detecting rotation of the motor.
  • the light guide bar has a cylindrical or polygonal shape
  • the mirror has a polygonal shape
  • a screen that a user can touch and view an image on or through the screen;
  • Two or more infrared laser scanners installed at two or more edges of the screen to scan infrared the entire area of the screen at regular intervals;
  • a light guide bar installed at an edge of the screen and equipped with an infrared receiving phototransistor at regular intervals;
  • An X / Y decoder for detecting X / Y coordinates;
  • the X / Y decoder uses the information about the amount of light read from the infrared receiving phototransistor and the angle information of the laser beam read from the infrared laser scanner to obtain X / Y position information and size information of an object contacted on the screen. It is characterized by calculating.
  • the infrared scan type touch screen device uses an infrared laser scanner in place of the infrared LED array on the transmitting side, and light guides instead of the phototransistor array on the receiving side, compared with the conventional infrared matrix method.
  • the infrared scan type touch screen device has an advantage in that the cost can be reduced because the size of the screen can be easily responded without increasing the parts.
  • the infrared scan type touch screen device has an advantage in that it is possible to provide a multi-touch function capable of detecting respective touch positions even when three or more objects are touched at the same time.
  • 1 is an exemplary view for explaining a problem according to the multi-touch of the conventional infrared matrix type touch device.
  • FIG. 2 is a structural diagram of a conventional infrared matrix type touch device.
  • FIG. 3 is a structural diagram of an infrared scan type touch screen device according to the present invention.
  • FIG. 6 is a view showing a form in which infrared light propagates in the light guide bar.
  • FIG. 7 is a diagram for explaining a coordinate detection method when using two laser scanners.
  • FIG. 8 is a diagram showing a case where four laser scanners are used.
  • FIG. 9 is a view illustrating a state in which an infrared receiving phototransistor is further disposed inside a light guide bar for supporting a large screen;
  • FIG. 3 is a diagram showing the structure of an infrared scan type touch screen device according to the present invention.
  • FIGS. 4 and 5 are diagrams showing an infrared laser scanner, and
  • FIG. 6 is a diagram showing an infrared light propagating through a light guide bar.
  • FIG. 7 is a diagram illustrating a coordinate detection method when two laser scanners are used,
  • FIG. 8 is a diagram illustrating four laser scanners, and
  • FIG. 9 is a light guide bar for supporting a large screen. It is a figure which shows the state which further arrange
  • the infrared laser scanners 31 and 32 include an ultra-compact motor 41 and a reflection mirror 43 connected to the shaft 42 of the motor 41, an infrared laser 44, and The rotation detector 45 of the motor 41 is provided.
  • the infrared laser 44 emits a small spot beam to the mirror 43, and the spot beam reflected from the mirror 43 scans the entire screen 10 as the motor 41 rotates.
  • the rotation detector 45 for detecting the rotation of the motor 41 generates a certain number of pulses per revolution of the motor 43, one pulse per revolution is sufficient for the implementation of the present invention.
  • the mirror 43 is represented by a quadrilateral in this example, but in actual implementation, the mirror 43 may have any number of reflective surfaces, such as hexagonal and octagonal.
  • the infrared laser scanners 31 and 32 are installed at a height such that the laser scan beam of FIG. 3 can reach the light guide bars 33, 34 and 35 on the opposite side without contacting the surface of the screen 10. And the distance between the surface of the screen 10 and 5 to 10 mm.
  • the infrared laser scanners 31 and 32 are installed at two or more corners of the screen 10, and at the same time, when four or more laser scanners are needed to distinguish many touch points, the upper, lower, left, right, middle, and middle portions of the screen 10 are separated. You can also extend the installation location to a point.
  • the scan beam scans the infrared beam over the entire area of the screen 10 at regular intervals, the cycle of which is the number of revolutions of the motor 41 and the number of reflective surfaces of the mirror 43 (four, six, six ... ), And the scan period is typically set to dozens of scans per second.
  • the light guide bars 33, 34, and 35 are provided as a means for transmitting the scan beams arriving across the screen 10 to the infrared receiving phototransistors 36 and 37.
  • the light guides are provided.
  • the form in which the infrared light propagates in the bars 33, 34, and 35 is shown in detail.
  • the material of the light guide bars 33, 34, and 35 is polymethylmethacrylate (PMMA) having good total reflection characteristics with respect to the infrared wavelength.
  • PMMA polymethylmethacrylate
  • the light guide bars 33, 34, 35 have a cylindrical shape or a rod shape having an arbitrary square shape, and can be easily machined and installed according to the size of the screen. 6 illustrates a process of propagating a scan beam when a rectangular light guide bar is used.
  • FIG. 6A is a view from the side of the light guide bar
  • FIG. 6B is a view from the tip of the light guide bar
  • FIG. 6C is a view of FIG. 6A rotated by 90 °.
  • the light guide bar 33 or the light guide bar 34 is crossed across the screen 10 and sensed by the infrared receiving phototransistor 36 located at the tip through the internal reflection of the light guide bars 33 and 34. Scanning light emitted from the infrared laser scanner 32 crosses the screen 10 and reaches the light guide bar 33 or the light guide bar 35, and is reflected at the tip through the internal reflection of the light guide bars 33 and 35. It is detected by the infrared receiving phototransistor 37 located.
  • a frequency division method is used.
  • a time division method can be used.
  • the infrared laser scanners 31 and 32 emit scan light having different wavelengths, and the infrared receiving phototransistors 36 and 37 also have detection bands having different wavelengths. Light is detected only in the infrared receiving phototransistor 36 and the scan light of the infrared laser scanner 32 is detected only in the infrared receiving phototransistor 37.
  • the interference problem may be solved by changing the laser emission times of the infrared laser scanners 31 and 32.
  • the output of the rotation detector 45 of the infrared laser scanners 31 and 32 i.e., the rotation pulse
  • the X / Y decoder 13 time-divisions the interval of this rotation pulse
  • the rotation angle of the motor 41 is calculated. Since the motor 41 of the infrared laser scanners 31 and 32 rotates at a constant speed, it is possible to calculate the rotation angle by time-dividing the interval of the rotation pulse.
  • the X / Y decoder 13 has advance information on the amount of light when there is no touch. When a touch occurs, if the amount of light falls below the prior information, it is recognized that the touch occurs. Since the amount of light reaching the X / Y decoder 13 varies depending on the angle of the scan beam even when there is no touch due to the nature of the scheme of the present invention, the infrared beam is positioned at the position where the scan beam reaches the light guide bars 33, 34, 35. The farther the distance to the receiving phototransistors 36 and 37 is, the smaller the amount of light is. Therefore, the X / Y decoder 13 is arranged in advance in the form of an array in which the rotation angles of the infrared laser scanners 31 and 32 are indexed. Information will be kept.
  • the touch position detection method in the infrared scan type touch screen device will be described in detail.
  • the light guide bar is sent out from the infrared laser scanner 31.
  • the amount of light of the infrared receiving phototransistor 36 transmitted through the 33 is reduced, and the rotation angle of the motor 41 of the infrared laser scanner 31 at this moment is ⁇ A1, and at the same time the infrared laser scanner 32
  • the amount of light of the infrared receiving phototransistor 37 transmitted from the light guide bar 35 is also reduced.
  • the rotation angle of the motor 41 of the infrared laser scanner 32 at this moment is ⁇ A2
  • the touch point A positioning problem
  • reference 3 uses a method of extending the detection axis on the plane to three or more in the capacitive method, and in the capacitive method or the resistive method, it is possible to extend the number of axes of the sensing electrode in the plane.
  • the infrared matrix method cannot extend the detection axis beyond two axes in the X / Y direction.
  • FIG. 8 illustrates a form in which the infrared laser scanners used in the infrared scan type touch screen device according to the present invention are expanded to four.
  • four infrared laser scanners 31, 32, 51, 52 were used and four infrared receiving phototransistors 36, 37, 38, 39 were used.
  • the detection axis is extended to four, so that four simultaneous touch points can be recognized.
  • the infrared laser scanner can be extended to be installed not only at the corners of the screen but also at the top, bottom, left and right middle points of the screen, thereby theoretically allowing infinite touch point recognition.
  • Reference 1 Measurement method of detailed coordinates and error correction method of touch panel

