WO2012081900A2 - 광 터치 패널 - Google Patents

광 터치 패널 Download PDF

Info

Publication number
WO2012081900A2
WO2012081900A2 PCT/KR2011/009613 KR2011009613W WO2012081900A2 WO 2012081900 A2 WO2012081900 A2 WO 2012081900A2 KR 2011009613 W KR2011009613 W KR 2011009613W WO 2012081900 A2 WO2012081900 A2 WO 2012081900A2
Authority
WO
WIPO (PCT)
Prior art keywords
infrared light
light
sensors
infrared
sensor
Prior art date
Application number
PCT/KR2011/009613
Other languages
English (en)
French (fr)
Other versions
WO2012081900A3 (ko
Inventor
안태영
Original Assignee
주식회사 동해과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동해과학기술연구원 filed Critical 주식회사 동해과학기술연구원
Priority to US13/994,531 priority Critical patent/US20130328835A1/en
Publication of WO2012081900A2 publication Critical patent/WO2012081900A2/ko
Publication of WO2012081900A3 publication Critical patent/WO2012081900A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means

Definitions

  • the present invention relates to an optical touch panel, and more particularly, to an optical touch panel capable of touch by infrared rays without physical contact.
  • a touch screen is an input device that replaces an input key, a keyboard, and a mouse.
  • the touch screen is mounted on a screen and touched directly on the screen using a hand or a stylus pen to input data. It is a device that can.
  • the touch screen is a device capable of performing intuitive tasks in a GUI (Graphic User Interface) environment, which is suitable for a portable input device, and can be widely used in computer simulation applications, office automation applications, education applications, and game applications. have.
  • GUI Graphic User Interface
  • the input device using the touch screen method basically includes a touch panel attached to a monitor, a controller, a device driver, and an application program.
  • the touch panel is composed of various layers including an electrode glass (ITO glass) and an electrode film (ITO film) that are specially processed to detect a signal input by a user, and a hand or a stylus pen is placed on the surface of the touch panel.
  • the display position sensor may detect the contact position on the touch panel.
  • the touch screen using the touch panel has a problem that fingerprints or scratches remain on the surface of the touch panel because a hand or a stylus pen must be directly in contact with the touch panel.
  • the touch screen is applied to a large display, there is a problem in that operation is impossible at a long distance.
  • an object of the present invention is to provide an optical touch panel that can be optically touched by infrared light at a distance without physical contact.
  • An object of the present invention comprises a light transmitting screen which forms infrared light entering the front surface and scatters it along the surface, and transmits the visible light entering the rear surface to the front surface;
  • a first infrared light sensing unit disposed at a side of the light transmitting screen and configured of a plurality of infrared light sensing sensors respectively sensing the scattered infrared light energy;
  • a second infrared light sensing unit disposed on a side surface of the light transmitting panel so as to be different from the first infrared light sensing unit and configured of a plurality of infrared light sensing sensors respectively sensing the scattered infrared light energy;
  • a configuration including a calculation unit for calculating the imaging position of the infrared light by the electrical output signal of the infrared light sensors of the first infrared light sensing unit and the electrical output signal of the infrared light sensors of the second infrared light sensing unit.
  • the calculation unit the first input of the scattered infrared light energy input to the infrared light sensor by selecting an infrared light sensor that outputs an electrical output signal significantly stronger than the surroundings among the infrared light sensors of the first infrared light sensor Identifying a path, selecting an infrared light sensor that emits an electrical output signal significantly stronger than the surroundings among the infrared light sensors of the second infrared light sensing unit to determine the second input path of the scattered infrared light energy input to the infrared light sensor And the intersection of the first input path of the infrared light energy and the second input path of the infrared light energy is calculated.
  • the infrared light sensing sensors form a pixel.
  • the first infrared light sensing unit is located above the left edge of the light transmitting screen, and the second infrared light sensing unit is located above the right edge of the light transmitting screen.
  • the optical touch panel may further include a third infrared light sensing unit positioned at a lower edge of the light transmitting screen.
  • a light transmitting screen for imaging the infrared light entering the front surface and scattering along the surface, the visible light entering the rear surface is transmitted to the front surface;
  • a second group of infrared light sensing sensors distributed in a longitudinal direction of a side of the light transmitting screen, each of which detects the scattered infrared light energy
  • a configuration including a calculation unit for calculating the imaging position of the infrared light by the electrical output signal of the infrared light sensors of the first group and the electrical output signal of the infrared light sensors of the second group.
  • the operation unit selects an infrared light sensor that emits an electrical output signal significantly stronger than the surroundings among the infrared light sensors of the first group to grasp the first input path of the scattered infrared light energy input to the infrared light sensor Selecting an infrared optical sensor that emits an electrical output signal that is significantly stronger than a periphery among the infrared optical sensors of the second group, and grasps a second input path of scattered infrared optical energy inputted to the infrared optical sensor; An intersection point of the first input path of energy and the second input path of the infrared light energy is calculated.
  • the light transmitting screen is composed of a transparent plate, a small convex lens arranged in a grid shape on the transparent plate, and an infrared light imaging surface formed at the focus of the convex lens, the infrared light entering the front
  • a light transmitting screen for imaging the light imaging surface and scattering the light along the imaging surface and transmitting visible light entering the rear surface to the front surface to form an image in the space in front of the convex lens
  • a first infrared light sensing unit disposed at a side of the light transmitting screen and configured of a plurality of infrared light sensing sensors respectively sensing the infrared light energy scattered along the imaging surface;
  • a second infrared ray disposed on a side surface of the light transmitting panel so as to be different from the first infrared light detecting unit, and including a plurality of infrared light detecting sensors respectively sensing the infrared light energy scattered along the imaging surface;
  • a light detecting unit It is achieved by a
  • the operation unit selects an infrared light sensor that emits an electrical output signal that is significantly stronger than the surroundings among the infrared light sensors of the first infrared light sensing unit, and then the first input path of scattered infrared light energy input to the corresponding infrared light sensor.
  • Grasp a second input path of scattered infrared light energy input to the corresponding infrared light sensor by selecting an infrared light sensor that emits an electrical output signal that is significantly stronger than the surroundings among the infrared light sensors of the second infrared light detection unit; The intersection point of the first input path of the infrared light energy and the second input path of the infrared light energy is calculated.
  • the infrared light sensing sensors form a pixel.
  • the first infrared light sensing unit is located above the left edge of the light transmitting screen, and the second infrared light sensing unit is located above the right edge of the light transmitting screen.
  • the optical touch panel may further include a third infrared light sensing unit positioned at a lower edge of the light transmitting screen.
  • the configuration described above is to use infrared light, but the present invention is not only possible by infrared light. That is, it is also possible to use visible light having a specific wavelength and to use visible light that is significantly brighter than the surroundings.
  • an object of the present invention is to form light scattered along the surface by scattering the light coming into the front surface, and the visible light entering the back surface to the front surface.
  • a light transmitting screen for transmitting
  • a first light sensing unit disposed at a side of the light transmitting screen and configured of a plurality of light sensing sensors respectively sensing the scattered light energy
  • a second light sensing unit disposed on a side surface of the light transmitting panel so as to be different from the first light sensing unit, and including a plurality of light sensing sensors respectively sensing the scattered light energy;
  • a configuration including a calculation unit for calculating the image position of the light by the electrical output signal of the light sensors of the first light sensor of the first light sensor and the electrical output signal of the light sensors of the second light sensor.
  • the calculation unit by selecting an optical sensor that generates an electrical output signal significantly stronger than the periphery of the optical sensor of the first optical sensing unit to grasp the first input path of the scattered light energy input to the corresponding optical sensor, Selecting an optical sensor that emits an electrical output signal significantly stronger than the periphery among the optical sensors of the second optical sensing unit to grasp the second input path of the scattered optical energy input to the optical sensor, the first input of the optical energy Compute the intersection of the path and the second input path of the light energy.
  • the photosensitive sensors constitute a pixel.
  • the first light sensing unit is located above the left edge of the light transmitting screen, and the second light sensing unit is located above the right edge of the light transmitting screen.
  • the optical touch panel may further include a third light sensing unit positioned at a lower edge of the light transmitting screen.
  • a light transmitting screen for forming the light entering the front surface and scattering along the surface, the visible light entering the rear surface is transmitted to the front surface;
  • a second group of light sensing sensors distributed in a longitudinal direction of the side of the light transmitting screen to respectively sense the scattered light energy
  • a configuration including a calculation unit for calculating the imaging position of the light by the electrical output signal of the optical sensor of the first group and the electrical output signal of the optical sensor of the second group.
  • the operation unit selects an optical sensor that generates an electrical output signal that is significantly stronger than the periphery among the optical sensors of the first group, grasps the first input path of the scattered optical energy input to the corresponding optical sensor, and the second Among the photoelectric sensors of the group, an optical sensor that generates an electrical output signal that is significantly stronger than the surroundings is selected to identify a second input path of scattered optical energy inputted to the corresponding optical sensor, so that the first input path of the optical energy and the optical Compute the intersection of the second input paths of energy.
  • the light transmitting screen is composed of a transparent plate, a small convex lens arranged in a grid shape on the transparent plate, and an optical imaging surface formed at the focus of the convex lens, the light entering the front light
  • a light transmitting screen which forms an image on an image plane and scatters the image along the image plane, and transmits visible light entering the rear surface to a front surface to form an image in a space in front of the convex lens
  • a first light sensing unit disposed at a side of the light transmitting screen and configured of a plurality of light sensing sensors respectively sensing the light energy scattered along the imaging surface
  • a second light sensing unit disposed on a side surface of the light transmitting panel so as to be different from the first light sensing unit, and including a plurality of light sensing sensors each sensing the light energy scattered along the imaging surface;
  • the operation unit selects an optical sensor that emits an electrical output signal significantly stronger than the surroundings among the optical sensors of the first optical sensing unit to grasp the first input path of the scattered optical energy input to the optical sensor, Among the optical sensors of the second optical sensing unit, an optical sensor that generates an electrical output signal that is significantly stronger than the surroundings is selected to identify a second input path of scattered optical energy input to the corresponding optical sensor, and thus, the first input path of the optical energy. And the intersection of the second input path of the optical energy.
  • an optical touch panel capable of optical touch without physical contact is obtained. Can be.
  • FIG. 1 is a view showing a state in which an optical touch panel according to a first embodiment of the present invention is installed on the front of a monitor.
  • FIG. 2 is a view showing a state in which the optical touch panel according to the first embodiment of the present invention is peeled off from the monitor.
  • FIG. 3 shows a cut plane section taken along cut line III-III in FIG. 2.
  • FIG. 5 is a virtual split view of an infrared light scattering screen centered on a sensing sensor unit installed near the upper left corner.
  • FIG. 6 is a view showing a state in which infrared light formed on the surface of the transparent plate is extended radially around the imaging position P.
  • FIG. 7 is a diagram illustrating intensity of infrared light input to each of the left infrared light sensing sensors.
  • FIG. 8 is a diagram illustrating intensity of infrared light input to each of the left infrared light sensing sensors.
  • FIG. 9 is a flowchart showing the operation of the microprocessor of the computing unit.
  • FIG. 11 is a perspective view of a third embodiment according to the present invention.
  • FIG. 12 is a front view of a third embodiment according to the present invention.
  • FIG. 13 is a fourth embodiment according to the present invention.
  • FIG. 14 is a partial cutaway view of FIG. 13.
  • FIG. 15 is a partially enlarged view of FIG. 14.
  • FIG. 1 is a view showing a state in which an optical touch panel as a first embodiment of the present invention is installed on the front surface of a monitor.
  • FIG. 2 is a view showing a state where the optical touch panel as the first embodiment of the present invention is peeled off from the monitor.
  • FIG. 3 shows a cut plane section taken along cut line III-III in FIG. 2.
  • reference numeral 10 denotes an image display device.
  • Reference numeral 20 is an optical touch panel according to the first embodiment of the present invention, and reference numeral 30 is an infrared beam pointer.
  • the optical touch panel 20 includes a frame 101, an infrared light scattering screen 103 fixed to the frame 101, and left and right sides installed near the upper left corner and the upper right corner of the frame 101, respectively.
