WO2013094702A1 - 成形体の製造方法及び成形体 - Google Patents

成形体の製造方法及び成形体 Download PDF

Info

Publication number
WO2013094702A1
WO2013094702A1 PCT/JP2012/083131 JP2012083131W WO2013094702A1 WO 2013094702 A1 WO2013094702 A1 WO 2013094702A1 JP 2012083131 W JP2012083131 W JP 2012083131W WO 2013094702 A1 WO2013094702 A1 WO 2013094702A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
prepreg
molded body
prepregs
molded
Prior art date
Application number
PCT/JP2012/083131
Other languages
English (en)
French (fr)
Inventor
裕規 長倉
泰幸 横江
近藤 豊
源臣 荒川
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to EP12859414.0A priority Critical patent/EP2796276A4/en
Priority to CN201280064003.0A priority patent/CN104010797A/zh
Priority to US14/367,501 priority patent/US20140370245A1/en
Priority to KR20147017066A priority patent/KR20140107304A/ko
Publication of WO2013094702A1 publication Critical patent/WO2013094702A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/18Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/12Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • B29C70/345Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation using matched moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/07Parts immersed or impregnated in a matrix
    • B32B2305/076Prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24752Laterally noncoextensive components

Definitions

  • the present invention is a method for producing a molded body obtained by laminating a plurality of prepregs containing reinforcing fibers and a thermoplastic resin, and the weld strength is improved and controlled while maintaining high fluidity of the prepreg. Is possible.
  • a cold press method or the like as a typical forming method for shaping by pressing a material in which a reinforced fiber and a thermoplastic resin are combined.
  • a material having a certain size is heated in advance to a molten state with an infrared heater or the like, pressed in a mold, and the material is fluidized to obtain a molded body.
  • the material is disposed at two or more locations and the surface of the molded product is deteriorated or the physical properties are extremely deteriorated at a location where the materials collide with each other (hereinafter referred to as a weld or weld portion). there were.
  • Patent Document 2 the surface of the molded body is subjected to a graining process to improve the appearance of the welded portion, and the molded body molded by injection molding is remelted in a press die by an ultrasonic vibration device. It is characterized by.
  • this method requires two steps, and there is a problem in terms of productivity.
  • the object of the present invention is to provide a molded product that can use a wide range of thermoplastic resins, has excellent productivity, and improves the appearance and strength of the weld without impairing the fluidity of the prepreg during press molding. It is to provide a method of manufacturing.
  • the present inventors have arrived at the present invention by using a specific prepreg and laminating a plurality of such prepregs into two or more layers in a specific arrangement manner.
  • At least three prepregs each having a thickness of 0.3 mm to 5.0 mm comprising reinforcing fibers having an average fiber length of 3 to 100 mm and a thermoplastic resin are heated 1) and 2) are in contact with each other.
  • the prepreg (q1) is a method for producing a molded body, wherein the prepreg (q1) is arranged so that at least a part thereof overlaps.
  • thermoplastic resins can be used, which is excellent in productivity and forms a weld portion at any place of the molded body without reducing the fluidity of the prepreg during press molding. It is possible to provide a method for producing a molded article excellent in appearance improvement and weld portion strength, and a molded article. Furthermore, according to the present invention, since the appearance and strength of the weld portion can be improved, it is possible to produce a large-sized molded body. In addition, according to the present invention, the strength of the weld part can be arbitrarily changed and controlled at a desired part. Therefore, when the molded body is subjected to severe impact, the weld part is destroyed at any part (weld part). In addition, it is possible to manufacture a molded body having such characteristics that the portion has sufficient strength for normal use, for example, a bonnet for an automobile, an airbag cover, and the like.
  • the prepregs are arranged so as to constitute at least two layers in contact with each other.
  • these two layers are called a P layer and a Q layer.
  • the number of laminated layers including the P layer and the Q layer is 2 or more.
  • the preferred number of laminated prepregs is 2 to 8, more preferably 3 or more. More preferably, the number of layers is ⁇ 8. If the number of laminated layers is 8 or less, lamination does not take time, and the prepreg is difficult to dissipate heat.
  • the prepreg (p1) in the P layer and the prepreg (q1) in the Q layer are arranged so as to overlap each other, and two or more prepregs (for example, P1, p2,. )), It is necessary to arrange the prepregs (p1, p2) so as not to contact each other. If all adjacent prepregs touch or overlap in the same layer, the object of the present invention is not met.
  • layer refers to a height (thickness) region of one prepreg.
  • “Same layer” means one layer, and “two or more prepregs exist in the same layer” means that two or more prepregs exist in one layer. Say.
  • the prepreg By arranging the prepreg as described above, it is preferable that two or more prepregs arranged so as not to be in contact with the same layer flow during pressing (molding).
  • the prepreg constituting the P layer or the Q layer may be flowed by only one sheet, that is, a layer arranged so that two or more prepregs do not contact each other, and the prepreg 1 Any of the layers composed of sheets may flow.
  • the prepreg can be flowed during pressing to form a weld portion on the molded body. preferable.
  • the weld portion is formed in this way because it has a characteristic as described above and is suitable for a use.
  • Each prepreg flows at the time of pressing, and a plurality of molten prepregs flow in the mold, and a place where they join together becomes a weld portion of the molded body.
  • a weld portion can be formed at any location of the molded body.
  • the number of prepregs present in the same layer is preferably 2 to 10. More preferably, the number is 2 to 4. If the number of prepregs present in the same layer is 10 or less, the number of occurrences of welds does not increase, and the strength control that is an effect of the present invention is easily performed, which is preferable.
  • the arrangement of the layer configuration using the P layer and the Q layer (a) the P layer uses one prepreg, the Q layer uses at least two prepregs, and constitutes two or more layers as a whole. b) The P layer uses one prepreg, the Q layer uses at least two prepregs, and constitutes a total of three or more layers.
  • the P layer uses at least two prepregs, and the Q layer is Arrangement that constitutes 3 layers or more using one prepreg, or (d) P layer uses at least 2 prepregs, Q layer uses at least 2 prepregs, and constitutes 3 layers or more in total
  • the arrangement to be exemplified is preferable. Specifically, an arrangement method as shown in FIGS. 1-1 to 1-9 in FIG. 1 can be employed, but the present invention is not limited to this. In the present invention, the expressions “P layer” and “Q layer” are only for distinguishing each layer. Note that. As shown in FIG.
  • the P layer is composed of one prepreg
  • the Q layer is composed of two or more prepregs. Layer.
  • the prepreg p1 in the P layer and the prepreg q1 in the Q layer are preferably arranged so that 10% to 99% overlap with the area of p1 or q1 on the side in contact with each other. It is preferable that the overlapping area is 10% or more with respect to the area of p1 because the effect of improving the strength of the weld portion is easily obtained. More preferably, 40% to 90% overlap with the area of p1 or q1 on the surfaces in contact with each other. Further, the overlap of the areas of each P layer and Q layer is not necessarily the same, and may be different for each layer.
  • each prepreg in each figure is the same.
  • the number of laminated layers is two layers of P layer and Q layer, and there are two prepregs that are not in contact with the Q layer, and the area of the surface on the Q layer side of the prepreg arranged in the P layer is Assuming that 100%, the area overlapping the P layer of the prepreg arranged in the Q layer is 80% (FIG. 1-1).
  • the number of laminated layers is 3 layers consisting of a P layer and a Q layer, and there are two prepregs that are not in contact with the Q layer corresponding to the intermediate layer, and the surface on the Q layer side of the prepreg arranged in the P layer
  • the area overlapping with the P layer of the prepreg arranged in the Q layer is assumed to be 90% (FIG. 1-2).
  • the number of stacked layers is 3 layers consisting of a P layer and a Q layer, and two prepregs exist in each of the Q layers corresponding to the outermost layer, and the Q layer side of the prepreg arranged in the P layer
  • the surface area of the prepreg is 100%, and the area overlapping the P layer of the prepreg arranged in the Q layer is 90% (FIG. 1-3).
  • the number of stacked layers is 5, and two prepregs exist in each of the Q layer corresponding to the outermost layer and the Q layer corresponding to the intermediate layer, and the Q layer of the prepreg disposed in the P layer
  • the area of the side surface is 100%, and the area overlapping the P layer of the prepreg arranged in the Q layer is 75% (FIGS.
  • the number of stacked layers is 5, and two prepregs are present in each of the Q layers corresponding to the intermediate layer, and the area of the surface of the prepreg arranged on the P layer on the Q layer side is defined as 100%.
  • the area that overlaps the P layer of the prepreg arranged at 70% is arranged at 70% (FIG. 1-5).
  • the number of stacked layers is 3 layers consisting of a P layer and a Q layer, and there are three prepregs that are not in contact with the Q layer corresponding to the intermediate layer, and the area of the surface on the Q layer side of the prepreg disposed in the P layer Is 100%, and the area overlapping the P layer of the prepreg arranged in the Q layer is 80% (FIG.
  • the number of layers is five, and two prepregs exist in each of the Q layers corresponding to the intermediate layer, and the area of the surface of the prepreg disposed on the P layer is 100%, and the Q layer The area that overlaps the P layer of the prepreg arranged at 50% is arranged (FIG. 1-7).
  • the number of stacked layers is two layers of P layer and Q layer, and there are two prepregs that are not in contact with each other in the P layer and Q layer, and the area of the surface on the Q layer side of the prepreg arranged in the P layer Is 100%, and the area overlapping the P layer of the prepreg arranged in the Q layer is 80% (FIG. 1-8).
  • the number of layers is two layers of P layer and Q layer, and there are two prepregs that are not in contact with the Q layer, and a mold having a step in the cavity is used.
  • One prepreg is placed on the P layer, and the area on the Q layer side of the prepreg placed on the P layer is 100%, and the area on the P layer of the prepreg placed on the Q layer is 60%.
  • Fig. 1-9 As shown in FIG. 1-9, at least one prepreg constituting the P layer is arranged, and then at least one prepreg constituting the Q layer is arranged so as to overlap the prepreg constituting the P layer. Methods are also encompassed by the present invention.
  • the reinforcing fiber contained in the prepreg of the present invention is not particularly limited, and examples thereof include carbon fibers, glass fibers, stainless fibers, alumina fibers, mineral fibers and other inorganic fibers, polyether ether ketone fibers, polyphenylene sulfide fibers, and polyether sulfone fibers. And organic fibers such as aramid fiber, polybenzoxazole fiber, polyarylate fiber, polyketone fiber, polyester fiber, polyamide fiber, and polyvinyl alcohol fiber. Among these, in applications where the molded body is required to have strength and rigidity, it is preferably at least one selected from the group consisting of carbon fibers, aramid fibers, and glass fibers.
  • carbon fiber is preferable in that it can provide a composite material that is lightweight and excellent in strength, and is particularly a carbon fiber having a polyacrylonitrile-based fiber as a precursor (hereinafter abbreviated as polyacrylonitrile-based carbon fiber or PAN-based carbon fiber). May be preferred).
  • the average fiber diameter of the reinforcing fibers is not particularly limited.
  • the preferable average fiber diameter is 3 to 12 ⁇ m, and more preferably 5 to 7 ⁇ m.
  • the preferred average fiber diameter is 10 to 50 ⁇ m, more preferably 15 to 35 ⁇ m.
  • thermoplastic resin contained in the prepreg is not particularly limited.
