WO2013094503A1 - 振れ補正機能付き光学ユニット - Google Patents

振れ補正機能付き光学ユニット Download PDF

Info

Publication number
WO2013094503A1
WO2013094503A1 PCT/JP2012/082293 JP2012082293W WO2013094503A1 WO 2013094503 A1 WO2013094503 A1 WO 2013094503A1 JP 2012082293 W JP2012082293 W JP 2012082293W WO 2013094503 A1 WO2013094503 A1 WO 2013094503A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable body
optical axis
shake correction
axis direction
optical unit
Prior art date
Application number
PCT/JP2012/082293
Other languages
English (en)
French (fr)
Inventor
南澤伸司
Original Assignee
日本電産サンキョー株式会社
和出達貴
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産サンキョー株式会社, 和出達貴 filed Critical 日本電産サンキョー株式会社
Publication of WO2013094503A1 publication Critical patent/WO2013094503A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0023Movement of one or more optical elements for control of motion blur by tilting or inclining one or more optical elements with respect to the optical axis

Definitions

  • the present invention relates to an optical unit with a shake correction function mounted on a mobile phone with a camera or the like.
  • An imaging device such as a digital camera or a camera-equipped mobile phone is configured as an optical unit with a shake correction function having a shake correction function in order to suppress disturbance of a captured image due to a shake of a user's hand shake or the like.
  • the movable body 3 holding the lens can swing with respect to the fixed body 200 via a spring member (not shown).
  • the shake correction drive mechanism 500 corrects the shake by swinging the movable body 3 around the swing support point 180 based on the shake detection result (for example, patents). Reference 1).
  • the fixed body 200 includes a front plate portion 220 that faces the front surface portion of the movable body 3 on the front side with an opening 220a at a position where the optical axis passes.
  • the shake correction driving mechanism 500 includes a permanent magnet 520 on the movable body 3 side and a coil 560 on the fixed body 200 side, and the movable body 3 is rectangular so that the permanent magnet 520 can be easily fixed. .
  • the front plate portion 220 of the fixed body 200 is largely separated from the front surface portion 31 of the movable body 3 in the optical axis direction.
  • the dimension in the optical axis direction of the optical unit with shake correction function is It becomes large, and it becomes impossible to meet the demand for thinner optical units with shake correction function.
  • an object of the present invention is to ensure a large swing range of the movable body without greatly separating the front plate portion of the fixed body and the front surface portion of the movable body in the optical axis direction.
  • An object is to provide an optical unit with a shake correction function.
  • an optical unit with a shake correction function includes a rectangular movable body that holds an optical element, a fixed body that displaceably supports the movable body, and the fixed body.
  • a shake correction drive mechanism that swings the movable body, and the fixed body includes a front plate portion that faces the front side of the movable body with an opening at a position where the optical axis passes. Further, the front portion of the movable body is formed with a recess that allows the corner of the front portion to be recessed rearward in the optical axis direction.
  • the shake correction drive mechanism swings the movable body to correct the shake of the movable body.
  • the movable body has a rectangular shape, a concave portion that dents the corner of the front surface portion is formed on the front surface portion of the movable body that faces the front plate portion of the fixed body. For this reason, when the movable body swings diagonally, the corner having the largest displacement is unlikely to come into contact with the front plate portion on the front surface portion of the movable body. Therefore, a large swing range of the movable body can be ensured without greatly separating the front plate portion of the fixed body and the front surface portion of the movable body in the optical axis direction.
  • the concave portion includes a step portion formed so as to have a bottom portion parallel to the front surface portion with respect to a corner of the front surface portion of the rectangular case used for the movable body. According to such a configuration, when various components are arranged inside the rectangular case, the bottom of the recess can be used as a reference, so that the assembly of the movable body is easy.
  • the concave portion is formed only at the corner of the front surface portion. According to such a configuration, since the concave portion is provided to the minimum necessary, there is an advantage that it is not necessary to downsize components mounted on the movable body.
  • the said recessed part is formed in the cyclic
  • the circular top surface portion comes into contact with the front plate portion even when the movable body swings in any direction. Therefore, no matter which direction the movable body swings, the range in which the movable body can swing is equal, and the direction and magnitude of the force that the movable body receives when the top surface portion and the front plate portion come into contact with each other. Are equivalent.
  • the fixed body has a bottom plate portion provided with a convex portion for a swinging fulcrum projecting toward the rear surface portion of the movable body at a position where the optical axis passes, and the rear surface portion of the movable body is provided with the bottom plate portion.
  • the corners of the movable body are recessed so as to be separated from the bottom plate portion on the rear side. Accordingly, when the movable body swings, the corner having the largest displacement is less likely to come into contact with the bottom plate portion at the rear surface portion of the movable body. Therefore, a large swing range of the movable body can be ensured without greatly separating the bottom plate portion of the fixed body and the rear surface portion of the movable body in the optical axis direction.
  • the receiving part and the convex bottom part are preferably connected via a tapered surface. According to such a configuration, since an angular stepped portion does not occur between the receiving portion and the convex bottom portion, even when a wiring material such as a flexible wiring board is passed between the movable body and the bottom plate portion, the wiring material is not There is an advantage that it is hard to be caught.
  • the shake correction drive mechanism swings the movable body to correct the shake of the movable body.
  • the movable body is rectangular, a concave portion that separates the corner of the front surface portion from the front plate portion is formed on the front surface portion of the movable body that faces the front plate portion of the fixed body. For this reason, when the movable body swings, the corner having the largest displacement is less likely to come into contact with the front plate portion on the front surface portion of the movable body. Therefore, a large swing range of the movable body can be ensured without greatly separating the front plate portion of the fixed body and the front surface portion of the movable body in the optical axis direction.
  • a configuration for preventing camera shake of the imaging unit as an optical unit will be exemplified.
  • three directions orthogonal to each other are defined as an X axis, a Y axis, and a Z axis, respectively, and a direction along the optical axis L (lens optical axis) is defined as a Z axis.
  • the Z-axis direction optical axis direction
  • the subject side is referred to as “front side”
  • the opposite side to the subject side is referred to as “rear side”.
  • rotation around the X axis corresponds to so-called pitching (pitch)
  • rotation around the Y axis corresponds to so-called yawing (roll)
  • Z axis The rotation around corresponds to so-called rolling.
  • + X is attached to one side of the X axis
  • -X is attached to the other side
  • + Y is attached to one side of the Y axis
  • -Y is attached to the other side
  • one side of the Z axis is attached.
  • + Z is attached to the side (opposite side to the subject side / optical axis direction rear side)
  • ⁇ Z is attached to the other side (subject side / optical axis direction front side).
  • FIG. 1 is an explanatory view schematically showing a state in which an optical unit with a shake correction function according to Embodiment 1 of the present invention is mounted on an optical device such as a mobile phone.
  • An optical unit 100 (an optical unit with a shake correction function) illustrated in FIG. 1 is a thin camera used for an optical device 1000 such as a mobile phone with a camera, and is supported by a chassis 1100 (device main body) of the optical device 1000. It is mounted with. In such an optical unit 100, when a shake such as a hand shake occurs in the optical apparatus 1000 during shooting, the captured image is disturbed.
  • the movable body 3 including the imaging unit 1 is supported in a swingable manner within the fixed body 200, as will be described later, and the movable body 3, the fixed body 200, Alternatively, on the basis of the result of detecting hand shake by a shake detection sensor 170 (shake detection means) such as a gyroscope provided outside the fixed body 200, a shake correction drive mechanism for correcting the shake by swinging the movable body 3 (see FIG. (Not shown in FIG. 1).
  • a shake detection sensor 170 such as a gyroscope provided outside the fixed body 200
  • a flexible wiring board 420 for supplying power to the shake correction drive mechanism is drawn out, and the flexible wiring board 420 is electrically connected to a drive control unit 900 provided outside the fixed body 200. It is connected to the.
  • FIG. 2 is a perspective view showing an appearance and the like of the optical unit with a shake correction function according to the first embodiment of the present invention.
  • FIGS. 2A and 2B show the optical unit on the subject side (in the optical axis direction).
  • FIG. 4 is a perspective view when viewed from the front side and an exploded perspective view when the optical unit is viewed from the subject side.
  • FIG. 3 is an exploded perspective view when the fixed body and the movable body of the optical unit according to Embodiment 1 of the present invention are disassembled.
  • FIG. 4 is an exploded perspective view of the optical unit according to Embodiment 1 of the present invention, in which the fixed body and the movable body are further disassembled.
  • FIG. 5 is an explanatory diagram showing a configuration on the rear side in the optical axis direction of the optical unit with a shake correction function according to the first embodiment of the present invention
  • FIG. 4 is an exploded perspective view of the optical unit as seen from the rear side in the optical axis direction, an exploded perspective view of the optical unit as seen from the rear side in the optical axis direction, and a perspective view of the plate 19.
  • FIG. 6 is a cross-sectional view of the optical unit according to Embodiment 1 of the present invention
  • FIGS. 6A and 6B are a YZ cross-sectional view and an XZ cross-sectional view of the optical unit.
  • the movable body 3 includes a rectangular box-shaped rectangular case 14 made of a ferromagnetic plate such as a steel plate, and a plate 19 provided on the rear side in the optical axis direction with respect to the rectangular case 14.
  • the flexible wiring board 410 pulled out from the rectangular case 14 has a function of outputting a signal from the imaging unit 1 and the like.
  • an imaging unit 1 having a lens 1a see FIG. 1 / optical element is held inside the rectangular case 14.
  • the imaging unit 1 includes a lens holder that holds the lens 1a, a cylindrical sleeve that holds the lens holder, a lens driving mechanism that drives the lens holder in the focusing direction, and an imaging element 1b ( 1), and an element holder 1c for supporting the image pickup element 1b.
  • the element holder 1c projects from the rear end of the rectangular case 14 in the optical axis direction.
  • the rectangular case 14 constitutes the outer peripheral portion of the imaging unit 1 and functions as a yoke.
  • the rectangular case 14 includes an end plate portion 141 that constitutes the front surface portion 31 of the movable body 3 and a rectangular cylindrical body portion 142, and a plate-like permanent magnet 520 is bonded to the outer surface of the rectangular cylindrical body portion 142. It is fixed with agents.
  • an opening 141 a is formed in a portion where the optical axis L passes in the end plate portion 141.
  • the front end portion in the optical axis direction of the imaging unit 1 protrudes from the opening 141a to the front side in the optical axis direction.
  • the front surface portion 31 of the movable body 3 (the end plate portion 141 of the square case 14) has corners 3a, 3b, 3c of the front surface portion 31 of the movable body 3 for reasons that will be described later with reference to FIG.
  • a recess 3f is formed in 3d (the corner of the end plate portion 141) that is recessed toward the rear side in the optical axis direction.
  • the concave portion 3f is formed of a step having a bottom portion 3g parallel to the front surface portion 31, and the bottom portion 3g of the concave portion 3f is located on the rear side in the optical axis direction with respect to the portion located on the most front side in the optical axis direction in the movable body 3. To position.
  • the rear surface portion 39 of the movable body 3 is constituted by a plate 19 provided on the rear side in the optical axis direction of the rectangular case 14.
  • the plate 19 is a press-processed product against a metal plate, and as shown in FIG. 4, a substantially rectangular bottom plate portion 191 and a rear end portion of the imaging unit 1 that stands up from the outer peripheral edge of the bottom plate portion 191 toward the front side ( And four connection plate portions 192 connected to the element holder 1c).
  • a rigid substrate 413 is attached to the end 411, and the end 411 is electrically connected to the imaging unit 1. Further, the rigid substrate 413 may not be attached, and the end 411 itself may be a rigid substrate.