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

본 발명은 적외선 스캔 방식의 터치스크린 장치에 관한 것으로, 보다 상세하게는 송신 측에 적외선 레이저 스캐너를 구비하고 수신 측에 도광바(Light Guide Bar) 및 적외선 수신 포토트랜지스터를 구비하며, X/Y 좌표를 검출하기 위한 디코더를 구비한 터치스크린 장치에 대한 것이다. 본 발명에 따른 적외선 스캔 방식의 터치스크린 장치는 사용자가 터치하고 이미지를 스크린상에서 또는 스크린을 통하여 뷰잉할 수 있는 스크린과; 상기 스크린의 2 개 이상의 에지에 설치되어, 상기 스크린의 전 영역을 일정한 주기로 적외선 스캔하는 2개 이상의 적외선 레이저 스캐너와; 상기 스크린의 테두리부에 설치되는 도광바와; 상기 도광바의 말단에 설치되는 적외선 수신 포토트랜지스터 및; X/Y 좌표를 검출하기 위한 X/Y 디코더로 구성되며; 상기 X/Y 디코더는 상기 적외선 수신 포토트랜지스터에서 읽어 들인 광량에 대한 정보와 상기 적외선 레이저 스캐너에서 읽어 들인 레이저 빔의 각도 정보를 이용하여 스크린 상에 접촉된 물체의 X/Y 위치 정보와 크기 정보를 계산하는 것을 특징으로 한다. 본 발명에 따른 적외선 스캔 방식의 터치스크린 장치는 기존의 적외선 LED 및 적외선 수신 포토트랜지스터를 매트릭스 형태로 배치한 방법에 비하여 구조가 지극히 간단하며 스크린의 크기가 커지더라도 비용의 증가 없이 유연하게 대응할 수 있고, 동시에 여러 터치 점을 검출할 수 있는 멀티 터치 기능을 구현할 수 있다.