  • the thermoplastic resin is preferably at least one selected from the group consisting of polyester resin, polycarbonate resin, ABS resin, polyphenylene sulfide resin, polyamide resin and a mixture of two or more selected from these resins, more preferably It is at least one selected from the group consisting of a polycarbonate resin, a polyester resin, a polyamide resin, and a mixture of two or more selected from these resins, more preferably a polyamide resin.
  • the prepreg used in the present invention is preferably impregnated with a thermoplastic resin in the fiber bundle of reinforcing fibers and between single yarns, and the impregnation degree is more preferably 90% or more. More preferably, the degree of impregnation of the resin into the reinforcing fibers is 95% or more. If the degree of impregnation is 90% or more, it is preferable because the physical properties of the composite material and the molded body are easily reached.
  • a functional filler or additive may be included in the prepreg within a range that does not impair the object of the present invention.
  • examples include organic / inorganic fillers, flame retardants, UV-resistant agents, pigments, mold release agents, softeners, plasticizers, surfactants, and the like, but are not limited thereto.
  • high flame retardancy may be required, so it is preferable to include a flame retardant in the thermoplastic resin.
  • a flame retardant a well-known thing can be used, and if it can give a flame retardance to the thermoplastic composition of this invention, it will not specifically limit.
  • phosphorus flame retardants nitrogen flame retardants, silicone compounds, organic alkali metal salts, organic alkaline earth metal salts, bromine flame retardants, etc. These flame retardants can be used alone. Alternatively, a plurality of them may be used in combination.
  • the content of the flame retardant is preferably 1 to 40 parts by mass, and more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the resin from the balance of physical properties, moldability, and flame retardancy.
  • the prepreg of the present invention comprises a reinforcing fiber and a thermoplastic resin having an average fiber length of 3 ⁇ 100 mm, preferably preferably reinforcing fibers of 25 ⁇ 10000g / m 2 basis weight, 25 ⁇ 3000g / m 2 The basis weight is more preferable.
  • the prepreg in the present invention includes a reinforcing fiber bundle (A) composed of the number of critical single yarns defined by the following formula (1), and the ratio of the reinforcing fiber bundle (A) to the total amount of fibers in the prepreg is 20 Vol. % Or more and less than 99 Vol%, more preferably 20 Vol% or more and less than 90 Vol%.
  • the average number of fibers (N) in the reinforcing fiber bundle (A) satisfies the following formula (2).
  • Critical number of single yarns 600 / D (1) 0.7 ⁇ 10 4 / D 2 ⁇ N ⁇ 1 ⁇ 10 5 / D 2 (2) (Where D is the average fiber diameter ( ⁇ m) of the reinforcing fibers)
  • a fiber bundle composed of a single yarn state or less than the critical single yarn number is present as a reinforcing fiber other than the reinforcing fiber bundle (A). That is, in the prepreg used in the present invention, the degree of fiber opening of the reinforcing fiber is such that the amount of reinforcing fiber bundles composed of the number of critical single yarns or more defined depending on the average fiber diameter is 20 Vol% or more and less than 99 Vol%. It is preferable that a reinforcing fiber bundle composed of a specific number or more of reinforcing fibers controlled in the above and other opened reinforcing fibers are included in a specific ratio.
  • the ratio of the reinforcing fiber bundle (A) to the total amount of reinforcing fibers is 20 Vol% or more, it is preferable because a molded article having excellent mechanical properties can be easily obtained. If the ratio of the reinforcing fiber bundle (A) is less than 99 Vol%, it is preferable because the entangled portion of the fibers is not likely to be locally thick and a thin-walled one is easily obtained.
  • the average fiber number (N) in the reinforcing fiber bundle (A) comprised by more than a critical single yarn satisfy
  • the reinforcing fiber of the prepreg is carbon fiber
  • the average fiber diameter of the carbon fiber is 5 to 7 ⁇ m
  • the critical single yarn number is 86 to 120
  • the average fiber diameter of the carbon fiber is 5 ⁇ m
  • the average number of fibers in the fiber bundle is in the range of 280 to 4000, with 600 to 1600 being particularly preferred.
  • the average fiber diameter of the carbon fibers is 7 ⁇ m
  • the average number of fibers in the fiber bundle is in the range of 142 to 2040, and preferably 300 to 800.
  • the average number of fibers (N) in the reinforcing fiber bundle (A) is larger than 0.7 ⁇ 10 4 / D 2 , it is preferable because a high fiber volume content (Vf) can be easily obtained. Further, when the average number of fibers (N) in the reinforcing fiber bundle (A) is less than 1 ⁇ 10 5 / D 2 , it is preferable because a locally thick portion is hardly generated and voids are not easily generated.
  • the thickness of the prepreg in the present invention is 0.3 mm to 5.0 mm. If the thickness of the prepreg is less than 0.3 mm, it is difficult to flow during molding, which is not preferable. Further, if the thickness of the prepreg is larger than 5.0 mm, it is difficult to uniformly heat at the time of molding, which is not preferable. From the viewpoint of facilitating uniform heating and imparting better fluidity, the thickness of the prepreg is preferably 1.0 mm to 3.0 mm, more preferably 1.5 mm to 2.5 mm.
  • the reinforcing fibers contained in the prepreg in the present invention are discontinuous and have an average fiber length of 3 to 100 mm.
  • the prepreg used in the present invention is characterized in that a reinforcing function can be expressed by including a relatively long reinforcing fiber, preferably the average fiber length of the reinforcing fiber is 5 mm or more and 100 mm or less, more preferably 5 mm or more and 50 mm or less, Preferably they are 8 mm or more and 50 mm or less, More preferably, they are 15 mm or more and 80 mm or less, Furthermore, 10 mm or more and 30 mm or less are preferable.
  • Reinforcing fibers contained in the prepreg in the present invention are preferably mat-like (reinforcing fiber mats), particularly reinforcing fibers obtained by spraying and depositing reinforcing fibers or using a wet papermaking method.
  • a fiber mat is preferred.
  • a material obtained by mixing or laminating a thermoplastic resin to this reinforcing fiber mat can be used as a prepreg precursor.
  • this prepreg precursor is sometimes referred to as a random mat.
  • the reinforcing fiber mat it is preferable that the reinforcing fibers contained therein satisfy the formula (2) regarding the ratio of the reinforcing fiber bundle (A) and the average number of fibers (N), but those that do not satisfy these conditions,
  • the reinforcing fiber may be completely opened to form a single yarn, or the unopened reinforcing fiber may be made into a mat.
  • thermoplastic resin powder a material in which reinforcing fibers and a thermoplastic resin are overlaid or a material in which a reinforcing fiber mat is mixed with a thermoplastic resin powder.
  • the heating temperature is up to a temperature higher than the melting point, and when it is amorphous, it is higher than the glass transition temperature.
  • oil, an electric heater, induction heating, steam, or the like can be used, or a combination thereof can be used.
  • the pressurizing method can be a pressurizer, for example, press with a press, press with a steel belt, press with a roller, etc., but it is preferable to use a press to obtain a stable impregnated molded body. .
  • the temperature of the impregnated molded body is cooled to a solidification temperature or lower.
  • the pressure may or may not be applied, but in order to obtain a uniform impregnated molded body, it is preferable to apply the pressure while cooling.
  • the prepreg used in the present invention does not need to be completely impregnated with a thermoplastic resin, and those having an impregnation rate of 50% to 100% can be used, but those completely impregnated are preferably used.
  • the impregnation rate can be obtained by setting the volume of the impregnated molded body to 100%, determining the volume of air contained in the impregnated molded body, and subtracting it from the volume of the impregnated molded body.
  • the composite molded body in the present invention can be preferably obtained by sequentially performing the following methods including cold pressing steps i) to v).
  • the prepreg may be heated after being arranged in the method described in [Method for arranging prepreg], may be arranged simultaneously with heating, or may be arranged after heating. It is preferable to dispose at a desired position after the prepreg is heated.
  • the melting temperature or higher is higher than the melting point when the thermoplastic resin constituting the prepreg is a crystalline resin, or higher than the glass transition temperature when the thermoplastic resin is an amorphous resin.
  • an infrared heater for example, an infrared heater, a hot-air circulating heater, and induction heating can be used, but it is preferable to use an infrared heater that can make uniform heating and a rapid heating rate.
  • the place where the prepreg is disposed is a place where press molding is performed, such as in a mold, as will be described later.
  • positioned in multiple sheets may use only the thing from which the content rate of a reinforced fiber is the same, or a different thing. Further, all the sizes may be the same or may be partially different. ii)
  • the prepreg is placed in a mold in order to press-mold the prepreg placed at a desired position by heating.
  • the temperature of the mold at this time is not particularly limited as long as it is below the solidification temperature of the thermoplastic resin, that is, below the crystallization temperature when the thermoplastic resin is a crystalline resin, and below the glass transition temperature when it is an amorphous resin. However, it is preferable to adjust the temperature in order to stabilize the molding process and to prevent the temperature of the prepreg from decreasing, and the temperature may be increased or decreased even if the temperature is maintained at a constant temperature. iii) Next, the mold is clamped. After completion of the mold clamping, in order to sufficiently solidify by exchanging heat of the prepreg disposed in the mold, a predetermined pressure is applied and held for a certain time, for example, usually several seconds to several minutes.
  • the pressure is, for example, 0.5 to 30 MPa.
  • the prepreg flows in the mold and is shaped into the shape of the mold. iv) Next, the mold is opened, and the molded body is taken out by the ejector pin. v) Thereby, the molded composite molded body can be taken out from the mold.
  • so-called hot press molding in which the mold is heated to a temperature equal to or higher than the melting temperature of the thermoplastic resin in the prepreg so that the prepreg also exceeds the melting temperature can be employed in the production method of the present invention. .
  • the press molding pressure at that time can adopt the same conditions as the cold press.
  • the upper limit of the temperature of the prepreg at the time of press molding in the production method of the present invention is not particularly strict, but is preferably below the decomposition temperature of the thermoplastic resin contained in the prepreg, and the decomposition temperature is in the air
  • the thermal decomposition temperature of can be illustrated.
  • the strength was obtained by arranging the prepreg by the method of [Prepreg Arrangement Method] when the strength of the molded body formed from only one prepreg in the same layer was 100 (%). It is preferable that the strength (relative value) of the weld portion of the molded body is 20 to 90 (%) because the strength can be arbitrarily controlled by the prepreg placement method. Typical examples of the above strength include tensile strength and bending strength.
  • the molding obtained by arranging the prepreg by the method of [Prepreg Arrangement Method] when the elastic modulus of the molded article formed from only one prepreg in the same layer is 100%.
  • the elastic modulus (relative value) of the weld part of the body is 60 to 100 (%), meaning that the decrease in elastic modulus is small compared to the decrease in strength and is not easily influenced by the arrangement method. Therefore, the rigidity of the molded body can be maintained, and the strength of the weld portion can be arbitrarily designed.
  • the present invention can be applied to the production of a molded body that is required to have a characteristic capable of selectively destroying a portion to be destroyed by an impact such as a collision.
  • Such a molded body can be preferably used for, for example, an automobile bonnet or an airbag cover.
  • Typical examples of the elastic modulus include a tensile elastic modulus and a bending elastic modulus.
  • the molded body formed as a reference of the above-mentioned strength and elastic modulus and formed from only one prepreg in the same layer is defined as at least one of the P layer and the Q layer by the production method of the present invention.