  • the end portion 411 of the flexible wiring board 410 is formed by bending the flexible wiring board 410 to the one side + Y at the other side ⁇ Y in the Y-axis direction.
  • the portion 412 that overlaps in the Z-axis direction with the plate 19 in between is a narrow belt-like portion 412b that sandwiches a portion through which the optical axis L passes on both sides in the X-axis direction by a notch 412a extending in the Y-axis direction. ing.
  • the central portion of the bottom plate portion 191 of the plate 19 is exposed toward the rear side in the optical axis direction by a notch 412a extending in the Y-axis direction, and will be described later using this exposed portion.
  • the swing fulcrum 180 is in contact with the rear surface 39 of the movable body 3.
  • a portion exposed from the notch 412a in the bottom plate portion 191 of the plate 19 is formed as a seat portion 193 that protrudes rearward in the optical axis direction in the bottom plate portion 191, and the seat portion 193 is notched. Similar to 412a, it has an oval shape extending in the Y-axis direction.
  • a rectangular region formed of the central portion in the Y-axis direction is a receiving portion 193a with which the swing fulcrum 180 abuts.
  • the seat portion 193 includes the receiving portions 193a on both sides in the Y-axis direction.
  • the sandwiched portion is a convex bottom portion 193b that protrudes toward the rear side in the optical axis direction from the receiving portion 193a.
  • the receiving portion 193a and the convex bottom portion 193b are connected via the tapered surface 193c, and the arc-shaped circles located on both sides in the Y-axis direction in the seat portion 193.
  • the end portion is a tapered surface 193d.
  • the optical unit 100 is movable between the movable member 3 and the fixed body 200, and the spring member 600 in which the movable body 3 is supported by the fixed body 200 so as to be displaceable. It has a shake correction drive mechanism 500 that generates a magnetic drive force that relatively displaces the body 3 with respect to the fixed body 200.
  • the fixed body 200 includes an upper cover 250, a lower cover 700, and the like.
  • the upper cover 250 includes a rectangular tubular body 210 that surrounds the movable body 3, and a front plate portion that closes the front side of the rectangular tubular body 210. 220.
  • the end portion on the opposite side (+ Z side) to the subject side (the side on which the optical axis L extends) of the rectangular tube-shaped body portion 210 is an open end, and the front plate portion 220. Is formed with an opening 220a through which light from the subject is incident.
  • the opening 220a has a shape in which rectangular holes 220c are connected to both sides in the X-axis direction and both sides in the Y-axis direction with respect to the circular hole 220b centering on the position through which the optical axis L passes. ing.
  • the lower cover 700 is a press-processed product for a metal plate, and includes a substantially rectangular bottom plate portion 710 and three side plate portions 720 that stand from the outer peripheral edge of the bottom plate portion 710 toward the subject.
  • the bottom plate portion 710 of the lower cover 700 has a swing fulcrum 180 at the center position (a position through which the optical axis L passes).
  • the swing fulcrum 180 is composed of a swing fulcrum member 182 fixed to a hole 710 a formed in the bottom plate portion 710 of the lower cover 700.
  • the swing fulcrum member 182 includes a disc portion 183 that overlaps the bottom plate portion 710 and a hemispherical convex portion 184 for the swing fulcrum that protrudes from the disc portion 183 to the other side ⁇ Z in the Z-axis direction.
  • the swing fulcrum 180 (semispherical convex portion 184) is in contact with a receiving portion 193a (see FIG. 5) formed on the plate 19 of the movable body 3.
  • the swing fulcrum member 182 is made of rubber or the like.
  • the movable body 3 includes a rectangular frame-shaped holder 7 surrounding the outer peripheral surface of the rectangular case 14 of the imaging unit 1 and a rectangular frame-shaped stopper member 8.
  • the holder 7 is fixed to the rear surface in the optical axis direction by a method such as welding.
  • the holder 7 includes a rectangular frame-shaped first holder member 71 located on the front side in the optical axis direction and a rectangular frame-shaped second holder member 72 facing the first holder member 71 on the rear side in the optical axis direction.
  • a flat permanent magnet 520 used for the shake correction drive mechanism 500 is held between the first holder member 71 and the second holder member 72.
  • the first holder member 71 is fixed to the front surface of the permanent magnet 520 in the optical axis direction
  • the second holder member 72 is fixed to the rear surface of the permanent magnet 520 in the optical axis direction.
  • the permanent magnet 520, the first holder member 71, and the second holder member 72 constitute a rectangular tubular permanent magnet assembly 75.
  • the imaging unit 1 is inserted inside the rectangular cylindrical permanent magnet assembly 75, the outer peripheral surface of the rectangular case 14 holding the imaging unit 1 inside, and the inner peripheral surface of the permanent magnet assembly 75 (permanent magnet 520).
  • the inner surface of the movable body 3 is integrated with the permanent magnet 520, the first holder member 71, the second holder member 72, the stopper member 8, the rectangular case 14, the plate 19, and the imaging unit 1. Can be configured.
  • the spring member 600 includes a rectangular frame-shaped fixed side connecting portion 610 connected to the fixed body 200 side, a movable side connecting portion 620 connected to the movable body 3 side, a movable side connecting portion 620, and a fixed side connecting portion 610.
  • the arm portions 630 are connected to the movable side connecting portion 620 and the fixed side connecting portion 610, respectively.
  • the movable side connecting portion 620 is fixed to the rear end surface in the optical axis direction of the stopper member 8 by a method such as welding.
  • the fixed side connecting portion 610 is fixed to the front end surfaces of the notches 218 and 219 of the upper cover 250 by welding or the like in a state of being fitted in the notches 218 and 219 of the upper cover 250.
  • the spring member 600 is made of a nonmagnetic metal such as a copper alloy or a nonmagnetic SUS steel material, and is formed by pressing a thin plate having a predetermined thickness or etching using a photolithography technique.
  • the movable side connecting portion 620 of the spring member 600 is connected to the movable body 3, and the fixed side connecting portion 610 is fixed to the fixed body 200, the movable body 3 is pushed up to the front side in the optical axis direction by the swing fulcrum 180. It will be in the state. For this reason, in the spring member 600, the movable side connecting portion 620 is pushed up to the front side in the optical axis direction relative to the fixed side connecting portion 610, and the arm portion 630 of the spring member 600 moves the movable body 3 to the rear side in the optical axis direction. Energize to. Therefore, the movable body 3 is urged toward the swing fulcrum 180 by the spring member 600, and the movable body 3 is supported by the fixed body 200 in a state where it can swing by the swing fulcrum 180. It becomes.
  • the shake correction drive mechanism 500 is configured by the coil 560 and the permanent magnet 520 that generates a magnetic field interlinking with the coil 560. More specifically, in the movable body 3, flat permanent magnets 520 are respectively fixed to the four outer surfaces of the rectangular case 14. In the fixed body 200, the inner surface of the rectangular tubular body 210 of the upper cover 250 is fixed. A coil 560 is provided. Permanent magnet 520 is magnetized with different poles on the outer surface side and inner surface side. The permanent magnet 520 is composed of two magnet pieces arranged in the direction of the optical axis L, and the magnet pieces are magnetized to poles whose surfaces facing the coil 560 are different in the optical axis direction. The coil 560 is formed in a rectangular frame shape, and the upper and lower long sides are used as effective sides. Further, the permanent magnet 520 may be magnetized so that one magnet has two different poles facing the effective side of the coil 560 in the optical axis direction.
  • the permanent magnet 520 and the coil 560 disposed at two positions sandwiching the movable body 3 on both sides in the Y-axis direction are the Y-side shake correction drive mechanism.
  • 500y is configured, and as shown by an arrow Y0 in FIG. 6A, the movable body 3 is swung in the Y-axis direction around the axis extending through the swing fulcrum 180 in the X-axis direction.
  • the permanent magnet 520 and the coil 560 disposed at two positions sandwiching the imaging unit 1 on both sides in the X-axis direction constitute an X-side shake correction drive mechanism 500x, and is indicated by an arrow X0 in FIG. 6B.
  • the movable body 3 is swung in the X-axis direction around the axis extending in the Y-axis direction through the rocking fulcrum 180.
  • the coil 560 has a structure in which fine copper wiring is formed on the substrate 550 using a conductive wiring technique, and a plurality of layers of copper wiring (coil 560) are formed in multiple layers via an insulating film. .
  • the surface of the copper wiring (coil 560) is also covered with an insulating film. Examples of the coil 560 include an FP coil (Fine Pattern Coil (registered trademark)) manufactured by Asahi Kasei Microdevices Corporation.
  • a photo reflector 580 is mounted on a portion located on one side + Y in the Y-axis direction
  • a photo reflector 590 is mounted on a portion located on one side + X in the X-axis direction.
  • the photo reflectors 580 and 590 are opposed to the side surface of the movable body 3 (side surface of the rectangular case 14) through the hole formed in the substrate 550.
  • reflection sheets 581 and 591 are affixed at positions facing the photo reflectors 580 and 590 on the side surface of the movable body 3 (side surface of the rectangular case 14).
  • the movable body 3 is in a state of being supported by the fixed body 200 so as to be swingable by the swing support point 180. Therefore, when the imaging unit 1 is largely displaced due to a large force applied from the outside, the arm portion 630 of the spring member 600 may be plastically deformed. Therefore, in this embodiment, in the movable body 3, a rectangular frame-shaped stopper member 8 is fixed to the rear end surface in the optical axis direction of the holder 7 by a method such as welding.
  • the stopper member 8 includes a rectangular frame-shaped main body portion 810 and a convex portion 81 projecting outward at the corner of the main body portion 810, and the convex portion 81 projects outward from the permanent magnet 520. .
  • the convex portion 81 faces the substrate 550 provided on the fixed body 200 side through a narrow gap. Accordingly, the convex portion 81 and the substrate 550 define a movable range when the movable body 3 is displaced in a direction perpendicular to the optical axis direction between the shake correction drive mechanism 500 and the swing fulcrum 180 in the optical axis direction.
  • the stopper mechanism is configured.
  • the location where the convex portion 81 abuts is set in the location where the coil 560 is not configured in the substrate 550.
  • FIGS. 7A and 7B are explanatory diagrams showing the operation and the like in the optical unit 100 according to Embodiment 1 of the present invention.
  • FIGS. 7A, 7B, and 7C are configurations on the front surface portion 31 side of the movable body 3.
  • FIG. FIG. 5 is an explanatory diagram schematically showing a state in which the optical unit 100 is cut along a diagonal line, and an explanatory diagram schematically showing a state when the movable body 3 is displaced forward in the optical axis direction.
  • the timing for executing shake correction is defined by a command signal from the outside of the optical unit 100 (optical device main body). Specifically, when a command signal is output when the shooting start switch such as the shutter button is pressed halfway, the command signal is output when the shooting start switch is pressed halfway and the autofocus operation is completed. Is output, the command signal may be output when the imaging start switch is pressed deeply. In addition, camera shake correction may be always performed while an image captured by the camera is displayed on the monitor unit.
  • the shake correction drive mechanism 500 swings the movable body 3 (imaging unit 1) around the swing fulcrum 180 to correct the shake. More specifically, the X-side shake correction drive mechanism 500x shown in FIG. 6B oscillates the imaging unit 1 around the Y axis around the swing fulcrum 180 to correct the shake in the X direction, A Y-side shake correction drive mechanism 500y shown in FIG.
  • the 6A oscillates the imaging unit 1 about the X axis around the swing fulcrum 180 and corrects the shake in the Y direction. Further, if the swing of the imaging unit 1 around the X axis and the swing around the Y axis are combined, the movable body 3 can be swung in all directions. Therefore, all shakes assumed in the optical unit 100 can be reliably corrected.
  • the swing of the movable body 3 is monitored by the photo reflectors 580 and 590.
  • the corners 3a, 3b, 3c, and 3d of the front surface portion 31 are formed with recessed portions 3f that are recessed toward the rear side in the optical axis direction. .
  • a dashed line in FIG. 7B when the movable body 3 is swung diagonally, the top surface portion 31s of the front surface portion 31 is in contact with the front plate portion 220 of the fixed body 200.
  • the situation in which the corners 3a and 3c and the corners 3b and 3d abut on the front plate portion 220 does not occur. Therefore, the angle range ⁇ in which the movable body 3 can swing is wide without providing a wide gap in the optical axis direction between the front surface portion 31 of the movable body 3 and the front plate portion 220 of the fixed body 200.