  • Infrared photosensitive sensor units 105L and 105R are provided.
  • the calculation unit 107 is located in the upper middle portion of the frame 101.
  • the infrared light scattering screen 103 is composed of a transparent plate 103a made of glass or plastic and an infrared light scattering film 103b attached to the surface of the transparent plate 103a.
  • the infrared light scattering film 103b forms infrared light from the outside on the surface of the transparent plate 103a, and infrared light formed on the surface of the transparent plate 103a is scattered radially around the image forming position.
  • the infrared light scattered radially around the image forming position of the surface of the transparent plate 103a is detected by the sensors of the infrared light sensor unit 105.
  • FIG. 4 shows an example of an infrared light sensor unit 105 for detecting infrared light.
  • the infrared light detecting sensor unit is denoted by reference numerals 150, 205, and 305, and an English capital letter after the reference number indicates the position where the infrared light detecting sensor unit is installed for convenience of description.
  • the infrared light sensor unit 105 is composed of a plurality of infrared light sensor (S01 ⁇ S05) contained in the holder 105a, each of the infrared light sensor (S01 ⁇ S05) is the center of the front The normals extending from each other are arranged in different directions.
  • the surface of the transparent plate 103a of the infrared light scattering screen 103 has an imaginary line L101 to L107 centering on a detection sensor unit 105L provided near the upper left corner of the frame 101.
  • virtual lines L121 to L127 around the sensing sensor unit 105R provided near the upper right corner of the frame 101 intersect to smaller screens A02, A03, A05, A06, A10, and A11. Is divided virtually.
  • Each of the photosensitive sensors S01 to S05 of the left sensing sensor unit 105L corresponds to between the virtual line and the virtual line of the virtual lines L101 to L107 extending around the left sensing sensor unit 105L, respectively.
  • Each of the photosensitive sensors S11 ⁇ S15 of the left sensing sensor unit 105R corresponds to a virtual line of the imaginary lines L121 ⁇ L127 extending around the right sensing sensor unit 105R, respectively. have.
  • A03, A05, A06, A10, and A11 are one of the light detection sensors S01 to S05 of the left detection sensor unit 105L and the light detection sensors S11 to S15 of the right detection sensor unit 105R. Each corresponds to one.
  • Each of the infrared light sensing sensors S01 to S05 monitors the surface of the transparent plate 103a between the corresponding virtual line and the virtual line. Infrared light formed on the surface of the transparent plate 103a is scattered radially around the imaging position.
  • infrared light sensing sensors have transparent energy corresponding to energy of infrared light than other infrared light sensing sensors. It is arrange
  • the arrangement of the photosensitive sensors S02 to S11 may be such that the infrared light scattered from the corresponding surface is incident at right angles or close to right angles.
  • FIG. 6 is a view showing a state in which infrared light formed on the surface of the transparent plate is extended radially around the imaging position P.
  • FIG 7 is a view showing the intensity of the infrared light input to each of the left infrared light sensor (S01 ⁇ S05)
  • Figure 8 is an infrared light input to each of the left infrared light sensor (S11 ⁇ S15). It is a figure which shows intensity.
  • infrared light is imaged at the position P of the surface of the transparent plate 103a and is scattered radially around the image forming position P.
  • FIG. 6 Some of the radially scattered infrared light is incident on the infrared light sensing sensors S01 to S05 of the left light sensing sensor unit 105L, and the infrared light sensing of the right light sensing sensor unit 105R of the frame 101. Incident on the sensors S01 to S05.
  • an infrared light detecting sensor (S01 to S05) of the infrared light detecting sensors S01 to S05 of the left light detecting sensor 105L.
  • the energy incident on S02) is significantly greater than the surroundings.
  • the infrared light detecting sensor S13 of the infrared light detecting sensors S11 to S15 of the right light detecting sensor unit 105R as shown in FIG. 8. The energy incident to) is significantly greater than the surroundings.
  • the position of the surface of the transparent plate 103a touched by the laser beam pointer is incident with a greater energy than the surroundings of the infrared light sensing sensors S01 to S05 of the left light sensing sensor portion 105L of the frame 101.
  • Virtual lines L101 and L103 corresponding to the infrared light sensor S02 for detecting the infrared light to be detected and energy of the infrared light sensors S11 to S15 of the right light sensor 105R are significantly larger than the surroundings.
  • the small screen A06 surrounded by the virtual lines L123 and L125 corresponding to the infrared light sensor S03 detecting infrared light is present.
  • the infrared light sensor of the left light sensor unit 105L and the infrared light sensor of the right light sensor unit 105R that detect infrared light incident with energy that is significantly larger than the surroundings are known, they are significantly larger than the surroundings. Compute between virtual lines corresponding to the infrared light sensing sensor of the left photosensitive sensor 105L for sensing infrared light incident by energy and between virtual lines corresponding to the infrared light sensing sensor of the right photosensitive sensor 105R. From this, it is possible to grasp the small screen A06 divided by the virtual lines in which the optical touch has occurred.
  • an image sensor such as a CMOS or a CCD arranged in the form of pixels may be used.
  • Image sensors such as CMOS and CCD, convert to different electrical signals according to the received light energy, as shown in FIGS. 7 and 8.
  • the infrared light sensing sensor in which the light energy is incident at the angle of incidence of the front surface of the sensing sensor at the right angle or the closest angle to the right angle receives the strongest light energy, and outputs the electrical signal accordingly.
  • the calculating part is formed between the virtual lines corresponding to the left infrared light sensing sensor which outputs an electrical signal which is significantly stronger than the periphery among the electrical signals received from the infrared light sensing sensors S01 to S05 of the left infrared light sensing sensor unit 105L. It is determined that infrared imaging is located at.
  • the calculating unit corresponds to a virtual image corresponding to the right infrared light detecting sensor that outputs an electrical signal that is significantly stronger than the surroundings among the electrical signals received from the infrared light detecting sensors S11 to S15 of the right infrared light detecting sensor unit 105R. It is determined that infrared imaging is located between the lines.
  • the operation unit determines that the left infrared light sensor which transmits the electrical signal significantly stronger than the surroundings and the right infrared light sensor which transmits the electrical signal significantly stronger than the surroundings are determined.
  • the imaging of the infrared light is performed by calculating the intersection between the virtual lines corresponding to the infrared light sensor and the virtual lines corresponding to the right infrared light sensor which sends a significantly stronger electrical signal than the surroundings.
  • the imaging position of the infrared light is determined, it is determined that the user has selected the imaging position.
  • the calculating unit 107 is connected to the left and right infrared light sensing sensor units 105L and 105R, and is connected to the information on the scattering position of the infrared light by electric output signals from the left and right infrared light sensing sensor units 105L and 105R. By this, the scattering position coordinates of the infrared light can be calculated.
  • the calculating unit 107 includes a microprocessor for calculating scattering position coordinates of the infrared light.
  • the calculation unit 107 may calculate various coordinates of the scattering position of the infrared rays.
  • the operation unit 107 may be connected to a central processing unit of an application to which the optical touch panel is applied to transmit an operating state of the optical touch panel to the application.
  • FIG. 9 is a flowchart showing the operation of the microprocessor of the computing unit.
  • step S501 when the operation is started (step S501), the flow advances to step S503 to monitor whether an electric signal is input from the left and right infrared light sensor units 105L and 105R.
  • the apparatus waits until the electric signal is input.
  • step S503 If an electric signal is inputted from the left and right infrared light sensor units 105L and 105R in step S503, the flow advances to step S505 to identify the infrared light sensor which sent an electric signal significantly stronger than the surroundings among the left infrared light sensor sensors. . The flow proceeds to step S507 to determine the optical energy input path of the left infrared light sensor which sent an electrical signal significantly stronger than the surroundings.
  • the first input path is a virtual line and a virtual line of the virtual lines L101 to L107 extending around the left sensing sensor unit 105L due to the linearity of light. It is uniquely defined as either.
  • step S509 The process proceeds back to step S509 to identify an infrared light sensor that has sent an electric signal significantly stronger than the surroundings among the right infrared light sensor.
  • step S511 the optical energy input path of the right infrared photosensitive sensor that has sent an electrical signal significantly stronger than the surroundings.
  • the second input path is also a virtual line and a virtual line of the virtual lines L121 to L127 extending around the right sensing sensor unit 105R due to the linearity of light. It is uniquely defined as either.
  • the process proceeds to S513 where the intersection point of the first input path of the infrared light energy and the second input path of the infrared light energy is calculated to calculate the infrared light.
  • the light ends to the imaging position.
  • the imaging position of the infrared light is determined, the imaging position of the infrared light is transmitted to the controller, the device driver, and the application program.
  • the infrared light sensor unit for detecting the light energy due to the imaging of the infrared light of the infrared light scattering screen 103 is located near the left edge and the right edge of the frame.
  • the area corresponding to the left and right infrared light sensing sensors is increased, so that the imaging position of the infrared light, that is, the light touch position, is increased. Errors can occur in judgment.
  • This problem can be further subdivided by installing another infrared light sensor unit 105C under the frame of the light touch panel as shown in FIG. 10 to determine the light touch position even when the image position of the infrared light is below the light scattering screen. The error can be reduced.
  • each of the photosensitive sensors S31 ⁇ S35 of the lower sensing sensor unit 105C has a virtual line and an imaginary line of the virtual lines L131 ⁇ L137 extending around the lower sensing sensor unit 105C. Corresponds to each other between the lines.
  • the small screen A06 surrounded by the virtual lines L101 and L103 and the virtual lines L123 and L125 in FIGS. 5 and 6 has a virtual line and a virtual line of the virtual lines L131 to L133 extending around the lower sensing sensor unit 105C.
  • the larger light of the infrared light sensor of the left light sensor unit 105L, the infrared light sensor of the right light sensor unit 105R, and the infrared light sensor of the lower light sensor unit 105C By choosing two to receive energy, or by using three infrared light sensors, you can identify a split screen.
  • the problem that the light energy input to the infrared light sensor is small and not well detected may occur remarkably when the panel size becomes large. Therefore, in this case, by installing more infrared light sensor unit 105C in the frame of the light touch panel, it is possible to sufficiently detect this even if there is an imaging position of the infrared light.
  • the calculation unit calculates the intersection of the paths extending from the front surface of the infrared light sensor that transmits the electrical signal significantly stronger than the surroundings and another infrared light sensor which transmits the electrical signal significantly stronger than the surroundings. I can calculate it.
  • 11 is a third embodiment according to the present invention.
  • the infrared light sensor unit for detecting the light energy due to the imaging of the infrared light of the infrared light scattering screen 103 is located near the left and near the right edge of the frame, the infrared light sensor In the unit 105L, the infrared light detecting sensors S01 to S05 are concentrated in one portion.
  • the infrared light detecting sensors of the infrared light detecting sensors 205S and 205U are disposed on the upper side and the side of the edge of the frame.
  • the calculation unit calculates the position of the infrared light imaging by calculating the intersection of the path extending from the front of the infrared light sensor that sent the strongest electric signal and the other infrared light sensor that sent a significantly stronger electric signal than the surroundings. Can be.
  • the infrared light scattering screen 303 has a small convex lens arranged in a lattice shape on the whole surface so as to pass visible light therein to the outside and scatter infrared light from the outside.
  • small convex lenses 303b having the same focal length on the entire surface of the transparent plate 303a are arranged in a lattice shape, and the convex lenses 303b are provided.
  • the focal point is an image plane of infrared light.
  • the infrared light detecting sensors S01 detect the light energy due to the imaging of the infrared light formed on the imaging surface.
  • FIG. 13 is a partially enlarged view of FIG. 14.
  • Infrared light entering the front of the infrared light scattering screen 303 is collected by the convex lens 303b and collected at the focus of the corresponding convex lens.
  • the focus is in the image plane so that infrared light that collects at the focus of the convex lens is imaged.
  • the optical touch panel is attached to the display device, but since infrared rays are used without physical contact, unnecessary scratches or the like may not occur on the surface of the display device.
  • the touch screen function can be conveniently performed at a long distance.
  • the pointer used in the present invention preferably uses a device that emits infrared and visible light together.
  • the senor detects the scattered infrared rays and calculates the touched position. Since the user does not detect the infrared rays with his eyes, the part touched by the infrared rays is visible as the visible light because the user does not recognize the touched position. It is intended to easily recognize the touched position by being touched.
  • infrared light it is not necessarily possible by infrared light. That is, it is also possible to use visible light having a specific wavelength and to use visible light that is significantly brighter than the surroundings.
  • the present invention relates to an optical touch panel, and more particularly, to an optical touch panel capable of touch by infrared rays without physical contact.