  • a molded body having the same shape as the molded body obtained by placing two or more prepregs in the same layer so as not to contact each other, and obtained by using only one similar prepreg in the same layer. Needless to say.
  • a PAN-based carbon fiber bundle was used as the reinforcing fiber.
  • Other details are shown below.
  • the molded bodies in the following examples and comparative examples have a size of 300 mm ⁇ 200 mm and a thickness of 3 mm to 5 mm, and press molding was performed using a mold having a dimension corresponding to the molded body.
  • ⁇ Evaluation method of weld part of molded body> For the molded products obtained in the following examples and comparative examples, unless otherwise specified, a tensile test piece was cut out so that the weld portion was in the center according to JIS K-7164, and tensile strength was obtained. And the tensile modulus was determined.
  • Comparative Example 1 the same layer was formed by molding with only one prepreg, and the shape was the same as in the other Examples and Comparative Examples (Comparative Example).
  • Comparative Example 1 a tensile test was performed in the same manner as described above, and the tensile strength and tensile modulus were set to 100%.
  • the relative values (%) of the tensile strength and relative values of the tensile modulus of other examples and comparative examples ( %) was calculated.
  • a carbon fiber bundle (manufactured by Toho Tenax Co., Ltd .: Tenax IMS 60-12K (average fiber diameter 5 ⁇ m, fiber width 6 mm)) is cut into a length of 20 mm, and the amount of carbon fiber supplied is introduced into the tapered tube at 1222 g / min. While blowing the air to the carbon fiber and partially opening the fiber bundle, spraying it on the table installed at the lower part of the taper tube outlet, moving the table at a predetermined speed, and the basis weight of the carbon fiber is the value described later It adjusted so that it might become.
  • PA66 fiber polyamide 66 fiber manufactured by Asahi Kasei Fiber: T5 nylon (fineness 1400 dtex) melting point 265 ° C., thermal decomposition temperature (in air) 300 ° C.) dry-cut to 2 mm as a matrix resin is supplied into the tapered tube at 3000 g / min. Then, a prepreg precursor (random mat) in which carbon fibers having an average fiber length of 20 mm and polyamide 66 were mixed was obtained by spraying simultaneously with the carbon fibers. By the above procedure, the basis weight of the carbon fibers to obtain a two random mat of 300 g / m 2 and 380 g / m 2.
  • the average fiber length (La) and the ratio of the reinforcing fiber bundle (A) and the average number of fibers (N) of these random mats were examined, the average fiber length was 20 mm, which was a critical unit defined by the above formula (1).
  • the number of yarns was 120.
  • the ratio of the mat to the total amount of fibers was 86 Vol%, and the average number of fibers (N) in the reinforcing fiber bundle (A) was 900.
  • Two random mats with a carbon fiber basis weight of 300 g / m 2 are stacked and placed in a flat plate mold, pressed at 300 ° C.
  • a random mat with a carbon fiber basis weight of 380 g / m 2 is placed in a plate-shaped mold, pressed at 300 ° C. and 3 MPa for 5 minutes, cooled to 100 ° C., and a prepreg having a thickness of 1 mm.
  • the average fiber length of the carbon fiber, the ratio of the reinforcing fiber bundle (A), and the average number of fibers (N) in the prepreg are the same as the values in the random mat.
  • a carbon fiber bundle (manufactured by Toho Tenax Co., Ltd .: Tenax STS40-24KS (average fiber diameter 7 ⁇ m, fiber width 12 mm)) is cut into a length of 20 mm, and the amount of carbon fiber supplied is introduced into the tapered tube at 1222 g / min. While blowing the air to the carbon fiber and partially opening the fiber bundle, spraying it on the table installed at the lower part of the taper tube outlet, moving the table at a predetermined speed, and the basis weight of the carbon fiber is the value described later It adjusted so that it might become.
  • polycarbonate resin Panlite manufactured by Teijin Chemicals Ltd., glass transition temperature 150 ° C., thermal decomposition temperature (in air) 340 ° C.
  • a prepreg precursor random mat in which carbon fibers having an average fiber length of 20 mm and a polycarbonate resin were mixed was obtained.
  • the basis weight of the carbon fiber of the obtained random mat is 300 g / m 2.
  • the average fiber length (La) and the ratio of the reinforcing fiber bundle (A) and the average number of fibers (N) were examined, the average fiber length was 20 mm, the number of critical single yarns defined by the above formula (1) is 86, and for the reinforcing fiber bundle (A), the ratio of the random mat to the total amount of fibers is 60 Vol%, the average number of fibers in the reinforcing fiber bundle (A) ( N) was 500.
  • Two of the obtained random mats were stacked and placed in a plate-shaped mold, pressed at 310 ° C. and 3 MPa for 5 minutes, and cooled to 100 ° C. to prepare a prepreg having a thickness of 1.7 mm.
  • the average fiber length of the carbon fiber, the ratio of the reinforcing fiber bundle (A), and the average number of fibers (N) in the prepreg are the same as the values in the random mat.
  • a carbon fiber bundle manufactured by Toho Tenax Co., Ltd .: Tenax STS40-24KS (average fiber diameter 7 ⁇ m, fiber width 12 mm)) is cut into a length of 20 mm, and the amount of carbon fiber supplied is introduced into the tapered tube at 1222 g / min.
  • the basis weight of the carbon fiber of the obtained random mat is 300 g / m 2.
  • the average fiber length (La) and the ratio of the reinforcing fiber bundle (A) and the average number of fibers (N) were examined, the average fiber length was 20 mm, the number of critical single yarns defined by the above formula (1) is 86, and for the reinforcing fiber bundle (A), the ratio of the random mat to the total amount of fibers is 50 Vol%, the average number of fibers in the reinforcing fiber bundle (A) ( N) was 400.
  • Two of the obtained random mats were stacked and placed in a plate-shaped mold, pressed at 270 ° C.
  • the average fiber length of the carbon fiber, the ratio of the reinforcing fiber bundle (A), and the average number of fibers (N) in the prepreg are the same as the values in the random mat.
  • Example 1 Three prepregs with a thickness of 1.7 mm produced in Production Example 1 were heated in an infrared heating furnace until the surface temperature reached 300 ° C., and arranged as shown in FIG. At this time, the area of the surface on the Q layer side of the prepreg arranged in the P layer was 100%, and the area overlapping the P layer of the prepreg arranged in the Q layer was arranged to be 80%. After placement, the prepreg was conveyed into the mold and pressurized at 10 MPa for 1 minute. The mold temperature at this time was 130 ° C. After 1 minute, the mold was opened, and a molded body having a thickness of 3.0 mm was taken out.
  • Table 1 shows the results of a tensile test of the weld portion of the obtained molded body. Further, although a linear weld portion (weld line) was confirmed on the surface on the Q layer side, there was no unevenness, and the weld line was hardly noticeable on the surface on the P layer side.
  • Example 2 Four prepregs having a thickness of 1.7 mm produced in Production Example 1 were heated in an infrared heating furnace until the surface temperature reached 300 ° C., and arranged as shown in FIG. At this time, the area of the surface on the Q layer side of the prepreg arranged in the P layer was set to 100%, and the area overlapping the P layer of the prepreg arranged in the Q layer was arranged to be 90%. After placement, the prepreg was conveyed into the mold and pressurized at 10 MPa for 1 minute. The mold temperature at this time was 130 ° C. After 1 minute, the mold was opened, and a molded body having a thickness of 4.9 mm was taken out. Table 1 shows the results of a tensile test of the weld portion of the molded body. Further, the weld line was not noticeable on the surface of the molded body.
  • Example 3 Eight prepregs with a thickness of 1.0 mm produced in Production Example 1 were heated in an infrared heating furnace until the surface temperature reached 300 ° C., and arranged as shown in FIG. At this time, the area of the surface on the Q layer side of the prepreg arranged in the P layer was set to 100%, and the area overlapping the P layer of the prepreg arranged in the Q layer was arranged to be 75%. After placement, the prepreg was conveyed into the mold and pressurized at 10 MPa for 1 minute. The mold temperature at this time was 130 ° C. After 1 minute, the mold was opened, and a molded body having a thickness of 4.2 mm was taken out. Table 1 shows the results of a tensile test of the weld portion of the molded body. Further, a weld line could be confirmed on the surface of the molded body, but there was no unevenness.
  • Example 4 Five prepregs having a thickness of 1.7 mm produced in Production Example 1 were heated in an infrared heating furnace until the surface temperature reached 300 ° C., and arranged as shown in FIG. At this time, the area of the surface on the Q layer side of the prepreg arranged in the P layer was 100%, and the area overlapping the P layer of the prepreg arranged in the Q layer was arranged to be 80%. After placement, the prepreg was conveyed into the mold and pressurized at 10 MPa for 1 minute. The mold temperature at this time was 130 ° C. After 1 minute, the mold was opened, and a molded body having a thickness of 4.7 mm was taken out. Table 1 shows the results of a tensile test of the weld portion of the molded body. Further, the weld line was not noticeable on the surface of the molded body.
  • Example 5 Seven prepregs having a thickness of 1.0 mm produced in Production Example 1 were heated in an infrared heating furnace until the surface temperature reached 300 ° C., and arranged as shown in FIG. At this time, the area of the surface on the Q layer side of the prepreg arranged in the P layer was set to 100%, and the area overlapping the P layer of the prepreg arranged in the Q layer was arranged to be 50%. After placement, the prepreg was conveyed into the mold and pressurized at 10 MPa for 1 minute. The mold temperature at this time was 130 ° C. After 1 minute, the mold was opened, and a molded body having a thickness of 4.5 mm was taken out. Table 1 shows the results of a tensile test of the weld portion of the molded body. In addition, a little weld line was confirmed on the surface of the molded body, but there was no unevenness and the appearance was good.
  • Example 6 Four prepregs having a thickness of 1.7 mm produced in Production Example 2 were heated in an infrared heating furnace until the surface temperature reached 310 ° C., and arranged as shown in FIG. At this time, the area of the surface on the Q layer side of the prepreg arranged in the P layer was set to 100%, and the area overlapping the P layer of the prepreg arranged in the Q layer was arranged to be 90%. After placement, the prepreg was conveyed into the mold and pressurized at 10 MPa for 1 minute. The mold temperature at this time was 120 ° C. After 1 minute, the mold was opened, and a molded body having a thickness of 4.9 mm was taken out. Table 1 shows the results of a tensile test of the weld portion of the molded body. Also, the weld line was not noticeable on the surface of the molded body.
  • Example 7 Four prepregs having a thickness of 1.7 mm produced in Production Example 3 were heated in an infrared heating furnace until the surface temperature reached 280 ° C., and arranged as shown in FIG. At this time, the area of the surface on the Q layer side of the prepreg arranged in the P layer was set to 100%, and the area overlapping the P layer of the prepreg arranged in the Q layer was arranged to be 90%. After placement, the prepreg was conveyed into the mold and pressurized at 10 MPa for 1 minute. The mold temperature at this time was 130 ° C. After 1 minute, the mold was opened, and a molded body having a thickness of 4.9 mm was taken out. Table 1 shows the results of a tensile test of the weld portion of the molded body. Further, the weld line was not noticeable on the surface of the molded body.
  • the weld portion can be set at a desired position, and the strength can be designed to an arbitrary value.
  • thermoplastic resins can be used, the productivity is excellent, and a weld portion is formed at any place of the molded body without reducing the fluidity of the prepreg during press molding. It is possible to provide a method for producing a molded article excellent in the appearance improvement of the part and the strength of the weld part, and a molded article. Furthermore, according to the present invention, since the appearance and strength of the weld portion can be improved, it is possible to produce a large-sized molded body. In addition, according to the present invention, the strength of the weld part can be arbitrarily changed and controlled at a desired part.
  • the weld part is destroyed at any part (weld part).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