  • the front surface portion 31 (the top surface portion 31s) of the movable body 3 is the front plate portion of the fixed body 200. 220 abuts against further displacement.
  • the distance in the optical axis direction between the front surface portion 31 of the movable body 3 and the front plate portion 220 of the fixed body 200 is relatively short, the distance that the movable body 3 can be displaced forward in the optical axis direction is short. Therefore, even when the movable body 3 is displaced forward in the optical axis direction, it is possible to prevent plastic deformation from occurring in the spring member 600 shown in FIG.
  • the movable body 3 has a rectangular shape so that the permanent magnet 520 can be easily fixed.
  • the front surface portion 31 that opposes the plate portion 220 is formed with a recess 3f that recesses the corners 3a, 3b, 3c, and 3d of the front surface portion 31 to the rear side in the optical axis direction.
  • the corners 3 a, 3 b, 3 c, 3 d having the largest displacement on the front surface portion 31 of the movable body 3 hit the front plate portion 220. Difficult to touch.
  • the concave portion 3 f is formed of a step portion formed so as to have a bottom portion 3 g parallel to the front surface portion 31 with respect to a corner of the end plate portion 141 of the rectangular case 14 used for the movable body 3. For this reason, when arranging the various components constituting the imaging unit 1 inside the rectangular case 14, the bottom 3g of the recess 3f can be used as a reference, so that the movable body 3 can be easily assembled.
  • the recess 3f is formed only at the corners 3a, 3b, 3c, and 3d of the front surface portion 31, and the recess 3f is configured to the minimum necessary size. Therefore, there is an advantage that a part to be mounted on the movable body 3 does not need to be downsized.
  • the rear surface portion 39 of the movable body 3 receives light from the receiving portion 193a with which the swing fulcrum 180 (hemispherical convex portion 184) of the fixed body 200 abuts.
  • a convex bottom portion 193b that protrudes toward the rear side in the axial direction (bottom plate portion 710) is formed, and the convex bottom portion 193b has an arc portion centered on the receiving portion 193a and both sides sandwiching the receiving portion 193a therebetween. It has a planar shape prepared for.
  • the receiving portion 193a and the convex bottom portion 193b are connected via a tapered surface 193c.
  • arc-shaped circular ends located on both sides in the Y-axis direction in the seat portion 193 are tapered surfaces 193d. Accordingly, there is no angular step between the receiving portion 193a and the convex bottom portion 193b or around the seat portion 193. Therefore, a wiring material such as the flexible wiring board 410 is provided between the movable body 3 and the bottom plate portion 710. Even if it is located, there is an advantage that such a wiring material is not easily caught.
  • the convex bottom 193b has a circular shape with the receiving part 193a as the center and the planar shape provided on both sides sandwiching the receiving part 193a, but the circular shape with the receiving part 193a as the center is provided.
  • the convex bottom portion 193b may be configured to have a planar shape.
  • FIG. 8 is an explanatory diagram of the optical unit 100 according to Embodiment 2 of the present invention
  • FIGS. 8A, 8B, and 8C are explanatory diagrams illustrating the configuration of the movable body 3 on the front surface portion 31 side.
  • FIG. 3 is an explanatory diagram schematically showing a state where the optical unit 100 is cut along a diagonal line
  • the basic configuration of the present embodiment and the basic configuration of the embodiment described below are the same as those of the first embodiment, and therefore, common portions are denoted by the same reference numerals and the description thereof is omitted. Is omitted.
  • Embodiment 1 only the corners 3a, 3b, 3c, and 3d of the movable body 3 are provided with the recesses 3f.
  • the recess 3f passes through the optical axis L as shown in FIG. It is formed in an annular shape having a circular inner periphery surrounding the position. For this reason, a circular top surface portion 31t is formed on the front surface portion 31 on the radially inner side of the recess 3f.
  • the imaging unit 1 does not protrude from the opening 141a, and the top surface portion 31t is located at the most front side in the optical axis direction in the movable body 3.
  • the optical unit 100 configured in this manner, as in the first embodiment, when the movable body 3 is swung in a diagonal direction as shown by a one-dot chain line in FIG.
  • the situation in which the corners 3a, 3c and the corners 3b, 3d abut on the front plate 220 before the surface portion 31t abuts on the front plate 220 of the fixed body 200 does not occur. Therefore, the angle range ⁇ in which the movable body 3 can swing is wide without providing a wide gap in the optical axis direction between the front surface portion 31 of the movable body 3 and the front plate portion 220 of the fixed body 200. Therefore, the dimension of the optical unit 100 in the optical axis direction can be shortened.
  • the front surface portion 31 (top surface portion 31 t) of the movable body 3 is the front plate portion of the fixed body 200. 220 abuts against further displacement.
  • the distance in the optical axis direction between the front surface portion 31 of the movable body 3 and the front plate portion 220 of the fixed body 200 is relatively short, the distance that the movable body 3 can be displaced forward in the optical axis direction is short. Therefore, even when the movable body 3 is displaced to the front side in the optical axis direction, the same effects as in the first embodiment can be obtained, such as preventing the spring member 600 shown in FIG.
  • the movable body 3 when the movable body 3 swings, it is the annular top surface portion 31 t centering on the optical axis L that contacts the front plate portion 220 of the fixed body 200. For this reason, when the movable body 3 swings in any direction, the angle range in which the movable body 3 can swing is equal, and when the top surface portion 31t and the front plate portion 220 abut, the movable body 3 is The direction and magnitude of the force received are the same.
  • FIG. 9 is an explanatory diagram of the optical unit 100 according to the third embodiment of the present invention
  • FIGS. 9A, 9B, and 9C are explanatory diagrams illustrating the configuration of the movable body 3 on the front surface portion 31 side.
  • FIG. 3 is an explanatory diagram schematically showing a state where the optical unit 100 is cut along a diagonal line
  • an explanatory diagram schematically showing a state when the movable body 3 is displaced forward in the optical axis direction Note that the basic configuration of the present embodiment and the basic configuration of the embodiment described below are the same as those of the first and second embodiments. Therefore, common portions are denoted by the same reference numerals. The description of is omitted.
  • the recess 3f is formed in an annular shape having a circular inner periphery surrounding the position through which the optical axis L passes. For this reason, a circular top surface portion 31t is formed on the front surface portion 31 on the radially inner side of the recess 3f. Further, in this embodiment, the imaging unit 1 does not protrude from the opening 141a, and the top surface portion 31t is located at the most front side in the optical axis direction in the movable body 3.
  • the top surface portion 31t includes an inner peripheral side top surface portion 31ta located on the inner peripheral side and an outer peripheral side top surface portion 31tb positioned on the outer peripheral side of the inner peripheral side top surface portion 31ta. It is concentric with the outer peripheral side top surface portion 31tb. Further, the outer peripheral side top surface portion 31tb is located on the rear side in the optical axis direction from the inner peripheral side top surface portion 31ta.
  • the angle range ⁇ in which the movable body 3 can swing is wide without providing a wide gap in the optical axis direction between the front surface portion 31 of the movable body 3 and the front plate portion 220 of the fixed body 200. Therefore, the dimension of the optical unit 100 in the optical axis direction can be shortened.
  • the annular outer peripheral side top surface portion 31tb centering on the optical axis L contacts the front plate portion 220 of the fixed body 200. For this reason, when the movable body 3 swings in any direction, the angle range in which the movable body 3 can swing is equal, and when the top surface portion 31t and the front plate portion 220 abut, the movable body 3 is The direction and magnitude of the force received are the same.
  • FIG. 10 is an explanatory diagram of the optical unit 100 according to Embodiment 4 of the present invention
  • FIGS. 10A, 10B, and 10C are explanatory diagrams illustrating the configuration of the movable body 3 on the front surface portion 31 side.
  • FIG. 3 is an explanatory diagram schematically showing a state where the optical unit 100 is cut along a diagonal line
  • the basic configuration of the present embodiment and the basic configuration of the embodiment described below are the same as those of the first embodiment, and therefore, common portions are denoted by the same reference numerals and the description thereof is omitted. Is omitted.
  • the recess 3f is formed in an annular shape having a circular inner periphery surrounding the position through which the optical axis L passes, as in the second and third embodiments. For this reason, a circular top surface portion 31t is formed on the front surface portion 31 on the radially inner side of the recess 3f. Further, in this embodiment, the imaging unit 1 does not protrude from the opening 141a, and the top surface portion 31t is located at the most front side in the optical axis direction in the movable body 3.
  • the top surface portion 31t has a smaller diameter than the second and third embodiments. For this reason, when the movable body 3 is swung in a diagonal direction as shown by a one-dot chain line in FIG. 10B, the front plate 220 of the fixed body 200 is hit by the corners 3a, 3c and 3b, 3d. Will be in touch. Even in this case, since the corners 3a, 3c and the corners 3b, 3d are located on the rear side in the optical axis direction from the top surface portion 31t, the optical axis is provided between the front surface portion 31 of the movable body 3 and the front plate portion 220 of the fixed body 200. Even if there is no wide gap in the direction, the angle range ⁇ in which the movable body 3 can swing is wide. Therefore, the dimension of the optical unit 100 in the optical axis direction can be shortened.
  • the shake detection sensor 170 made of a gyroscope is used as the shake detection unit.
  • the optical unit 100 uses the system that detects the shake by the shift of the image obtained by the image sensor 1b as the shake detection unit.
  • the present invention may be applied to.
  • the optical unit 100 with a shake correction function to which the present invention is applied is fixed in a device having vibration at regular intervals, such as a refrigerator, in addition to a mobile phone, a digital camera, etc. It can also be used for a service that can obtain information inside the refrigerator when going out, for example, when shopping. In such a service, since it is a camera system with a posture stabilization device, a stable image can be transmitted even if the refrigerator vibrates. Further, the present apparatus may be fixed to a device worn at the time of attending school, such as a student's bag, a student's bag, a school bag, or a hat.
  • the guardian or the like can observe the image in a remote place to ensure the safety of the child.
  • a clear image can be taken even if there is vibration during movement without being aware of the camera.
  • a GPS is installed in addition to the camera module, the location of the target person can be acquired at the same time. In the event of an accident, the location and situation can be confirmed instantly.
  • the optical unit 100 with a shake correction function to which the present invention is applied is mounted at a position where the front can be photographed in an automobile, it can be used as a drive recorder.
  • the optical unit 100 with a shake correction function to which the present invention is applied is mounted at a position where the front of the vehicle can be photographed, and peripheral images are automatically photographed at regular intervals and automatically transferred to a predetermined server. Also good. Further, by distributing this image in conjunction with traffic jam information such as a car navigation road traffic information communication system, the traffic jam status can be provided in more detail. According to such a service, the situation at the time of an accident or the like can be recorded unintentionally by a third party who has passed unintentionally as well as a drive recorder mounted on a car, and can be used for inspection of the situation. In addition, a clear image can be acquired without being affected by the vibration of the automobile. In such an application, when the power is turned on, a command signal is output to the control unit, and shake control is started based on the command signal.
  • the optical unit 100 with a shake correction function to which the present invention is applied may be applied to shake correction of an optical device that emits light, such as a laser pointer, a portable or vehicle-mounted projection display device, or a direct-view display device. Good. Further, it may be used for observation without using an auxiliary fixing device such as a tripod for observation at a high magnification such as an astronomical telescope system or a binoculars system. In addition, by using a sniper rifle or a gun barrel such as a tank, the posture can be stabilized against vibration at the time of triggering, so that the accuracy of hitting can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