Description

적외선 스캔 방식의 터치스크린 장치
본 발명은 적외선을 이용한 터치스크린 장치에 관한 것으로서, 보다 상세하게는 적외선 레이저 스캐너, 도광바, 적외선 수신 포토트랜지스터(Phototransistor; ) 및 X/Y 디코더로 구성된 터치스크린 장치에 관한 것이다.
일반적으로, 터치스크린을 구현하는 기존의 방식으로는 저항막 방식, 정전용량 방식, 초음파 방식 및 적외선 매트릭스 방식 등이 대표적이다. 이외에도 카메라를 통한 영상처리 방식, 피에조 방식, 장력 측정 방식 등 수많은 방식들이 제안되고 상용화되고 있다.
이 중에서 종래의 적외선 매트릭스 방식 터치스크린의 일 예를 첨부된 도 1 및 도 2를 참조하여 설명하면 다음과 같다
첨부된 도 1은 종래의 적외선 매트릭스형 터치 장치의 멀티터치에 따른 문제점을 설명하기 위한 예시도이며, 도 2는 종래의 적외선 매트릭스형 터치 장치의 구조를 보여주는 도시도이다.
도 2에 도시된 바와 같이, 스크린(10)의 외곽선을 따라 상하 좌우로 적외선 송신용 LED(11)와 적외선 수신용 포토트랜지스터(12)를 조밀하게 배치하여 스크린(10) 상에 적외선 광으로 이루어진 매트릭스를 구성하고, 스크린(10) 상의 특정 부위에 접촉이 이루어지면 그곳의 적외선이 차단되기 때문에 이를 감지하고 그 정보를 X/Y 디코더(13)에 전달하여 접촉한 물체의 X/Y 위치를 알 수 있도록 하는 방식이다. 이 방식은 스크린 외곽의 프레임을 따라 적외선 송신용 LED(11)와 적외선 수신용 포토트랜지스터(12)를 어레이 형태로 배치하므로 스크린(10)의 전면을 터치 패널로 가릴 필요가 없어서 선명한 화면을 제공한다는 장점이 있고, 스크린의 대형화에 다른 대응이 상대적으로 용이하며, 터치하는 물체의 종류에 관계없이 작동한다는 장점이 있어서 다른 방식에 비해 상대적으로 고가임에도 ATM 단말기나 대화면 Kiosk 시스템, 전자칠판 등에 많이 사용되고 있다.
이러한 종래의 적외선 매트릭스 방식은 많은 개수의 적외선 LED 및 이와 동수의 적외선 포토트랜지스터를 필요로 하며, 그 숫자는 스크린이 대형화 할수록 증가하므로 비용 측면에서 여타의 방식에 비해 불리하다. 또한 터치의 위치 분해능이 LED 및 포토트랜지스터의 개수에 의해 정해지므로 분해능을 올리기 위해서는 상기 LED 및 포토트랜지스터의 개수를 증가시켜야 하기 때문에 비용 문제가 다시 대두된다.
이러한 분해능의 문제를 개선하기 위해 참고문헌 1, 2에서는 터치가 이루어질 때 영향을 받는 인접한 포토트랜지스터들로부터 구해진 광의 크기 정보를 이용해 선형 보간(Linear Interpolation) 방식으로 X/Y 위치 정보를 추정하여 계산함으로써 위치 정밀도를 향상시키려는 시도를 하고 있다. 그러나 포토트랜지스터에서 읽어 들인 광의 크기 정보는 사용 환경의 밝기 변화나 온도 변화에 따라 달라질 수 있으며, 스크린에 접촉한 물체의 광 투과율에 따라서도 달라질 수 있으므로, 이러한 인접한 포토트랜지스터 간의 광의 크기 정보로 위치를 추정하는 방식은 정확한 위치 정밀도를 보장할 수 없다.
최근에 두 개 이상의 물체가 스크린에 터치하더라도 인식할 수 있는 멀티 터치 기능이 중요하게 부각되고 있다. 이러한 멀티 터치 기능을 통해 화면의 축소 확대, 이동 및 회전 기능 등 사용자에게 보다 직관적이고 유용한 편의성을 제공할 수 있게 된다. 기존의 적외선 매트릭스 방식은 LED 광에 의한 터치 물체의 그림자가 X 축과 Y 축에 투영되는 정보를 반대편에 있는 포토트랜지스터에 의해 읽어내는 방식이므로, 도 1에서 예시한 바와 같이 세 점 이상의 멀티 터치가 일어난 경우에 터치 위치를 알아낼 수 없다. 즉, 도 1에서 A 위치를 터치할 경우에 Ax 와 Ay 가 감지되어 물체 A의 위치를 알 수 있게 된다. 또한 B 위치를 터치하면 Bx 와 By 가 감지되어 B의 위치를 알 수 있게 된다. 이어서 A 와 B 가 터치된 상태에서 세 번째 터치 점으로 C 또는 D가 터치될 경우에 터치가 감지될 수 없다. 이미 Ax, Ay 와 Bx, By 가 A와 B를 터치할 때 사용되었기 때문에 C 나 D의 터치는 감지될 수 없는 것이다. 또한 A 와 C가 터치된 상태에서 B 또는 D가 터치된다면 터치는 감지되지만 B 와 D는 구분될 수 없다.
이상에서 예시한 바와 같이 X/Y 두 축을 이용한 기존의 적외선 매트릭스 방식은 세 개 이상의 멀티터치를 구분할 수 없다.
따라서 본 발명의 목적은 상기와 같은 문제를 해결하기 위해, 송신측 적외선 LED 및 수신측 포토트랜지스터의 개수 증가 없이 X/Y 위치 검출의 정밀도를 높일 수 있는 적외선 스캔 방식의 터치스크린 장치를 제공함을 목적으로 한다.
또한, 본 발명의 다른 목적은 세 개 이상의 물체가 동시에 터치되더라도 정확하게 각각의 위치를 검출할 수 있는 멀티 터치에 대한 검출 방법을 제공하는 것이다.