 広範な熱可塑性樹脂を用いることができ、生産性に優れ、プレス成形時のプリプレグの流動性を損なうことなく、ウェルド部の外観改善と強度を向上させた成形体を製造する方法を提供することにある。 平均繊維長3~100mmの強化繊維と熱可塑性樹脂とを含んでなる、厚みが0.3mm~5.0mmのプリプレグの少なくとも3枚を、1)加熱し、2)互いに接するP層及びQ層を含む少なくとも2層を構成するように配置し、その後、3)プレスして1つの成形体を製造する方法であって、P層中のプリプレグ(p1)とQ層中のプリプレグ(q1)は少なくとも一部が重なるように配置し、かつ同じ層中の2枚以上のプリプレグは接しないように配置することを特徴とする成形体の製造方法。

Description

成形体の製造方法及び成形体
 本発明は、強化繊維と熱可塑性樹脂とを含んでなる複数のプリプレグを積層してなる成形体の製造方法であり、プリプレグの高い流動性を維持した状態でウェルド強度の向上と制御をすることが可能となるものである。
 強化繊維と熱可塑性樹脂を複合化した材料をプレスして賦形する代表的な成形加工法にはコールドプレス法などがある。この方法ではあらかじめ、ある大きさの材料を赤外線ヒーターなどで溶融状態まで加熱し、金型内でプレスし、材料を流動させることで成形体を得ることができる。しかし、この方法では材料を2箇所以上の場所に配置しその材料同士が突き当たった箇所(以下ウェルドまたはウェルド部と称する)では成形体の表面品位の低下や、物性が極端に低下するという問題があった。
 成形体の大きさが小さい場合には材料の配置の方法により、ウェルド部を作らないような成形体を作ることが出来るが、成形体が大型化するにつれて、ウェルド部は不可避となってくる。ウェルド部の表面品位や強度の改善方法として様々な検討がなされている。
 特許文献1では特定の組成の熱可塑性樹脂を用いることでウェルド部の強度の向上を図るものであるが、使用できる熱可塑性樹脂の組成が限定されており、他の樹脂系での成形には適用できないという課題がある。
 特許文献2では成形体の表面にシボ加工を施しウェルド部の外観を改善するものであり、射出成形で成形された成形体を超音波振動装置により材料をプレス金型の中で再溶融させることを特徴とする。しかし、かかる方法では工程が2工程必要であり、生産性の面で課題がある。
日本国特開2007-291161号公報 日本国特開2011-56795号公報
 プレス成形において、プリプレグ等の成形材料を流動させ、成形体にウェルド部を形成させる成形を行う場合にはウェルド部の強度の低下と外観の不良が問題となり、ウェルド部を形成しないような成形にすると流動性が低下するという課題が残る。本発明はこれらの課題を改善する成形体の製造方法を提供するものである。
 すなわち本発明の目的は、広範な熱可塑性樹脂を用いることができ、生産性に優れ、プレス成形時のプリプレグの流動性を損なうことなく、ウェルド部の外観改善と強度を向上させた成形体を製造する方法を提供することにある。
 本発明者らは、特定のプリプレグを用い、かかるプリプレグの複数枚を特定の配置の仕方で2層以上に積層することにより、本発明に至ったものである。
 すなわち本発明は、平均繊維長3~100mmの強化繊維と熱可塑性樹脂とを含んでなる、厚みが0.3mm~5.0mmのプリプレグの少なくとも3枚を、1)加熱し、2)互いに接するP層及びQ層を含む少なくとも2層を構成するように配置し、その後、3)プレスして1つの成形体を製造する方法であって、P層中のプリプレグ(p1)とQ層中のプリプレグ(q1)は少なくとも一部が重なるように配置することを特徴とする成形体の製造方法、である。
 本発明により、広範な熱可塑性樹脂を用いることができ、生産性に優れ、プレス成形時のプリプレグの流動性を低下させることなく成形体の任意の場所にウェルド部を形成し、当該ウェルド部の外観改善とウェルド部の強度に優れた成形体の製造方法、及び成形体を提供することができる。
 更に、本発明により、ウェルド部の外観と強度を改善できるため、大型の成形体を製造することも可能である。
 また、本発明により、ウェルド部の強度を任意に、かつ所望の部分で変更、制御することが可能となるため、成形体が激しい衝撃を受けた場合に、任意の箇所(ウェルド部)で破壊が起こり、かつ、当該箇所は通常の使用には充分な強度を有するという、例えば自動車用ボンネットやエアバックカバー等に極めて好適な特性の成形体を製造することが可能である。
本発明におけるプリプレグの配置方法の具体例を表わす模式図(断面図) 実施例1で成形したプリプレグの配置図(断面図および上面図) 実施例2、6、7で成形したプリプレグの配置図(断面図および上面図) 実施例3で成形したプリプレグの配置図(断面図および上面図) 実施例4で成形したプリプレグの配置図(断面図および上面図) 実施例5で成形したプリプレグの配置図(断面図および上面図) 比較例1で成形したプリプレグの配置図(断面図および上面図) 比較例2で成形したプリプレグの配置図(断面図および上面図)
 [プリプレグの配置方法]
 本発明において、プリプレグの配置は、互いに接する少なくとも2層を構成するように配置する。本発明では、これら2層をP層、Q層と呼ぶ。本発明では、このP層及びQ層を含む積層数が2層以上であれば特に制限は無いが、好ましいプリプレグの積層数は2層~8層であり、3層以上であるとより好ましく3~8層であると更に好ましい。積層数が8層以下であれば積層に時間がかからずプリプレグが放熱しにくいため、良好な成形体が得られやすく、好ましい。
 さらに、P層中のプリプレグ(p1)とQ層中のプリプレグ(q1)は重なるように配置し、かつ同じ層中に2枚以上のプリプレグ(例えばP層であれば、p1、p2、・・・)が存在する場合には、かかるプリプレグ(p1、p2)は互いに接しないように配置することが必要である。同じ層中で、全ての隣り合うプリプレグが触れたり重なったりしてしまうと本発明の目的に合致しなくなる。
 ここで、「層」とは、1枚のプリプレグの高さ(厚さ)領域のことを言う。
 また、「同じ層」とは、1つの層のことを指しており、「同じ層中に2枚以上のプリプレグが存在する」とは、1つの層中に2枚以上のプリプレグが存在することを言う。
 上記のようにプリプレグを配置することにより、プレス(成形)時に、同じ層中に接しないように配置された2枚以上のプリプレグが流動することが好ましい。なお、このプレス成形時に、1枚だけでP層またはQ層を構成しているプリプレグも流動しても良く、つまりは、2枚以上のプリプレグが接しないように配置された層と、プリプレグ1枚で構成された層のいずれもが流動しても良い。
 本発明の製造方法においては、上記のように、同じ層中の2枚以上のプリプレグを接しないように配置することによって、該プリプレグをプレス時に流動させ、成形体にウェルド部を形成することが好ましい。このようにしてウェルド部が形成されたものであると、前述のような特徴を有し用途に適した成形体となり好ましい。プレス時に各プリプレグが流動して、金型内に複数の溶融プリプレグの流れが生じそれらが合流する箇所が成形体のウェルド部となる。2枚以上のプリプレグの形状や配置を調整し、成形体の任意の箇所にウェルド部を形成することができる。
 同じ層中に存在するプリプレグの枚数は2枚~10枚であることが好ましい。より好ましくは2枚~4枚である。同じ層中に存在するプリプレグの枚数が10枚以下であれば、ウェルド部の発生箇所が多くならないため、本発明の効果である強度の制御が行ないやすいため、好ましい。
 P層およびQ層を用いた層構成の配置としては、(a)P層は1枚のプリプレグを用い、Q層は少なくとも2枚のプリプレグを用い、全体で2層以上を構成する配置、(b)P層は1枚のプリプレグを用い、Q層は少なくとも2枚のプリプレグを用い、全体で3層以上を構成する配置、(c)P層は少なくとも2枚のプリプレグを用い、Q層は1枚のプリプレグを用い、全体で3層以上を構成する配置、または(d)P層は少なくとも2枚のプリプレグを用い、Q層は少なくとも2枚のプリプレグを用い、全体で3層以上を構成する配置が好ましいものとして例示される。
 具体的には図1の図1-1~図1-9に示すような配置方法を採用することが出来るが、本発明はこれに限られるものではない。本発明では「P層」、「Q層」という表現は各層を区別するためだけのものである。なお。図1-1等に示すように、1枚のプリプレグで構成される層がある配置方法においては、P層を1枚のプリプレグで構成される層、Q層を2枚以上のプリプレグで構成される層とした。なお、図1-8に示すように、P層及びQ層の双方が2枚以上のプリプレグで構成される配置方法も当然本発明に包含される。
 P層中のプリプレグp1とQ層中のプリプレグq1とは、互いに接する側の面のp1またはq1の面積に対して10%~99%が重なるように配置することが好ましい。重なる面積がp1の面積に対して10%以上であるとウェルド部の強度向上の効果が得られやすく好ましい。互いに接する側の面のp1またはq1の面積に対して40%~90%が重なるように配置することがより好ましい。また、各P層とQ層の面積の重なりは同一である必要はなく、各層により異なっていても良い。
 以下1)~9)に、プリプレグの配置方法の具体例(断面図)を説明する。特に示さない限り、各図における各プリプレグの奥行きの長さは同じである。
 1)積層数がP層とQ層の2層であり、そのうちのQ層に層中に接していない2枚のプリプレグが存在し、P層に配置したプリプレグのQ層側の面の面積を100%として、Q層に配置したプリプレグのP層に重なる面積が80%で配置されているものである(図1-1)。
 2)積層数がP層とQ層からなる3層であり、中間層に相当するQ層に、接していない2枚のプリプレグが存在し、P層に配置したプリプレグのQ層側の面の面積を100%として、Q層に配置したプリプレグのP層に重なる面積が90%で配置されているものである(図1-2)。
 3)積層数がP層とQ層からなる3層であり、そのうちの最外層に相当するQ層のそれぞれの層中に2枚のプリプレグが存在し、P層に配置したプリプレグのQ層側の面の面積を100%として、Q層に配置したプリプレグのP層に重なる面積が90%で配置されているものである(図1-3)。
 4)積層数が5層であり、そのうちの最外層に相当するQ層と中間層に相当するQ層のそれぞれの層中に2枚のプリプレグが存在し、P層に配置したプリプレグのQ層側の面の面積を100%として、Q層に配置したプリプレグのP層に重なる面積が75%で配置されているものである(図1-4)。
 5)積層数が5層であり、そのうちの中間層に相当するQ層にそれぞれ2枚のプリプレグが存在し、P層に配置したプリプレグのQ層側の面の面積を100%として、Q層に配置したプリプレグのP層に重なる面積が70%で配置されているものである(図1-5)。
 6)積層数がP層とQ層からなる3層であり、中間層に相当するQ層に接していない3枚のプリプレグが存在し、P層に配置したプリプレグのQ層側の面の面積を100%として、Q層に配置したプリプレグのP層に重なる面積が80%で配置されているものである(図1-6)。
 7)積層数が5層であり、そのうちの中間層に相当するQ層にそれぞれ2枚のプリプレグが存在し、P層に配置したプリプレグのQ層側の面の面積を100%として、Q層に配置したプリプレグのP層に重なる面積が50%で配置されているものである(図1-7)。
 8)積層数がP層とQ層の2層であり、P層及びQ層中に、互いに接していない2枚のプリプレグが存在し、P層に配置したプリプレグのQ層側の面の面積を100%として、Q層に配置したプリプレグのP層に重なる面積が80%で配置されているものである(図1-8)。
 9)積層数がP層とQ層の2層であり、そのうちのQ層に層中に接していない2枚のプリプレグが存在し、キャビティに段差がある金型を用いて、Q層中の1枚のプリプレグがP層に重なるようにし、且つ、P層に配置したプリプレグのQ層側の面の面積を100%として、Q層に配置したプリプレグのP層に重なる面積が60%で配置されているものである(図1-9)。
 なお、図1-9に示すように、P層を構成する少なくとも1枚のプリプレグを配置し、ついでQ層を構成する少なくとも1枚のプリプレグを、P層を構成するプリプレグに重なるように配置する方法も本発明に包含される。
 [プリプレグの構成]
 本発明のプリプレグに含まれる強化繊維は特に制限はなく、例えば、炭素繊維、ガラス繊維、ステンレス繊維、アルミナ繊維、鉱物繊維などの無機繊維、ポリエーテルエーテルケトン繊維、ポリフェニレンサルファイド繊維、ポリエーテルスルホン繊維、アラミド繊維、ポリベンゾオキサゾール繊維、ポリアリレート繊維、ポリケトン繊維、ポリエステル繊維、ポリアミド繊維、ポリビニルアルコール繊維などの有機繊維が例示される。なかでも成形体に強度や剛性が求められる用途において炭素繊維、アラミド繊維、およびガラス繊維からなる群から選ばれる少なくとも一種であることが好ましい。なかでも炭素繊維が、軽量でありながら強度に優れた複合材料が提供できる点で好ましく、特にポリアクリロニトリル系繊維を前駆体とする炭素繊維(以下、ポリアクリロニトリル系炭素繊維またはPAN系炭素繊維と略称することがある)が好ましい。