固定体の前板部と可動体の前面部とを光軸方向で大きく離間させなくても可動体の揺動範囲を大きく確保することのできる振れ補正機能付き光学ユニットを提供すること。振れ補正機能付きの光学ユニット100において、可動体3は、永久磁石の固定等が容易なように角形形状であるが、可動体3において固定体200の前板部220と対向する前面部31には、前面部31の角3a、3b、3c、3dを前板部220から離間させる凹部3fが形成されている。このため、可動体3が対角方向に揺動した際、可動体3の前面部31において最も変位が大きな角3a、3b、3c、3dが前板部220に当接しにくい。従って、可動体3の天面部31sが固定体200の前板部220に当接する前に可動体3の角3a、3b、3c、3dが前板部220に当接するという事態が発生しない。

Description

振れ補正機能付き光学ユニット
 本発明は、カメラ付き携帯電話機等に搭載される振れ補正機能付き光学ユニットに関するものである。
 デジタルカメラやカメラ付き携帯電話機等の撮像装置は、ユーザーの手振れ等の振れによる撮影画像の乱れを抑制するために、振れ補正機能を備えた振れ補正機能付き光学ユニットとして構成されている。かかる振れ補正機能付き光学ユニットでは、図11(a)、(b)に示すように、レンズを保持した可動体3がバネ部材(図示せず)を介して固定体200に対して揺動可能に支持された状態になっており、振れ補正用駆動機構500は、振れの検出結果に基づいて、揺動支点180を中心に可動体3を揺動させて振れの補正を行う(例えば、特許文献1参照)。
 ここで、固定体200は、光軸が通る位置に開口部220aをもって可動体3の前面部に対して前側で対向する前板部220を備えている。また、振れ補正用駆動機構500は、可動体3側の永久磁石520と、固定体200側のコイル560とを備えており、可動体3は、永久磁石520を固定しやすいように角形である。
特開2010-96859号公報
 しかしながら、図11(a)、(b)に示す構成の振れ補正機能付き光学ユニットにおいては、可動体3が対角方向に揺動した際、可動体3の前面部31において揺動支点180から最も離間した角3a、3b、3c、3dで大きな変位が発生するので、角3a、3b、3c、3dが前板部220に当接してしまう。このため、振れを補正できる角度範囲θが狭いという問題点がある。
 そこで、固定体200の前板部220を可動体3の前面部31から光軸方向で大きく離間させることが考えられるが、かかる構成の場合、振れ補正機能付き光学ユニットの光軸方向の寸法が大となり、振れ補正機能付き光学ユニットの薄型化要求に対応できなくなる。
 また、図11(c)に示すように、外部からの衝撃によって可動体3が光軸方向前側に変位した際に可動体3と前板部220とが当接して可動体3のこれ以上の変位を阻止する方式を採用した場合に固定体200の前板部220と可動体3の前面部31とを大きく離間させると、可動体3の光軸方向の可動範囲が広くなってしまい、バネ部材が塑性変形してしまうという問題点がある。
 以上の問題点に鑑みて、本発明の課題は、固定体の前板部と可動体の前面部とを光軸方向で大きく離間させなくても可動体の揺動範囲を大きく確保することのできる振れ補正機能付き光学ユニットを提供することにある。
 上記課題を解決するために、本発明に係る振れ補正機能付き光学ユニットは、光学素子を保持する角形の可動体と、前記可動体を変位可能に支持する固定体と、前記固定体に対して前記可動体を揺動させる振れ補正用駆動機構と、を有し、前記固定体は、光軸が通る位置に開口部をもって前記可動体の前面部に対して前側で対向する前板部を備え、前記可動体の前記前面部には、当該前面部の角を光軸方向後側に凹ませる凹部が形成されていることを特徴とする。
 本発明では、手振れ等の振れが発生した際、振れ補正用駆動機構は、可動体を揺動させて可動体の振れを補正する。ここで、可動体は角形であるが、可動体において固定体の前板部と対向する前面部には、前面部の角を凹ませる凹部が形成されている。このため、可動体が対角方向に揺動した際、可動体の前面部において最も変位が大きな角が前板部に当接しにくい。それ故、固定体の前板部と可動体の前面部とを光軸方向で大きく離間させなくても、可動体の揺動範囲を大きく確保することができる。
 本発明において、前記凹部は、前記可動体に用いた角形ケースの前記前面部の角に対して当該前面部に平行な底部を有するように形成された段部からなることが好ましい。かかる構成によれば、角形ケースの内側に各種部品を配置する際、凹部の底部を基準とすることができるので、可動体の組み立てが容易である。
 本発明において、前記凹部は、前記前面部の前記角のみに形成されている構成を採用することができる。かかる構成によれば、凹部を必要最小限に設けた構成となるので、可動体に搭載する部品を小型化する必要がない等の利点がある。
 本発明において、前記凹部は、前記光軸が通る位置を囲む円形の内周縁を有する環状に形成され、前記前面部には、前記凹部の径方向内側に円形の天面部が形成されていることが好ましい。かかる構成によれば、可動体がいずれの方向に揺動した場合でも、円形の天面部が前板部に当接することになる。従って、可動体がいずれの方向に揺動した場合でも、可動体の揺動可能な範囲が等しいとともに、天面部と前板部とが当接した際に可動体が受ける力の方向や大きさが同等である。
 本発明において、前記固定体は、光軸が通る位置に前記可動体の後面部に向けて突出した揺動支点用の凸部を備えた底板部を有し、前記可動体の前記後面部には、前記凸部が当接する受け部と、該受け部より前記底板部に向けて突出した凸状底部と、を備え、前記凸状底部は、前記受け部を中心とする円形の平面形状、または前記受け部を中心とする円弧部を、当該受け部を間に挟む両側に備えた平面形状を備えていることが好ましい。かかる構成によれば、可動体がいずれの方向に揺動した場合でも、可動体の後側では、角が底板部から離間するように凹んだ状態にある。従って、可動体が揺動した際、可動体の後面部において最も変位が大きな角が底板部に当接しにくい。それ故、固定体の底板部と可動体の後面部とを光軸方向で大きく離間させなくても、可動体の揺動範囲を大きく確保することができる。
 本発明において、前記受け部と前記凸状底部とはテーパ面を介して繋がっていることが好ましい。かかる構成によれば、受け部と凸状底部との間に角張った段部が発生しないので、可動体と底板部との間にフレキシブル配線基板等の配線材を通した場合でも、配線材が引っ掛かりにくいという利点がある。
 本発明では、手振れ等の振れが発生した際、振れ補正用駆動機構は、可動体を揺動させて可動体の振れを補正する。ここで、可動体は角形であるが、可動体において固定体の前板部と対向する前面部には、前面部の角を前板部から離間させる凹部が形成されている。このため、可動体が揺動した際、可動体の前面部において最も変位が大きな角が前板部に当接しにくい。それ故、固定体の前板部と可動体の前面部とを光軸方向で大きく離間させなくても、可動体の揺動範囲を大きく確保することができる。
本発明の実施の形態1に係る振れ補正機能付きの光学ユニットを携帯電話機等の光学機器に搭載した様子を模式的に示す説明図である。 本発明の実施の形態1に係る振れ補正機能付きの光学ユニットの外観等を示す斜視図である。 本発明の実施の形態1に係る光学ユニットの固定体および可動体を分解したときの分解斜視図である。 本発明の実施の形態1に係る光学ユニットの固定体および可動体をさらに分解したときの分解斜視図である。 本発明の実施の形態1に係る振れ補正機能付きの光学ユニットの光軸方向後側の構成を示す説明図である。 本発明の実施の形態1に係る光学ユニットの断面図である。 本発明の実施の形態1に係る光学ユニットにおける作用等を示す説明図である。 本発明の実施の形態2に係る光学ユニットの説明図である。 本発明の実施の形態3に係る光学ユニットの説明図である。 本発明の実施の形態4に係る光学ユニットの説明図である。 従来の光学ユニットの説明図である。
1 撮像ユニット
1a レンズ(光学素子)
3 可動体
3a、3b、3c、3d 角
3f 凹部
19 プレート
31 前面部
31t 天面部
100 振れ補正機能付きの光学ユニット
180 揺動支点
184 半球状凸部
193a 受け部
193b 凸状底部
200 固定体
500 振れ補正用駆動機構
500x X側振れ補正用駆動機構
500y Y側振れ補正用駆動機構
520 永久磁石
560 コイル
600 バネ部材
 以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。なお、以下の説明においては、光学ユニットとして撮像ユニットの手振れを防止するための構成を例示する。また、以下の説明では、互いに直交する3方向を各々X軸、Y軸、Z軸とし、光軸L(レンズ光軸)に沿う方向をZ軸とする。また、Z軸方向(光軸方向)のうち、被写体側を「前側」とし、被写体側とは反対側を「後側」として説明する。また、以下の説明では、各方向の振れのうち、X軸周りの回転は、いわゆるピッチング(縦揺れ)に相当し、Y軸周りの回転は、いわゆるヨーイング(横揺れ)に相当し、Z軸周りの回転は、いわゆるローリングに相当する。また、X軸の一方側には+Xを付し、他方側には-Xを付し、Y軸の一方側には+Yを付し、他方側には-Yを付し、Z軸の一方側(被写体側とは反対側/光軸方向後側))には+Zを付し、他方側(被写体側/光軸方向前側)には-Zを付して説明する。
 [実施の形態1]
 (光学ユニットの全体構成)
 図1は、本発明の実施の形態1に係る振れ補正機能付きの光学ユニットを携帯電話機等の光学機器に搭載した様子を模式的に示す説明図である。
 図1に示す光学ユニット100(振れ補正機能付き光学ユニット)は、カメラ付き携帯電話機等の光学機器1000に用いられる薄型カメラであって、光学機器1000のシャーシ1100(機器本体)に支持された状態で搭載される。かかる光学ユニット100では、撮影時に光学機器1000に手振れ等の振れが発生すると、撮像画像に乱れが発生する。そこで、本形態の光学ユニット100には、後述するように、撮像ユニット1を備えた可動体3を固定体200内で揺動可能に支持した状態とするとともに、可動体3、固定体200、あるいは固定体200の外側に設けたジャイロスコープ等の振れ検出センサ170(振れ検出手段)によって手振れを検出した結果に基づいて、可動体3を揺動させて振れを補正する振れ補正用駆動機構(図1では図示せず)が設けられている。