본 발명의 적외선 스캔 방식의 터치스크린 장치는 사용자가 터치하고 이미지를 스크린상에서 또는 스크린을 통하여 뷰잉할 수 있는 스크린과; 상기 스크린의 2 개 이상의 에지에 설치되어, 상기 스크린의 전 영역을 일정한 주기로 적외선 스캔하는 2개 이상의 적외선 레이저 스캐너와; 상기 스크린의 테두리부에 설치되는 도광바와; 상기 도광바의 말단에 설치되는 적외선 수신 포토트랜지스터 및; X/Y 좌표를 검출하기 위한 X/Y 디코더로 구성되며; 상기 X/Y 디코더는 상기 적외선 수신 포토트랜지스터에서 읽어 들인 광량에 대한 정보와 상기 적외선 레이저 스캐너에서 읽어 들인 레이저 빔의 각도 정보를 이용하여 스크린 상에 접촉된 물체의 X/Y 위치 정보와 크기 정보를 계산하는 것을 특징으로 한다.
또한, 적외선 레이저 스캐너는 모터와; 상기 모터의 회전축에 연결된 미러와; 상기 미러를 향해 발사되는 적외선 레이저 및; 상기 모터의 회전을 검출하기 위한 회전 검출기로 구성되는 것을 특징으로 한다.
또한, 도광바는 원통형 또는 다각형 형상을 가지며, 상기 미러는 다각형 형상을 갖는 것을 특징으로 한다.
또한, 사용자가 터치하고 이미지를 스크린상에서 또는 스크린을 통하여 뷰잉할 수 있는 스크린과; 상기 스크린의 2 개 이상의 에지에 설치되어, 상기 스크린의 전 영역을 일정한 주기로 적외선 스캔하는 2개 이상의 적외선 레이저 스캐너와; 상기 스크린의 테두리부에 설치되며, 일정한 간격으로 적외선 수신 포토트랜지스터가 장착된 도광바 및; X/Y 좌표를 검출하기 위한 X/Y 디코더로 구성되며; 상기 X/Y 디코더는 상기 적외선 수신 포토트랜지스터에서 읽어 들인 광량에 대한 정보와 상기 적외선 레이저 스캐너에서 읽어 들인 레이저 빔의 각도 정보를 이용하여 스크린 상에 접촉된 물체의 X/Y 위치 정보와 크기 정보를 계산하는 것을 특징으로 한다.
상술한 바와 같이, 본 발명에 따른 적외선 스캔 방식의 터치스크린 장치는 기존의 적외선 매트릭스 방법과 비교할 때 , 송신측의 적외선 LED 어레이 대신에 적외선 레이저 스캐너를 사용하고, 수신측의 포토트랜지스터 어레이 대신에 도광바와 소수의 포토트랜지스터를 사용함으로써, 부품의 수를 획기적으로 감소시킬 수 있는 이점이 있다.
또한, 본 발명에 따른 적외선 스캔 방식의 터치스크린 장치는 스크린의 크기가 커지더라도 부품의 증가 없이 쉽게 대응할 수 있어서 비용을 절감시킬 수 있다는 이점이 있다.
또한, 본 발명에 따른 적외선 스캔 방식의 터치스크린 장치는 세 개 이상의 물체가 동시에 터치되더라도 각각의 터치 위치를 검출할 수 있는 멀티터치 기능을 제공할 수 있다는 이점이 있다.
도 1은 종래의 적외선 매트릭스형 터치 장치의 멀티터치에 따른 문제점을 설명하기 위한 예시도.
도 2는 종래의 적외선 매트릭스형 터치 장치의 구조도.
도 3은 본 발명의 적외선 스캔 방식의 터치스크린 장치의 구조도.
도 4 및 도 5는 적외선 레이저 스캐너의 도시도.
도 6은 도광바에서 적외선광이 전파되는 형태를 나타낸 도시도.
도 7은 두 개의 레이저 스캐너를 사용할 경우에 좌표 검출 방법을 설명하기 위한 도시도.
도 8은 4개의 레이저 스캐너를 사용한 경우의 도시도.
도 9는 대화면 지원을 위해 도광바 내부에 적외선 수신 포토트랜지스터를 추가로 배치한 모양을 나타내는 도시도.
이하, 도면을 참조하면서 본 발명에 따른 적외선 스캔 방식의 터치스크린 장치를 보다 상세히 기술하기로 한다. 본 발명을 설명함에 있어서 관련된 공지기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략될 것이다. 그리고, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 클라이언트나 운용자, 사용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
도면 전체에 걸쳐 같은 참조번호는 같은 구성 요소를 가리킨다.
도 3은 본 발명의 적외선 스캔 방식의 터치스크린 장치의 구조에 대한 도시도이며, 도 4 및 도 5는 적외선 레이저 스캐너의 도시도이며, 도 6은 도광바에서 적외선광이 전파되는 형태를 나타낸 도시도이며, 도 7은 두 개의 레이저 스캐너를 사용할 경우에 좌표 검출 방법을 설명하기 위한 도시도이며, 도 8은 4개의 레이저 스캐너를 사용한 경우의 도시도이며, 도 9는 대화면 지원을 위해 도광바 내부에 적외선 수신 포토트랜지스터를 추가로 배치한 모양을 나타내는 도시도이다.
도 3 내지 도 9를 참조하여 본 발명에 따른 적외선 스캔 방식의 터치스크린 장치의 구성을 살펴보면, 먼저 스크린(10)의 전체 영역에 대해서 적외선 레이저빔으로 스캔하기 위한 적외선 레이저 스캐너(31, 32)가 구비된다. 상기 적외선 레이저 스캐너(31, 32)는 도 4에 예시한 바와 같이 초소형의 모터(41)와 상기 모터(41)의 축(42)에 연결된 반사용 미러(43)와, 적외선 레이저(44) 및 모터(41)의 회전 검출기(45)를 구비한다. 상기 적외선 레이저(44)는 작은 스폿 빔(Spot Beam)을 미러(43)에 발사하며 미러(43)에서 반사된 스폿빔은 모터(41)가 회전함에 따라 스크린(10) 전체를 스캔하게 된다. 또한 모터(41)의 회전을 검출하기 위한 회전 검출기(45)는 모터(43)의 1회전 당 일정개수의 펄스를 발생시키는데, 본 발명의 구현을 위해서는 1회전 당 1개의 펄스면 충분하다. 상기 미러(43)는 본 예시도 에서는 4각형으로 표현하였으나, 실제 구현에서는 6각형, 8각형 등 임의의 개수의 반사 표면을 가질 수 있다.