 強化繊維の平均繊維径には特に限定はないが、例えば、炭素繊維の場合、好ましい平均繊維径は3~12μmであり、より好ましくは5~7μmである。ポリエステル繊維の場合は、好ましい平均繊維径は10~50μmであり、より好ましくは15~35μmである。
 プリプレグに含まれる熱可塑性樹脂の種類としては、特に限定されないが、例えば塩化ビニル樹脂、塩化ビニリデン樹脂、酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、アクリロニトリル-スチレン樹脂(AS樹脂)、アクリロニトリル・ブタジエン・スチレン樹脂(ABS樹脂)、アクリル樹脂、メタクリル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアミド樹脂(例えば、ポリアミド6樹脂、ポリアミド11樹脂、ポリアミド12樹脂、ポリアミド46樹脂、ポリアミド66樹脂、ポリアミド610樹脂)、ポリアセタール樹脂、ポリカーボネート樹脂、ポリエステル樹脂(例えば、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ボリブチレンテレフタレート樹脂)、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリ乳酸樹脂などが挙げられる。
 熱可塑性樹脂として好ましくはポリエステル樹脂、ポリカーボネート樹脂、ABS樹脂、ポリフェニレンスルフィド樹脂、ポリアミド樹脂およびこれらの樹脂から選ばれる2種類以上の混合物からなる群から選択された少なくとも1種であり、より好ましくは、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂およびこれらの樹脂から選ばれる2種類以上の混合物からなる群から選択された少なくとも1種であり、更に好ましくはポリアミド樹脂である。
 本発明に用いるプリプレグは、強化繊維の繊維束内および単糸間には熱可塑性樹脂が含浸していることが好ましく、その含浸度は90%以上であることがより好ましい。強化繊維への樹脂の含浸度は95%以上であることが更に好ましい。含浸度が90%以上であれば複合材料および成形体の物性が求められるレベルに到達しやすいため好ましい。
 なお、本発明の目的を損なわない範囲で、プリプレグに機能性の充填材や添加剤を含有させても良い。例えば、有機/無機フィラー、難燃剤、耐UV剤、顔料、離型剤、軟化剤、可塑剤、界面活性剤などが挙げられるが、この限りではない。特に電子・電気機器用途や自動車用途においては、高い難燃性が要求されることがあるため、熱可塑性樹脂に難燃剤を含有させることが好ましい。難燃剤の例としては、公知のものが使用でき、本発明の熱可塑性組成物に難燃性を付与できる物であれば特に限定はされない。具体的には、リン系難燃剤、窒素系難燃剤、シリコーン化合物、有機アルカリ金属塩、有機アルカリ土類金属塩、臭素系難燃剤等を挙げることができ、これらの難燃剤は単独で使用しても良いし、複数を併用して用いても良い。難燃剤の含有量は、物性、成形性、難燃性のバランスから樹脂100質量部に対して1~40質量部とすることが好ましく、1~20質量部とすることがさらに好ましい。
 本発明におけるプリプレグは、平均繊維長3~100mmの強化繊維と熱可塑性樹脂とを含んでなり、好ましくは強化繊維が25~10000g/mの目付けであることが好ましく、25~3000g/mの目付けであることがより好ましい。
 本発明におけるプリプレグは、下記式(1)で定義される臨界単糸数以上で構成される強化繊維束(A)を含み、かつ当該プリプレグ中の繊維全量に対する強化繊維束(A)の割合が20Vol%以上99Vol%未満であることが好ましく、20Vol%以上90Vol%未満であることがより好ましい。
 さらに上記条件に加え、強化繊維束(A)中の平均繊維数(N)が下記式(2)を満たすことが好ましい。
  臨界単糸数=600/D      (1)
  0.7×10/D<N<1×10/D    (2)
(ここでDは強化繊維の平均繊維径(μm)である)
 本発明におけるプリプレグには、強化繊維束(A)以外の強化繊維として、単糸の状態または臨界単糸数未満で構成される繊維束が存在することが好ましい。すなわち本発明で用いられるプリプレグには、平均繊維径に依存して定義される臨界単糸数以上で構成される強化繊維束の存在量を20Vol%以上99Vol%未満とする、強化繊維の開繊程度がコントロールされた特定本数以上の強化繊維からなる強化繊維束と、それ以外の開繊された強化繊維を特定の比率で含むことが好ましい。強化繊維全量に対する強化繊維束(A)の割合が20Vol%以上であれば、機械物性に優れた成形体が得られやすいため好ましい。強化繊維束(A)の割合が99Vol%未満であれば、繊維の交絡部が局部的に厚くなりにくく、薄肉のものが得られやすいため好ましい。
 また本発明で用いられるプリプレグでは、臨界単糸数以上で構成される強化繊維束(A)中の平均繊維数(N)が上記式(2)を満たすことが好ましい。
 具体的には、プリプレグの強化繊維が炭素繊維であり、炭素繊維の平均繊維径が5~7μmである場合、臨界単糸数は86~120本となり、炭素繊維の平均繊維径が5μmである場合、繊維束中の平均繊維数は280~4000本の範囲となるが、なかでも600~1600本であることが好ましい。炭素繊維の平均繊維径が7μmの場合、繊維束中の平均繊維数は142~2040本の範囲となるが、なかでも300~800本であることが好ましい。
 強化繊維束(A)中の平均繊維数(N)が0.7×10/Dより大きい場合、高い繊維体積含有率(Vf)を得られやすいため好ましい。また強化繊維束(A)中の平均繊維数(N)が1×10/D未満の場合、局部的に厚い部分が生じにくく、ボイドが発生しにくいため好ましい。
 本発明におけるプリプレグの厚さは、0.3mm~5.0mmである。プリプレグの厚さが0.3mm未満では、成形時に流動し難くなり好ましくない。また、プリプレグの厚さが5.0mmより厚いと成形時に均一に加熱することが困難になり好ましくない。均一な加熱を容易に行い、かつ、より良好な流動性を持たせるという観点からは、プリプレグの厚さは1.0mm~3.0mmが好ましく、1.5mm~2.5mmがより好ましい。
 本発明におけるプリプレグに含まれる強化繊維は不連続であり、平均繊維長3~100mmである。本発明で用いるプリプレグはある程度長い強化繊維を含んで強化機能が発現できる事を特徴とし、好ましくは強化繊維の平均繊維長が5mm以上100mm以下であり、より好ましくは5mm以上50mm以下であり、更に好ましくは8mm以上50mm以下であり、より一層好ましくは15mm以上80mm以下であり、更には10mm以上30mm以下が好ましい。
 本発明におけるプリプレグに含まれる強化繊維は、マット状になっているもの(強化繊維マット)であると好ましく、特に強化繊維を散布して堆積させたり、湿式抄紙法を用いたりして得られる強化繊維マットであると好ましい。この強化繊維マットに熱可塑性樹脂を混合または積層などしたものをプリプレグの前駆体として用いることができる。本発明においてこのプリプレグの前駆体をランダムマットと称することがある。
 強化繊維マットとしては、その含有する強化繊維が、前記の強化繊維束(A)の割合や、平均繊維数(N)に関する式(2)を満たすものが好ましいが、これら条件を満たさないもの、例えば、強化繊維を完全に開繊して単糸状にしたものや、未開繊の強化繊維をマット状にしたものであっても良い。
 [プリプレグの製造工程]
 プリプレグの製造方法としては特に制限は無いが、例えば、強化繊維と熱可塑性樹脂とを重ね合わせた状態のものや、強化繊維マットに熱可塑性樹脂の紛体を混合したものなどを加熱し加圧することにより得ることができる(以下、含浸成形体ということがある)。加熱温度としては、熱可塑性樹脂が結晶性の場合は融点以上の温度まで、非晶性の場合はガラス転移温度以上である。加熱方法としてはオイル、電気ヒーター、誘導加熱、蒸気等を用いることができ、それらを組み合わせて用いることもできる。加圧方法は加圧機、例えばプレス機による加圧、スチールベルトによる加圧、ローラーによる加圧等を用いることができるが、安定的な含浸成形体を得るためにはプレス機を用いることが好ましい。
 加熱・加圧完了後、当該含浸成形体の温度を固化温度以下まで冷却する。この時圧力はかけていてもかけていなくても構わないが、均一な含浸成形体を得るためには冷却している間も圧力をかけることが好ましい。
 本発明におけるプリプレグは熱可塑性樹脂が完全に含浸したものを用いなくても良く、含浸率50%~100%のものを用いることが出来るが好ましくは完全含浸させたものを用いるのが良い。ここで、含浸率とは含浸成形体の体積を100%とし、含浸成形体に含まれる空気の体積を求め、含浸成形体の体積から減算することで求めることが出来る。
 [複合成形体の製造工程]
 本発明における複合成形体は、具体的には以下のコールドプレス工程i)~v)を含む方法を順に行うことで、好ましく得ることができる。
 i)上記プリプレグを溶融温度以上まで加熱する。この時プリプレグは、前記の[プリプレグの配置方法]に記載の方法に配置したのち加熱してもよいし、加熱と同時に配置しても良いし、加熱後に配置しても良いが、プリプレグを均一に加熱でき、成形性が安定することから、当該プリプレグを加熱した後に所望の位置に配置することが好ましい。また、溶融温度以上とは、プリプレグを構成する熱可塑性樹脂が結晶性樹脂の場合は融点以上、非晶性樹脂の場合はガラス転移温度以上である。加熱方法としては、例えば赤外線ヒーター、熱風循環式ヒーター、誘導加熱を用いることができるが、均一な加熱と加熱速度を迅速にすることができる赤外線ヒーターを使用することが好ましい。なお、上記プリプレグを配置する場所は、以降に説明するように、金型内など、プレス成形するところである。
 また、複数枚配置する上記プリプレグは、強化繊維の含有割合が同じもののみ用いても、異なるものを用いてもよい。さらに、大きさも全て同一であっても、一部異なっていてもよい。
 ii)加熱及び所望の位置に配されたプリプレグをプレス成形するため、通常、プリプレグを金型内へ配置する。このときの金型の温度としては熱可塑性樹脂の固化温度以下、つまりは熱可塑性樹脂が結晶性樹脂の場合は結晶化温度以下、非晶性樹脂の場合はガラス転移温度以下であれば特に制限は無いが、成形工程を安定化させるためとプリプレグの温度低下を防止するために温度調節をすることが好ましく、一定温度で保持しても温度を上げ下げしても良い。
 iii)ついで、金型の型締めをする。型締め完了後、金型内に配されたプリプレグの熱交換を行い十分に固化をさせるため、所定の圧力を加え一定時間、例えば通常数秒~数分間保持する。圧力としては例えば0.5~30MPaである。プリプレグは金型内で流動し金型の形状に賦形される。
 iv)ついで、型開きをして、エジェクタピンにより成形体を取り出す。
 v)これにより金型内から、成形された複合成形体を取り出すことができる。
 なお、金型を、プリプレグ中の熱可塑性樹脂の溶融温度以上に加熱することにより、プリプレグも該溶融温度以上としてプレス成形を行う、いわゆるホットプレス成形も本発明の製造方法において採用することができる。その際のプレス成形の圧力もコールドプレスと同様の条件を採用することができる。
 本発明の製造方法におけるプレス成形時のプリプレグの温度の上限については、特に厳密なものは無いが、該プリプレグに含まれる熱可塑性樹脂の分解温度以下であると好ましく、当該分解温度としては空気中の熱分解温度を例示することができる。
 [成形体]
 本発明によれば、例えば上記のようにプリプレグを配置することで、プリプレグの高い流動性を維持した状態でウェルド強度の向上と制御をすることが可能となる。特に強度では、同一層内がすべて1枚のプリプレグのみから成形された成形体の強度を100(%)としたときに、前記[プリプレグの配置方法]の方法でプリプレグを配置して得られた成形体のウェルド部の強度(相対値)が20~90(%)であると、プリプレグの配置方法により任意に強度を制御することが出来るということであり好ましい。なお上記の強度として代表的なものは引張強度や曲げ強度が挙げられる。
 加えて同一層内がすべて1枚のプリプレグのみから成形された成形体の弾性率を100(%)としたときに、前記[プリプレグの配置方法]の方法でプリプレグを配置して得られた成形体のウェルド部の弾性率(相対値)が60~100(%)であると、強度の低下と比較すると弾性率の低下は小さく配置方法による影響を受けにくいことを意味し好ましい。そのため成形体の剛性は維持し、ウェルド部の強度を任意に設計することができる。このことにより、本発明は、衝突等の衝撃により、破壊させたい箇所を選択的に破壊できるような特性の求められる成形体を製造するのに適用することができる。かかる成形体は、例えば自動車用のボンネットやエアバックカバー等に好ましく使用することが出来る。上記の弾性率として代表的なものは引張弾性率や曲げ弾性率が挙げられる。