 光学ユニット100では、振れ補正用駆動機構への給電等を行うためのフレキシブル配線基板420が引き出されており、フレキシブル配線基板420は、固定体200の外側に設けられた駆動制御部900に電気的に接続されている。
 (可動体3の全体構成)
 図2は、本発明の実施の形態1に係る振れ補正機能付きの光学ユニットの外観等を示す斜視図であり、図2(a)、(b)は、光学ユニットを被写体側(光軸方向前側)からみたときの斜視図、および光学ユニットを被写体側からみたときの分解斜視図である。図3は、本発明の実施の形態1に係る光学ユニットの固定体および可動体を分解したときの分解斜視図である。図4は、本発明の実施の形態1に係る光学ユニットの固定体および可動体をさらに分解したときの分解斜視図である。図5は、本発明の実施の形態1に係る振れ補正機能付きの光学ユニットの光軸方向後側の構成を示す説明図であり、図5(a)、(b)、(c)は、光学ユニットを光軸方向後側からみたときの分解斜視図、光学ユニットをさらに分解して光軸方向後側からみたときの分解斜視図、およびプレート19の斜視図である。図6は、本発明の実施の形態1に係る光学ユニットの断面図であり、図6(a)、(b)は、光学ユニットのYZ断面図、およびXZ断面図である。
 図2、図3および図4において、可動体3は、鋼板等の強磁性板からなる矩形箱状の角形ケース14と、角形ケース14に対して光軸方向後側に設けられたプレート19と、角形ケース14から引き出されたフレキシブル配線基板410とを備えており、フレキシブル配線基板410は、撮像ユニット1から信号を出力する機能等を担っている。角形ケース14の内側には、レンズ1a(図1参照/光学素子)を備えた撮像ユニット1が保持されている。本形態において、撮像ユニット1は、角形ケース14の内側に、レンズ1aを保持するレンズホルダ、レンズホルダを保持する円筒状のスリーブ、レンズホルダをフォーカシング方向に駆動するレンズ駆動機構、撮像素子1b(図1参照)、撮像素子1bを支持する素子ホルダ1c等を備えており、素子ホルダ1cは、角形ケース14の光軸方向後側端部から張り出している。角形ケース14は、撮像ユニット1の外周部分を構成しているとともに、ヨークとして機能している。
 角形ケース14は、可動体3の前面部31を構成する端板部141、および角筒状胴部142を備えており、角筒状胴部142の外面には板状の永久磁石520が接着剤等により固定されている。また、端板部141において光軸Lが通る部分には開口部141aが形成されている。本形態において、撮像ユニット1の光軸方向前側端部が開口部141aから光軸方向前側に突出している。
 本形態においては、可動体3の前面部31(角形ケース14の端板部141)には、図6を参照して後述する理由から、可動体3の前面部31の角3a、3b、3c、3d(端板部141の角)に光軸方向後側に凹んだ凹部3fが形成されている。本形態において、凹部3fは、前面部31と平行な底部3gを備えた段差からなり、凹部3fの底部3gは、可動体3において最も光軸方向前側に位置する部分より光軸方向後側に位置する。
 可動体3の後面部39は、角形ケース14の光軸方向後側に設けられたプレート19によって構成されている。プレート19は、金属板に対するプレス加工品であり、図4に示すように、略矩形の底板部191と、底板部191の外周縁から前側に向けて起立して撮像ユニット1の後端部(素子ホルダ1c)に連結される4つの連結板部192とを備えている。ここで、プレート19の底板部191と撮像ユニット1の後端部(素子ホルダ1c)との間には隙間が空いており、かかる隙間には、フレキシブル配線基板410の端部411が配置されている。端部411には剛性基板413が貼付されており、端部411は、撮像ユニット1に対して電気的に接続されている。また、剛性基板413が貼り付けられずに端部411自体が剛性基板でもよい。
 図5に示すように、フレキシブル配線基板410の端部411は、フレキシブル配線基板410をY軸方向の他方側-Yで一方側+Yに折り曲げた部分からなり、フレキシブル配線基板410において端部411に対してプレート19を挟んでZ軸方向で重なる部分412は、Y軸方向に延在する切り欠き412aによって、光軸Lが通る部分をX軸方向の両側で挟む細幅の帯状部分412bになっている。このため、プレート19の底板部191の中央部分は、Y軸方向に延在する切り欠き412aによって光軸方向後側に向けて露出した状態にあり、かかる露出した部分を利用して、後述する揺動支点180が可動体3の後面部39に当接するようになっている。
 より具体的には、プレート19の底板部191において切り欠き412aから露出する部分は、底板部191において光軸方向後側に突出した座部193として形成されており、座部193は、切り欠き412aと同様、Y軸方向に延在する長円形状を有している。かかる座部193のうち、Y軸方向の中央部分からなる矩形領域は、揺動支点180が当接する受け部193aになっており、座部193のうち、受け部193aをY軸方向の両側で挟む部分は、受け部193aより光軸方向後側に向けて突出した凸状底部193bになっている。本形態では、図5(c)から分かるように、受け部193aと凸状底部193bとはテーパ面193cを介して繋がっており、座部193においてY軸方向の両側に位置する円弧状の円端部はテーパ面193dになっている。
 (固定体200の構成)
 再び図2、図3および図4において、光学ユニット100は、可動体3が固定体200に変位可能に支持された状態とするバネ部材600と、可動体3と固定体200との間で可動体3を固定体200に対して相対変位させる磁気駆動力を発生させる振れ補正用駆動機構500とを有している。
 固定体200は上カバー250および下カバー700等を備えており、上カバー250は、可動体3の周りを囲む角筒状胴部210と、角筒状胴部210の前側を塞ぐ前板部220とを備えている。上カバー250において、角筒状胴部210は、被写体側(光軸Lが延在している側)とは反対側(+Z側)の端部が開放端になっており、前板部220には、被写体からの光が入射する開口部220aが形成されている。本形態において、開口部220aは、光軸Lが通る位置を中心とする円形の孔220bに対して、X軸方向の両側およびY軸方向の両側に矩形の穴220cを繋げた形状を有している。
 (揺動支点180の構成)
 下カバー700は、金属板に対するプレス加工品であり、略矩形の底板部710と、底板部710の外周縁から被写体側に向けて起立する3つの側板部720とを備えている。下カバー700の底板部710には、その中央位置(光軸Lが通る位置)に揺動支点180が構成されている。本形態において、揺動支点180は、下カバー700の底板部710に形成された穴710aに固定された揺動支点用部材182からなる。かかる揺動支点用部材182は、底板部710に重なる円板部183と、円板部183からZ軸方向の他方側-Zに突出した揺動支点用の半球状凸部184とを備えており、揺動支点180(半球状凸部184)は、可動体3のプレート19に形成した受け部193a(図5参照)に当接する。揺動支点用部材182はゴム等からなる。
 (永久磁石アセンブリ75の構成)
 本形態の光学ユニット100において、可動体3は、撮像ユニット1の角形ケース14の外周面を囲む矩形枠状のホルダ7と、矩形枠状のストッパ部材8とを備えており、ストッパ部材8はホルダ7の光軸方向後側の面に溶接等の方法で固定されている。ホルダ7は、光軸方向前側に位置する矩形枠状の第1ホルダ部材71と、光軸方向後側で第1ホルダ部材71に対向する矩形枠状の第2ホルダ部材72とからなる。本形態において、第1ホルダ部材71と第2ホルダ部材72との間には、振れ補正用駆動機構500に用いた平板状の永久磁石520が保持されている。より具体的には、永久磁石520において光軸方向前側の面には第1ホルダ部材71が固定され、永久磁石520において光軸方向後側の面には第2ホルダ部材72が固定されており、永久磁石520、第1ホルダ部材71および第2ホルダ部材72によって角筒状の永久磁石アセンブリ75が構成されている。このため、角筒状の永久磁石アセンブリ75の内側に撮像ユニット1を挿入した後、撮像ユニット1を内側に保持した角形ケース14の外周面と、永久磁石アセンブリ75の内周面(永久磁石520の内面)とを接着剤により固定すれば、永久磁石520、第1ホルダ部材71、第2ホルダ部材72、ストッパ部材8、角形ケース14、プレート19および撮像ユニット1を一体化して可動体3を構成することができる。
 (バネ部材600の構成)
 バネ部材600は、固定体200側に連結される矩形枠状の固定側連結部610と、可動体3側に連結される可動側連結部620と、可動側連結部620と固定側連結部610の間で延在する複数本のアーム部630とを備えた板状バネ部材であり、アーム部630の両端は各々、可動側連結部620および固定側連結部610に繋がっている。かかるバネ部材600を可動体3と固定体200とに接続するにあたって、本形態では、可動側連結部620がストッパ部材8の光軸方向後側端面に溶接等の方法で固定されている。また、固定側連結部610は、上カバー250の切り欠き218、219内に嵌った状態で、上カバー250の切り欠き218、219の前側端面に溶接等の方法で固定されている。かかるバネ部材600は、銅合金や非磁性のSUS系鋼材等といった非磁性の金属製であり、所定厚の薄板に対するプレス加工、あるいはフォトリソグラフィ技術を用いたエッチング加工により形成したものである。
 ここで、バネ部材600の可動側連結部620を可動体3に連結する一方、固定側連結部610を固定体200に固定すると、可動体3は、揺動支点180によって光軸方向前側に押し上げられた状態となる。このため、バネ部材600において、可動側連結部620は固定側連結部610よりも光軸方向前側に押し上げられた状態となり、バネ部材600のアーム部630は、可動体3を光軸方向後側に付勢する。従って、可動体3は、バネ部材600によって揺動支点180に向けて付勢された状態になり、可動体3は、揺動支点180によって揺動可能な状態で固定体200に支持された状態となる。