상기 적외선 레이저 스캐너(31, 32)는 도 3의 레이저 스캔빔이 스크린(10) 표면에 접촉하지 않고 반대편의 도광바(33, 34, 35)에 도달할 수 있는 높이에 설치하며, 통상 스캔빔과 스크린(10) 표면과의 거리는 5 ~ 10 mm를 유지한다. 또한 상기 적외선 레이저 스캐너(31, 32)는 2개 이상을 스크린(10)의 모퉁이에 설치하는데, 동시에 많은 터치 점을 구분하기 위해서 4개 이상의 레이저 스캐너가 필요한 경우에는 스크린(10)의 상하 좌우 중간 지점으로 설치 위치를 확장할 수도 있다. 상기 스캔빔은 일정한 주기로 스크린(10)의 전 영역에 걸쳐서 적외선 빔을 스캔하는데 스캔의 주기는 모터(41)의 회전수 및 미러(43)의 반사 표면 개수(4각형, 6각형, ... )에 의해 결정되며, 통상 초당 수십 회의 스캔이 이루어지도록 스캔 주기가 설정된다.
또한, 스크린(10)을 횡단해서 도착한 스캔빔을 적외선 수신 포토트랜지스터(36, 37)에 전달하기 위한 수단으로 상기 도광바(33, 34, 35)가 구비되는데, 도 6을 참조하면, 상기 도광바(33, 34, 35)에서 적외선광이 전파되는 형태가 상세히 도시되는데, 통상 도광바(33, 34, 35)의 소재는 적외선 파장에 대한 전반사 특성이 좋은 PMMA(polymethylmethacrylate)가 사용된다. 상기 도광바(33, 34, 35)는 원통이나 임의의 각형을 갖는 막대 형상이며, 스크린의 크기에 따라 용이하게 길이를 가공하여 설치할 수 있다. 도 6에는 사각형 도광바를 사용했을 경우의 스캔빔의 전파과정이 예시되었다. 도 6A는 도광바를 측면에서 바라본 형태이고, 도 6B는 도광바의 선단에서 바라본 형태이며, 도 6C는 도 6A를 90°회전시켜서 바라본 형태이다. 스캔빔이 입사면(51)을 통해 임의의 각도로 도광바(33, 34, 35) 내부에 입사하면, 입사면(51)의 반대편에 위치한 산란면(52)에서 산란을 통해 일부의 광이 전반사면(53)에 도달하게 된다. 이 전반사면(53)에 도달한 광 중에 일부의 광이 내부 전반사를 통해 도광바(33, 34, 35)의 선단으로 전파된다. 도광바의 형태와 도광 방법은 여러 가지가 있을 수 있으며, 도 6은 설명을 위해 그 중의 한가지 실시 예를 예시한 것에 불과하다.
도 3에서와 같이, 2개의 레이저 스캐너(31, 32)를 사용한 경우를 참조하여 본 발명에 따른 적외선 스캔 방식의 터치스크린 장치의 동작을 설명하면, 적외선 레이저 스캐너(31)에서 출사한 스캔광은 스크린(10)을 횡단하여 도광바(33) 또는 도광바(34)에 도달하게 되며, 이들 도광바(33, 34)의 내부 반사를 통해 선단에 위치한 적외선 수신 포토트랜지스터(36)에서 감지된다. 적외선 레이저 스캐너(32)에서 출사한 스캔광은 스크린(10)을 횡단하여 도광바(33) 또는 도광바(35)에 도달하게 되며, 이들 도광바(33, 35)의 내부 반사를 통해 선단에 위치한 적외선 수신 포토트랜지스터(37)에서 감지된다. 여기에서 적외선 레이저 스캐너(31)의 신호가 적외선 수신 포토트랜지스터(37) 에 전달되거나, 적외선 레이저 스캐너(32)의 신호가 적외선 수신 포토트랜지스터(36) 에 전달되는 간섭문제를 해결하기 위해서 주파수 분할 방법이나, 시분할 방법이 사용될 수 있다. 주파수 분할 방법에서는 적외선 레이저 스캐너(31, 32)가 각각 다른 파장의 스캔광을 출사하며, 적외선 수신 포토트랜지스터(36, 37)도 각각 다른 파장의 감지 대역을 갖는데, 적외선 레이저 스캐너(31)의 스캔광은 적외선 수신 포토트랜지스터(36)에서만 검출되며 적외선 레이저 스캐너(32)의 스캔광은 적외선 수신 포토트랜지스터(37)에서만 검출되게 된다. 또한, 시분할 방법에서는 적외선 레이저 스캐너(31, 32)의 레이저방출시간을 달리함으로써 상기 간섭문제를 해결할 수 있다.
이러한 방식으로 상기 적외선 수신 포토트랜지스터(36, 37)에서 검출된 스캔광의 크기에 대한 정보는 X/Y 디코더(13)에 전달된다. 동시에 적외선 레이저 스캐너(31, 32)의 회전 검출기(45)의 출력, 즉 회전펄스도 X/Y 디코더(13)에 전달되는데, 이 X/Y 디코더(13)는 이 회전 펄스의 간격을 시분할하여 모터(41)의 회전 각도를 산출하게 된다. 적외선 레이저 스캐너(31, 32)의 모터(41)는 정속 회전하므로 회전 펄스의 간격을 시분할 하면 회전 각도의 산출이 가능하다.