 なお、上記の強度や弾性率の基準として述べた、同一層内がすべて1枚のプリプレグのみから成形された成形体とは、本発明の製造方法によって、P層またはQ層の少なくともいずれかの同一層内で、2枚以上のプリプレグを接しないように配置して得られた成形体と同形状の成形体を、同様のプリプレグを同一層内で1枚のみ用いて得たものであることは言うまでもない。
 本実施例において、強化繊維としてはPAN系炭素繊維束を用いた。その他詳細については下記に示す。
<成形体>
 以下の実施例および比較例における成型体は、300mm×200mm、厚み3mm~5mmであり、当該成形体に対応する寸法の金型を用いてプレス成形を行った。
<成形体のウェルド部の評価方法>
 以下の実施例および比較例にて得られた成形体について、特に記載のない条件に関しては、JIS K-7164に従いウェルド部が中央になるように引張試験片を切り出して引張試験を行い、引張強度および引張弾性率を求めた。比較例1についても、同一層内がすべて1枚のプリプレグのみの配置にて成形を行なって得られた、ウェルド部が無いだけで形状は他の実施例・比較例と同じ成形体(比較例1)について、上記と同様に引張試験を行い、その引張強度および引張弾性率をそれぞれ100%とし、他の実施例および比較例の引張強度の相対値(%)および引張弾性率の相対値(%)を算出した。 
[製造例1]
 炭素繊維束(東邦テナックス社製:テナックスIMS60-12K(平均繊維径5μm、繊維幅6mm))を長さ20mmにカットし、炭素繊維の供給量を1222g/minでテーパー管内に導入し、テーパー管内で空気を炭素繊維に吹き付けて繊維束を部分的に開繊しつつ、テーパー管出口の下部に設置したテーブル上に散布し、テーブルを所定の速度で移動させ、炭素繊維の目付が後記の値となるように調整した。またマトリックス樹脂として、2mmにドライカットしたPA66繊維(旭化成せんい製のポリアミド66繊維:T5ナイロン(繊度1400dtex)融点265℃、熱分解温度(空気中)300℃)を3000g/minでテーパー管内に供給し、炭素繊維と同時に散布することで、平均繊維長20mmの炭素繊維とポリアミド66が混合された、プリプレグの前駆体(ランダムマット)を得た。上記手順により、炭素繊維の目付が300g/mと380g/mの2種類のランダムマットを得た。これらのランダムマットの平均繊維長(La)及び強化繊維束(A)の割合と、平均繊維数(N)を調べたところ、平均繊維長は20mm、上記式(1)で定義される臨界単糸数は120であり、強化繊維束(A)について、マットの繊維全量に対する割合は86Vol%、強化繊維束(A)中の平均繊維数(N)は900であった。炭素繊維の目付が300g/mのランダムマットを2枚重ねて平板形状の金型へ配置し、300℃、3MPaで5分加圧し、100℃まで金型を冷却し厚み1.7mmのプリプレグを作製し、炭素繊維の目付が380g/mのランダムマット1枚を平板形状の金型へ配置し、300℃、3MPaで5分加圧し、100℃まで金型を冷却し厚み1mmのプリプレグを作製した。なお、プリプレグにおける炭素繊維の平均繊維長、強化繊維束(A)の割合、平均繊維数(N)は、上記ランダムマットにおける値と同じである。
[製造例2]
 炭素繊維束(東邦テナックス社製:テナックスSTS40-24KS(平均繊維径7μm、繊維幅12mm))を長さ20mmにカットし、炭素繊維の供給量を1222g/minでテーパー管内に導入し、テーパー管内で空気を炭素繊維に吹き付けて繊維束を部分的に開繊しつつ、テーパー管出口の下部に設置したテーブル上に散布し、テーブルを所定の速度で移動させ、炭素繊維の目付が後記の値となるよう調整した。またマトリックス樹脂として、ポリカーボネート樹脂(帝人化成社製パンライト、ガラス転移温度150℃、熱分解温度(空気中)340℃)を3000g/minでテーパー管内に供給し、炭素繊維と同時に散布することで、平均繊維長20mmの炭素繊維とポリカーボネート樹脂が混合されたプリプレグ前駆体(ランダムマット)を得た。得られたランダムマットの炭素繊維の目付は300g/mであり、平均繊維長(La)及び強化繊維束(A)の割合と、平均繊維数(N)を調べたところ、平均繊維長は20mm、上記式(1)で定義される臨界単糸数は86であり、強化繊維束(A)について、ランダムマットの繊維全量に対する割合は60Vol%、強化繊維束(A)中の平均繊維数(N)は500であった。得られたランダムマットを2枚重ねて平板形状の金型へ配置し、310℃、3MPaで5分加圧し、100℃まで金型を冷却し厚み1.7mmのプリプレグを作製した。
 なお、プリプレグにおける炭素繊維の平均繊維長、強化繊維束(A)の割合、平均繊維数(N)は、上記ランダムマットにおける値と同じである。
[製造例3]
 炭素繊維束(東邦テナックス社製:テナックスSTS40-24KS(平均繊維径7μm、繊維幅12mm))を長さ20mmにカットし、炭素繊維の供給量を1222g/minでテーパー管内に導入し、テーパー管内で空気を炭素繊維に吹き付けて繊維束を部分的に開繊しつつ、テーパー管出口の下部に設置したテーブル上に散布し、テーブルを所定の速度で移動させ、炭素繊維の目付が後記の値となるよう調整した。またマトリックス樹脂として、PBT(ポリブチレンテレフタレート、ポリプラスチックス社製デュラネックス融点220℃、熱分解温度(空気中)300℃)を3000g/minでテーパー管内に供給し、炭素繊維と同時に散布することで、平均繊維長20mmの炭素繊維とPBT樹脂が混合されたプリプレグ前駆体(ランダムマット)を得た。得られたランダムマットの炭素繊維の目付は300g/mであり、平均繊維長(La)及び強化繊維束(A)の割合と、平均繊維数(N)を調べたところ、平均繊維長は20mm、上記式(1)で定義される臨界単糸数は86であり、強化繊維束(A)について、ランダムマットの繊維全量に対する割合は50Vol%、強化繊維束(A)中の平均繊維数(N)は400であった。得られたランダムマットを2枚重ねて平板形状の金型へ配置し、270℃、2.5MPaで5分加圧し、100℃まで金型を冷却し厚み1.7mmのプリプレグを作製した。
 なお、プリプレグにおける炭素繊維の平均繊維長、強化繊維束(A)の割合、平均繊維数(N)は、上記ランダムマットにおける値と同じである。
 [実施例1]
 製造例1で作製した厚み1.7mmのプリプレグ3枚を赤外線加熱炉で表面温度が300℃になるまで加熱し、図2の通り配置した。この時、P層に配置したプリプレグのQ層側の面の面積を100%として、Q層に配置したプリプレグのP層に重なる面積が80%になるように配置した。配置後、プリプレグを金型内へ搬送し10MPaで1分間加圧した。この時の金型温度は130℃であった。1分経過後、金型を開き、厚み3.0mmの成形体を取り出した。得られた成形体のウェルド部の引張試験を行った結果を表1に示す。また、Q層側の表面には線状のウェルド部(ウェルドライン)が確認できたが凹凸は無く、P層側の表面ではウェルドラインはほとんど目立たなかった。
 [実施例2]
 製造例1で作製した厚み1.7mmのプリプレグ4枚を赤外線加熱炉で表面温度が300℃になるまで加熱し、図3の通り配置した。この時、P層に配置したプリプレグのQ層側の面の面積を100%として、Q層に配置したプリプレグのP層に重なる面積が90%になるように配置した。配置後、プリプレグを金型内へ搬送し10MPaで1分間加圧した。この時の金型温度は130℃であった。1分経過後、金型を開き、厚み4.9mmの成形体を取り出した。成形体のウェルド部の引張試験を行った結果を表1に示す。また、成形体の表面ではウェルドラインは目立たなかった。
 [実施例3]
 製造例1で作製した厚み1.0mmのプリプレグ8枚を赤外線加熱炉で表面温度が300℃になるまで加熱し、図4の通り配置した。この時、P層に配置したプリプレグのQ層側の面の面積を100%として、Q層に配置したプリプレグのP層に重なる面積が75%になるように配置した。配置後、プリプレグを金型内へ搬送し10MPaで1分間加圧した。この時の金型温度は130℃であった。1分経過後、金型を開き、厚み4.2mmの成形体を取り出した。成形体のウェルド部の引張試験を行った結果を表1に示す。また、成形体の表面ではウェルドラインを確認することができたが凹凸は無かった。
 [実施例4]
 製造例1で作製した厚み1.7mmのプリプレグ5枚を赤外線加熱炉で表面温度が300℃になるまで加熱し、図5の通り配置した。この時、P層に配置したプリプレグのQ層側の面の面積を100%として、Q層に配置したプリプレグのP層に重なる面積が80%になるように配置した。配置後、プリプレグを金型内へ搬送し10MPaで1分間加圧した。この時の金型温度は130℃であった。1分経過後、金型を開き、厚み4.7mmの成形体を取り出した。成形体のウェルド部の引張試験を行った結果を表1に示す。また、成形体の表面ではウェルドラインが目立たなかった。
 [実施例5]
 製造例1で作製した厚み1.0mmのプリプレグ7枚を赤外線加熱炉で表面温度が300℃になるまで加熱し、図6の通り配置した。この時、P層に配置したプリプレグのQ層側の面の面積を100%として、Q層に配置したプリプレグのP層に重なる面積が50%になるように配置した。配置後、プリプレグを金型内へ搬送し10MPaで1分間加圧した。この時の金型温度は130℃であった。1分経過後、金型を開き、厚み4.5mmの成形体を取り出した。成形体のウェルド部の引張試験を行った結果を表1に示す。また、成形体の表面ではウェルドラインが少し確認できたが凹凸は無く、外観は良好であった。
 [実施例6]
 製造例2で作製した厚み1.7mmのプリプレグ4枚を赤外線加熱炉で表面温度が310℃になるまで加熱し、図3の通り配置した。この時、P層に配置したプリプレグのQ層側の面の面積を100%として、Q層に配置したプリプレグのP層に重なる面積が90%になるように配置した。配置後、プリプレグを金型内へ搬送し10MPaで1分間加圧した。この時の金型温度は120℃であった。1分経過後、金型を開き、厚み4.9mmの成形体を取り出した。成形体のウェルド部の引張試験を行った結果を表1に示す。また、成形体の表面ではウェルドラインは目立たなかった
 [実施例7]
 製造例3で作製した厚み1.7mmのプリプレグ4枚を赤外線加熱炉で表面温度が280℃になるまで加熱し、図3の通り配置した。この時、P層に配置したプリプレグのQ層側の面の面積を100%として、Q層に配置したプリプレグのP層に重なる面積が90%になるように配置した。配置後、プリプレグを金型内へ搬送し10MPaで1分間加圧した。この時の金型温度は130℃であった。1分経過後、金型を開き、厚み4.9mmの成形体を取り出した。成形体のウェルド部の引張試験を行った結果を表1に示す。また、成形体の表面ではウェルドラインは目立たなかった。
 [比較例1]
  製造例1で作製した厚み1.7mmのプリプレグ3枚を赤外線加熱炉で表面温度が300℃になるまで加熱し、図7の通り、P層のみで3層配置しプリプレグを金型内へ搬送し10MPaで1分間加圧した。この時の金型温度は130℃であった。1分経過後、金型を開き、厚み5.0mmの成形体を取り出した。成形体の引張試験を行った結果を表1に示す。
 [比較例2]
 製造例1で作製した厚み1.7mmのプリプレグ6枚を赤外線加熱炉で表面温度が300℃になるまで加熱し、図8の通り、Q層のみで3層配置し、プリプレグを金型内へ搬送し10MPaで1分間加圧した。この時の金型温度は130℃であった。1分経過後、金型を開き、厚み4.6mmの成形体を取り出した。成形体のウェルド部の引張試験を行った結果を表1に示す。また、成形体の表面はウェルドラインが確認でき、凹凸があった。
Figure JPOXMLDOC01-appb-T000001
 以上より、ウェルド部が無い比較例1(100%)および通常の積層でウェルドを作る比較例2に対し、本発明によれば、上記実施例1~7のように、ウェルド部が無い場合に比べて弾性率の低下が少なく、またウェルド部を所望の位置に設定でき、かつ強度を任意の値に設計することができる。
 本発明によれば、広範な熱可塑性樹脂を用いることができ、生産性に優れ、プレス成形時のプリプレグの流動性を低下させることなく成形体の任意の場所にウェルド部を形成し、当該ウェルド部の外観改善とウェルド部の強度に優れた成形体の製造方法、及び成形体を提供することができる。更に、本発明により、ウェルド部の外観と強度を改善できるため、大型の成形体を製造することも可能である。また、本発明により、ウェルド部の強度を任意に、かつ所望の部分で変更、制御することが可能となるため、成形体が激しい衝撃を受けた場合に、任意の箇所(ウェルド部)で破壊が起こり、かつ、当該箇所は通常の使用には充分な強度を有するという、例えば自動車用ボンネットやエアバックカバー等に極めて好適な特性の成形体を製造することが可能である。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2011年12月22日出願の日本特許出願(特願2011-281508)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (15)