Abstract

본 발명은 물리적인 접촉이 없이 원거리에서도 적외선 광에 의해 광 터치가 가능한 광 터치 패널에 관한 것으로, 전면으로 들어오는 적외선 광은 결상시켜서 면을 따라 산란시키고, 후면으로 들어오는 가시광은 전면으로 투과시키는 광 투과 스크린과; 상기 광 투과 스크린의 측면에 배치되고, 산란된 상기 적외선 광 에너지를 각각 감지하는 복수개의 적외선 광감지 센서들로 구성된 제1 적외선 광감지부와; 상기 제1 적외선 광감지부와 서로 다른 위치가 되도록 상기 광 투과 패널의 측면에 배치되고, 산란된 상기 적외선 광 에너지를 각각 감지하는 복수개의 적외선 광감지 센서들로 구성된 제2 적외선 광감지부와; 상기 제1 적외선 광감지부의 적외선 광센서들의 전기 출력신호와 상기 제2 적외선 광감지부의 적외선 광센서들의 전기 출력신호에 의해 적외선 광의 결상위치를 연산하는 연산부를 포함하는 구성에 의하여 물리적인 접촉 없이 원거리에서 편리하게 터치 스크린 기능을 수행할 수 있다.

Description

광 터치 패널 {OPTICAL TOUCH PANNEL}
본 발명은 광 터치 패널에 관한 것으로서, 보다 상세하게는 물리적인 접촉이 없이 적외선에 의한 터치가 가능한 광 터치 패널에 관한 것이다.
최근 소프트웨어와 반도체기술 및 정보처리 기술이 비약적으로 발달함에 따라 휴대폰, PDA, 컴퓨터 등 각종 정보기기가 점차 다기능화되는 추세에 있으며, 이와 더불어 정보기기에 있어서의 데이터 등의 입력을 통한 정보저장 및 통신의 중요성 또한 날로 커지고 있다.
종래에는 상기 정보기기에 데이터를 입력함에 있어서, 입력키의 누름에 의한 방식을 사용하였으나, 최근에는 상기 정보기기에 터치 스크린을 이용한 데이터 입력방식이 증가하고 있다.
일반적으로 터치 스크린이란, 입력키, 키보드 및 마우스를 대체하는 입력장치로서, 터치 스크린을 스크린 상에 장착한 후 본 스크린상에 손 또는 스타일러스 펜(stylus pen) 등을 통해 직접 터치하여 데이터를 입력할 수 있는 장치이다. 여기서, 상기 터치 스크린은 GUI(Graphic User Interface) 환경에서 직관적인 업무 수행이 가능한 장치로 휴대용 입력장치에 적합하며, 컴퓨터 시뮬레이션 응용 분야, 사무 자동화 응용분야, 교육 응용분야 및 게임 응용분야 등에서 널리 사용될 수 있다.
이러한 터치 스크린 방식을 이용한 입력장치는 기본적으로 모니터에 부착되는 터치패널(Touch Panel), 컨트롤러, 디바이스 구동부 및 응용(Application) 프로그램을 기본 구성으로 하고 있다. 상기 터치패널은 사용자가 입력하는 신호를 감지할 수 있도록 특수 처리된 전극유리(ITO Glass)와 전극 필름(ITO Film)을 포함한 여러 층으로 구성되며, 상기 터치패널의 표면에 손 또는 스타일러스 펜 등을 이용하여 접촉하면, 디스플레이 위치인식센서가 터치패널 상에서 접촉되는 위치를 감지할 수 있다.
이러한 터치 패널을 이용한 터치 스크린은 손 또는 스타일러스펜 등이 직접 터치 패널에 접촉되어야 하므로 터치 패널 표면에 지문이 남거나 스크래치 등이 생기는 문제점이 있다. 또한, 대형 디스플레이에 상기 터치 스크린을 적용하는 경우에는 원거리에서 조작이 불가능하다는 문제점이 있다.
상기한 문제점을 해결하기 위해서, 본 발명은 물리적인 접촉이 없이 원거리에서도 적외선 광에 의해 광 터치가 가능한 광 터치 패널을 제공하는 것을 목적으로 한다.
본 발명의 목적은, 전면으로 들어오는 적외선 광은 결상시켜서 면을 따라 산란시키고, 후면으로 들어오는 가시광은 전면으로 투과시키는 광 투과 스크린과;
상기 광 투과 스크린의 측면에 배치되고, 산란된 상기 적외선 광 에너지를 각각 감지하는 복수개의 적외선 광감지 센서들로 구성된 제1 적외선 광감지부와;
상기 제1 적외선 광감지부와 서로 다른 위치가 되도록 상기 광 투과 패널의 측면에 배치되고, 산란된 상기 적외선 광 에너지를 각각 감지하는 복수개의 적외선 광감지 센서들로 구성된 제2 적외선 광감지부와;
상기 제1 적외선 광감지부의 적외선 광센서들의 전기 출력신호와 상기 제2 적외선 광감지부의 적외선 광센서들의 전기 출력신호에 의해 적외선 광의 결상위치를 연산하는 연산부를 포함하는 구성에 의하여 달성된다.
상기 구성에서, 연산부는, 상기 제1 적외선 광감지부의 적외선 광센서들 중 주변보다 현저히 강한 전기 출력신호를 내는 적외선 광센서를 선택하여 해당 적외선 광센서로 입력되는 산란된 적외선 광 에너지의 제1 입력경로를 파악하고, 상기 제2 적외선 광감지부의 적외선 광센서들 중 주변보다 현저히 강한 전기 출력신호를 내는 적외선 광센서를 선택하여 해당 적외선 광센서로 입력되는 산란된 적외선 광 에너지의 제2 입력경로를 파악하여, 상기 적외선 광 에너지의 제1 입력경로와 상기 적외선 광 에너지의 제2 입력경로의 교차점을 연산한다.
상기 구성에서 적외선 광감지 센서들은 픽셀을 이루고 있다.
상기 구성에서 제1 적외선 광감지부는 상기 광 투과 스크린의 좌측 모서리 위쪽에 위치하고, 상기 제2 적외선 광감지부는 상기 광 투과 스크린의 우측 모서리 위쪽에 위치한다.
광 터치 패널을 상기 광 투과 스크린의 아래 모서리에 위치하는 제3 적외선 광감지부를 더 포함할 수 있다.
또, 본 발명의 목적은, 전면으로 들어오는 적외선 광은 결상시켜서 면을 따라 산란시키고, 후면으로 들어오는 가시광은 전면으로 투과시키는 광 투과 스크린과;
상기 광 투과 스크린의 측면의 가로 방향으로 분산 배치되어, 산란된 상기 적외선 광 에너지를 각각 감지하는 제1 그룹의 적외선 광감지 센서들과;
상기 광 투과 스크린의 측면의 세로 방향으로 분산 배치되어, 산란된 상기 적외선 광 에너지를 각각 감지하는 제2 그룹의 적외선 광감지 센서들과;
상기 제1 그룹의 적외선 광센서들의 전기 출력신호와 상기 제2 그룹의 적외선 광센서들의 전기 출력신호에 의해 적외선 광의 결상위치를 연산하는 연산부를 포함하는 구성에 의하여 달성된다.
상기 구성에서 연산부는 상기 제1 그룹의 적외선 광센서들 중 주변보다 현저히 강한 전기 출력신호를 내는 적외선 광센서를 선택하여 해당 적외선 광센서로 입력되는 산란된 적외선 광 에너지의 제1 입력경로를 파악하고, 상기 제2 그룹의 적외선 광센서들 중 주변보다 현저히 강한 전기 출력신호를 내는 적외선 광센서를 선택하여 해당 적외선 광센서로 입력되는 산란된 적외선 광 에너지의 제2 입력경로를 파악하여, 상기 적외선 광 에너지의 제1 입력경로와 상기 적외선 광 에너지의 제2 입력경로의 교차점을 연산한다.
또, 본 발명의 목적은, 광 투과 스크린은 투명판과, 상기 투명판 위에 격자모양으로 배열된 소형 볼록렌즈와, 상기 볼록렌즈의 초점에 형성된 적외선 광 결상면으로 구성되어, 전면으로 들어오는 적외선 광을 광 결상면에 결상시켜서 상기 결상면을 따라 산란시키고, 후면으로 들어오는 가시광은 전면으로 투과시켜 상기 볼록렌즈 앞쪽의 공간에 결상시키는 광 투과 스크린과; 상기 광 투과 스크린의 측면에 배치되고, 상기 결상면을 따라 산란된 상기 적외선 광 에너지를 각각 감지하는 복수개의 적외선 광감지 센서들로 구성된 제1 적외선 광감지부와; 상기 제1 적외선 광감지부와 서로 다른 위치가 되도록 상기 광 투과 패널의 측면에 배치되고, 상기 결상면을 따라 산란된 상기 적외선 광 에너지를 각각 감지하는 복수개의 적외선 광감지 센서들로 구성된 제2 적외선 광감지부와; 상기 제1 적외선 광감지부의 적외선 광센서들의 전기 출력신호와 상기 제2 적외선 광감지부의 적외선 광센서들의 전기 출력신호에 의해 적외선 광의 결상위치를 연산하는 연산부를 포함하는 구성에 의하여 달성된다.
상기 구성에서 연산부는, 상기 제1 적외선 광감지부의 적외선 광센서들 중 주변보다 현저히 강한 전기 출력신호를 내는 적외선 광센서를 선택하여 해당 적외선 광센서로 입력되는 산란된 적외선 광 에너지의 제1 입력경로를 파악하고, 상기 제2 적외선 광감지부의 적외선 광센서들 중 주변보다 현저히 강한 전기 출력신호를 내는 적외선 광센서를 선택하여 해당 적외선 광센서로 입력되는 산란된 적외선 광 에너지의 제2 입력경로를 파악하여, 상기 적외선 광 에너지의 제1 입력경로와 상기 적외선 광 에너지의 제2 입력경로의 교차점을 연산한다.