스크린(10)에 터치가 발생한 경우 X/Y 디코더(13)에 전달되는 광량이 터치점 부근에서 저하되는데, X/Y 디코더(13)는 터치가 없을 때의 광량에 대한 사전 정보를 가지고 있다가 터치가 발생했을 때, 사전 정보 이하로 광량이 떨어지면 터치가 발생한 것으로 인식하게 된다. 본 발명의 방식의 특성상 터치가 없을 때에도, X/Y 디코더(13)에 도달하는 광량이 스캔빔의 각도에 따라서 달라지므로, 스캔빔이 도광바(33, 34, 35)에 도달한 위치에서 적외선 수신 포토트랜지스터(36, 37)까지의 거리가 멀수록 광량이 작으므로, X/Y 디코더(13)는 상기 적외선 레이저 스캐너(31, 32)의 회전 각도를 인덱스로 하는 배열 형태로 광량에 대한 사전 정보를 보관하게 된다.
도 7을 참조하여, 본 발명에 따른 적외선 스캔 방식의 터치스크린 장치에서의 터치 위치의 검출 방법에 대해 보다 상세히 설명하면, A의 위치에 터치가 이루어지면 적외선 레이저 스캐너(31)에서 송출되어 도광바(33)를 통해 전달되는 적외선 수신 포토트랜지스터(36)의 광량이 감소하게 되는데, 이 순간의 적외선 레이저 스캐너(31)의 모터(41)의 회전 각도를 θA1 이라 하고, 동시에 적외선 레이저 스캐너(32)에서 송출되어 도광바(35)를 통해 전달되는 적외선 수신 포토트랜지스터(37)의 광량도 감소하게 되는데, 이 순간의 적외선 레이저 스캐너(32)의 모터(41)의 회전 각도를 θA2 이라 하면, 터치점 A의 위치 결정문제는,
Y = aX ; 여기서 a= tanθA1 인 직선과
Y = ly - bX ; 여기서 b= tanθA2 인 직선의 교점을 구하는 문제로 단순화될 수 있다.
동시에 B의 위치에 터치가 이루어지면 B의 위치는,
Y = cX ; 여기서 c= tanθB1 인 직선과
Y = ly - dX ; 여기서 d= tanθB2 인 직선의 교점을 구하면 된다.
이때 C의 위치에 동시에 터치가 이루어진다면 C가 터치되었다는 것을 감지할 수 없으며, D의 터치가 이루어지면 A 및 B의 터치와 구분할 수 없게 된다. 결과적으로 상기에 설명한 적외선 매트릭스 방식에서와 마찬가지로, 2 개의 적외선 레이저 스캐너를 사용하는 방식으로는 3점 이상의 동시 터치를 구분할 수 없게 된다.
이러한 멀티 터치의 문제를 해결하기 위해서 참고문헌 3에서는 정전용량 방식에서 평면상의 검출 축을 3개 이상으로 확장하는 방법을 사용하는데 정전용량 방식이나 저항막 방식에서는 감지 전극의 축수를 평면적으로 확장하는 것이 가능하지만, 도 1과 도 2에서 알 수 있듯이 적외선 매트릭스 방식은 X/Y 방향의 2 축 이상으로 검출축을 확장하는 것이 불가능하다.
도 8에는 본 발명에 따른 적외선 스캔 방식의 터치스크린 장치에 사용된 적외선 레이저 스캐너를 4개로 확장한 형태가 도시되었다. 도 8에서, 4개의 적외선 레이저 스캐너(31, 32, 51, 52)가 사용되었고 4개의 적외선 수신 포토트랜지스터(36, 37, 38, 39)가 사용되었다. 이렇게 함으로써 하나의 터치점에 4개의 독립적인 각도가 할당되므로 결과적으로 검출 축을 4개로 확장한 효과가 있어서 4개의 동시 터치점을 인식할 수 있게 된다. 만약에 더 이상의 동시 터치를 필요로 한다면, 적외선 레이저 스캐너를 스크린의 모퉁이 뿐만 아니라 스크린 상하 좌우 중간 지점에 확장하여 설치할 수도 있으므로, 이론적으로는 무한개의 터치점 인식도 가능해질 수 있다.
도 9에는, 스크린(10)이 대형화함에 따라 도광바(33, 34, 35)의 길이가 길어지고, 따라서 상기 도광바(33, 34, 35)를 통해 적외선 수신 포토트랜지스터(36, 37)에 전달되는 광량이 너무 작아질 경우에 대하여, 상기 도광바(33, 34, 35)의 중간에 별개의 적외선 수신 포토트랜지스터(80, 81, 82, 83, 84)를 확장 설치한 형태가 도시되었다. 종래의 적외선 매트릭스 방식에서는 스크린(10)의 크기가 커짐에 따라 적외선 LED(11) 및 적외선 수신 포토트랜지스터(12)의 개수도 이에 비례하여 증가되어야 하는데 반해서, 본 발명에 따른 적외선 스캔 방식의 터치스크린 장치의 방식은 적외선 수신 포토트랜지스터의 개수만 약간 증가시키면 되므로 그 구조가 간단해지고 비용 측면에서도 큰 장점을 제공할 수 있다.
이상과 같이 본 발명은 양호한 실시 예에 근거하여 설명하였지만, 이러한 실시 예는 본 발명을 제한하려는 것이 아니라 예시하려는 것이므로, 본 발명이 속하는 기술분야의 숙련자라면 본 발명의 기술사상을 벗어남이 없이 위 실시 예에 대한 다양한 변화나 변경 또는 조절이 가능할 것이다. 그러므로, 본 발명의 보호 범위는 본 발명의 기술적 사상의 요지에 속하는 변화 예나 변경 예 또는 조절 예를 모두 포함하는 것으로 해석되어야 할 것이다.
참고문헌1: 터치패널의 세부좌표 측정방법 및 오차보정 방법
(10-2006-0005932)
2: 적외선 터치스크린의 다점좌표 인식방법및 접점면적 인식방법
(10-2006-0095398)
3: 다축터치 감지라인을 가지는 정전용량센서 터치감지전극판
(10-2007-0079087)