 (振れ補正用駆動機構の構成)
 本形態の光学ユニット100では、コイル560と、コイル560に鎖交する磁界を発生させる永久磁石520とによって、振れ補正用駆動機構500が構成されている。より具体的には、可動体3において角形ケース14の4つの外面には平板状の永久磁石520が各々固定されており、固定体200では、上カバー250の角筒状胴部210の内面にコイル560が設けられている。永久磁石520は、外面側および内面側が異なる極に着磁されている。また、永久磁石520は、光軸L方向に配置された2つの磁石片からなり、かかる磁石片は、コイル560と対向する側の面が光軸方向で異なる極に着磁されている。また、コイル560は、四角形の枠状に形成されており、上下の長辺部分が有効辺として利用される。また、永久磁石520は1個の磁石を光軸方向において2極の異なる極がコイル560の有効辺と対向するように着磁されていてもよい。
 図4および図6に示すように、永久磁石520およびコイル560のうち、可動体3をY軸方向の両側で挟む2箇所に配置された永久磁石520およびコイル560はY側振れ補正用駆動機構500yを構成しており、図6(a)に矢印Y0で示すように、揺動支点180を通ってX軸方向に延在する軸線を中心にして可動体3をY軸方向に揺動させる。また、撮像ユニット1をX軸方向の両側で挟む2箇所に配置された永久磁石520およびコイル560はX側振れ補正用駆動機構500xを構成しており、図6(b)に矢印X0で示すように、揺動支点180を通ってY軸方向に延在する軸線を中心にして可動体3をX軸方向に揺動させる。
 かかるY側振れ補正用駆動機構500yおよびX側振れ補正用駆動機構500xを構成するにあたって、本形態では、上カバー250の4つの内面に沿って延在するフレキシブル配線基板420の帯状部分425の内面および外面に、コイル560を支持する基板550およびポリイミド製の補強プレート428を各々貼付したものが用いられている。コイル560は、導電配線技術を利用して微細な銅配線を基板550上に形成した構造を有しており、複数層の銅配線(コイル560)が絶縁膜を介して多層に形成されている。また、銅配線(コイル560)の表面も絶縁膜で覆われている。かかるコイル560としては、例えば、旭化成エレクトロニクス株式会社製のFPコイル(ファインパターンコイル(登録商標))を挙げることができる。
 フレキシブル配線基板420の帯状部分425のうち、Y軸方向の一方側+Yに位置する部分にはフォトリフレクタ580が実装され、X軸方向の一方側+Xに位置する部分にはフォトリフレクタ590が実装されている。かかるフォトリフレクタ580、590は、基板550に形成された穴を介して可動体3の側面(角形ケース14の側面)に対向している。本形態では、可動体3の側面(角形ケース14の側面)のうち、フォトリフレクタ580、590と対向する位置には反射シート581、591が貼付されている。
 (ストッパ機構の構成)
 本形態の光学ユニット100において、可動体3は、揺動支点180によって揺動可能な状態で固定体200に支持された状態にある。従って、外部から大きな力が加わって撮像ユニット1が大きく変位すると、バネ部材600のアーム部630が塑性変形するおそれがある。そこで、本形態では、可動体3では、ホルダ7の光軸方向後側端面に矩形枠状のストッパ部材8が溶接等の方法により固定されている。かかるストッパ部材8は、矩形枠状の本体部分810と、本体部分810の角で外側に向けて突出した凸部81を備えており、かかる凸部81は、永久磁石520より外側に突出している。ここで、凸部81は、固定体200の側に設けられた基板550と狭い隙間を介して対向している。従って、凸部81および基板550は、光軸方向における振れ補正用駆動機構500と揺動支点180との間において、可動体3が光軸方向に直交する方向に変位した際の可動範囲を規定するストッパ機構を構成している。なお、凸部81が当接する箇所は、基板550のうち、コイル560が構成されていない箇所に設定されている。
 (振れ補正動作)
 図7は、本発明の実施の形態1に係る光学ユニット100における作用等を示す説明図であり、図7(a)、(b)、(c)は可動体3の前面部31側の構成を示す説明図、光学ユニット100を対角線に沿って切断した様子を模式的に示す説明図、および可動体3が光軸方向前側に変位したときの様子を模式的に示す説明図である。
 図1~図6を参照して説明した光学ユニット100では、以下に説明する振れ補正が行われる。振れ補正を実行するタイミングは、光学ユニット100の外部(光学機器本体)からの指令信号により規定される。具体的なタイミングとしては、シャッタボタン等の撮影開始スイッチが半分だけ押し込まれた時に指令信号が出力される場合、撮影開始スイッチが半分だけ押し込まれ、オートフォーカス動作が行われて完了した時に指令信号が出力される場合、撮影開始スイッチが深く押し込まれた時に指令信号が出力される場合がある。また、カメラによって取り込まれた映像がモニター部に表示されている間、常時、手振れ補正が実行される場合もある。
 本形態では、図1に示す光学機器1000および光学ユニット100が手振れ等によって振れると、かかる振れは振れ検出センサ170によって検出され、駆動制御部900は、振れを打ち消すような駆動電流を振れ補正用駆動機構500に供給する。その結果、振れ補正用駆動機構500は、揺動支点180を中心に可動体3(撮像ユニット1)を揺動させ、振れを補正する。より具体的には、図6(b)に示すX側振れ補正用駆動機構500xは、揺動支点180を中心に撮像ユニット1をY軸周りに揺動させ、X方向の振れを補正し、図6(a)に示すY側振れ補正用駆動機構500yは、揺動支点180を中心に撮像ユニット1をX軸周りに揺動させ、Y方向の振れを補正する。また、撮像ユニット1のX軸周りの揺動、およびY軸周りの揺動を合成すれば、可動体3を全方位に向けて揺動させることができる。それ故、光学ユニット100で想定される全ての振れを確実に補正することができる。かかる可動体3に対する駆動の際、可動体3の揺動は、フォトリフレクタ580、590によって監視される。
 ここで、可動体3では、図7(a)、(b)に示すように、前面部31の角3a、3b、3c、3dに光軸方向後側に凹んだ凹部3fが形成されている。このため、図7(b)に一点鎖線で示すように、対角方向に可動体3を揺動させた際、前面部31の天面部31sが固定体200の前板部220に当接する前に角3a、3cや角3b、3dが前板部220に当接するという事態が発生しない。従って、可動体3の前面部31と固定体200の前板部220との間に光軸方向で広い隙間を設けなくても可動体3の揺動可能な角度範囲θが広い。
 また、図7(c)に示すように、外部からの衝撃で可動体3が光軸方向前側に変位したときには、可動体3の前面部31(天面部31s)が固定体200の前板部220に当接し、それ以上の変位が阻止される。ここで、可動体3の前面部31と固定体200の前板部220との間の光軸方向の距離が比較的短いので、可動体3が光軸方向前側に変位可能な距離が短い。従って、可動体3が光軸方向前側に変位したときでも、図4等に示すバネ部材600に塑性変形が発生することを防止することができる。
 (本形態の主な効果)
 以上説明したように、本形態の振れ補正機能付きの光学ユニット100では、可動体3は、永久磁石520の固定等が容易なように角形形状であるが、可動体3において固定体200の前板部220と対向する前面部31には、前面部31の角3a、3b、3c、3dを光軸方向後側に凹ませる凹部3fが形成されている。このため、可動体3が揺動した際、揺動支点180からの半径距離が長い故に可動体3の前面部31において最も変位が大きな角3a、3b、3c、3dが前板部220に当接しにくい。従って、可動体3の天面部31sが固定体200の前板部220に当接する前に可動体3の角3a、3b、3c、3dが前板部220に当接するという事態が発生しない。それ故、固定体200の前板部220と可動体3の前面部31とを光軸方向で大きく離間させなくても、可動体3が揺動可能な角度範囲θを大きく確保することができる。よって、可動体3が揺動可能な角度範囲θを狭めなくても、光学ユニット100の光軸方向の寸法を短くすることができる。
 また、本形態において、凹部3fは、可動体3に用いた角形ケース14の端板部141の角に対して、前面部31に平行な底部3gを有するように形成された段部からなる。このため、角形ケース14の内側に撮像ユニット1を構成する各種部品を配置する際、凹部3fの底部3gを基準とすることができるので、可動体3の組み立てが容易である。
 さらに、凹部3fは、前面部31の角3a、3b、3c、3dのみに形成されており、凹部3fが必要最小限なサイズに構成されている。それ故、可動体3に搭載する部品を小型化する必要がない等の利点がある。
 また、図5(c)等を参照して説明したように、可動体3の後面部39には、固定体200の揺動支点180(半球状凸部184)が当接する受け部193aより光軸方向後側(底板部710)に向けて突出した凸状底部193bが形成されており、かかる凸状底部193bは、受け部193aを中心とする円弧部を、受け部193aを間に挟む両側に備えた平面形状になっている。このため、可動体3がいずれの方向に揺動した場合でも、可動体3の後側では、角が下カバー700の底板部710から離間するように凹んだ状態にある。従って、可動体3が揺動した際、可動体3の後面部39において最も変位が大きな角が底板部710に当接しにくい。それ故、固定体200の底板部710と可動体3の後面部39とを光軸方向で大きく離間させなくても、可動体3の揺動範囲を大きく確保することができる。それ故、光学ユニット100の光軸方向の寸法を短くすることができる。 
 しかも、受け部193aと凸状底部193bとはテーパ面193cを介して繋がっている。また、座部193においてY軸方向の両側に位置する円弧状の円端部はテーパ面193dになっている。従って、受け部193aと凸状底部193bとの間や、座部193の周りに角張った段部が存在しないので、可動体3と底板部710との間にフレキシブル配線基板410等の配線材が位置する場合でも、かかる配線材が引っ掛かりにくいという利点がある。