상기 구성에서 적외선 광감지 센서들은 픽셀을 이루고 있다.
상기 구성에서 제1 적외선 광감지부는 상기 광 투과 스크린의 좌측 모서리 위쪽에 위치하고, 상기 제2 적외선 광감지부는 상기 광 투과 스크린의 우측 모서리 위쪽에 위치한다.
상기 광 터치 패널은 상기 광 투과 스크린의 아래 모서리에 위치하는 제3 적외선 광감지부를 더 포함할 수 있다.
앞에 설명된 구성은 적외선 광을 사용하는 것으로 되어 있으나, 적외선 광에 의해서만 본 발명이 가능한 것은 아니다. 즉, 특정 파장을 갖는 가시광선을 사용하는 것도 가능하고 주변보다 현저히 밝게 비추어주는 가시광선을 사용하는 것도 가능하다.
특정 파장을 갖는 가시광선을 사용하거나, 주변보다 현저히 밝게 비추어주는 가시광선을 사용하는 경우에는, 본 발명의 목적은, 전면으로 들어오는 광은 결상시켜서 면을 따라 산란시키고, 후면으로 들어오는 가시광은 전면으로 투과시키는 광 투과 스크린과;
상기 광 투과 스크린의 측면에 배치되고, 산란된 상기 광 에너지를 각각 감지하는 복수개의 광 감지 센서들로 구성된 제1 광 감지부와;
상기 제1 광감지부와 서로 다른 위치가 되도록 상기 광 투과 패널의 측면에 배치되고, 산란된 상기 광 에너지를 각각 감지하는 복수개의 광감지 센서들로 구성된 제2 광 감지부와;
상기 제1 광 감지부의 광센서들의 전기 출력신호와 상기 제2 광 감지부의 광센서들의 전기 출력신호에 의해 광의 결상위치를 연산하는 연산부를 포함하는 구성에 의하여 달성된다.
상기 구성에서, 연산부는, 상기 제1 광감지부의 광센서들 중 주변보다 현저히 강한 전기 출력신호를 내는 광센서를 선택하여 해당 광센서로 입력되는 산란된 광 에너지의 제1 입력경로를 파악하고, 상기 제2 광감지부의 광센서들 중 주변보다 현저히 강한 전기 출력신호를 내는 광센서를 선택하여 해당 광센서로 입력되는 산란된 광 에너지의 제2 입력경로를 파악하여, 상기 광 에너지의 제1 입력경로와 상기 광 에너지의 제2 입력경로의 교차점을 연산한다.
상기 구성에서 광감지 센서들은 픽셀을 이루고 있다.
상기 구성에서 제1 광감지부는 상기 광 투과 스크린의 좌측 모서리 위쪽에 위치하고, 상기 제2 광감지부는 상기 광 투과 스크린의 우측 모서리 위쪽에 위치한다.
광 터치 패널을 상기 광 투과 스크린의 아래 모서리에 위치하는 제3 광감지부를 더 포함할 수 있다.
또, 본 발명의 목적은, 전면으로 들어오는 광은 결상시켜서 면을 따라 산란시키고, 후면으로 들어오는 가시광은 전면으로 투과시키는 광 투과 스크린과;
상기 광 투과 스크린의 측면의 가로 방향으로 분산 배치되어, 산란된 상기 광 에너지를 각각 감지하는 제1 그룹의 광감지 센서들과;
상기 광 투과 스크린의 측면의 세로 방향으로 분산 배치되어, 산란된 상기 광 에너지를 각각 감지하는 제2 그룹의 광감지 센서들과;
상기 제1 그룹의 광센서들의 전기 출력신호와 상기 제2 그룹의 광센서들의 전기 출력신호에 의해 광의 결상위치를 연산하는 연산부를 포함하는 구성에 의하여 달성된다.
상기 구성에서 연산부는 상기 제1 그룹의 광센서들 중 주변보다 현저히 강한 전기 출력신호를 내는 광센서를 선택하여 해당 광센서로 입력되는 산란된 광 에너지의 제1 입력경로를 파악하고, 상기 제2 그룹의 광센서들 중 주변보다 현저히 강한 전기 출력신호를 내는 광센서를 선택하여 해당 광센서로 입력되는 산란된 광 에너지의 제2 입력경로를 파악하여, 상기 광 에너지의 제1 입력경로와 상기 광 에너지의 제2 입력경로의 교차점을 연산한다.
또, 본 발명의 목적은, 광 투과 스크린은 투명판과, 상기 투명판 위에 격자모양으로 배열된 소형 볼록렌즈와, 상기 볼록렌즈의 초점에 형성된 광 결상면으로 구성되어, 전면으로 들어오는 광을 광 결상면에 결상시켜서 상기 결상면을 따라 산란시키고, 후면으로 들어오는 가시광은 전면으로 투과시켜 상기 볼록렌즈 앞쪽의 공간에 결상시키는 광 투과 스크린과; 상기 광 투과 스크린의 측면에 배치되고, 상기 결상면을 따라 산란된 상기 광 에너지를 각각 감지하는 복수개의 광감지 센서들로 구성된 제1 광감지부와; 상기 제1 광감지부와 서로 다른 위치가 되도록 상기 광 투과 패널의 측면에 배치되고, 상기 결상면을 따라 산란된 상기 광 에너지를 각각 감지하는 복수개의 광감지 센서들로 구성된 제2 광감지부와; 상기 제1 광감지부의 광센서들의 전기 출력신호와 상기 제2 광감지부의 광센서들의 전기 출력신호에 의해 광의 결상위치를 연산하는 연산부를 포함하는 구성에 의하여 달성된다.
상기 구성에서 연산부는, 상기 제1 광감지부의 광센서들 중 주변보다 현저히 강한 전기 출력신호를 내는 광센서를 선택하여 해당 광센서로 입력되는 산란된 광 에너지의 제1 입력경로를 파악하고, 상기 제2 광감지부의 광센서들 중 주변보다 현저히 강한 전기 출력신호를 내는 광센서를 선택하여 해당 광센서로 입력되는 산란된 광 에너지의 제2 입력경로를 파악하여, 상기 광 에너지의 제1 입력경로와 상기 광 에너지의 제2 입력경로의 교차점을 연산한다.
본 발명에 따르면, 원거리에서 발사된 적외선이나 가시광선이 터치 패널이나, 투명 터치시트에서 산란되어 적외선이나 가시광선이 부딪히는 위치를 알 수 있으므로, 물리적인 접촉이 없이도 광 터치가 가능한 광 터치 패널을 얻을 수 있다.
도 1은 본 발명의 제1 실시예인 광 터치 패널을 모니터 전면에 설치한 상태를 나타내는 도면이다.
도 2는 본 발명의 제1 실시예인 광 터치 패널을 모니터로부터 벗겨낸 상태를 나타내는 도면이다.
도 3은 도 2에서 절단선 III-III으로 절단한 절단면을 나타낸다.
도 4는 적외선 광감지 센서부의 한 실시예이다.
도 5는 좌측 상부 모서리 근처에 설치된 감지 센서부를 중심한 적외선 광 산란 스크린의 가상 분할도이다.
도 6는 투명판의 표면에 결상된 적외선 광이 결상위치 P를 중심으로 방사상으로 펴져나가는 상태를 나타내는 도면이다.
도 7은 각각의 좌측 적외선 광감지 센서들에 입력되는 적외선 광을 세기를 나타내는 도면이다.
도 8은 각각의 좌측 적외선 광감지 센서들에 입력되는 적외선 광을 세기를 나타내는 도면이다.
도 9는 연산부의 마이크로프로세서의 동작을 나타내는 플로우챠트이다.
도 10은 발명에 따라는 제2 실시예 이다.
도 11은 본 발명에 따르는 제3 실시예의 사시도이다.
도 12는 본 발명에 따르는 제3 실시예의 정면도이다.
도 13은 본 발명에 따르는 제4 실시예 이다.
도 14는 도 13의 일부 절단도이다.
도 15는 도 14의 부분확대도이다.
이하, 첨부된 도면을 참조하여 본 발명을 상세히 설명한다.
도 1은, 본 발명의 제1 실시예인 광 터치 패널을 모니터 전면에 설치한 상태를 나타내는 도면이다.
도 2는, 본 발명의 제1 실시예인 광 터치 패널을 모니터로부터 벗겨낸 상태를 나타내는 도면이다.
도 3은 도 2에서 절단선 III-III으로 절단한 절단면을 나타낸다.
도 1을 참조하면, 참조번호 10은 화상 표시장치이다. 참조번호 20은 본 발명의 제1 실시예에 따르는 광 터치 패널이고, 참조번호 30은 적외선 빔 포인터이다.
광 터치 패널(20)은 프레임(101)과, 프레임(101)에 고정되어 있는 적외선 광 산란 스크린(103)과, 프레임(101)의 좌측 상부 모서리 근처 및 우측 상부 모서리 근처에 각각 설치된 좌측 및 우측 적외선 광 감지 센서부(105L, 105R)을 구비하고 있다. 그리고 프레임(101)의 상부 중간 부분에는 연산부(107)가 위치하고 있다.