  1.  平均繊維長3~100mmの強化繊維と熱可塑性樹脂とを含んでなる、厚みが0.3mm~5.0mmのプリプレグの少なくとも3枚を、1)加熱し、2)互いに接するP層及びQ層を含む少なくとも2層を構成するように配置し、その後、3)プレスして1つの成形体を製造する方法であって、P層中のプリプレグ(p1)とQ層中のプリプレグ(q1)は少なくとも一部が重なるように配置し、かつ同じ層中の2枚以上のプリプレグは接しないように配置することを特徴とする成形体の製造方法。
  2.  同じ層中の接しないように配置された2枚以上のプリプレグをプレス時に流動させることを特徴とする、請求項1に記載の成形体の製造方法。
  3.  プレス時に、P層またはQ層の少なくともいずれかの同一層内で、接しないように配置された2枚以上の前記プリプレグの流動により、成形体にウェルド部を形成することを特徴とする、請求項1または2に記載の成形体の製造方法。
  4.  P層は1枚のプリプレグを用い、Q層は少なくとも2枚のプリプレグを用い、全体で2層以上を構成するように配置される、請求項1~3のいずれか1項に記載の成形体の製造方法。
  5.  プリプレグを、全体で3層以上を構成するように配置する、請求項1~4のいずれか1項に記載の成形体の製造方法。
  6.  P層は1枚のプリプレグを用い、Q層は少なくとも2枚のプリプレグを用い、全体で3層以上を構成するように配置される、請求項1~5のいずれか1項に記載の成形体の製造方法。
  7.  P層は少なくとも2枚のプリプレグを用い、Q層は1枚のプリプレグを用い、全体で3層以上を構成するように配置される、請求項1~5のいずれか1項に記載の成形体の製造方法。
  8.  P層は少なくとも2枚のプリプレグを用い、Q層は少なくとも2枚のプリプレグを用い、全体で2層以上を構成するように配置される、請求項1~5のいずれか1項に記載の成形体の製造方法。
  9.  P層を構成する少なくとも1枚のプリプレグを配置し、ついでQ層を構成する少なくとも1枚のプリプレグを、P層を構成するプリプレグに重なるように配置する、請求項1~8のいずれか1項に記載の成形体の製造方法。
  10.  P層中のプリプレグ(p1)とQ層中のプリプレグ(q1)とは、互いに接する側の面のp1またはq1の面積に対して10~99%が重なるように配置する、請求項1~9のいずれか1項に記載の成形体の製造方法。
  11.  プリプレグは、下記式(1)で定義される臨界単糸数以上で構成される強化繊維束(A)を含み、かつ、当該プリプレグ中の繊維全量に対する強化繊維束(A)の割合が20Vol%以上99Vol%未満である、請求項1~10のいずれか1項に記載の成形体の製造方法。
     臨界単糸数=600/D             (1)
    (ここで、Dは強化繊維の平均繊維径(μm)である)
  12.  プリプレグにおける強化繊維束(A)中の平均繊維数(N)が下記式(2)を満たす請求項11に記載の成形体の製造方法。
     0.7×10/D<N<1×10/D    (2)
    (ここで、Dは強化繊維の平均繊維径(μm)である)
  13.  強化繊維が、炭素繊維、アラミド繊維、およびガラス繊維からなる群から選ばれる少なくとも一種である請求項1~12のいずれか1項に記載の成形体の製造方法。
  14.  プリプレグにおける強化繊維と熱可塑性樹脂の存在比が強化繊維100容量部に対して、熱可塑性樹脂100~1000容量部であることを特徴とする請求項1~13のいずれか1項に記載の成形体の製造方法。
  15.  請求項1~14にいずれか1項に記載の成形体の製造方法により得られる成形体であって、そのウェルド部の強度が、同一層内がすべて1枚のプリプレグのみから成形された成形体の強度を100%とした場合、20~90%であることを特徴とする成形体。
PCT/JP2012/083131 2011-12-22 2012-12-20 成形体の製造方法及び成形体 WO2013094702A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12859414.0A EP2796276A4 (en) 2011-12-22 2012-12-20 METHOD FOR PRODUCING MOLDED ARTICLE AND MOLDED ARTICLE
CN201280064003.0A CN104010797A (zh) 2011-12-22 2012-12-20 用于制造成形制品的方法以及成形制品
US14/367,501 US20140370245A1 (en) 2011-12-22 2012-12-20 Method for Manufacturing Shaped Product, and Shaped Product
KR20147017066A KR20140107304A (ko) 2011-12-22 2012-12-20 성형체의 제조 방법 및 성형체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011281508 2011-12-22
JP2011-281508 2011-12-22