Claims (4)

  1. 사용자가 터치하고 이미지를 스크린상에서 또는 스크린을 통하여 뷰잉할 수 있는 스크린과;
    상기 스크린의 2 개 이상의 에지에 설치되어, 상기 스크린의 전 영역을 일정한 주기로 적외선 스캔하는 2개 이상의 적외선 레이저 스캐너와;
    상기 스크린의 테두리부에 설치되는 도광바와;
    상기 도광바의 말단에 설치되는 적외선 수신 포토트랜지스터 및;
    X/Y 좌표를 검출하기 위한 X/Y 디코더로 구성되며;
    상기 X/Y 디코더는 상기 적외선 수신 포토트랜지스터에서 읽어 들인 광량에 대한 정보와 상기 적외선 레이저 스캐너에서 읽어 들인 레이저 빔의 각도 정보를 이용하여 스크린 상에 접촉된 물체의 X/Y 위치 정보와 크기 정보를 계산하는 것을 특징으로 하는 적외선 스캔 방식의 터치스크린 장치.
  2. 제 1항에 있어서, 상기 적외선 레이저 스캐너는,
    모터와;
    상기 모터의 회전축에 연결된 미러와;
    상기 미러를 향해 발사되는 적외선 레이저 및;
    상기 모터의 회전을 검출하기 위한 회전 검출기로 구성되는 것을 특징으로 하는 적외선 스캔 방식의 터치스크린 장치.
  3. 제 1항 또는 제 2항에 있어서, 상기 도광바는 원통형 또는 다각형 형상을 가지며, 상기 미러는 다각형 형상을 갖는 것을 특징으로 하는 적외선 스캔 방식의 터치스크린 장치.
  4. 사용자가 터치하고 이미지를 스크린상에서 또는 스크린을 통하여 뷰잉할 수 있는 스크린과;
    상기 스크린의 2 개 이상의 에지에 설치되어, 상기 스크린의 전 영역을 일정한 주기로 적외선 스캔하는 2개 이상의 적외선 레이저 스캐너와;
    상기 스크린의 테두리부에 설치되며, 일정한 간격으로 적외선 수신 포토트랜지스터가 장착된 도광바 및;
    X/Y 좌표를 검출하기 위한 X/Y 디코더로 구성되며;
    상기 X/Y 디코더는 상기 적외선 수신 포토트랜지스터에서 읽어 들인 광량에 대한 정보와 상기 적외선 레이저 스캐너에서 읽어 들인 레이저 빔의 각도 정보를 이용하여 스크린 상에 접촉된 물체의 X/Y 위치 정보와 크기 정보를 계산하는 것을 특징으로 하는 적외선 스캔 방식의 터치스크린 장치.
PCT/KR2010/003281 2009-05-26 2010-05-25 적외선 스캔 방식의 터치스크린 장치 WO2010137843A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090045906A KR101129430B1 (ko) 2009-05-26 2009-05-26 적외선 스캔 방식의 터치스크린 장치
KR10-2009-0045906 2009-05-26