적외선 광 산란 스크린(103)은 도 3에 나타나 있는 바와 같이, 유리나 플라스틱으로 된 투명판(103a)과 투명판 (103a) 표면에 부착되어 있는 적외선 광 산란 필름(103b)으로 구성되어 있다. 적외선 광 산란 필름(103b)은 외부로부터 들어온 적외선 광을 투명판(103a)의 표면에 결상되도록 하고, 투명판(103a)의 표면에 결상된 적외선 광은 결상위치를 중심으로 하여 방사상으로 산란된다. 투명판(103a)의 표면의 결상위치를 중심으로 하여 방사상으로 산란된 적외선 광은 적외선 광감지 센서부(105)의 센서들에 의해 감지된다.
도 4는 적외선 광을 감지하는 적외선 광감지 센서부(105)의 한 예를 나타낸다. 본 명세서에서 적외선 광 감지 센서부는 150, 205, 305로 참조번호가 부여되어 있고, 참조번호 뒤의 영어 대문자는 설명의 편의를 위해 적외선 광감지 센서부가 설치되는 위치를 나타내기 위한 것이다.
적외선 광감지 센서부(105)는 홀더부(105a)에 들어가 있는 복수개의 적외선 광감지 센서들(S01 ~S05)로 구성되어 있는데, 각각의 적외선 광감지 센서들(S01 ~S05)은 전면의 중심으로부터 연장되는 법선이 서로 다른 방향이 되도록 배치되어 있다.
이는 산란된 적외선 광이 광 감지센서의 전면에 입사될 때, 광 감지 센서가 서로 다른 광 에너지를 입력받도록 하기 위한 것이다.
도 5에 나타나 있는 바와 같이 적외선 광 산란 스크린(103)의 투명판(103a)의 표면은 프레임(101)의 좌측 상부 모서리 근처에 설치된 감지 센서부(105L)를 중심한 가상선(L101~L107)과 프레임(101)의 우측 상부 모서리 근처에 설치된 감지 센서부(105R)를 중심으로 한 가상선 (L121~L127)들이 교차함으로써 더 작은 화면들(A02, A03, A05, A06, A10, A11)로 가상 분할된다.
좌측 감지 센서부(105L)의 각각의 광 감지 센서들(S01~S05)은 좌측 감지 센서부(105L)를 중심으로 뻗어나간 가상선(L101~L107)의 가상선과 가상선 사이와 각각 대응되어 있고, 좌측 감지 센서부(105R)의 각각의 광 감지 센서들(S11~S15)은우측 감지 센서부(105R)를 중심으로 뻗어나간 가상선(L121~L127)의 가상선과 가상선 사이는 각각 대응되어 있다.
따라서, 좌측 감지 센서부(105L)를 중심으로 한 가상선(L101~L107)과 우측 감지 센서부(105R)를 중심으로 한 가상선 (L121~L127)들이 교차함으로써 만들어진 각각의 작은 화면들(A02, A03, A05, A06, A10, A11)은 좌측 감지 센서부(105L)의 광 감지 센서들(S01~S05) 중 하나 그리고 우측 감지 센서부(105R)의 광 감지 센서들(S11~S15) 중 하나와 각각 대응되어 있다.
각각의 적외선 광감지 센서들(S01 ~S05)은 대응되는 가상선과 가상선 사이의 투명판(103a)의 표면을 감시한다. 투명판(103a)의 표면에 결상된 적외선 광은 결상위치를 중심으로 방사상으로 산란되는데, 하나의 광감지 센서부에서 적외선 광감지 센서들은, 적외선 광의 에너지가 다른 적외선 광감지 센서들 보다 대응되는 투명판(103a)의 표면을 감시하는 적외선 광감지 센서에 가장 크게 입력되도록 배치되어 있다. 이러한 광감지 센서들(S02~ S11)의 배치는 대응되는 표면에서 산란되는 적외선 광이 직각이거나 직각에 가깝게 입사되도록 하는 것으로 이루어진다.
이를 도 6 내지 도 8을 참조하면서 설명한다.
도 6는 투명판의 표면에 결상된 적외선 광이 결상위치 P를 중심으로 방사상으로 펴져나가는 상태를 나타내는 도면이다.
도 7은 각각의 좌측 적외선 광감지 센서들(S01~ S05)에 입력되는 적외선 광을 세기를 나타내는 도면이고, 도 8은 각각의 좌측 적외선 광감지 센서들(S11~ S15)에 입력되는 적외선 광을 세기를 나타내는 도면이다.
도 6과 같이 레이저 빔 포인터로 투명판(103a) 표면의 P 위치를 터치하면, 적외선 광은 투명판(103a) 표면 P 위치에 결상되고, 결상위치인 P를 중심으로 하여 방사상으로 산란된다. 방사상으로 산란된 적외선 광들 중 일부는 좌측 광감지 센서부(105L)의 적외선 광감지 센서들(S01 ~S05)에 입사되고, 또 프레임(101)의 우측광감지 센서부(105R)의 적외선 광감지 센서들(S01 ~S05)에 입사된다.
도 7과 같이, 이때, 투명판(103a) 표면의 P 위치는 가상선 L101과 L103 사이이므로, 좌측 광감지 센서부(105L)의 적외선 광감지 센서들(S01 ~S05) 중 적외선 광감지 센서(S02)로 입사되는 에너지가 주변보다 현저히 크다. 또, 투명판(103a) 표면의 P 위치는 가상선 L123과 L125 사이이므로, 도 8과 같이 우측 광감지 센서부(105R)의 적외선 광감지 센서들(S11 ~S15) 중 적외선 광감지 센서(S13)로 입사되는 에너지가 주변보다 현저히 크다.
그러므로, 레이저 빔 포인터로 터치한 투명판(103a) 표면의 위치는 프레임(101)의 좌측 광감지 센서부(105L)의 적외선 광감지 센서들(S01 ~S05) 중 주변보다 현저히) 큰 에너지로 입사되는 적외선 광을 감지하는 적외선 광감지 센서(S02)에 대응되는 가상선 L101과 L103과 우측 광감지 센서부(105R)의 적외선 광감지 센서들(S11 ~S15) 중 주변보다 현저히 큰 에너지로 입사되는 적외선 광을 감지하는 적외선 광감지 센서(S03)에 대응되는 가상선 L123과 L125으로 둘러싸인 작은 화면(A06)에 있게 된다.
따라서, 주변보다 현저히 큰 에너지로 입사되는 적외선 광을 감지하는 좌측 광감지 센서부(105L)의 적외선 광감지 센서와 우측 광감지 센서부(105R)의 적외선 광감지 센서를 알게 되면, 주변보다 현저히 큰 에너지로 입사되는 적외선 광을 감지하는 좌측 광감지 센서부(105L)의 적외선 광감지 센서에 대응되는 가상선들 사이와 우측 광감지 센서부(105R)의 적외선 광감지 센서에 대응되는 가상선들 사이를 연산하고, 이들로부터 광터치가 발생한 가상선들에 의해 분할된 작은 화면(A06)을 파악할 수 있게 된다.
적외선 광감지 센서로는 픽셀의 형태로 배열된 CMOS나 CCD 등과 같은 이미지 센서가 사용될 수도 있다.
CMOS나 CCD 등과 같은 이미지 센서는, 도 7과 도 8에 나타나 있는 바와 같이, 수광된 광에너지에 따라 서로 다른 전기적인 신호로 변환한다.
적외선 광감지 센서들 중 광에너지가 감지 센서의 전면의 입사각이 직각이나 직각에 가장 근접 각도로 입사되는 적외선 광감지 센서가 가장 강한 광에너지를 받아들이고, 이에 따른 전기적인 신호를 연산부로 출력한다.
연산부는 좌측 적외선 광감지 센서부(105L)의 적외선 광감지 센서들(S01 ~S05)로부터 들어온 전기적인 신호들 중 주변보다 현저히 강한 전기적인 신호를 출력한 좌측 적외선 광감지 센서에 대응되는 가상선들 사이에 적외선의 결상이 위치한다고 판단한다.
또, 연산부는 우측 적외선 광감지 센서부(105R)의 적외선 광감지 센서들(S11 ~S15)로부터 들어온 전기적인 신호들 중 주변보다 현저히 강한 전기적인 신호를 출력한 우측 적외선 광감지 센서에 대응되는 가상선들 사이에 적외선의 결상이 위치한다고 판단한다.
이와 같이, 연산부는, 이와 같이 주변보다 현저히 강한 전기적인 신호를 보낸 좌측 적외선 광센서와 주변보다 현저히 강한 전기적인 신호를 보낸 우측 적외선 광감지 센서가 결정되면, 주변보다 현저히 강한 전기적인 신호를 보낸 좌측 적외선 광센서에 대응되는 가상선들 사이와 주변보다 현저히 강한 전기적인 신호를 보낸 우측 적외선 광감지 센서에 대응되는 가상선들 사이의 교차부분을 연산하여 적외선 광의 결상이 위치로 한다.
적외선 광의 결상위치가 결정되면, 사용자가 그 결상위치를 선택하였다고 판단한다.
연산부(107)는 좌측 및 우측 적외선 광감지 센서부(105L, 105R)에 연결되며, 상기 좌측 및 우측 적외선 광감지 센서부(105L, 105R)로부터의 전기 출력신호에 의해 적외선의 산란 위치의 정보에 의해 적외선 광의 산란 위치 좌표를 연산할 수 있다. 연산부(107)는, 적외선 광의 산란 위치 좌표를 연산하기 위하여 마이크로프로세서를 포함한다.