 なお、本形態では、凸状底部193bが受け部193aを中心とする円弧部を、受け部193aを間に挟む両側に備えた平面形状を備えていたが、受け部193aを中心とする円形の平面形状を有するように凸状底部193bを構成してもよい。
 [実施の形態2]
 図8は、本発明の実施の形態2に係る光学ユニット100の説明図であり、図8(a)、(b)、(c)は可動体3の前面部31側の構成を示す説明図、光学ユニット100を対角線に沿って切断した様子を模式的に示す説明図、および可動体3が光軸方向前側に変位したときの様子を模式的に示す説明図である。なお、本形態の基本的な構成、および以下に説明する実施の形態の基本的な構成は、実施の形態1と同様であるため、共通する部分には同一の符号を付してそれらの説明を省略する。
 実施の形態1では、可動体3の角3a、3b、3c、3dのみに凹部3fを設けたが、本形態では、図8(a)に示すように、凹部3fは、光軸Lが通る位置を囲む円形の内周縁を有する環状に形成されている。このため、前面部31には、凹部3fの径方向内側に円形の天面部31tが形成されている。また、本形態では、開口部141aから撮像ユニット1が突出しておらず、可動体3において最も光軸方向前側に位置するのは、天面部31tである。
 このように構成した光学ユニット100においても、実施の形態1と同様、図8(b)に一点鎖線で示すように、対角方向に可動体3を揺動させた際、前面部31の天面部31tが固定体200の前板部220に当接する前に角3a、3cや角3b、3dが前板部220に当接するという事態が発生しない。従って、可動体3の前面部31と固定体200の前板部220との間に光軸方向で広い隙間を設けなくても可動体3の揺動可能な角度範囲θが広い。よって、光学ユニット100の光軸方向の寸法を短くすることができる。
 また、図8(c)に示すように、外部からの衝撃で可動体3が光軸方向前側に変位したときには、可動体3の前面部31(天面部31t)が固定体200の前板部220に当接し、それ以上の変位が阻止される。ここで、可動体3の前面部31と固定体200の前板部220との間の光軸方向の距離が比較的短いので、可動体3が光軸方向前側に変位可能な距離が短い。従って、可動体3が光軸方向前側に変位したときでも、図4等に示すバネ部材600に塑性変形が発生することを防止することができる等、実施の形態1と同様な効果を奏する。
 また、本形態では、可動体3が揺動した際に固定体200の前板部220に当接するのは、光軸Lを中心とする円環状の天面部31tである。このため、可動体3がいずれの方向に揺動したときでも、可動体3が揺動可能な角度範囲が等しいとともに、天面部31tと前板部220とが当接した際に可動体3が受ける力の方向や大きさが同等である。
 [実施の形態3]
 図9は、本発明の実施の形態3に係る光学ユニット100の説明図であり、図9(a)、(b)、(c)は可動体3の前面部31側の構成を示す説明図、光学ユニット100を対角線に沿って切断した様子を模式的に示す説明図、および可動体3が光軸方向前側に変位したときの様子を模式的に示す説明図である。なお、本形態の基本的な構成、および以下に説明する実施の形態の基本的な構成は、実施の形態1、2と同様であるため、共通する部分には同一の符号を付してそれらの説明を省略する。
 図9(a)に示すように、本形態でも、実施の形態2と同様、凹部3fは、光軸Lが通る位置を囲む円形の内周縁を有する環状に形成されている。このため、前面部31には、凹部3fの径方向内側に円形の天面部31tが形成されている。また、本形態では、開口部141aから撮像ユニット1が突出しておらず、可動体3において最も光軸方向前側に位置するのは、天面部31tである。
 ここで、天面部31tは、内周側に位置する内周側天面部31taと、内周側天面部31taの外周側に位置する外周側天面部31tbとからなり、内周側天面部31taと外周側天面部31tbとは同心円状である。また、外周側天面部31tbは、内周側天面部31taより光軸方向後側に位置する。
 このように構成した光学ユニット100においても、実施の形態1、2と同様、図9(b)に一点鎖線で示すように、対角方向に可動体3を揺動させた際、前面部31の外周側天面部31tbが固定体200の前板部220に当接する前に角3a、3cや角3b、3dが前板部220に当接するという事態が発生しない。従って、可動体3の前面部31と固定体200の前板部220との間に光軸方向で広い隙間を設けなくても可動体3の揺動可能な角度範囲θが広い。よって、光学ユニット100の光軸方向の寸法を短くすることができる。
 また、図9(c)に示すように、外部からの衝撃で可動体3が光軸方向前側に変位したときには、可動体3の前面部31(外周側天面部31tb)が固定体200の前板部220に当接し、それ以上の変位が阻止される。ここで、可動体3の前面部31と固定体200の前板部220との間の光軸方向の距離が比較的短いので、可動体3が光軸方向前側に変位可能な距離が短い。従って、可動体3が光軸方向前側に変位したときでも、図4等に示すバネ部材600に塑性変形が発生することを防止することができる等、実施の形態1と同様な効果を奏する。
 また、本形態では、可動体3が揺動した際に固定体200の前板部220に当接するのは、光軸Lを中心とする円環状の外周側天面部31tbである。このため、可動体3がいずれの方向に揺動したときでも、可動体3が揺動可能な角度範囲が等しいとともに、天面部31tと前板部220とが当接した際に可動体3が受ける力の方向や大きさが同等である。
 [実施の形態4]
 図10は、本発明の実施の形態4に係る光学ユニット100の説明図であり、図10(a)、(b)、(c)は可動体3の前面部31側の構成を示す説明図、光学ユニット100を対角線に沿って切断した様子を模式的に示す説明図、および可動体3が光軸方向前側に変位したときの様子を模式的に示す説明図である。なお、本形態の基本的な構成、および以下に説明する実施の形態の基本的な構成は、実施の形態1と同様であるため、共通する部分には同一の符号を付してそれらの説明を省略する。
 図10(a)に示すように、本形態でも、実施の形態2,3と同様、凹部3fは、光軸Lが通る位置を囲む円形の内周縁を有する環状に形成されている。このため、前面部31には、凹部3fの径方向内側に円形の天面部31tが形成されている。また、本形態では、開口部141aから撮像ユニット1が突出しておらず、可動体3において最も光軸方向前側に位置するのは、天面部31tである。
 ここで、天面部31tは、実施の形態2、3に比して小径である。このため、図10(b)に一点鎖線で示すように、対角方向に可動体3を揺動させた際、固定体200の前板部220に角3a、3cや角3b、3dが当接することになる。この場合でも、角3a、3cや角3b、3dが天面部31tより光軸方向後側に位置するため、可動体3の前面部31と固定体200の前板部220との間に光軸方向で広い隙間を設けなくても可動体3の揺動可能な角度範囲θが広い。よって、光学ユニット100の光軸方向の寸法を短くすることができる。
 また、図10(c)に示すように、外部からの衝撃で可動体3が光軸方向前側に変位したときには、可動体3の前面部31(凹部3f)が固定体200の前板部220に当接し、それ以上の変位が阻止される。従って、可動体3が光軸方向前側に変位したときでも、図4等に示すバネ部材600に塑性変形が発生することを防止することができる等、実施の形態1と同様な効果を奏する。
 [他の実施の形態]
 上記実施の形態では、振れ検出手段として、ジャイロスコープからなる振れ検出センサ170を用いたが、撮像素子1bによって得られた画像のシフトによって振れを検出するシステムを振れ検出手段として用いた光学ユニット100に本発明を適用してもよい。
 また、本発明を適用した振れ補正機能付きの光学ユニット100は、携帯電話機やデジタルカメラ等の他、冷蔵庫等、一定間隔で振動を有する装置内に固定し、遠隔操作可能にしておくことで、外出先、たとえば買い物の際に、冷蔵庫内部の情報を得ることができるサービスに用いることもできる。かかるサービスでは、姿勢安定化装置付きのカメラシステムであるため、冷蔵庫の振動があっても安定な画像を送信可能である。また、本装置を児童、学生のカバン、ランドセルあるいは帽子等の、通学時に装着するデバイスに固定してもよい。この場合、一定間隔で、周囲の様子を撮影し、あらかじめ定めたサーバへ画像を転送すると、この画像を保護者等が、遠隔地において観察することで、子供の安全を確保することができる。かかる用途では、カメラを意識することなく移動時の振動があっても鮮明な画像を撮影することができる。また、カメラモジュールのほかにGPSを搭載すれば、対象者の位置を同時に取得することも可能となり、万が一の事故の発生時には、場所と状況の確認が瞬時に行える。さらに、本発明を適用した振れ補正機能付き光学ユニット100を自動車において前方が撮影可能な位置に搭載すれば、ドライブレコーダーとして用いることができる。また、本発明を適用した振れ補正機能付き光学ユニット100を自動車において前方が撮影可能な位置に搭載して、一定間隔で自動的に周辺の画像を撮影し、決められたサーバに自動転送してもよい。また、カーナビゲーションの道路交通情報通信システム等の渋滞情報と連動させて、この画像を配信することで、渋滞の状況をより詳細に提供することができる。かかるサービスによれば、自動車搭載のドライブレコーダーと同様に事故発生時等の状況を、意図せずに通りがかった第三者が記録し状況の検分に役立てることもできる。また、自動車の振動に影響されることなく鮮明な画像を取得できる。かかる用途の場合、電源をオンにすると、制御部に指令信号が出力され、かかる指令信号に基づいて、振れ制御が開始される。
 また、本発明を適用した振れ補正機能付きの光学ユニット100は、レーザポインタ、携帯用や車載用の投射表示装置や直視型表示装置等、光を出射する光学機器の振れ補正に適用してもよい。また、天体望遠鏡システムあるいは双眼鏡システム等、高倍率での観察において三脚等の補助固定装置を用いることなく観察するのに用いてもよい。また、狙撃用のライフル、あるいは戦車等の砲筒とすることで、トリガ時の振動に対して姿勢の安定化が図れるので、命中精度を高めることができる。