Publications (2)

Publication Number Publication Date
WO2010137843A2 true WO2010137843A2 (ko) 2010-12-02
WO2010137843A3 WO2010137843A3 (ko) 2011-03-17

Family

ID=43223220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/003281 WO2010137843A2 (ko) 2009-05-26 2010-05-25 적외선 스캔 방식의 터치스크린 장치

Country Status (2)

Country Link
KR (1) KR101129430B1 (ko)
WO (1) WO2010137843A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110989853A (zh) * 2019-10-23 2020-04-10 南方科技大学 基于液晶光电效应的激光虚拟交互系统以及交互方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101221677B1 (ko) * 2010-09-07 2013-01-14 최도경 적외선 터치스크린 장치
KR101109652B1 (ko) * 2010-10-08 2012-01-31 최도현 입체형 터치스크린 장치
KR101157764B1 (ko) * 2011-03-03 2012-06-25 최대규 원거리 제어가 가능한 적외선 터치스크린 장치
KR101250552B1 (ko) * 2011-04-07 2013-04-04 최대규 다중 터치가 가능한 적외선 터치스크린 장치
KR101221676B1 (ko) * 2011-05-20 2013-01-14 주식회사 에이에프오 다중 터치점 인식이 가능한 적외선 터치스크린 장치
CN104750318B (zh) * 2013-12-31 2018-10-26 北京汇冠新技术股份有限公司 一种红外触摸屏电路
CN104049797B (zh) * 2014-05-30 2017-11-03 湖州佳格电子科技股份有限公司 触摸区域识别所需扫描范围及所需扫描光路的确定方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005165830A (ja) * 2003-12-04 2005-06-23 Canon Inc 光学式座標入力装置
WO2008038275A2 (en) * 2006-09-28 2008-04-03 Lumio Inc. Optical touch panel
KR20090026957A (ko) * 2007-09-11 2009-03-16 엘지디스플레이 주식회사 터치 패널을 구비한 영상표시장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4033540B2 (ja) * 1998-02-18 2008-01-16 富士通株式会社 光走査型タッチパネル

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005165830A (ja) * 2003-12-04 2005-06-23 Canon Inc 光学式座標入力装置
WO2008038275A2 (en) * 2006-09-28 2008-04-03 Lumio Inc. Optical touch panel
KR20090026957A (ko) * 2007-09-11 2009-03-16 엘지디스플레이 주식회사 터치 패널을 구비한 영상표시장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110989853A (zh) * 2019-10-23 2020-04-10 南方科技大学 基于液晶光电效应的激光虚拟交互系统以及交互方法

Also Published As

Publication number Publication date
KR20100127457A (ko) 2010-12-06
WO2010137843A3 (ko) 2011-03-17
KR101129430B1 (ko) 2012-04-13

Similar Documents

Publication Publication Date Title
WO2010137843A2 (ko) 적외선 스캔 방식의 터치스크린 장치
US4936683A (en) Optical tablet construction
EP2511801B1 (en) Optical touch screen
EP2237136A1 (en) Optical detection apparatus and method
CN101663637B (zh) 利用悬浮和点击输入法的触摸屏系统
US7557935B2 (en) Optical coordinate input device comprising few elements
EP1577745B1 (en) Coordinate input apparatus, its control method, and program
CN102449584A (zh) 光学位置检测设备
WO2010122762A1 (en) Optical position detection apparatus
EP1628196A1 (en) Position sensor using area image sensor
US20100207909A1 (en) Detection module and an optical detection device comprising the same
US8922526B2 (en) Touch detection apparatus and touch point detection method
EP2525279A2 (en) Infrared touch screen device capable of multi-touch points sensing
CN105264470A (zh) 非接触地检测再现图像的指示位置的方法及装置
WO2018216619A1 (ja) 非接触入力装置
US20150015545A1 (en) Pointing input system having sheet-like light beam layer
US20110043484A1 (en) Apparatus for detecting a touching position on a flat panel display and a method thereof
KR20120007349A (ko) 압전 방식 스캔 장치 및 이를 이용한 터치 스크린 장치
JP2003280802A (ja) 座標入力装置
KR20070054607A (ko) 레이저와 광섬유를 이용한 터치스크린 장치 및 방법
CN102063228B (zh) 光学侦测系统及应用该光学侦测系统的触摸屏
TWI457805B (zh) 測定物體位置的裝置及方法
KR101125824B1 (ko) 적외선 터치스크린 장치
JP2004326232A (ja) 座標入力装置
KR101118640B1 (ko) 적외선 감지 카메라 방식의 터치 스크린

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780754

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/03/2012)

122 Ep: pct application non-entry in european phase

Ref document number: 10780754

Country of ref document: EP

Kind code of ref document: A2