연산부(107)에서 상기 적외선의 산란 위치의 좌표를 연산하는 방법은 다양하게 구현될 수 있다. 상기 연산부(107)는 상기 광 터치 패널이 적용되는 애플리케이션의 중앙 처리 장치와 연결되어 상기 광 터치 패널의 작동 상태를 상기 애플리케이션에 전달할 수 있다.
도 9는 연산부의 마이크로프로세서의 동작을 나타내는 플로우챠트이다.
먼저 동작이 시작되면(스텝 S501), 스텝 S503으로 진행하여 좌측 및 우측 적외선 광감지 센서부(105L, 105R)로부터 전기신호가 입력되는가를 감시한다.
좌측 및 우측 적외선 광감지 센서부(105L, 105R)로부터 전기신호가 입력되지 않으면, 전기 신호가 입력될 때까지 대기한다.
스텝 S503에서 좌측 및 우측 적외선 광감지 센서부(105L, 105R)로부터 전기신호가 입력되면, 스텝 S505로 진행하여 좌측 적외선 광감지 센서들 중에서 주변보다 현저히 강한 전기신호를 보낸 적외선 광감지 센서를 파악한다. 그리고 스텝 S507로 진행하여 주변보다 현저히 강한 전기 신호를 보낸 좌측 적외선 광감지센서의 광 에너지 입력 경로를 파악한다.
설명의 편의상 이를 적외선 광 에너지의 제1 입력경로라고 하는데, 제1 입력 경로는 빛의 직선성으로 인하여 좌측 감지 센서부(105L)를 중심으로 뻗어나간 가상선(L101~L107)의 가상선과 가상선 사이 중 어느 하나로 유일하게 정해진다.
다시 스텝 S509로 진행하여 우측 적외선 광감지 센서들 중에서 주변보다 현저히 강한 전기신호를 보낸 적외선 광 감지 센서를 파악한다. 그리고 스텝 S511로 진행하여 주변보다 현저히 강한 전기 신호를 보낸 우측 적외선 광감지 센서의 광 에너지 입력 경로를 파악한다.
이를 설명의 편의상 적외선 광 에너지의 제2 입력경로라고 하는데, 제2 입력 경로역시 빛의 직선성으로 인하여 우측 감지 센서부(105R)를 중심으로 뻗어나간 가상선(L121~L127)의 가상선과 가상선 사이 중 어느 하나로 유일하게 정해진다.
제1 적외선 광 에너지의 제1 입력경로 및 적외선 광 에너지의 제2 입력경로가 파악되면, S513으로 진행하여 적외선 광 에너지의 제1 입력경로와 적외선 광 에너지의 제2 입력경로의 교차점을 연산하여 적외선 광의 결상위치로 하고 종료한다.
별도로 설명하지 않더라도 적외선 광의 결상위치가 결정되면 적외선 광의 결상위치는, 컨트롤러, 디바이스 구동부 및 응용(Application) 프로그램으로 전달되는 물론이다.
도 10은 발명에 따라는 제2 실시예 이다.
제1 실시예에서는 적외선 광 산란 스크린(103)의 적외선 광의 결상에 의한 광 에너지를 감지하는 적외선 광감지 센서부는 프레임의 좌측 모서리 근처와 우측 모서리 근처에 위치한다. 이러한 제1 실시예에서는 예를 들면 도 6과 같이 적외선 광의 결상위치가 광 산란 스크린 아래에 있게 되면, 좌측 및 우측 적외선 광감지 센서에 대응되는 면적이 크게 되어 적외선 광의 결상위치, 즉 광터치 위치의 판단에 오차가 발생할 수 있다.
이러한 문제점은 도 10과 같이 광터치 패널의 프레임 아래에 또 다른 적외선 광감지 센서부(105C)를 설치하여 아래쪽 면을 더 세분화하여 적외선 광의 결상위치가 광 산란 스크린 아래에 있더라도 광터치 위치의 판단에 오차를 줄일 수 있다.
도 10에 나타나 있는 바와 같이 하단 감지 센서부(105C)의 각각의 광 감지 센서들(S31~S35)은 하단 감지 센서부(105C)를 중심으로 뻗어나간 가상선(L131~L137)의 가상선과 가상선 사이와 각각 대응되어 있다.
따라서, 도 5 및 6에서 가상선 L101과 L103과 가상선 L123과 L125으로 둘러싸인 작은 화면(A06)는 하단 감지 센서부(105C)를 중심으로 뻗어나간 가상선(L131~L133)의 가상선과 가상선에 의하여 더욱 분할되어 좀더 작은 화면(A061, A062)으로 나누어져 있다.
이 경우에는 좌측 광감지 센서부(105L)의 적외선 광감지 센서, 우측 광감지 센서부(105R)의 적외선 광감지 센서 그리고, 하단 광감지 센서부(105C)의 적외선 광감지 센서들 중 좀더 큰 광에너지를 받아들이는 2개를 선택하여, 또는 3개의 적외선 광감지 센서를 사용하여 분할된 작은 화면을 파악할 수 있다.
적외선 광감지 센서로 입력되는 광에너지가 작아 이를 잘 감지하지 못하는 문제는 패널의 크기가 크게 되면 현저하게 발생할 수 있다. 따라서, 이러한 경우에는 광터치 패널의 프레임에 더 많은 적외선 광감지 센서부(105C)를 설치하여 어느 곳에 적외선 광의 결상위치가 있더라도 이를 충분히 감지하도록 할 수 있다.
이 경우에도 연산부는 주변보다 현저히 강한 전기적인 신호를 보낸 적외선 광센서와 주변보다 현저히 강한 전기적인 신호를 보낸 또 다른 적외선 광감지 센서의 전면으로부터 연장되는 경로의 교차점을 연산하여 적외선 광의 결상된 위치를 계산해 낼 수 있다.
도 11은 본 발명에 따르는 제3 실시예 이다.
제1 실시예 및 제2 실시예에서 적외선 광 산란 스크린(103)의 적외선 광의 결상에 의한 광 에너지를 감지하는 적외선 광감지 센서부는 프레임의 좌측 모서리 근처와 우측 모서리근처에 위치하는데, 적외선 광감지 센서부(105L)에서 적외선 광감지 센서들(S01 ~S05)은 한 부분에 집중되어 있다.
제3 실시예에서 적외선 광감지 센서부(205S, 205U)의 적외선 광감지센서들은 프레임의 모서리의 상부 및 측면에 배치된다.
이 경우에도 연산부는 가장 강한 전기적인 신호를 보낸 적외선 광센서와 주변보다 현저히 강한 전기적인 신호를 보낸 또 다른 적외선 광감지 센서의 전면으로부터 연장되는 경로의 교차점을 연산하여 적외선 광의 결상이 위치를 계산해 낼 수 있다.
도 13 내지 도 15는 본 발명에 따르는 제4 실시예를 나타낸다.
제4 실시예에 적외선 광 산란 스크린(303)은, 내부의 가시광선을 외부로 통과시키고, 외부로부터의 적외선을 산란시키도록 표면 전체가 소형 볼록렌즈가 격자모양으로 배열되어 있다.
제4 실시예에 적외선 광 산란 스크린(303)은, 투명판(303a)의 표면 전체는 동일한 초점거리를 갖는 조그마한 볼록렌즈(303b)가 격자모양으로 배열된 형태로 되어 있고, 볼록렌즈(303b)의 초점은 적외선 광의 결상면으로 되어 있다.
그리고, 적외선 광감지 센서들(S01)은 이 결상면에 맺혀지는 적외선 광의 결상에 의한 광에너지를 감지한다.
도 13는 도 14의 부분 확대도이다.
적외선 광 산란 스크린(303)의 전면으로 들어오는 적외선 광은 볼록렌즈(303b)에 의해 모여져 대응하는 볼록렌즈의 초점으로 모이게 된다. 볼록렌즈의 초점으로 모이는 적외선 광이 결상되도록 초점은 결상면으로 되어있다.
그러나 적외선 광 산란 스크린(303)의 후면으로 들어오는 가시광은 볼록렌즈(303b)전면에 형성되는 초점으로 모이게 되는데, 적외선 광 산란 스크린(303)의 앞쪽은 허공이므로 가시광은 상을 맺지 못하게 된다.
본 실시형태에 따르면, 광 터치 패널은 디스플레이 장치에 부착되지만, 물리적인 접촉 없이 적외선을 이용하므로, 상기 디스플레이 장치의 표면에 불필요한 스크래치 등이 발생되지 않을 수 있다. 또한, 원거리에서 편리하게 터치 스크린 기능을 수행할 수 있다.
본 발명에서 사용되는 포인터는 적외선과 가시광선을 같이 발사하도록 한 장치를 사용하는 것이 바람직하다.
이는 본 발명에서 센서는 산란된 적외선을 감지하여 터치되는 위치를 연산해 내는데, 사용자는 눈으로 적외선을 감지하지 못하므로, 어느 위치를 터치하였는지 인식하지 못하므로 적외선으로 터치되는 부분이 가시광선으로도 터치되게 하여 터치되는 위치를 쉽게 인식하도록 하기 위한 것이다.
또 본 발명의 설명은 적외선 광을 사용하는 것으로 설명하였으나, 반드시 적외선 광에 의해서 가능한 것은 아니다. 즉, 특정 파장을 갖는 가시광선을 사용하는 것도 가능하고 주변보다 현저히 밝게 비추어주는 가시광선을 사용하는 것도 가능하다.
본 발명은 광 터치 패널에 관한 것으로서, 보다 상세하게는 물리적인 접촉이 없이 적외선에 의한 터치가 가능한 광 터치 패널에 관한 것이다.