Publications (1)

Publication Number Publication Date
WO2013094702A1 true WO2013094702A1 (ja) 2013-06-27

Family

ID=48668581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083131 WO2013094702A1 (ja) 2011-12-22 2012-12-20 成形体の製造方法及び成形体

Country Status (6)

Country Link
US (1) US20140370245A1 (ja)
EP (1) EP2796276A4 (ja)
JP (1) JPWO2013094702A1 (ja)
KR (1) KR20140107304A (ja)
CN (1) CN104010797A (ja)
WO (1) WO2013094702A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140370245A1 (en) * 2011-12-22 2014-12-18 Teijin Limited Method for Manufacturing Shaped Product, and Shaped Product
CN104669753A (zh) * 2013-12-02 2015-06-03 上海杰事杰新材料(集团)股份有限公司 一种超轻质高抗冲高耐磨热塑性复合板材及其制备方法
JP2016002689A (ja) * 2014-06-16 2016-01-12 ヒエン電工株式会社 樹脂成形品の補修方法及びその補修用樹脂材料
WO2016043037A1 (ja) * 2014-09-17 2016-03-24 東レ株式会社 繊維強化樹脂成形材料
JP2016043583A (ja) * 2014-08-22 2016-04-04 本田技研工業株式会社 繊維強化樹脂接合体の製造方法
US10632692B2 (en) 2014-11-14 2020-04-28 Basf Se Process for the production of finished parts

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107247A1 (ja) * 2017-11-29 2019-06-06 帝人株式会社 複合材料、成形体の製造方法、及び複合材料の製造方法
US10618210B2 (en) 2018-05-30 2020-04-14 Corning Incorporated High capacity print station, method of making a polymer composite part, and polymer composite part
DE102018009379A1 (de) * 2018-11-30 2020-06-04 Airbus Operations Gmbh Neues Verfahren zum Herstellen eines bereichsweise flächigen Bauteils aus einem Faserverbundwerkstoff

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274833A (ja) * 1998-03-23 1999-10-08 Mitsubishi Electric Corp 平面アンテナ用サンドイッチパネル
JP2002248620A (ja) * 2001-02-26 2002-09-03 Toray Ind Inc 繊維強化プラスチック成形用基材および繊維強化プラスチックの成形方法
JP2007015203A (ja) * 2005-07-07 2007-01-25 Toray Ind Inc プリフォーム用基材、プリフォーム、およびこれらを用いた繊維強化複合材料構造物
JP2007291161A (ja) 2006-04-21 2007-11-08 Toray Ind Inc 熱可塑性樹脂組成物およびそれからなる成形品
JP2008069474A (ja) * 2006-09-13 2008-03-27 Teijin Ltd 補強材・放熱材に適する炭素繊維集合体
JP2009274412A (ja) * 2008-05-19 2009-11-26 Toray Ind Inc 不連続繊維からなる一方向シート基材の製造方法
JP2011056795A (ja) 2009-09-10 2011-03-24 Kanto Auto Works Ltd プラスチック成形品の製造装置及びその製造方法
JP2011178891A (ja) * 2010-03-01 2011-09-15 Teijin Ltd 炭素繊維複合材料

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3957943A (en) * 1971-11-09 1976-05-18 Nippon Gakki Seizo Kabushiki Kaisha Method for producing glass fiber reinforced plastic molded articles with decorative patterns and article produced thereby
CA1291934C (en) * 1988-08-10 1991-11-12 Hisashi Masuda Method and apparatus for laminating thermoplastic sheets
JP2009007406A (ja) * 2007-06-26 2009-01-15 Panasonic Electric Works Co Ltd プリプレグ、多層回路基板、プリント配線板及びプリント配線板の製造方法
RU2535711C1 (ru) * 2011-08-03 2014-12-20 Тейдзин Лимитед Способ изготовления фасонного изделия формованием под низким давлением
JPWO2013094702A1 (ja) * 2011-12-22 2015-04-27 帝人株式会社 成形体の製造方法及び成形体
KR20130090115A (ko) * 2012-02-03 2013-08-13 삼성테크윈 주식회사 솔더 레지스트층을 형성하는 방법 및 그 솔더 레지스트층을 구비한 인쇄회로기판
JP6324738B2 (ja) * 2014-01-27 2018-05-16 ルネサスエレクトロニクス株式会社 半導体装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274833A (ja) * 1998-03-23 1999-10-08 Mitsubishi Electric Corp 平面アンテナ用サンドイッチパネル
JP2002248620A (ja) * 2001-02-26 2002-09-03 Toray Ind Inc 繊維強化プラスチック成形用基材および繊維強化プラスチックの成形方法
JP2007015203A (ja) * 2005-07-07 2007-01-25 Toray Ind Inc プリフォーム用基材、プリフォーム、およびこれらを用いた繊維強化複合材料構造物
JP2007291161A (ja) 2006-04-21 2007-11-08 Toray Ind Inc 熱可塑性樹脂組成物およびそれからなる成形品
JP2008069474A (ja) * 2006-09-13 2008-03-27 Teijin Ltd 補強材・放熱材に適する炭素繊維集合体
JP2009274412A (ja) * 2008-05-19 2009-11-26 Toray Ind Inc 不連続繊維からなる一方向シート基材の製造方法
JP2011056795A (ja) 2009-09-10 2011-03-24 Kanto Auto Works Ltd プラスチック成形品の製造装置及びその製造方法
JP2011178891A (ja) * 2010-03-01 2011-09-15 Teijin Ltd 炭素繊維複合材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2796276A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140370245A1 (en) * 2011-12-22 2014-12-18 Teijin Limited Method for Manufacturing Shaped Product, and Shaped Product
CN104669753A (zh) * 2013-12-02 2015-06-03 上海杰事杰新材料(集团)股份有限公司 一种超轻质高抗冲高耐磨热塑性复合板材及其制备方法
JP2016002689A (ja) * 2014-06-16 2016-01-12 ヒエン電工株式会社 樹脂成形品の補修方法及びその補修用樹脂材料
JP2016043583A (ja) * 2014-08-22 2016-04-04 本田技研工業株式会社 繊維強化樹脂接合体の製造方法
WO2016043037A1 (ja) * 2014-09-17 2016-03-24 東レ株式会社 繊維強化樹脂成形材料
JPWO2016043037A1 (ja) * 2014-09-17 2017-04-27 東レ株式会社 繊維強化樹脂成形材料およびその製造方法
US10392482B2 (en) 2014-09-17 2019-08-27 Toray Industries, Inc. Fiber-reinforced resin molding material and production method thereof
US10632692B2 (en) 2014-11-14 2020-04-28 Basf Se Process for the production of finished parts

Also Published As

Publication number Publication date
EP2796276A1 (en) 2014-10-29
US20140370245A1 (en) 2014-12-18
EP2796276A4 (en) 2015-05-27
CN104010797A (zh) 2014-08-27
KR20140107304A (ko) 2014-09-04
JPWO2013094702A1 (ja) 2015-04-27

Similar Documents

Publication Publication Date Title
WO2013094702A1 (ja) 成形体の製造方法及び成形体
JP5583277B2 (ja) 低圧成形による成形体の製造方法
CN101516589B (zh) 复合预浸料坯基材的制造方法、层合基材及纤维增强塑料
JP5706402B2 (ja) 複合積層構造物に熱可塑性樹脂および/または架橋性樹脂を送達する方法
JP6507203B2 (ja) 成形品の製造方法および製造装置
US10604633B2 (en) Thermoplastic prepreg and laminate
TWI515239B (zh) Reinforced fibrous composite material formed by the body
WO2012165418A1 (ja) 等方性を維持した成形体の製造方法
WO2012108446A1 (ja) 厚みに傾斜のある成形体、およびその製造方法
JP5551386B2 (ja) 繊維・樹脂複合化シート及びfrp成形体
EP2554348B1 (en) Method for laminating fiber-reinforced thermoplastic resin prepreg
JP6965957B2 (ja) 積層基材およびその製造方法並びに炭素繊維強化樹脂基材
JP5603048B2 (ja) 繊維強化複合材料の製造方法
JP5749587B2 (ja) 立上部を有する軽量な成形体とその製造方法
JP2013176876A (ja) 成形体の製造方法
KR20150064742A (ko) 복합 성형품, 특히 복합 섬유 성형품의 제조를 위한 반제품의 제조 방법 및 반제품, 및 복합 성형품, 특히 복합 섬유 성형품
CN109996658A (zh) 纤维增强树脂成型品及纤维增强树脂成型品的制造方法
JP2015166130A (ja) 繊維強化プラスチックの製造方法
JP6435696B2 (ja) 積層基材の製造方法
TW201941901A (zh) 成形品之製造方法
KR100824695B1 (ko) 경량의 적층시트 및 이의 제조방법
JP2013010255A (ja) 熱可塑性樹脂複合材材料
WO2021153366A1 (ja) 炭素繊維とガラス繊維を含むコールドプレス成形体、およびその製造方法
CN116568475A (zh) 进行压缩成形以制造成形体的方法
KR102253106B1 (ko) 연속섬유 복합재 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859414

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013550341

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147017066

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14367501

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012859414

Country of ref document: EP