Claims (6)

  1.  光学素子を保持する角形の可動体と、
     前記可動体を変位可能に支持する固定体と、
     前記固定体に対して前記可動体を揺動させる振れ補正用駆動機構と、
     を有し、
     前記固定体は、光軸が通る位置に開口部をもって前記可動体の前面部に対して前側で対向する前板部を備え、
     前記可動体の前記前面部には、当該前面部の角を光軸方向後側に凹ませる凹部が形成されていることを特徴とする振れ補正機能付き光学ユニット。
  2.  前記凹部は、前記可動体に用いた角形ケースの前記前面部の角に対して当該前面部に平行な底部を有するように形成された段部からなることを特徴とする請求項1に記載の振れ補正機能付き光学ユニット。
  3.  前記凹部は、前記前面部の前記角のみに形成されていることを特徴とする請求項1または2に記載の振れ補正機能付き光学ユニット。
  4.  前記凹部は、前記光軸が通る位置を囲む円形の内周縁を有する環状に形成され、
     前記前面部には、前記凹部の径方向内側に円形の天面部が形成されていることを特徴とする請求項1または2に記載の振れ補正機能付き光学ユニット。
  5.  前記固定体は、光軸が通る位置に前記可動体の後面部に向けて突出した揺動支点用の凸部を備えた底板部を有し、
     前記可動体の前記後面部には、前記凸部が当接する受け部と、該受け部より前記底板部に向けて突出した凸状底部と、を備え、
     前記凸状底部は、前記受け部を中心とする円形の平面形状、または前記受け部を中心とする円弧部を当該受け部を間に挟む両側に備えた平面形状を備えていることを特徴とする請求項1乃至4の何れか一項に記載の振れ補正機能付き光学ユニット。
  6.  前記受け部と前記凸状底部とはテーパ面を介して繋がっていることを特徴とする請求項5に記載の振れ補正機能付き光学ユニット。
PCT/JP2012/082293 2011-12-22 2012-12-13 振れ補正機能付き光学ユニット WO2013094503A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011281891A JP6022768B2 (ja) 2011-12-22 2011-12-22 振れ補正機能付き光学ユニット
JP2011-281891 2011-12-22

Publications (1)

Publication Number Publication Date
WO2013094503A1 true WO2013094503A1 (ja) 2013-06-27

Family

ID=48668396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082293 WO2013094503A1 (ja) 2011-12-22 2012-12-13 振れ補正機能付き光学ユニット

Country Status (2)

Country Link
JP (1) JP6022768B2 (ja)
WO (1) WO2013094503A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015045447A (ja) * 2013-08-28 2015-03-12 株式会社東芝 撮像装置用ホルダ及び貯蔵庫
JP2019023562A (ja) * 2018-11-14 2019-02-14 東芝ライフスタイル株式会社 撮像装置用ホルダ及び貯蔵庫
CN111308733A (zh) * 2018-12-12 2020-06-19 新思考电机有限公司 抖动补偿装置、照相装置以及电子设备
CN114355700A (zh) * 2020-09-30 2022-04-15 日本电产株式会社 光学单元

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6145377B2 (ja) * 2013-09-30 2017-06-14 日本電産サンキョー株式会社 撮影用光学装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156814A (ja) * 2008-12-26 2010-07-15 Nidec Sankyo Corp 振れ補正機能付き光学ユニット、および振れ補正機能付き光学ユニットの製造方法
WO2011018967A1 (ja) * 2009-08-11 2011-02-17 日本電産サンキョー株式会社 光学ユニットおよびその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006166202A (ja) * 2004-12-09 2006-06-22 Konica Minolta Photo Imaging Inc 光学装置及びデジタルカメラ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156814A (ja) * 2008-12-26 2010-07-15 Nidec Sankyo Corp 振れ補正機能付き光学ユニット、および振れ補正機能付き光学ユニットの製造方法
WO2011018967A1 (ja) * 2009-08-11 2011-02-17 日本電産サンキョー株式会社 光学ユニットおよびその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015045447A (ja) * 2013-08-28 2015-03-12 株式会社東芝 撮像装置用ホルダ及び貯蔵庫
JP2019023562A (ja) * 2018-11-14 2019-02-14 東芝ライフスタイル株式会社 撮像装置用ホルダ及び貯蔵庫
CN111308733A (zh) * 2018-12-12 2020-06-19 新思考电机有限公司 抖动补偿装置、照相装置以及电子设备
CN114355700A (zh) * 2020-09-30 2022-04-15 日本电产株式会社 光学单元
CN114355700B (zh) * 2020-09-30 2024-04-12 日本电产株式会社 光学单元

Also Published As

Publication number Publication date
JP2013130822A (ja) 2013-07-04
JP6022768B2 (ja) 2016-11-09

Similar Documents

Publication Publication Date Title
JP5762087B2 (ja) 振れ補正機能付き光学ユニット
JP5848052B2 (ja) 振れ補正機能付き光学ユニット
JP5893363B2 (ja) 振れ補正機能付き光学ユニット
JP6077939B2 (ja) 振れ補正機能付き光学ユニット
JP6046427B2 (ja) 光学ユニット
JP5771373B2 (ja) 振れ補正機能付き光学ユニット
WO2015045792A1 (ja) 振れ補正機能付き光学ユニット
WO2014192539A1 (ja) 振れ補正機能付き光学ユニット
WO2012032989A1 (ja) 振れ補正機能付き光学ユニット
WO2011155315A1 (ja) 振れ補正機能付き光学ユニット
JP6460745B2 (ja) 振れ補正機能付き光学ユニット
JP6022768B2 (ja) 振れ補正機能付き光学ユニット
JP6486046B2 (ja) 振れ補正機能付き光学ユニット
JP5993695B2 (ja) 光学ユニットおよび光学ユニットの製造方法
JP6483980B2 (ja) 振れ補正機能付き光学ユニット
JP5698939B2 (ja) 振れ補正機能付き光学ユニット
JP5755476B2 (ja) 振れ補正機能付き光学ユニット
JP5519390B2 (ja) 振れ補正機能付き光学ユニット
JP6182359B2 (ja) 光学ユニット
JP6093137B2 (ja) 光学ユニットおよび光学ユニットの製造方法
JP6503172B2 (ja) 振れ補正機能付き光学ユニット、および振れ補正機能付き光学ユニットの製造方法
JP6173695B2 (ja) 光学ユニット
WO2013099617A1 (ja) 振れ補正機能付き光学ユニット
JP5752978B2 (ja) 振れ補正機能付き光学ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12859044

Country of ref document: EP

Kind code of ref document: A1