Claims (16)

  1. 전면으로 들어오는 적외선 광은 결상시켜서 면을 따라 산란시키고, 후면으로 들어오는 가시광은 전면으로 투과시키는 광 투과 스크린과;
    상기 광 투과 스크린의 측면에 배치되고, 산란된 상기 적외선 광 에너지를 각각 감지하는 복수개의 적외선 광감지 센서들로 구성된 제1 적외선 광감지부와;
    상기 제1 적외선 광감지부와 서로 다른 위치가 되도록 상기 광 투과 패널의 측면에 배치되고, 산란된 상기 적외선 광 에너지를 각각 감지하는 복수개의 적외선 광감지 센서들로 구성된 제2 적외선 광감지부와;
    상기 제1 적외선 광감지부의 적외선 광센서들의 전기 출력신호와 상기 제2 적외선 광감지부의 적외선 광센서들의 전기 출력신호에 의해 적외선 광의 결상위치를 연산하는 연산부를 포함하는 광 터치 패널.
  2. 제1항에 있어서,
    상기 연산부는;
    상기 제1 적외선 광감지부의 적외선 광센서들 중 주변보다 현저히 강한 전기 출력신호를 내는 적외선 광센서를 선택하여 해당 적외선 광센서로 입력되는 산란된 적외선 광 에너지의 제1 입력경로를 파악하고, 상기 제2 적외선 광감지부의 적외선 광센서들 중 주변보다 현저히 강한 전기 출력신호를 내는 적외선 광센서를 선택하여 해당 적외선 광센서로 입력되는 산란된 적외선 광 에너지의 제2 입력경로를 파악하여, 상기 적외선 광 에너지의 제1 입력경로와 상기 적외선 광 에너지의 제2 입력경로의 교차점을 연산하는 광 터치 패널.
  3. 제2항에 있어서,
    상기 적외선 광감지 센서들은 픽셀을 이루고 있는 광 터치 패널.
  4. 제3항에 있어서,
    상기 제1 적외선 광감지부는 상기 광 투과 스크린의 좌측 모서리 위쪽에 위치하고, 상기 제2 적외선 광감지부는 상기 광 투과 스크린의 우측 모서리 위쪽에 위치하는 광터치 패널.
  5. 제4항에 있어서,
    상기 광 터치 패널은 상기 광 투과 스크린의 아래 모서리에 위치하는 제3 적외선 광감지부를 더 포함하는 광터치 패널.
  6. 전면으로 들어오는 적외선 광은 결상시켜서 면을 따라 산란시키고, 후면으로 들어오는 가시광은 전면으로 투과시키는 광 투과 스크린과;
    상기 광 투과 스크린의 측면의 가로 방향으로 분산 배치되어, 산란된 상기 적외선 광 에너지를 각각 감지하는 제1 그룹의 적외선 광감지 센서들과;
    상기 광 투과 스크린의 측면의 세로 방향으로 분산 배치되어, 산란된 상기 적외선 광 에너지를 각각 감지하는 제2 그룹의 적외선 광감지 센서들과;
    상기 제1 그룹의 적외선 광센서들의 전기 출력신호와 상기 제2 그룹의 적외선 광센서들의 전기 출력신호에 의해 적외선 광의 결상위치를 연산하는 연산부를 포함하는 광 터치 패널.
  7. 제6항에 있어서,
    상기 연산부는;
    상기 제1 그룹의 적외선 광센서들 중 주변보다 현저히 강한 전기 출력신호를 내는 적외선 광센서를 선택하여 해당 적외선 광센서로 입력되는 산란된 적외선 광 에너지의 제1 입력경로를 파악하고, 상기 제2 그룹의 적외선 광센서들 중 주변보다 현저히 강한 전기 출력신호를 내는 적외선 광센서를 선택하여 해당 적외선 광센서로 입력되는 산란된 적외선 광 에너지의 제2 입력경로를 파악하여, 상기 적외선 광 에너지의 제1 입력경로와 상기 적외선 광 에너지의 제2 입력경로의 교차점을 연산하는 광 터치 패널.
  8. 광 투과 스크린은 투명판과, 상기 투명판 위에 격자모양으로 배열된 소형 볼록렌즈와, 상기 볼록렌즈의 초점에 형성된 적외선 광 결상면으로 구성되어, 전면으로 들어오는 적외선 광을 광 결상면에 결상시켜서 상기 결상면을 따라 산란시키고, 후면으로 들어오는 가시광은 전면으로 투과시켜 상기 볼록렌즈 앞쪽의 공간에 결상시키는 광 투과 스크린과;
    상기 광 투과 스크린의 측면에 배치되고, 상기 결상면을 따라 산란된 상기 적외선 광 에너지를 각각 감지하는 복수개의 적외선 광감지 센서들로 구성된 제1 적외선 광감지부와;
    상기 제1 적외선 광감지부와 서로 다른 위치가 되도록 상기 광 투과 패널의 측면에 배치되고, 상기 결상면을 따라 산란된 상기 적외선 광 에너지를 각각 감지하는 복수개의 적외선 광감지 센서들로 구성된 제2 적외선 광감지부와;
    상기 제1 적외선 광감지부의 적외선 광센서들의 전기 출력신호와 상기 제2 적외선 광감지부의 적외선 광센서들의 전기 출력신호에 의해 적외선 광의 결상위치를 연산하는 연산부를 포함하는 광 터치 패널.
  9. 제8항에 있어서,
    상기 연산부는;
    상기 제1 적외선 광감지부의 적외선 광센서들 중 주변보다 현저히 강한 전기 출력신호를 내는 적외선 광센서를 선택하여 해당 적외선 광센서로 입력되는 산란된 적외선 광 에너지의 제1 입력경로를 파악하고, 상기 제2 적외선 광감지부의 적외선 광센서들 중 주변보다 현저히 강한 전기 출력신호를 내는 적외선 광센서를 선택하여 해당 적외선 광센서로 입력되는 산란된 적외선 광 에너지의 제2 입력경로를 파악하여, 상기 적외선 광 에너지의 제1 입력경로와 상기 적외선 광 에너지의 제2 입력경로의 교차점을 연산하는 광 터치 패널.
  10. 제9항에 있어서,
    상기 적외선 광감지 센서들은 픽셀을 이루고 있는 광 터치 패널.
  11. 제10항에 있어서,
    상기 제1 적외선 광감지부는 상기 광 투과 스크린의 좌측 모서리 위쪽에 위치하고, 상기 제2 적외선 광감지부는 상기 광 투과 스크린의 우측 모서리 위쪽에 위치하는 광터치 패널.
  12. 제11항에 있어서,
    상기 광 터치 패널은 상기 광 투과 스크린의 아래 모서리에 위치하는 제3 적외선 광감지부를 더 포함하는 광터치 패널.
  13. 전면으로 들어오는 광은 결상시켜서 면을 따라 산란시키고, 후면으로 들어오는 가시광은 전면으로 투과시키는 광 투과 스크린과;
    상기 광 투과 스크린의 측면에 배치되고, 산란된 상기 광 에너지를 각각 감지하는 복수개의 광 감지 센서들로 구성된 제1 광 감지부와;
    상기 제1 광감지부와 서로 다른 위치가 되도록 상기 광 투과 패널의 측면에 배치되고, 산란된 상기 광 에너지를 각각 감지하는 복수개의 광감지 센서들로 구성된 제2 광 감지부와;
    상기 제1 광 감지부의 광센서들의 전기 출력신호와 상기 제2 광 감지부의 광센서들의 전기 출력신호에 의해 광의 결상위치를 연산하는 연산부를 포함하는 광터치 패널
  14. 제13항에 있어서,
    상기 연산부는: 상기 제1 광감지부의 광센서들 중 주변보다 현저히 강한 전기 출력신호를 내는 광센서를 선택하여 해당 광센서로 입력되는 산란된 광 에너지의 제1 입력경로를 파악하고, 상기 제2 광감지부의 광센서들 중 주변보다 현저히 강한 전기 출력신호를 내는 광센서를 선택하여 해당 광센서로 입력되는 산란된 광 에너지의 제2 입력경로를 파악하여, 상기 광 에너지의 제1 입력경로와 상기 광 에너지의 제2 입력경로의 교차점을 연산하는 광터치 패널.
  15. 제14항에 있어서,
    상기 광감지 센서들은 픽셀을 이루고 있는 광터치 패널.
  16. 광 투과 스크린은 투명판과, 상기 투명판 위에 격자모양으로 배열된 소형 볼록렌즈와, 상기 볼록렌즈의 초점에 형성된 광 결상면으로 구성되어, 전면으로 들어오는 광을 광 결상면에 결상시켜서 상기 결상면을 따라 산란시키고, 후면으로 들어오는 가시광은 전면으로 투과시켜 상기 볼록렌즈 앞쪽의 공간에 결상시키는 광 투과 스크린과; 상기 광 투과 스크린의 측면에 배치되고, 상기 결상면을 따라 산란된 상기 광 에너지를 각각 감지하는 복수개의 광감지 센서들로 구성된 제1 광감지부와; 상기 제1 광감지부와 서로 다른 위치가 되도록 상기 광 투과 패널의 측면에 배치되고, 상기 결상면을 따라 산란된 상기 광 에너지를 각각 감지하는 복수개의 광감지 센서들로 구성된 제2 광감지부와; 상기 제1 광감지부의 광센서들의 전기 출력신호와 상기 제2 광감지부의 광센서들의 전기 출력신호에 의해 광의 결상위치를 연산하는 연산부를 포함하는 광터치 패널.
PCT/KR2011/009613 2010-12-15 2011-12-14 광 터치 패널 WO2012081900A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/994,531 US20130328835A1 (en) 2010-12-15 2011-12-14 Optical touch panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0128092 2010-12-15
KR1020100128092A KR20120066814A (ko) 2010-12-15 2010-12-15 광 터치 패널

Publications (2)

Publication Number Publication Date
WO2012081900A2 true WO2012081900A2 (ko) 2012-06-21
WO2012081900A3 WO2012081900A3 (ko) 2012-11-01

Family

ID=46245218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009613 WO2012081900A2 (ko) 2010-12-15 2011-12-14 광 터치 패널

Country Status (3)

Country Link
US (1) US20130328835A1 (ko)
KR (1) KR20120066814A (ko)
WO (1) WO2012081900A2 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9939905B2 (en) * 2012-11-09 2018-04-10 Ross Conrad Labelson Optical control of display screens
KR101886243B1 (ko) 2018-02-20 2018-08-08 유성운 적외선을 이용하여 접촉 위치를 확인하는 영상출력장치
KR101949474B1 (ko) 2018-06-26 2019-02-19 유성운 적외선을 이용하여 볼링공의 위치를 확인하는 영상출력장치
CN109656421B (zh) * 2019-03-05 2021-04-06 京东方科技集团股份有限公司 显示装置
CN116710879A (zh) * 2021-01-29 2023-09-05 触控解决方案股份有限公司 具有用于意图验证的投票逻辑的混合传感器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH113170A (ja) * 1997-06-13 1999-01-06 Wacom Co Ltd 光デジタイザ
KR20070005547A (ko) * 2003-09-22 2007-01-10 코닌클리케 필립스 일렉트로닉스 엔.브이. 디스플레이 모니터를 위한 좌표 검출 시스템
JP2008269545A (ja) * 2006-06-29 2008-11-06 Dainippon Printing Co Ltd パターン印刷透明シート
KR100917583B1 (ko) * 2006-08-10 2009-09-15 주식회사 엘지화학 비접촉식 좌표입력 시스템용 도광판, 이를 포함하는 시스템및 이를 이용한 비접촉식 좌표입력 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7268774B2 (en) * 1998-08-18 2007-09-11 Candledragon, Inc. Tracking motion of a writing instrument

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH113170A (ja) * 1997-06-13 1999-01-06 Wacom Co Ltd 光デジタイザ
KR20070005547A (ko) * 2003-09-22 2007-01-10 코닌클리케 필립스 일렉트로닉스 엔.브이. 디스플레이 모니터를 위한 좌표 검출 시스템
JP2008269545A (ja) * 2006-06-29 2008-11-06 Dainippon Printing Co Ltd パターン印刷透明シート
KR100917583B1 (ko) * 2006-08-10 2009-09-15 주식회사 엘지화학 비접촉식 좌표입력 시스템용 도광판, 이를 포함하는 시스템및 이를 이용한 비접촉식 좌표입력 방법

Also Published As

Publication number Publication date
US20130328835A1 (en) 2013-12-12
KR20120066814A (ko) 2012-06-25
WO2012081900A3 (ko) 2012-11-01

Similar Documents

Publication Publication Date Title
WO2012102519A2 (en) Terminal having touch screen and method for identifying touch event therein
WO2019088594A2 (ko) 디스플레이를 포함하는 전자 장치
WO2010030077A2 (ko) 터치 스크린 장치 및 스크린 상에서의 상황 인지적 인식을 통한 사용자 정보 입력방법
WO2019212193A1 (en) Electronic device including foldable housing and flexible display
WO2010044575A2 (ko) 선형 적외선 발광체를 이용한 광학모듈 방식의 터치스크린
WO2012081900A2 (ko) 광 터치 패널
WO2014109430A1 (en) Head mount display device providing eye gaze calibration and control method thereof
WO2015122565A1 (en) Display system for displaying augmented reality image and control method for the same
WO2011071305A2 (ko) 광학식 터치스크린
WO2012077922A2 (en) 3 dimensional (3d) display system of responding to user motion and user interface for the 3d display system
EP3039507A1 (en) Portable device displaying augmented reality image and method of controlling therefor
WO2018190619A1 (ko) 생체 센서를 포함하는 전자 장치
WO2019156437A1 (ko) 터치입력장치의 블랙화면모드에서 압력으로 인한 지문 센싱 방법 및 터치입력장치
WO2019194606A1 (en) Electronic device including bendable display
WO2017142161A1 (ko) 터치 일체형 투명 지문인식 센서
WO2021045593A1 (en) Electronic device including camera module
WO2016013832A1 (ko) 3차원 위치정보를 이용한 터치스크린 장치 및 디스플레이 장치
WO2017183795A1 (ko) 광학 센서 장치 및 광학 센싱 방법
WO2019004565A1 (ko) 증강현실 객체의 정합을 위한 캘리브레이션 방법 및 이를 수행하기 위한 헤드 마운트 디스플레이
TWI559193B (zh) 光學觸控螢幕
WO2019151617A1 (en) Control device
WO2008130145A1 (en) Touch-screen apparatus and method using laser and optical fiber
WO2017150806A1 (en) Image forming apparatus, touch input apparatus, and method of preventing touch error
WO2021045594A1 (ko) 카메라 모듈을 포함하는 전자 장치
WO2014038804A1 (ko) 전자펜을 이용한 입력 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848374

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13994531

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11848374

Country of ref document: EP

Kind code of ref document: A2